UNIFORM BUILDING CODE
1949 Edition

ADOPTED BY THE

Pacific Coast Building Officials Conference
at the 6th Annual Meeting
October, 1927

With Revisions and Additions Approved
at the 26th Annual Meeting
October, 1948

PUBLISHED JANUARY 1, 1949
Printing of January 1, 1949

COPYRIGHT, 1949

by

Pacific Coast Building Officials Conference

124 West Fourth Street
Los Angeles, California

PRINTED IN THE U.S.A.
Preface

The Uniform Building Code is dedicated to the development of better building construction and greater safety to the public, through the elimination of needless red tape, favoritism and local politics by uniformity in building laws; to the granting of full justice to all building materials on the fair basis of the true merits of each material; and to the development of a sound economic basis for the future growth of cities through unbiased and equitable dealing with structural design and fire hazards.
OUTLINE OF CONTENTS BY PARTS, CHAPTERS AND SECTIONS

Part I—Administrative

CHAPTER 1. Title and Scope

SEC. 101. Title .. 19
102. Purpose ... 19
103. Scope .. 19
104. Application to Existing Buildings 19
105. Alternate Materials and Methods of Construction 20
106. Tests .. 20

CHAPTER 2. Organization and Enforcement

SEC. 201. Creation of Department 22
202. Powers and Duties of Building Official 22
203. Unsafe Buildings ... 22
204. Board of Examiners and Appeals 23
205. Violations and Penalties 24

CHAPTER 3. Permits and Inspections

SEC. 301. Application for Permits 25
302. Building Permits .. 25
303. Fees .. 26
304. Inspections .. 27
305. Special Supervision .. 28
306. Certificate of Occupancy 29

Part II—Definitions and Abbreviations

CHAPTER 4. Definitions and Abbreviations

SEC. 401. Definitions and Abbreviations 30

Part III—Requirements Based on Occupancy

CHAPTER 5. Classification of all Buildings by Use or Occupancy and General Requirements for all Occupancies

SEC. 501. Occupancy Classified 35
502. Change in Use ... 35
503. Mixed Occupancy ... 38
504. Location on Property 39
505. Allowable Floor Areas 39
506. Allowable Area Increases 40
507. Maximum Height of Buildings 41

CHAPTER 6. Requirements for Group A Occupancies

SEC. 601. Group A Occupancies Defined 43
602. Construction, Height and Area Allowable 43
603. Location on Property 43
CHAPTER 7. Requirements for Group B Occupancies

SEC. 701. Group B Occupancies Defined 45
702. Construction, Height and Area
 Allowable .. 45
703. Location on Property 46
704. Exit Facilities 46
705. Light, Ventilation, and Sanitation 46
706. Enclosure of Vertical Openings 46
707. Fire-Extinguishing Apparatus 46
708. Special Hazards 46
709. Exceptions and Deviations 47

CHAPTER 8. Requirements for Group C Occupancies

SEC. 801. Group C Occupancies Defined 48
802. Construction, Height and Area
 Allowable .. 48
803. Location on Property 48
804. Exit Facilities 48
805. Light, Ventilation, and Sanitation 48
806. Enclosure of Vertical Openings 49
807. Fire-Extinguishing Apparatus 49
808. Special Hazards 49
809. Exceptions and Deviations 49

CHAPTER 9. Requirements for Group D Occupancies

SEC. 901. Group D Occupancies Defined 50
902. Construction, Height and Area
 Allowable .. 50
903. Location on Property 50
904. Exit Facilities 50
905. Light and Ventilation 50
906. Enclosure of Vertical Openings 50
907. Fire-Extinguishing Apparatus 50
908. Special Hazards 50

CHAPTER 10. Requirements for Group E Occupancies

SEC. 1001. Group E Occupancies Defined 52
1002. Construction, Height and Area
 Allowable .. 52
1003. Location on Property 52
1004. Exit Facilities 52
1005. Light, Ventilation, and Sanitation 53
1006. Enclosure of Vertical Openings 53
1007. Fire-Extinguishing Apparatus 53
1008. Special Hazards 53
CHAPTER 11. Requirements for Group F Occupancies

SEC. 1101. Group F Occupancies Defined 55
1102. Construction, Height and Area
 Allowable .. 55
1103. Location on Property 55
1104. Exit Facilities 55
1105. Light, Ventilation, and Sanitation 55
1106. Enclosure of Vertical Openings 56
1107. Fire-Extinguishing Apparatus 56
1108. Special Hazards 56

CHAPTER 12. Requirements for Group G Occupancies

SEC. 1201. Group G Occupancies Defined 57
1202. Construction, Height and Area
 Allowable .. 57
1203. Location on Property 57
1204. Exit Facilities 57
1205. Light, Ventilation, and Sanitation 57
1206. Enclosure of Vertical Openings 57
1207. Fire-Extinguishing Apparatus 57
1208. Special Hazards 57

CHAPTER 13. Requirements for Group H Occupancies

SEC. 1301. Group H Occupancies Defined 58
1302. Construction, Height and Area
 Allowable .. 58
1303. Location on Property 58
1304. Exit Facilities 58
1305. Light, Ventilation, and Sanitation 58
1306. Enclosure of Vertical Openings 59
1307. Fire-Extinguishing Apparatus 59
1308. Special Hazards 59
1309. Existing Buildings (See Appendix)

CHAPTER 14. Requirements for Group I Occupancies

SEC. 1401. Group I Occupancies Defined 60
1402. Construction, Height and Area
 Allowable .. 60
1403. Location on Property 60
1404. Exit Facilities 60
1405. Light, Ventilation, and Sanitation 60
1406. Enclosure of Vertical Openings 60
1407. Fire-Extinguishing Apparatus 61
1408. Special Hazards 61
1409. Exceptions and Deviations 61

CHAPTER 15. Requirements for Group J Occupancies

SEC. 1501. Group J Occupancies Defined 62
1502. Construction, Height and Area
 Allowable .. 62
1503. Location on Property 62
1504. Exit Facilities 62
Part IV—Requirements Based on Location in Fire Zones

CHAPTER 16. Restrictions in Fire Zones

SEC. 1601. General .. 63
1602. Restrictions in Fire Zone No. 1 63
1603. Restrictions in Fire Zone No. 2 64
1604. Restrictions in Fire Zone No. 3 65

Part V—Requirements Based on Types of Construction

CHAPTER 17. Classification of all Buildings by Types of Construction and General Requirements

SEC. 1701. General .. 66
1702. Classification by Types of Construction 66
1703. Exterior Walls—When Required 67

CHAPTER 18. Type I Buildings (Fire-Resistive)

SEC. 1801. Definition .. 68
1802. Height Allowable .. 68
1803. Area Allowable .. 68
1804. Foundations .. 68
1805. Exterior and Inner Court Walls 68
1806. Partitions .. 68
1807. Enclosure of Vertical Openings 68
1808. Structural Framework 69
1809. Fire Protection of Structural Members .. 69
1810. Floor Construction 70
1811. Roof Deck Construction 70
1812. Stair Construction 70
1813. Doors and Windows 70
1814. Projections from the Building 71
1815. Penthouses and Skylights 71
1816. Combustible Materials Regulated 71

CHAPTER 19. Type II Buildings (Heavy Timber Construction)

SEC. 1901. Definition .. 72
1902. Height Allowable .. 72
1903. Area Allowable .. 72
1904. Foundations .. 72
1905. Exterior and Inner Court Walls 72
1906. Partitions .. 72
1907. Enclosure of Vertical Openings 73
CHAPTER 20. Type III Buildings (Ordinary Masonry)

SEC. 2001. Definition .. 76
2002. Height Allowable 76
2003. Area Allowable 76
2004. Foundations ... 76
2005. Exterior and Inner Court Walls 76
2006. Partitions ... 76
2007. Enclosure of Vertical Openings 76
2008. Structural Framework 77
2009. Fire-Protection of Structural Members 77
2010. Floor Construction 77
2011. Roof Deck Construction 77
2012. Stair Construction 77
2013. Doors and Windows 77
2014. Projections from the Building 77
2015. Penthouses and Skylights 78
2016. Combustible Materials Regulated 78

CHAPTER 21. Type IV Buildings (Light Incombustible Frame)

SEC. 2101. Definition .. 79
2102. Height Allowable 79
2103. Area Allowable 79
2104. Foundations ... 79
2105. Exterior Walls .. 79
2106. Partitions ... 80
2107. Enclosure of Vertical Openings 80
2108. Structural Framework 80
2109. Fire-Protection of Structural Members 80
2110. Floor Construction 80
2111. Roof Construction 80
2112. Stair Construction 80
2113. Doors and Windows 80
2114. Projections from the Building 80
2115. Penthouses and Skylights 80

CHAPTER 22. Type V Buildings (Wood Frame)

SEC. 2201. Definition .. 81
2202. Height Allowable 81
2203. Area Allowable 81
2204. Foundations ... 81
2205. Exterior Walls and Wall Coverings 82
Part VI—Engineering Regulations, Quality and Design of the Materials of Construction

CHAPTER 23. Live and Dead Loads

SEC. 2301. Definitions .. 85
2302. Loads .. 85
2303. Method of Design 85
2304. Unit Live Loads .. 85
2305. Roof Loads ... 86
2306. Reduction of Live Loads 87
2307. Wind Pressure .. 88
2308. Live LoadsPosted 89
2309. Retaining Walls and Basement Floors 89
2310. Footing Design ... 89
2311. Walls and Structural Framing 89
2312. Earthquake Regulations (See Appendix, and map on inside back cover)

CHAPTER 24. Masonry

SEC. 2401. General ... 90
2402. Materials .. 90
2403. Mortar and Grout 91
2404. General Requirements for Masonry Construction .. 92
2405. Plain Solid Masonry 94
2406. Grouted Brick Masonry 95
2407. Reinforced Brick Masonry 95
2408. Hollow Unit Masonry 98
2409. Cavity Wall Masonry 98
2410. Stone Masonry ... 99
2411. Gypsum Masonry 99
2412. Reinforced Gypsum 100
2413. Glass Masonry .. 101
2414. Faced Walls ... 101
2415. Masonry of Unburned Clay Units (See Appendix)

CHAPTER 25. Wood

SEC. 2501. Quality and Design 103
2502. Sizes .. 103
CHAPTER 26. Concrete

SEC. 2601. Quality ... 125
2602. Design .. 125
2603. Definitions .. 125
2604. Materials .. 126
2605. Tests .. 126
2606. Quality of Concrete 127
2607. Proportions and Consistency 128
2608. Control of Proportions 129
2609. Mixing and Placing Concrete 129
2610. Forms and Details of Construction 131
2611. Assumptions for Design 133
2612. Symbols and Notations 133
2613. Allowable Unit Stresses in
 Reinforcement 134
2614. Flexural Computations 135
2615. Shrinkage and Temperature
 Reinforcement 139
2616. Two-Way Slabs 139
2617. Shear and Diagonal Tension 140
2618. Bond and Anchorage 142
2619. Flat Slabs ... 145
2620. Reinforced Concrete Columns and
 Walls .. 145
2621. Footings .. 154
2622. Precast Concrete Joists 157
2623. Composite Beams 157
2624. Plain Concrete 158
2625. Pneumatically Placed Concrete 158
2626. Bolts ... 159

CHAPTER 27. Steel and Iron (Quality and Design)
SEC. 2701. Quality and Design 160
2702. Allowable Unit Stresses 160
2703. Eccentric Loads 162
2704. Beams and Girders 163
2705. Thickness of Materials 165
2706. Compression Splices 166
2707. Gross and Net Sections 166
2708. Connections 167
2709. Rivets and Bolts 169
2710. Welded Connections 169
2711. Construction Details 170
2712. Lacing ... 170
2713. Pins and Pin Holes 171
2714. Bearing Plates and Anchorage 171
2715. Light Steel Construction 172
2716. Expansion 173
2717. Workmanship 173
2718. Painting 175

Part VII—Detailed Regulations

CHAPTER 28. Excavations, Foundations and Retaining Walls
SEC. 2801. Excavations 176
2802. Soil Classification 176
2803. Allowable Soil Pressures 178
2804. Soil Requirements 178
2805. Design of Footings 178
2806. Protection of Steel in Grillage
Footings ... 178
2807. Piles .. 178

CHAPTER 29. Veneered Walls
SEC. 2901. General 183
2902. Veneer Composed of Masonry Units 183
2903. Veneer Composed of Non-Structural
Units .. 183
2904. Special Requirements for Glass
Veneer ... 184

CHAPTER 30. Enclosure of Vertical Openings
SEC. 3001. Enclosures: When Required 185
3002. Elevator Enclosures 185
3003. Other Vertical Openings 185
3004. Air Ducts 185

CHAPTER 31. Floor Construction and Covering
SEC. 3101. General 186
3102. Concrete Floors 186
3103. Steel Joisted Floors 186
3104. Cellular Steel Floors 186
3105. Wood Floors 187
3106. Mill Constructed Floors 189

CHAPTER 32. Roof Construction and Covering

SEC. 3201. General 190
3202. Construction 190
3203. Design 191
3204. Roof Coverings 191
3205. Attics: Access and Areas 195
3206. Roof Drainage 195

CHAPTER 33. Stairs and Exits

SEC. 3301. General 196
3302. Exits Required 197
3303. Doors .. 198
3304. Corridors 198
3305. Stairs .. 198
3306. Ramps .. 200
3307. Horizontal Exit 200
3308. Exit Enclosures 201
3309. Smokeproof Enclosures 201
3310. Exit Outlets 202
3311. Exit Courts 202
3312. Exit Signs and Illumination 202
3313. Aisles ... 202
3314. Seats .. 203
3315. Exits: Group A Occupancies 203
3316. Exits: Group B Occupancies 204
3317. Exits: Group C Occupancies 204
3318. Exits: Group D Occupancies 204
3319. Exits: Group E Occupancies 205
3320. Special Hazards 205

CHAPTER 34. Doors, Windows, and Skylights

SEC. 3401. Doors and Windows 206
3402. Skylights 206

CHAPTER 35. Bays and Balconies

SEC. 3501. Construction 207

CHAPTER 36. Penthouses and Roof Structures

SEC. 3601. Penthouses and Roof Structures 208
3602. Towers and Spires 208

CHAPTER 37. Chimneys, Vents and Fireplaces

SEC. 3701. General 209
3702. Chimneys 209
3703. Masonry Chimneys 210
3704. Terra Cotta Chimneys 210
3705. Metal Smokestacks 211
3706. Smoke Pipes ... 211
3707. Fireplaces ... 211
3708. Gas Vents ... 212
3709. Kitchen Ventilation 213
3710. Protection of Combustible Construc-
tion .. 213
3711. Incinerators ... 213

CHAPTER 38. Fire-Extinguishing Apparatus

SEC. 3801. Automatic Sprinklers; Where
Required ... 214
3802. Detailed Requirements 214
3803. Dry Standpipes: Where Required 215
3804. Dry Standpipes: Detailed Require-
ments .. 215
3805. Wet Standpipes: Where Required 216
3806. Wet Standpipes: Detailed Require-
ments .. 216
3807. Basement Pipe Inlets 218
3808. Approvals ... 218

CHAPTER 39. Stages and Platforms

SEC. 3901. Stage Ventilators 219
3902. Gridirons ... 219
3903. Rooms Accessory to Stage 219
3904. Proscenium Walls 219
3905. Stage Floors .. 220
3906. Platforms ... 220
3907. Stage Exits .. 220
3908. Miscellaneous 221
3909. Flame-Proofing Requirements 221

CHAPTER 40. Motion Picture Projection Rooms

SEC. 4001. General .. 222
4002. Construction .. 222
4003. Exits .. 222
4004. Ports and Openings 222
4005. Ventilation ... 223
4006. Regulation of Equipment 223
4007. Sanitary Requirements 223

CHAPTER 41. Proscenium Curtains

SEC. 4101. General Requirements 224
4102. Curtain Coverings 224
4103. Design and Construction 224
4104. Operating Equipment 225
4105. Tests .. 227
4106. New Designs .. 227

Part VIII—Fire-Resistive Standards for Fire Protec-
tion

CHAPTER 42. (No Requirements)
CHAPTER 43. Fire-Resistive Standards

SEC. 4301. General .. 228
4302. Fire-Resistive Materials 228
4303. Protection of Structural Members 230
4304. Walls and Partitions 230
4305. Floors and Ceilings 230
4306. Fire-Resistive Assemblies for Protection of Openings 234
4307. Roof Coverings 236

Part IX—Regulations for Use of Public Streets and Projections Over Public Property

CHAPTER 44. Protection of Pedestrians During Construction or Demolition

SEC. 4401. General .. 237
4402. Temporary Use of Streets and Alleys 237
4403. Restrictions to Storage on Public Property 237
4404. Mixing Mortar on Public Property 238
4405. Protection of Utilities 238
4406. Protection of Pedestrians on Public Property .. 238
4407. Protection of Sidewalk Excavations 239

CHAPTER 45. Permanent Occupancy of Public Property

SEC. 4501. General .. 240
4502. Projection into Alleys 240
4503. Space Below Sidewalk 240
4504. Balconies and Appendages 240
4505. Marquees .. 240
4506. Movable Awnings or Hoods 241
4507. Doors .. 241

CHAPTER 46. (No Requirements)

Part X—Plastering

CHAPTER 47. Lathing and Plastering

SEC. 4701. General .. 242
4702. Materials .. 242
4703. Interior Plastering: Lathing 243
4704. Non-Bearing Lath and Plaster Partitions 244
4705. Interior Plastering: Suspended and Furred Ceilings 245
4706. Interior Plastering: Number of Coats and Thickness 245
4707. Interior Plastering: Proportioning and Mixing 246
4708. Interior Plastering: Application of Plaster 247
PART XI—Special Subjects

CHAPTER 48. Film Storage
 (See Appendix, Chapter 48)

CHAPTER 49. Mechanical Refrigeration
 (See Appendix, Chapter 49)

CHAPTER 50. Prefabricated Construction

SEC. 5001. General ... 251
5002. Tests of Materials 251
5003. Tests of Assemblies 251
5004. Connections ... 251
5005. Pipes and Conduits 251
5006. Certificate and Inspection 252

CHAPTER 51. Heating Appliances
 (See Appendix Chapter 51)

CHAPTERS 52-59. (No Requirements)

Part XII—Legislative

CHAPTER 60. Legislative

SEC. 6001. Validity ... 253
6002. Uniform Building Code Standards 253
6003. Ordinances Repealed 253
6004. Date Effective 253

Part XIII—Appendix

CHAPTERS 7, 13, 23, 24, 25, 48, and 49

SEC. 702. Reviewing Stands 254
1309. Existing Buildings 254
2301. Weights of Building Materials 256
2312. Lateral Bracing (Earthquake Regulations) 258
2415. Masonry of Unburned Clay Units 261
2525. Termite Provisions 262
4801. Photographic and X-Ray Films
 (Classes of Film Excepted) 263
4802. General Regulations 263
4803. Motion Picture Film 263
4901. Refrigeration Systems (General) 263
4902. Scope ... 263
CHAPTER 51. Heating Appliances

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5101.</td>
<td>Construction and Performance</td>
<td>264</td>
</tr>
<tr>
<td>5102.</td>
<td>Air Supply</td>
<td>264</td>
</tr>
<tr>
<td>5103.</td>
<td>Automatic Controls</td>
<td>265</td>
</tr>
<tr>
<td>5104.</td>
<td>Location of Appliances</td>
<td>265</td>
</tr>
<tr>
<td>5105.</td>
<td>Gas-Burning Warm Air Furnaces—Clearances</td>
<td>266</td>
</tr>
<tr>
<td>5106.</td>
<td>Venting Gas Furnaces</td>
<td>266</td>
</tr>
<tr>
<td>5107.</td>
<td>Solid-Fuel-Burning Warm Air Furnaces</td>
<td>266</td>
</tr>
<tr>
<td>5108.</td>
<td>Oil-Burning Equipment</td>
<td>267</td>
</tr>
<tr>
<td>5109.</td>
<td>Floor Furnaces and Attic Furnaces</td>
<td>267</td>
</tr>
<tr>
<td>5110.</td>
<td>Warm Air Ducts and Appurtenances</td>
<td>268</td>
</tr>
<tr>
<td>5111.</td>
<td>Domestic Water Heaters</td>
<td>269</td>
</tr>
<tr>
<td>5112.</td>
<td>Ranges for Commercial Cooking</td>
<td>270</td>
</tr>
<tr>
<td>5113.</td>
<td>Stoves Using Solid or Liquid Fuel</td>
<td>271</td>
</tr>
<tr>
<td>5114.</td>
<td>Low Pressure Steam Heating Plants</td>
<td>272</td>
</tr>
<tr>
<td>5115.</td>
<td>Large Boilers</td>
<td>272</td>
</tr>
</tbody>
</table>

INDEX

| | 273 |

17
An ordinance regulating the erection, construction, enlargement, alteration, repair, moving, removal, conversion, demolition, occupancy, equipment, use, height, area, and maintenance of buildings or structures in the City of

providing for the issuance of permits and collection of fees therefor; declaring and establishing Fire Districts; providing penalties for the violation thereof, and repealing all ordinances and parts of ordinances in conflict therewith.

Be it ordained by the

of the City of

as follows:
PART I

ADMINISTRATIVE

CHAPTER 1—TITLE AND SCOPE

Sec. 101. This ordinance shall be known as the "Building Code," may be cited as such, and will be referred to herein as "this Code."

Sec. 102. The purpose of this Code is to provide minimum standards to safeguard life or limb, health, property, and public welfare by regulating and controlling the design, construction, quality of materials, use and occupancy, location and maintenance of all buildings and structures within the city and certain equipment specifically regulated herein.

The provisions of this Code shall supplement any and all laws of the State relating to buildings.

Sec. 103. New buildings and structures hereafter erected in the city, and buildings and structures moved into or within the city shall conform to the requirements of this Code.

Additions, alterations, repairs and changes of use or occupancy in all buildings and structures shall comply with the provisions for new buildings and structures except as otherwise provided in Sections 104, 306, and 502 of this Code.

Where, in any specific case, different sections of this Code specify different materials, methods of construction or other requirements, the most restrictive shall govern.

Sec. 104. (a) General. Buildings or structures to which additions, alterations, or repairs are made shall comply with all the requirements for new buildings or structures except as specifically provided in this Section.

For construction in Fire Zones see Chapter 16.

(b) Additions, Alterations and Repairs: More Than 50 Per Cent. When additions, alterations, or repairs within any 12-month period exceed 50 per cent of the value of an existing building or structure, such building or structure shall be made to conform to the requirements for new buildings or structures.

(c) Additions, Alterations, and Repairs: 25 to 50 Per Cent. Additions, alterations, and repairs exceeding 25 per cent but not exceeding 50 per cent of the value of an existing building or structure and complying with the requirements for new buildings or structures may be made to such building or structure within any 12-month period without making the entire building or structure comply. The new construction shall conform to the requirements of this Code for a new building of like area, height, and occupancy. Such building or structure, including new additions, shall not exceed the areas and heights specified in this Code.

(d) Additions, Alterations and Repairs: 25 Per Cent or Less. Structural additions, alterations, and repairs to any portion of an existing building or structure, within any 12-month period, not exceeding 25 per cent of the value of the building or structure shall comply with all of the re-
requirements for new buildings or structures, except that minor structural additions, alterations, or repairs, when approved by the Building Official, may be made with the same material of which the building or structure is constructed. Such building or structure, including new additions, shall not exceed the areas and heights specified in this Code.

(e) Non-Structural Alterations and Repairs: 25 Per Cent or Less. Alterations or repairs, not exceeding 25 per cent of the value of an existing building or structure, which are non-structural and do not affect any member or part of the building or structure having required fire resistance, may be made with the same materials of which the building or structure is constructed.

(f) Repairs: Roof Covering. Not more than 25 per cent of the roof covering of any building or structure shall be replaced in any 12-month period unless the new roof covering is made to conform to the requirements of this Code for new buildings or structures.

(g) Change of Occupancy. The use or occupancy of any existing building or structure shall comply with the provisions of Sections 306 and 502.

(h) Moved Buildings. Buildings or structures moved into or within the city shall comply with the provisions of this Code. Buildings or structures moved into or within a Fire Zone shall comply with the provisions of Section 1601(c).

(i) Maintenance. All buildings or structures both existing and new, and all parts thereof, shall be maintained in a safe and sanitary condition. All devices or safeguards which are required by this Code in a building or structure when erected, altered, or repaired, shall be maintained in good working order. The owner or his designated agent shall be responsible for the maintenance of buildings and structures.

Sec. 105. The provisions of this Code are not intended to prevent the use of any material or method of construction not specifically prescribed by this Code, provided any such alternate has been approved.

The Building Official may approve any such alternate provided he finds that the proposed design is satisfactory and complies with the provisions of Chapter 23, and that the material, method, or work offered is, for the purpose intended, at least the equivalent of that prescribed in this Code in quality, strength, effectiveness, fire resistance, durability, and safety.

The Building Official shall require that sufficient evidence or proof be submitted to substantiate any claims that may be made regarding its use.

Sec. 106. Whenever there is evidence that any material or any construction does not conform to the requirements of this Code, or in order to substantiate claims for alternate materials or methods of construction, the Building Official may require tests as proof of compliance to be made at the expense of the owner or his agent by an approved agency.
Test methods shall be as specified by this Code for the Tests material in question. If there are no appropriate test (Cont'd.) methods specified in this Code, the Building Official shall determine the test procedure.

Copies of the results of all such tests shall be kept on file in the office of the Building Official for a period of not less than two years after the acceptance of the structure.
CHAPTER 2—ORGANIZATION AND ENFORCEMENT

Sec. 201. There is hereby established in the city the "Building Department" which shall be under the jurisdiction of the Building Official designated by the appointing authority.

Sec. 202. (a) General. The Building Official is hereby authorized and directed to enforce all the provisions of this Code. For such purpose he shall have the powers of a police officer.

The determination of value or valuation under any of the provisions of this Code shall be made by the Building Official.

(b) Deputies. In accordance with the procedure and with the approval of the chief appointing authority of the municipality, the Building Official may appoint such number of officers, inspectors and assistants and other employees as shall be authorized from time to time. He may deputize such employees as may be necessary to carry out the functions of the Building Department.

(c) Reports and Records. The Building Official shall submit a report to the proper city official not less than once a year, covering the work of the department during the preceding period. He shall incorporate in said report a summary of his recommendations as to desirable amendments to the law.

The Building Official shall keep a permanent, accurate account of all fees and other monies collected and received under this Code, the names of the persons upon whose account the same were paid, the date and amount thereof, together with the location of the building or premises to which they relate.

(d) Right of Entry. Upon presentation of proper credentials the Building Official or his duly authorized representatives may enter at reasonable times any building, structure or premises in the city to perform any duty imposed upon him by this Code.

(e) Stop Orders. Whenever any building work is being done contrary to the provisions of this Code, the Building Official may order the work stopped by notice in writing served on any persons engaged in the doing or causing such work to be done, and any such persons shall forthwith stop such work until authorized by the Building Official to proceed with the work.

Sec. 203. (a) General. All buildings or structures which are structurally unsafe or not provided with adequate egress, or which constitute a fire hazard, or are otherwise dangerous to human life, or which in relation to existing use constitute a hazard to safety or health by reason of inadequate maintenance, dilapidation, obsolescence, or abandonment, are, for the purpose of this Section, unsafe buildings. All such unsafe buildings are hereby declared to be public nuisances and shall be abated by repair, rehabilitation, or demolition in accordance with the procedure of this Section.

(b) Notice to Owner. The Building Official shall examine or cause to be examined every building or structure or por-
tion thereof reported as dangerous or damaged and, if such is found to be an unsafe building as defined in this Section, the Building Official shall give to the owner of such building or structure written notice stating the defects thereof. This notice shall require the owner, within 30 days, to commence either the required repairs or improvements or demolition and removal of the building or structure or portions thereof, and all such work shall be completed within 90 days from date of notice, unless otherwise stipulated by the Building Official. If necessary, such notice shall also require the building, structure, or portion thereof to be vacated forthwith and not reoccupied until the required repairs and improvements are completed, inspected, and approved by the Building Official.

Proper service of such notice shall be by personal service upon the owner of record, if he shall be found within the city limits. If he is not found within the city limits such service may be made upon said owner by registered mail; provided, that if such notice is by registered mail, the 30-day period within which said owner is required to comply with the order of the Building Official, shall begin as of the date he receives such notice.

(c) Posting of Signs. The Building Official shall cause to be posted at each entrance to such building a notice to read: “DO NOT ENTER. UNSAFE TO OCCUPY. Building Department, City of...”. Such notice shall remain posted until the required repairs are made or demolition is completed. Such notice shall not be removed without written permission of the Building Official and no person shall enter the building except for the purpose of making the required repairs or of demolishing the building.

(d) Right to Demolish. In case the owner shall fail, neglect, or refuse to comply with the notice to repair, rehabilitate, or to demolish and remove said building or structure or portion thereof, the City Council may order the owner of the building prosecuted as a violator of the provisions of this Code and may order the Building Official to proceed with the work specified in such notice. A statement of the cost of such work shall be transmitted to the City Council, who shall cause the same to be paid and levied as a special assessment against the property.

(e) Costs. Costs incurred under Subsection (d) shall be paid out of the City Treasury. Such costs shall be charged to the owner of the premises involved as a special assessment on the land on which the building or structure is located, and shall be collected in the manner provided for special assessments.

Sec. 204. In order to determine the suitability of alternate materials and types of construction and to provide for reasonable interpretations of the provisions of this Code, there shall be and is hereby created a Board of Examiners and Appeals, consisting of five members, who are qualified by experience and training to pass upon matters pertaining to building construction. The Building Official shall be an ex-officio member and shall act as Secretary to the Board. The
Board of Examiners and Appeals shall be appointed by the Mayor and shall hold office at his pleasure. The Board shall adopt reasonable rules and regulations for conducting its investigations and shall render all decisions and findings in writing to the Building Official with a duplicate copy to the appellant and may recommend to the City Council such new legislation as is consistent therewith.

Violations and Penalties

Sec. 205. It shall be unlawful for any person, firm or corporation to erect, construct, enlarge, alter, repair, move, improve, remove, convert or demolish, equip, use, occupy or maintain any building or structure in the city, or cause the same to be done, contrary to or in violation of any of the provisions of this Code.

Any person, firm or corporation violating any of the provisions of this Code shall be deemed guilty of a misdemeanor, and each such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any violation of any of the provisions of this Code is committed, continued or permitted, and upon conviction of any such violation such person shall be punishable by a fine of not more than $300, or by imprisonment for not more than three months, or by both such fine and imprisonment.
CHAPTER 3—PERMITS AND INSPECTIONS

Sec. 301. (a) Permits Required. No person, firm or corporation shall erect, construct, enlarge, alter, repair, move, improve, remove, convert or demolish any building or structure in the city, or cause the same to be done, without first obtaining a separate building permit for each such building or structure from the Building Official.

(b) Application. To obtain a permit the applicant shall first file an application therefor in writing on a form furnished for that purpose. Every such application shall:

1. Describe the land on which the proposed work is to be done, by lot, block, tract, and house and street address, or similar description that will readily identify and definitely locate the proposed building or work;
2. Show the use or occupancy of all parts of the building;
3. Be accompanied by plans and specifications as required in Subsection (c) of this Section;
4. State the valuation of the proposed work;
5. Give such other information as reasonably may be required by the Building Official.

(c) Plans and Specifications. Each application for a permit shall be accompanied by two sets of plans and specifications.

EXCEPTION: Plans and specifications need not be submitted for small and unimportant work when authorized by the Building Official.

(d) Information on Plans and Specifications. Plans and specifications shall be drawn to scale upon substantial paper or cloth and shall be of sufficient clarity to indicate the nature and extent of the work proposed and show in detail that it will conform to the provisions of this Code and all relevant laws, ordinances, rules and regulations. The first sheet of each set of plans shall give the house and street address of the work and the name and address of the owner and person who prepared them. Plans shall include a plot plan showing the location of the proposed building and of every existing building on the property. In lieu of detailed specifications, the Building Official may approve references on the plans to a specific section or part of this Code or other ordinances or laws.

Computations, stress diagrams, and other data sufficient to show the correctness of the plans, shall be submitted when required by the Building Official.

Sec. 302. (a) Issuance. The application, plans and specifications filed by an applicant for a permit shall be checked by the Building Official. Such plans may be reviewed by other departments of the city to check compliance with the laws and ordinances under their jurisdiction. If the Building Official is satisfied that the work described in an application for permit and the plans filed therewith conform to the requirements of this Code and other pertinent laws and ordinances, he shall issue a permit therefor to the applicant.

When the Building Official issues the permit, he shall endorse in writing or stamp on both sets of plans and specifications "APPROVED." Such approved plans and spec-
ifications shall not be changed, modified or altered without authorization from the Building Official, and all work shall be done in accordance with the approved plans.

(b) Retention of Plans. One set of approved plans, specifications and computations shall be retained by the Building Official for a period of not less than 90 days from date of completion of the work covered therein, and one set of approved plans and specifications shall be returned to the applicant, which set shall be kept on such building or work at all time during which the work authorized thereby is in progress.

Plans, submitted for checking, for which no permit is issued, and on which no action is taken by the applicant for 90 days, shall be returned to the last known address of the applicant; to renew action on said plans, a payment of a new plan check fee shall be required.

(c) Validity. The issuance or granting of a permit or approval of plans and specifications shall not be construed to be a permit for, or an approval of, any violation of any of the provisions of this Code. No permit presuming to give authority to violate or cancel the provisions of this Code shall be valid, except in so far as the work or use which it authorizes is lawful.

The issuance of a permit based upon plans and specifications shall not prevent the Building Official from thereafter requiring the correction of errors in said plans and specifications or from preventing building operations being carried on thereunder when in violation of this Code or of any other ordinance of the city.

(d) Expiration. Every permit issued by the Building Official under the provisions of this Code shall expire by limitation and become null and void, if the building or work authorized by such permit is not commenced within 60 days from the date of such permit, or if the building or work authorized by such permit is suspended or abandoned at any time after the work is commenced for a period of 60 days. Before such work can be recommenced a new permit shall be first obtained so to do, and the fee therefore shall be one-half the amount required for a new permit for such work, provided no changes have been made or will be made.

TABLE NO. 3-A—BUILDING PERMIT FEES

<table>
<thead>
<tr>
<th>TOTAL VALUATION</th>
<th>FEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than $20.00..................</td>
<td>No Fee</td>
</tr>
<tr>
<td>$20.00 to and including $100.00</td>
<td>$1.00</td>
</tr>
<tr>
<td>More than $100.00, to and including $400.00</td>
<td>2.00</td>
</tr>
<tr>
<td>More than $400.00, to and including $700.00</td>
<td>3.00</td>
</tr>
<tr>
<td>More than $700.00, to and including $1,000.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Each additional $1,000.00 or fraction, to and including $15,000.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Each additional $1,000.00 or fraction, to and including $50,000.00</td>
<td>1.90</td>
</tr>
<tr>
<td>Each additional $1,000.00 or fraction exceeding $50,000.00</td>
<td>0.50</td>
</tr>
</tbody>
</table>
In the original plans and specifications for such work; and provided, further, that such suspension or abandonment has not exceeded one year.

Sec. 303. (a) Building Permit Fees. Before a building permit is issued a permit fee therefor shall be paid to the Building Official as set forth in Table No. 3-A.
Where work for which a permit is required by this Code is started or proceeded with prior to obtaining said permit, the fees above specified shall be doubled, but the payment of such double fee shall not relieve any persons from fully complying with the requirements of this Code in the execution of the work nor from any other penalties prescribed herein.

(b) Plan-checking Fees. Before plans and specifications are accepted for checking, a plan-checking fee in addition to the building permit fee shall be paid to the Building Official. The plan-checking fee shall be one half the building permit fee.

EXCEPTIONS: A plan-checking fee shall not be required for:
1. Buildings or structures whose total valuation is less than $5,000.00;
2. Buildings of stud bearing wall construction with no floor or roof span in excess of twenty-four feet (24’);
3. Alterations and repairs of a non-structural nature.

Sec. 304. (a) General. All construction or work for which a permit is required shall be subject to inspection by the Building Official, and certain types of construction shall have continuous inspection by special inspectors, as specified in Section 305.

(b) Inspection Record Card. Work requiring a building permit shall not be commenced until the permit holder or his agent shall have posted an inspection record card in a conspicuous place on the front premises and in such position as to allow the Building Official conveniently to make the required entries thereon regarding inspection of the work. This card shall be maintained in such position by the permit holder until the Certificate of Occupancy has been issued.

(c) Approvals Required. No work shall be done on any part of the building or structure beyond the point indicated in each successive inspection without first obtaining the written approval of the Building Official. Such written approval shall be given only after an inspection shall have been made of each successive step in the construction as indicated by each of the inspections required in Subsection (d).
There shall be a final inspection and approval on all buildings when completed and ready for occupancy.

(d) Called Inspections. No reinforcing steel or structural framework of any part of any building or structure shall be covered or concealed in any manner whatever without first obtaining the approval of the Building Official.
The Building Official upon notification from the permit holder or his agent shall make the following inspections of Type V buildings and shall either approve that portion of
the construction as completed or shall notify the permit holder or his agent wherein the same fails to comply with the law.

1. FOUNDATION INSPECTION: To be made after trenches are excavated and forms erected and when all materials for the foundation are delivered on the job. Where concrete from a central mixing plant (commonly termed "transit mixed") is to be used, materials need not be on the job.

2. FRAME INSPECTION: To be made after the roof, all framing, fire-blocking and bracing are in place and all pipes, chimneys and vents are complete.

3. LATH INSPECTION: To be made after all lathing, interior and exterior, is in place and all plastering materials are delivered on the job, but before any plaster is applied.

4. FINAL INSPECTION: To be made after building is completed and ready for occupancy.

(e) Other Inspections. In addition to the called inspections specified above, the Building Official may make any other inspections of any construction work to asceratin compliance with the provisions of this Code and other laws which are enforced by the Building Department.

Sec. 305. (a) General. In addition to the inspections to be made as specified in Section 304, the owner or his agent shall employ a special inspector during construction on the following types of work:

1. CONCRETE: On concrete work when the design is based on an f'_{c} in excess of 2000 pounds.

2. MASONRY: On plain masonry when the design is based on unit stresses in excess of 50 per cent of those allowed in Chapter 24.

 On reinforced masonry work when the design is based on a strength of masonry (f'_{m}) in excess of 1000 pounds per square inch.

3. WELDING: On all structural welding.

4. REINFORCED GYPSUM: A special inspector shall be present on the work at all times when cast-in-place reinforced gypsum is being mixed or deposited.

5. SPECIAL CASES: On special construction or work involving unusual hazards or requiring constant inspection.

 EXCEPTION: The Building Official may waive the requirement for the employment of a special inspector if he finds that the construction or work is such that no unusual hazard exists.

(b) Special Inspector. The special inspector shall be a qualified person approved by the Building Official.

The special inspector shall furnish continuous inspection on the construction and work requiring his employment. He shall report to the Building Official in writing, noting all Code violations and other information as required.
Sec. 306. (a) Use or Occupancy. No new building or structure in Groups A to H, inclusive, shall be used or occupied, and no change in the existing occupancy classification of a building or structure or portion thereof shall be made until the Building Official has issued a Certificate of Occupancy therefor as provided herein.

(b) Change in Use. Changes in the character or use of a building shall not be made except as specified in Section 502 of this Code.

(c) Certificate Issued. If after final inspection it is found that the building or structure complies with the provisions of this Code, the Building Official shall issue a Certificate of Occupancy which shall contain the following:

1. The use and occupancy for which the certificate is issued.

2. A statement that the floor load signs, required by Section 2308, have been installed.

3. A certification that the building or structure complies with the provisions of this Code.

(d) Temporary Certificate. A temporary Certificate of Occupancy may be issued by the Building Official for the use of a portion or portions of a building or structure prior to the completion of the entire building or structure.

(e) Posting. The Certificate of Occupancy shall be posted in a conspicuous place on the premises and shall not be removed except by the Building Official.
PART II

DEFINITIONS AND ABBREVIATIONS

CHAPTER 4—DEFINITIONS AND ABBREVIATIONS

Definitions and Abbreviations

Sec. 401. For the purpose of this Code, certain abbreviations, terms, phrases, words and their derivatives shall be construed as set out in this Section. Words used in the singular include the plural and the plural the singular. Words used in the masculine gender include the feminine, and the feminine the masculine.

A

(a) ALLEY is any public space, public park or thoroughfare less than sixteen feet (16') but not less than ten feet (10') in width which has been dedicated or deeded to the public for public use.

ALTER or ALTERATION is any change, addition or modification in construction or occupancy.

APARTMENT is a room or suite of rooms which is occupied or which is intended or designed to be occupied by one family for living and sleeping purposes.

APARTMENT HOUSE is any building, or portion thereof, which is designed, built, rented, leased, let or hired out to be occupied, or which is occupied as the home or residence of three or more families living independently of each other and doing their own cooking in the said building, and shall include flats and apartments.

APPROVED as to materials and types of construction, refers to approval by the Building Official as the result of investigation and tests conducted by him, or by reason of accepted principles or tests by national authorities, technical or scientific organizations.

APPROVED AGENCY is an established and recognized agency regularly engaged in conducting tests or furnishing inspection services, when such agency has been approved by the Building Official.

AREA (see "Floor Area").

ASSEMBLY BUILDING is a building used, in whole or in part, for the gathering together of persons for such purposes as deliberation, worship, entertainment, amusement, or awaiting transportation.

ATTIC STORY is any story situated wholly or partly in the roof, so designated, arranged or built as to be used for business, storage or habitation.

B

(b) BALCONY is that portion of the seating space of an assembly room, the lowest part of which is raised four feet (4') or more above the level of the main floor.

BASEMENT is that portion of a building between floor and ceiling, which is partly below and partly above grade (as defined in this Section), but so located that the vertical
distance from grade to the floor below is less than the vertical distance from grade to ceiling. (See "Story").

BAY WINDOW is a rectangular, curved or polygonal window, supported on a foundation extending beyond the main wall of the building.

BUILDING is any structure built for the support, shelter or enclosure of persons, animals, chattels, or property of any kind.

BUILDING, EXISTING is a building erected prior to the adoption of this Code, or one for which a legal building permit has been issued.

BUILDING OFFICIAL is the officer charged with the administration and enforcement of the building code, or his regularly authorized deputy.

(c) **CAST STONE** is a building stone manufactured from cement concrete precast and used as a trim, veneer or facing on or in buildings or structures.

CELLAR is that portion of a building between floor and ceiling which is wholly or partly below grade (as defined in this Section) and so located that the vertical distance from grade to the floor below is equal to or greater than the vertical distance from grade to ceiling. (See "Story").

CHIEF OF THE FIRE DEPARTMENT is the head of the Fire Department or his regularly authorized deputy.

COURT is an open, unoccupied space, bounded on two or more sides by the walls of the building. An inner court is a court entirely within the exterior walls of a building. All other courts are outer courts.

(d) **DEAD LOAD** in a building is the weight of the walls, permanent partitions, framing, floors, roofs and all other permanent stationary construction entering into and becoming a part of the building.

DWELLING is any building or any portion thereof, which is not an "Apartment House" or a "Hotel" as defined in this Code, which contains one or more "Apartments" or "Guest Rooms", used, intended, or designed to be built, used, rented, leased, let or hired out to be occupied, or which are occupied for living purposes.

(e) **EXISTING BUILDING**—(See "Building—Existing").

EXIT is a continuous and unobstructed means of egress to a public way, and shall include intervening doorways, corridors, ramps, stairways, smokeproof enclosures, horizontal exits, exterior courts, and yards.

(f) **FAMILY** is one person living alone or a group of two or more persons living together, whether related to each other by birth or not.

FIRE RESISTANCE or **FIRE-RESISTIVE CONSTRUCTION** is construction to resist the spread of fire, details of which are specified in Chapter 43 of this Code.

FLOOR AREA is the area included within surrounding walls of a building (or portion thereof), exclusive of vent shafts and courts.
FOOTING is that portion of the foundation of a structure which spreads and transmits loads directly to the soil or the piles.

FRONT OF LOT is the front boundary line of a lot bordering on the street, and in the case of a corner lot may be either frontage.

(g) GARAGE is a building or portion thereof in which a motor vehicle containing gasoline, distillate or other volatile, flammable liquid in its tank, is stored, repaired or kept. GARAGE, PRIVATE, is a building, or a portion of a building, not more than one thousand square feet (1000 sq. ft.) in area, in which only motor vehicles used by the tenants of the building or buildings on the premises are stored or kept. (See Section 1501.)

GARAGE, PUBLIC, is any garage other than a private garage.

GRADE (Ground Level) is the average of the finished ground level at the center of all walls of a building. In case walls are parallel to and within five feet (5') of a sidewalk, the above ground level shall be measured at the sidewalk.

GRADE (Lumber) is the division of sawn lumber into quality classes with respect to its physical and mechanical properties.

GUEST is any person hiring or occupying a room for living or sleeping purposes.

(h) HEIGHT OF BUILDING is the vertical distance from the "Grade" to the highest point of the coping of a flat roof or to the deck line of a mansard roof or to the average height of the highest gable of a pitch or hip roof.

HOTEL is any building containing six or more rooms intended or designed to be used, or which are used, rented or hired out to be occupied, or which are occupied for sleeping purposes by guests.

(i) No definitions.

(j) No definitions.

(k) No definitions.

(1) LINTEL is the beam or girder placed over an opening in a wall, which supports the wall construction above.

LIVE LOADS are all loads except dead and lateral loads.

(m) MARQUEE is a permanent roofed structure attached to and supported by the building and projecting over public property. Marquees are regulated in Chapter 45.

MASONRY is that form of construction composed of stone, brick, concrete, gypsum, hollow clay tile, concrete block or tile, or other similar building units or materials or a combination of these materials laid up unit by unit and set in mortar.

MASONRY, SOLID, is masonry built without hollow spaces.

MEZZANINE or MEZZANINE FLOOR is an intermediate floor placed in any story or room. When the total area
of any such "Mezzanine Floor" exceeds 33⅓ per cent of the
total floor area in that room, it shall be considered as con-
stituting an additional "Story". The clear height above or
below a "Mezzanine Floor" construction shall be not less
than seven feet (7').

(o) OCCUPANCY is the purpose for which a building is
used or intended to be used. The term shall also include
the building or room housing such use. Change of occupancy
is not intended to included change of tenants or proprietors.

ORIEL WINDOW is a window which projects from
the main line of an enclosing wall of a building and is carried
on brackets or corbels.

(p) PERSON is a natural person, his heirs, executors, ad-
ministrators or assigns, and also includes a firm, partner-
ship or corporation, its or their successors or assigns, or the
agent of any of the aforesaid.

PLATFORM, ENCLOSED, is a partially enclosed portion
of an assembly room the ceiling of which is not more than
five feet (5') above the proscenium opening and which is
designed or used for the presentation of plays, demonstra-
tions, or other entertainment wherein scenery, drops, decor-
ations, or other effects are to be installed or used.

(q) No definitions.

(r) REPAIR is the reconstruction or renewal of any part of
an existing building for the purpose of its maintenance.
The word "Repair" or "Repairs" shall not apply to any
change of construction.

(s) SHAFT is a vertical opening through a building for
elevators, dumb-waiter, light, ventilation or similar pur-
poses.

SHALL as used in this Code, is mandatory.

STAGE is a partially enclosed portion of an assembly
building which is designed or used for the presentation of
plays, demonstrations, or other entertainment wherein scen-
ery, drops, or other effects may be installed or used, and
where the distance between the top of the proscenium open-
ing and the ceiling above the stage is more than five feet
(5').

STORY is that portion of a building included between the
upper surface of any floor and the upper surface of the floor
next above, except that the topmost story shall be that por-
tion of a building included between the upper surface of
the topmost floor and the ceiling or roof above. If the fin-
ished floor level directly above a basement or cellar is more
than six feet (6') above grade such basement or cellar shall
be considered a story.

STREET is any thoroughfare or public park not less than
sixteen feet (16') in width which has been dedicated or
deeded to the public for public use.

STRUCTURE is that which is built or constructed, an
edifice or building of any kind, or any piece of work arti-
ficially built up or composed of parts joined together in
some definite manner.

(t) No definitions.

(v) **VALUE** or **VALUATION** of a building shall be the estimated cost to replace the building in kind, as determined in Section 202 (a).

VENEER is a facing of brick, stone, concrete, tile, metal or similar material attached to a wall for the purpose of providing ornamentation, protection or insulation but not counted as adding strength to the wall.

(w) **WALLS** shall be defined as follows:

- **Bearing Wall** is a wall which supports any load other than its own weight.
- **Faced Wall** is a wall in which the masonry facing and backing are so bonded as to exert a common action under load.
- **Non-Bearing Wall** is a wall which supports no load other than its own weight.
- **Parapet Wall** is that part of any wall entirely above the roof line.
- **Retaining Wall** is any wall used to resist the lateral displacement of any material.

WINDOW. (See "Bay Window"; see "Oriel Window.")

(x) No definitions.

(y) **YARD** is an open, unoccupied space, other than a court, unobstructed from the ground to the sky, except where specifically provided by this Code, on the lot on which a building is situated.
PART III

REQUIREMENTS BASED ON OCCUPANCY

CHAPTER 5—CLASSIFICATION OF ALL BUILDINGS BY USE OR OCCUPANCY AND GENERAL REQUIREMENTS FOR ALL OCCUPANCIES

Sec. 501. Every building, whether existing or hereafter erected, shall be classified by the Building Official according to its use or the character of its occupancy, as a building of Group A, B, C, D, E, F, G, H, I or J, as defined in Chapters 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 respectively. (See Table No. 5-A.)

When a building is divided into portions by one or more continuous fire-resistive walls extending from the foundation to the roof at all points, such portions may be considered as separate buildings for the purpose of determining areas. The separation wall shall be four-hour fire-resistive in buildings of Types I, II, or III construction and two-hour fire-resistive in buildings of Types IV and V. In Types I, II, and III buildings, openings shall be protected as required for Class "A" openings. For Types IV and V buildings, openings shall be protected as required for Class "D" openings, or may be protected by one Class "A" fire door. The total width of all openings in such wall, in any story, shall not exceed 25 per cent of the length of the wall in that story.

Any occupancy not mentioned specifically or about which there is any question shall be classified by the Building Official and included in the Group which its use most nearly resembles based on the existing or proposed life and fire hazard.

Sec. 502. No change shall be made in the character of occupancy or use of any building which would place the building in a different Group of occupancy, unless such building is made to comply with the requirements of this Code for that Group.

EXCEPTION: The character of the occupancy of existing buildings may be changed subject to the approval of the Building Official, and the building may be occupied for purposes in other Groups without conforming to all the requirements of this Code for those Groups, provided the new or proposed use is less hazardous, based on life and fire risk, than the existing use.

No change in the character of occupancy of a building shall be made without a Certificate of Occupancy, as required in Section 306 of this Code.

Buildings in existence at the time of the passage of this Code, may have their existing use or occupancy continued, if such use or occupancy was legal at the time of the passage of this Code, provided such continued use is not dangerous to life.
<table>
<thead>
<tr>
<th>Group</th>
<th>OCCUPANCY</th>
<th>FIRE RESISTANCE OF EXTERIOR WALLS</th>
<th>PROTECTION OF OPENINGS IN EXTERIOR WALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Time Period (Hours)</td>
<td>Distance to Property Line</td>
</tr>
<tr>
<td>A</td>
<td>Any assembly building with a stage and an occupant load of 1000 or more in the building</td>
<td>4</td>
<td>Any Location</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E or F</td>
</tr>
<tr>
<td></td>
<td>1—Any assembly building with a stage and an occupant load of less than 1000 in the building</td>
<td>4</td>
<td>Less than 5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E or F</td>
</tr>
<tr>
<td></td>
<td>2—Any assembly building without a stage and having an occupant load of 300 or more in the building</td>
<td>2</td>
<td>5' to 10'</td>
</tr>
<tr>
<td></td>
<td>3—Any assembly building without a stage and having an occupant load of less than 300 in the building, including such buildings used for school purposes less than four hours per week</td>
<td>2</td>
<td>Less than 5'</td>
</tr>
<tr>
<td></td>
<td>4—Stadiums, review stands, and amusement park structures not included within Group A nor Divisions 1, 2 and 3, Group B, occupancies</td>
<td>1</td>
<td>5' to 10'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Less than 10'</td>
</tr>
<tr>
<td>C</td>
<td>Any building used for school purposes more than four hours per week, involving assemblage for instruction, education, or recreation</td>
<td>4</td>
<td>Less than 5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E or F</td>
</tr>
<tr>
<td></td>
<td>1—Mental hospitals, jails, prisons, reformatories, houses of correction, and buildings where personal liberties of inmates are similarly restrained</td>
<td>4</td>
<td>Less than 5'</td>
</tr>
<tr>
<td></td>
<td>2—Nurseries for children under six, hospitals, sanitariums, mental sanitariums conforming to Sec. 3318 (1), and similar buildings (each accommodating six or more persons)</td>
<td>1</td>
<td>Less than 5'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5' or more</td>
</tr>
<tr>
<td>Group</td>
<td>Occupancy</td>
<td>Division</td>
<td>Time Period (Hours)</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>E</td>
<td>1—Paint or petroleum storage, dry cleaning plants using flammable liquids, paint shops and spray painting rooms and shops; planing mills, box factories, woodworking and mattress factories.</td>
<td>1 & 3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2—Aircraft repair hangars.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3—Public garages, storage of hazardous and highly flammable or explosive materials and liquids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1—Wholesale and retail stores, office buildings, restaurants, undertaking parlors, printing plants, police and fire stations; gasoline filling and service stations, factories and workshops using materials not highly flammable or combustible; storage and sales rooms for combustible goods, paint stores without bulk handling.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2—Aircraft hangars where no repair work is done except exchange of parts and maintenance requiring no open flame, welding, or the use of highly flammable liquids.</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>Ice plants, power plants, pumping plants, cold storage, and creameries. Factories and workshops using incom bustible and non-explosive materials. Storage and sales rooms of in combustible and non-explosive materials.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td>1—Homes for aged, orphanages, dormitories for children over six (each accommodating six or more persons).</td>
<td>1 & 2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2—Hotels, apartment houses, dormitories, lodging houses, Convents, monasteries (each accommodating 10 or more persons).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Dwellings</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>J</td>
<td>1—Private garages, sheds and minor buildings used as accessories only when not over one thousand square feet (1000 sq. ft.) in area.</td>
<td></td>
<td>**1</td>
</tr>
<tr>
<td></td>
<td>2—Fences over six feet (6') high, tanks and towers.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* For additional restrictions see Chapters under Occupancy, Fire Zones and Types of Construction.
** Or may be protected on the exterior with materials approved for one-hour fire-resistive construction.
Sec. 503. (a) General. When a building is used for more than one occupancy purpose each part of the building comprising a distinct "Occupancy," as described in Chapters 5 to 15, shall be separated from any other occupancy as specified in Section 503 (d).

When a building is used for more than one occupancy purpose, it shall be subject to the most restrictive requirements for the occupancies concerned.

(b) Forms of Occupancy Separations. Occupancy separations shall be vertical or horizontal or both or, when necessary, of such other form as may be required to afford a complete separation between the various occupancy divisions in the building.

(c) Types of Occupancy Separation. Occupancy separations shall be classed as "Absolute," "Special" and "Ordinary."

1. An "Absolute Occupancy Separation" shall have no openings therein and shall be of not less than four-hour fire-resistive construction.

2. A "Special Occupancy Separation" shall be of not less than three-hour fire-resistive construction. All openings in walls forming such separation shall be protected on each side thereof by Class "A" fire doors and such doors shall be kept normally closed. The total width of all openings in any "Special Occupancy Separation" wall in any one story shall not exceed 25 per cent of the length of the wall in that story and no single opening shall have an area greater than one hundred and twenty square feet (120 sq. ft.). All openings in floors forming a "Special Occupancy Sep-

TABLE NO. 5-B—REQUIRED SEPARATIONS IN BUILDINGS OF MIXED OCCUPANCY

<table>
<thead>
<tr>
<th>Chapter Reference</th>
<th>Group</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>N</td>
<td>N</td>
<td>S</td>
<td>A</td>
<td>S</td>
<td>S</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>A</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>N</td>
<td>A</td>
<td>A</td>
<td>O</td>
<td>N</td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td></td>
<td>N</td>
<td>O</td>
<td>O</td>
<td>S</td>
<td>S</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td></td>
<td>N</td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td></td>
<td>N</td>
<td>O</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

Legend:
A—Absolute Separation.
O—Ordinary Separation.
S—Special Separation.
N—No Separation.

*Provided that materials as approved for one-hour fire-resistive construction on the opposite side and a self-closing, tight-fitting solid wood door one and three-eighths inches (13/4") in thickness, shall be permitted.

38
“Ordinary Occupancy Separation” shall be of not less than one-hour fire-resistive construction. All openings in such separations shall be protected with Class “C” fire doors, and such doors shall be kept normally closed.

3. An “Ordinary Occupancy Separation” shall be of not less than two-hour fire-resistive construction and all openings therein shall be protected on one side thereof by Class “B” fire doors, and such doors shall be kept normally closed.

(d) Fire Ratings for Occupancy Separations. Occupancy separations shall be provided between the various groups and divisions of occupancies as set forth in Table No. 5-B, except that in no case need the separation be more fire-resistive than the exterior walls of the building in which the separation occurs, unless such walls are less than one-hour fire-resistive construction. Where any occupancy separation is required the minimum shall be an “Ordinary Occupancy Separation.”

Sec. 504. (a) General Requirements. Exterior walls shall have the degree of fire-resistance and exterior openings shall have the protection as set forth in Table No. 5-A.

For the purpose of this Section, the center line of an adjoining street or alley may be considered an adjacent property line. Distance shall be measured at right angles to the plane of the wall in question.

(b) Buildings on Same Property. For the purpose of determining the required exterior wall protection, buildings on the same property shall be assumed to have a property line between them.

When a new building is to be erected on the same property with an existing building, the assumed property line from the existing building shall be the distance to the property line for each occupancy as set forth in Table No. 5-A.

EXCEPTION: Two or more buildings on the same property may be considered as portions of one building if the area within a line circumscribing the buildings is within the limits specified in Section 505. In this case, the space between buildings shall be considered an inner court for the purpose of determining the exterior wall construction.

Sec. 505. (a) General. The floor area of every building shall be determined by the character of the occupancy, the type of construction, and the location in a fire zone. Buildings shall adjoin a public space, yard, or street on not less than one side. Basement and cellar areas need not be included in the total allowable areas.

Yards shall be on the property on which a building is located, permanently maintained as an integral part thereof, and free of all obstruction from the ground up.

(b) One-Story Areas. The area of a one-story building
TABLE NO. 5-C—BASIC ALLOWABLE FLOOR AREA FOR BUILDINGS ONE STORY IN HEIGHT
(In Square Feet)

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>OCCUPANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>II Permitted</td>
<td>15000</td>
</tr>
<tr>
<td>III Permitted</td>
<td>9000</td>
</tr>
<tr>
<td>IV Permitted</td>
<td>*7200</td>
</tr>
<tr>
<td>V Not Permitted</td>
<td>6000</td>
</tr>
</tbody>
</table>

*When Type IV buildings are of incombustible construction throughout, the basic area limits may be increased 20 per cent.

Notes: For Group J Occupancy see Chapter 15.

TABLE NO. 5-D—MAXIMUM STORIES OF BUILDINGS

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>OCCUPANCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>I Not Permitted</td>
<td>2</td>
</tr>
<tr>
<td>II Not Permitted</td>
<td>2</td>
</tr>
<tr>
<td>III Not Permitted</td>
<td>2</td>
</tr>
<tr>
<td>IV Not Permitted</td>
<td>2</td>
</tr>
<tr>
<td>V Not Permitted</td>
<td>2</td>
</tr>
</tbody>
</table>

shall not exceed the limits set forth in Table No. 5-C except as provided in Section 506, nor the limits specified in Chapter 16.

(c) Areas of Buildings Over One Story. The total area of all floors of buildings over one story in height shall not exceed 200 per cent of the area allowed for one-story buildings. No single floor area shall exceed that permitted for one-story buildings.

See Chapters 6 to 16 inclusive for special occupancy provisions.

Allowable Area Increases

Sec. 506 (a) General. The increases of floor areas permitted in this Section are cumulative and may be compounded when applicable, except that such increases for one-hour fire-resistive construction or for automatic sprinkler installations shall not apply when other provisions of this Code require such construction or sprinkler installation.
(b) One-Hour Fire Resistance. For buildings having at least one-hour fire-resistive construction the areas specified in Section 505 for Types III, IV, and V may be increased one-third.

(c) Separation on Two Sides. Where public space, streets, or yards, more than twenty feet (20') in width, extend along two sides of a building, the areas specified in Section 505 may be increased at a rate of 1 1/4 per cent for each foot by which the minimum width exceeds twenty feet (20'), but the increase shall not exceed 50 per cent.

(d) Separation on Three Sides. Where public space, streets, or yards, more than twenty feet (20') in width, extend along three sides of a building, the areas specified in Section 505 may be increased at a rate of 2 1/2 per cent for each foot by which the minimum width exceeds twenty feet (20'), but the increase shall not exceed 100 per cent.

(e) Separation on All Sides. Where public space, streets, or yards, more than twenty feet (20') in width, extend on all sides of one and two-story buildings and adjoin the entire perimeter, the areas specified in Section 505 may be increased at a rate of five per cent for each foot by which the minimum width exceeds twenty feet (20'). Such increases shall not exceed 100 per cent, except for buildings not exceeding two stories in height of Group G occupancy and one-story buildings housing aircraft storage hangars and as further limited in Section 1002(b) for aircraft repair hangars.

(f) Unlimited Area. The area of any one or two-story building of Division 2, Group E, Group F and G occupancy shall not be limited, if the building is provided with automatic sprinklers throughout, as specified in Chapter 38, and entirely surrounded by public space, streets, or yards not less than sixty feet (60') in width.

(g) Sprinklers. The areas specified in Section 505 may be tripled in one-story buildings and doubled in buildings of more than one story if the building is provided with automatic sprinklers throughout as specified in Chapter 38.

Sec. 507. The maximum number of stories in height of every building shall be dependent upon the character of the occupancy and the type of construction, and shall not exceed the limits set forth in Table No. 5-D, except as provided in this Section.

The maximum height in feet of any building shall not exceed the number of stories allowed times 15 plus twenty-five feet (25'), nor the limitation of Part V (Types of Construction).

The limits set forth in Table No. 5-D may be increased in height by one story in Type III, IV, and V buildings of Group B, C, F, G, and H occupancy, if the construction is at least one-hour fire-resistive construction throughout, except that such increases shall not apply when other provisions of this Code require one-hour fire-resistive construction or when the increases under Section 506 (b) are used.

EXCEPTION: The height of one-story aircraft hangars shall not be limited if the building is provided with automatic sprinklers throughout as specified in Chapter 38.
and is entirely surrounded by public space, streets, or yards not less in width than 150 per cent of the height of the building.

See Chapters 6 to 16 inclusive for special occupancy provisions.
CHAPTER 6 — REQUIREMENTS FOR GROUP A OCCUPANCIES

Sec. 601. Group A Occupancies shall be:
 Any assembly building with a stage and an occupant load of 1000 or more in the building.
 For occupancy separations see Table No. 5-B.
 For occupant load see Section 3301.

Sec. 602. (a) General. Buildings or parts of buildings classed in Group A because of the use or character of the occupancy shall be of Type I Construction and shall not be limited as to location in fire zones, occupant load, height or area.

 (b) Special Provisions. Stages and enclosed platforms as defined in Section 401 shall be constructed in accordance with Chapter 39.
 The slope of the main floor of the assembly room shall not exceed one in five.

Sec. 603. Buildings housing Group A occupancies shall front directly upon at least one public street not less than twenty feet (20') in width, in which front shall be located the main entrance and exit of such building. The main assembly floor shall be located at or near the adjacent ground level.
 For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.

Sec. 604. Stairs, exits, and smokeproof enclosures shall be provided as specified in Chapter 33.

Sec. 605. All portions of Group A occupancies customarily used by human beings and all dressing rooms shall be provided with light and ventilation by means of windows or skylights with an area not less than one-eighth of the total floor area, or shall be provided with artificial light and a mechanically operated ventilating system. The mechanically operated ventilating system shall supply at least thirty cubic feet (30 cu. ft.) of pure air per minute per seat in all portions of the building and such system shall be kept continuously in operation during such time as the building is occupied. If the velocity of the air at the register exceeds ten feet (10') per second the register shall be placed more than eight feet (8') above the floor directly beneath.
 Lights in all parts of the building customarily used by human beings shall be on a separate circuit from that of the stage and shall be controlled from the box office. All lights in corridors, exit courts and exit passageways shall be protected by a wire cage.
 All registers or vents supplying air backstage shall be equipped with automatic closing devices with fusible links. Such closing devices shall be located where the vents or ducts pass through the proscenium walls and shall be operated by fusible links located on both sides of the proscenium wall and both inside of and outside of the vent or duct.
 There shall be provided in an approved location at least
one lavatory for each two toilets for each sex, and at least one drinking fountain for each floor level.

Sec. 606. Exits shall be enclosed as specified in Chapter 33.
Elevator shafts, vent shafts and other vertical openings shall be enclosed and the enclosure shall be as specified in Section 1807. (See also Chapter 30.)

Sec. 607. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 608. Stages shall be equipped with automatic ventilators as required in Section 3901.
Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.
Motion picture machine booths shall conform to the requirements of Chapter 40.
Flammable liquids shall not be placed or stored in any Group A occupancy.
Every gas service to the stage portion of the building shall be separated from any other service to the building and each gas service shall be provided with an approved shut-off valve at a convenient and conspicuous place outside the building and adequately marked.
Exterior openings in a boiler room or room containing central heating equipment, if located below openings in another story or if less than ten feet (10') from other doors or windows of the same building, shall be protected by Class “E” or “F” fire doors or windows.
Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building by a “Special Occupancy Separation.”
Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building by not less than an “Ordinary Occupancy Separation.”

Sec. 609. Gymnasiums and similar occupancies may have running tracks constructed of wood or unprotected steel or iron.
CHAPTER 7 — REQUIREMENTS FOR
GROUP B OCCUPANCIES

Sec. 701. Group B occupancies shall be:

Division 1. Any assembly building with a stage and an occupant load of less than 1000 in the building.

Division 2. Any assembly building without a stage and having an occupant load of 300 or more in the building.

Division 3. Any assembly building without a stage and having an occupant load of less than 300 in the building, including such buildings used for school purposes less than four hours per week.

Division 4. Stadiums, reviewing stands, and amusement park structures not included within Group A nor Divisions 1, 2 and 3, Group B, occupancies.

For occupancy separations see Table No. 5-B.

For occupant load see Section 3301.

Sec. 702. (a) General. Buildings or parts of buildings classed in Group B because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.

EXCEPTION: Division 4 structures of open skeleton frame type shall not be limited in area or height.

(b) Special Provisions. Stages and enclosed platforms as defined in Section 401 shall be constructed in accordance with Chapter 39.

Divisions 1 and 2 occupancies shall be of not less than one-hour fire-resistive construction throughout, except that a fire-resistive ceiling shall not be required in one-story buildings of Type III, IV, or V construction having an open frame roof. Division 2 occupancies with an occupant load of 1000 or more shall be of Type I, II or III construction.

EXCEPTION: Gymnasiums which have not more than two balconies, each with an occupant load not to exceed 300, and which are not located over usable spaces need not have one-hour fire-resistive protection.

Division 3 occupancies located in the basement or one story above ground level shall be in buildings of not less than one-hour fire-resistive construction.

Group B assembly rooms having an occupant load of 1000 or more shall not be located in the basement.

Division 3 occupancies with an occupant load of 50 or more, which are located over usable space, shall be separated from such space by not less than one-hour fire-resistive construction.

For attic space partitions and draft stops see Section 3205.

(c) Division 4 Provisions. Erection and structural maintenance of structures housing Division 4 occupancies shall conform to the requirements of this Code, and where there are no such specific requirements, shall provide adequate safety for the loads to which they may be subjected.

Structures housing Division 4 occupancies, other than those of open skeleton frame type, when more than one
story in height or four hundred square feet (400 sq. ft.) in area, shall be of not less than one-hour fire-resistive construction.

When the space under a Division 4 occupancy is used for any purpose, it shall be separated from all parts of such Division 4 occupancy, including exits, by walls, floors and ceilings of not less than one-hour fire-resistive construction.

The Building Official may cause all Division 4 structures to be re-inspected at least once every six months.

Sec. 703. All buildings housing Group B occupancies shall front directly upon at least one public street, not less than twenty feet (20') in width, in which front shall be located the main entrance of such building.

For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.

Sec. 704. (a) General. Stairs, exits, and smokeproof enclosures shall be provided as specified in Chapter 33.

(b) Amusement Structures. Stairs and exits for Division 4 amusement structures shall be provided as specified in Chapter 33, subject to the approval of the Building Official. Exit signs shall be installed as specified in Section 3312 and where required by the Building Official.

Sec. 705. All portions of Group B occupancies customarily used by human beings and all dressing rooms shall be provided with natural or artificial light, ventilation, and sanitary facilities as specified in Section 605.

Sec. 706. Exits shall be enclosed as specified in Chapter 33. All elevator shafts, vent shafts, and other vertical openings shall be enclosed, and the enclosure shall be as specified under Types of Construction. (See also Chapter 30.)

Sec. 707. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 708. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.

Motion picture machine booths shall conform to the requirements of Chapter 40.

Flammable liquids shall not be placed or stored in a Group B occupancy.

Every gas service shall be provided with an approved outside shut-off valve conspicuously marked.

Exterior openings in a boiler room or room containing central heating equipment, if located below openings in another story or if less than ten feet (10') from other doors or windows of the same building, shall be protected by Class "E" or "F" fire doors or windows.

Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building by a "Special Occupancy Separation." Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building by not less than an "Ordinary Occupancy Separation."
Sec. 709. Gymnasiums and similar occupancies may have running tracks constructed of wood or unprotected steel or iron.

In gymnasiums, one inch (1") nominal tight tongue and grooved wall covering may be used on the gymnasium side in lieu of fire-resistive plaster.
CHAPTER 8 — REQUIREMENTS FOR
GROUP C OCCUPANCIES

Group C Occupancies Defined

Sec. 801. Group C occupancies shall be:
Any building used for school purposes more than four
hours per week, involving assemblage for instruction, education
or recreation, and not classed in Group A occupancies
or in Divisions 1 and 2 of Group B occupancies.
For occupancy separations see Table No. 5-B.
For occupant load see Section 3301.

Construction, Height and Area Allowable

Sec. 802. (a) General. Buildings or parts of buildings
classed in Group C because of the use or character of the
occupancy shall not exceed, in area or height, the limits
specified in Sections 505, 506, and 507.
(b) Special Provisions. Rooms having an occupant load
more than 100 and rooms used for kindergarten, first
or second grade pupils shall not be located above the first
story above grade except in buildings of Type I construc-
tion.
Where there is usable space under the first floor of two-
story Type III, IV and V buildings, the construction up to
and including the first floor shall be of Type I construction,
and the first floor shall be unpierced for human access.
Balconies and bleachers over usable space and all janitor
closets shall be protected with materials approved for one-
hour fire-resistive construction.
All curtains, drops and drapes shall be flame-proofed.
Stages and enclosed platforms shall be constructed in
accordance with Chapter 39.
The provisions of Section 1813 shall not apply to openings
in buildings not more than three stories high when such
openings are not less than thirty feet (30') from adjacent
property lines and not less than thirty feet (30') from build-
ings on the same property.
For attic space partitions and draft stops, see Section
3205.

Location on Property

Sec. 803. (a) General. Group C occupancies shall front
directly upon at least one public street, not less than twenty
feet (20') in width, in which front shall be located at least
one required exit.
For fire-resistive protection of exterior walls and openings,
as determined by location on property, see Section 504.
(b) Special Provision. Exterior walls or parts of walls of
Group C occupancy having an occupant load of less than 100
persons, when within ten feet (10') of adjacent property
lines, may be of one-hour fire-resistive construction.

Exit Facilities

Sec. 804. Stairs, exits, and smokeproof enclosures shall be
provided as specified in Chapter 33.

Light, Ventilation, and Sanitation

Sec. 805. All portions of Group C occupancies shall be
provided with light and ventilation, either natural or arti-
ficial, as specified in Section 605.
Toilets shall be provided on the basis of the following
ratios of toilets to number of students:
Girls	Boys
Elementary Schools | 1:35 | 1:100
Secondary Schools | 1:45 | 1:100

In addition, urinals shall be provided for boys on a basis of 1:30.
There shall be provided at least one lavatory for each two toilets or urinals for each sex and at least one drinking fountain on each floor.

Sec. 806. Exits shall be enclosed as specified in Chapter 33. All elevator shafts, vent shafts, and other vertical openings shall be enclosed, and the enclosure shall be as specified under Types of Construction. (See also Chapter 30.)

Sec. 807. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 808. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.
Motion picture machine booths shall conform to the requirements of Chapter 40.
Every gas service shall be provided with an approved outside shut-off valve conspicuously marked.
Exterior openings in a boiler room or room containing central heating equipment, if located below openings in another story or if less than ten feet (10') from other doors or windows of the same building, shall be protected by Class "E" or "F" fire doors or windows.
Every boiler room or room containing a central heating plant which burns liquid or solid fuel shall be separated from the rest of the building by a "Special Occupancy Separation." Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building by not less than an "Ordinary Occupancy Separation."
No flammable liquids shall be placed, stored or used in any Group C occupancies, except in approved quantities as necessary in laboratories and approved utility rooms, and such liquids shall be kept in tight or sealed containers when not in actual use.

Sec. 809. Gymnasiums and similar buildings may have running tracks constructed of wood or unprotected steel or iron.
In gymnasia, one-inch (1") nominal tight tongue and grooved wall covering may be used on the gymnasium side in lieu of fire-resistive plaster.
Roof covering shall be a "fire-retardant" roofing as specified in Section 3204.
Arcades connecting buildings and used exclusively as passageways need not be considered as adjacent buildings for the provisions of this Chapter, provided that the walls of the building adjoining the arcades are finished with the same construction as required for the exterior walls of the building, with no communicating openings between the arcades and the building, except doors; and provided that the arcades are of not less than one-hour fire-resistive construction or entirely of incombustible materials, or of heavy timber construction with two-inch (2") nominal sheathing.
CHAPTER 9 — REQUIREMENTS FOR GROUP D OCCUPANCIES

Group D Occupancies Defined

Sec. 901. Group D occupancies shall be:

Division 1: Mental hospitals, jails, prisons, reformatories, houses of correction, and buildings where personal liberties of inmates are similarly restrained.

Division 2: Nurseries for the care of children under six years of age, each accommodating more than six.

Hospitals, sanitariums, mental sanitariums conforming to Section 3318 (1), and similar buildings (each accommodating more than six).

For occupancy separations see Table No. 5-B.

For occupant load see Section 3301.

Construction, Height and Area Allowable

Sec. 902. (a) General. Buildings or parts of buildings classed in Group D because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.

(b) Special Provisions. Division 1 occupancies shall be of Type I construction throughout. Division 2 occupancies shall be of not less than one-hour fire-resistive construction throughout. Occupancies in which the personal liberties of inmates or patients are restrained within the building shall have floors of incombustible construction. When Division 2 occupancies are more than one story in height, they shall be of Type I construction.

For attic space partitions and draft stops, see Section 3205.

Location on Property

Sec. 903. For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 304.

Exit Facilities

Sec. 904. Stairs, exits, and smokeproof enclosures shall be provided as specified in Chapter 33.

Light and Ventilation

Sec. 905. All portions of Group D occupancies customarily used by human beings shall be provided with light and ventilation by means of windows or skylights with an area equal to one-eighth of the total floor area, or shall be provided with artificial light and a mechanically operated ventilating system. The mechanically driven ventilating system shall supply at least thirty cubic feet (30 cu. ft.) of pure air per minute for each occupant thereof in all portions of the building and such system shall be kept continuously in operation while the building is occupied.

Enclosure of Vertical Openings

Sec. 906. Exits shall be enclosed as specified in Chapter 33. All elevator shafts, vent shafts, and other vertical openings shall be enclosed, and the enclosure shall be as specified under Types of Construction. (See also Chapter 30.)

Fire-Extinguishing Apparatus

Sec. 907. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Special Hazards

Sec. 908. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.
Motion picture machine booths shall conform to the requirements of Chapter 40.

Storage of volatile flammable liquids shall not be allowed in Group D occupancies and the handling of such liquid shall not be permitted in any Group D occupancies in quantities of more than one gallon unless such handling complies with U.B.C. Standard No. 9-1.

Any gas service to a Group D occupancy shall be provided with an approved outside shut-off valve conspicuously marked.

Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building by a "Special Occupancy Separation." Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building by not less than an "Ordinary Occupancy Separation."
CHAPTER 10 — REQUIREMENTS FOR GROUP E OCCUPANCIES

Sec. 1001. Group E occupancies shall be:

Division 1. Paint or petroleum storage, dry cleaning plants using flammable liquids, paint shops and spray painting rooms and shops.

Planing mills, box factories, woodworking and mattress factories.

Division 2. Aircraft repair hangars.

Division 3. Public garages, storage of hazardous and highly flammable or explosive materials and liquids.

For occupancy separations see Table No. 5-B.

For occupant load see Section 3301.

Note: Highly flammable liquids shall be deemed to be those with a flash point below 190 degrees Fahrenheit as determined by the closed cup tester, provided that liquids with a flash point above 138.5 degrees Fahrenheit shall not be deemed to be highly flammable when used in a closed safety cleaning system meeting the requirements of U. B. C. Standard No. 10-1 for a class III rating.

Sec. 1002. (a) General. Buildings or parts of buildings classed in Group E because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.

(b) Special Provisions. Division 2 occupancies shall have exterior walls of not less than one-hour fire-resistive construction or shall be surrounded by public space, streets, or yards, not less than sixty feet (60') in width.

The area increases allowed by Section 506 (e) shall not exceed 500 per cent for aircraft repair hangars.

Public garages shall have exterior walls of not less than one-hour fire-resistive construction.

Floors shall be of incombustible materials or of not less than Type II construction. In public garages and where flammable or explosive liquids are used or stored floors shall be entirely protected with incombustible materials against saturation.

For buildings over eighty-five feet (85') in height see Sections 1809 and 1810.

For attic space partitions and draft stops see Section 3205.

Sec. 1003. For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.

Sec. 1004. Stairs, exits, and smokeproof enclosures shall be provided as specified in Chapter 33.

Where ramps are used for the transfer of automobiles from one floor to another such ramps shall meet the ground floor level at a point not less than twenty feet (20') from the exit from such building.
Sec. 1005. All portions of Group E occupancies customarily used by human beings shall be provided with light and ventilation by means of windows or skylights with an area equal to one-eighth of the total floor area or shall be provided with artificial light and a mechanically operated ventilating system. The mechanically driven ventilating system shall supply at least thirty cubic feet (30 cu. ft.) of pure air per minute for each occupant thereof in all portions of the building and such system shall be kept continuously in operation while the building is occupied.

In all buildings used for the storing or handling of automobiles operated under their own power, and in all buildings where flammable liquids are used, exhaust ventilation shall be provided sufficient to produce one complete change of air every 15 minutes. Such exhaust ventilation shall be taken from a point at or near the floor level.

EXCEPTION: In public garages and aircraft hangars not exceeding an area of five thousand square feet (5000 sq. ft.), the Building Official may authorize the omission of such ventilating equipment where, in his opinion, the building is supplied with unobstructed openings to the outer air which are sufficient to provide the necessary ventilation.

Every building or portion thereof where persons are employed shall be provided with at least one toilet. Every building and each subdivision thereof where both sexes are employed shall be provided with access to at least two toilets located either in such building or conveniently in a building adjacent thereto.

Sec. 1006. Exits shall be enclosed as specified in Chapter 33. All elevator shafts, vent shafts, and other vertical openings shall be enclosed, and the enclosure shall be as specified under Types of Construction. (See also Chapter 30.)

Doors which are part of an automobile ramp enclosure may be kept normally open but shall be equipped with fusible links and so arranged as to be self-closing when released.

Sec. 1007. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 1008. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51. In any room in which volatile flammable liquids are used or stored no device generating a glow or flame capable of igniting gasoline vapor shall be installed or used within twenty-four inches (24") of the floor.

The use, handling, storage and sale of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group E occupancy unless such use, handling, storage and sale comply with U. B. C. Standard No. 9-1.

Dry cleaning plants in which highly flammable solvents are used or stored shall be of Type I construction and shall not exceed one story in height. All partitions shall be of four-hour fire-resistive construction, except for the necessary openings for the vent ducts, piping and shafting. All openings in exterior walls, except wall vents, shall be protected
by Class "E" or "F" fire doors or windows. Wall vents having an area of not less than sixteen square inches (16 sq. in.) each, shall be placed in the exterior walls near the floor line, not more than six feet (6') apart horizontally. Each building shall be provided with a power-driven fan exhaust system of ventilation which shall be arranged and operated so as to produce a complete change of air in each room every three minutes.

Each machine in dry cleaning establishments which uses a volatile flammable liquid shall have an adequate steam line directly connected to it, so arranged as to have the steam automatically released to the inside of such machine should an explosion occur in the machine.

Laws of the State regulating the construction and maintenance of dry cleaning plants or other buildings containing any occupancy or special hazard covered by this Chapter, shall be deemed to be a part of this Code and such buildings shall conform to the provisions of such State laws.
CHAPTER 11—REQUIREMENTS FOR
GROUP F OCCUPANCIES

Sec. 1101. Group F occupancies shall be:

Division 1. Wholesale and retail stores, office buildings, restaurants, undertaking parlors, printing plants, municipal police and fire stations; gasoline filling and service stations, factories and workshops using materials not highly flammable or combustible; storage and sales rooms for combustible goods, paint stores without bulk handling.

Division 2. Aircraft hangars where no repair work is done except exchange of parts and maintenance requiring no open flame, welding, or the use of highly flammable liquids.

For occupancy separations see Table No. 5-B.
For occupant load see Section 3301.

Sec. 1102. (a) General. Buildings or parts of buildings classed in Group F because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.

(b) Special Provisions. Gasoline filling stations of Type V construction shall have incombustible exterior wall covering. Canopies, including supports thereof, over pumps shall be of incombustible materials or not less than one-hour fire-resistant construction.

Aircraft hangars shall have exterior walls, or parts of walls, within twenty feet (20') of a property line, or within forty feet (40') of buildings on the same property, of not less than one-hour fire-resistant construction with all openings protected by Class "E" or "F" fire doors or windows.

For attic space partitions and draft stops see Section 3205.

Sec. 1103. For fire-resistant protection of exterior walls and openings, as determined by location on property, see Section 504.

Sec. 1104. Stairs, exits, and smokeproof enclosures shall be provided as specified in Chapter 33.

Passageways direct to outside exits, free of all obstructions and at least seven feet (7') in width, clearly defined by floor markings and overhead signs, shall be maintained permanently.

Sec. 1105. All portions of Group F occupancies customarily used by human beings shall be provided with light and ventilation by means of windows or skylights with an area not less than one-eighth of the total floor area or shall be provided with artificial light and a mechanically operated ventilating system. In no case shall less than four changes of air per hour be provided.

Every building or portion thereof where persons are employed shall be provided with at least one toilet. Every building and each subdivision thereof where both sexes are employed shall be provided with access to at least two toilets located either in such building or conveniently in a building adjacent thereto.
Such toilet rooms in connection with food establishments where food is prepared, stored, or served, shall have a non-absorbent interior finish on floors, walls, and ceilings, shall be separated from such food establishments with close-fitting, tight doors with a vestibule between, shall have hand washing facilities therein or adjacent thereto, and shall be provided with an exterior window at least three square feet (3 sq. ft.) in area, fully openable, or a vertical duct not less than forty-eight square inches (48 sq. in.) in area, leading to the exterior in the building.

Sec. 1106. Exits shall be enclosed as specified in Chapter 33.

Elevator shafts, vent shafts, and other vertical openings shall be enclosed, and the enclosure shall be as specified under Types of Construction. (See also Chapter 30.)

Sec. 1107. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 1108. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.

No storage of volatile flammable liquids shall be allowed in Group F occupancies and the handling and use of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group F occupancy unless such use and handling comply with U. B. C. Standard No. 9-1.

Devices generating a glow or flame capable of igniting gasoline vapor shall not be installed or used within twenty-four inches (24") of the floor in any room in which volatile flammable liquids are used or stored.
CHAPTER 12 — REQUIREMENTS FOR GROUP G OCCUPANCIES

Sec. 1201. Group G occupancies shall be:
Ice plants, power plants, pumping plants, cold storage, creameries.
Factories and workshops using incombustible and non-explosive materials.
Storage and sales rooms of incombustible and non-explosive materials.
For occupancy separations see Table No. 5-B.
For occupant load see Section 3301.

Sec. 1202. (a) General. Buildings or parts of buildings classed in Group G because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.
(b) Special Provisions. Fire protection of the underside of roof framing may be omitted in all Types of Construction.
For attic space partitions and draft stops see Section 3205.

Sec. 1203. For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.

Sec. 1204. Stairs, exits, and smokeproof enclosures shall be provided as specified in Chapter 33.
Passageways direct to outside exits, free of all obstructions and at least seven feet (7') in width, clearly defined by floor markings and overhead signs, shall be maintained permanently.

Sec. 1205. All portions of Group G occupancies customarily used by human beings shall be provided with light and ventilation.
Every building or portion thereof where persons are employed shall be provided with at least one toilet. Every building and each subdivision thereof where both sexes are employed shall be provided with access to at least two toilets located either in such building or conveniently in a building adjacent thereto.

Sec. 1206. Exits shall be enclosed as specified in Chapter 33. Other vertical openings are not required to be enclosed.

Sec. 1207. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 1208. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51. In any room in which volatile flammable liquids are used or stored, no device generating a glow or flame capable of igniting gasoline vapor shall be installed or used within twenty-four inches (24") of the floor.
The storage, use and handling of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group G occupancy unless such storage, use, and handling comply with U. B. C. Standard No. 9-1.
CHAPTER 13—REQUIREMENTS FOR
GROUP H OCCUPANCIES

Group H Occupancies Defined

Sec. 1301. Group H occupancies shall be:
Division 1. Homes for the aged, orphanages, homes and dormitories for children six years of age or older (each accommodating more than six).
Division 2. Hotels, apartment houses, dormitories, lodging houses.
Convents and monasteries (each accommodating 10 or more persons).
For occupancy separations see Table No. 5-B.
For occupant load see Section 3301.

Construction, Height and Area Allowable

Sec. 1302. (a) General. Buildings or parts of buildings classed in Group H because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.
(b) Special Provisions. Division 1 occupancies shall be one-hour fire-resistive construction throughout and shall be of Type I construction if more than two stories in height.
Division 2 occupancies more than one story in height shall be of not less than one-hour fire-resistive construction throughout.
For attic space partitions and draft stops see Section 3205.

Location on Property

Sec. 1303. For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.
Location of Group H occupancies on the property shall meet the requirements of any State laws which are intended to regulate such location.

Exit Facilities

Sec. 1304. Stairs, exits, and smokeproof enclosures shall be as specified in Chapter 33.
All stairs and exits in Group H occupancies shall open directly upon a street or alley or upon a yard or court not less than four feet (4') in width directly connected to a street or alley by means of a passageway not less in width than the stairway opening into such passageway and not less than seven feet (7') in height.
Buildings more than one story in height shall have no transoms or ventilating openings from guest rooms to public corridors.
Doors opening from guest rooms into public corridors shall be incombustible or of wood not less than three-fourths inch (¾") thick at any point.

Light, Ventilation, and Sanitation

Sec. 1305. (a) Windows. All living rooms, kitchens, and other rooms used for living, eating, or sleeping purposes shall be provided with windows with an area not less than twelve square feet (12 sq. ft.) nor one-eighth of the floor area of such rooms. The window area in bathrooms, water-closet compartments, and other similar rooms shall not be less than three square feet (3 sq. ft.), unless adequate mechanical ventilation is provided. Not less than one-half such area shall be operable.
Required windows shall open on a court, yard, or street either directly or through a porch with a minimum clear
height of not less than seven feet (7') and a depth of not more than seven feet (7'). Such porch shall be at least 50 per cent open on at least two sides.

The width of such courts or yards shall be not less than three feet (3') when such courts or yards are not more than two stories high measured down from the top of the building and shall be increased at the rate of six inches (6") for each additional story in height. If such court is entirely surrounded by the building it shall have a width at least 50 per cent greater than that otherwise required.

(b) Room Sizes and Ceiling Heights. Every room required to have windows by Subsection (a) shall have a ceiling height of eight feet (8') in at least 50 per cent of its area. Rooms used for living, eating, or sleeping purposes shall have an area of not less than eighty square feet (80 sq. ft.). Kitchens shall have an area of not less than fifty square feet (50 sq. ft.).

(c) Sanitation. Every building shall be provided with at least one toilet. Every hotel and each subdivision thereof where both sexes are accommodated shall be provided with at least two toilets located in such building, which shall be conspicuously marked, one for each sex. Not less than one toilet shall be provided for each 15 persons or major fraction thereof that such building is designed to accommodate. One toilet shall be provided for each apartment.

A kitchen sink shall be installed in every kitchen.

Light, ventilation, and sanitation shall be as specified by any State laws intended to regulate such light, ventilation, and sanitation.

Sec. 1306. Exits shall be enclosed as specified in Chapter 33.

Elevator shafts, vent shafts and other vertical openings shall be enclosed and the enclosure shall be as specified under Types of Construction.

Sec. 1307. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as specified in Chapter 38.

Sec. 1308. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.

The storage and handling of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group H occupancy unless such storage and handling comply with U. B. C. Standard No. 9-1.

Doors leading into rooms in which volatile flammable liquids are used or kept shall be protected by Class "C" fire doors and shall be kept normally closed.

Every boiler room or room containing a central heating plant using solid or liquid fuel shall be separated from the rest of the building by a "Special Occupancy Separation."

EXCEPTIONS: 1. Such furnaces may be used without an "Occupancy Separation" in buildings not more than two stories in height.

2. In buildings of Type V construction an "Ordinary Occupancy Separation" may be used.

Sec. 1309. For provisions covering existing buildings see Appendix Section 1309.
CHAPTER 14—REQUIREMENTS FOR GROUP I OCCUPANCIES

Sec. 1401. Group I occupancies shall be:
Dwellings.
For occupancy separations see Table No. 5-B.
For occupant load see Section 3301.

Sec. 1402. Buildings or parts of buildings classed in Group I because of the use or character of the occupancy shall not exceed, in area or height, the limits specified in Sections 505, 506, and 507.

Sec. 1403. For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.

Sec. 1404. Stairs and exits shall be provided as specified in Chapter 33.

Sec. 1405. (a) Windows. All living rooms, kitchens, and other rooms used for living, eating, or sleeping purposes shall be provided with windows with an area not less than twelve square feet (12 sq. ft.) nor one-eighth of the floor area of such room. Not less than one-half such area shall be openable.

The window area in bathrooms, water-closet compartments, and other similar rooms shall not be less than three square feet (3 sq. ft.), and may open on a vent shaft which has a least dimension open and unobstructed to the sky of not less than three feet (3').

Required windows shall open on a court, yard, or street either directly or through a porch with a minimum clear height of not less than seven feet (7'). Such porch shall be at least 50 per cent open on at least one side.

(b) Room Sizes and Ceiling Heights. Every room required to have windows by Subsection (a) shall have a ceiling height of not less than seven feet six inches (7' 6") in at least 50 per cent of its required area with no portion less than five feet (5') in height. Rooms used for living, eating, or sleeping purposes shall have an area of not less than eighty square feet (80 sq. ft.). Kitchens shall have an area of not less than fifty square feet (50 sq. ft.).

(c) Sanitation. Sanitation facilities shall be provided as required by the local health authorities.

There shall be no opening from a room in which a water closet is located into a room in which food is prepared or stored.

Light, ventilation, and sanitation shall be provided as specified by any State laws intended to regulate such light, ventilation, and sanitation.

Sec. 1406. Dumb-waiter shafts, clothes chutes and other similar vertical openings shall be protected as specified in Chapter 30 and shall be enclosed, and the enclosure shall be as specified under Types of Construction.
Sec. 1407. Fire-extinguishing apparatus when installed shall conform to the requirements of Chapter 38.

Sec. 1408. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.
Flammable liquids shall not be stored or used in Group I occupancies in quantities in excess of one gallon and all such flammable liquids shall be kept in tight or sealed containers when not in actual use.

Sec. 1409. Group I occupancies constructed on the roof of multiple-storied buildings shall be considered as an additional story in so far as the construction, location, exposure, stairs, exits and fire-extinguishing apparatus are concerned.
CHAPTER 15 — REQUIREMENTS FOR GROUP J OCCUPANCIES

Group J Occupancies Defined

Sec. 1501. Group J occupancies shall be:

Division 1. Private garages, sheds and minor buildings used as accessories only when not over one thousand square feet (1000 sq. ft.) in area.

Division 2. Fences over six feet (6') high, tanks and towers.

For occupancy separations see Table No. 5-B.
For occupant load see Section 3301.

Construction, Height and Area Allowable

Sec. 1502. Buildings or parts of buildings classed in Group J because of the use or character of the occupancy shall be one of the Types of Construction as specified in Part V of this Code. The floor area shall not exceed one thousand square feet (1000 sq. ft.). The height shall not exceed one story.

When any building exceeds the limit specified in this Chapter it shall be classed in the occupancy group other than Group J that it most nearly resembles.

Location on Property

Sec. 1503. For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.

Exit Facilities

Sec. 1504. Stairs and exits shall be provided as specified in Chapter 33.

Light and Ventilation

Sec. 1505. Private garages which are constructed in conjunction with any Group H or I occupancies and which have openings into such buildings shall be equipped with fixed louvered or screened openings or exhaust ventilation with exhaust openings located within six inches (6") of the floor. The clear area of the louvered opening or of the openings into the exhaust ducts shall be not less than sixty square inches (60 sq. in.) per car stored in such private garage. Under no circumstances shall a private garage have any opening directly into a room used for sleeping purposes.

Enclosure of Vertical Openings

Sec. 1506. Enclosure of vertical openings shall not be required.

Fire-Extinguishing Apparatus

Sec. 1507. Fire-extinguishing apparatus shall be installed as specified in Chapter 38.

Where more than three automobiles are stored in any private garage there shall be installed not less than one two-and-one-half gallon chemical extinguisher to each five cars or major fraction thereof.

Special Hazards

Sec. 1508. Chimneys and heating apparatus shall conform to the requirements of Chapters 37 and 51.

Flammable liquids shall not be stored, handled or used in Group J occupancies unless such storage or handling shall comply with U. B. C. Standard No. 9-1.
PART IV
REQUIREMENTS BASED ON LOCATION IN FIRE ZONES

CHAPTER 16 — RESTRICTIONS IN FIRE ZONES

Sec. 1601. (a) Fire Zones Defined. For the purpose of this Code, the entire city is hereby declared to be and is hereby established a Fire District and said Fire District shall be known and designated as Fire Zones One, Two and Three, and shall include such territory or portions of said City as outlined in an ordinance of said City, entitled: "An Ordinance Creating and Establishing Fire Zones." Whenever in this Code reference is made to any fire zone, it shall be construed to mean one of the fire zones created by said ordinance.

(b) Buildings Located in More than One Fire Zone. A building or structure which is located partly in one fire zone and partly in another shall be considered to be in the more highly restricted fire zone when more than one-third of its total floor area is located in such zone.

(c) Moved Buildings. Any building or structure moved within or into any fire zone shall be made to comply with all the requirements for new buildings in that fire zone.

(d) Temporary Buildings. Temporary buildings such as reviewing stands and other miscellaneous structures conforming to the requirements of this Code, and sheds, canopies or fences used for the protection of the public around and in conjunction with construction work may be erected in Fire Zones No. 1 or 2 by special permit from the Building Official for a limited period of time, and such building or structure shall be completely removed upon the expiration of the time limit stated in such permit.

(e) Center Lines of Streets. For the purpose of this Chapter, the center line of an adjoining street or alley may be considered an adjacent property line. Distance shall be measured at right angles to the street or alley.

Sec. 1602. (a) General. Buildings or structures hereafter erected, constructed, moved within or into Fire Zone No. 1 shall be only of Type I, II, III or IV construction and shall meet the requirements of this Section.

(b) Limitation of Types of Construction. Floors over usable spaces, and all walls, partitions, and columns shall be of not less than one-hour fire-resistive construction or as permitted in Chapter 19 for Type II construction. Exterior walls within twenty feet (20') of adjacent property lines shall be of not less than four-hour fire-resistive construction.

EXCEPTIONS: 1. One-story Type IV buildings, if of incombustible construction throughout, and not more than twenty-five hundred square feet (2500 sq. ft.) in area

63
need not be fire protected provided they are located twenty feet (20') or more from adjacent property lines.

2. Walls fronting on a street having a width of at least fifty feet (50') may be of incombustible construction with structural members fire protected as required in Part V.

(c) Openings. The sum of the widths of openings in exterior walls, except on street fronts, within twenty feet (20') of adjacent property lines or other buildings on the same property shall be limited to 25 per cent of the total length of the walls affected in each story. Openings in such walls and openings within fifty feet (50') of the opposite side of a street or public space and openings into courts which are less than twenty feet (20') in least dimension, shall be protected by Class "E" or "F" fire doors or windows.

(d) Alterations. No building of Type IV construction in excess of one thousand square feet (1000 sq. ft.) in floor area nor any building of Type V construction already erected in Fire Zone No. 1 shall hereafter be altered, raised, enlarged, added to or moved, except as follows:

1. Such Type IV building may be made to conform to all the provisions of Subsections (b) and (c) of this Section.

2. Changes, alterations and repairs to the interior of such building or to the front thereof facing a public street may be made, provided such changes do not, in the opinion of the Building Official, increase the fire hazard of such building.

3. Roofs of such buildings may be covered only with a "Fire Retardant" roofing as specified in Section 3204. See Section 104(f) for repairs.

4. Such building may be moved entirely outside the limits of Fire Zone No. 1.

5. Such building may be demolished.

(e) Occupancies Prohibited. No Group E, Division 1 occupancy having a floor area exceeding fifteen hundred square feet (1500 sq. ft.) shall be permitted in Fire Zone No. 1.

No Group E, Division 2 or 3 occupancies, except garages, shall be permitted in Fire Zone No. 1.

EXCEPTION: This shall not apply to dry cleaning plants not using highly flammable liquids.

Sec. 1603. (a) General. Buildings or structures hereafter erected, constructed, moved within or into Fire Zone No. 2 shall be one of the Types of Construction as defined in this Code and shall meet the requirements of this Section.

(b) Limitation of Types of Construction. Exterior walls of Type IV or V buildings or structures shall be of not less than one-hour fire-resistive construction.

For fire-resistive protection of exterior walls and openings, as determined by location on property, see Section 504.
Roof covering shall be a "Fire-Retardant" roofing as specified in Section 3204. See Section 104(f) for repairs.

EXCEPTIONS: 1. Exterior walls of Type IV buildings not more than one thousand square feet (1000 sq. ft.) in area are not required to be of one-hour fire-resistive construction if three feet (3') or more from adjacent property lines and six feet (6') or more from buildings on the same property.

2. Type IV buildings of incombustible construction throughout are not required to be one-hour fire-resistive if twenty feet (20') or more from adjacent property line.

3. Exterior walls fronting on a street having a width of at least thirty feet (30') may be of incombustible construction with all structural members fire-protected as required in Part V.

(c) Openings. Openings except on street fronts which are less than ten feet (10') from adjacent property lines shall be protected by Class "E" or "F" fire doors or windows.

(d) Alterations. No building of Type IV construction in excess of one thousand square feet (1000 sq. ft.) in floor area nor any building of Type V construction except as specified in Subsection (b) already erected in Fire Zone No. 2, shall hereafter be altered, raised, enlarged, added to or moved except as follows:

1. Such building may be made to conform to the provisions of Subsection (b) of this Section.

2. Changes, alterations and repairs to the interior of such building or to the front thereof facing a public street may be made provided such changes do not, in the opinion of the Building Official, increase the fire hazard of such building.

3. Roofs of such buildings may be covered only with a "Fire Retardant" roofing as specified in Section 3204. See Section 104(f) for repairs.

4. Such building may be moved entirely outside the limits of Fire Zone No. 2.

5. Such building may be demolished.

6. Combustible finish on the outside of walls may be replaced by, or covered with exterior plaster as specified in Chapter 47.

(e) Occupancies Prohibited. No Group E, Division 1 occupancy, having a floor area exceeding fifteen hundred square feet (1500 sq. ft.) shall be permitted in Fire Zone No. 2.

No Group E, Division 2 or 3 occupancies, except garages, shall be permitted in Fire Zone No. 2.

EXCEPTION: This shall not apply to dry cleaning plants not using highly flammable liquids.

Sec. 1604. (a) General. Any building or structure complying with the requirements of this Code may be erected, constructed, moved within or into Fire Zone No. 3.
PART V

REQUIREMENTS BASED ON TYPES OF CONSTRUCTION

CHAPTER 17 — CLASSIFICATION OF ALL BUILDINGS BY TYPES OF CONSTRUCTION AND GENERAL REQUIREMENTS

Sec. 1701. The requirements of Part V are the minimum requirements for the various Types of Construction. In order that a building may be classed in any specific Type of Construction, it shall comply with all of the requirements for that Type of Construction, as specified in this Code.

No building or portion thereof shall be required to conform to the details of a Type of Construction higher than that Type which meets the minimum requirements based on Occupancy (Part III) or Location in Fire Zone (Part IV) even though certain features of such building actually conform to a higher Type of Construction.

The various Types of Construction herein defined represent varying degrees of public safety and resistance to fire. Where specific materials, types of construction or fire-resistant protection are required, such requirements shall be the minimum requirements and any materials, types of construction or fire-resistant protection which will afford equal or greater public safety or resistance to fire, as specified in this Code, may be used.

Any system or method of construction to be used shall admit of a rational analysis in accordance with well-established principles of mechanics.

Sec. 1702. All buildings shall be divided into the following Types of Construction based upon their resistance to fire, and Type I shall be deemed to be the most fire-resistant and Type V the least fire-resistant Type of Construction.

Type I—FIRE-RESISTIVE Construction.
Type II—HEAVY TIMBER Construction.
Type III—ORDINARY MASONRY Construction.
Type IV—LIGHT INCOMBUSTIBLE FRAME Construction.
Type V—WOOD FRAME Construction.

When two or more types of construction occur in the same building and are not separated by an unpierced wall of four-hour fire-resistive construction, the entire building shall be classed in the least fire-resistive type of construction and such buildings shall be subject to the restrictions of such type. Any building erected prior to the passage of this Code, which by its construction cannot be classified definitely as Type I, II, III, IV or V as defined herein, shall for the purpose of this Code be deemed to belong to the least fire-resistive class of the two types to which it most nearly
conforms. Any building which cannot be classed as Type I, II, III, or IV construction shall be considered to be of Type V construction.

Sec. 1703. Exterior walls enclosing the floor areas shall be constructed and maintained for all buildings hereafter erected wherever no openings are allowed in exterior walls and wherever any fire protection for openings in the exterior walls is required in this Code.
CHAPTER 18 -- TYPE I BUILDINGS
(Fire-Resistive)

Definition
Sec. 1801. In "Type I Buildings," the structural frame shall be of structural steel or iron which shall be fire-protected, or shall be of concrete or of reinforced masonry. The exterior walls, inner court walls, and walls enclosing vertical openings, shall be of fire-resistive construction. The roof construction and floors shall be of fire-resistive materials. Exterior doors and windows, except as specified in Section 1813, shall be of fire-resistive construction.

Height Allowable
Sec. 1802. The height of Type I buildings shall not be limited.

Area Allowable
Sec. 1803. The floor area of Type I buildings shall not be limited.

Foundations
Sec. 1804. Footings shall be of solid masonry as specified in Chapter 24 or of concrete as specified in Chapter 26, and shall be designed as specified in Section 2310 and Chapter 28. Foundation walls shall be of masonry or concrete as specified in Chapters 24 and 26.

Exterior and Inner Court Walls
Sec. 1805. Exterior walls shall be of not less than four-hour fire-resistive construction, except that walls fronting on streets having a width of at least fifty feet (50') in Fire Zone No. 1 or thirty feet (30') in Fire Zones No. 2 and No. 3 may be of incombustible construction with all structural members fire-protected as required in Section 1809.

Inner court walls shall be of not less than three-hour fire-resistive construction,

EXCEPTION: In Groups F, G and H occupancies, exterior and inner court walls may be as follows:

Bearing Walls—Two-hour fire-resistive where openings are permitted.

Non-bearing Walls—One-hour fire-resistive where unprotected openings are permitted and two-hour fire-resistive where fire protection of openings is required.

Partitions
Sec. 1806. Interior partitions shall be constructed of incombustible materials and shall be of not less than one-hour fire-resistive construction.

EXCEPTIONS: Temporary partitions dividing portions of stores, offices or similar places occupied by one tenant only may be constructed of wood panels or similar light construction up to three-fourths the height of the room in which placed; when more than three-fourths the height of the room, such partitions shall have not less than the upper one-fourth of the partition constructed of plain glass set in sash.

Enclosure of Vertical Openings
Sec. 1807. Enclosures for elevator shafts, vent shafts, and other vertical openings, when required because of Occupancy in Part III, shall be of not less than two-hour fire-resistive construction and all openings therein shall be protected by
Class "E" or "F" fire doors for exterior openings and Class "B" doors for interior openings. (See Chapter 30.)

Exit enclosures shall be constructed as specified in Section 3308.

A parapet wall or hand rail at least thirty inches (30") in height above the roof shall be provided around all open shaft enclosures extending through the roof.

Sec. 1808. Structural framework shall be of structural steel or iron as specified in Chapter 27 or shall be of reinforced concrete as specified in Chapter 26 or of reinforced masonry as specified in Chapter 24.

The structural frame shall be considered to be the columns and the girders, beams, trusses and spandrels having direct connections to the columns and all other members which are essential to the stability of the building as a whole. The members of floor or roof panels which have no connection to the columns, shall be considered secondary members.

Sec. 1809. (a) Structural Steel or Iron Members. All structural steel or iron members, not including frames or structural members for elevators and elevator enclosures, shall be thoroughly fire-protected with not less than four-hour fire-resistive protection for columns, beams and girders and three-hour fire-resistive protection for floors, for all buildings more than eight stories or eighty-five feet (85') in height housing Group E occupancies; and with not less than three-hour fire-resistive protection for columns, beams and girders and two-hour fire-resistive protection for floors for all other buildings.

EXCEPTIONS: 1. The thickness of the fire-protection on the outer edge of lugs or brackets on columns may be reduced to not less than one inch (1").

2. The masonry over window openings may be supported by a steel plate, angle or similar member which is not fire-protected on the under side, provided the member is supported at proper intervals from a structural beam or girder which is fire-protected on all sides. For openings in masonry bearing walls not exceeding four feet (4') in width, an angle or similar member supported by masonry and not fire-protected on the under side may be used.

3. Where every part of the structural steel framework of the roof of a Group A, B or C occupancy is not less than twenty-five feet (25') above any floor, balcony or gallery, fire-protection of all members of the roof construction may be omitted.

4. Where every part of the structural steel framework of the roof of a Group A, B or C occupancy is more than eighteen feet (18') and less than twenty-five feet (25') above any floor, balcony or gallery, the roof construction shall be protected by a suspended ceiling of not less than one-hour fire-resistive construction, and such ceiling shall be not less than six inches (6") distant from any part of such roof construction.

(b) Reinforced Concrete or Masonry Members. All reinforced concrete or reinforced masonry columns, beams and
girders shall be thoroughly fire-protected with not less than four-hour fire-resistive protection and all floors, joists and slabs shall be thoroughly fire-protected with not less than three-hour fire-resistive protection, for all buildings more than eight stories or eighty-five feet (85') in height housing Group E occupancies; and all reinforced concrete columns, beams and girders shall be thoroughly fire-protected with not less than three-hour fire-resistive protection and all floors, joists and slabs shall be thoroughly fire-protected with not less than two-hour fire-resistive protection for all other buildings.

Floor Construction

Sec. 1810. Floor construction shall consist of any incombustible floor system of not less than three-hour fire-resistive construction for all buildings more than eight stories or eighty-five feet (85') in height housing Group E occupancies, and of not less than two-hour fire-resistive construction for all other buildings.

Where wood sleepers are used for laying wood floors the space between the floor slab and the underside of the wood flooring shall be filled with incombustible material in such a manner that there will be no open spaces under the flooring which will exceed one hundred square feet (100 sq. ft.) in area and such space shall be filled solidly under all partitions so that there is no communication under the flooring between adjoining rooms.

Roof Deck Construction

Sec. 1811. Roofs shall be constructed of any materials or combination of materials as allowed for floors in Section 1810.

EXCEPTION: Roofs more than twenty-five feet (25') above any floor, balcony or gallery, may be of unprotected incombustible materials.

Roof covering shall be a "Fire Retardant" roofing as specified in Section 3204.

Any drainage fill placed on a roof deck of any building shall be of incombustible material and such fill shall be considered as a part of the dead load in designing the roof framing.

Stair Construction

Sec. 1812. Stairs and stair platforms shall be constructed of reinforced concrete, iron or steel with treads and risers of concrete, iron or steel. Brick, marble, tile or other hard incombustible materials may be used for the finish of such treads and risers.

Stairs shall be designed and constructed as specified in Chapter 33.

Doors and Windows

Sec. 1813. Doors, windows and other openings in the exterior walls shall be protected by Class "E" or "F" fire doors or windows.

EXCEPTIONS: 1. The provisions of this Section shall not apply to doors, windows and other openings which face directly upon, and are not within fifty feet (50') in Fire Zone No. 1 or are not within thirty feet (30') in Fire Zones No. 2 and 3, of the opposite side of a public street or other public place, this distance to be measured
at right angles to the plane of the wall in which such openings occur.

2. The provisions of the first paragraph of this Section shall not apply to openings in an outer court twenty feet (20') or more in width parallel to and facing upon a street or public place, provided such openings are not within twenty feet (20') of an adjacent property line.

Sec. 1814. Bays, orielts and similar projections shall be constructed of incombustible materials with walls, floors and roofs as specified in this Chapter and Chapter 35.

Porches and exterior balconies shall be constructed of incombustible materials, but structural steel or iron members need not be fire-protected; provided that loading platforms for warehouses, freight depots and similar buildings may be of heavy timber construction with wood floors not less than one and five-eighths inches (1 5/8") thick. Such wood construction shall not be carried through the exterior walls of any Type I building.

Cornices, marquees and similar appendages which are a part of a Type I building shall be constructed of substantial incombustible materials and as required in Chapter 45.

Sec. 1815. Penthouses shall be constructed as required in Chapter 36.

Skylights shall be of incombustible construction. (See Chapter 34.)

Sec. 1816. Wood or unprotected steel or iron shall be permitted in the following places:

1. Mezzanine floors may be of wood or unprotected steel provided that there shall be not more than two such mezzanines in any room of any building and provided, further, that no such mezzanine floor or floors shall cover more than 33 1/3 per cent of the area in the room where located. Such mezzanine floors constructed in Fire Zone No. 1 shall be of heavy timber construction as required for floor construction in Type II buildings or of incombustible material protected with lath and plaster approved for one-hour fire-resistive construction.

2. Show window frames and aprons, also show cases and other appurtenances on the first floors of stores or other similar buildings may be of wood with or without unprotected steel or iron.

3. Trim, picture molds, chair rails, wainscoting, baseboards, hand rails, show window backing, temporary partitions, floors, and sleepers may be of wood. Wood doors may be used except in stair, elevator or other shaft enclosures or where not specifically prohibited under Occupancy in Part III.

4. Roofs may be sheathed by wood planks of two and one-half inch (2 1/2") nominal thickness when such sheathing is more than thirty feet (30') distant from any floor, balcony or gallery and when such plank sheathing is protected on the underside by a ceiling of not less than one-hour fire-resistive construction.
CHAPTER 19—TYPE II BUILDINGS
(Heavy Timber Construction)

Definition

Sec. 1901. In "Type II Buildings" the structural frame shall be of structural steel or iron which shall be fire-protected, of concrete, masonry, or heavy timbers, or bearing walls may be used. Exterior walls shall be of fire-resistive construction. Inner court walls shall be of incombustible materials or protected solid wood. Roof construction shall be of wood, or incombustible materials. Floors and non-bearing partitions shall be of wood or incombustible materials. Concealed or inaccessible spaces in combustible framing shall not be permitted.

Height Allowable

Sec. 1902. Type II buildings shall not exceed a height of seventy-five feet (75'); provided that the height of a building erected on sloping ground may be seventy-five feet (75') plus a vertical distance equal to the vertical change in slope along the length of any side of such building but in no case shall such height exceed eighty-five feet (85') above the adjacent finished ground level. Towers, spires, and steeples erected as a part of the building and not used for habitation or storage may extend not to exceed twenty feet (20') above such height limit.

See Section 507 for additional height limitations.

Area Allowable Foundations

Sec. 1903. The floor area of Type II buildings shall be limited according to occupancy as required in Part III.

Sec. 1904. Footings shall be of solid masonry as specified in Chapter 24 or of concrete as specified in Chapter 26, and shall be designed as specified in Section 2310 and Chapter 28. Foundation walls shall be of masonry or concrete as specified in Chapters 24 and 26.

Exterior and Inner Court Walls

Sec. 1905. Exterior walls shall be of not less than four-hour fire-resistive construction, except that walls fronting on streets having a width of at least fifty feet (50') in Fire Zone No. 1 or thirty feet (30') in Fire Zones No. 2 and No. 3 may be of incombustible construction, with columns and beams fire protected as specified in Section 1909.

All walls within five feet (5') of adjacent property lines (excepting property lines abutting a street or an alley) and all walls within ten feet (10') of other buildings on the same property shall be provided with a parapet wall at least thirty inches (30") high above the roof at all points, provided that parapet walls need not be constructed on buildings twenty feet (20') or less in height or where the roof slopes more than 20 degrees from the horizontal back from the exterior wall of such building.

Inner court walls shall be the same as exterior walls or shall be of not less than four-inch (4") solid wood laminated construction protected on the weather side thereof by incombustible fire-resistive materials as provided in Chapter 43.

Partitions

Sec. 1906. Interior partitions shall be of solid wood construction formed by not less than two layers of one-inch (1") nominal matched boards or laminated construction.
three and five-eighths inches (3\%"") thick, or shall be of one-hour fire-resistive construction fire-stopped at floor and ceiling.

Temporary partitions as specified in Section 1806 may be used.

Sec. 1907. Enclosures for elevator shafts, vent shafts, and other vertical openings when required because of Occupancy in Part III shall be of not less than two-hour fire-resistive construction (see Chapter 30); provided that in buildings not more than three stories in height which are completely sprinklered as specified in Chapter 38 such enclosure walls may be constructed as required for interior partitions.

Exit enclosures shall be constructed as specified in Section 3308.

A parapet wall or handrail at least thirty inches (30"") in height above the adjacent roof level shall be provided around all open shaft enclosures extending through the roof.

Sec. 1908. Structural framework shall be of masonry as specified in Chapter 24, of wood as specified in Chapter 25, of concrete as specified in Chapter 26, or of structural steel as specified in Chapter 27.

All wood columns in such structural frame shall be directly superimposed, one above the other (no girders or bolsters between columns), and shall be provided with reinforced concrete, steel or cast iron caps, pinnles or base plates, or be connected by timber splice blocks fastened to columns by connectors housed within the contact faces or by bolts. No wood column shall be less than eight inches (8"") nominal in its least dimension; no beam, girder or joist shall be less than six inches (6"") nominal in its least dimension, nor less than forty-eight square inches (48 sq. in.) nominal in cross-sectional area; and no wood roof truss or arch framing member shall be less than four inches (4"") nominal in least dimension, except that top and bottom chords of truss may be built up of two or more elements of not less than three inches (3"") nominal thickness when the space between such elements is either solidly filled or is tightly closed for the full length on the underside thereof with a wood cover plate of two-inch (2"") nominal thickness.

Where adjoining ends of girders and beams meets at columns they shall be closely fitted and cross-tied by approved reinforced concrete, steel or iron post caps or metal straps, or shall be intertied with columns by through bolted wood corbel and splice blocks or side bolsters with load transferred by connectors housed within the contacting faces or by bolts. Approved wall plates, boxes or hangers shall be provided where wood beams, girders or trusses rest on masonry or concrete walls.

Sec. 1909. (a) Structural Steel and Concrete Members. All structural steel and concrete members (not including frames and structural members for elevators and elevator enclosures) shall be thoroughly fire protected, with not less than one-hour fire-resistive protection.

(For exceptions see following page.)
EXCEPTIONS: 1. The thickness of the fire protection on the outer edge of steel lugs or brackets on columns may be reduced to not less than one inch (1"").

2. The masonry over window openings may be supported by a steel plate, angle or similar member which is not fire protected on the underside, provided the member is supported at proper intervals from a structural beam or girder which is fire protected on all sides. For openings in masonry bearing walls not exceeding four feet (4') in width an angle or similar member supported by masonry and not fire protected on the underside may be used.

3. Porch and exterior balcony framing need not be fire protected.

4. Where the structural steel framework of the roof of a Group A, B or C occupancy is not less than twenty-five feet (25') above any floor, balcony or gallery, fire protection of all members of the roof construction may be omitted.

5. Where the structural steel framework of the roof of a Group A, B or C occupancy is more than eighteen feet (18') and less than twenty-five feet (25') above any floor, balcony, or gallery, the roof construction shall be protected by a suspended ceiling of not less than one-hour fire-resistive construction, and such ceiling shall be not less than six inches (6") distant from any part of such roof construction.

(b) Wood Structural Members. Wood structural members shall not be required to be fire-protected.

Floor Construction

Sec. 1910. Floors shall be constructed of tongued and grooved or splined lumber of not less than three inches (3") nominal thickness or of square-edged lumber of not less than four inches (4") nominal width set on edge and securely spiked together, each covered with one inch (1") nominal tongued and grooved top flooring laid crosswise and diagonally, or shall be an incombustible floor system of not less than one-hour fire-resistive construction.

A space of one-half inch (1/2") shall be required between the wood flooring and adjoining walls to allow for expansion due to wetting. This space shall be covered by a molding secured to the wall only or masonry may be corbeled under the floor to cover this space.

Roof Deck Construction

Sec. 1911. Roof decks shall be as required for floors in Section 1910 or shall be constructed of tongued and grooved or splined lumber of not less than two inches (2") nominal thickness or of square-edged lumber of not less than three inches (3") nominal width set on edge and securely spiked together.

EXCEPTION: Roofs more than twenty-five feet (25') above any floor, balcony, or gallery, may be of unprotected incombustible materials.

Roof covering shall be a “Fire-Retardant” roofing as specified in Section 3204.

Stair Construction

Sec. 1912. Stairs shall be constructed with wood treads and risers of not less than two-inch (2") nominal thickness,
except where built on laminated or plank inclines as required for floors, when they may be of one-inch (1") nominal thickness or may be constructed as required in Type I buildings.

In buildings four or more stories in height, stairs and stair construction shall be as required for Type I buildings. Stairs and exits shall be designed and constructed as specified in Chapter 33.

Sec. 1913. Doors, windows and other openings in the exterior walls shall be protected by Class "E" or "F" fire doors or windows.

EXCEPTIONS: 1. The provisions of this Section shall not apply to doors, windows, and other openings which face directly upon, and are not within fifty feet (50') in Fire Zone No. 1, or thirty feet (30') in Fire Zones No. 2 and 3, of the opposite side of a public street or public place, this distance to be measured at right angles to the plane of the wall in which such openings occur.

2. The provisions of this Section shall not apply to openings in an outer court twenty feet (20') or more in width parallel to and facing upon a street or public place, provided such openings are not within twenty feet (20') of an adjacent property line.

Sec. 1914. Bays, balconies, oriel, porches, and similar projections shall be constructed of combustible materials with walls, floors and roofs as specified in this Chapter and Chapter 35; provided, that loading platforms for warehouses, freight depots, and other similar buildings may be of heavy timber construction with wood floors of not less than two inches (2") nominal thickness, but such wood construction shall not be carried through the exterior walls.

Cornices, marquises and similar appendages which are a part of a Type II building shall be constructed of substantial combustible materials and as specified in Chapter 45.

Sec. 1915. Penthouses shall be constructed as required in Chapter 36. Skylights shall be of incombustible construction. (See Chapter 34.)

Sec. 1916. No wood lath or wood furring shall be allowed, and no incombustible furring shall pass through any wall, partition, or floor. Unprotected steel and iron or wood may be used in the following places:

1. Mezzanine floor construction, provided that there shall be not more than two such mezzanines in any room of any building, and provided, further, that no such mezzanine floor or floors shall cover more than 33 1/3% per cent of the area of the room where located.

2. Show window frames, aprons, showcases and other appurtenances on the first floors of stores and other similar buildings.

3. Trim, handrails, show window backing, temporary partitions as specified in Section 1906, picture molds, chair rails, wainscoting, baseboards, and doors, except in stair, elevator and other shaft enclosures, or where not specifically prohibited under Occupancy in Part III.
CHAPTER 20 — TYPE III BUILDINGS
(Ordinary Masonry)

Definition
Sec. 2001. In "Type III Buildings" the interior load bearing construction may be masonry or concrete walls or a structural frame of steel, reinforced concrete or wood. Exterior walls shall be of fire-resistive materials. Partitions, floors and roof framing may be of wood.

Height Allowable
Sec. 2002. Type III buildings shall not exceed a height of fifty-five feet (55') ; provided that the height of a building erected on sloping ground may be fifty-five feet (55') plus a vertical distance equal to the vertical change in slope along and in the length of any side of such building, but in no case shall such height exceed sixty-five feet (65') above the adjacent finished ground level; and provided, further, that towers, spires and steeples erected as a part of such building and not used for habitation or storage may extend not to exceed fifteen feet (15') above such height limit.

See Section 507 for additional height limitations.

Area Allowable
Sec. 2003. The floor area of Type III buildings shall be limited according to Occupancy as required in Part III.

Foundations
Sec. 2004. Footings shall be of solid masonry as specified in Chapter 24 or of concrete as specified in Chapter 26, and shall be designed as specified in Section 2310 and Chapter 28. Foundation walls shall be of masonry or concrete as specified in Chapters 24 and 26.

Exterior and Inner Court Walls
Sec. 2005. Exterior walls shall be of not less than four-hour fire-resistive construction, except that walls fronting on streets having a width of at least fifty feet (50') in Fire Zone No. 1 or thirty feet (30') in Fire Zones No. 2 and No. 3 may be of incombustible construction with all structural members having not less than one-hour fire-resistive protection.

All walls within five feet (5') of adjacent property lines (except property lines abutting a street or alley) and all walls within ten feet (10') of other buildings on the same property shall be provided with parapet walls at least thirty inches (30") high above the roof at all points; provided that parapet walls need not be constructed on buildings twenty feet (20') or less in height or where the roof slopes more than 20 degrees from the horizontal back from the exterior wall of such building.

Inner court walls and all other walls not forming the exterior walls of the building may be as required for Type I or Type II buildings, or shall be of not less than one-hour fire-resistive construction.

Partitions
Sec. 2006. Partitions of wood shall be constructed as required in Chapter 25. Bearing partitions, when constructed of wood, shall not support more than two stories and a roof.

Temporary partitions as specified in Section 1806 may be used.

Enclosure of Vertical Openings
Sec. 2007. Enclosures for elevator shafts, vent shafts and other vertical openings when required because of Occupancy
in Part III shall be of not less than one-hour fire-resistive construction. (See Chapter 30.)

Exit enclosures shall be constructed as specified in Section 3308.

A parapet wall or handrail at least thirty inches (30") in height above the roof shall be provided around all open shaft enclosures extending through the roof.

Sec. 2008. Structural framework shall be of steel, iron, concrete, masonry or wood and shall be designed and erected as specified in Chapter 26 for concrete, Chapter 27 for steel and iron, Chapters 22 and 25 for wood and Chapter 24 for masonry.

Sec. 2009. Fire-protection of steel or iron structural members may be omitted unless otherwise provided, because of Location as in Part IV or Occupancy as in Part III, or as required in this Chapter.

All members carrying masonry in buildings over one story in height shall be fire-protected with not less than one-hour fire-protection. Bottom flanges of exterior lintels need not be fire-protected.

Sec. 2010. Floors may be constructed as specified in Chapter 26 for concrete, Chapter 24 for masonry, Chapter 25 for wood, and Chapter 27 for steel or iron.

In all buildings having a usable space under the first floor, except Groups I and J occupancies, the underside of such floor construction when of metal or wood shall be protected by a ceiling of lath and plaster approved for one-hour fire-resistive construction.

Wood joists, beams and girders supported by masonry walls shall be anchored thereto as required in Section 2517 (g). Ventilation shall be provided between the ground and a wood floor as required in Section 2523.

Sec. 2011. Roof construction shall be of any Type of Construction permitted for floors except where otherwise required because of Occupancy in Part III.

Roof covering shall be a "Fire-Retardant" roofing as specified in Section 3204.

Sec. 2012. Stairs may be of steel, iron, concrete, masonry or wood and shall be designed and constructed as specified in Chapter 33.

Sec. 2013. Doors, windows and other openings in exterior walls may be of wood or of plain glass and wood sash unless otherwise required under Occupancy in Part III or Location in Part IV.

Sec. 2014. Bays, oriel and similar projections shall be constructed of incombustible materials with walls, floors and roof as specified in this Chapter and Chapter 35.

Porches and exterior balconies shall be constructed of incombustible materials, but structural steel or iron members need not be fire-protected; provided that loading platforms for warehouses, freight depots and similar buildings may be of heavy timber construction with wood floors not less than
one and five-eighths inches (1\(\frac{5}{8}\))" thick. Such wood construction shall not be carried through the exterior walls of any Type III building.

Cornices, marqueses and similar appendages which are a part of a Type III building shall be constructed of substantial incombustible materials and as required in Chapter 45.

Penthouses and Skylights

Sec. 2015. Penthouses and other roof structures shall be of not less than one-hour fire-resistive construction. (See Chapter 36.)

Skylights shall be of incombustible construction. (See Chapter 34.)

Combustible Materials Regulated

Sec. 2016. Wood shall be permitted in a building of Type III construction except where specifically prohibited under Occupancy in Part III or Location in Part IV.

Combustible insulating materials may be placed in the partition, floor or roof framing but shall in no way interfere with the fire blocking or fire separations required by this Code.
CHAPTER 21 — TYPE IV BUILDINGS
(Light Incombustible Frame)

Sec. 2101. In “Type IV Buildings” the structural framework shall be of steel, iron, masonry or concrete and exterior walls shall be of incombustible materials. Partitions, floors and roof construction shall be of incombustible materials except as specified in this Chapter. Foundations shall be of masonry or concrete.

Sec. 2102. Type IV buildings shall not exceed a height of forty-five feet (45’); provided that the height of such building erected on sloping ground may be forty-five feet (45’) plus a vertical distance equal to the vertical change in slope along and in the length of any side of such building but in no case shall such height exceed fifty-five feet (55’) above the adjacent finished ground level. Towers, spires and steeples erected as a part of such building and not used for habitation or storage may extend not to exceed ten feet (10’) above such height limit except that the height of such towers on Group G occupancies shall not be limited.

See Section 507 for additional height limitations.

Sec. 2103. The floor area of a Type IV building shall be limited as specified under Occupancy in Part III and Location in Part IV.

Sec. 2104. Footings shall be solid masonry as specified in Chapter 24 or of concrete as specified in Chapter 26, and shall be designed as specified in Section 2310 and Chapter 28. Foundation walls shall be of masonry or concrete as specified in Chapters 24 and 26.

Sec. 2105. Exterior wall covering shall provide suitable protection from the elements and shall be of incombustible material of such thickness, strength and so anchored to the wall frame as to resist effectively wind and other forces that may be applied to it. Wall coverings may be considered a structural part of the structural frame if designed and constructed to act integrally therewith.

Studs or other similar vertical supports shall in no case be spaced more than four feet (4’) on centers. All openings wider than the regular stud spacing in the wall shall be trussed or provided with lintels with proper end support, provided that where no studs are used the structural frame shall be designed in accordance with Chapter 24, Chapter 26 or Chapter 27. All walls shall be thoroughly and effectively braced; and effectively fire-stopped at all floor and ceiling levels with incombustible materials. All steel studs shall be designed in accordance with Chapter 27.

All roof and floor loads shall be transmitted to the steel studs or other supporting members, either directly or by means of a load distributing member. Maximum wall height between horizontal supports perpendicular to bearing walls shall not exceed 4½ times the structural thickness of the wall.

Portland cement plaster not less than one and one-half inch (1½”) in thickness reinforced in two directions with
not less than three-tenths per cent of steel may be considered to act with the studs to resist bending and shear under horizontal forces when said reinforcement is anchored to the stud in such a manner as to resist effectively the stresses developed. The unit stresses for such reinforced plaster shall not be more than 50 per cent of those allowed for concrete beams in Table No. 26-B, based on a compressive strength of such plaster of 1500 pounds per square inch.

Partitions

Sec. 2106. Bearing partitions shall be constructed as required for exterior walls. Interior non-bearing partitions may be of incombustible materials.

Enclosure of Vertical Openings

Sec. 2107. Enclosures for elevator shafts and other vertical openings when required because of Occupancy in Part III shall be of not less than one-hour incombustible fire-resistive construction. (See Chapter 30.)

Exit enclosures shall be constructed as specified in Section 3308.

A parapet wall or handrail at least thirty inches (30") in height above a flat roof shall be provided around all open shaft enclosures extending through the roof.

Structural Framework

Sec. 2108. The structural framework shall be as specified in Chapter 27 for iron and steel, Chapter 24 for masonry and Chapter 26 for concrete.

Fire Protection of Structural Members

Sec. 2109. Fire protection of structural members may be omitted unless otherwise provided, because of Location as in Part IV or Occupancy as in Part III, or as required in this Chapter.

All members carrying masonry in buildings over one story in height shall be fire-protected with not less than one-hour fire protection. Bottom flanges of exterior lintels need not be fire-protected.

Floor Construction

Sec. 2110. Floor construction shall be of incombustible material, provided, however, that a wood wearing surface or finish may be applied over such incombustible material.

Roof Construction

Sec. 2111. Roof construction may be of any type of construction permitted by this Code.

Roof covering shall be a “Fire-Retardant” roofing as specified in Section 3204.

Stair Construction

Sec. 2112. Stairs shall be of any type permitted by this Code and shall comply with the requirements of Chapter 33.

Doors and Windows

Sec. 2113. Doors, windows and other openings in exterior walls may be of any type permitted by this Code, unless otherwise required under Occupancy in Part III, and Fire Zones in Part IV.

Projections from the Building

Sec. 2114. Porches, cornices, marquees, canopies and all other similar projections from the building shall be of incombustible materials, except that a loading platform, not including the roof or roof structure thereof, may be constructed of wood as specified in Section 1914.

Penthouses and Skylights

Sec. 2115. Penthouses and other roof structures shall be constructed as required for the main portion of the building. (See Chapter 36.) Skylights shall be of incombustible construction. (See Chapter 34.)
CHAPTER 22—TYPE V BUILDINGS
(Wood Frame)

Sec. 2201. In "Type V Buildings," enclosing walls, interior walls, partitions, floors and roofs shall be of wood as specified in Chapter 25 or of wood in combination with other materials except where prohibited as specified under Occupancy in Part III. Any building which cannot be classed as Type I, II, III or IV construction shall be considered to be of Type V.

Sec. 2202. Type V buildings shall not exceed a height of thirty-eight feet (38'); provided that the height of a building erected on sloping ground may be thirty-eight feet (38') plus a vertical distance equal to the vertical change in slope along and in the length of any side of such building, but in no case shall such height exceed forty-five feet (45') above the adjacent finished ground level; provided, further, that spires, towers or steeples erected as a part of such building and not used for habitation or storage may extend not to exceed ten feet (10') above such height limit.

See Section 507 for additional height limitations.

Sec. 2203. The maximum floor area allowable for a Type V building shall in no case exceed that specified under Occupancy in Part III or Location in Part IV.

Sec. 2204. All exterior walls and interior bearing walls of Type V buildings shall be supported on continuous solid masonry or concrete footings which shall be of sufficient size to support safely the loads imposed as determined from the character of the soil. Foundation walls shall extend at least six inches (6") above the finished grade adjacent to the wall at all points. Mudsills shall be bolted to the foundation or foundation wall with not less than one-half inch (½") bolts, embedded at least seven inches (7") into the masonry and spaced not more than six feet (6') apart.

EXCEPTIONS: 1. Interior bearing walls in one-story buildings may be supported on piers.

2. For Type V buildings, (except Group H and I occupancies) isolated piers of solid masonry or concrete may be used for post and girder construction.

3. A one-story building (except a Group I occupancy) which does not exceed four hundred square feet (400 sq. ft.) in area, including additions, may be constructed without a masonry or concrete foundation if the walls are supported on a wood mudsill.

Minimum foundation requirements shall be as set forth in Table No. 22-A of this Section.

All mudsills shall be all-heart cedar, all-heart cypress or Foundation Grade redwood, or any species of wood if treated under pressure with an approved preservative.

Foundations for all buildings where the surface of the ground slopes more than one foot (1') in ten feet (10') shall be level or shall be stepped so that both top and bottom of such foundation are level.
TABLE NO. 22-A—MINIMUM FOUNDATION REQUIREMENTS FOR TYPE V BUILDINGS

<table>
<thead>
<tr>
<th>Number of Stories</th>
<th>Thickness of Foundation Wall in Inches</th>
<th>Width of Footing in Inches</th>
<th>Thickness of Footing in Inches</th>
<th>Depth of Foundation Below Natural Surface of Ground and Finish Grade in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>16</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>30</td>
</tr>
</tbody>
</table>

* Where unusual conditions or frost conditions are found, footings and foundations shall be as required in Chapter 28.

Foundations of Type V buildings may be of piles, constructed as specified in Chapter 28.

Unreinforced walls used as retaining walls in connection with Type V buildings shall be not less than eight inches (8") in thickness. All such walls shall be designed for the loads specified in Section 2309.

Retaining Walls

Sec. 2205. (a) Construction. Exterior walls may be of any materials permitted by this Code.

Exterior walls of wood shall be constructed as specified in Chapter 25.

(b) Sheathing. Sheathing shall be one or more of the following materials:

Wood not less than five-eighths inch (%") thick.
Approved fiber board not less than seven-sixteenths inch (7/16") thick.
Approved gypsum sheathing not less than one-half inch (½") thick.
Approved plywood not less than five-sixteenths inch (5/16") thick.

Type V buildings three stories in height shall have all exterior walls of the first story, covered with solid sheathing as specified in this subsection. Such sheathing, when of wood, shall be applied diagonally.

Exterior Walls and Wall Coverings

(c) Wall Coverings. 1. General Exterior walls shall be covered on the outside with the materials and in the manner specified in this Section.

2. Weatherboarding. Studs or sheathing shall be covered on the outside face with one layer of building paper as specified in Section 2217. Weatherboarding, when in place, shall have an average thickness of not less than five eighths inch (%") and a minimum thickness of not less than three-eighths inch (%"). Such weatherboarding shall be placed over the paper and shall be securely nailed to the studs with not less than two nails to each stud in each piece of such weatherboarding. Horizontal joints in the weatherboarding shall be tongued and grooved or shiplapped joints, or such weatherboarding shall be laid shingle fashion and lapped not less than one-half inch (½"). Siding patterns
known as rustic, drop siding or shiplap shall have an average thickness in place of not less than nineteen thirty-seconds inch (19/32") and a minimum thickness of not less than three-eighths inch (3/8"). Bevel siding shall have a minimum thickness measured at the butt section of not less than twenty-one thirty-seconds inch (21/32") and a tip thickness of not less than one-quarter inch (1/4"). Siding of lesser dimensions may be used, provided the outside face of the stud is first covered with sheathing as provided in this Section.

3. Plywood. Where plywood is used for covering the exterior of outside walls it shall be of the exterior type not less than three-eighths inch (3/8") thick. Joints shall be backed solid with nailing pieces not less than two inches (2") wide.

4. Shingles or Shakes. Shingles or shakes may be used for exterior wall covering provided the frame of the structure is covered with building paper as specified in Section 2217. The thickness of shingles or shakes between wood nailing boards shall be not less than three-eighths inch (3/8").

5. Exterior Plastering. See Chapter 47.

7. Galvanized Iron. Galvanized iron not less than 28 gauge may be used on stud walls without sheathing. Walls shall be effectively braced and nailing strips shall be placed in such manner as to permit the metal to be nailed at vertical intervals of not more than four feet (4').

Sec. 2206. Interior partitions may be of any material permitted for exterior walls in this Code. If of wood, interior partitions shall be constructed, framed and firestopped as specified for exterior walls in Chapter 25, except that interior non-bearing partitions may have a single top plate, and except that where non-bearing partitions are approximately parallel and not more than four feet (4') apart, two-inch by three-inch (2"x3") studs sixteen inches (16") on centers may be used.

Sec. 2207. Enclosure walls for elevator shafts, vent shafts, and similar vertical openings, when required under Occupancy in Part III, shall be of not less than one-hour fire-resistive construction, except that chutes and dumb-waiter shafts with a cross-sectional area of not more than nine square feet (9 sq. ft.) may be lined with approved incombustible materials covered with not less than 26 U. S. gauge sheet metal with all joints in such sheet metal lock-lapped. (See Chapter 30.) All openings into any such vertical enclosure shall be protected by metal or metal-clad doors with either metal or metal-clad jambs, casings or frames.

Exit enclosures shall be constructed as specified in Section 3308.

Sec. 2208. Structural framework may be of any type of construction permitted in this Code.

Sec. 2209. Fire-protection of structural framework shall not be required except as provided under Occupancy in Part III.
Floor Construction

Sec. 2210. Floors may be of any type of construction permitted in this Code.

Roof and Ceiling Construction

Sec. 2211. Roof construction may be of any type of construction permitted in this Code. When roof construction is of wood it shall conform to the requirements of Chapter 25. Attic or roof spaces shall be divided into areas not exceeding twenty-five hundred square feet (2500 sq. ft.) as required in Section 3205.

Roof covering shall be a "Fire-Retardant" roofing, except that for Groups H, I and J occupancies an ordinary roofing may be used as specified in Section 3204. Wherever a composition roofing is used, the roof construction shall be solidly sheathed with wood, sheathing to be not less than twenty-five thirty-seconds inch (25/32") thick, or with plywood not less than that set forth in Table No. 31-B.

Stair Construction

Sec. 2212. Stair construction may be of any type permitted in this Code and shall conform to the requirements of Chapter 35.

Doors and Windows

Sec. 2213. Doors and windows may be of any type permitted in this Code.

Projections from the Building

Sec. 2214. Any projections from the building shall conform to the requirements for exterior walls, and those over public property shall be as required in Chapter 45.

Penthouses and Skylights

Sec. 2215. Penthouses and skylights may be of any material permitted in Chapters 34 and 36 of this Code.

Combustible Materials Regulated

Sec. 2216. Combustible insulating materials may be used in any part of the building but shall not be installed in such a manner as to interfere with the firestopping elsewhere herein required.

Weather Protection

Sec. 2217. (a) Building Paper. Asphalt-saturated felt free from holes and breaks and weighing not less than 14 pounds per hundred square feet (100 sq. ft.) or approved waterproof paper, shall be applied over studs or sheathing of all exterior walls. Such felt or paper shall be applied weatherboard fashion, lapped not less than two inches (2") at horizontal joints and not less than six inches (6") at vertical joints.

Building paper may be omitted in the following cases:

1. When exterior covering is of approved weatherproof panels.
2. In back-plastered construction.
3. When there is no human occupancy.
4. Over water-repellent panel sheathing except back of stucco.

(b) Flashing. Exterior openings exposed to the weather shall be flashed with rust-resistive metal or other approved flashing in such a manner as to make them waterproof.
PART VI
ENGINEERING REGULATIONS—
QUALITY AND DESIGN OF THE
MATERIALS OF CONSTRUCTION

CHAPTER 23—LIVE AND DEAD LOADS

Sec. 2301. Dead Load. The dead load of a building shall include the weight of the walls, permanent partitions, framing, floors, roofs and all other permanent stationary construction entering into and becoming a part of a building.

Live Load. The live load includes all loads except dead and lateral loads.

Sec. 2302. (a) General. Buildings and all parts thereof shall be of sufficient strength to support the estimated or actual imposed dead and live loads in addition to their own proper dead load, without exceeding the stresses noted elsewhere in this Code, provided that no building or part thereof shall be designed for live loads less than those specified in the following Sections. Impact shall be considered in the design of any structure where impact loads occur.

(b) Special. Provision shall be made in designing office floors for load of 2000 pounds placed upon any space two and one-half feet (2½') square wherever this load upon an otherwise unloaded floor would produce stresses greater than those caused by a uniformly distributed load of 50 pounds per square foot.

In designing floors to be used for industrial or commercial purposes the actual live load caused by the use to which the building or part of the building is to be put, shall be used in the design of such building or part thereof, and special provision shall be made for machine or apparatus loads when such machine or apparatus would cause a greater load than specified for such use in Section 2304.

Floors in office buildings and in other buildings, where partition locations are subject to change, shall be designed to support, in addition to all other loads, a uniformly distributed load equal to 20 pounds per square foot.

Public garages and commercial or industrial buildings in which loaded trucks are placed, used or stored shall have the floor systems designed to support a concentrated rear wheel load of a loaded truck placed in any possible position.

Sec. 2303. Any system or method of construction to be used shall admit of a rational analysis in accordance with well established principles of mechanics.

Sec. 2304. The unit loads set forth in Table No. 23-A shall be taken as the minimum live loads in pounds per square foot of horizontal projection to be used in the design of buildings for the occupancies listed, and loads at least equal shall be assumed for uses not listed in this Section but which create or accommodate similar loadings.
TABLE NO. 23-A. — UNIT LIVE LOADS

<table>
<thead>
<tr>
<th>分类</th>
<th>负荷</th>
<th>数量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apartments</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Armories</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Auditoriums—Fixed Seats</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Movable Seats</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Balconies and Galleries—Fixed Seats</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Movable Seats</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Cornices</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Corridors, Public</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Dance Halls</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Drill Rooms</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Dwellings</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Exterior Balconies</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Fire Escapes</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Garages</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Gymnasiums</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Hospitals—Wards and Rooms</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Hotels—Guest Rooms and Private Corridors</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Libraries—Reading Rooms</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Stack Rooms</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Loft Buildings</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Manufacturing — Light</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Heavy</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Marques</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Offices</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Printing Plants—Press Rooms</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Composing and Linotype Rooms</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Public Rooms</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Rest Rooms</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Reviewing Stands and Bleachers</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Roof Loads</td>
<td></td>
<td>(See Section 2305)</td>
</tr>
<tr>
<td>Schools—Class Rooms</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Sidewalks</td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Skating Rinks</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Stairways</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Storage — Light</td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>Heavy (Load to be determined from proposed use or occupancy, but never less than 250)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stores—Retail (Light Merchandise)</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Wholesale (Light Merchandise)</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

天花板

所有天花板横梁应设计为每平方英尺不小于10磅的总负荷。

栏杆

所有阳台栏杆应设计为承受20磅每英尺水平力，作用在栏杆的顶部。

屋顶荷载

- **Sec. 2305.** 屋项应承受，以本条规定的应力限制，所有“死载荷”加上“活载荷”所规定的重量以及在表23-B中规定的重量。活载荷应假定垂直于作用在水平面的面积。

 玻璃房、温室、谷仓和农用辅助建筑物应设计为每垂直平方英尺的活载荷不小于10磅。
<table>
<thead>
<tr>
<th>TRIBUTARY LOADED AREA IN SQUARE FEET FOR ANY STRUCTURAL MEMBER</th>
<th>0 to 200</th>
<th>201 to 600</th>
<th>Over 600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof member</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat or rise less than 4 inches per foot.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arch or dome with rise less than 1/6 of the span.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise 4 inches per foot to less than 12 inches per foot.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arch or dome with rise 1/8 span to less than 3/8 span or with radius 3/4 or greater of the span.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise 12 inches per foot and greater. Arch or dome with rise 3/8 span or greater, or radius less than 3/4 of the span.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trusses and arches shall be designed to resist the stresses caused by unit live loads on one-half of the span if such loading results in reverse stresses, or stresses greater in any portion than the stresses produced by the required unit live load upon the entire span. For roofs whose structure is composed of a stressed shell, framed or solid, wherein stresses caused by any point loading are distributed throughout the area of the shell, the requirements for unbalanced unit live load design may be reduced 50 per cent.

When the load factor, as determined by wind tunnel tests or other recognized methods, indicates vertical or horizontal loads of lesser or greater severity than those produced by the loads herein specified, the roof structure may be designed accordingly.

Snow load, full or unbalanced, or wind load shall be considered in place of loads in Table No. 23-B, where such loading will result in larger members or connections.

Sec. 2306. The following reductions in assumed live loads shall be permitted in designing of columns, piers, walls, foundations, trusses and girders.

1. A reduction of the total live load used in the design of horizontal members based on a certain tributary floor area shall be permitted as noted on the following schedule. This reduction shall not be carried into the columns nor shall such reduction be used in design of buildings to be used as warehouses or for storage purposes or for the design of roofs.
Reduction Allowed | Tributary Floor Area
---|---
5% | 100 sq. ft.
10% | 200 sq. ft.
15% | 300 sq. ft. or more

2. For determining the total live loads carried by columns the following reductions shall be permitted, the reductions being based on the assumed live loads applied to the entire tributary floor area:

Allowable Reductions for Warehouses and Storage Buildings

- Carrying the roof ... 0 per cent
- Carrying 1 floor and roof 0 per cent
- Carrying 2 floors and roof 5 per cent
- Carrying 3 floors and roof 10 per cent
- Carrying 4 floors and roof 15 per cent
- Carrying 5 or more floors and roof 20 per cent

Allowable Reductions for Manufacturing Buildings, Stores and Garages

- Carrying the roof ... 0 per cent
- Carrying 1 floor and roof 0 per cent
- Carrying 2 floors and roof 10 per cent
- Carrying 3 floors and roof 20 per cent
- Carrying 4 or more floors and roof 30 per cent

Allowable Reductions for All Other Buildings

- Carrying the roof ... 0 per cent
- Carrying 1 floor and roof 0 per cent
- Carrying 2 floors and roof 10 per cent
- Carrying 3 floors and roof 20 per cent
- Carrying 4 floors and roof 30 per cent
- Carrying 5 floors and roof 40 per cent
- Carrying 6 floors and roof 45 per cent
- Carrying 7 or more floors and roof 50 per cent

Sec. 2307. (a) General. Buildings and structures and every portion thereof shall be designed and constructed to resist the wind pressure specified in this Section. All bracing systems both horizontal and vertical shall be designed and constructed to transfer the wind loads to the foundations.

(b) Wind Pressure. For purposes of design the wind pressure shall be taken upon the gross area of the vertical projection of buildings and structures at not less than 15 pounds per square foot for those portions of the building less than sixty feet (60') above ground and at not less than 20 pounds per square foot for those portions more than sixty feet (60') above ground.

The wind pressure upon roof tanks, roof signs, or other exposed roof structures and their supports shall be taken as not less than 30 pounds per square foot of the gross area of the plane surface, acting in any direction. In calculating the wind pressure on circular tanks, towers or stacks this pressure shall be assumed to act on six-tenths of the projected area.

On open framed structures the area used in computing wind pressure shall be one and one-half times the net area.
of the framing members in the side exposed to the wind.

(c) Design. The overturning moment calculated from the wind pressure shall in no case exceed two-thirds of the dead load resisting moment.

The weight of earth superimposed over footings may be used to calculate the dead load resisting moment.

For combined stresses due to wind and other loads the allowable unit stresses and the allowable loads on connections may be increased $33\frac{1}{3}$ per cent in excess of the values specified in Chapters 24, 25, 26, and 27. For members carrying wind stresses only, the allowable unit stresses may be increased $33\frac{1}{3}$ per cent. In no case shall the section be less than required if the wind stress be neglected.

Sec. 2308. The live loads for which each floor or part thereof of a commercial or industrial building is or has been designed, shall have such designed live loads conspicuously posted by the owner in that part of each story in which they apply, using durable metal signs, and it shall be unlawful to remove or deface such notices. The occupant of the building shall be responsible for keeping the actual load below the allowable limits.

Sec. 2309. Retaining walls shall be designed to resist the lateral pressure of the retained material in accordance with accepted engineering practice. Walls retaining drained earth may be designed for pressure equivalent to that exerted by a fluid weighing not less than 30 pounds per cubic foot and having a depth equal to that of the retained earth. Any surcharge shall be in addition to the equivalent fluid pressure.

Sec. 2310. Footings shall be designed to minimize differential settlement.

Sec. 2311. Walls and structural framing shall be erected true and plumb in accordance with the design. Bracing shall be placed during erection wherever necessary to take care of all loads to which the structure may be subjected.

Sec. 2312. For provisions covering Lateral Bracing (Earthquake Regulations) see Appendix Section 2312 and Seismic Probability Map of the United States on inside back cover.
CHAPTER 24 — MASONRY

General

Sec. 2401. (a) Quality and Design. The quality of masonry materials shall conform to the minimum requirements specified in this Chapter. Masonry units may be re-used when clean, sound, and conforming to the other requirements of this Chapter. Masonry construction shall conform to the detailed minimum requirements specified in this Chapter. Where Section 2312 is applicable, masonry shall also be designed in accordance with the allowable stresses specified in this Chapter.

(b) Combination of Units. Where units of different types or strengths are used in combination, the maximum allowable stress for the combination shall not exceed that allowed for masonry of the units having the lowest allowable stress.

(c) Freezing. All masonry shall be protected against freezing for at least 48 hours after being laid. No masonry shall be built upon frozen material.

(d) Dimensions. Dimensions given are nominal; actual dimensions of unit masonry may not be decreased by more than one-half inch (½”).

Materials*

Sec. 2402. (a) Brick. Building brick of clay, shale, sand-lime, or concrete shall be of a quality at least equal to that required by U.B.C. Standards Nos. 24-1, 24-2, or 24-3. When in contact with the ground or where severe frost action occurs in the presence of moisture, the brick shall be of at least Grade MW for clay, shale, or sand-lime brick; or Grade A for concrete brick. Other solid masonry units of clay or shale shall meet the requirements for the physical properties of brick as specified in U.B.C. Standard No. 24-1.

(b) Concrete Masonry Units. Concrete masonry units shall be of a quality at least equal to that required by U.B.C. Standard No. 24-4 or No. 24-5, when used for bearing walls or piers, or when in contact with ground or exposed to the weather; or equal to U.B.C. Standard No. 24-6, when used for non-bearing purposes and not exposed to the weather.

(c) Structural Clay Tile. Structural clay tile shall be of a quality at least equal to that required by U.B.C. Standard No. 24-7, Grade LB when used for bearing walls or piers, or Grade LBX when exposed to the weather or soil; or equal to U.B.C. Standard No. 24-8, when used for interior non-load-bearing purposes; or equal to U.B.C Standard No. 24-9, when used for floor construction.

(d) Stone. Natural stone shall be sound and free from loose or friable inclusions, with sufficient strength and durability for the proposed use.

(e) Gypsum Units. Gypsum partition tile or block shall be of a quality at least equal to that required by U.B.C. Standard No. 24-10.

(f) Structural Glass Block. Structural glass block shall be precoated with a material to improve adhesion on all mortar bearing surfaces.

*For regulations covering PLAIN CONCRETE, see Section 2824.
TABLE NO. 24-A—TYPES OF MORTAR

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MINIMUM COMPRESSIVE STRENGTH OF 2-IN. CUBES AT 28 DAYS, LB. PER SQ. IN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2,500</td>
</tr>
<tr>
<td>B</td>
<td>1,800</td>
</tr>
<tr>
<td>C</td>
<td>600</td>
</tr>
</tbody>
</table>

(g) Glazed Building Units. Glazed building units shall conform to the requirements of U.B.C. Standard No. 24-11, except that the requirements for finish shall not apply to salt-glazed building units.

(i) Aggregate. Aggregate for mortar shall be of a quality at least equal to that required by U.B.C. Standard No. 24-18.

(j) Cast Stone. Cast stone shall be of a quality at least equal to that required by U.B.C. Standard No. 24-19.

(k) Water. Water used in mixing mortar shall be clean, and free from deleterious amounts of acids, alkalis, or organic materials.

Sec. 2403. (a) General. Mortar other than gypsum mortar used in masonry construction shall be classified as set forth in Table No. 24-A.

Mortar when applied shall have a flow after suction for one minute of not less than 70 per cent of that immediately before suction when determined by the method of the water retention test of U.B.C. Standard No. 24-16.

Tests made to classify mortar by compressive strength shall be made as described in U.B.C. Standard No. 24-16, using the proportions and materials proposed for use.

(b) Strength. Unless the strength classification of the mortar has been established by tests in accordance with this Section, mortars using the cementitious materials set forth in Table No. 24-B shall be assumed to meet the strength classification shown when mixed with aggregate in the proportion required by this Section.

The volume of aggregate in mortar shall be at least two times but not more than three times the sum of the volumes of cementitious materials or the amounts set forth in Table No. 24-B.

(c) Gypsum Mortar. Gypsum mortar shall be composed by weight of one part of gypsum and not more than three parts of mortar aggregate.

(d) Grout. Grout shall be Type A mortar to which is added water to produce consistency for pouring without segregation of constituents of the mortar.

(e) Footings and Foundations. Masonry units used in foundation walls and footings shall be laid up in Type A or B mortar.
TABLE NO. 24-B—MORTAR PROPORTIONS OF CEMENTITIOUS MATERIALS
(by volume)

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MINIMUM PORTLAND CEMENT</th>
<th>MAXIMUM HYDRATED LIME OR LIME PUTTY</th>
<th>MASONRY CEMENT TYPE II</th>
<th>MAXIMUM DRY LOOSE AGGREGATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>1 part</td>
<td>¼ part</td>
<td>..................</td>
<td>3 parts</td>
</tr>
<tr>
<td>Type B</td>
<td>1 part</td>
<td>½ part</td>
<td>..................</td>
<td>4½ pts.</td>
</tr>
<tr>
<td>Type C</td>
<td>1 part</td>
<td>1 part</td>
<td>..................</td>
<td>6 parts</td>
</tr>
<tr>
<td>Type C</td>
<td>..........</td>
<td>..........</td>
<td>1 part</td>
<td>3 parts</td>
</tr>
</tbody>
</table>

TABLE NO. 24-C—MINIMUM THICKNESS OF MASONRY WALLS

<table>
<thead>
<tr>
<th>TYPE OF MASONRY</th>
<th>MAXIMUM RATIO UNSUPPORTED HEIGHT OR LENGTH TO THICKNESS</th>
<th>NOMINAL MINIMUM THICKNESS (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Solid Masonry</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Grouted Brick Masonry</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Reinforced Brick Masonry</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>Hollow Unit Masonry</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Cavity Wall Masonry</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Stone Masonry (Ashlar)</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Interior Non-Bearing</td>
<td>48</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE NO. 24-D—ALLOWABLE SHEAR ON BOLTS

<table>
<thead>
<tr>
<th>DIAMETER OF BOLT (Inches)</th>
<th>EMBEDMENT (Inches)</th>
<th>SHEAR IN POUNDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PLAIN MASONRY</td>
</tr>
<tr>
<td>½</td>
<td>4</td>
<td>350</td>
</tr>
<tr>
<td>5/8</td>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>¾</td>
<td>5</td>
<td>750</td>
</tr>
<tr>
<td>7/8</td>
<td>6</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1250</td>
</tr>
<tr>
<td>1-1/8</td>
<td>8</td>
<td>1500</td>
</tr>
</tbody>
</table>

*Permuted only with not less than 2500 p.s.i. units.

Sec. 2404. (a) General. The thickness of masonry walls shall be sufficient at all points to withstand all vertical and horizontal loads as specified in Chapter 23, but in no case shall such thickness be less than that set forth in Table No. 24-C; nor shall the ratio of unsupported height or length of the wall (whichever is the lesser) to thickness, be greater than that set forth in Table No. 24-C, except as specified in Subsection (b).

(b) Bearing Walls. The minimum thickness of bearing walls of masonry shall be twelve inches (12") for the uppermost thirty-five feet (35') of their height and shall be increased four inches (4") in thickness for each successive thirty-five feet (35') or fraction thereof measured downward from the top of the wall.

EXCEPTIONS: 1. The top story walls of a building not exceeding three stories or thirty-five feet (35') in height...
or the walls of a one-story building may have a wall thickness equal to the least dimensions as set forth in Table No. 24-C.

2. The thickness of grouted brick masonry walls may be two inches (2") less than required by this subsection but in no case less than as set forth in Table No. 24-C.

3. In residence buildings not more than three stories in height, masonry walls may be of eight inches (8") nominal thickness when not over thirty-five feet (35') in height. Such walls in one-story single-family dwellings, and one-story private garages, may be of six inches (6") nominal thickness when not over nine feet (9') in height, provided that when gable construction is used, an additional six feet (6') is permitted to the peak of the gable.

This exception shall not apply to cavity wall or stone masonry.

(c) Non-Bearing Walls and Partitions. Wire mesh may be used to resist tensile stresses when embedded in plaster applied to the surface of the wall. Plaster shall be as specified in Chapter 47.

(d) Change in Thickness. When a change in thickness due to minimum thickness requirements occurs between floor levels the greater thickness shall be carried to the higher floor level.

(e) Chases. Chases in masonry walls shall not be deeper than one-third the wall thickness nor longer than four feet (4') horizontally and shall have at least eight inches (8") of masonry in back of the chases and between chases and jambs of openings, provided that in dwellings not over two stories high, chases not over four inches (4") deep, thirty inches (30") wide and twenty-four inches (24") high, may be built in eight-inch (8") walls, and provided that chases below windows may equal the width of the opening above. The back and sides of such chases in exterior walls shall be made water resistant and insulated.

(f) Supported Members. When unprotected steel or combustible structural members frame into walls of thickness not greater than twelve inches (12"), they shall have not less than four inches (4") of fire-resistive materials on all sides and ends.

Beams, joists, girders or other concentrated loads supported by a wall or pier shall have bearing at least three inches (3") in length upon solid masonry not less than four inches (4") thick or upon a metal bearing plate of adequate design and dimensions to distribute the loads safely on the wall or pier, or upon a continuous reinforced masonry member projecting not less than three inches (3") from the face of the wall.

(g) Support. No masonry shall be supported on combustible construction.

(h) Anchorage. Masonry walls that meet or intersect shall be securely bonded or anchored.

Wood joists or wood beams shall be securely anchored to masonry walls at intervals not exceeding four feet (4'), by metal anchors having a minimum cross section of twenty-
five hundredths of a square inch (0.25 sq. in.) and at least sixteen inches (16") long, securely fastened to the joists or beams at one end of the anchor by means of a single bolt or other approved method, and the other end of the anchor in the form of a T securely built into the masonry not less than three and one-half inches (3½") with the T vertical.

Where joists run parallel to walls said anchors shall be carried beyond the third joist and shall be solid bridged to the wall. The ends of all wooden beams or joists entering masonry walls shall be cut to a bevel of at least three inches (3").

Structural members framing into or supported by walls or columns shall be adequately anchored.

(i) Piers. The height of isolated piers shall not exceed 10 times their least lateral dimension. Every pier whose width is less than three times its thickness shall be designed and constructed as required for columns if such pier is a structural member.

(j) Openings. The masonry above openings shall be supported by well buttressed arches or adequately anchored lintels of metal, reinforced masonry, or reinforced concrete, which shall have a minimum bearing of four inches (4"). Timber centering for arches may remain in place provided the opening is not over four feet (4') wide and the timber at each end bears on the wall for a distance not exceeding two inches (2").

(k) Bolts. Bolts which are embedded in masonry shall be grouted in place and the connection shall be designed so that the shear on every bolt is not more than the values set forth in Table No. 24-D.

Plain Solid Masonry

Sec. 2405. (a) General. Plain solid masonry is that form of construction made with brick, solid load-bearing concrete masonry units, or stone in which the units are all laid and set in mortar placed with a trowel.

(b) Construction. Plain solid masonry shall be laid with full header courses at least every sixth course or sixteen inches (16") clear vertically, or there shall be at least one full header in every seventy-two square inches (72 sq. in.) of wall surface. Brick shall be laid with full shoved mortar joints and all head, bed, and wall joints shall be solidly filled with mortar. At the time of laying, clay or shale units shall be clean, damp, and shall have sufficient moisture content so that the amount of water per square inch absorbed during the absorption test is not more than 0.030 ounce.

During the absorption test the surface of the unit shall be held one-eighth inch (⅛") below the surface for a period of one minute.

(c) Corbeling. Corbels may be built only into solid masonry walls twelve inches (12") or more in thickness. The projection for each course in such corbel shall not exceed one inch (1") and the maximum projection shall not exceed one-third the total thickness of the wall when used to support structural members and not more than six inches (6") when used to support a chimney built into the wall. The top course of all corbels shall be a header course.
(d) **Allowable Stresses.** The maximum allowable working unit stresses in plain solid masonry shall not exceed the values set forth in Table No. 24-E except as provided in Chapter 23.

Sec. 2406. (a) **General.** Grouted brick masonry is that form of construction made with brick in which interior joints of the masonry are filled by pouring grout therein as the work progresses.

(b) **Construction.** All brick in the outer tiers shall be laid with full head and bed joints of Type A or B mortar and all interior joints shall be filled with grout. Brick in the interior tiers shall be placed or floated in grout poured between the two outer tiers. One of the outer tiers may be carried up not more than three courses before grouting but the other shall be carried up not more than one course above the grout. Each pour of grout shall be stopped at least one and one-half inches (1½") below the top and properly stirred. The longitudinal vertical joints shall be not less than three-fourths inch (¾") wide. Head or end joints shall be not less than one-half inch (½") wide. Bonding headers shall not be used.

(c) **Allowable Stresses.** The allowable unit working stresses in grouted brick masonry shall not exceed the values set forth in Table No. 24-E, except as provided in Chapter 23.

Sec. 2407. (a) **General.** The compressive strength of masonry, \(f'_{cm} \), shall be determined by tests on masonry prisms or may be assumed to be 60 per cent of the compressive strength of the brick used with grout and Type A mortar, or 45 per cent of the compressive strength of the brick used with grout and Type B mortar, but such assumed compressive strength of reinforced masonry (\(f'_{mr} \)) shall not exceed a value of 2,000 pounds per square inch or 1,500 pounds per square inch respectively.

Tests made to determine the strength \(f'_{cm} \) shall be made on not less than five prisms built of the material called for by design, cured in moist atmosphere for 15 days and then allowed to dry at least 30 days before testing. Tests shall be made in accordance with the procedure required for testing concrete cylinders. The prisms for beams and slabs shall be approximately eight by eight by twenty-five inches (8"x8"x25"), built in a horizontal position with unselected brick laid as stretchers in running bond, two bricks wide and three courses high, with one-half-inch (½") joints. Prisms representing walls shall be approximately eight by sixteen inches (8"x16") in plan and sixteen inches (16") high. Those representing columns and pedestals shall be approximately eight by eight inches (8"x8") in plan and sixteen inches (16") high. The bonding arrangement of the brick shall be similar to that in the structures represented. The compressive \(f'_{cm} \) value shall be the average value of all prisms tested.

Reinforcement shall conform to the requirements of Section 2604.

(b) **Construction.** Only grouted brick masonry shall be
TABLE NO. 24-E—WORKING STRESSES IN UNREINFORCED MASONRY

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Grade of Unit</th>
<th>WORKING STRESSES LB. PER SQUARE INCH GROSS AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TYPE A MORTAR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compression</td>
</tr>
<tr>
<td>Plain Solid Brick Masonry</td>
<td>4500 lb. p.s.i.</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>2500 lb. p.s.i.</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>1500 lb. p.s.i.</td>
<td>125</td>
</tr>
<tr>
<td>Grouted Brick Masonry</td>
<td>4500 lb. p.s.i.</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>2500 lb. p.s.i.</td>
<td>275</td>
</tr>
<tr>
<td></td>
<td>1500 lb. p.s.i.</td>
<td>225</td>
</tr>
<tr>
<td>Concrete Units—Solid</td>
<td>Type A</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Type B</td>
<td>125</td>
</tr>
<tr>
<td>Hollow Unit Masonry</td>
<td>85</td>
<td>12*</td>
</tr>
<tr>
<td>Cavity Wall Masonry</td>
<td>Solid Units</td>
<td>125*</td>
</tr>
<tr>
<td></td>
<td>Hollow Units</td>
<td>60*</td>
</tr>
<tr>
<td>Stone Masonry</td>
<td>Cast Stone</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Natural Stone</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Gypsum Masonry</td>
<td>20</td>
</tr>
</tbody>
</table>

*Net Area
TABLE NO. 24-F—WORKING STRESS IN REINFORCED BRICK MASONRY

<table>
<thead>
<tr>
<th>TYPE OF STRESS</th>
<th>FOR ANY STRENGTH OF BRICK MASONERY f_m (Pounds per Square Inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression—Axial</td>
<td>0.18 f_m</td>
</tr>
<tr>
<td>Compression—Flexural</td>
<td>0.33 f_m</td>
</tr>
<tr>
<td>Shear—No shear reinforcement</td>
<td>.02 f_m*</td>
</tr>
<tr>
<td>With properly designed shear reinforcement taking 2/3 of entire shear</td>
<td>.04 f_m*</td>
</tr>
<tr>
<td>Bearing</td>
<td>0.25 f_m</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>1000 f_m</td>
</tr>
<tr>
<td>Modulus of Rigidity</td>
<td>400 f_m</td>
</tr>
<tr>
<td>Bond Type A Grout</td>
<td></td>
</tr>
<tr>
<td>Plain Bars</td>
<td>80</td>
</tr>
<tr>
<td>Deformed Bars</td>
<td>100</td>
</tr>
</tbody>
</table>

*1500 f_m maximum.

used and such masonry shall conform to all of the construction requirements specified in Section 2406 (b).

The thickness of grout or mortar between brick and steel shall be not less than one-fourth-inch (1/4") except that one-fourth-inch (1/4") bars may be laid in one-half-inch (1/2") horizontal mortar joints. Vertical reinforcing shall be accurately placed and held in position before brickwork is started. Horizontal reinforcement may be placed as the brickwork progresses.

In addition to the minimum required reinforcement, at least one one-half-inch (1/2") bar or equivalent shall be placed on all sides of every opening which exceeds twenty-four inches (24") in either dimension. The bars shall extend twenty-four inches (24") beyond the corners of the opening.

(c) Design. The design of reinforced brick masonry shall be based on the assumptions, limitations, and methods of stress determination specified for reinforced concrete in Chapter 26 and shall conform to the additional requirements of this Chapter.

In reinforced masonry walls, the minimum area of reinforcement shall be not less than 0.002 times the cross-sectional area of the wall, not more than two-thirds of which may be used in either direction. A lesser amount of reinforcement may be used to resist tensile stresses if the masonry is designed under limitations and stresses specified for unreinforced masonry. No required vertical reinforcement shall be less than three-eighths inch (3/8") in diameter.

(d) Stresses. The allowable unit working stresses in reinforced brick masonry shall not exceed the values set forth in Table No. 24-F, except as provided in Chapter 23.
Hollow Unit Masonry

Sec. 2408. (a) General. Hollow unit masonry is that type of construction made with structural clay tile or hollow concrete masonry units in which the units are all laid and set in mortar. Types A, B, or C mortar shall be used in such construction except that interior non-bearing masonry of hollow units may be laid up in gypsum mortar.

(b) Construction. Hollow masonry units shall have full mortar coverage of the face shells in both horizontal and vertical joints. Where two or more hollow units are used to make up the thickness of the wall, the stretcher courses shall be bonded at vertical intervals not exceeding thirty-four inches (34") by lapping at least three and three-fourths inches (3 3/4") over the unit below, or by lapping with units at least 50 per cent greater in thickness than the units below at vertical intervals not exceeding seventeen inches (17"). Where walls of hollow masonry units are decreased in thickness a course of solid masonry not less than four inches (4") in height shall be interposed between the wall section below such point and that next above, or special units or construction shall be used to transmit adequately the loads from the shells above to those below.

(c) Stresses. The allowable unit working stresses in hollow unit masonry shall not exceed the values set forth in Table No. 24-E or as provided in this Section, except as provided in Chapter 23.

(d) Reinforced Filled Cell Construction. In walls of hollow unit masonry, structural members may be built by filling continuous cores or spaces with concrete or grout in which reinforcement is embedded. Such members may be designed as specified for reinforced brick masonry in Section 2407. The area of such core walls in contact with the fill, and of the face shells of units containing such cores not exceeding the length of one unit, may be included in the computation of the effective areas of the section. In such walls the required horizontal steel may be concentrated in bond beams and at the tops and bottoms of walls and openings. The minimum steel required shall be calculated on the gross area of the wall.

The value of \(f'_m \) may be assumed as provided in Section 2407 (a), applying the designated percentages to the net compressive strength of the units. The value of \(f'_m \) may be determined by tests as provided in Section 2407 (a) based on specimens of the dimensions specified for beams and slabs, which may be built of units in the form of hollow squares laid with the mortar and filled with the concrete or grout on which the design is based.

Cavity Wall Masonry

Sec. 2409. (a) General. Cavity wall masonry is that type of construction made with brick, structural clay tile or hollow concrete masonry units or any combination of such units in which facing and backing are completely separated except for the metal ties which serve as bonding. Type A, B, or C mortar shall be used in cavity wall masonry except that Type A mortar shall be used in cavity walls having a nominal thickness of ten inches (10").
Cavity walls ten inches (10") in thickness shall not exceed twenty-five feet (25') in height, and in no case shall any cavity wall exceed thirty-five feet (35') in height.

(b) Construction. In cavity walls neither the facing nor the backing shall be less than four inches (4") in thickness and the cavity shall be not less than two inches (2") nor more than three inches (3") in width. The facing and backing of cavity walls shall be securely tied together with suitable non-corrosive bonding ties of adequate strength. There shall be at least one three-sixteenths inch (3/16") diameter steel rod or equivalent metal tie for each three square feet (3 sq. ft.) of wall surface placed in the horizontal mortar joints of the facing and backing. Where hollow masonry units are laid with cells vertical, rectangular ties shall be used. The ends of ties shall be bent to 90-degree angles to provide hooks not less than two inches (2") long. Additional bonding ties shall be placed around the perimeter of all openings and shall be spaced not more than three feet (3') apart and within one foot (1') of the openings.

(c) Stresses. The allowable unit working stresses in cavity wall construction shall not exceed the values set forth in Table No. 24-E except as provided in Chapter 23.

Sec. 2410. (a) General. Stone masonry is that form of construction made with natural or cast stone in which the units are laid and set in mortar, with all joints thoroughly filled.

Walls of rubble stone masonry shall be at least four inches (4") greater in thickness than specified for ashlar stone masonry in Section 2404.

(b) Construction. All ashlar stone masonry shall be so laid that there is at least one bond stone extending through the wall for every five stretchers. Such bond stones shall be uniformly distributed throughout the wall.

(c) Stresses. The allowable unit working stresses in ashlar stone masonry shall not exceed the values set forth in Table No. 24-E, except as provided in Chapter 23.

Sec. 2411. (a) General. Gypsum masonry is that form of construction made with gypsum block or tile in which the units are laid and set in gypsum mortar. Gypsum masonry shall not be used in any bearing wall or where exposed directly to the weather or where subject to frequent or continuous wetting.

(b) Construction. All units in gypsum masonry shall be placed in side construction with cells horizontal and the bonding of units in such masonry shall comply with the requirements for bonding of hollow unit masonry as specified in Section 2408 (b). The entire bearing surface of every unit shall be covered with mortar spread in an even layer and all joints shall be filled with mortar.

(c) Stresses. The allowable unit working stresses in gypsum masonry shall not exceed the values set forth in Table No. 24-E except as provided in Chapter 23.
TABLE NO. 24-G—MINIMUM ULTIMATE
COMPRESSION STRENGTH
Reinforced Gypsum

<table>
<thead>
<tr>
<th>CLASS</th>
<th>MIXTURE</th>
<th>COMPRESSION STRENGTH (Pounds per Sq. In.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neat (gypsum and water only)</td>
<td>1800</td>
</tr>
<tr>
<td>2</td>
<td>Not more than 3 percent by weight of wood chips, shavings or fiber</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>Not more than 12½ percent by weight of wood chips, shavings or fiber</td>
<td>500</td>
</tr>
</tbody>
</table>

TABLE NO. 24-H—WORKING STRESSES
Reinforced Gypsum

<table>
<thead>
<tr>
<th>TYPE OF STRESS</th>
<th>WORKING STRESS (Pounds Per Sq. In.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class 1</td>
</tr>
<tr>
<td>Compression—flexural</td>
<td>350</td>
</tr>
<tr>
<td>Compression—bearing</td>
<td>200</td>
</tr>
<tr>
<td>Bond (Reinf. Anchored)</td>
<td>36</td>
</tr>
<tr>
<td>Shear (Reinf. Anchored)</td>
<td>36</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Sec. 2412. (a) General. Reinforced gypsum shall consist of a mixture of gypsum with or without wood chips, shavings or fiber or other approved aggregates, premixed at the mill, with only water added at the job. Reinforced gypsum shall not be used in any bearing wall or where exposed directly to the weather or where subject to frequent or continuous wetting.

Precast reinforced gypsum shall contain not more than three per cent, and cast-in-place reinforced gypsum not more than 12½ per cent of wood chips, shavings or fiber measured as a percentage by weight of the dry mix.

Reinforced gypsum shall develop the minimum ultimate compressive strength in pounds per square inch set forth in Table No. 24-G when dried to constant weight, with tests made on cylinders six inches (6") in diameter and twelve inches (12") long.

Tests, when required, shall follow the procedure specified in U.B.C. Standard No. 24-20.

(b) Design. Except as hereinafter provided, methods of design admitting of rational analysis according to established principles of mechanics shall be used. The general assumptions and principles established for reinforced concrete shall also apply to reinforced gypsum insofar as they are pertinent.

For precast floor and roof slabs which cannot be analyzed
in accordance with established principles of mechanics, the safe load, uniformly distributed, shall be taken as one-fifth of the total load causing failure in a full-size test panel with the load applied along two lines each distant one-fourth of the clear span from the support.

The minimum thickness of reinforced gypsum in floors and roofs shall be two inches (2") except in the suspension system, which shall be not less than three inches (3"). Hollow precast reinforced gypsum units for roof construction shall be not less than three inches (3") thick and the shell not less than one-half inch (½") thick.

Precast gypsum units for floor and roof construction shall be reinforced and, unless the shape or marking of the unit is such as to insure its being placed right side up, the reinforcement shall be placed symmetrically so that the unit can support its load either side up.

In floor or roof slabs of the suspension type, the reinforcement shall consist of wires with continuity through multiple spans and anchored at the ends. The wires shall be supported in the top of the slab by the roof or floor beams and shall be tightly drawn down as near to the bottom of the slab at mid-span as fire protection requirements will allow, but not closer than one-half inch (½"). Provisions shall be made in the framing of the end bays of this system for resisting the forces due to end anchorage of the wires. The wires shall be designed for a tension in pounds per foot width of slab equal to:

\[
\frac{wL}{8d}
\]

WHERE
\[
w=\text{the total load in pounds per square foot.}
\]
\[
L=\text{the clear span in feet.}
\]
\[
d=\text{the sag of the wires in feet.}
\]

(c) Stresses. The working stresses in reinforced gypsum shall not exceed the values set forth in Table No. 24-H except as provided in Chapter 23.

Sec. 2413. (a) General. Masonry of glass blocks may be used in any non-bearing wall if designed and constructed in conformity with this Section.

(b) Horizontal Forces. The block shall be restrained laterally by an approved mechanical device capable of resisting the horizontal forces specified in Section 2312 for bearing walls.

(c) Maximum Size of Panels. No panel of glass block masonry shall exceed thirteen feet (13') in any dimension or one hundred forty-four square feet (144 sq. ft.) in area.

(d) Expansion Joints. Every glass block panel shall be provided with one-half-inch (½") expansion joints between the edges of the panel and the supporting structural members.

Sec. 2414. (a) Material. Materials used in the backing and facing of faced walls shall conform in all respects to the
Faced Walls (Cont'd.)

requirements prescribed for such materials in Section 2402. The facing shall be not less than two and one-fourth inches (2 1/4") thick, and in no case less in thickness than one-eighth the height of the unit.

(b) Allowable Stresses. The stresses in faced walls shall not exceed the allowable stress for the weakest of the combinations of units and mortars of which the wall is composed. Where bonded to the backing as specified in Section 2405 (b), the full cross section of both the facing and the backing may be considered in computing the stresses.

(c) Thickness. Faced walls shall be not less in thickness than is required for masonry walls of the weakest of the combinations of units and mortars of which the wall is composed. Where bonded to the backing as specified in Section 2405 (b), the facing may be considered a part of the wall thickness.

(d) Bond. Ashlar facing of either natural or cast stone shall have at least 20 per cent of the superficial area extending not less than three and three-fourths inches (3 3/4") into the backing to form bond stones, which shall be uniformly distributed throughout the wall.

Every projecting stone, and, except when alternate courses are full bond courses, every stone not a bond stone, shall be securely anchored to the backing with substantial non-corrodible metal anchors with a cross section of not less than two-tenths of a square inch (0.2 sq. in.). There shall be at least one anchor to each stone and not less than two anchors for each stone more than two feet (2') in length and three square feet (3 sq. ft.) in superficial area. Facing stones nor over twelve square feet (12 sq. ft.) in area shall have at least one anchor to each four square feet (4 sq. ft.) of superficial face area.

When walls of structural clay tile or hollow concrete masonry units are faced with hollow units, the facing units shall be bonded to the backing as required by Section 2408 (b).

Facing of grouted masonry construction as specified in Section 2406 need be neither bonded nor anchored, provided the bond of grout to facing unit will develop a strength in shear of not less than 50 pounds per square inch.

Unburned Clay Units

Sec. 2415. Masonry of Unburned Clay Units. See Appendix.
CHAPTER 25—WOOD

Sec. 2501. (a) General. The quality and design of all wood members used for load-supporting purposes in buildings or other structures shall conform to the standards specified in this Chapter.

No wood, other than heartwood of a durable species or wood treated by an approved preservative to be decay resistant, shall be nearer than six inches (6") to any earth unless separated by concrete at least three inches (3") thick, except as provided in Section 2204.

(b) Workmanship. All members shall be so framed, anchored, tied, and braced together as to develop the strength and rigidity necessary for the purposes for which they are used.

(c) Fabrication. Preparation, fabrication, and installation of wood members, and glues and mechanical devices for the fastening thereof, shall conform throughout to good engineering practices.

(d) Grade and Species. The species and grade of all wood used for load-bearing purposes shall be shown on the plans filed with the Building Department.

Sec. 2502. (a) Required Size. All wood structural members shall be of sufficient size to carry the dead and required live loads without exceeding the allowable working stresses as hereinafter specified.

(b) Size Defined. Minimum sizes of lumber members required by this Code refer to nominal sizes. U.B.C. Standard No. 25-1 dressed sizes shall be accepted as the minimum net sizes conforming to nominal sizes. Computations to determine the required sizes of members shall be based on the net dimensions (actual sizes) and not the nominal sizes. If rough sizes or finish sizes exceeding U.B.C. Standard No. 25-1 dressed sizes are to be used, computations may be predicated upon such actual sizes, provided they are specified on the plans. Nominal sizes may be shown on the plans.

Sec. 2503. (a) Working Stress—General. Stresses in pounds per square inch for normal loading shall not exceed the allowable working stresses, except as hereinafter modified, for the respective species and grades set forth in Table No. 25-A; provided, however, that other stress grades may be approved, and stresses for species and grades not given in the following tables shall be established, by the Building Official in accordance with the principles set forth in U.B.C. Standard No. 25-2. Stresses that exceed those set forth in Table No. 25-A for the lowest structural grade of any species shall be used only when the higher grade of that species is identified by the grade mark of, or certificate of inspection issued by, a lumber grading or inspection bureau or agency recognized as being competent.

Studding, posts, joists, rafters, planks, beams, stringers, and similar load-bearing members shall be not less in grade than 1100f or No. 2 Douglas fir or Southern pine or comparable grades in other species.
Table 25-A—Allowable Unit Stresses for Stress-Grade Lumber

<table>
<thead>
<tr>
<th>Normal Loading—See also Section 2503(b), (c)</th>
<th>(f)</th>
<th>(q)</th>
<th>(E)</th>
<th>(H)</th>
<th>(L)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common (c) or (p) (\leq 5) in.</td>
<td>1,000</td>
<td>800</td>
<td>1,200,000</td>
<td>145</td>
<td>1,450</td>
<td>1,450</td>
</tr>
<tr>
<td>Common (c) or (p) (\leq 4) in.</td>
<td>1,450</td>
<td>1,450</td>
<td>1,200,000</td>
<td>120</td>
<td>1,450</td>
<td>1,450</td>
</tr>
<tr>
<td>Common (c) or (p) (\leq 3) in.</td>
<td>1,450</td>
<td>1,450</td>
<td>1,200,000</td>
<td>120</td>
<td>1,450</td>
<td>1,450</td>
</tr>
<tr>
<td>Common (c) or (p) (\leq 2) in.</td>
<td>1,450</td>
<td>1,450</td>
<td>1,200,000</td>
<td>120</td>
<td>1,450</td>
<td>1,450</td>
</tr>
<tr>
<td>Common (c) or (p) (\leq 1) in.</td>
<td>1,450</td>
<td>1,450</td>
<td>1,200,000</td>
<td>120</td>
<td>1,450</td>
<td>1,450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Structural</td>
<td>1,200</td>
<td>1,100</td>
<td>1,100</td>
<td>1,100</td>
<td>1,100</td>
<td>1,100</td>
</tr>
<tr>
<td>Utility Structural</td>
<td>1,200</td>
<td>1,100</td>
<td>1,100</td>
<td>1,100</td>
<td>1,100</td>
<td>1,100</td>
</tr>
</tbody>
</table>

SPEECIES AND COMMERCIAL GRADE

- **Cypress, Tidewater Red:**
 - 1700 F Grade:
 - 1,450 (J.A.P.-B.S. or P.E.T.):
 - 1450 F Grade:
 - 1,450 (J.A.P.-B.S. or P.E.T.):
 - 1200 c Grade:
 - 1,450 (J.A.P.-B.S. or P.E.T.):

- **Douglas Fir, Coast Region:**
 - Dense Select Structural:
 - 1,600 (J.A.P.-B.S. or P.E.T.):
 - Select Structural:
 - 1,000 (J.A.P.-B.S. or P.E.T.):
 - Utility Structural:
 - 800 (J.A.P.-B.S. or P.E.T.):

- **Hemlock, Eastern:**
 - Select Structural:
 - 1,600 (J.A.P.-B.S. or P.E.T.):
 - Common Structural:
 - 800 (J.A.P.-B.S. or P.E.T.):

- **Hemlock, West Coast:**
 - Select Structural:
 - 1,600 (J.A.P.-B.S. or P.E.T.):
 - Common Structural:
 - 800 (J.A.P.-B.S. or P.E.T.):

- **Douglas Fir, Inland:**
 - Select Structural:
 - 1,700 (J.A.P.-B.S. or P.E.T.):
 - Common Structural:
 - 800 (J.A.P.-B.S. or P.E.T.):

104

(b) Duration of Load. Where a member is subject to the maximum design loading for more than three years, either continuously or cumulatively by the maximum design load, the working stresses used in the design shall not exceed 90 per cent of those permitted in Table No. 25-A.

When the duration of the full maximum load does not exceed the following periods, the allowable unit stresses set forth in Table No. 25-A may be increased as follows:
- 15 per cent for two months' duration, as for snow;
- 25 per cent for seven days' duration;
- 33 1/3 per cent for wind;
- 100 per cent for impact.

Allowable unit stresses set forth in Table No. 25-A may be used without regard to impact if the stress induced by impact does not exceed the allowable unit stress for normal loading. The above increases are not cumulative. For combined loading the resulting structural members shall not be smaller than required for the longer duration of loading. These adjustments apply to mechanical fastenings except as otherwise noted. Adjustments for durations of load do not apply to modulus of elasticity.

(c) Conditions of Exposure. The allowable stresses in Table No. 25-A and the adjustments thereof apply to lumber used under conditions continuously dry. They apply also to lumber impregnated by an approved process and preservative and to the heartwood of a durable species under dry or other conditions of use.

Where the conditions of the above paragraph are not met or other adequate protective measures are not taken in permanent construction, appropriate modifications of the stresses in Table No. 25-A shall be made by the Building Official.

(d) Working Stress—Joint Details. 1. Compression. Allowable unit compression stresses perpendicular to grain set forth in Table No. 25-A shall be increased in accordance with the following factors for bearings less than six inches (6") in length and located three inches (3") or more from the end of a timber.

<table>
<thead>
<tr>
<th>Length of bearing (inches)</th>
<th>3/4</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>1.75</td>
<td>1.38</td>
<td>1.25</td>
<td>1.19</td>
<td>1.13</td>
<td>1.10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

For stress under a washer or small plates the same factor may be taken as for a bearing, the length of which equals the diameter of the washer.

2. Shear. Allowable unit stresses for joint details shall be 150 per cent of the horizontal shear values set forth in Table No. 25-A.

In computing the horizontal shear in eccentric joints the effective depth of the member shall be assumed as its actual depth less the distance from the unloaded edge to the nearest edge of the nearest connector. Where bolts alone are used, subtract the distance from the unloaded edge to the center of the nearest bolt.
TABLE NO. 25-B—RECOMMENDED WORKING STRESSES FOR PLYWOOD (DOUGLAS FIR)

In bending, tension, and compression (except bearing and 45-degree stresses) consider only those plies with their grain direction parallel to the principal stress.

<table>
<thead>
<tr>
<th>TYPE OF STRESS</th>
<th>DRY LOCATION</th>
<th>DAMP OR WET LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exterior A-A (So2S)</td>
<td>Exterior B-C Exterior Sheathing (C-C)</td>
</tr>
<tr>
<td></td>
<td>Exterior A-B (So/Sld)</td>
<td>Interior Sheathing (C-D)</td>
</tr>
<tr>
<td></td>
<td>Exterior A-C (So1S)</td>
<td>Interior Concrete Form (B-B)</td>
</tr>
<tr>
<td></td>
<td>Exterior Concrete Form (B-B)</td>
<td>Interior B-D (Sld/1S)</td>
</tr>
<tr>
<td>EXTREME FIBER in bending</td>
<td>2188</td>
<td>1875</td>
</tr>
<tr>
<td>Face grain</td>
<td></td>
<td>to span</td>
</tr>
<tr>
<td>Face grain \perp to span</td>
<td>1875</td>
<td>1875</td>
</tr>
<tr>
<td>TENSION \perp to face grain (3-ply only*)</td>
<td>2188</td>
<td>1875</td>
</tr>
<tr>
<td>\perp to face grain</td>
<td>1875</td>
<td>1875</td>
</tr>
<tr>
<td>± 45° to face grain</td>
<td>337</td>
<td>320</td>
</tr>
<tr>
<td>COMPRESSION \perp to face grain (3-ply only*)</td>
<td>1605</td>
<td>1480</td>
</tr>
<tr>
<td>\perp to face grain</td>
<td>1375</td>
<td>1375</td>
</tr>
<tr>
<td>± 45° to face grain</td>
<td>486</td>
<td>472</td>
</tr>
<tr>
<td>BEARING (on face)</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>SHEAR, rolling, in plane of plies: \perp or \perp to face grain</td>
<td>79</td>
<td>72</td>
</tr>
<tr>
<td>± 45° to face grain</td>
<td>105</td>
<td>96</td>
</tr>
<tr>
<td>SHEAR, in plane \perp to plies: \perp or \perp to face grain</td>
<td>210</td>
<td>192</td>
</tr>
<tr>
<td>± 45° to face grain</td>
<td>420</td>
<td>384</td>
</tr>
</tbody>
</table>

MODULUS OF ELASTICITY in bending
- Face grain \perp to span: 1,600,000 1,600,000 1,600,000 100%
- Face grain \perp to span: 1,600,000 1,600,000 1,600,000 70%

* For tension or compression, \perp to grain, in 5-ply or thicker, use values for 3-ply, but in next lower grade.
** For 5 or more plies use 90%.

Where moisture content will exceed 16 per cent, decrease by 20 per cent values shown for Dry Location for following properties: Extreme Fiber in Bending, Tension and Compression both parallel and perpendicular to grain and at 45 degrees, and Bearing. (No change in values for shear or modulus of elasticity.)

Only Exterior Type plywood should be used where moisture content will exceed 18 per cent.
(e) Plywood Stresses. Working stresses of Douglas fir plywood shall not exceed the values set forth in Table No. 25-B. Working stresses of plywood other than Douglas fir shall be determined according to the species.

Plywood of Douglas fir shall conform to U.B.C. Standard No. 25-3. Plywood of other species, when used structurally, shall be identified as to veneer grade and glue type by an approved agency and shall meet the performance standards in U.B.C. Standard No. 25-3 for its type.

Sec. 2504. The maximum allowable unit stress in horizontal shear in beams and other members in flexure shall be computed by use of the following formula:

\[H = \frac{3R}{2bh} \]

WHERE
\[H = \text{maximum unit horizontal shear, pounds per square inch} \]
\[b = \text{breadth of beam, inches} \]
\[h = \text{height of beam, inches} \]
\[R = \text{reaction, pounds, under the following conditions:} \]

1. Distribution of load to adjacent beams through flooring or other members shall be considered.
2. All loads uniform or concentrated, within a distance of the height of the beam from the nearest support shall be neglected.
3. All concentrated loads located at a distance from the support of one to three times the height of the beam shall be considered as placed at three times the height of the beam from the support.

Horizontal shear for notched members shall be computed in accordance with stress values specified in Section 2519.

Columns

Sec. 2505. Columns, including struts and other members in compression parallel to grain, shall be designed structurally as follows:

(a) Short Columns. The safe load, in pounds per square inch of net cross-sectional area, for columns and other members stressed in compression parallel to the grain, with a ratio of unsupported length to least dimension l/d not exceeding 11 (short columns), shall not exceed the allowable unit compression stress parallel to grain for short columns, as set forth in Table No. 25-A, i.e.:

\[\frac{P}{A} = c \]

(b) Intermediate Columns. For columns with a ratio of unsupported length to least dimension greater than 11 (intermediate columns), the following formula shall be used until the reduction in allowable stress equals one-third the stress permitted for short columns:

\[\frac{P}{A} = c \left[1 - \frac{1}{3} \left(\frac{1}{Kd} \right)^4 \right] \]

(c) Long Columns. For columns with a ratio of unsupported length to least dimension greater than K (long columns), the safe unit load shall be determined by the following formula:
\[
\frac{P}{A} = \frac{\pi^2 \frac{E}{d^2}}{36 \left(\frac{l}{d} \right)^2} = \frac{0.274 \frac{E}{d^2}}{\left(\frac{l}{d} \right)^2}
\]

WHERE

- \(P \) = total load in pounds
- \(A \) = area in square inches of net cross-section
- \(P/A \) = working stress or maximum load per square inch
- \(c \) = allowable unit stress in compression parallel to grain
 for short columns (see Table No. 25-A)
- \(l \) = unsupported length of column in inches
- \(d \) = least dimension of column in inches
- \(E \) = modulus of elasticity
- \(K \) = the \(\frac{l}{d} \) at the point of tangency of the parabolic and
 Euler curves, at which point

\[
\frac{P}{A} = \frac{2c}{3} \quad K = \frac{\pi}{2} \sqrt{\frac{E}{5c}}
\]

Columns shall be limited in maximum length between points of lateral support to \(l = 50d \), except for spaced columns as specified in Section 2516.

(d) Round Columns. The safe load on a column of round cross-section shall not exceed that permitted for a square column of the same cross-sectional area.

Sec. 2506. Members subject to both axial and bending stresses shall be proportioned in accordance with the following formula:

\[
\frac{P/A}{c_i} + \frac{M/S}{f_i} \text{ equals or is less than 1.}
\]

WHERE

- \(P \) = total axial load (in pounds).
- \(A \) = area (in square inches) of net cross-section.
- \(c_i \) = allowable unit axial stress permitted for members acting solely as a column (see Table No. 25-A and Section 2505).
- \(M \) = total bending moment in inch pounds resulting from load causing flexure.
- \(S \) = section modulus (in inches cubed) for net cross-section.
- \(f_i \) = allowable unit fiber stress in bending permitted for member (see Table No. 25-A).

Sec. 2507. The unit stress normal to a plane inclined to the fiber of a wood member shall not exceed that determined from the formula:

\[
n = \frac{p q}{p \sin^2 \theta + q \cos^2 \theta},
\]

Compression on Inclined Surfaces
WHERE
\[n = \frac{p q}{p \sin^2 \theta + q \cos^2 \theta} \]

(\[n \] = allowable unit stress on inclined surface, pounds per square inch.
\[p = \] allowable compressive unit stress parallel to grain (see Table No. 25-A).
\[q = \] allowable compressive unit stress perpendicular to grain (see Table No. 25-A).
\[\theta = \] angle between the direction of the load and the direction of the grain in degrees.

Sec. 2508. (a) Design of Bolted Joints. Bolted joints wherein bolts are used to resist stresses in wood structures shall be designed in accordance with the principles set forth in U.B.C. Standard No. 25-14, and in addition thereto shall comply with the requirements of this Section.

(b) Safe Loads, Double Shear. Safe loads, in pounds on bolts in seasoned lumber of the following species: cedar, eastern red; cypress, southern; Douglas fir (coast region); larch, western; pine, southern yellow; redwood and tamarack, in joints consisting of three members in which the side members are one-half the thickness of the main member, shall not exceed values set forth in Tables No. 25-C and 25-D.

(c) Loads at Angle to Grain. When a force is applied by means of a bolt at an angle with the fiber of a wood member, the safe load shall be determined in accordance with the formula:

\[n = \frac{p q}{p \sin^2 \theta + q \cos^2 \theta} \]

WHERE
\[n = \] safe load in pounds on bolt.
\[p = \] safe load on bolt parallel to grain as set forth in Table No. 25-C.
\[q = \] safe load on bolt perpendicular to grain as set forth in Table No. 25-D.
\[\theta = \] angle between direction of load and direction of member, in degrees.

(d) Bolts in Other Species of Wood. For species of wood other than those specified in Subsection (b) of this Section, bolt values shall be derived in accordance with the principles stated in U.B.C. Standard No. 25-14.

(e) Joints Other than Double Shear. When a joint consists of two members (single shear) of equal thickness, one-half the tabulated load for a piece twice the thickness of one of the members shall be used. When members of a two-member joint are of unequal thickness, one-half the tabulated load for a piece twice the thickness of the thinner member shall be used.

For multiple-member joints other than two or three members, the load for each shear plane shall be computed in the same manner as for a two-member joint.

(f) Metal Side Plates. When metal plates are used on each side of a wood member, tabulated bolt values may be increased one-quarter for values parallel to the grain.
TABLE NO 25-C—HOLDING POWER OF BOLTS
Loads Parallel to Grain (p)

<table>
<thead>
<tr>
<th>LENGTH OF BOLT IN MAIN MEMBER* (Inches)</th>
<th>DIAMETER OF BOLT (INCHES)</th>
<th>1/2</th>
<th>3/8</th>
<th>1/4</th>
<th>5/32</th>
<th>1/8</th>
<th>1 1/8</th>
<th>1 1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>960</td>
<td>1280</td>
<td>1550</td>
<td>1820</td>
<td>2080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1050</td>
<td>1620</td>
<td>2160</td>
<td>2660</td>
<td>3090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1050</td>
<td>1640</td>
<td>2360</td>
<td>3110</td>
<td>3850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1050</td>
<td>1640</td>
<td>2360</td>
<td>3210</td>
<td>4160</td>
<td>5150</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1640</td>
<td>2360</td>
<td>3210</td>
<td>4190</td>
<td>5330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1640</td>
<td>2360</td>
<td>3210</td>
<td>4190</td>
<td>5330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1640</td>
<td>2360</td>
<td>3210</td>
<td>4190</td>
<td>5330</td>
<td>6550</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>3210</td>
<td>4190</td>
<td>5330</td>
<td>6550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>4190</td>
<td>5330</td>
<td>6550</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This assumes full size lumber, i.e., not dressed sizes. Safe loads on dressed sizes may be obtained by interpolation.

TABLE NO. 25-D—HOLDING POWER OF BOLTS
Loads Perpendicular to Grain (q)

<table>
<thead>
<tr>
<th>LENGTH OF BOLT IN MAIN MEMBER* (Inches)</th>
<th>DIAMETER OF BOLT (INCHES)</th>
<th>1/2</th>
<th>3/8</th>
<th>1/4</th>
<th>5/32</th>
<th>1/8</th>
<th>1 1/8</th>
<th>1 1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>460</td>
<td>520</td>
<td>570</td>
<td>640</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>690</td>
<td>780</td>
<td>890</td>
<td>960</td>
<td>1050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>810</td>
<td>1040</td>
<td>1160</td>
<td>1280</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>780</td>
<td>1150</td>
<td>1440</td>
<td>1600</td>
<td>1750</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1110</td>
<td>1540</td>
<td>1880</td>
<td>2100</td>
<td>2280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1060</td>
<td>1500</td>
<td>1970</td>
<td>2390</td>
<td>2660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>980</td>
<td>1440</td>
<td>1940</td>
<td>2460</td>
<td>2940</td>
<td>3273</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1800</td>
<td>2340</td>
<td>2970</td>
<td>3610</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2180</td>
<td>2820</td>
<td>3460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This assumes full size lumber, i.e., not dressed sizes. Safe loads on dressed sizes may be obtained by interpolation.

(g) Joints in Wet Locations. When the joint is to be used in a location “occasionally wet but quickly dried,” tabulated bolt values shall be reduced one-quarter.
In locations “usually wet,” tabulated bolt values shall be reduced one-third.

(h) Definition of Seasoned Lumber. “Seasoned lumber," for the purpose of this Section, is defined as lumber which has been air-dried for at least 60 days, or which has at the time of installation in the structure reached a moisture content approximately equal to that which it will eventually contain in service.
Where green or recently cut lumber is used, tabulated bolt values shall be reduced one-third.

(i) Bolt Holes. Bolt holes in wood members shall be made the same diameter as the bolt, unless otherwise specified on plans. Bolt holes may be specified to be not more than one-
Bolted Joints (Cont'd.)

sixteenth inch (1/16") larger than the bolt, in which case allowable loads shall be reduced 10 per cent.

(j) Bolt Hole Spacing. "Row of Bolts" is defined as a number of bolts placed in a line parallel to the direction of load.

Minimum center-to-center spacing of bolts in any one row for full design loads shall be four times the bolt diameter. In no case shall the bolt bearing capacity of any member be exceeded.

Spacing center-to-center between rows of bolts for loads perpendicular to grain shall be not less than two and one-half times the bolt diameter for an l/d ratio of two, and not less than five times the bolt diameter for l/d ratios of six or more. Intermediate values shall be directly interpolated.

Spacing center-to-center between rows of bolts for loads parallel to grain shall be such that the net tension area remaining at a critical section shall be not less than 80 per cent for softwoods, and 100 per cent for hardwoods, of the total area in bearing under all bolts in the particular timber.

End margin is defined as the distance from the end of a bolted member to the center of the bolt hole nearest the end. This distance, for a member in tension, shall be not less than seven times the bolt diameter for softwoods and five times for hardwoods. End margin, for members in compression, shall be not less than four times the bolt diameter.

Edge margin is defined as the distance from the edge of the timber to the center of the nearest bolt hole. For members loaded perpendicular to grain, edge margin nearest the edge toward which the load is acting shall be at least four times the bolt diameter. For members loaded parallel to grain, edge margin shall be at least one and one-half times the bolt diameter.

Timber Connectors

Sec. 2509. (a) General. Timber connectors, bolted in place, may be used to transmit stress between wood members and between wood members and metal members. The allowable loads and installation of timber connectors shall be as specified in U.B.C. Standard No. 25-15.

Safe loads and design practice for types of connectors not mentioned or fully covered by the above publication may be determined from other published recommendations, provided such recommendations are first approved by the Building Official. Allowable load values for timber connectors shall be based on empirical test data. Connector safe load values shall be determined from the combined resistance of the connector and its bolt.

(b) Tension at Net Section. The unit stress in tension based on the minimum net section through the joint shall not exceed the allowable basic stress for compression parallel to the grain for clear material specified in U.B.C. Standard No. 25-2. The net section shall be the area of the timber with the projected area of the embedded portion of the connection device and that portion of the area of the bolt hole not within the connector projected area deducted.

If knots are permitted to occur at the critical section, the cross-sectional area of the knots outside the area deducted
TABLE NO. 25-E—SAFE LATERAL RESISTANCE OF WOOD SCREWS
In Pounds Per Screw

<table>
<thead>
<tr>
<th>KIND OF WOOD</th>
<th>GAUGE OF SCREW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Douglas Fir</td>
<td>159</td>
</tr>
<tr>
<td>Redwood</td>
<td>124</td>
</tr>
<tr>
<td>Other Species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As determined by the Building Official</td>
</tr>
</tbody>
</table>

TABLE NO. 25-F—SAFE RESISTANCE OF WOOD SCREWS TO WITHDRAWAL
Inserted Perpendicular to Grain of Wood, in Pounds per Linear Inch of Screw

<table>
<thead>
<tr>
<th>KIND OF WOOD</th>
<th>GAUGE OF SCREW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Douglas Fir</td>
<td>125</td>
</tr>
<tr>
<td>Redwood</td>
<td>75</td>
</tr>
<tr>
<td>Other Species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As determined by the Building Official</td>
</tr>
</tbody>
</table>

TABLE NO. 25-G—SAFE LATERAL STRENGTH OF COMMON WIRE NAILS
Inserted Perpendicular to the Grain of the Wood, in Pounds Per Nail

<table>
<thead>
<tr>
<th>KIND OF WOOD</th>
<th>SIZE OF NAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6d 8d 10d 12d 16d 20d 30d 40d 50d 60d</td>
</tr>
<tr>
<td>LENGTH OF NAIL</td>
<td>2 3 3 1/4 3 1/2 4 4 1/2 5 5 1/2 6</td>
</tr>
<tr>
<td>Douglas Fir or Southern Pine</td>
<td>70 100 120 160 190 230 270 310 360</td>
</tr>
<tr>
<td>Redwood</td>
<td>58 82 98 106 123 155 188 220 250 295</td>
</tr>
<tr>
<td>Other Species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As determined by the Building Official</td>
</tr>
</tbody>
</table>

TABLE NO. 25-H—SAFE RESISTANCE TO WITHDRAWAL OF COMMON WIRE NAILS
Inserted Perpendicular to the Grain of the Wood, in Pounds Per Linear Inch of Penetration into the Main Member

<table>
<thead>
<tr>
<th>KIND OF WOOD</th>
<th>SIZE OF NAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6d 8d 10d 12d 16d 20d 30d 40d 50d 60d</td>
</tr>
<tr>
<td>Douglas Fir or Southern Pine or Redwood</td>
<td>27 29 35 35 39 48 52 56 61 67</td>
</tr>
<tr>
<td>Other Species</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As determined by the Building Official</td>
</tr>
</tbody>
</table>
for connectors and bolts shall also be deducted in determining the net section.

Sec. 2510. In connections involving the use of tightly fitting cylindrical pins of iron, steel, heavy steel pipe or hardwood, the allowable load on a pin shall be determined in the same manner as for bolts.

Sec. 2511. Connections involving the use of lag screws shall be designed in accordance with the provisions of U.B.C. Standard No. 25-16.

Sec. 2512. (a) Shear Connections. A wood screw used to fasten a metal plate to a wooden member or a wooden member to a wooden member shall not be subjected to a greater load causing shear and bending than the safe lateral strength of the wood screw as set forth in Table No. 25-E. Screws shall have an embedment into the farther member of at least six-tenths of the length of the screw. The length of the screw shall be not less than seven times the diameter of the screw.

(b) Tension Connections. A wood screw inserted perpendicular to the grain of the wood shall not be subjected to a greater load tending to cause withdrawal than the safe resistance of the screw to withdrawal as set forth in Table No. 25-F.

A wood screw inserted parallel to the grain of the wood shall not be allowed for resisting computed tensile stresses.

Sec. 2513. (a) Safe Lateral Strength. A wire nail inserted perpendicular to the grain of the wood when used to fasten wooden members together, shall not be subjected to a greater load causing shear and bending than the safe lateral strength of the wire nail or spike as set forth in Table No. 25-G.

A wire nail inserted parallel to the grain of the wood shall not be subjected to more than three-fourths of the lateral load allowable when inserted perpendicular to the grain.

(b) Safe Resistance to Withdrawal. A wire nail inserted perpendicular to the grain of the wood shall not be subjected to a greater load, tending to cause withdrawal, than the safe resistance of the nail to withdrawal, as set forth in Table No. 25-H.

Nails inserted parallel to the grain of the wood shall not be allowed for resisting computed tensile stresses.

(c) Spacing and Penetration. Nails shall not be driven closer together than one-half their length unless driven in bored holes nor closer to the edge of the timber than one-quarter their length. Holes for nails when necessary to prevent splitting, shall be bored of diameter smaller than that of the nails. Nails shall be of such length that, when joining one timber to another, the penetration of the nail into the second or farther timber shall be not less than one-half the length of the nail.
Sec. 2514. All bolts in direct tension shall be provided with steel plate washers under heads and nuts. The area of these washers must be such that the unit bearing stress on the wood shall not exceed the allowable unit stress. The washer shall be not less in thickness than one-tenth the diameter or the length of the longer side of the washer.

Bolts taking shear only shall have Standard O. G. malleable iron washers, or equivalent, under head and nuts.

Sec. 2515. All wood columns and posts shall be framed to true end bearings; shall extend down to supports of such design as to hold securely the column or post in position and to protect its base from deterioration; and shall be supported in basements by footings projecting at least two inches (2") above the finished floor and separated therefrom by a metal plate of not less than one-quarter inch (¼") thickness.

Preservatives shall be applied to column ends where necessary to protect against dampness.

Untreated wood columns in basements, when built into masonry partitions or walls, shall be exposed on at least two sides.

Wood posts, where used as foundations below ground and as piles, (except for minor structures), shall be pressure-treated with an approved preservative.

Sec. 2516. (a) Built-Up Columns. The compressive strength of built-up columns or compression members, when composed of two or more members spiked or bolted together, either with or without spacing blocks between members, shall be taken as the combined compressive strength of the individual pieces, each considered as an independent column; provided, however, that compression members which are fastened together by bolts and timber connectors, or otherwise used in such a manner as to approach fixed-end conditions, or which are laterally braced parallel to the least dimension of the individual members, may be calculated as having 80 per cent of the compressive strength of long columns having a slenderness ratio $\frac{l}{d}$— based on the least over-all dimension of the composite member.

(b) Spaced Columns. Spaced columns or compression members shall be based upon design principles acceptable to the Building Official, or the design principles set forth for spaced columns in U.B.C. Standard No. 25-17.

Sec. 2517. (a) End Bearing. Every beam, girder, and joist shall have end bearing in accordance with compression perpendicular to grain values set forth in Table No. 25-A, but the length of end bearing shall never be less than three inches (3") on masonry or concrete or one and one-half inches (1½") on wood or metal, except that joists when nailed to the adjacent studs may be supported on a one-inch (1") let-in ribbon.

Wood members bearing on or in contact with masonry or concrete at or below adjacent ground level shall be treated
Horizontal Members (Cont'd.) with an approved preservative or provided with a moisture-resistant separation over bearing or contact.

(b) Vertically Laminated Members. 1. Beams. Laminated built-up beams with laminations perpendicular to the plane of the neutral axes shall be considered as having the same resistance to bending moment as solid members of the same size and area, if the laminations are not cut between the ends of the members.

2. Slabs. A laminated lumber slab built up of planks set on edge, when meeting the following requirements, may be designed as a solid floor or roof slab of the same thickness, and continuous spans may be designed on the basis of the full cross-section using the simple span moment coefficient:

(1) Planks shall be driven up and spiked closely together with a row of nails near each edge at spaced intervals and staggered vertically. Nail spacing in each row shall not exceed eighteen inches (18") for two-by-eight-inch (2"x8") nominal plank and be proportional for other plank widths. Nail length shall be equal to two and one-half times the net plank thickness.

(2) A single span slab shall have all planks full length.

(3) A continuous slab of two spans shall have not more than each fourth plank spliced between supports.

(4) A continuous slab of more than two spans shall have not more than each third plank spliced between supports.

(5) Joints shall be closely butted over supports or staggered across the slab but within the adjoining quarter-spans. No plank shall be spliced more than twice in any span. (See also Section 3104.)

3. Other Types. Types of built-up members not mentioned in this Code may be designed and constructed as recommended in U.B.C. Standard No. 25-18.

(c) Floor Joist Bridging. Solid wood blocking of two-inch (2") nominal thickness, wood cross bridging of not less than one inch by four inches (1"x4"), or metal cross bridging of equal strength, shall be placed between joists where the joist span exceeds eight feet (8'). The distance between lines of bridging or between bridging and bearing shall not exceed eight feet (8'). Solid blocking shall be placed between joists at all points of support and at all points where flooring is not continuous, except that bridging at bearings may be omitted when the joists are nailed to studs. The lower ends of the cross bridging shall be driven up and nailed after the floor or subfloor has been nailed.

(d) Double Joists. Joists under and parallel to bearing partitions shall be doubled and well spiked or may be separated by solid bridging spaced at not more than four-foot (4') intervals.

(e) Special Framing. Header joists over six feet (6') long and tall joists over twelve feet (12') long shall be hung in joist or beam hangers, or secured by other devices affording equivalent support. Trimmers and header joists more than
four feet (4') long shall be doubled. Headers shall be not less than twenty inches (20") from face of chimney breast. Trimmers and headers shall be not less than two inches (2") from the flue or chimney.

(f) Entering Masonry or Concrete. Wood members entering masonry or concrete walls shall be not less than four inches (4") from other wood members entering from opposite side of wall nor from the exterior face of wall, except on street fronts.

Ends of wood members entering masonry or concrete walls, unless treated with an approved preservative, shall be provided with a one-half-inch (\(\frac{1}{2} \)) air space on sides, top, and end, and shall be beveled so that top edge does not enter masonry or concrete more than one inch (1")

(g) Anchors and Ties. Interior wood floor framing above the first floor that abuts or joins masonry or concrete walls shall be securely anchored thereto at not more than four-foot (4') intervals.

Sec. 2518. No structural masonry or concrete shall be supported by wood members except wood piling as specified in Section 2807, except that wood may be combined structurally with masonry or concrete if provision is made for the different rigidities and other properties of the materials.

Sec. 2519. Girders, beams, or joists may be notched or bored in any part of the section within three times the beam depth from either support. Such notches or holes shall not exceed one-fifth of the depth of beam except at point of support and as hereinafter provided.

Where girders, beams, or joists are notched at points of support they shall meet design requirements for net section in bending and also for shear. The shear at such point shall not exceed the value calculated by the following formula:

$$ V = \frac{2}{3} \left(\frac{bd^2H}{h} \right) $$

WHERE
- \(V \) = vertical shear at section under consideration.
- \(b \) = width of beam.
- \(d \) = actual depth of beam at the notch.
- \(h \) = total depth of beam.
- \(H \) = allowable unit horizontal shear stress.

Where notches or holes are made in other portions of the beam, the net remaining depth of beam shall be used in determining the bending strength.

Sec. 2520. Wood members supporting plastered ceilings shall be so proportioned that their deflection under full live load and dead load exclusive of weight of plaster, shall not exceed one three-hundred-and-sixtieth of the span length.

Sec. 2521. (a) Placing. Studs in walls and partitions may be placed with the longest dimension parallel with the wall or partition, provided the studs are considered as columns and comply with the column formulas. Such walls shall have...
top and bottom plates except when framed as provided in Section 2517, first paragraph.

(b) Plates. In bearing partitions the top plate shall be doubled and lapped at each intersection with walls or partitions. Joints in the upper and lower members of the top plate shall be staggered not less than four feet (4').

(c) Bridging. All stud partitions or walls over ten feet (10') in height shall have herringbone bridging, not less than two inches (2") in thickness and of the same width as the stud, fitted snugly and spiked into the studs at mid-height of stud, or other means for giving equal lateral support to the studs. Herringbone bridging may serve as fire-stopping as required in Section 2522.

(d) Size and Height. Exterior stud walls and bearing partitions for buildings of two stories or less shall consist of not less than two-inch by four-inch (2"x4") studs; for buildings of three stories, the studding shall be not less than three-inch by four-inch (3"x4") or two-inch by six-inch (2"x6") to the bottom of the second floor joists and two-inch by four-inch (2"x4") for the two upper stories. Maximum allowable height of two-inch by four-inch (2"x4") and three-inch by four-inch (3"x4") stud framing shall be fourteen feet (14') and of two-inch by six-inch (2"x6") stud framing shall be twenty feet (20') unless the wall is supported laterally by adequate framing. No studding shall be spaced more than sixteen inches (16") on centers, except that in lieu of this requirement the studs and plates may be designed as a system of columns and beams, provided structural grade material is used, or such walls may be constructed of not less than four-inch by four-inch (4"x4") posts spaced not more than five feet (5') on centers or of larger members designed as required in this Chapter, or may be of post and beam framing with plank sheathing not less than one and one-half inches (1½") thick or may be of laminated construction not less than four inches (4") nominal in thickness with the structural assembly properly designed to support all loads.

One-story buildings having a total floor area of not more than four hundred square feet (400 sq. ft.) may have exterior walls of vertical one-inch (1") boards and battens without studs.

(e) Base Plates. Stud walls resting on masonry shall have base plates or sills of foundation grade redwood, cedar, cypress or wood treated with approved preservative. Such sills shall be bolted to the masonry at corners and between corners with bolts not less than one-half inch (1½") in diameter, embedded not less than seven inches (7") into the masonry and spaced not more than six feet (6') apart, center to center. These sills shall be not less than the width of the studs nor less than two inches (2") thick.

(f) Corners and Bracing. Angles at corners where stud walls or partitions meet shall be framed solid so that no lath can extend from one room to another. All exterior and main cross stud partitions shall be effectively and thoroughly braced.
(g) **Pipes in Walls.** Stud partitions containing plumbing, heating or other pipes shall be so framed and the joists underneath so spaced as to give proper clearance for the piping. Where a partition containing such piping runs parallel to the floor joists, the joists underneath such partitions shall be doubled and spaced to permit the passage of such pipes and shall be bridged with solid bridging. Where plumbing, heating or other pipes are placed in or partly in a partition, necessitating the cutting of the soles or plates, a metal tie not less than one-eighth inch (\(\frac{1}{8}\)”) thick and one and one-half inches (1 1/2”) wide shall be fastened to the plate across and to each side of the opening with not less than four 16d nails.

(h) **Chimney Space.** Wood lath, furring or framing shall be placed not less than two inches (2”) from any chimney and not less than four inches (4”) from the back of any fireplace.

(i) **Underpinning.** The underpinning of bearing stud walls shall be so constructed as to resist the design forces.

Underpinning shall be not less in size than the studding above, and when exceeding four feet (4’) in height shall be of the size required for an additional story.

No underpinning shall be less than fourteen inches (14”) in height. Underpinnings of bearing walls and partitions shall be thoroughly and effectively braced.

(j) **Headers.** All wall openings four feet (4’) wide or less shall be provided with double headers not less than two inches (2”) thick, placed on edge, securely fastened together, and such headers shall have two-inch (2”) solid bearing to the floor or bottom plate. All openings more than four feet (4’) wide shall be trussed or provided with lintels which shall have not less than two-inch (2”) solid bearing at each end to the floor or bottom plate.

Sec. 2522. Firestopping shall be provided to cut off all concealed draft openings (both vertical and horizontal), and form an effective fire barrier between stories, and between a top story and the roof space. It shall be used in specific locations, as follows:

1. In exterior or interior stud walls, at ceilings and floor levels.
2. In all stud walls and partitions, including furred spaces, so placed that the maximum dimension of any concealed space is not over seven feet (7’).
3. In furred masonry walls.
4. Between stair stringers at least once in the middle portion of each run, at top and bottom, and between studs, along and in line with run of stair adjoining such partition.
5. Around top, bottom, sides and ends of sliding door pockets.
6. In spaces between chimneys and wood framing, loose incombustible materials shall be placed in incombustible supports, or a metal collar tightly fitted to the chimney and nailed to the wood framing may be used.
7. Any other locations not specifically mentioned above, such as holes for pipes, shafting, etc., which could afford a passage for flames.

Fire stops when of wood shall be two-inch (2") nominal thickness. If width of opening is such that more than one piece of lumber is necessary, there shall be two thicknesses of one-inch (1") material with joints broken.

Sec. 2523. The space between bottom of floor joists and the ground of any building (except such space as is occupied by a basement or cellar) shall be provided with a sufficient number of ventilating openings through foundation walls or exterior walls to insure ample ventilation, and such openings shall be covered with a corrosion-resistant wire mesh with openings in such mesh not greater than one-half inch (½") nor less than one-fourth inch (¼") in any dimension. The minimum total area of ventilating openings shall be proportioned on the basis of two square feet (2 sq. ft.) for each twenty-five linear feet (25 lin. ft.) or major fraction thereof of exterior wall. Such openings need not be placed in the front of the building.

Minimum clearance between bottom of floor joists and the ground beneath shall be eighteen inches (18").

Sec. 2524. Wood diaphragms may be used to distribute horizontal forces to resisting elements such as walls or partitions, provided the maximum deflection in the plane of the diaphragm, as determined by tests or analogies drawn therefrom, does not exceed the permissible deflection of such wall or partition.

In determining the permissible deflection of walls or partitions, the actual elastic properties of the materials (modulus of elasticity, allowable extreme fiber stresses, etc.) may be determined by tests or other data acceptable to the Building Official, or the assigned values for such properties elsewhere herein provided shall be used.

Connections and anchorage of wood diaphragms to resisting elements shall be provided along all the margins of the diaphragm. Such connections shall be capable of resisting the design loads or forces elsewhere herein prescribed.

Sec. 2525. For additional termite and fungus precautions, see Appendix.

Sec. 2526. (a) Definitions. Glued Built-Up Sections—Structural elements consisting of wood, plywood, or combinations of the two in which the grain is not parallel and in which all pieces are bonded together with glue.

Glued Laminated Structural Lumber—Lumber consisting of laminations in which the grain of all laminations is approximately parallel and where all laminations are bonded together with glue.

Joint—The contact surface between two adjacent pieces of wood. An “edge or face joint” is parallel to the grain of the wood. An “end or butt joint” is at right angles to the grain of the wood. A “scarf joint” is a sloping or bevel joint, where pieces of wood are lapped together.
Moisture Content—The amount by weight of water in wood computed as a percentage of the oven-dry weight of

(b) General Requirements. Glues shall provide an adequate bond, shall subject the wood to no deleterious chemical reactions, and shall not support the growth of microorganisms under any conditions of use. Glues used in a structural assembly of wood shall conform to the provisions of this Section and Section 2527.

(c) Use. Type I glue shall be used only in the interior of buildings where the moisture content of the wood is not permitted to exceed 18 per cent.

Type II glue may be used under any conditions of exposure.

(d) Fabrication. Structural gluing shall be done only by an approved fabricator.

Sec. 2527. (a) General. If sufficient evidence on the type of glue to be used is not available, the Building Official may require tests to be made as specified in this Section.

(b) Test Samples. Each test series shall consist of a minimum of nine samples. One test series shall be required for each type and brand of glue to be used and each species of wood to be used.

Samples shall be prepared as specified in U.B.C. Standard No. 25-19.

(c) Tests for Type I Glue. Test samples shall be submerged in water at room temperature for a period of 48 hours, followed by drying at a temperature not to exceed 100 degrees Fahrenheit for a period of 20 hours. This cycle shall be repeated with the drying period extending until these samples attain a moisture content not to exceed 18 per cent. Test samples shall have an average shear resistance of at least five times the allowable shear stress in the wood. None of the samples shall show evidence of delamination after the submersion test.

(d) Tests for Type II Glue. Three test samples shall be glued for each combination of glue and species of wood to be used. Each shall consist of six laminations of clear lumber, three-fourths inch (¾”) thick by six inches (6”) wide by fifteen inches (15”) long. The laminations shall have a moisture content between eight and twelve per cent at the time of gluing. Gluing shall be done in accordance with the glue manufacturer’s instructions. After gluing and before testing, the samples shall be conditioned for not less than 14 days at a room temperature not higher than 85 degrees Fahrenheit.

Not less than 10 standard glue joint shear blocks shall then be cut from each sample (an equal number from each glue joint) and shall be tested at a moisture content of 10 to 12 per cent. The average shear strength value for the glue joints from the three beams shall be not less than 90 per cent of the average shear strength at 12 per cent moisture for the species of wood and the average wood failure shall be not less than 75 per cent.
A section three inches (3") along the grain shall be cut from each test sample and shall be tested as follows:

The test samples shall be immersed in water at room temperature under a vacuum of not less than twenty inches (20") for two hours. A pressure of 75 pounds per square inch shall then be applied for two hours. Relieve pressure and repeat vacuum-pressure treatment. The immersion shall be continued at atmospheric pressure for 16 hours, making total soaking period of 24 hours. The wet samples shall then be dried in a room at a relative humidity of 30 per cent or less and a temperature of 70 to 85 degrees Fahrenheit for three days with forced circulation of air, making the total soaking-drying cycle of four days.

At the end of three such cycles, the glue joints shall show not more than 10 per cent of delamination measured on the length of the glue joint exposed on the end grain faces of the test samples.

As an alternate to the foregoing soaking-drying cycle, the specimens may be placed in water at room temperature for not less than 15 days, after which they shall be dried in a room at a relative humidity of 30 per cent or less and a temperature of 70 to 85 degrees Fahrenheit for three days and with forced circulation of air, making a total soaking-drying cycle of 18 days. Repeat soaking-drying cycle twice, for a total of three cycles (54 days).

(e) Shear Test Procedure. The shear test shall conform to U.B.C. Standard No. 25-19.

Sec. 2528. (a) General. Glued laminated lumber and built-up sections shall be constructed as required by this Section.

EXCEPTION: Subsections (b) and (c) of this Section shall not apply to glued laminated lumber in which the allowable working stresses do not exceed those specified in Section 2503.

(b) Laminations. In members subject to bending stresses, all laminations shall be approximately parallel to the neutral plane of the beam. Members shall consist of three or more laminae.

(c) Thickness. Individual laminations shall be not more than two inches (2") in thickness.

(d) Variation in Laminae. Adjacent laminae shall not differ by more than 35 per cent in allowable stress, and all lumber shall be stress graded.

(e) Grading. Lumber shall be stress graded. In members for exterior use, the diameter of any knot appearing at a glue joint on a face of the member shall be limited to one inch (1").

(f) Moisture Content. The maximum moisture content of the wood at the time of gluing shall not exceed 18 per cent and shall not be less than seven per cent. No lamina shall have a moisture content differing by more than three per cent from the average moisture content of the assembly.

(g) Surfaces. Surfaces to be glued shall be free from dust, dirt, and grease. Individual laminae shall have machined surfaces with a maximum tolerance of one-sixty-fourth inch
Lumber surfaces shall not be sanded before gluing.

Sec. 2529. (a) General. The allowable stresses in glued laminated structural lumber shall be as specified in this Section. Whenever glued laminated lumber is an integral part of glued built-up sections, it shall conform to all requirements and be subject to the same working stresses provided for glued laminated lumber in this Chapter. Stresses used to design the plywood members of glued built-up sections shall not exceed the values specified in Section 2503 (e).

(b) Columns. The formulas used in the design of solid wood columns shall apply to the design of glued laminated lumber columns.

(c) Compression. The allowable axial compressive stress parallel to the grain permitted in Section 2503 shall be increased 40 per cent for glued laminated lumber of the same stress grade. Where the member is composed of laminations having different stress grades, the compressive strength of the lowest stress grade shall govern. The allowable compressive stress perpendicular to the grain shall be the same for glued laminated lumber as for solid lumber of the same stress grade.

(d) Flexure. The allowable extreme fiber stresses in bending may be increased 20 per cent. When the lumber in the middle three-fifths of the depth of cross-section in a glued laminated beam is of lower grade, the allowable unit stresses in bending for the grade in the outer two-fifths shall apply without increase.

(e) Combined Bending and Compression. Combined bending and compression shall be determined according to Section 2506.

(f) Tension. Axial tension may be increased 20 per cent over the allowable for solid lumber of the same grade. Tension perpendicular to the grain shall be one-seventh of the allowable compressive stress perpendicular to the grain.

(g) Shear. Horizontal shear shall be the greatest allowable unit shear allowed for lumber in this Code for a given species.

(h) Curved Portions. In curved portions, the allowable unit stress in bending shall be modified by multiplication by the following factor:

$$1 - 2000 \left(\frac{t}{r} \right)^2$$

WHERE

\(t\) = thickness of lamination in inches.
\(r\) = radius of curvature in inches.

All end joints in the laminations where the radius of curvature is less than 150 times the thickness of the laminations shall be scarfed.

(i) Allowable Stresses on Joints. For purposes of design wood shall be assumed to be continuous across the edge on a
face joint or across a scarf joint. End joints, and scarf joints sloping more than one to twelve, shall not be assumed to carry stress.

(j) Scarfed Joints. In that portion of glued laminated lumber which is stressed to more than one-half of its allowable axial stress, the end joints in lamination shall be scarfed. All scarfed joints shall approximate the slope of the grain of the lumber and shall be in the same general direction as the slope of the grain, but shall not be required to be flatter than one to twelve.

Sec. 2530. Stressed skin panels shall be designed in accordance with U.B.C. Standard No. 25-20.
CHAPTER 26—CONCRETE

Reinforced Concrete

Sec. 2601. The quality of the materials used in concrete and the quality of concrete shall conform to the physical and chemical properties as specified in Sections 2604, 2605, and 2606.

Sec. 2602. The design of reinforced concrete shall conform to the rules and principles specified in this Chapter.

Sec. 2603. The following definitions give the meaning of certain terms as used in this Chapter.

Aggregate—Inert material which is mixed with portland cement and water to produce concrete.

Column—An upright compression member the length of which exceeds three times its least lateral dimension.

Concrete—A mixture of portland cement, fine aggregate, coarse aggregate and water.

Deformed Bar—Reinforcing bars with closely spaced shoulders, lugs or projections formed integrally with the bar during rolling so as to firmly engage the surrounding concrete. Wire mesh with welded intersections not farther apart than twelve inches (12") in the direction of the principal reinforcement and with cross wires not smaller than No. 10 W. & M. gauge may be rated as a deformed bar.

Effective Area of Concrete—The area of a section which lies between the centroid of the tensile reinforcement and the compression face of a flexural member.

Effective Area of Reinforcement—The area obtained by multiplying the right cross-sectional area of the metal reinforcement by the cosine of the angle between its direction and that for which the effectiveness of the reinforcement is to be determined.

Laitynance—Extremely fine material of little or no hardness which may collect on the surface of freshly deposited concrete or mortar, resulting from the use of excess mixing water and usually recognized by its relatively light color.

Mortar—A mixture of portland cement, fine aggregate and water.

Negative Reinforcement—Reinforcement so placed as to take tensile stress due to negative bending moment.

Pedestal—An upright compression member whose height does not exceed three times its least lateral dimension.

Plain Concrete—Concrete without metal reinforcement, or reinforced only for shrinkage or temperature changes.

Pneumatically Placed Concrete—A mixture of fine aggregate and cement pneumatically applied by suitable mechanism, and to which water is added immediately prior to discharge from the applicator. It shall be considered as concrete for particulars of design as specified in this Chapter.

Portland Cement—The product obtained by finely pulverizing clinker consisting essentially of hydraulic calcium silicates, to which no additions have been made subsequent to calcination other than water or untreated calcium sulfate, except that additions not to exceed 1.0 per cent of other
materials may be interground with the clinker at the option of the manufacturer, provided such materials in the amounts indicated have been shown to be not harmful by tests.

Positive Reinforcement—Reinforcement so placed as to take tensile stress due to positive bending moment.

Ratio of Reinforcement—The ratio of the effective area of the reinforcement cut by a section of a member to the effective area of the concrete at that section.

Reinforced Concrete—Concrete in which metal other than that provided for shrinkage or temperature changes is embedded in such a manner that the two materials act together in resisting forces.

Surface Water—The water carried by the aggregate except that held by absorption within the aggregate particles themselves.

(b) Concrete Aggregates. Concrete aggregates, except light-weight aggregates, shall conform to U.B.C. Standard No. 26-2, including the methods of sampling and testing.

Lightweight aggregates for concrete shall conform to U.B.C. Standard No. 26-3, including the methods of sampling and testing.

Aggregates that do not meet the above specifications but that have been shown by test or actual service to produce concrete of the required strength, durability, watertightness and wearing qualities, may be used under the provisions of Section 2606, Method 2, where authorized by the Building Official.

The maximum size of the aggregate shall be not larger than one-fifth of the narrowest dimension between forms of the member for which the concrete is to be used nor larger than three-fourths of the minimum clear spacing between reinforcing bars.

(c) Water. Water used in mixing concrete shall be clean and free from injurious amounts of oil, acid, alkali, organic matter or other harmful substances.

All reinforcement bars lacking grade identification marks shall on delivery be accompanied by a manufacturers' guarantee of grade which will identify variations.

Deformed bars, to receive that rating which permits the use of bond stresses higher than those allowed for plain bars, shall show a bond strength 25 per cent greater than that shown by plain bars of equivalent cross-sectional area.

(e) Storage. Storage of cement and aggregates shall be in a manner to prevent deterioration or the intrusion of foreign matter. Any material which has been damaged shall be immediately and completely removed from the work.

Sec. 2605. On concrete work the Building Official shall have the right to require the owner or his agent to make
tests of the concrete and other materials from time to time to determine whether the materials and methods in use are such as to produce concrete or reinforced concrete of the quality specified and used in the design of the building or structure. The tests shall be made, when ordered by the Building Official, by the owner or his authorized representative and no responsibility for the expense of these tests shall attach to the Building Department. All such tests shall be made by an approved agency, and copies of the results shall be kept on file in the office of the Building Official for a period of not less than two years after the acceptance of the structure. Specimens for concrete cylinder tests shall be taken at the place where the concrete is being deposited and shall be taken and cured in accordance with U.B.C. Standard No. 26-8 and tested in accordance with U.B.C. Standard No. 26-9. Test cylinders of pneumatically placed concrete shall be made in a manner that will permit the blast of air to compact firmly the materials and provide proper escape of the air to eliminate possible back pressure, and such cylinders shall be cured and tested as specified above.

The Building Official shall have the right to order the test under load of any portion of a completed structure, when the conditions have been such as to leave reasonable doubt as to the adequacy of the structure to serve the purpose for which it is intended.

When a load test is required, the member or portion of the structure under consideration shall be subject to a superimposed load equal to one and one-half times the live load plus one-half of the dead load. This load shall be left in position for a period of 24 hours before removal. If, during the test, or upon removal of the load, the member or portion of the structure shows evident failure, such changes or modifications as are necessary to make the structure adequate for the rated capacity shall be made; or, where lawful, a lower rating shall be established. The structure shall be considered to have passed the test if the maximum deflection at the end of the 24-hour period does not exceed the value of D as given by the following:

$$D = \frac{.001 L^2}{12 t}$$

(1)

WHERE

L is the span, t is the total depth of the slab or beam and D is the maximum deflection—all expressed in the same units.

If the deflection exceeds the value of D as given in Formula (1), the construction shall be considered to have passed the test if within 24 hours after the removal of the load the slabs or beams show a recovery of at least 75 per cent of the observed deflection.

Sec. 2606. For the design of concrete structures, the value of f', used for determining the working stresses as stipulated in Section 2613 shall be based on the specified minimum ultimate 28-day compressive strength of the concrete, or on the specified minimum ultimate compressive strength at the earlier age at which the concrete may be expected to re-
TABLE NO. 26-A—ASSUMED STRENGTH OF CONCRETE MIXTURES

<table>
<thead>
<tr>
<th>WATER-CONTENT U. S. GALLONS PER 94-LB. SACK OF CEMENT</th>
<th>ASSUMED COMPRESSIVE STRENGTH AT 28 DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. S. Gallons</td>
<td>Pounds Per Square Inch</td>
</tr>
<tr>
<td>7½</td>
<td>2000</td>
</tr>
<tr>
<td>6¾</td>
<td>2500</td>
</tr>
<tr>
<td>6</td>
<td>3000</td>
</tr>
<tr>
<td>5</td>
<td>3750</td>
</tr>
</tbody>
</table>

Concrete exposed to the action of freezing weather shall have a water content not greater than six gallons per sack of cement.

The determination of the proportions of cement, aggregate and water to attain the required strengths shall be made by one of the following methods:

Method 1—Concrete made from average materials—When no preliminary tests of the materials to be used are made, the water-content per sack of cement shall not exceed the values set forth in Table No. 26-A. Method 2 shall be employed when artificial aggregates or admixtures are used.

Method 2—Controlled Concrete—Water-contents other than those set forth in Table No. 26-A may be used provided that the strength-quality of the materials proposed for use in the structure shall be established by tests which shall be made in advance of the beginning of operations, using the consistencies suitable for the work and in accordance with U.B.C. Standard No. 26-10 and U.B.C. Standard No. 26-9. A curve representing the relation between the water-content and the average 28-day compressive strength or earlier strength at which the concrete is to receive its full working load, shall be established for a range of values including all the compressive strengths called for on the plans. The curve shall be established by at least three points, each point representing average values from at least four test specimens. The water-content used in the concrete for the structure as determined from the curve, shall correspond to a strength which is 15 per cent greater than that called for on the plans. No substitutions shall be made in the materials used on the work without additional tests in accordance herewith to show that the quality of the concrete is satisfactory.

Sec. 2607. The proportions of aggregate to cement for any concrete shall be such as to produce a mixture which will work readily into the corners and angles of the forms and around reinforcement with the method of placing employed on the work, but without permitting the materials to segregate or excess free water to collect on the surface.
The combined aggregates shall be of such composition of sizes that when separated on the No. 4 standard sieve, the weight passing the sieve (fine aggregate) shall be not less than 30 per cent nor greater than 50 per cent of the total unless otherwise required by the Building Official, except that these proportions do not necessarily apply to light-weight aggregates.

Admixtures of lime or finely pulverized inert materials may be added but not in excess of six per cent by volume of the cement used.

Sec. 2608. The methods of measuring concrete materials shall be such that the proportions of all materials can be accurately controlled during the progress of the work and easily checked at any time by the Building Official or his authorized representative. A tolerance of one-fourth gallon of water per sack of cement in any batch of concrete will be allowed provided that the average for any 10 consecutive batches does not show a water content greater than that set forth in Table No. 26-A, and on plans as specified in Section 2606.

The method of delivering the aggregates to the work and of storing and handling shall be such that the moisture content of the aggregates as they come to the mixer shall not be subject to frequent or unnecessary changes.

Sec. 2609. (a) Mixing. The concrete shall be mixed until there is a uniform distribution of the materials and the mass is uniform in color and homogeneous. In machine mixing, only batch mixers shall be used. Each batch shall be mixed not less than one minute after all the materials are in the mixer and must be discharged completely before the mixer is recharged. Machine mixers shall have a peripheral speed of approximately two hundred feet (200') per minute.

Ready mixed concrete shall be mixed and delivered in accordance with the requirements set forth in U.B.C. Standard No. 26-11.

(b) Cleaning Forms and Equipment. Before concrete is placed all equipment for mixing and transporting the concrete shall be cleaned, all debris shall be removed from the spaces to be occupied by the concrete, forms shall be thoroughly wetted (except in freezing weather) or oiled, and masonry that will be in contact with concrete shall be well drenched (except in freezing weather). Reinforcement shall be thoroughly cleaned and secured in position. Concrete shall not be placed until the forms and reinforcement have been inspected and approved by the Building Official.

(c) Removal of Water From Excavations. Water shall be removed from excavations before concrete is deposited, unless otherwise directed by the Building Official. Any flow of water into an excavation shall be diverted through proper side drains to a sump, or be removed by other approved methods which will avoid washing the freshly deposited concrete. Water vent pipes and drains shall be filled by grout-
Mixing and Placing Concrete (Cont’d.)

Section 2609

UNIFORM BUILDING CODE

ing or otherwise, after the concrete has hardened thoroughly.

(d) Transporting Concrete. Concrete shall be handled from the mixer to the place of final deposit as rapidly as practicable by methods which shall prevent the separation or loss of the ingredients. It shall be deposited as nearly as practicable in its final position to avoid rehandling or flowing. Under no circumstances shall concrete that has attained its initial set be used.

Equipment for chuting, pumping and pneumatically conveying concrete shall be of such size and design as to insure a practically continuous flow of concrete at the delivery end without separation of the materials.

(e) Placing. Concrete shall be thoroughly compacted with suitable tools. When necessary, openings shall be provided in the forms to permit the placing of concrete in such a manner as to avoid accumulations of hardened concrete on the forms or reinforcing bars. The concrete shall be thoroughly worked around the reinforcement.

(f) Curing. Exposed surfaces of concrete shall be kept moist for a period of at least seven days after being deposited for ordinary cement and three days for high-early-strength cement.

(g) Depositing in Cold Weather. Adequate equipment shall be provided for heating the concrete materials and protecting the concrete during freezing or near-freezing weather. No frozen materials or materials containing ice shall be used.

All concrete materials and all reinforcement, forms, fillers and ground with which the concrete is to come in contact, shall be free from frost. Wherever the temperature of the surrounding air is below 40 degrees Fahrenheit, all concrete when placed in the forms shall have a temperature of between 60 and 90 degrees Fahrenheit and shall be maintained at a temperature of not less than 50 degrees Fahrenheit for at least 72 hours for normal concrete or 24 hours for high-early-strength concrete, or for as much more time as is necessary to insure proper rate of curing of the concrete. The housing, covering, or other protection used in connection with curing shall remain in place and intact for at least 24 hours after the artificial heating is discontinued. No dependence shall be placed on salt or other chemicals for the prevention of freezing. Manure, when used for protection, shall not be applied directly to concrete.

(h) Bonding Fresh and Hardened Concrete. Before new concrete is deposited on or against concrete which has set, the forms shall be re-tightened, the surface of the set concrete shall be roughened, cleaned of foreign matter and laitance and thoroughly wetted but not saturated. The clean and wetted surfaces of the hardened concrete, including vertical and inclined surfaces, shall be slushed with a coating of neat cement grout against which the new concrete shall be placed before the grout has attained its set. For walls and columns the grout may be omitted on the horizontal surfaces, but a layer of mortar having the composition of the mortar in the concrete shall be placed before resuming concreting.
Sec. 2610. (a) Design of Forms. Forms shall conform to the shape, lines and dimensions of the member as called for on the plans and shall be substantial and sufficiently tight to prevent leakage of mortar. They shall be properly braced or tied together so as to maintain position and shape. If adequate foundation for shores cannot be secured, trussed supports shall be provided.

Temporary openings shall be provided at the base of column and wall forms, and at other points where necessary, to facilitate cleaning and inspection.

(b) Removal of Forms. Forms shall not be disturbed until the concrete has hardened sufficiently to permit their removal with safety. Shoring shall not be removed until the member has acquired sufficient strength to support safely its own weight and the load upon it. Members subject to additional loads during construction shall be adequately shored to support both the member and construction loads in a manner that will protect the member from damage.

The Building Official may require forms to remain in place for a specified time.

(c) Cleaning and Bending Reinforcement. Metal reinforcement, at the time concrete is placed, shall be free from rust, scale or other coatings that will destroy or reduce the bond. Bends for stirrups and ties shall be made around a pin having a diameter not less than two times the minimum thickness of the bar. Bends for other bars, except hooks, shall be made around a pin having a diameter not less than six times the minimum thickness of the bar, except that for bars larger than one inch, the pin shall be not less than eight times the minimum thickness of the bar. All bars shall be bent cold.

(d) Placing Reinforcement. Metal reinforcement shall be accurately placed and secured and shall be supported by chairs, spacers, or hangers. The minimum clear distance between parallel bars shall be one-and-one-half times the diameter for round bars or two times the side dimension for square bars. The minimum clear distance between bars and forms shall be the diameter of round bars and one-and-one-half times the side dimension of square bars. If the ends of bars are anchored as specified in Section 2618 (c), the clear spacing may be made equal to the diameter of round bars or to one-and-one-half times the dimension of square bars, but in no case shall the spacing between bars be less than one inch (1") or less than one-and-one-third times the maximum size of the coarse aggregate. Bars shall be embedded a distance from any face of any member not less than the minimum distance as specified in Section 4303.

When wire or other reinforcement not exceeding one-fourth inch (1/4") in diameter is used as reinforcement for slabs not exceeding ten feet (10") in span, the reinforcement may be curved from a point near the top of the slab over the support to a point near the bottom of the slab at mid-span; provided such reinforcement is either continuous over, or securely anchored to the support.
(e) Splices and Offsets in Reinforcement. In slabs, beams and girders, splices of reinforcement shall not be made at points of maximum stress without the approval of the Building Official. Splices, where permitted, shall provide sufficient lap to transfer the stress between bars by bond and shear. In such splices the bars shall be in contact and wired together and the minimum distance specified in Subsection (d) of this Section shall be maintained between bars or between wired splices and adjacent bars or splices.

Where changes in the cross section of a column occur, the longitudinal bars shall be offset in a region where lateral support is afforded. Where offset, the slope of the inclined portion shall not be more than one in six, and in the case of tied columns the ties shall be spaced not over three inches (3”) on centers for a distance of one foot (1’) below the actual point of offset.

(f) Protective Covering of Concrete. At the under side of footings metal reinforcement shall have a minimum covering of three inches (3”) of concrete.

In fire-resistive construction, metal reinforcement shall be protected as specified in Section 4303.

Exposed reinforcement bars intended for bonding with future extensions shall be protected from corrosion.

(g) Construction Joints. Joints not indicated on the plans shall be so made and located as least to impair the strength of the completed structure. Where a joint is to be made, any excess water and laitance shall be removed from the surface after concrete is deposited. Before depositing of concrete is resumed the hardened surface shall be treated as specified in Section 2609 (h).

At least two hours must elapse after concrete is deposited in the columns or walls before depositing in beams, girders, or slabs supported thereon. Haunches and column capitals shall be considered as part of, and to act continuous with, the floor.

Construction joints in floors shall be located near the middle of the spans of slabs, beams or girders, unless a beam intersects a girder at this point, in which case the joints in the girders shall be offset a distance equal to twice the width of the beam. In this last case, provision shall be made for shear by use of inclined reinforcement.

Pipes which will contain liquid, gas or vapor at other than room temperature shall not be embedded in concrete necessary for structural stability or fire protection. Drain pipes and pipes whose contents will be under pressure greater than atmospheric pressure by more than one pound per square inch shall not be embedded in structural concrete except in passing through from one side to the other of a floor, wall or beam. Electric conduits and other pipes whose embedment is allowed shall not, with their fittings, displace that concrete of a column on which stress is calculated or which is required for fire protection, to greater extent than four percent of the area of the cross section. Sleeves or other pipes passing through floors, walls or beams shall not be of such size or in such location as unduly to impair the strength of
the construction; such sleeves or pipes may be considered as replacing structurally the displaced concrete, provided they are not exposed to rusting or other deterioration, are of uncoated iron or steel not thinner than standard wrought-iron pipe, have a nominal inside diameter not over two inches (2"") and are spaced not less than three diameters on centers. Embedded pipes or conduits other than those merely passing through shall not be larger in outside diameter than one-third the thickness of the slab, wall or beam in which they are embedded; shall not be spaced closer than three diameters on centers, nor so located as unduly to impair the strength of the construction. Circular uncoated or galvanized electric conduit of iron or steel may be considered as replacing the displaced concrete.

Sec. 2611. The design of reinforced concrete members shall be made with reference to working stresses and safe loads. The accepted theory of flexure as applied to reinforced concrete shall be applied to all members resisting bending.

The following assumptions shall be made:

(1) The steel takes all the tensile stress.

(2) In determining the ratio \(n \) for design purposes, the modulus of elasticity for the concrete shall be taken as \(1000f'_c \), and that for steel as 30,000,000 pounds per square inch.

Sec. 2612. The symbols and notations used in these regulations are defined as follows:

\[a = \text{Angle between inclined web bars and axis of beam.} \]

\[A_s = \text{Total area of web reinforcement in tension within a distance of } s, \text{ or the total area of all bars bent up in any one plane.} \]

\[b = \text{Width of rectangular section or width of flange of } T \text{ or } I \text{ sections.} \]

\[b' = \text{Width of web of } I \text{ or } T \text{ sections.} \]

\[C = \text{Ratio of permissible concrete fiber stress in axially loaded column to permissible fiber stress in flexure.} \]

\[d = \text{Depth from compression face of beam or slab to centroid of longitudinal tensile reinforcement.} \]

\[e = \text{Eccentricity of the resultant load on a column, measured from the gravity axis.} \]

\[E_s = \text{Modulus of elasticity of concrete in compression.} \]

\[E_s = \text{Modulus of elasticity of steel in tension or compression (30,000,000 lbs. per sq. in.).} \]

\[f_s = \text{Compressive unit stress in extreme fiber of concrete in flexure.} \]

\[f'_s = \text{Ultimate compressive strength of concrete } \text{usually at age of 28 days. (See Section 2606).} \]

\[f_t = \text{Tensile unit stress in web reinforcement.} \]

\[I = \text{Moment of inertia of a section about the neutral axis for bending.} \]
Symbols and Notations (Cont'd.)

\(j\) = Ratio of distance between centroid of compression and centroid of tension to the depth \((d)\).

\(n\) = Ratio of modulus of elasticity of steel to that of concrete \(\frac{E_s}{E_c}\).

\(\Sigma_o\) = Sum of perimeters of bars in one set.

\(R\) = Least radius of gyration of a section.

\(s\) = Spacing of stirrups or of bent bars in a direction parallel to that of the main reinforcement.

\(t_o\) = Thickness of flat slab without drop panels, or the thickness of flat slab through the drop panels where such are used.

\(t_s\) = Thickness of flat slab (with drop panels) at points outside the drop panel.

\(u\) = Bond stress per unit of surface area of bar.

\(v\) = Shearing unit stress.

\(v_c\) = Unit shearing stress permitted on the concrete of the web.

\(V\) = Total shear.

\(V'\) = Excess of the total shear over that permitted on the concrete.

\(w\) = Uniformly distributed load per unit of length of beam or per unit area of slab.

Allowable Unit Stresses in Reinforcement

Sec. 2613. The unit stresses in pounds per square inch on concrete to be used in the design shall not exceed the values set forth in Table No. 26-B where \(f'_c\) equals the minimum ultimate compressive strength at 28 days, or at the earlier age at which the concrete may be expected to receive its full load.

The following unit stresses in reinforcing steel shall not be exceeded:

In Tension:

Intermediate and hard grade billet or axle steel, rail steel and cold drawn wire..... 20,000 p.s.i.

Structural grade bars and structural steel shapes .. 18,000 p.s.i.

For one-way slabs not exceeding 12 feet in span, steel reinforcement not exceeding \(\frac{3}{8}\) inch in diameter, 50 per cent of the minimum yield point specified in the U.B.C. Standards for the particular kind and grade of steel used, but in no case to exceed .. 30,000 p.s.i.

In Compression:

Structural steel section in composite columns .. 16,000 p.s.i.

Cast-iron section in composite columns..... 10,000 p.s.i.
TABLE NO. 26-B—ALLOWABLE UNIT STRESSES IN CONCRETE

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>ALLOWABLE UNIT STRESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Any Strength of Concrete as Fixed by Test in accordance with Sec. 2006</td>
</tr>
<tr>
<td></td>
<td>$f_c = 3000$</td>
</tr>
<tr>
<td></td>
<td>p. a. 10</td>
</tr>
<tr>
<td></td>
<td>f_c</td>
</tr>
<tr>
<td>Flexure: σ_f</td>
<td>σ_f</td>
</tr>
<tr>
<td>Shear: τ</td>
<td>τ</td>
</tr>
<tr>
<td>Beams with no web reinforcement and without special anchorage of longitudinal steel</td>
<td>τ</td>
</tr>
<tr>
<td>Beams with web reinforcement but with special anchorage of longitudinal steel</td>
<td>τ</td>
</tr>
<tr>
<td>Beams with properly designed web reinforcement but without special anchorage of longitudinal steel</td>
<td>τ</td>
</tr>
<tr>
<td>Beams with properly designed web reinforcement and with special anchorage of longitudinal steel</td>
<td>τ</td>
</tr>
<tr>
<td>Flat slabs at distance d from edge of column capital or dropped panel</td>
<td>τ</td>
</tr>
<tr>
<td>Footings</td>
<td>τ</td>
</tr>
<tr>
<td>Reinforced concrete shear walls</td>
<td>τ</td>
</tr>
<tr>
<td>Bond: μ</td>
<td>μ</td>
</tr>
<tr>
<td>In beams and slabs</td>
<td>μ</td>
</tr>
<tr>
<td>Plain bars (or structural shapes)</td>
<td>μ</td>
</tr>
<tr>
<td>Deformed bars</td>
<td>μ</td>
</tr>
<tr>
<td>In beams and slabs and one-way footings:</td>
<td>μ</td>
</tr>
<tr>
<td>Plain bars (hooked)</td>
<td>μ</td>
</tr>
<tr>
<td>Deformed bars (hooked)</td>
<td>μ</td>
</tr>
<tr>
<td>In two-way footings:</td>
<td>μ</td>
</tr>
<tr>
<td>Plain bars (hooked)</td>
<td>μ</td>
</tr>
<tr>
<td>Deformed bars (hooked)</td>
<td>μ</td>
</tr>
<tr>
<td>Bearing: b_f</td>
<td>b_f</td>
</tr>
<tr>
<td>On full area</td>
<td>b_f</td>
</tr>
<tr>
<td>On one-third area*</td>
<td>b_f</td>
</tr>
<tr>
<td>Pedestals (see Sec. 2621e)</td>
<td>b_f</td>
</tr>
</tbody>
</table>

*The allowable bearing stress on an area greater than one-third but less than the full area shall be interpolated between the values given.

Sec. 2614. All members shall be designed to resist at all sections the maximum bending moments and shears produced by dead load, live load and other loads, as determined by the principle of continuity. In the case of approximately equal spans with loads uniformly distributed, where the intensity of live load does not exceed three times the intensity of dead load, this is satisfied essentially by the following values:

Negative moment at face of first interior support:

For beams and girders and for slabs exceeding ten feet (10')

Flexural Computation
Flexural Computations (Cont'd.)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two spans</td>
<td>wl^2</td>
</tr>
<tr>
<td>More than two spans</td>
<td>wl^2</td>
</tr>
<tr>
<td>For slabs not exceeding 10 feet in span</td>
<td></td>
</tr>
<tr>
<td>Two spans</td>
<td>wl^2</td>
</tr>
<tr>
<td>More than two spans</td>
<td>wl^2</td>
</tr>
<tr>
<td>Negative moment at face of other interior supports</td>
<td>wl^2</td>
</tr>
<tr>
<td>Positive moment at center of span</td>
<td>wl^2</td>
</tr>
<tr>
<td>End spans</td>
<td>wl^2</td>
</tr>
<tr>
<td>Interior spans</td>
<td>wl^2</td>
</tr>
<tr>
<td>Shear in end members at first interior support</td>
<td>wl'</td>
</tr>
<tr>
<td>1.20 -</td>
<td></td>
</tr>
<tr>
<td>Shear at other supports</td>
<td>wl'</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

For the purpose of applying this method, "approximately" shall be construed to mean that the longer of two adjacent spans shall not exceed the shorter by more than 20 per cent. In these expressions l' — the clear span for positive moments and the average of the two adjacent clear spans for negative moment.

(a) **Permissible Assumptions.** The span length of freely supported beams and slabs shall be the clear span plus the depth of beam or slab, but shall not exceed the distance between centers of the supports.

In the application of the principle of continuity, the following assumptions shall be permissible:

1. Consideration may be limited to combinations of dead load on all spans with full live load on two adjacent spans and with full live load on alternate spans.

2. Any reasonable and consistent assumption may be made as to the relative stiffness of the floor construction and columns. In computing the relative stiffness of floors to columns, the value I of the floor members may be based on the entire concrete section neglecting the reinforcement, and that of columns on the entire concrete section plus the transformed steel section. The moment of inertia assumed for the columns in computing bending moments must also be used in computing stresses.
3. The far ends of columns above and below the floor under consideration may be considered fixed.

4. When members are deepened near their ends by haunches they may be analyzed as members of constant section provided the minimum depth is used throughout in computing stresses due to bending; otherwise a complete analysis is required. Where members are widened near their supports the additional width may be neglected in computing moments but may be used in computing stresses.

Additional section at the end may in any case be utilized in resisting shear if properly reinforced.

5. Where slabs of uniform thickness are built integrally with their supports the span length may be taken equal to the clear span between faces of supports and the width of support otherwise neglected.

6. In the application of the principle of continuity, center to center distances may be used in the moment determination of all members.

Moments prevailing at the faces of support may be used to proportion the members at these sections.

7. In slabs other than ribbed floor construction or flat slabs, the principal reinforcement shall not be spaced farther apart than three times the slab thickness.

8. Where analysis indicates negative reinforcement along the full length of a span, the reinforcement need not be extended beyond the point where the required amount is \(.0025\ b'd\) or less.

9. In structural slabs of uniform thickness the minimum amount of reinforcement in the direction of principal stress shall be

For structural, intermediate and hard grades and rail steel \(.0025\ b'd\)

For steel having a minimum yield point of 56,000 lb. per sq. in .. \(.002\ b'd\)

(b) Distance between Lateral Supports. The clear distance between lateral supports of a beam shall not exceed 32 times the least width of compression flange.

(c) Depth of Beam or Slab. The depth of the beam or slab shall be taken as the distance from the centroid of the tensile reinforcement to the compression face of the structural member. Any floor finish not placed monolithically with the floor slab shall not be included as a part of the structural member. When the finish is placed monolithically with the structural slab in buildings of the warehouse or industrial class, the over-all depth shall be at least one-half inch (\(\frac{1}{2}\)”) over that required by the design of the member.

(d) Requirements for T-Beams. 1. In T-beam construction the slab and beam shall be built integrally or otherwise effectively bonded together. The effective flange width to be used in the design of symmetrical T-beams shall not exceed one-fourth of the span length of the beam, and its overhanging width on either side of the web shall not exceed eight
times the thickness of the slab nor one-half the clear distance to the next beam.

2. For beams having a flange on one side only, the effective overhanging flange width shall not exceed one-twelfth of the span length of the beam, nor six times the thickness of the slab, nor one-half the clear distance to the nearest beam.

3. Where the principal reinforcement in a slab which is considered as the flange of a T-beam (not a rib in ribbed floors) is parallel to the beam, transverse reinforcement shall be provided in the top of the slab. This reinforcement shall be designed to carry the load on the portion of the slab assumed as the flange of the T-beam. The spacing of the bars shall not exceed five times the thickness of the flange, nor in any case eighteen inches (18\(\text{"}\)).

4. Provisions shall be made for the compressive stress at the support in continuous T-beam construction, care being taken that the provisions of Section 2610 relating to the spacing of bars, and Section 2609 (e), relating to the placing of concrete shall be fully met.

5. The overhanging portion of the flange of the beam shall not be considered as effective in computing the shear and diagonal tension resistance of T-beams.

6. Isolated beams in which the T-form is used only for the purpose of providing additional compression area, shall have a flange thickness not less than one-half the width of the web and a total flange width not more than four times the web thickness.

Ribbed Floors

(e) One-way Ribbed Floor Construction. 1. Ribbed floor construction consists of concrete ribs and slabs placed monolithically with or without burned clay or concrete tile fillers. The ribs shall not be farther apart than thirty inches (30\(\text{"}\)) face to face. The ribs shall be straight, not less than four inches (4\(\text{"}\)) wide, nor of a depth more than three times the width.

2. When burned clay or concrete tile fillers, of material having a unit compressive strength at least equal to that of the designed strength of the concrete in the ribs, are used, and the fillers are so placed that the joints in alternate rows are staggered, the shells of the fillers in contact with the ribs may be included in the calculations involving shear or negative bending moment. No other portion of the fillers may be included in the design calculations.

3. The concrete slab over the fillers shall be not less than one and one-half inches (1\(\frac{1}{2}\)\(\text{"}\)) in thickness, nor less in thickness than one-twelfth of the clear distance between ribs. Shrinkage reinforcement in the slab shall be provided as specified in Section 2615.

4. Where removable forms or fillers not complying with paragraph 2 of this subsection are used, the thickness of the concrete slab shall not be less than one-twelfth of the clear distance between ribs and in no case less than two inches (2\(\text{"}\)). Such slab shall be reinforced at right angles to the ribs with a minimum of .049 square inches of reinforcing steel per foot of width, and in slabs on which the prescribed live
load does not exceed 50 pounds per square foot, no additional reinforcement will be required.

5. When the finish used as a wearing surface is placed monolithically with the structural slab in buildings of the warehouse or industrial class, the thickness of the concrete over the fillers shall be one-half inch (\(\frac{1}{2}\)"") greater than the thickness used for design purposes.

6. Where the slab contains conduits or pipes, the thickness shall be not less than one inch (1"") plus the total over-all depth of such conduits or pipes at any point. Such conduits or pipes shall be so located as not to impair the strength of the construction.

(f) Compression Steel in Flexural Members. Compression steel in beams, girders, or slabs shall be anchored by ties or stirrups not less than one-fourth inch (\(\frac{1}{4}\)"") in diameter, spaced no farther apart than 16 bar diameters or 48 tie diameters. Such ties or stirrups shall be used throughout the distance where compression steel is required.

The effectiveness of compression reinforcement in resisting bending may be taken at twice the value indicated from calculations assuming a straight line relation between stress and strain and the modular ratio given in Section 2611, but not of greater value than the allowable stress in tension.

Sec. 2615. Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement shall be provided in floor and roof slabs where the principal reinforcement extends in one direction only. Such reinforcement shall provide for the following minimum ratios of reinforcement area to concrete area (\(bd\)), but in no case shall such reinforcing bars be placed farther apart than five times the slab thickness nor more than eighteen inches (18"").

- Floor slabs where plain bars are used............................ 0.0025
- Floor slabs where deformed bars are used...................... 0.002
- Floor slabs where wire fabric is used, having welded intersections not farther apart in the direction of stress than 12 inches.. 0.0018
- Roof slabs where plain bars are used............................ 0.003
- Roof slabs where deformed bars are used....................... 0.0025
- Roof slabs where wire fabric is used, having welded intersections not farther apart in the direction of stress than 12 inches.. 0.0022

Sec. 2616. (a) General. This construction, consisting of floors reinforced in two directions and supported on four sides, includes solid reinforced concrete slabs, concrete joists with fillers of hollow concrete units or clay tile, with or without concrete top slabs; and concrete joists with top slabs placed monolithically with the joists. The slab shall be supported by walls or beams on all sides and if not securely attached to supports, shall be reinforced as specified in Subsection (b).

(b) Reinforcement. Where the slab is not securely attached to the supporting beams or walls, special reinforcement shall be provided at exterior corners in both the bottom and top
Two-Way Slabs
(Cont’d.)

of the slab. This reinforcement shall be provided for a distance in each direction from the corner equal to one-fifth the longest span. The reinforcement in the top of the slab shall be parallel to the diagonal from the corner. The reinforcement in the bottom of the slab shall be at right angles to the diagonal or may be of bars in two directions parallel to the sides of the slab. The reinforcement in each band shall be of equivalent size and spacing to that required for the maximum positive moment in the slab.

(c) Design. The slab and its supports shall be designed by approved methods which shall take into account the effect of continuity at supports, the ratio of length to width of slab and the effect of two-way action.

(d) Slab Thickness. In no case shall the slab thickness be less than four inches (4") nor less than the perimeter of the slab divided by 180. The spacing of reinforcement shall be not more than three times the slab thickness and the ratio of reinforcement shall be at least 0.0025.

(e) Details. The details of design of two-way slabs shall conform to U.B.C. Standard No. 26-12.

Shear and Diagonal Tension

Sec. 2617. (a) Shearing Unit Stress. The shearing unit stress (\(v \)) in reinforced concrete flexural members shall be computed by formula (2):

\[
\frac{V}{bd} \quad \text{... (2)}
\]

For beams of I or T section \(b' \) shall be substituted for \(b \) in Formula (2).

In ribbed construction, where burned clay or concrete tile are used, \(b' \) may be taken as a width equal to the thickness of the concrete web plus the thickness of the vertical shells of the concrete or burned clay tile in contact with the joist as specified in Sections 2614 and 2616.

Where the value of the shearing unit stress computed by Formula (2) exceeds the shearing unit stress (\(v_r \)) permitted on the concrete of an unreinforced web (see Section 2613), web reinforcement shall be provided to carry the excess.

(b) Types of Web Reinforcement. Web reinforcement may consist of:

1. Stirrups or web reinforcement bars perpendicular to the longitudinal steel.

2. Stirrups or web reinforcement bars welded or otherwise rigidly attached to the longitudinal steel and making an angle of 30 degrees or more thereto.

3. Longitudinal bars bent so that the axis of the inclined portion of the bar makes an angle of 15 degrees or more with the axis of the longitudinal portion of the bar.

4. Special arrangements of bars with adequate provisions to prevent slip of bars or splitting of the concrete by the reinforcement [See Subsection (d), last paragraph].

Stirrups or other bars to be considered effective as web reinforcement if the shortening of the elements due to the shearing unit stress is not more than 1/10th of the length of the element.
reinforcement shall be anchored at both ends, according to the provisions of Section 2618.

(c) Stirrups. The area of steel required in stirrups placed perpendicular to the longitudinal reinforcement shall be computed by Formula (3).

\[A_s = \frac{V_s}{f_{yd}} \]

Inclined stirrups shall be proportioned by Formula (5).

Stirrups placed perpendicular to the longitudinal reinforcement shall not be used alone as web reinforcement when the shearing unit stress \(V \) exceeds 0.08\(f'_s \).

(d) Bent Bars. When the web reinforcement consists of a single bent bar or of a single group of bent bars the required area of such bars shall be computed by Formula (4).

\[A_s = \frac{V'}{f'_s \sin \alpha} \]

In Formula (4) \(V' \) shall not exceed 0.040\(f'_s \), \(bjd \).

Only the center three-fourths of the inclined portion of such bar, or group of bars, shall be considered effective as web reinforcement.

Where there is a series of parallel bent bars, the required area shall be determined by Formula (5).

\[A_s = \frac{V_s}{f_{yd} (\sin \alpha + \cos \alpha)} \]

When bent bars having a radius of bend of not more than two times the diameter of the bar are used alone as web reinforcement, the allowable shearing unit stress shall not exceed 0.060\(f'_s \). This shearing unit stress may be increased at the rate of 0.01\(f'_s \) for each increase of four bar diameters in the radius of bend until the maximum allowable shearing unit stress is reached. (See Section 2613).

The shearing unit stress permitted when special arrangements of bars are employed shall be that determined by making comparative tests, to destruction, of specimens of the proposed system and of similar specimens reinforced in conformity with the provisions of this Code, the same factor of safety being applied in both cases.

(e) Combined Web Reinforcement. Where more than one type of reinforcement is used to reinforce the same portion of the web, the total shearing resistance of this portion of the web shall be assumed as the sum of the shearing resistances computed for the various types separately. In such computations the shearing resistance of the concrete shall be included only once, and no one type of reinforcement shall be assumed to resist more than \(\frac{2V'}{3} \).

(f) Spacing of Web Reinforcement. Where web reinforcement is required it shall be so spaced that every 45-degree line (representing a potential crack) extending from the
mid-depth of the beam to the longitudinal tension bars shall be crossed by at least one line of web reinforcement. If a unit shearing stress in excess of 0.06′_e is used, every such line shall be crossed by at least two such lines of web reinforcement.

(g) Shearing Stress in Flat Slabs. In flat slabs, the shearing unit stress on a vertical section which lies at a distance \(t_1 = 1\frac{1}{2} \) inches beyond the edge of the column capital and parallel with it, shall not exceed the following values when computed by formula (2) (in which \(d \) shall be taken as \(t_1 = 1\frac{1}{2} \) inches):

1. 0.03′_e, when at least 50 per cent of the total negative reinforcement in the column strip passes directly over the column capital.

2. 0.025′_e, when 25 per cent of the total negative reinforcement in the column strip passes directly over the column capital.

3. For intermediate percentages, intermediate values of the shearing unit stress shall be used.

In flat slabs, the shearing unit stress on a vertical section which lies at a distance of \(t_2 = 1\frac{1}{2} \) inches beyond the edge of the dropped panel and parallel with it shall not exceed 0.03′_e when computed by formula (2) in which \(d \) shall be taken as \(t_2 = 1\frac{1}{2} \) inches. At least 50 per cent of the cross-sectional area of the negative reinforcement in the column strip must be within the width of strip directly above the dropped panel.

(h) Shear and Diagonal Tension in Footings. The shearing unit stress computed by Formula (2) on the critical section [see Section 2621 (d)], shall not exceed 0.02′_e for footings with straight bars, nor 0.03′_e for footings in which the bars are anchored at both ends by adequate hooks or as otherwise specified in Section 2618.

Sec. 2618. (a) Computation of Bond Stress in Beams. In flexural members in which the tensile reinforcement is parallel to the compression face, the bond stress at any cross section shall be computed by Formula (6).

\[
\frac{V}{\Sigma_{qd}} = u
\]

in which \(V \) is the shear at that section.

Adequate end anchorage shall be provided for the tensile reinforcement in all flexural members to which Formula (6) does not apply, such as footings, brackets and other tapered or stepped beams in which the tensile reinforcement is not parallel to the compression face.

(b) Ordinary Anchorage Requirements. Tensile negative reinforcement in any span of a continuous, restrained, or cantilever beam, or in any member of a rigid frame shall be adequately anchored by bond, hooks or mechanical anchors in or through the supporting member. Within any such span every reinforcing bar shall be extended at least 12 diameters beyond the point at which it is no longer needed to resist stress. In cases where the length from the point of maximum tensile stress in the bar to the end of the bar is not sufficient to develop this maximum stress by bond alone, the bar shall be extended to such a point that with the addition of
a standard hook [see Section 2618 (f)] the maximum tensile unit stress can be developed, or the bar may be bent across the web at an angle of not less than 15 degrees with the longitudinal portion of the bar and be made continuous with the reinforcement which resists moment of opposite sign.

Of the positive reinforcement in continuous beams not less that one-fourth the area shall extend along the same face of the beam into the support a distance of 10 or more bar diameters. Where extension of the reinforcement into the support a distance of 10 or more bar diameters is impracticable, the bars shall be extended as far as possible into the support and terminate in standard hooks or other adequate anchorage.

In simple beams, or at the outer ends of freely supported end spans of continuous beams, at least one-half the required positive reinforcement shall extend along the same face of the beam into the support a distance of 12 or more bar diameters, or shall extend as far as possible into the support and terminate in standard hooks.

(c) Special Anchorage Requirements. Where increased shearing stresses are permitted because of the use of special anchorage (see Section 2613), every bar, except those specifically mentioned in the second paragraph of Section 2618 (b), shall be terminated in a standard hook in a region of compression, or shall be bent across the web at an angle of not less than 15 degrees with the longitudinal portion of the bar and made continuous with the reinforcement resisting moment of opposite sign.

(d) Anchorage of Web Reinforcement. Single separate bars used as web reinforcement shall be anchored at each end by one of the following methods:

1. Welding to longitudinal reinforcement.
2. Hooking tightly around the longitudinal reinforcement through 180 degrees.
3. Embedment in the compression area of the beam a distance sufficient to develop the allowable tensile stress specified in Section 2613 at a bond stress not exceeding 0.04f', on plain bars nor 0.05f', on deformed bars.
4. Standard hook, considered as developing 10,000 pounds per square inch, plus embedment sufficient to develop by bond the remainder of the stress to which the bar is subjected. The unit bond stress shall not exceed that set forth in Table No. 26-B. The effective embedded length shall not be assumed to exceed the distance between the mid-depth of the beam and the tangent of the hook.

The extreme ends of bars forming simple U or multiple stirrups shall be anchored by one of the methods of Subsection (d) or shall be bent through an angle of at least 90 degrees tightly around a longitudinal reinforcing bar not less in diameter than the stirrup bar, and shall project beyond the bend at least 12 diameters of the stirrup bar.

The loops or closed ends of such stirrups shall be anchored by bending around the longitudinal reinforcement through an angle of at least 90 degrees, or by being welded or otherwise rigidly attached thereto.
Bond and Anchorage (Cont'd.)

Hooking or bending stirrups or separate web reinforcement bars around the longitudinal reinforcement shall be considered effective only when these bars are perpendicular to the longitudinal reinforcement.

Longitudinal bars bent to act as web reinforcement shall, in a region of tension, be continuous with the longitudinal reinforcement. The tensile stress in each bar shall be fully developed in both the upper and the lower half of the beam by one of the following methods:

I. As specified in Subsection (d)-3.
II. As specified in Subsection (d)-4.
III. By bond, at unit bond stress not exceeding 0.04\(^\prime\)\(^\prime\), on plain bars nor 0.05\(^\prime\)\(^\prime\), on deformed bars, plus a bend of radius not less than two times the diameter of the bar, plus an extension of the bar parallel to the upper or lower surface of the beam, of not less than 12 diameters of the bar, plus a standard hook. This short radius bend extension and hook shall together not be counted upon to develop a tensile unit stress in the bar of more than 10,000 pounds per square inch.

IV. By bond, at a unit bond stress not exceeding 0.04\(^\prime\)\(^\prime\), on plain bars nor 0.05\(^\prime\)\(^\prime\), on deformed bars, plus a bend of radius not less than two times the diameter of the bar, parallel to the upper or lower surface of the beam and continuous with the longitudinal reinforcement. The short radius bend and continuity shall together not be counted upon to develop a tensile unit stress in the bar of more than 10,000 pounds per square inch.

V. The tensile unit stress at the beginning of a bend may be increased from 10,000 pounds per square inch when the radius of bend is two bar diameters, at the rate of 1,000 pounds per square inch tension for each increase of one and one-half bar diameters in the radius of bend, provided that the length of the bar in the bend and extension is sufficient to develop this increased tensile stress by bond at the unit stresses given in Subsection (d)-III.

In all cases web reinforcement shall be carried as close to the compression surface of the beam as fireproofing regulations and the proximity of other steel will permit.

(e) Anchorage of Bars in Footing Slabs. All bars in footing slabs, except the longitudinal reinforcement between loads in continuous slab footings, shall be anchored by means of standard hooks. The outer faces of these hooks shall be not less than three inches (3\(\prime\)) nor more than six inches (6\(\prime\)) from the face of the footing.

(f) Hooks. The terms “hook” or “standard hook” as used herein shall mean a complete semicircular turn with a radius of bend on the axis of the bar of not less than three and not more than six bar diameters, plus an extension of at least four bar diameters at the free end of the bar or a 90-degree bend having a radius of not less than four bar diameters plus an extension of 12 bar diameters. Hooks having a radius of bend of more than six bar diameters shall be considered merely as extensions to the bars, and shall be treated as in Subsection (d)-V.
In general, hooks shall not be permitted in the tension portion of any beam except at the ends of simple or cantilever beams or at the freely supported ends of continuous or restrained beams.

No hook shall be assumed to carry a load which would produce a tensile stress in the bar greater than 10,000 pounds per square inch.

Hooks shall not be considered effective in adding to the compressive resistance of bars.

Any mechanical device capable of developing the strength of the bar without damage to the concrete may be used in lieu of a hook. Tests must be presented to show the adequacy of such devices.

Sec. 2619. (a) Scope. The term flat slab shall mean a reinforced concrete slab supported by columns with or without flaring heads or column capitals, with or without depressed or drop panels and generally without beams or girders. Recesses or pockets in flat slab ceilings, located between reinforcing bars and forming cellular or two-way ribbed ceilings, whether left open or filled with permanent fillers, shall not prevent a slab from being considered a flat slab; but allowable unit stresses shall not be exceeded.

(b) Design of Flat Slabs as Continuous Frames. Any type of flat slab construction may be designed by application of the principles of continuity.

(c) Design of Flat Slabs by Moment Coefficients. Arbitrary coefficients may be used when the construction conforms with the following:

1. The ratio of length to width of panel does not exceed 1.33.
2. The slab is continuous for at least three panels in each direction.
3. The successive span lengths in each direction differ by not more than 20 per cent of the shorter span.

(d) Details. The details of the design and construction of flat slabs shall conform to U.B.C. Standard No. 26-13.

Sec. 2620. (a) Limiting Dimensions. The following subsections on reinforced concrete and composite columns except Subsection (g) apply to a short column, for which the unsupported length is not greater than 10 times the least lateral dimension. When the unsupported length exceeds this value, the design shall be modified as shown in Subsection (g). Principal columns in buildings shall have a minimum diameter or thickness of ten inches (10") and a minimum gross area of one hundred and twenty square inches (120 sq. in.). Posts that are not continuous from story to story shall have a minimum diameter or thickness of six inches (6").

(b) Unsupported Length of Columns. For purposes of determining the limiting dimensions of columns, the unsupported length of reinforced concrete columns shall be taken as the clear distance between floor slabs.

EXCEPTIONS: 1. In flat slab construction, it shall be the clear distance between the floor and the lower extremity of the capital.
2. In beam and slab construction, it shall be the clear distance between the floor and the under side of the deeper beam framing into the column in each direction at the next higher floor level.

3. In columns restrained laterally by struts, it shall be the clear distance between consecutive struts in each vertical plane; provided that to be an adequate support, two such struts shall meet the column at approximately the same level, and the angle between vertical planes through the struts shall not vary more than 15 degrees from a right angle. Such struts shall be of adequate dimensions and anchorage to restrain the column against lateral deflection.

4. In columns restrained laterally by struts or beams, with brackets used at the junction, it shall be the clear distance between the floor and the lower edge of the bracket, provided that the bracket width equals that of the beam or strut and is at least half that of the column.

For rectangular columns, that length shall be considered which produces the greatest ratio of length to depth of section.

(c) Spirally Reinforced Columns. 1. Permissible Load—The maximum permissible axial load, \(P \), on columns with closely spaced spirals enclosing a circular concrete core reinforced with longitudinal bars shall be that given by Formula (7).

\[
P = A_s \left(0.225f'_c + f_s p_s \right)
\]

(7)

WHERE

\(A_s \) = the gross area of the column.

\(f'_c \) = compressive strength of the concrete.

\(f_s \) = nominal working stress in vertical column reinforcement, to be taken at 40 per cent of the minimum specification value of the yield point; viz., 16,000 pounds per square inch for intermediate grade steel and 20,000 pounds per square inch for rail or hard grade steel.*

\(p_s \) = ratio of the effective cross-sectional area of vertical reinforcement to the gross area, \(A_g \).

2. Vertical Reinforcement—The ratio \((p_s) \) shall not be less than 0.01 nor more than 0.08. The minimum number of bars shall be six, and the minimum diameter shall be five-eighths inch \((\frac{5}{8}) \). The center to center spacing of bars within the periphery of the column core shall be not less than two and one-half times the diameter for round bars or three times the side dimension for square bars. The clear spacing between bars shall be not less than one and one-half inches \((1\frac{1}{2}) \), or one and one-half times the maximum size of the coarse aggregate used. These spacing rules apply to adjacent pairs of bars at a lapped splice.

*Nominal working stresses for reinforcement of higher yield point may be established at 40 per cent of the yield point stress, but not more than 30,000 pounds per square inch, when the properties of such reinforcing steels have been definitely specified. If this is done, the lengths of splice required by Section 2620 (c)-3 shall be increased accordingly.
3. Splices in Vertical Reinforcement—Where lapped splices in the column verticals are used, the minimum amount of lap shall be as follows:

I For deformed bars—with concrete having an ultimate strength of 3000 pounds per square inch or more, 24 diameters of bar designed for a nominal working stress of 16,000 pounds per square inch or less. For bars designed for higher stresses, the amount of lap shall be increased in proportion to the nominal working stress. When the concrete ultimate strength is less than 3000 pounds per square inch, the amount of lap shall be one-third greater than the values given above.

II For plain bars—the minimum amount of lap shall be 25 per cent greater than that specified for deformed bars.

III Welded splices or other positive connections may be used instead of lapped splices. Welded splices shall preferably be used in cases where the bar diameter exceeds one and one-fourth inch (1 1/4”). An approved welded splice shall be defined as one in which the bars are butted and welded and that will develop in tension at least the yield point stress of the reinforcing steel used.

IV Where changes in the cross section of a column occur, the longitudinal bars shall be offset in a region where lateral support is afforded by a concrete capital, floor slab or by metal ties or reinforcing spirals. Where bars are offset, the slope of the inclined portion from the axis of the column shall not exceed one in six and the bars above and below the offset shall be parallel to the axis of the column.

4. Spiral Reinforcement—The ratio of spiral reinforcement, \(p' \) shall be not less than the value given by Formula (8).

\[
p' = 0.45 \frac{f'_s}{f'_s} \]

\[
\text{WHERE}
\]

\(p' \) = ratio of volume of spiral reinforcement to the volume of the concrete core (out to out of spirals).

\(R \) = ratio of gross area to core area of column, \(A_s/A_c \).

\(f'_s \) = useful limit stress of spiral reinforcement, to be taken as 40,000 pounds per square inch for hot rolled rods of intermediate grade, 50,000 pounds per square inch for hard grade, and 60,000 pounds per square inch for cold drawn wire.

The spiral reinforcement shall consist of evenly spaced continuous spirals held firmly in place and true to line by vertical spacers using at least two for spirals twenty inches \((20")\) or less in diameter, three for spirals twenty inches \((20")\) to thirty inches \((30")\) in diameter and four for spirals more than thirty inches \((30")\) in diameter or composed of spiral rods five-eighths inch \((5/8")\) or larger in size. The spirals shall be of such size and so assembled as to permit handling and placing without being distorted from the design dimensions. The material used in spirals shall have a
minimum diameter of one-fourth inch (¼") for rolled bars or No. 4 W.&M. gauge for drawn wire. Anchorage of spiral reinforcement shall be provided by one and one-half extra turns of spiral rod or wire at each end of the spiral unit. Splices, when necessary, shall be made in spiral rod or wire by welding or by a lap of one and one-half turns. The center to center spacing of the spirals shall not exceed one-sixth of the core diameter. The clear spacing between spirals shall not exceed three inches (3") nor be less than one and three-eighths inches (1¾") or one and one-half times the maximum size of coarse aggregate used. The reinforcing spiral shall extend from the floor level in any storey, or from the top of the footing in the basement, to the level of the lowest horizontal reinforcement in the slab, dropped panel or beam above. In a column with a capital, it shall extend to the plane at which the diameter or width of the capital is twice that of the column.

5. Protection of Reinforcement—The column reinforcement shall be protected everywhere by a covering of concrete cast monolithically with the core, for which the thickness shall not be less than one and one-half inches (1½") nor less than one and one-half times the maximum size of the coarse aggregate, nor shall it be less than required by the fire protection and weathering provisions specified in Section 2610 (f).

6. Limits of Column Section—For columns built monolithically with concrete walls or piers, the outer boundary of the column section shall be taken either as a circle at least one and one-half inches (1½") outside the column spiral or as a square or rectangle of which the sides are at least one and one-half inches (1½") outside the spiral. The value of \(A_s\) thus defined shall be used in both Formulas (7) and (8). In any case it shall be permissible to design a circular column and to build it as a square column of the same least lateral dimension. In such case the permissible load, the gross area considered, and the required percentage of reinforcement must be taken as those of the circular column.

(d) Tied Columns. 1. Permissible Load—The maximum permissible axial load on columns reinforced with longitudinal bars and separate lateral ties shall be 80 per cent of that given by Formula (7). The ratio, \(p_e\), to be considered in tied columns shall be not less than 0.01 nor more than 0.04. The longitudinal reinforcement shall consist of at least four bars, of minimum diameter of five-eighths inch (5/8"). Splices in reinforcing bars shall be made as described in Subsection (c)-3.

2. Lateral Ties—Lateral ties shall be at least one-fourth inch (¼") in diameter and shall be spaced apart not over 16 bar diameters, 48 tie diameters or the least dimension of the column. When there are more than four vertical bars, additional ties shall be provided so that every longitudinal bar is held firmly in its designed position and has lateral support equivalent to that provided by a 90-degree corner of a tie.

3. Limits of Column Section—In a tied column which for architectural reasons has a larger cross section than required
by consideration of loading, a reduced effective area \(A_e \) not less than one-half of the total area may be used in applying the provisions of Subsection (d)-1.

(e) Composite Columns. 1. Permissible Load—The permissible load on a composite column consisting of a structural steel or cast-iron column thoroughly encased in concrete reinforced with both longitudinal and spiral reinforcement, shall not exceed that given by Formula (9).

\[
P = 0.225A_e'f' + f_A + f_r\]

\[
(9)
\]

\[\text{WHERE}\]

\[A_e = \text{net area of concrete}\]
\[= A_p - A_{l} - A_{r}\]

\[A_{l} = \text{cross-sectional area of longitudinal bar reinforcement.}\]

\[A_{r} = \text{cross-sectional area of the steel or cast-iron core.}\]

\[f_{r} = \text{permissible unit stress in metal core, not to exceed 16,000 pounds per square inch for a steel core; or 10,000 pounds per square inch for a cast-iron core.}\]

The remaining notation is that of Subsection (c).

2. Details of Metal Core and Reinforcement—The cross-sectional area of the metal core shall not exceed 20 per cent of the gross area of the column. If a hollow metal core is used it shall be filled with concrete. The amounts of longitudinal and spiral reinforcement and the requirements as to spacing of bars, details of splices and thickness of protective shell outside the spiral shall conform to the limiting values specified in Subsection (c), paragraphs 2, 3, 4, and 5. A clearance of at least three inches (3") shall be maintained between the spiral and the metal core at all points except that when the core consists of a structural steel H-column, the minimum clearance may be reduced to two inches (2").

3. Splices and Connections of Metal Cores—Metal cores in composite columns shall be accurately milled at splices and positive provision shall be made for alignment of one core above another. At the column base, provision shall be made to transfer the load to the footing at safe unit stresses in accordance with Section 2613 and Table No. 26-B. The base of the metal section shall be designed to transfer the load from the entire composite column to the footing, or it may be designed to transfer the load from the metal section only, provided it is so placed in the pier or pedestal as to leave ample section of concrete above the base for the transfer of load from reinforced concrete section of the column by means of bond on the vertical reinforcement and by direct compression on the concrete. Transfer of loads to the metal core shall be provided for by the use of bearing members such as billets, brackets or other positive connections; these shall be provided at the top of the metal core and at intermediate floor levels where required. The column as a whole shall satisfy the requirements of Formula (9) at any point; in addition to this, the reinforced concrete portion shall be designed to carry, in accordance with Formula (7), all floor loads brought onto the column at levels between the metal brackets or connections. In applying Formula (7), the value
of A_s shall be interpreted as the area of the concrete section outside the metal core, and the permissible load on the reinforced concrete section shall be further limited to $0.35f'_{e}A_s$. Ample section of concrete and continuity of reinforcement shall be provided at the junction with beams or girders.

4. Permissible Load on Metal Core Only—The metal cores of composite columns shall be designed to carry safely any construction or other loads to be placed upon them prior to their encasement in concrete.

(f) Combination Columns. 1. Steel Columns Encased in Concrete—The permissible load on a structural steel column which is encased in concrete at least two and one-half inches ($2\frac{1}{2}''$) thick over all metal (except rivet heads) reinforced as hereinafter specified, shall be computed by Formula (10).

$$P = A_r f'_{r} \left(1 + \frac{A_s}{100 A_r} \right) .. (10)$$

WHERE

$A_r =$ cross-sectional area of steel column.

$f'_{r} =$ permissible stress for unencased steel column.

$A_s =$ total area of concrete section.

The concrete used shall develop a compressive strength (f'_{e}) of at least 2000 pounds per square inch at 28 days. The concrete shall be reinforced by the equivalent of welded wire mesh having wires of No. 10 W. & M. gauge, the wires encircling the column being spaced not more than four inches ($4''$) apart and those parallel to the column axis not more than eight inches ($8''$) apart. This mesh shall extend entirely around the column at a distance of one inch ($1''$) inside the outer concrete surface and shall be lap-spliced at least 40 wire diameters and wired at the splice. Special brackets shall be used to receive the entire floor load at each floor level. The steel column shall be designed to carry safely any construction or other loads to be placed upon it prior to its encasement in concrete.

2. Pipe Columns—The permissible load on columns consisting of steel pipe filled with concrete shall be determined by Formula (11).

$$P = 0.225f'_{e}A_s + f'_{r}A_r .. (11)$$

The value of f'_{r} shall be that given by Formula (12).

$$f'_{r} = \left(\frac{18,000 - 70h}{K} \right) F .. (12)$$

WHERE

$f'_{r} =$ average unit stress in metal core.

$h =$ unsupported length of column.

$K =$ least radius of gyration of metal core section.

$F =$ (yield point of pipe) $\frac{45,000}{45,000}$

If the yield point of the pipe is not known, the factor F shall be taken as 0.5.
(g) **Long Columns.** The maximum permissible load P' on axially loaded reinforced concrete or composite columns having a length, (h), greater than 10 times the least lateral dimension, (d), shall be given by Formula (13).

$$P' = P \left(1.3 - 0.03 \frac{h}{d} \right) \tag{13}$$

where P is the permissible axial load on a short column as given by Subsections (c), (d) and (e).

The maximum permissible load P' on eccentrically loaded columns in which $\frac{h}{d}$ exceeds 10 shall also be given by Formula (13) in which P is the permissible eccentrically applied load on a short column as determined by the provisions of Subsections (i) and (j). In long columns subjected to definite bending stresses, as determined in Subsection (h), the ratio h/d shall not exceed 20.

(h) **Bending Moments in Columns.** When the stiffness and strength of the columns are utilized to reduce moments in beams, girders, or slabs, as in the case of rigid frames, or in other forms of continuous construction wherein column moments are unavoidable, they shall be provided for in the design. In computing moments in columns, the far ends may be considered fixed. Columns shall be designed to resist the axial forces from loads on all floors, plus the maximum bending due to loads on a single adjacent span of the floor under consideration.

(i) **Determination of Combined Axial and Bending Stresses.** In a reinforced concrete column, designed by the methods of this Chapter, which is (1) symmetrical about two perpendicular planes through its axis and (2) subject to an axial load, N, combined with bending in one or both of the planes of symmetry (but with the ratio of eccentricity to depth, e/t, no greater than 1.0 in either plane), the combined fiber stress in compression may be computed on the basis of recognized theory applying to uncracked sections, using Formula (14).

$$f_c = \frac{N}{A} \left[\frac{1 + \frac{De}{t}}{1 + (n - 1)p_t} \right] \tag{14}$$

WHERE

$$D = \frac{E}{2} = \text{a factor, usually varying from 3 to 9. (The term}\ 2R^2$$

$$R \text{ as used here is the radius of gyration of the entire column section.)}$$

$$t = \text{overall depth of column section.}$$

Equating this calculated stress, f_c, to be the allowable stress, f_p, in Formula (16) it follows that the column can be designed for an equivalent axial load, P, as given by Formula (15).*

*For approximate or trial computations, D may be taken as eight for a circular spiral column and as five for a rectangular tied or spiral column.
Combined Stresses (Cont'd.)

\[P = N \left[1 + \frac{C D e}{t} \right] \] \hspace{1cm} (15)

WHERE

\(C \) = ratio of allowable concrete stress, \(f_e \), in axially loaded column to allowable fiber stress for concrete in flexure.

When bending exists on both axes of symmetry, the \(D e \) quantity — shall be computed as the numerical sum of the \(D e \) quantities in the two directions.

For columns in which the load, \(N \), has an eccentricity, \(e \), greater than the column depth, \(t \), or for beams subject to small axial loads, the determination of the fiber stress \(f_e \) shall be made by use of recognized theory for cracked sections, based on the assumption that no tension exists in the concrete. For such cases the tensile steel stress shall also be investigated.

(j) Allowable Combined Axial and Bending Stress. For spiral and tied columns, eccentrically loaded or otherwise subjected to combined axial compression and flexural stress, the maximum allowable compressive stress, \(f_p \), is given by Formula (16).

\[f_p = f_e \left[1 + \frac{D e}{t} \left(1 + \frac{C D e}{C D e} \right) \right] = f_e \left[1 + \frac{t + D e}{t + C D e} \right] \hspace{1cm} (16) \]

WHERE

\(D = \frac{t^2}{2R^2} \) is a factor, usually varying from 3 to 9. (The term \(R \) as used here is the radius of gyration of the entire column section.)

\(t \) = overall depth of column section.

\(f_e \) = average allowable stress in the concrete of an axially loaded reinforced concrete column.

\(C \) = ratio of \(f_e \) to the allowable fiber stress for members in flexure.

Thus

\[f_e = \frac{0.225 f_e + f_s p_s}{1 + (n - 1) p_s} \]

for spiral columns and 0.8 of this value for tied columns, and

\[C = \frac{f_e}{0.45 f_e} \]

For tied columns which are designed to withstand combined axial and bending stresses, the limiting total steel ratio of 0.04 prescribed in Subsection (d) may be increased.
to 0.08, provided that the amount of steel spliced by lapping shall not exceed a steel ratio of 0.04 in any three-foot (3') length of column. The size of the column designed under this provision shall in no case be less than that required to withstand axial load alone as specified in Subsection (d).

(k) **Walls.** 1. **Lateral and Eccentric Loads.** Walls shall be designed for any lateral or other loads to which they are subjected. Proper provision shall be made for eccentric loads.

2. **Height and Thickness.** The thickness of reinforced concrete bearing walls shall be not less, and the maximum height, number of stories, and distance between supports shall be not more, than shown in Table No. 26-C.

EXCEPTION: The provisions of this paragraph may be waived when written evidence is submitted by a qualified person showing that the walls meet all the other requirements of this Code.

3. **Design.** The maximum allowable compressive stress in reinforced concrete bearing walls with minimum reinforcement as required by this subsection shall not exceed

\[
1 - \left(\frac{h}{30d} \right)^3 \leq 0.2f'c
\]

(17)

When the reinforcement in bearing walls is designed, placed, and anchored in position as for columns, the working stresses shall be on the basis of formulas for columns. For calculating wall stresses, concentrated loads may be assumed to be distributed over a maximum length of wall not exceeding the center to center distance between loads nor five times the width of the bearing.

Reinforced concrete walls shall be reinforced with an area of steel in each direction, both vertical and horizontal, at least equal to 0.0025 times the cross-sectional area of the wall. Walls more than ten inches (10") in thickness shall have the reinforcement for each direction placed in two layers parallel with the faces of the wall. One layer consisting of not less than one-half and not more than two-thirds the total required reinforcement shall be placed not less than one and one-half inches (1\(\frac{1}{2}") nor more than one-third the thickness of the wall from the exterior surface. The other layer, comprising the balance of the required reinforcement, shall be placed not less than three-fourths inch (\(\frac{3}{4}") and

TABLE NO. 26-C—REQUIREMENTS FOR REINFORCED CONCRETE BEARING WALLS

<table>
<thead>
<tr>
<th>MAXIMUM HEIGHT IN FEET</th>
<th>STORY</th>
<th>LIMITING RATIO—DISTANCE BETWEEN SUPPORTS TO WALL THICKNESS</th>
<th>MINIMUM THICKNESS IN INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>3</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Basement</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

153
Walls (Cont'd.)

not more than one-third the thickness of the wall from the interior surface. Bars shall be not less than three-eighths inch (\(\frac{3}{8}'' \)) round, nor shall they be spaced more than eighteen inches (18") on centers.

Reinforced concrete walls shall be anchored at all points of lateral support. Such anchorage shall be capable of resisting the horizontal forces with a minimum of 200 pounds per lineal foot.

Non-Bearing Partitions

(1) Non-Bearing Partitions. Non-bearing partitions of reinforced concrete shall have a thickness of not less than one forty-eighth of the distance between their supports nor less than two inches (2").

Footings

Sec. 2621. (a) Loads and Reactions. Footings shall be proportioned to sustain the applied loads and induced reactions without exceeding the allowable stresses as prescribed in Section 2613, and as further provided in this Section.

In cases where the footing is concentrically loaded and the member being supported does not transmit any moment to the footing, computations for moments and shears shall be based on an upward reaction assumed to be uniformly distributed per unit area or per pile and a downward applied load assumed to be uniformly distributed over the area of the footing covered by the column, pedestal, wall, or metallic column base.

In cases where the footing is eccentrically loaded or the member being supported transmits a moment to the footing, proper allowance shall be made for any variation that may exist in the intensities of reaction and applied load consistent with the magnitude of the applied load and the amount of its actual or virtual eccentricity.

In the case of footings on piles, computations for moments and shears may be based on the assumption that the reaction from any pile is concentrated at the center of the pile.

(b) Sloped or Stepped Footings. In sloped or stepped footings, the angle of slope or depth and location of steps shall be such that the allowable stresses are not exceeded at any section.

In sloped or stepped footings, the effective cross section in compression shall be limited by the area above the neutral plane.

Sloped or stepped footings shall be cast as a unit.

(c) Bending Moment. The external moment on any section shall be determined by passing through the section a vertical plane which extends completely across the footing, and computing the moment of the forces acting over the entire area of the footing on one side of said plane.

The greatest bending moment required in the design of an isolated footing shall be the moment so computed at sections located as follows:

1. At the face of the column, pedestal or wall, for footings supporting a concrete column, pedestal or wall.
2. Halfway between the middle and the edge of the wall, for footings under masonry walls.
3. Halfway between the face of the column or pedestal and the edge of the metallic base, for footings under metallic bases.

The width resisting compression at any section shall be assumed as the entire width of the top of the footing at the section under consideration.

In one-way reinforced footings, the total tensile reinforcement at any section shall provide a moment of resistance at least equal to the moment computed as specified in this Section, and the reinforcement thus determined shall be distributed uniformly across the full width of the section.

In two-way reinforced footings, the total tensile reinforcement at any section shall provide a moment of resistance at least equal to 85 per cent of the moment computed as specified in this Section, and the total reinforcement thus determined shall be distributed across the corresponding resisting section in the following manner:

In two-way square footings, the reinforcement extending in each direction shall be distributed uniformly across the full width of the footing.

In two-way rectangular footings, the reinforcement in the long direction shall be distributed uniformly across the full width of the footing. In the case of the reinforcement in the short direction, that portion determined by Formula (18) shall be uniformly distributed across a band-width \(B \) centered with respect to the center line of the column or pedestal and having a width equal to the length of the short side of the footing. The remainder of the reinforcement shall be uniformly distributed in the outer portion of the footing.

\[
\frac{\text{Reinforcement in band-width} \ (B)}{\text{Total reinforcement in short direction}} = \frac{2}{S + 1} \quad \quad \text{(18)}
\]

where "\(S \)" is the ratio of the long side to the short side of the footing.

(d) Shear and Bond. The critical section for shear to be used as a measure of diagonal tension shall be assumed as a vertical section obtained by passing a series of vertical planes through the footing, each of which is parallel to a corresponding face of the column, pedestal, or wall and located a distance therefrom equal to the depth for footings on soil, and one-half the depth for footings on piles.

Each face of the critical section shall be considered as resisting an external shear equal to the load on an area bounded by said face of the critical section for shear, two diagonal lines drawn from the column or pedestal corners and making 45-degree angles with the principal axes of the footing, and that portion of the corresponding edge or edges of the footing intercepted between the two diagonals.

Critical sections for bond shall be assumed at the same planes as those prescribed for bending moment in Subsection (c); also at all other vertical planes where changes of section or of reinforcement occur.

Computations for shear to be used as a measure of bond shall be based on the same section and loading as specified
for the determination of external bending moment in Sub-
section (c).

The total tensile reinforcement at any section shall provide
a bond resistance at least equal to the bond requirement
as computed from the following percentages of the external
shear at the section:

1. In one-way reinforced footings, 100 per cent.
2. In two-way reinforced footings, 85 per cent.

In computing the external shear on any section through
a footing supported on piles, the entire reaction from any
pile whose center is located six inches (6") or more outside
the section shall be assumed as producing shear on the sec-
tion; the reaction from any pile whose center is located six
inches (6") or more inside the section shall be assumed as
producing no shear on the section. For intermediate positions
of the pile center, the portion of the pile reaction to be
assumed as producing shear on the section shall be based on
straightline interpolation between full value at six inches
(6") outside the section and zero value at six inches (6")
inside the section.

Shearing and bond stresses shall not exceed those specified
in Sections 2613, 2617, and 2618.

(e) **Transfer of Stress at Base of Column.** The stress in
the longitudinal reinforcement of a column or pedestal shall
be transferred to its supporting pedestal or footing either
by extending the longitudinal bars into the supporting
member, or by dowels.

In case the transfer of stress in the reinforcement is
accomplished by extension of the longitudinal bars, they shall
extend into the supporting member the distance required
to transfer to the concrete, by allowable bond stress, their
full working value.

In cases where dowels are used, their total sectional area
shall be not less than the sectional area of the longitudinal
reinforcement in the member from which the stress is being
transferred. In no case shall the number of dowels per
member be less than four and the diameter of the dowels
shall not exceed the diameter of the column bars by more
than one-eighth inch (\(\frac{1}{8}\)").

Dowels shall extend up into the column or pedestal a dis-
tance at least equal to that specified in Section 2620 (c)-3,
for lap of longitudinal column bars and down into the
supporting pedestal or footing the distance required to
transfer to the concrete, by allowable bond stress, the full
working value of the dowel.

The compressive stress in the concrete at the base of a
column or pedestal shall be considered as being transferred
by bearing to the top of the supporting pedestal or footing.
The unit compressive stress on the loaded area shall not
exceed the bearing stress allowable for the quality of concrete
in the supporting member as limited by the ratio of the
loaded area to the supporting area.

Bearing stresses shall not exceed those set forth in Table
No. 26-B.

In sloped or stepped footings, the supporting area for
Footings
(Cont'd.)

(f) Footings Supporting Round Columns. In computing the stresses in footings which support a round or octagonal concrete column or pedestal, the “face” of the column or pedestal shall be taken as the side of a square having an area equal to the area enclosed within the perimeter of the column or pedestal.

(g) Minimum Edge-Thickness. In reinforced concrete footings, the thickness above the reinforcement at the edge shall be not less than six inches (6") for footings on soil, nor less than twelve inches (12") for footings on piles.

Sec. 2622. The depth of precast concrete joists shall be not more than four times the width of the top or bottom flanges nor less than one twenty-fourth of the span length.

The thickness of the top slab shall be not less than one-twelfth of the clear span between joists nor less than two inches (2") for roofs or floors and not less than one and one-half inches (1½") over the joists. The slab shall have not less than 0.2 per cent reinforcement at right angles to the span of joists. The reinforcement shall be spaced not farther apart than five times the slab thickness.

When the top slab is adequately reinforced and bonded to the joist, the construction may be considered as a T-beam.

Sec. 2623. The term “Composite Beam” shall apply to any rolled or fabricated steel floor beam entirely encased in poured concrete at least four inches (4") wider, at its narrowest point, than the flange of the beam, supporting a concrete slab on each side without openings adjacent to the beam; provided that the top of the beam is at least one and one-half inches (1½") below the top of the slab and at least two inches (2") above the bottom of the slab; provided that a good grade of stone or gravel concrete with portland cement is used; and provided that the concrete has adequate mesh, or other reinforcing steel, throughout its whole depth and across the soffit.

Composite beams may be figured on the assumption that:

1. The steel beam carries unassisted all dead loads prior to the hardening of the concrete, with due regard for any temporary support provided.

2. The steel and concrete carry by joint action all loads, dead and live, applied after the hardening of the concrete.

The total tensile unit stress in the extreme fiber of the steel beam thus computed shall not exceed 20,000 pounds per square inch. (See Section 2702).

The maximum stresses in concrete, and the ratio of Young’s moduli for steel and concrete, shall be as prescribed by the specifications governing the design of reinforced concrete for the structure.

The web and end connections of the steel beam shall be
adequate to carry the total dead and live load without exceeding the unit stresses prescribed in this Code, except as this may be reduced by the provision for other proper support.

Plain Concrete

Sec. 2624. (a) General. Plain concrete, other than fill, shall have a minimum ultimate compressive strength at 28 days of 2000 pounds per square inch, and material, proportioning, and placing shall conform to the requirements of this Chapter. Concrete made with lightweight aggregates may be used with strengths less than 2000 pounds per square inch if it has been shown by tests or experience to have sufficient strength and durability.

Provisions shall be made to care for temperature and shrinkage stresses either by use of reinforcement or by means of joints.

Plain concrete construction shall conform to the detailed minimum requirements specified in this Chapter. Where Section 2312 is applicable, plain concrete shall also be designed in accordance with the allowable stresses specified in this Chapter.

(b) Wall Thickness. The thickness of plain concrete walls may be two inches (2") less than required by Section 2404 for plain masonry walls but in no case less than seven inches (7"), and the ratio of unsupported height or length (whichever is the lesser) to thickness, shall not be greater than 22.

(c) Design. Plain concrete walls shall be designed to withstand all vertical and horizontal loads as specified in Chapter 23.

(d) Stresses. The allowable working stresses in plain concrete walls shall not exceed the following percentages of ultimate strength:

- Compression ... $0.25 f'\text{c}$
- Tension .. $0.01 f'\text{c}$
- Shear .. $0.02 f'\text{c}$

(e) Pedestals and Footings (Plain Concrete). The allowable compressive unit stress on the gross area of a concentrically loaded pedestal shall not exceed $0.25 f'\text{c}$. Where this stress is exceeded, reinforcement shall be provided and the member designed as a reinforced concrete column.

The depth and width of a pedestal or footing of plain concrete shall be such that the tension in the concrete shall not exceed $0.03 f'\text{c}$, and the average shearing stress shall not exceed $0.02 f'\text{c}$ taken on critical sections as determined for reinforced concrete footings. The thickness at the edge shall be not less than eight inches (8") for footings on soil, nor less than fourteen inches (14") above the tops of the piles for footings on piles.

Pneumatically Placed Concrete

Sec. 2625. (a) General. For the purpose of this Chapter all pneumatically placed concrete shall consist of a mixture of fine aggregate and cement pneumatically applied by suitable mechanism, and to which water is added immediately prior to discharge from the applicator.
Except as specified in the following subsections of this Section, all pneumatically placed concrete shall conform to the regulations of this Chapter for concrete.

(b) Proportions. The proportion of cement to aggregate, in loose dry volumes, shall be not less than one to four and one-half.

(c) Water. The water content at the time of discharge, including any moisture in the fine aggregate, shall not exceed three and one-half gallons per sack of cement.

(d) Mixing. The cement and aggregate shall be thoroughly mixed prior to the addition of water. At the time of mixing the fine aggregate shall contain not less than three per cent moisture.

(e) Rebound. Any rebound or accumulated loose aggregate shall be removed from the surface to be covered prior to placing the initial or any succeeding layers of pneumatically placed concrete. Rebound may be re-used if it conforms to the requirements for aggregate, but not in excess of 25 per cent of the total aggregate in any batch.

(f) Joints. Unfinished work shall not be allowed to stand for more than 30 minutes unless all abrupt edges are sloped to a thin edge. Before resuming work, this sloped portion shall be cleaned and wetted.

(g) Damage. Any pneumatically placed concrete which subsides after placement shall be removed.

Sec. 2626. Bolts shall be solidly embedded in plain or reinforced concrete, and the connection shall be designed so that the shear on every bolt is not more than the values set forth in Table No. 26-D.

TABLE NO. 26-D—ALLOWABLE SHEAR ON BOLTS

<table>
<thead>
<tr>
<th>DIAMETER (In Inches)</th>
<th>EMBEDMENT (In Inches)</th>
<th>SHEAR (In Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>4</td>
<td>750</td>
</tr>
<tr>
<td>5/8</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>3/4</td>
<td>5</td>
<td>1500</td>
</tr>
<tr>
<td>7/8</td>
<td>6</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>2500</td>
</tr>
<tr>
<td>1-1/8</td>
<td>8</td>
<td>3000</td>
</tr>
<tr>
<td>1-1/4</td>
<td>9</td>
<td>3500</td>
</tr>
</tbody>
</table>
CHAPTER 27—STEEL AND IRON
(Quality and Design)

Sec. 2701. The quality and design of steel and iron used structurally in buildings or structures shall conform to the requirements specified in this Chapter.

Steel used structurally shall be of such quality as to conform to U.B.C. Standard No. 27-1.

Steel used in structural members of light steel shall conform to U.B.C. Standard No. 27-2.

Steel pipe for steel pipe columns shall be of such quality as to conform to U.B.C. Standard No. 27-3, and shall be a medium carbon steel manufactured by the open hearth or electric furnace process.

Cast steel used in buildings or structures shall be of such quality as to conform to U.B.C. Standard No. 27-4.

Cast iron used in buildings or structures shall be of such quality as to conform to U.B.C. Standard No. 27-5.

Rivet steel shall conform to U.B.C. Standard No. 27-6.

Arc-welding electrodes shall conform to the requirements of U.B.C. Standard No. 27-7. Electrodes shall be of Classification Numbers E6010, E6011, E6012, E6013, E6020 or E6030 and shall be suitable for the positions and other conditions of intended use.

All structural steel, cast steel and cast iron shall be tested in accordance with the above specifications when deemed necessary by the Building Official and copies of such tests shall be filed in the office of the Building Official. No structural steel, cast steel and cast iron shall be used in any building or structure which does not comply with the above requirements or for which no test results have been filed with the Building Official. All such tests shall be made by competent testing laboratories at the expense of the owner.

The computation and design shall be properly made so that the unit working stresses specified in this Chapter are not exceeded. The structure and its details shall possess the requisite strength and rigidity for proper stability and the design of structural members shall be such as to admit of a rational analysis according to well established principles of mechanics and sound engineering practice.

All structural steel sections shall be straight and true and any section so damaged as to affect its proper carrying capacity shall not be used in the construction of any building or structure.

Sec. 2702. All parts of the structure shall be so proportioned that the sum of the maximum static stresses in pounds per square inch shall not exceed those specified in this Section.

(a) Tension

Structural Steel, net section.................................20,000
Cast Steel on net section..................................15,000
Cast Iron on net section.................................(not allowed)
Rivets, on area based on nominal diameter........20,000
Bolts, at root of thread..................................20,000
(b) **Compression**

Columns, gross section

For axially loaded columns with values of \(l/r \)

\[
\text{not greater than } 120 \quad \frac{17,000 - 0.485}{r^2}
\]

For axially loaded columns (main members) with values of \(l/r \)

\[
\text{greater than } 120 \quad \left(\frac{18,000}{1 + \frac{l^2}{18,000 r^2}} \right) \left\{ 1.6 - \frac{l}{200r} \right\}
\]

For axially loaded columns (bracing and other secondary members) with values of \(l/r \)

\[
\text{greater than } 120 \quad \frac{18,000}{1 + \frac{l^2}{18,000 r^2}}
\]

Plate Girder Stiffeners, gross section.................20,000

Webs of Rolled Sections at toe of fillet..............24,000

For main compression members, the ratio of \(l/r \) shall not exceed 180 and for bracing, struts and similar members 200.

On cast iron columns, with square or fixed ends;

\[P = 9,000 - 40 \frac{l}{r} \]

with a minimum gross diameter of six inches (6") and with the ratio \(l/r \) never in excess of 70.

In the foregoing formulas \(P \) equals the maximum unit working stress in pounds per square inch; \(l \) equals the unsupported length of the column or compression member in inches; and \(r \) equals the least radius of gyration of the column or compression member.

(c) **Bending.** Tension in extreme fibers of rolled sections, plate girders, and built-up members.............................20,000

Compressive unit stress in pounds per square inch in the flange of any member resisting flexure shall not exceed the value computed from the following formula:

\[
\text{With } \frac{ld}{bt} \text{ not in excess of } 600 \quad \frac{20,000}{600} \]

\[
\text{With } \frac{ld}{bt} \text{ in excess of } 600 \quad \frac{12,000,000}{\frac{ld}{bt}}
\]

in which \(l \) is the laterally unsupported length and \(d \) the depth of the member; \(b \) is the width and \(t \) the thickness of its compression flange, all in inches, except that \(l \) shall be taken as twice the length of the compression flange of a cantilever beam not fully stayed at its outer end against translation or rotation.

Girders, beams, lintels, and similar members may be laterally braced by joists, tie rods or similar members.
为准的两个方向。在极端纤维中的钉子，当力被认为是作用在部件的中心位置……30,000

(d) 挤压

铆钉、钉子和螺栓在经过加工或钻孔的孔中……15,000
未加工的钉子……………………………………10,000
横梁、梁和板的横梁，断面13,000

(e) 承重

<table>
<thead>
<tr>
<th></th>
<th>双重</th>
<th>单重</th>
</tr>
</thead>
<tbody>
<tr>
<td>挤压</td>
<td></td>
<td></td>
</tr>
<tr>
<td>铆钉，钉子和螺栓在经过加工或钻孔的孔中……</td>
<td>40,000</td>
<td>32,000</td>
</tr>
<tr>
<td>未加工的钉子……………………………………</td>
<td>25,000</td>
<td>20,000</td>
</tr>
<tr>
<td>钉子……………………………………</td>
<td></td>
<td>32,000</td>
</tr>
<tr>
<td>接触区域</td>
<td></td>
<td></td>
</tr>
<tr>
<td>晃动衬垫和其他上晃动的表面……</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>晃动衬垫……………………………………</td>
<td></td>
<td>27,000</td>
</tr>
<tr>
<td>膨胀滚子和摇臂（每英寸线性长度）………………</td>
<td>600d</td>
<td></td>
</tr>
</tbody>
</table>

(f) 应力的逆向。该部分区域的成员，对逆向应力的区域，不需因逆向应力的原因而增加，但应考虑在区域和布置中提供最大压缩和最大拉伸的区域。

该部分区域的成员对荷载（除风荷载外）进行交替拉伸和压缩应力应增加，在接近到连接时，通过铆接或焊接在附加材料上，使得增加的应力部分应符合以下规则:

对净总压缩应力，和对净总拉伸应力，增加算术50％。对较小的两个的较小的；并根据连接的材料和连接的钉子、螺栓、钉子或焊接，对于每个增加的应力部分单独获得的应力部分应根据本节规定。

(g) 负载施加风载。例如第2307节。

(h) 允许应力。用于钢的应力。根据建筑官规定的钢的允许应力，任何不遵守本节的2701节的钢的应力都不得超过规定的80％的应力，在2702节中规定。在使用钢的地区，如钢是提供的，应做出适当的孔的布置，减少在区域中由锈或其它缺陷。

偏心荷载

第2703节。每个单个和组合的成员应设计为提供任何由偏心荷载或作用力而引起的应力，无论该增加的应力由于偏心荷载或作用力超过10％的应力。
direct load or force on the member or members; but a member framed directly to a central web of another member shall not be considered an eccentric load or force in case the resultant of the load or force acts parallel with the said central web.

Rivets, bolts and welds subject to shearing and externally applied tensile or compressive forces shall be so proportioned that the combined unit stress will not exceed the unit stress allowed for shear.

Members subject to both axial and bending stresses shall be so proportioned that the quantity $\frac{f_a}{F_a} + \frac{f_b}{F_b}$ shall not exceed unity, in which

$F_a =$ Axial unit stress that would be permitted by this Code if axial stresses only existed.

$F_b =$ Bending unit stress that would be permitted by this Code if bending stresses only existed.

$f_a =$ Unit axial stress (actual) = the total axial stress divided by the area of the member.

$f_b =$ Unit bending stress (actual) = the bending moment divided by the section modulus of the member.

Sec. 2704. (a) Riveted Plate Girders. Riveted plate girders, cover-plated beams, and rolled beams shall in general be proportioned by the moment of inertia of the gross section. No deduction shall be made for standard shop or field rivet holes in either flange; (except that in special cases where the reduction of the area of either flange by such rivet holes, calculated in accordance with the provisions of Section 2707, exceeds 15 per cent of the gross flange area, the excess shall be deducted.) If such members contain other holes, as for bolts, pins, or countersunk rivets, the full deduction for such holes shall be made. The deductions thus applicable to either flange shall be made also for the opposite flange if the corresponding holes are there present. When two or more rolled beams or channels are used to form a girder they shall be so connected to each other as properly to distribute the loads to be carried.

(b) Plate Girder Webs. Plate girder webs shall have a thickness of not less than $\frac{1}{170}$ of the unsupported distance between flanges.

(c) Web Splices in Plate Girders. Web splices in plate girders shall be proportioned to transmit the full shearing and bending stresses in the web at the point of splice.

If the flanges are spliced, the splices shall either develop the full effective strength of the material or they shall develop the strength required by the total stresses, but in no case shall the strength developed be less than 50 per cent of the effective strength of the material spliced, nor shall butt-welded joints be only partially welded.

(d) Stiffeners. Stiffeners shall be placed on the webs of plate girders at the ends and at points of concentrated loads. They shall have a close bearing against the flanges,
shall extend as closely as possible to the edges of the flange angles, and shall not be crimped. They shall be connected to the web by enough rivets to transmit the stress. Only that portion of the outstanding legs outside the fillets of the flange angles shall be considered effective in bearing.

If \(h \) is equal to or greater that 70, intermediate stiffeners shall be required at all points where \(v \) exceeds 64,000,000

\[
\frac{h}{t}^2
\]

WHERE

\(h \) = clear depth between flanges, in inches.
\(t \) = thickness of the web, in inches.
\(v \) = greatest unit shear in panel, in pounds per square inch under any condition of complete or partial loading.

The clear distance between stiffeners, when stiffeners are required by the foregoing, shall not exceed eighty-four inches (84") or that given by the formula:

\[
d = \frac{11,000 \cdot t}{\sqrt{v}}
\]

in which \(d \) equals the clear distance between stiffeners, in inches.

Plate girder stiffeners shall be in pairs, one on each side of the web, and shall be connected to the web by rivets spaced not more than eight times their nominal diameter apart.

Intermediate stiffeners may be crimped over the flange angles.

(e) Crane Runway Girders. Crane runway girders shall be proportioned to resist any lateral forces produced by loads carried by them. These lateral forces shall in no case be less than 20 per cent of the maximum wheel loads.

(f) Flange Connections. Rivets and welds connecting the flanges to the web shall be proportioned to resist the horizontal shear due to bending as well as any loads applied directly to the flange.

(g) Flanges. The thickness of outstanding parts of flanges shall conform to the requirements of Section 2705 (b).

Unstiffened cover plates on riveted girders shall not extend more than 16 times the thickness of the thinnest outside plate beyond the outer row of rivets connecting them to the angles. The total cross-sectional area of cover plates of riveted girders shall not exceed 70 per cent of the total flange area.

If the girder is subjected to substantial fluctuations in loading, stiffeners, lateral plates or other appurtenant material shall not be welded to the tension flange, except at points where the maximum flange stress is less than half the allowable.

(h) Cover Plates. Cover plates, when required, shall be of equal thickness or shall diminish in thickness from the
flange angles outward. No plate shall be thicker than the flange angles.

(i) **Flange Sections.** The gross section of the compression flange of a plate girder shall be not less than the gross section of the tension flange.

(j) **Rolled Beams.** Rolled beams shall be so proportioned that the unit compression stresses at the web toe of the fillets resulting from concentrated loads shall not exceed 24,000 pounds. Such stresses shall be determined by the formulas:

\[
\frac{R}{t (N + 2k)} = \text{not over 24,000}
\]

\[
\frac{R}{t (N + k)} = \text{not over 24,000}
\]

WHERE

- **R** = concentrated interior load or end reaction in pounds.
- **t** = thickness of web, in inches.
- **N** = length of bearing, in inches.
- **k** = distance from outer face of flange to web toe of fillet, in inches.

(k) **Effective Span Length.** Beams, girders and trusses shall ordinarily be designed on the basis of simple spans whose effective length is equal to the distance between centers of gravity of the members to which they deliver their end reactions.

If, on the assumption of end restraint, full or partial, based on continuous or cantilever action, beams, girders, and trusses are designed for a shorter effective span length than that specified in the paragraph above, their sections, as well as the sections of the members to which they connect, shall be designed to carry the shears and moments so introduced, in addition to all other forces, without exceeding at any point the unit stresses specified in Section 2702.

Sec. 2705. (a) **Thickness of Material.** The minimum thickness of metal in structural steel shapes shall be: for sections exposed to the weather five-sixteenths inch (5/16”); for interior construction one-quarter inch (¼”); and shall be not less than one-half inch (½”) at every point for any cast iron or cast steel member, except as follows:

EXCEPTIONS: 1. The webs of channels and I-beams, the edges of rolled steel sections, steel joists, signs, skylight bars, non-bearing walls and partitions, suspended ceilings, cornice brackets, steel studs, and similar steel shapes shall not be limited to the above thickness requirements except as provided in Section 2715.

2. In steel trusses carrying roof loads only on buildings not exceeding two stories in height, the minimum thickness of metal shall be three-sixteenths inch (3/16”).

3. Steel floor and wall panels shall not be limited by the above thickness requirements, but shall be not less than 18 gauge.
(b) Projecting Elements Under Compression. Projecting elements of members subjected to axial compression or compression due to bending shall have ratios of width to thickness not greater than the following:

Single-angle struts..12
Double-angle struts, angles or plates projecting from girders, columns or other compression members; compression flanges of beams; stiffeners on plate girders; flanges or stems of tees...16

The width of plates shall be taken from the free edge to the first row of rivets or welds; the width of legs of angles, channels and zees, and of the stems of tees, shall be taken as the full nominal dimension; the width of flanges of beams and tees shall be taken as one-half the full nominal width. The thickness of a sloping flange shall be measured halfway between a free edge and the corresponding face of the web.

When a projecting element exceeds the width-to-thickness ratio prescribed in the preceding paragraph, but would conform to same and would satisfy the stress requirements with a portion of its width considered as removed, the member will be considered acceptable without the actual removal of the excess width.

Sec. 2706. Compression members when faced for bearings shall be spliced sufficiently to hold the connected members accurately in place. Other joints in riveted work, whether in tension or compression, shall be spliced so as to transfer the stress to which the member is subject.

Gross and Net Sections

Sec. 2707. (a) Riveted Holes. In computing net area the diameter of a rivet hole shall be taken as one-eighth inch ($\frac{1}{8}$") greater than the nominal diameter of the rivet.

(b) Pin Holes. In pin connected tension members, the net section across the pin hole, transverse to the axis of the member, shall be not less than 135 per cent and the net section beyond the pin hole, parallel with the axis of the member, not less than 90 per cent, of the net section of the body of the member.

In all pin connected riveted members the net width across the pin hole, transverse to the axis of the member, shall preferably not exceed eight times the thickness of the member at the pin.

(c) Chain of Holes. In the case of a chain of holes extending across a part in any diagonal or zigzag line, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters of all the holes in the chain, and adding to the section so obtained for each gauge space in the chain, the quantity $\frac{s^2}{4g}$

WHERE

s = longitudinal pitch of any two successive holes

g = transverse gauge of the same two holes.

The critical net section of the part is obtained from the chain which gives the least net width.

(d) Gross Width of Angles. For angles, the gross width
shall be the sum of the widths of the legs less their thickness. The gauge for the holes in opposite legs shall be the sum of the gauges from back of angle less the thickness.

(e) **Splice Members.** For splice members, the thickness shall be only that part of the thickness of the member which has been developed by rivets beyond the section considered.

(f) **Designed Sections.** Unless otherwise specified, tension members shall be designed on the basis of net section. Columns shall be designed on the basis of gross section. Beams and girders shall be designed as specified in Section 2704.

In determining the net section across plug or slot welds, the weld metal shall not be considered as adding to the net area.

Sec. 2708. (a) **Minimum Number of Rivets.** Connections carrying calculated stresses, except for lacing, sag bars and girts, shall have no fewer than two rivets.

(b) **Eccentricity in Members.** Members meeting at a joint shall have their gravity axis meet at a point if practicable; if not, provision shall be made for their eccentricity.

(c) **Eccentricity in Rivets.** The rivets at the ends of a member transmitting stresses into that member should have their centers of gravity on the line of the center of gravity of the member; if not, provision shall be made for the effect of the resulting eccentricity. Pins may be so placed as to counteract the effect of bending due to dead load.

(d) **Eccentricity in Angles.** Where angles in tension are connected through but one leg and the eccentricity is not taken into account, only 80 per cent of the net section of the angle shall be considered as effective.

(e) **Eccentricity in Members in Flexure.** When beams, girders or trusses are designed on the basis of simple spans, their end connections may ordinarily be designed for the reaction shears only. If, however, the eccentricity of the connection is excessive, provision shall be made for the resulting moment.

(f) **Combined Shear and Moment.** When beams, girders or trusses are subject both to reaction shear and end moment, due to full or partial end restraint, based on continuous or cantilever action, their connections shall be especially designed to carry both shear and moment without exceeding at any point the unit stresses specified in Section 2702. Ordinary end connections comprising only a pair of web angles, with not more than nominal seat and top angle, shall not be assumed to provide for this kind of end moment.

(g) **Filler Plates.** When rivets carrying computed stress pass through fillers, the fillers shall be extended beyond the connected member and the extension secured by sufficient rivets to develop the strength of the filler.

(h) **Fillers Under Stiffeners.** Fillers under plate girder stiffeners at end bearing or points of concentrated loads shall
be secured by sufficient rivets to prevent excessive bending and bearing stresses.

(1) Riveted Joints. All joints in riveted work, whether in tension or compression, shall be so spliced as properly to transmit all stresses, except as specified in Section 2706.

The minimum distance from the center of any rivet or bolt hole to any edge shall be as set forth in Table No. 27-A.

The minimum distance between centers of rivet holes shall be three diameters of the rivet.

The maximum pitch in the line of stress of compression members composed of plates and shapes shall not exceed 16 times the thinnest outside plate or shape, or 20 times the thinnest encased plate or shape with a maximum of twelve inches (12") ; and at right angles to the direction of stress the distance between lines of rivets shall not exceed 32 times the thinnest plate or shape. For angles in built sections with two gauge lines, with rivets staggered, the maximum pitch in the line of stress in each gauge line shall not exceed 24 times the thinnest plate with a maximum of eighteen inches (18") .

In tension members composed of two angles, a pitch of three feet six inches (3'6") will be allowed, and in compression members two feet (2') but the ratio l/r for each angle between rivets shall be not more than three-fourths of that of the whole member.

The pitch of rivets at the ends of built-up compression members shall not exceed four diameters of the rivets for a length equal to one and one-half times the maximum width of the member.

The minimum distance between the center of any rivet under computed stress, and the end or other boundary of the connected member toward which the pressure of the rivet is directed, shall be not less than the shearing area of the rivet shank (single or double shear respectively) divided by the plate thickness. This end distance may, however, be decreased in such proportion as the stress per rivet is less than that specified in Section 2702; and the requirement may be disregarded in case the rivet in question is one of three or more in a line parallel to the direction of the stress.
Sec. 2709. In proportioning rivets, the nominal diameter of the rivet shall be used.

Rivets carrying calculated stresses, whose grip exceeds five diameters, shall have their number increased one percent for each additional one-sixteenth inch (1/16") in the rivet grip. Special care shall be used in heating and driving such rivets.

Rivets shall be used for the connections of main members carrying live loads which produce impact, and for connections subject to reversal of stresses.

Unfinished bolts may be used in shop or field work for connections in small structures used for shelters, and for secondary members of all structures such as purlins, girts, door and window framing, alignment bracing and secondary beams in floor.

The effective bearing area of pins, bolts, and rivets shall be the diameter multiplied by the length in bearing; except that for countersunk rivets, half the depth of the countersink shall be deducted.

Rivets shall be used in the following cases:

In all connections in structures over one hundred feet (100') in height when the height is more than two and one-half times the minimum horizontal dimension at the ground line.

In all connections in structures one hundred feet (100') or less in height where the height is more than four times the least horizontal dimension at the ground line.

In all connections of beams and girders to columns and of beams and girders bracing columns in buildings over one hundred feet (100') in height, and in column splices of buildings more than two hundred feet (200') in height.

In all connections for supports of machinery or other moving loads.

Unfinished bolts may be used for connections not mentioned in the preceding paragraphs.

Turned bolts in reamed holes may be used, in place of rivets, in either shop or field work where it is impracticable to obtain satisfactory power-driven rivets, provided holes are as specified in Section 2717. The finished shank shall be long enough to provide a full grip for the nut, and washers shall be used under all nuts.

The end reaction stresses of trusses, girders, or beams, and the axial stresses of tension or compression members which are carried on rivets, shall have such stresses developed by the shearing and bearing values of the rivets or bolts.

Sec. 2710. Fusion welding may be used (in place of riveting or bolting) for connecting structural steel or wrought iron parts or members to one another, but in no case shall the stresses in such joints exceed the allowable unit working stresses given in the following table:

<table>
<thead>
<tr>
<th>Welded Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension in weld metal (butt welds)</td>
</tr>
<tr>
<td>Shear in weld metal</td>
</tr>
<tr>
<td>Compression in weld metal</td>
</tr>
</tbody>
</table>
Welded Connections (Cont'd.)

Maximum fiber stresses due to bending shall not exceed the values prescribed above for tension and compression, respectively. In designing welded joints adequate provision shall be made for bending stresses due to eccentricity, if any, in the disposition or section of base metal parts.

The same proportional increase in the above working stresses shall be allowed for the various given conditions as specified in Section 2702, Subsections (f) and (g).

U.B.C. Standard No. 27-8 shall be followed in the design and execution of structural welding.

Construction Details

Sec. 2711. Trusses shall be riveted or welded structures and only when there is sufficient reason to justify, as where riveted field connections become unwieldy, may they be designed as pin-connected structures.

All joints in riveted work, whether in tension or compression, shall be spliced properly to transmit the stresses.

Bracing shall be sufficient to withstand safely wind and other forces when the building is in the process of erection as well as after completion.

When two or more plates are in contact they shall be stitch riveted with rivets not more than twelve inches (12") apart in either direction.

The ends of beams, channels, girders and trusses that bear on masonry or reinforced concrete shall be so framed that the allowable stresses for masonry or reinforced concrete shall not be exceeded, and anchors of ample size and strength shall be provided thoroughly embedded in the masonry or reinforced concrete construction.

The ends of all beams, channels, girders, girts, purlins and similar members, that meet on a beam, girder, truss, column or pier shall be connected to each other by a strap or through the carrying members with not less than two bolts or rivets each not less than five-eighths inch (\(\frac{5}{8}\)"") in diameter in the end of each connecting member.

Tie rods shall be proportioned to resist their respective stresses, and holes for them shall be placed as near the spring of the arches as practicable.

Lacing

Sec. 2712. (a) Compression Members. The open sides of compression members shall be provided with lacing having tie plates at each end and at intermediate points if the lacing is interrupted. Tie plates shall be as near the ends as practicable. In main members carrying calculated stresses the end tie plates shall have a length of not less than the distance between the lines of rivets connecting them to the flanges, and intermediate ones of not less than one-half of this distance. The thickness of tie plates shall be not less than one-fiftieth of the distance between the lines of rivets connecting them to the segments of the members, and the rivet pitch shall be not more than six diameters and the tie plates shall be connected to each segment by at least three rivets. In welded construction, the welding on each line connecting a tie plate shall aggregate not less than one-third the length of the plate.

(b) Tension Members. Tie plates shall be used to secure the parts of tension members composed of shapes. They shall
have a length not less than two-thirds of the length specified for tie plates in compression members. The thickness shall be not less than one-fiftieth of the distance between the lines of rivets connecting them to the segments of the member and they shall be connected to each segment by at least three rivets.

(c) Spacing of Lacing Bars. Lacing bars of compression members shall be so spaced that the ratio \(l/r \) of the flange included between their connections shall be not over three-fourths of that of the member as a whole.

(d) Proportioning of Lacing Bars. Lacing bars shall be proportioned to resist a shearing stress normal to the axis of the member equal to two per cent of the total compressive stress of the member. In determining the section required the compression formula shall be used, \(l \) being taken as the length of the bar between the outside rivets connecting it to the segment for single lacing and 70 per cent of that distance for double lacing. The ratio \(l/r \) shall not exceed 140 for single lacing and 200 for double lacing.

(e) Thickness of Lacing Bars. The thickness of lacing bars shall be not less than one-fortieth for single lacing and one-sixtieth for double lacing of the distance between end rivets; their minimum width shall be three times the diameter of the rivets connecting them to the segments.

(f) Inclination of Lacing Bars. The inclination of lacing bars to the axis of the members shall preferably be not less than 45 degrees for double lacing and 60 degrees for single lacing. When the distance between rivet lines in the flanges is more than fifteen inches (15") the lacing shall be double and riveted at the intersection if bars are used, or else shall be made of angles.

Sec. 2713. Pins shall be long enough to insure a full bearing of all parts connected upon the turned-down body of the pin. Members packed on pins shall be held against lateral movement.

Pin holes shall be reinforced by plates wherever necessary to give proper bearing. At least one plate shall be as wide as the projecting flanges will allow. Where angles are used this plate shall contain sufficient rivets to distribute their portion of the pin pressure to the full cross section of the member.

Sec. 2714. Provision shall be made to transfer the column loads to the footings and foundations.

Column bases shall be set level and to correct elevation with full bearing on the masonry.

Column bases shall be finished to accord with the following requirements:

1. Rolled steel bearing plates two inches (2") or less in thickness may be used without planing or straightening; rolled steel bearing plates over two inches (2") but less than four inches (4") in thickness may be straightened by pressing, or planed on all bearing surfaces if presses are not available; rolled steel bearing plates four inches (4") or over in thick-
Sections 2714-2715

Light Steel Construction

Bearing Plates and Anchorage (Cont'd.)

ness shall be planed on all bearing surfaces (except as noted under paragraph 3 of this Section).

2. Column bases other than rolled steel bearing plates shall be planed on all bearing surfaces (except as noted in paragraph 3).

3. The bottom surfaces of column bases which rest on masonry foundations and are grouted to insure full bearing contact need not be planed.

4. Anchor bolts shall be of sufficient size and number to develop the computed stresses.

Sec. 2715. (a) General. Steel studs, steel joists and other supports used in the structural frame of light steel construction, shall be light weight rolled sections, or sections made of commonly accepted or specially formed light gauge flat rolled sheets; or a combination of both used alone or in combination with other materials of construction. Such studs, supports or steel joists may be of a determinate truss design with elements effectively joined together by arc or resistance welding, or by rivets. In the case of expanded sections, a portion of the metal may be left intact to form a connection. For steel studs the ratio of I/r shall not exceed 180.

U.B.C. Standard No. 27-9 shall be accepted as recognized engineering practice for the design of light steel structural members, except as otherwise specifically provided in this Code.

Open web or trussed members shall be so constructed that the lines of force of all connected members shall intersect at a point or proper allowance shall be made in the design for any resulting stress. The web elements shall be of sufficient strength to resist effectively the shearing stresses.

The following are the minimum thicknesses of metal permitted for various members of the structural frame of light steel construction:

Bearing studs, floor and roof framing members—16 gauge.

Roof decks supported on ribs—20 gauge.

(For steel floor and wall panel thickness, see Section 2705.)

All connections shall be riveted, bolted or welded. All steel work, including welds and connections, except where entirely encased in concrete, shall be thoroughly cleaned and given one coat of acceptable metal protection well worked into the joints and open spaces.

(b) Stresses. The unit design stress in structural members of light steel shall not exceed the minimum yield strength of the steel divided by 1.85. For steel conforming to Grade C (minimum yield point 33,000 pounds per square inch) of U.B.C. Standard No. 27-2 the maximum working stress shall not exceed 18,000 pounds per square inch. Steel of higher strength than Grade C shall be suitably identified as to yield point and ultimate strength.

(c) Construction Details. Steel studs or other steel supporting members used in the structural frame of light steel
construction and steel joists shall be connected to the supporting beams, girders, foundations or other steel supporting members by arc or resistance welding, riveting, bolting or other approved methods. All such welds in light steel construction shall be made on two sides or two edges of each bearing in such a manner as to resist effectively the stresses developed. Resistance welding shall develop the full strength of the member welded.

Steel floor and roof members supported on masonry and reinforced concrete shall have end bearings at least four inches (4") in length and the ends of such members resting on masonry or reinforced concrete shall be provided with approved joist anchors thoroughly embedded therein.

Bearing plates, when required by design, shall be securely welded, bolted or riveted to such floor and roof members, studs or other supporting members.

Bearing studs or other vertical bearing members shall rest on a sole or plate having an effective width equal to the depth of such member and having a thickness of not less than 14 gauge but in no case less than that of the vertical member resting thereon unless each such vertical bearing member is thoroughly embedded in the concrete foundation. Such soles or plates shall be effectively anchored to the foundation and all splices and intersections shall develop the full strength of the members connected.

When bearing studs or other vertical bearing members are spliced, the full strength of such members shall be developed in the splice.

Where studs do not continue full length from one story through the next story above, a cap plate or steel member shall be provided on top of the lower story studs or a sill plate on the upper story. Such cap plate or sill plate shall be of sufficient strength to distribute adequately the loads from the upper story studs to the lower story studs.

All horizontal or diagonal ties or bracing in exterior walls and bearing partitions shall be effectively arc welded, bolted or riveted to the structural frame or effectively anchored to supporting masonry.

Where plumbing, heating or other pipes or conduits are placed in or partly in an exterior wall or bearing partition necessitating the cutting of soles or plates, bracing or structural member in said wall, such members shall be reinforced so as to provide sufficient strength to resist the stresses imposed thereon or proper provisions shall be made to transfer such stresses to the points of support.

Sec. 2716. Proper provision shall be made for expansion and contraction.

Sec. 2717. All workmanship shall be equal to the best practice in modern structural shops.

Drifting to enlarge unfair holes shall not be permitted. Holes that must be enlarged to admit the rivets shall be reamed. Poor matching of holes shall be cause for rejection.

All material shall be clean and straight. If straightening or flattening is necessary, it shall be done by a process that
will not injure the material. Sharp kinks or bends shall be cause for rejection.

Rolled sections, except for minor details, shall preferably not be heated, or, if heated shall be annealed.

All steel castings shall be properly annealed.

Material may be punched one-sixteenth inch (1/16") larger than the nominal diameter of the rivets, whenever the thickness of the metal is equal to or less than the diameter of the rivets, plus one-eighth inch (1/8"). When the metal is thicker than the diameter of the rivet, plus one-eighth inch (1/8"), the holes shall be drilled, or sub-punched and reamed.

Holes for shop turned bolts shall be sub-punched and reamed or drilled from the solid. Holes for field turned bolts shall be sub-punched in the shop and reamed in the field.

When sub-punching and reaming is required the die used for punching shall be one-sixteenth inch (1/16") smaller than the nominal diameter of the rivet. Rivet holes, after assembling, shall be reamed to a diameter one-sixteenth inch (1/16") greater than the nominal diameter of the rivet.

Turned bolt holes, after assembling, shall be reamed (for field bolts in the field) to a diameter one-fiftieth inch (1/50") larger than the diameter of the turned bolt.

Rivets are to be driven hot, and, wherever practicable, by power. Rivet heads shall be of hemispherical shape and uniform in size throughout the work for the same size rivet, full, neatly finished, and concentric with the holes. Rivets, after driving, shall be tight, completely filling the holes, and with heads in full contact with the surface.

Rivets shall be heated uniformly to a temperature not exceeding 1950° F. They shall not be driven after their temperature is below 1000° F. Loose, burned and otherwise defective rivets shall be replaced.

Compression joints depending upon contact bearing shall have the bearing surfaces truly faced after the members are riveted. All other joints shall be cut or dressed true and straight.

Finished members shall be true to line and free from twists, bends and open joints.

Compression members may have a lateral variation not greater than 1/1000 of the axial length between points which are to be laterally supported.

An allowable variation of one thirty-second inch (1/32") is permissible in the overall length of members with both ends milled.

Members without milled ends which are framed to other steel parts of the structure may have a variation from the detailed length not greater than one-sixteenth inch (1/16") for members thirty feet (30') or less in length, and not greater than one-eighth inch (1/8") for members over thirty feet (30') in length.

Planing or finishing of sheared plates or shapes will not be required unless specifically called for on the drawings.

All parts of riveted members shall be well pinned or bolted and rigidly held together while riveting. Drifting done during assembling shall not distort the metal or enlarge the holes.

Gas cutting may be done under the following conditions:
1. The contractor shall be required to satisfy the Building Official as to his ability to produce satisfactory gas cuts.

2. Gas cut edges shall be regular in contour.

3. Gas cutting may be used in the preparation of base metal parts for welding, provided the edges so cut are thoroughly cleaned after cutting so as to expose clean metal.

4. Gas cutting shall not be permitted to replace the milling of surfaces specified elsewhere in this Code.

5. Gas cutting shall not be permitted on any member while it is carrying stress. To determine the net area of members so cut, one-eighth inch (\(\frac{1}{8}\)) shall be deducted from the gas cut edges. The radius of re-entrant gas cut fillets shall be as large as possible, but never less than one inch (1\(\frac{1}{2}\)). This restriction shall not apply to detail cutting for the correction of minor fabricating errors, where the removal of metal resulting from such gas cutting would not reduce the required strength of the member that is to be cut.

6. Gas cutting of holes in any member which has not been designed therefor shall not be permitted.

Sec. 2718. Parts not in contact, but inaccessible after Painting assembling, shall be properly protected by paint.

All steel work, except where entirely encased in concrete, shall be thoroughly cleaned and given one coat of approved metal protection well worked into the joints and open spaces.

Machine finished surfaces shall be protected against corrosion.

Cast iron columns shall not be painted until after acceptance by the Building Official.
PART VII
DETAILED REGULATIONS

CHAPTER 28—EXCAVATIONS, FOUNDATIONS
AND RETAINING WALLS

Excavations

Sec. 2801. Excavations for buildings and excavations accessory thereto shall be protected and guarded against danger to life and property. Permanent excavations shall have retaining walls of masonry or concrete of sufficient strength to retain the embankment together with any surcharged loads. No excavation for any purpose shall extend within one foot (1') of the angle of repose or natural slope of the soil under any footing or foundation, unless such footing or foundation is first properly underpinned or protected against settlement.

Any person making or causing an excavation to be made to a depth of twelve feet (12') or less, below the grade, shall protect the excavation so that the soil of adjoining property will not cave in or settle, but shall not be liable for the expense of underpinning or extending the foundation of buildings on adjoining properties where his excavation is not in excess of twelve feet (12') in depth. Before commencing the excavation the person making or causing the excavation to be made shall notify in writing the owners of adjoining buildings not less than 10 days before such excavation is to be made that the excavation is to be made and that the adjoining buildings should be protected. The owners of the adjoining properties shall be given access to the excavation for the purpose of protecting such adjoining buildings.

Any person making or causing an excavation to be made exceeding twelve feet (12') in depth below the grade, shall protect the excavation so that the adjoining soil will not cave in or settle, and shall extend the foundation of any adjoining buildings below the depth of twelve feet (12') below grade at his own expense. The owner of the adjoining buildings shall extend the foundations of his buildings to a depth of twelve feet (12') below grade at his own expense as provided in the preceding paragraph.

Soil Classification

Sec. 2802. (a) General. The classification of the soil under all portions of every building shall be based upon the examination of adequate test borings or excavations made at the site when required by the Building Official. The location of the test borings or excavations and the nature of the subsurface materials shall be indicated on the plans.

EXCEPTION: Certain buildings of Type V construction may have footings and foundations designed in accordance with the provisions of Section 2204 and Table No. 22-A.

(b) Moisture Content. Due allowance shall be made in determining the capacity or sub-surface materials for the effect of possible change in moisture content.
TABLE NO 28-A—ALLOWABLE SOIL PRESSURE
(Pounds per Square Foot)

<table>
<thead>
<tr>
<th>CLASS OF MATERIAL</th>
<th>MINIMUM DEPTH OF FOOTING BELOW ADJACENT VIRGIN GROUND</th>
<th>VALUE PERMISSIBLE IF FOOTING IS AT MINIMUM DEPTH, POUNDS PER SQUARE FOOT</th>
<th>INCREASE IN VALUE FOR EACH FOOT OF DEPTH THAT FOOTING IS BELOW MINIMUM DEPTH, POUNDS PER SQUARE FOOT</th>
<th>MAXIMUM VALUE, POUNDS PER SQUARE FOOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>0' 0"</td>
<td>20% of ultimate crushing strength</td>
<td>0</td>
<td>20% of ultimate</td>
</tr>
<tr>
<td>Compact coarse sand</td>
<td>1' 0"</td>
<td>1500*</td>
<td>300*</td>
<td>8000</td>
</tr>
<tr>
<td>Compact fine sand</td>
<td>1' 0"</td>
<td>1000*</td>
<td>200*</td>
<td>8000</td>
</tr>
<tr>
<td>Loose sand</td>
<td>2' 0"</td>
<td>500*</td>
<td>100*</td>
<td>3000</td>
</tr>
<tr>
<td>Hard clay or sandy clay</td>
<td>1' 0"</td>
<td>4000</td>
<td>800</td>
<td>8000</td>
</tr>
<tr>
<td>Medium stiff clay or sandy clay</td>
<td>1' 0"</td>
<td>2000</td>
<td>200</td>
<td>6000</td>
</tr>
<tr>
<td>Soft sandy clay or clay</td>
<td>2' 0"</td>
<td>1000</td>
<td>50</td>
<td>2000</td>
</tr>
<tr>
<td>Adobe</td>
<td>1' 6"</td>
<td>1000**</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Compact inorganic sand and silt mixtures</td>
<td>1' 0"</td>
<td>1000</td>
<td>200</td>
<td>4000</td>
</tr>
<tr>
<td>Loose inorganic sand silt mixtures</td>
<td>2' 0"</td>
<td>500</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Loose organic sand silt mixtures and muck or bay mud</td>
<td>0' 0"</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*These values are for footings one foot in width and may be increased in direct proportion to the width of the footing to a maximum of three times the designated value.

**For depths greater than eight feet (8') use values given for clay of comparable consistency.
(c) **Unequal Loads.** Where footings are to be placed at varying elevations the effect of adjacent loads shall be included in the foundation analysis.

Allowable Soil Pressures

Sec. 2803. The allowable unit soil pressure upon every footing shall not exceed the values as set forth in Table No. 28-A.

EXCEPTION: The tabulated values may be modified as prescribed in Section 2804.

Soil Requirements

Sec. 2804. (a) **Requirements.** Whenever, in the opinion of the Building Official, the adequacy and class of a soil cannot be determined by the test borings or excavations required by the provisions of Section 2802 (a), he may require a special soil investigation before approving the use of the footing.

(b) **Deviations.** Deviations from the allowable unit soil pressures set forth in Table No. 28-A shall be permitted only after performance of a special soil investigation by an agency acceptable to the Building Official. The Building Official may approve such deviations only after receiving a written opinion from the investigating agency together with substantiating evidence.

(c) **Stresses.** Where the bearing capacity of the soil is not definitely known or is in question, the Building Official may require load tests or other adequate proof as to the permissible safe bearing capacity at that particular location. To determine the safe bearing capacity of soil it may be tested by loading an area not less than two square feet (2 sq. ft.) to not less than twice the maximum bearing capacity desired for use. Such load shall be sustained by the soil until no additional settlement takes place for a period of not less than 48 hours in order that such desired bearing capacity may be used. Examination of sub-soil conditions may be required when deemed necessary.

Design of Footings

Sec. 2805. (a) **Footings and Foundations.** Footings and foundations, unless specifically provided, shall be constructed of masonry or concrete and shall in all cases extend below the frost line. Footings shall be designed to minimize differential settlement. Mortar used in foundation walls and footings shall be as specified in Section 2403 (e).

(b) **Structural Design.** Except for special provisions of Section 2807, covering the design of piles, all portions of footings shall be designed in accordance with the structural provisions of this Code.

Protection of Steel in Grillage Footings

Sec. 2806. When grillage footings of structural steel shapes are used on soils, they shall be completely embedded in concrete with at least six inches (6") on the bottom and at least four inches (4") at all other points.

Piles

Sec. 2807. (a) **General.** The allowable axial and lateral loads on piles shall be determined by an approved formula, by load tests, or by a foundation investigation by an approved agency. A foundation investigation shall be made if required by the Building Official.
(b) **Allowable Loads. 1. Axial Loads.** The allowable axial load on a pile shall not exceed the value given by the following formulas unless such load is otherwise determined as specified in Section 2804.

Allowable Axial Load = \(R/4 \) for all piles.

WHERE

\[
R \text{ (for steel piles)} = \frac{12 \text{ Wh} - \frac{W + 0.25P}{W + P}}{S + \frac{RL 24,000}{AE}}
\]

\[
R \text{ (for other piles)} = \frac{12 \text{ Wh} - \frac{W + 0.1P}{W + P}}{S + \frac{RL 24,000}{AE}}
\]

WHERE

- \(R \) = ultimate driving resistance, in tons.
- \(W \) = weight of striking parts, in tons.
- \(h \) = height of fall of striking parts, in feet.
- \(Wh \) = striking energy, in foot tons.
- \(P \) = weight of pile, in tons.
- \(S \) = permanent settlement of pile under the average of the last 10 blows, in inches.
- \(L \) = length of pile, in feet.
- \(A \) = average right cross-sectional area of pile material, in square inches.
- \(E \) = modulus of elasticity of pile, in pounds per square inch.

2. **Group Action.** Consideration shall be given to the reduction of allowable pile load when piles are driven in groups, where soil conditions make such load reductions advisable or necessary. The allowable axial load determined for a single pile shall be reduced by any rational method or formula approved by the Building Official.

3. **Static Load Tests.** When the allowable axial load of a single pile is determined by load test, one of the following methods shall be used:

 Method 1. It shall not exceed 50 per cent of the yield point under test load. The yield point shall be defined as that point at which an increase in load produces a disproportionate increase in settlement.

 Method 2. It shall not exceed one-half of the load which causes a net settlement, after deducting rebound, of one one-hundredth inch (.01") per ton of test load, which has been applied for a period of at least 24 hours.

 Method 3. It shall not exceed one-half of that load under which, during a 40-hour period of continuous load application, no additional settlement takes place.

4. **Column Action.** All piles standing unbraced in air, water, or material not capable of lateral support, shall conform with the applicable column formula as specified in this Code. Such piles driven into firm ground may be considered fixed and laterally supported at five feet (5') below
the ground surface and in soft material at ten feet (10') below the ground surface unless otherwise prescribed by the Building Official after a foundation investigation by an approved agency.

5. **Piles in Subsiding Areas.** Where piles are driven through subsiding fills or other subsiding strata and derive support from underlying firmer materials, consideration shall be given to the downward frictional forces which may be imposed on the piles by the subsiding upper strata.

(c) **Protection of Pile Materials.** Where the boring records of site conditions indicate possible deleterious action on pile materials because of soil constituents, changing water levels or other factors, such materials shall be adequately protected by methods or processes approved by the Building Official. The effectiveness of such methods or processes for the particular purpose shall have been thoroughly established by satisfactory service records or other evidence which demonstrates the effectiveness of such protective measures.

(d) **Structural Strength of Piles and Limiting Values of Stresses.** The allowable compressive stresses on all piling materials shall not exceed the values as specified below except that stresses may be increased on submission of satisfactory data for specially protected, selected, or high strength, material.

1. Concrete—$225 f'_c$.
2. Structural steel—9000 pounds per square inch.
3. Wood—The allowable stress in compression parallel to the grain of round wood piles shall not exceed 60 per cent of the basic stress for clear material as recommended in U.B.C. Standard No. 25-2 and in no event shall the stress exceed 1000 pounds per square inch.

The full load shall be assumed as carried on the pile cross-section located at the upper surface of the soil supporting the pile.

Where the influence of subsiding fills is considered as imposing loads in the pile, the above stresses may be increased if satisfactory substantiating data are submitted.

(e) **Round Wood Piles.** 1. Quality. Every wood pile shall conform to the specification for Class A or Class B piles in U.B.C. Standard No. 28-1.

2. **Treated Piles.** Creosoted piles of Douglas fir or of Southern pine shall be treated with Grade 1 creosote in accordance with U.B.C. Standard No. 28-2 with final retention of not less than 12 pounds per cubic foot for Douglas fir nor less than 15 pounds per cubic foot for Southern pine.

(f) **Pre-Cast Concrete Piles.** 1. Quality. Pre-cast concrete piles shall be cast in one piece and prior to driving and at 28 days after pouring shall develop an ultimate compressive strength (f'_c) of at least 3000 pounds per square inch.

2. **Reinforcement Ties.** The longitudinal reinforcement in driven pre-cast concrete piles shall be laterally tied with
steel ties or wire spirals. Ties and spirals shall be spaced not more than three inches (3") apart, center to center, for a distance of two feet (2') from the ends and not more than eight inches (8") elsewhere.

3. Diameter. The diameter of ties and spirals shall be as follows: For piles having a diameter of sixteen inches (16") or less, wire shall not be smaller than No. 5 gauge.
For piles having a diameter of more than sixteen inches (16") and less than twenty inches (20"), wire shall not be smaller than No. 4 gauge.
For piles having a diameter twenty inches (20") and larger, wire shall not be smaller than one-quarter inch (\(\frac{1}{4}\"\)) round or No. 3 gauge.

4. Stresses. Pre-cast concrete piling shall be designed to resist stresses induced by handling and driving as well as by loads.

(g) Uncased Cast-In-Place Friction Piles. 1. Quality. Friction Piles. Concrete piles cast-in-place against earth in drilled or bored holes shall be made in such a manner as to insure the exclusion of any foreign matter and to secure a full-sized shaft. The length of such pile shall be limited to not more than 30 times the average diameter. Concrete shall have an ultimate compressive strength (\(f'_c\)) of not less than 2500 pounds per square inch.

2. Friction. Any uncased cast-in-place pile may be assumed to develop a frictional resistance equal to one-sixth of the bearing value of the soil material at minimum depth as stipulated in Table No. 28-A but not to exceed 500 pounds per square foot unless a greater value is prescribed by the Building Official after a soil investigation as specified in Section 2804.

3. Combined Friction and Bearing Prohibited. Frictional resistance and bearing resistance shall not be assumed to act simultaneously.

(h) Metal-Cased Concrete Piles. 1. Dimensions. Every metal casing for a concrete pile shall have a sealed tip with a diameter of not less than eight inches (8")
Concrete piles cast in place in metal shells shall have shells driven for their full length in contact with the surrounding soil and left permanently in place. The shells shall be sufficiently strong to resist collapse and sufficiently water tight to exclude water and foreign material during the placing of the concrete.

2. Concrete. All concrete used in metal-cased concrete piles shall have an ultimate compressive strength (\(f'_c\)) of not less than 2500 pounds per square inch.

3. Order of Driving. Piles shall be driven in such order and with such spacing as to insure against distortion of or injury to piles already in place. No pile shall be driven within four and one-half average pile diameters of a pile filled with concrete less than 24 hours old unless approved by the Building Official.

(i) Concrete Filled Steel Pipe Piles. 1. Steel Pipe. Steel Pipe piles shall conform to U.B.C. Standard No. 28-3. If it
Steel Piles
(Cont'd.)

is desired to use pipe of other material, satisfactory substantiating data must be submitted.

2. Concrete. The concrete used in concrete filled steel pipe piles shall have an ultimate compressive strength (f'_c) of not less than 2500 pounds per square inch.

3. Allowable Loads. The allowable load on concrete-filled steel pipe piles shall not exceed 9000 pounds per square inch on the steel plus .225 of the ultimate compressive strength (f'_c) of the concrete.

(j) Rolled Structural Steel Piles. 1. Material. Structural steel piles shall conform to U.B.C. Standard No. 27-1. No section shall have a nominal thickness of metal less than three-eighths inch ($\frac{3}{8}"$).

(k) Jetting. Jetting shall not be used except where and as specifically permitted by the Building Official. When used, jetting shall be carried out in such a manner that the carrying capacity of existing piles and structures shall not be impaired. After withdrawal of the jet, piles shall be driven down until the required resistance is obtained.

(l) Special Piles or Special Conditions. The use of types of piles not specifically mentioned herein, and the use of piles under conditions not specifically covered herein, shall be permitted, subject to the approval of the Building Official, upon submission of acceptable test data, calculations or other information relating to the properties and load-carrying capacity of such piles.
CHAPTER 29 — VENEERED WALLS

Sec. 2901. (a) Limitations. Veneer shall not be assumed to add to the strength of any wall.

(b) Height. Exterior veneer shall not be attached to wood at any point more than twenty feet (20') above the adjacent ground elevation.

(c) Horizontal Forces. Veneer shall not be assumed to resist horizontal forces, except as specifically provided in Section 2902.

(d) Exceptions. The limitations in this Chapter shall not apply to interior veneer of units five-eighths inch (5/8") or less in thickness.

Sec. 2902. (a) Scope. The provisions of this Section shall apply to all veneer which is constructed of masonry conforming to the requirements of Chapter 24.

(b) Vertical Loads. No veneer shall support any vertical load other than the dead load of the veneer above. Veneer above openings shall be supported upon lintels of incombustible material.

(c) Anchorage. Masonry veneer shall be attached to the supporting wall with corrosion-resistant metal ties capable of resisting a horizontal force equal to four times the weight of the attached veneer.

Veneer ties shall be not less in thickness than No. 6 W. & M. gauge wire. Veneer ties shall be spaced not more than twenty-four inches (24") apart horizontally and not more than twelve inches (12") apart vertically.

Veneer ties shall be attached to a continuous horizontal tie not less in thickness than No. 8 W. & M. gauge wire and embedded in a horizontal joint.

(d) Support. The weight of masonry veneer shall be supported upon footings or other incombustible structural supports spaced not over twelve feet (12') vertically above a point twenty feet (20') above the adjacent ground elevation.

EXCEPTION: The weight of masonry veneer attached to wood frame walls shall be supported entirely upon footings.

Sec. 2903. (a) Scope. The provisions of this Section shall apply to all veneer of materials not regulated by the requirements of Chapter 24.

(b) Loads and Stresses. For the purpose of this Section, veneer of non-structural units shall not be assumed to support any superimposed loads.

(c) Anchorage. Non-structural material used as veneer shall be anchored to the supporting wall by corrosion-resistant metal ties not less in thickness than No. 9 W. & M. gauge wire, and spaced not more than twelve inches (12") apart both horizontally and vertically.

EXCEPTIONS: Approved units, or units of flat tile, stone, or terra cotta which are manufactured with scored surface may be cemented to a masonry or concrete wall or to exterior plaster with Type A portland cement mortar,
provided the mortar bond is sufficient to withstand a shearing stress of 50 pounds per square inch after curing for 28 days.

Sec. 2904. (a) General. In addition to the general requirements of this Chapter, all veneer of glass shall comply with the regulations in this Section.

Glass veneer shall not be attached to any exterior wall at a point more than thirty-five feet (35') above the adjoining ground elevation.

(b) Dimension. Glass veneer units shall be not less than one-eighth inch (1/8") in thickness. Units less than three-sixteenths inch (3/16") in thickness shall be not larger in area than one square foot (1 sq. ft.). Units not more than one-quarter inch (1/4") nor less than three-sixteenths inch (3/16") in thickness shall be not larger in area than four square feet (4 sq. ft.).

No unit shall be larger in area than ten square feet (10 sq. ft.) or more than four feet (4') in length.

(c) Attachment. Every glass veneer unit shall be attached to the backing by approved corrosion-resistant ties and shall be supported upon shelf angles.

EXCEPTIONS:
1. Below a point twenty-two feet (22') above the adjacent ground elevations, the ties may be omitted.
2. Below a point three feet (3') above the adjacent ground elevations, the ties and shelf angles may be omitted.

(d) Mastic. The mastic shall cover not less than one-half of the area of the unit after the unit has been set in place and shall be neither less than one-quarter inch (1/4") nor more than one-half inch (1/2") in thickness.

The mastic shall be insoluble in water and shall not lose its adhesive qualities when dry.

Absorbent surfaces shall be sealed by a bonding coat before mastic is applied. The bonding coat shall be cohesive with the mastic.

Glass veneer surfaces, to which mastic is applied, shall be clean and uncoated.

(e) Shelf Angles. Shelf angles shall be of corrosion-resistant material capable of supporting four times the weight of the supported veneer.

The shelf angles shall be spaced vertically in alternate horizontal joints but not more than three feet (3') apart.

The shelf angles shall be spaced not farther apart horizontally than the width of the supported units.

(f) Backing. Exterior glass veneer shall be applied only upon masonry, concrete, or exterior plaster.

(g) Expansion Joints. Glass veneer units shall be separated from each other and from adjoining materials by an expansion joint at least one thirty-second inch (1/32") in thickness. There shall be at least one-sixty-four inch (1/64") clearance between bolts and the adjacent glass.
CHAPTER 30—ENCLOSURE OF VERTICAL OPENINGS

Sec. 3001. Vertical openings are required to be enclosed in certain buildings depending upon the occupancy of the building, height of building or the Type of Construction. The vertical openings required to be enclosed are specified under Occupancy in Part III, and for stairways and ramps are specifically included in Chapter 33.

Sec. 3002. Walls and partitions enclosing elevators shall be of not less than the fire-resistive construction required under Types of Construction in Part V. Enclosing walls of elevator shafts may consist of wire glass set in metal frames on the entrance side only. Elevator shafts extending through more than two stories shall be equipped with an approved means of adequate ventilation to and through the main roof of the building.

Sec. 3003. All shafts, ducts, chutes and other vertical openings not covered in Section 3002 shall have enclosing walls conforming to the requirements specified under Type of Construction of the building in which they are located.

Sec. 3004. Air ducts passing through a floor shall be enclosed in a shaft. The shaft shall be as required for vertical openings in Part V. Dampers shall be installed where ducts pierce the shaft enclosure walls. Dampers shall conform to U.B.C. Standard No. 30-1. Air ducts in Group I Occupancies need not be enclosed in a shaft if conforming to Chapter 51. (See Appendix).
CHAPTER 31—FLOOR CONSTRUCTION

General

Sec. 3101. Floor construction shall be of materials and construction as specified under Occupancy in Part III and under Types of Construction in Part V.

All floors shall be so framed and tied into the framework and supporting walls as to form an integral part of the whole building.

The types of floor construction used shall provide means to keep the beams and girders from spreading by installing either ties or bridging with no laterally unsupported length of joists being permitted to exceed eight feet (8') except as otherwise specified in Sections 3102 and 3103.

Fire-resistive standards of floor construction are specified in Section 4305.

Concrete Floors

Sec. 3102. Concrete slab floors shall be not less than two inches (2") thick. Topping when poured monolithic with the slab may be included as a structural part of the slab. Sleepers for the nailing of a wood floor shall not decrease the required structural depth of the slab unless placed in the direction of span and then shall not be placed more than one-half inch (1/2") into the slab.

Steel Joisted Floors

Sec. 3103. Steel joisted floors shall consist of steel joists as specified in Section 2715. When used in Type I or Type II buildings they shall have a reinforced concrete or gypsum slab not less than two inches (2") thick placed on and secured to the top thereof, and a fire-resistive ceiling as specified in Section 4305, on the under side thereof, fully covering and protecting the joists; provided that when such joists are used in places where unprotected wood joists are permitted the steel joists need not be protected with fire-resistive materials as specified above.

The reinforced concrete or gypsum slab placed on and secured to the top of the steel joists shall be sufficiently reinforced to support all dead, live or other loads between joists. Joists shall be securely cross bridged at intervals not to exceed eight feet (8') along the joist length.

Bridging shall be provided during the period of construction to support adequately the top chord or flange against lateral movement and such bridging shall be designed to hold each joist in a vertical plane. Sufficient permanent bridging shall be installed to stay the joists laterally and to transmit any horizontal forces in either direction perpendicular to the direction of the joists. Such bridging shall consist of solid concrete sections, structural steel shapes or plates, portal bridging, diagonal rods, or other bridging which will provide equal stiffness. Any row of bridging shall be capable of transferring 500 pounds from each joist to the adjoining joists.

Cellular Steel Floors

Sec. 3104. (a) General. Cellular steel floor construction shall consist of sheet or strip steel formed into an integrated system of parallel steel beams which combine the function of load-bearing members and a continuous deck spanning
between main supporting girders, beams, or walls.
When used in fire-resistive construction, steel floors shall have a minimum of two inches (2"") of concrete fill on top and shall be protected with a fire-resistive ceiling suspended from the underside.

(b) Physical Properties. The steel used in the manufacture of steel floor units shall be equal to the requirements of U.B.C. Standard No. 27-2.

(c) Minimum Thickness. The thickness of the steel used in the manufacture of steel floors shall be not less than U. S. Standard Gauge No. 18.

(d) Design. Cellular steel floors shall admit of a rational analysis, and such floor assemblies shall have been tested and certified by a recognized testing agency to substantiate stress values used.

Flexural stress values shall not exceed 60 per cent of the yield point specified for the grade steel permitted in Subsection (b) of this Section.

When plastered ceilings are suspended from steel subfloor units, the maximum permissible deflection due to the full live load after the plaster is applied shall not exceed 1/360 of the span.

Sec. 3105. (a) Wood Joisted Floors. Wood joisted floors shall be framed and constructed and anchored to supporting wood stud or masonry walls as specified in Chapter 25. Wood joisted floors need not be fire-protected on the underside except where specifically required under Occupancy in Part III, Location in Part IV, or Type of Construction in Part V.

Girders supporting first floor joists in residence buildings shall be not less than four inches by four inches (4" x 4"") for spans of five feet (5') or less, or not less than four inches by six inches (4" x 6") (placed on edge) for spans not more than seven feet (7').

Where the joists are not designed as specified in Chapter 25, Table No. 31-A gives the maximum allowable spans for floor joists of a grade not less than 1100/ or No. 2 Douglas fir or Southern pine or comparable grades in other species surfaced four sides to U.B.C. Standard No. 25-1 sizes and based on live load of 40 pounds per square foot uniformly distributed.

Joists of other grades, other woods and other sizes may be used, in which case they shall not be stressed to exceed the maximum allowable fiber stress as specified in Chapter 25.

Floor joists shall have a clearance of not less than eighteen inches (18") between the bottom of the joists and the surface of the ground underneath.

Joists under bearing partitions shall be installed as specified in Chapter 25. All joists, beams and girders shall be framed away at least two inches (2"") from all flues and chimneys and at least four inches (4"") from the back of any fireplace. All wood floor joists having a span of more than eight feet (8') shall have bridging as specified in Chapter 25.

Solid blocking not less than two inches (2"") nominal in thickness and full depth of the joists shall be provided in
TABLE NO. 31-A—ALLOWABLE SPANS FOR FLOOR JOISTS

<table>
<thead>
<tr>
<th>SIZE (Inches)</th>
<th>SPACING CENTER TO CENTER (Inches)</th>
<th>MAXIMUM ALLOWABLE SPAN (Feet and Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plastered Ceiling Below</td>
</tr>
<tr>
<td>2 x 6</td>
<td>12</td>
<td>10-5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>9-1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7-8</td>
</tr>
<tr>
<td>2 x 8</td>
<td>12</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>9-11</td>
</tr>
<tr>
<td>2 x 10</td>
<td>12</td>
<td>17-5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15-2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>12-6</td>
</tr>
<tr>
<td>2 x 12</td>
<td>12</td>
<td>20-11</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18-3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>15-1</td>
</tr>
<tr>
<td>2 x 14</td>
<td>12</td>
<td>24-4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>21-4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>17-8</td>
</tr>
<tr>
<td>3 x 6</td>
<td>12</td>
<td>12-4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>9-10</td>
</tr>
<tr>
<td>3 x 8</td>
<td>12</td>
<td>16-4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>14-11</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13-1</td>
</tr>
<tr>
<td>3 x 10</td>
<td>12</td>
<td>20-6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>18-10</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>16-5</td>
</tr>
<tr>
<td>3 x 12</td>
<td>12</td>
<td>24-6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>22-7</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>20-0</td>
</tr>
<tr>
<td>3 x 14</td>
<td>12</td>
<td>28-7</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>26-4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>23-1</td>
</tr>
</tbody>
</table>

The following places: over all bearing walls, bearing partitions and around all stairways or other vertical openings; and over all girders, except when joists are not ceiled on the underside thereof. Such solid blocking shall serve as the required bridging specified in Chapter 25.

In wood frame floor construction where suspended ceilings occur, the space between the ceiling and the floor above shall be divided into areas not exceeding one thousand square feet (1000 sq. ft.) in a manner required for partitioning attic space in Section 3205.
TABLE NO. 31-B—MINIMUM THICKNESSES OF PLYWOOD

<table>
<thead>
<tr>
<th>Plywood Thickness (Inches)</th>
<th>Live Loads (lbs. per sq. ft.)</th>
<th>20</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>18 inch span</td>
<td>12 inch span</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>22 inch span</td>
<td>16 inch span</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>27 inch span</td>
<td>21 inch span</td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>33 inch span</td>
<td>24 inch span</td>
<td></td>
</tr>
</tbody>
</table>

(b) **Plywood Flooring.** Where used as flooring, plywood shall be of the minimum thicknesses specified in Table No. 31-B.

Sec. 3106. Mill constructed floors shall be not less than three inches (3") nominal splined or tongued and grooved plank covered with one inch (1") nominal flooring laid crosswise or diagonal. Top flooring shall not extend closer than one-half inch (1/2") to walls to allow for swelling in case the floor becomes wet. Such one-half inch space shall be covered by a molding fastened to the wall and so arranged that it will not obstruct the swelling or shrinking movements of the floor. Corbeling of masonry walls under floor planks may be used in place of such molding.

If laminated floors are used, at least two laminations at the wall shall be omitted until after glazing and roofing has been completed.

See Section 2517 (b) for detailed requirements.
CHAPTER 32—ROOF CONSTRUCTION
AND COVERING

General

Sec. 3201. Roof covering shall be as required under Occupancy in Part III, Location in Part IV or Types of Construction in Part V. All roofs shall be so framed and tied into framework and supporting walls as to form an integral part of the whole building.

Construction

Sec. 3202. The general requirements for construction of floors as specified in Chapter 31 shall apply to roofs except that in Type II buildings the roof sheathing shall be not less than two inches (2") nominal in thickness and except that concrete or gypsum roof slabs shall be not less than two inches (2") in thickness.

Roof trusses shall have all joints well fitted and shall have all tension members well tightened before any load is placed on the truss. Diagonal and sway bracing shall be used to brace all roof trusses. The allowable working stresses of materials in trusses shall be as specified in Chapters 25 and 27. The minimum net section of the members after framing shall be used in determining the strength of the truss at any point.

Plywood roof sheathing, unless of exterior type, shall have no surface or edge exposed to weather.

TABLE NO. 32-A—ALLOWABLE SPANS FOR CEILING JOISTS AND ROOF RAIOTHERS

<table>
<thead>
<tr>
<th>SIZE (Inches)</th>
<th>SPACING CENTER TO CENTER (Inches)</th>
<th>MAXIMUM ALLOWABLE SPAN (Feet and Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ceiling Joists</td>
<td>Rafters</td>
</tr>
<tr>
<td></td>
<td>Slope of Less than 4 in 12</td>
<td>Slope of 4 in 12 to 12 in 12</td>
</tr>
<tr>
<td>2 x 4</td>
<td>12</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>10-1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>8-11</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6-1</td>
</tr>
<tr>
<td>2 x 6</td>
<td>12</td>
<td>16-7</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15-4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13-8</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>12-2</td>
</tr>
<tr>
<td>2 x 8</td>
<td>12</td>
<td>21-7</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20-1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>17-11</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>16-6</td>
</tr>
<tr>
<td>2 x 10</td>
<td>12</td>
<td>26-9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>25-0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>22-5</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>20-8</td>
</tr>
</tbody>
</table>
Sec. 3203. The design of the roof construction shall be in accordance with engineering regulations for the materials used.

Where the roof is not designed as specified in Chapter 25, Table No. 32-A gives the maximum allowable spans for ceiling joists and roof rafters of a grade not less than 1100/ or No. 2 Douglas fir or Southern pine or comparable grades in other species, surfaced four sides to U.B.C. Standard No. 25-1 sizes and based on the live loads specified in Section 2305.

Joists or rafters of other grades, other woods and other sizes may be used, in which case they shall not be stressed to exceed the minimum allowable fiber stress as specified in Chapter 25.

The allowable span of roof rafters shall be measured from plate to ridge, except that where rafters are braced to ceiling joists and a complete truss is formed, the spans shall be considered as the distance between intersecting points of trussing.

Roof framing and trussing shall be thoroughly and effectively angle braced. Roof joists when supported on a ribbon board shall be well nailed to the stud.

Sec. 3204. (a) General. Roof coverings for all buildings shall be either "Fire-Retardant" or "Ordinary" roof coverings as specifically required either by Location in Part IV or by Type of Construction in Part V. The roof covering shall be securely fastened to the supporting roof construction.

(b) Composition Roofing Materials. For purposes of this Section, certain terms are designated as follows:

Felt—Roofing felt made from organic or asbestos fibers saturated with bituminous compound.

Cap Sheet—Roofing made of organic or asbestos fibers saturated and coated on both sides with a bituminous compound and surfaced with mineral granules, mica, talc, ilmenite, asbestos fibers or similar materials, except on the unexposed portions of split cap sheets.

Cementing Materials—Built-up composition roof shall be thoroughly mopped solid between layers with bituminous compound using not less than 20 pounds of hot asphalt or not less than one and one-half gallons of cold bituminous compound in accordance with roofing manufacturer's published specifications or hot coal tar pitch, using 30 pounds per one hundred square feet (100 sq. ft.) of roof area.

Spot Cementing—Intermittent application of asphalt sealing agent in an amount not less than 10 pounds per one hundred square feet (100 sq. ft.) of roof area at points not more than twelve inches (12") apart.

Base Sheets—One or more layers of saturated felt or saturated and coated roofing products over which is placed a cap sheet, asbestos shingles, composition shingles, gravel surfacing, ceramic or other similar surfacing materials.

(c) Materials. All materials shall be delivered in original packages bearing manufacturer's label. Mineral surfaced cap
sheets, asphalt shingles and smooth surface cap sheets shall bear the label of the Underwriters' Laboratories, Inc., for Class A, B or C roofing.

Nails for composition roof shall not be smaller than 12 gauge, with heads not less than three-eighths inch (3/8") in diameter for shingle application and nine-sixteenths inch (9/16") for built-up roofs and shall be long enough fully to penetrate the sheathing with a maximum three-fourths inch (3/4"). Smaller head nails may be substituted providing metal discs are used with them. Exposed nails and shingle nails shall be corrosion resistant.

(d) Application. Base sheets shall be nailed to the roof sheathing using not less than one nail to each one and one-third square feet (1 1/3 sq. ft.) of roof area, or base sheets may be spot cemented to an existing composition roof, or spot cemented or fully mopped to a suitable deck.

Asphalt shingles shall be nailed according to manufacturer's printed specifications, but for strip shingles of square tab type, weighing approximately 210 pounds per square and measuring twelve inches by thirty-six inches (12"x36"), no less than six nails shall be used per each strip.

Hot asphalt shall be applied at a temperature of not less than 375 degrees Fahrenheit and shall in no case be heated to a temperature higher than 425 degrees Fahrenheit at the kettle.

Coal tar pitch shall not be heated above 375 degrees Fahrenheit.

(e) Fire-Retardant Roof Coverings. A fire-retardant roof covering shall be any roof covering which meets the requirements specified for any one of the following roofings, 1 to 7 inclusive, or shall be any roof assembly bearing the label of the Underwriters' Laboratories, Inc., for Class A or B roofing.

1. Any built-up composition roofing consisting of materials whose fire-retardant values as set forth in Table No 32-B equal not less than 15 points including a top covering selected from parts (b), (c) or (d) of said table.

2. Hydraulic compressed rigid shingles not less than one-eighth inch (1/8") thick, composed of portland cement and asbestos fibers, laid over a layer of saturated felt weighing not less than 14 pounds to the one hundred square feet (100 sq. ft) or hydraulic compressed rigid sheets not less than seven thirty-seconds inch (7/32") thick, composed of portland cement and asbestos fibers. The aforesaid felt may be omitted when the compressed shingles are placed over an existing roof covering.

3. Asphalt-saturated mineral-surfaced prepared composition shingles laid so there are not less than two thicknesses at any point. The combined weight of such shingles shall be not less than 200 pounds to the one hundred square feet (100 sq. ft.) of completed roof area.

4. Concrete slab or concrete tile roofs, constructed as specified in Chapter 26 without additional roof covering.

5. Metal roof covering of corrugated, standing seam or flat
<table>
<thead>
<tr>
<th>SHIPPING WEIGHT (In lbs.)</th>
<th>TYPES OF MATERIALS</th>
<th>MIN. WT. PER 100 SQ. FT. OF ROOF AREA</th>
<th>FIRE RETARDANT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) BASE SHEETS ONLY</td>
<td>Asphalt Saturated Felt</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Felt</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated and Coated Dampcourse</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Asphalt Smooth Surfaced Roofing</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Asbestos Felt</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Asbestos Felt</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>(b) BASE OR CAP SHEETS</td>
<td>Asphalt Saturated Asbestos Felt (Black Top)</td>
<td>41</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Asbestos Felt (Black Top)</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Asbestos Felt (minimum 2 layers)</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>(c) CAP SHEETS ONLY</td>
<td>Mineral Surfaced Split Sheets (minimum 2 layers)</td>
<td>106</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ilmenite Surfaced Split Sheets (minimum 2 layers)</td>
<td>106</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ilmenite Surfaced Roofing</td>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mineral Surfaced Asphalt Cap Sheet</td>
<td>83</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Smooth Surfaced Cap Sheet</td>
<td>68</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Smooth Surfaced Cap Sheet</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Smooth Surfaced Cap Sheet</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Asbestos Roofing (White Top)</td>
<td>37</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Asphalt Saturated Asbestos Roofing (White Top)</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>(d) GRAVEL, CERAMIC AND OTHER SIMILAR SURFACING MATERIALS</td>
<td>Gravel ¼" to ½" in size</td>
<td>400</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Slab ¼" to ½" in size</td>
<td>300</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Ceramics and other surfacing materials</td>
<td>300</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>¼" to ½" in size</td>
<td>400</td>
<td>6</td>
</tr>
</tbody>
</table>
type of not less than No. 30 U. S. gauge metal. All flat metal roof coverings shall be laid on solid sheathing. Corrugated or standing seam metal roof covering shall be designed to support the required live load between supporting members.

6. Slate shingles securely fastened with copper nails or with copper nails and No. 14 B. and S. gauge copper wire, with nails of such length as to provide not less than three-fourths inch (\(\frac{3}{4}\)) of penetration into the nailing strips or sheathing. Under all such shingles there shall be placed at least one layer of asphalt saturated felt weighing not less than 30 pounds to 108 square feet.

7. Clay roof tile securely fastened with copper nails or copper wire; provided that for roofs not exceeding a rise of eight inches (8") in twelve inches (12"), galvanized iron nails may be used, and provided further that tile with projection lugs need not be nailed or wired in place. Wire shall be not smaller than No. 14 B. and S. gauge. Nails shall penetrate the supporting roof construction not less than three-fourths inch (\(\frac{3}{4}\)).

Roofing tile other than flat pan tile with or without flanges, or flat shingle tile, or flat decorative tile, shall satisfy the following strength requirements: When supported on the turned-down edges at points six inches (6") each side of the center of the tile, giving four points of support and a span of twelve inches (12") and loaded with a concentration at the center, the average breaking load per tile for five representative tile tested shall be not less than 400 pounds and the breaking load for any individual tile tested shall be not less than 350 pounds.

Roof tile shall not absorb more than 15 per cent of the dry weight of the tile during a 48-hour immersion test.

Under all burned clay units, there shall be placed not less than two layers of asphalt saturated rag felt, each layer weighing not less than 14 pounds to one hundred square feet (100 sq. ft), solidly mopped between and surfaced with asphalt.

(f) Ordinary Roofings. “Ordinary” roofing shall be any roof covering which meets the requirements specified for any one of the following roofings, 8 to 10 inclusive, or shall be any roofing meeting the Class C Specifications of the Underwriters' Laboratories, Inc.

8. Any composition roofing or any built up composition roofing consisting of layers of roofing felt, roll roofing, felt membrane or gravel, the sum of whose fire-retardant values as set forth in Table No. 32-B equals not less than 10.

9. Asphalt shingles laid in one or more layers.

10. Wood shingles of clear vertical grain all-heart wood, not less in thickness than five shingles to two inches (2") at the butt, laid with the following exposures:

<table>
<thead>
<tr>
<th>Total Length of Shingle</th>
<th>Permissible Exposed Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 in.</td>
<td>5 in.</td>
</tr>
<tr>
<td>18 in.</td>
<td>5(\frac{1}{2}) in.</td>
</tr>
<tr>
<td>24 in.</td>
<td>7(\frac{1}{2}) in.</td>
</tr>
<tr>
<td>32 in.</td>
<td>9(\frac{1}{2}) in.</td>
</tr>
<tr>
<td>36 in.</td>
<td>11 in.</td>
</tr>
</tbody>
</table>
All wood shingles shall be nailed firmly with copper, zinc, zinc-coated or commercially pure iron nails of at least 14 B. and S. gauge and not less than one and one-fourth inch (1 1/4") long. Each shingle shall be nailed with two nails driven substantially into the supporting roof construction.

Wood shingles bearing the label of any recognized inspection agency, certifying compliance with U.B.C. Standard No. 32-1, may be accepted as meeting the requirements of this Code.

(g) Roofings for Group J Occupancies. On buildings housing Group J Division 1 occupancies any composition roofing having a fire-retardant value equal to not less than six, as set forth in Table No. 32-B, may be used, unless otherwise required because of location as specified in Parts IV and V of this Code.

Sec. 3205. All buildings shall have access provided to the attic space by means of a stairway or permanent ladder or a scuttle. The openings provided through the ceiling for such access into the attic space shall be not less than twenty-two inches by thirty inches (22" x 30") and shall be located in the hallway or corridor of all Type III and V buildings three stories or more in height.

Type III or V buildings, one or two stories in height, shall have scuttle holes into the attic space which are not less than eighteen inches (18") square.

In wood frame roof construction where ceilings occur the attic spaces or spaces between ceilings and the under side of roofs shall be divided into horizontal areas of not more than twenty-five hundred square feet (2500 sq. ft.) with tight one-inch (1") partitions of matched wood, one-half inch (1/2") thick exterior type plywood, or approved incombustible materials. All openings through these partitions shall be protected by self-closing doors of the same thickness and materials as the partition.

EXCEPTION: Where the attic is fully sprinklered the divided horizontal area may be tripled.

In buildings with no ceilings and having rooms with floor areas of over thirty thousand square feet (30,000 sq. ft.), tight draft stops shall be installed to prevent a free current of air under the roof. These draft stops in trussed roofs shall extend from the roof down to the bottom chord of the truss and shall divide the under roof or attic into sections not to exceed twenty thousand square feet (20,000 sq. ft.) in area.

Sec. 3206. The water from the roof of all buildings which would flow by gravity over a public sidewalk shall be carried by means of conductors under the sidewalk and through the curb into the gutter. Overflows shall be installed at each low point of the roof to which the water drains.

EXCEPTION: Buildings of Group I, or J, the walls of which are ten feet (10') or more from the street property line, need not comply with the above.
CHAPTER 33—STAIRS AND EXITS

General

Sec. 3301. (a) Purpose. The purpose of this Chapter is to provide minimum standards of egress facilities for occupants of buildings.

(b) Scope. Every building shall be provided with exits as required by this Chapter. Where there is conflict between a general requirement and a specific requirement for an individual occupancy, the specific requirement shall be applicable.

(c) Definitions. "Occupant Load" is the total number of persons actually occupying a building or portion thereof at any one time, but shall never be assumed to be less than the result obtained by dividing the floor area by the square feet per occupant set forth in Table No. 33-A for the occupancy housed therein.

TABLE NO. 33-A—SQUARE FEET PER OCCUPANT FOR VARIOUS OCCUPANCIES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>SQUARE FEET PER OCCUPANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups A and B</td>
<td></td>
</tr>
<tr>
<td>Assembly Areas</td>
<td>7</td>
</tr>
<tr>
<td>Dining-Room Areas</td>
<td>15</td>
</tr>
<tr>
<td>Dance Floors</td>
<td>7</td>
</tr>
<tr>
<td>Gymnasiums</td>
<td>15</td>
</tr>
<tr>
<td>Skating Rinks</td>
<td>15</td>
</tr>
<tr>
<td>Portions Not Used as Assembly Areas</td>
<td>100</td>
</tr>
<tr>
<td>Group C</td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td>20</td>
</tr>
<tr>
<td>Dining-Room Areas</td>
<td>15</td>
</tr>
<tr>
<td>Shops and Vocational Rooms</td>
<td>50</td>
</tr>
<tr>
<td>Group D</td>
<td></td>
</tr>
<tr>
<td>Children's Homes</td>
<td>50</td>
</tr>
<tr>
<td>Dining-Room Areas</td>
<td>15</td>
</tr>
<tr>
<td>Hospitals, Sanitariums</td>
<td>100</td>
</tr>
<tr>
<td>Group E</td>
<td>100</td>
</tr>
<tr>
<td>Group F</td>
<td></td>
</tr>
<tr>
<td>Retail Sales:</td>
<td></td>
</tr>
<tr>
<td>Basement</td>
<td>20</td>
</tr>
<tr>
<td>First Floor</td>
<td>30</td>
</tr>
<tr>
<td>Upper Floors</td>
<td>50</td>
</tr>
<tr>
<td>Dining-Room Areas</td>
<td>15</td>
</tr>
<tr>
<td>All Others</td>
<td>100</td>
</tr>
<tr>
<td>Group G</td>
<td></td>
</tr>
<tr>
<td>Assembly Areas</td>
<td>7</td>
</tr>
<tr>
<td>Dining Room Areas</td>
<td>15</td>
</tr>
<tr>
<td>All Others</td>
<td>100</td>
</tr>
<tr>
<td>Group H</td>
<td></td>
</tr>
<tr>
<td>Assembly Areas</td>
<td>7</td>
</tr>
<tr>
<td>Dining-Room Areas</td>
<td>15</td>
</tr>
<tr>
<td>Homes for Aged</td>
<td>50</td>
</tr>
<tr>
<td>All Others</td>
<td>100</td>
</tr>
<tr>
<td>Group I</td>
<td>300</td>
</tr>
</tbody>
</table>
“Panic Bar” is a bar which extends across at least half the width of each door leaf and which will open the door if subjected to pressure.

(d) Room Capacity. The occupant load of a room or building shall be the actual number of seats but not less than the result obtained by dividing the floor area by the square feet per occupant set forth in Table No. 33-A.

(e) Benches. Where benches or pews are used the number of seats shall be based on one person for each eighteen inches (18") of length of the pews or benches.

(f) Mixed Occupancies. The capacity of a building containing mixed occupancies shall be determined by adding the number of occupants of the various portions as set forth in Table No. 33-A.

(g) More Than One Occupancy. The capacity of a room or building which is used for different occupancies at different times shall be determined by the occupant load which gives the largest number of persons.

(h) Exit Obstruction. No obstruction shall be placed in the required width of an exit.

(i) Seating Capacity Posted. The maximum seating capacity shall be conspicuously posted by the owner of the building by means of durable metal signs placed in each assembly room, auditorium or room used for a similar purpose where fixed seats are not installed, and it shall be unlawful to remove or deface such notice or to permit more than this legal number of persons within such space.

Sec. 3302. (a) Width. The total width of exits in feet shall be not less than the total occupant load served divided by 50. Such width of exits shall be divided equally among separate exits.

The width of exits from any story of a building shall be determined from the occupant load in that story plus one-half the tributary occupant load in the story next above or below, provided the resulting width is not less than that required for the upper story considered separately.

(b) Number of Persons. The number of persons permitted in any building or portion thereof shall not exceed those set forth in Table No. 33-A, except that where additional exit facilities are provided the occupancy load may be increased in accordance with Section 3302 (a) and (c).

(c) Number of Exits. Group D and Divisions 1 and 2 of Group H occupancies having an occupant load of more than 10 shall have not less than two exits.

Other occupancies having an occupant load of more than 50 shall have not less than two exits.

Buildings or portion thereof having an occupant load of 500 to 999 shall have not less than three exits.

Buildings or portion thereof having an occupant load of 1000 or more shall have not less than four exits.

If two or more exits are required, they shall be arranged a reasonable distance apart so that if one becomes blocked the other will be available.
(d) **Distance from Exit.** No point in any building shall be more than one hundred fifty feet (150') from an exterior exit, a horizontal exit, an enclosed stairway, or a fire-resistant passageway, measured along the line of travel.

Doors

Sec. 3303. (a) **General.** This Section shall apply to every exit door serving an occupant load of more than 10, and from hazardous rooms or areas.

(b) **Swing.** Exit doors shall swing in the direction of exit travel when serving an occupant load of 50 or more.

(c) **Operation.** Exit doors shall be openable from the inside without the use of key or any special knowledge or effort.

(d) **Width.** The required width of a door opening shall not be reduced more than three inches (3") by any projections. No required doorway shall be less than thirty-six inches (36") in width.

(e) **Door Leaf Width.** No leaf of an exit door shall exceed four feet (4') in width.

(f) **Revolving Doors.** Revolving doors shall not be used unless exit doors of required width are installed adjacent thereto.

(g) **Egress from Door.** Every door shall open into a corridor, enclosed stairway, exterior stairway where permitted as a required exit, and exterior exit court, or public way.

(h) **Doors Openings into Stairway.** Every door opening into a stairway shall open on a landing within two inches (2") of the floor level. The width of the landing shall not be reduced more than six inches (6") by the door when fully open.

Corridors

Sec. 3304. (a) **General.** This Section shall apply to every corridor serving as a required exit for an occupant load of more than 10.

(b) **Width.** Every required corridor shall be not less in width than forty-four inches (44").

(c) **Projections.** The required width of corridors shall be unobstructed.

EXCEPTIONS: 1. Trim and handrails may project three and one-half inches (3½").

2. Doors, when fully open, may project six inches (6").

(d) **Access to Exits.** Floors above the first floor shall have exits so arranged that it is possible to go in either direction from any point in a corridor to a stairway.

(e) **Walls.** Corridor walls and ceilings shall be of not less than one-hour fire-resistive construction, except one-story buildings housing Groups F and G occupancies.

Stairs

Sec. 3305. (a) **Width.** Every stairway shall be not less in width than forty-four inches (44").

EXCEPTIONS: 1. Stairways serving an occupant load of 50 or less may be thirty-six inches (36") wide.
2. Stairways serving an occupant load of 10 or less may be thirty inches (30") wide.

3. Trim and handrails may project three and one-half inches (3 1/2") into the required width of any stairway.

(b) Rise and Run. The rise of every step in a stairway shall not exceed seven and one-half inches (7 1/2"), and the run shall be not less than ten inches (10").

Except as provided under Subsection (c) of this Section, the maximum variations in the height of risers and in the width of treads in any one flight shall be three-sixteenths inch (3/16").

EXCEPTION: In stairways serving an occupant load of 50 or less the rise may be eight inches (8") and the run may be nine inches (9").

(c) Winders. In Group I occupancies and in monumental unrequired stairways, winders may be used if the required width of run is provided at a point not more than twelve inches (12") from the side of the stairway where the treads are the narrower, but in no case shall any width of run be less than six inches (6") at any point.

(d) Landings. Every intermediate landing shall have a dimension measured in the direction of travel equal to the width of the stairway, but such dimension need not exceed four feet (4").

In Groups A, B, and C occupancies the walls at the outer corners of landings shall be curved on a radius of at least two feet (2'), or a 45-degree splay not less than twenty inches (20") wide shall be provided to eliminate right-angle corners.

(e) Basement Stairways. Where a basement stairway and a stairway to an upper story terminate in the same vestibule or other space, the basement stairway shall be cut off by a one-hour fire-resistive partition and a self-closing Class "B" fire door.

(f) Distance Between Landings. There shall be not more than twelve feet (12') vertically between landings, nor less than two risers.

(g) Handrails. Stairways shall have handrails on each side, and every stairway more than eighty-eight inches (88") in width shall have intermediate handrails dividing the stairway into portions not more than sixty-six inches (66") in width.

Handrails shall be placed not less than thirty inches (30") nor more than thirty-four inches (34") above the nosing of treads, and ends of handrails shall be returned to the wall.

EXCEPTIONS: 1. Stairways three feet (3') or less in width may have one handrail.

2. Handrails shall not be required for exterior monumental stairways.

(h) Exterior Stairways. Every opening in the exterior wall of a building served by an exterior stairway used as a required exit shall be protected by an automatically closing
Stairs (Cont'd.)

Class "E" or "F" fire door or window if the opening is within twenty feet (20') of the stairway.

EXCEPTION: Openings above or level with the highest portion of the stairway may be unprotected if not nearer than ten feet (10') to the stairway.

(i) Space under Stairways. The under side of interior stairways of wood construction and enclosed usable spaces under all stairways shall be protected with lath and plaster approved for one-hour fire-resistive construction, except in Group I occupancies.

(j) Stairway Construction—Interior. Interior stairways shall be constructed as specified in Part V of this Code.

(k) Stairway Construction—Exterior. Exterior stairs shall be of incombustible material or of wood not less than two inches (2") in nominal thickness.

(l) Stairway to Roof. In every building more than two stories in height, one stairway shall extend to the roof surface unless the roof has a slope greater than four in twelve.

(m) Headroom. Every required stairway shall have headroom clearance of not less than six feet six inches (6'6") measured vertically from the nearest nosing to the nearest soffit.

Ramps

Sec. 3306. (a) General. A ramp conforming to the requirements of this Section may be used as an exit. Aisles need not conform to this Section.

(b) Width. The width of ramps shall be as required for corridors.

(c) Slope. The slope of a ramp shall not exceed one in eight.

(d) Handrails. A ramp with slope exceeding one in ten shall have handrails as required for stairways.

(e) Construction. Ramps shall be constructed as required for stairways.

(f) Surface. The surface of ramps shall be roughened or shall be of non-slip material.

Horizontal Exits

Sec. 3307. (a) Definition. A horizontal exit is a horizontal passageway or ramp into another building or into another section of the same building through an "Ordinary Occupancy Separation."

(b) Used as a Required Exit. If conforming to the provisions of this Chapter, a horizontal exit may be considered as a required exit.

(c) Discharge Areas. A horizontal exit shall lead into a floor area having capacity for an occupant load not less than the occupant load served by such exit. The capacity shall be determined by allowing three square feet (3 sq. ft.) of net clear floor area per occupant. The area into which the horizontal exit leads shall be provided with exits as required by Section 3302, at least one of which shall lead directly to a public way.
Sec. 3308. (a) General. Every interior stairway, ramp, or escalator shall be enclosed as specified in this Section.

EXCEPTIONS: 1. In occupancies other than Group D, an enclosure will not be required for a stairway, ramp, or escalator serving only the second floor and not connected with corridors or stairways serving floors above the second floor.

2. In sprinklered buildings of Type I construction housing Group F and G occupancies, enclosures are not required for escalators.

3. Stairs in Group I occupancies need not be enclosed.

(b) Enclosure Construction. Enclosure walls shall be of not less than two-hour fire-resistive construction in buildings more than four stories in height and shall be of not less than one-hour fire-resistive construction elsewhere.

(c) Openings into Enclosures. There shall be no openings into exit enclosures except exit doorways and openings in exterior walls. Every exit door in an exit enclosure shall be a self-closing Class “B” fire door. Every opening in an exterior wall forming part of an exit enclosure shall be protected by a Class “E” or “F” fire door or window unless opening into a public way at least sixteen feet (16’) wide.

(d) Extent of Enclosure. Stairway and ramp enclosures shall include landings and parts of floors connecting stairway flights and shall also include a corridor on the ground floor leading from the stairway to the exterior of the building. Enclosed corridors or passageways are not required from unenclosed stairways.

Sec. 3309. (a) General. A smokeproof enclosure shall consist of a continuous stairway enclosed from the highest point to the lowest point by walls of two-hour fire-resistive construction. The supporting structural frame shall be of four-hour fire-resistive construction.

(b) Where Required. In buildings five stories or more in height, one of the required exits shall be a smokeproof enclosure.

(c) Construction. Stairs in smokeproof enclosures shall be of incombustible construction.

(d) Access. There shall be no opening directly into the interior of the building. Access shall be through a vestibule open to the outside having an exit door from the interior of the building and an exit door leading to the smokeproof enclosure. In lieu of a vestibule, access may be by way of an exterior open balcony of incombustible materials.

(e) Doors. Exit doors to smokeproof enclosures shall be self-closing Class “B” fire doors.

(f) Outlet. A smokeproof enclosure shall exit into a public way or into a passageway leading to a public way. The passageway shall be without other openings and shall have walls of two-hour fire-resistance and floors and ceilings of two-hour fire-resistance.

(g) Barrier. A smokeproof enclosure stair shall not continue below the grade level exit unless a barrier is provided at the ground floor level to prevent persons from continuing on into the basement.
Sec. 3310. Every exit shall discharge into a public way or exit court.

Sec. 3311. (a) Discharge. Every exit court shall discharge into a public way or passageway leading to a public way. The passageway shall be without other openings and shall have walls, floors, and ceilings of the same period of fire resistance as the walls, ceilings, and floors of the building but shall be not less than one-hour construction.

(b) Width. Every exit court shall be not less in width than the required total width of the tributary exits.

(c) Slope. The slope of exit courts shall not exceed one in ten.

(d) Openings. Openings between a Group A and B occupancy and an exit court less than sixteen feet (16') wide shall be protected by Class “E” or “F” fire doors or windows.

EXCEPTION: Openings more than twenty feet (20’) above the floor of the exit court may be unprotected.

(e) Obstructions. The required width of exit courts shall be unobstructed except for trim and handrails which may project not more than three and one-half inches (3 1/2”) into the required width.

At any point where the width of an exit court is reduced from any cause, the reduction in width shall be effected gradually by a guard rail at least three feet (3’) high. The guard rail shall make an angle of not more than 30 degrees with the axis of the exit court.

Sec. 3312. (a) Exit Illumination. Exits shall be illuminated at all times with light having an intensity of not less than one foot candle at floor level.

(b) Exit Signs. Every exit doorway from an area with an occupant load of more than 100 persons shall be marked with an exit sign. Exit sign letters shall be at least five inches (5”) high.

(c) Illumination of Signs. Exit signs in every Group A Occupancy; Group B, Division 1 and 2 Occupancy; Group D Occupancy; Group F Occupancy with an occupant load in excess of 1000 persons; and Group H Occupancy with an occupant load of more than 100 persons, shall be lighted with two separate electric lamps of at least 20 watts capacity on separate circuits, one such circuit being separate from any other circuit in the building.

Sec. 3313. (a) General. Every portion of every building in which are installed seats, tables, or equipment, shall be provided with aisles leading to an exit.

(b) Width. Every aisle shall be not less than three feet (3’) wide if having seats on only one side and not less than three feet six inches (3’6”) wide if having seats on both sides. Such minimum width shall be measured at the end farthest from the foyer and shall be increased by one and one-half inches (1 1/2”) for each five feet (5’) in length toward the foyer.

EXCEPTION: In Group B, Division 4 occupancies, aisles need not be over three feet six inches (3’6”) wide.
(c) Distances to Nearest Exit. In areas occupied by seats, and in Group A and B occupancies without seats, the line of travel to an exit door by an aisle shall not be more than one hundred and fifty feet (150').

(d) Aisle Spacing. Aisles shall be located so that there will be not more than six intervening seats between any seat and the nearest aisle.

EXCEPTION: There may be 20 intervening seats between any seat and the nearest aisle in Group B, Division 4 occupancies.

(e) Cross Aisles. Cross aisles shall be not less than four feet (4') in clear width. Where aisles terminate in a cross aisle instead of a foyer, the width of the cross aisle shall be not less than the sum of the widths of all contributory aisles.

(f) Vomitories. Vomitories connecting the main exit with the cross aisles shall have a total width not less than the sum of the width of the widest aisle leading thereto plus 50 per cent of the total width of the remaining aisles leading thereto.

Sec. 3314. (a) Spacing. The spacing of rows of seats from back to back shall be not less than thirty-three inches (33''), nor less than twenty-seven inches (27'') plus the sum of the thickness of the back and inclination of the back.

EXCEPTION: In Group B, Division 4 occupancies, the spacing of rows of seats without backs may be twenty-four inches (24'').

(b) Width. The width of any seat shall be not less than eighteen inches (18'').

Sec. 3315. (a) Main Exit. Every Group A occupancy shall be provided with a main exit.

The main exit shall be of sufficient width to accommodate one-half the total occupant load but shall not be less than the total width of all aisles and stairways leading thereto and shall connect to a stairway or ramp leading to a public way.

Steps may be used if separated from the main exit by a landing not less in area than the foyer.

(b) Side Exits. Every auditorium and balcony of a Group A occupancy shall be provided with exits on each side. The exits on each side of the auditorium or balcony shall be of sufficient width to accommodate one-third of the total occupant load served. Side exits shall open directly into an exit court or a ramp leading to an exit court, except that side exits from a balcony may lead to a stairway, and side exits from balconies above the first balcony shall be by way of a stairway or ramp in a smokeproof enclosure. Side exits shall be accessible from a cross aisle or a side aisle.

(c) Panic Bars. An exit door from any Group A occupancy if provided with a latch shall be equipped with a panic bar if the exit door serves an occupant load of more than 50.
Sec. 3316. (a) Group B, Divisions 1 and 2. Divisions 1 and 2 occupancies shall have exits as required by Section 3315.

(b) Group B, Divisions 3 and 4. An exit door from any Group B occupancy, Divisions 3 and 4, if provided with a latch, shall be equipped with a panic bar if the exit door serves an occupant load of more than 100.

Sec. 3317. (a) Corridors. The width of a corridor in a Group C occupancy shall be the width required by Section 3302 plus two feet (2') but no corridor shall be less than six feet (6') wide.

Corridor walls and ceilings shall be of not less than one-hour fire-resistive construction.

There shall be no change of elevation of less than two feet (2') in a corridor unless ramps are used.

(b) Corridors Serving Auditoriums. An exit serving both an auditorium and other rooms need provide only for the capacity of whichever requires the greater width if the auditorium is not to be used simultaneously with the other rooms.

(c) Stairs. Each floor above or below the ground floor level shall have not less than two exit stairs and the required exit width shall be equally divided between such stairs, provided that no stair shall be less than five feet (5') in width exclusive of rails.

EXCEPTION: This subsection does not apply to rooms used for maintenance, storage, and similar purposes.

(d) Doors. The width of exit doors from corridors, halls and stairs shall be not more than two feet (2') narrower than the required width of such corridors, halls, or stairs.

Exit doors in schoolrooms shall swing in the direction of egress.

(e) Corridor Dead End. There shall be no dead end in any corridor or hall more than twelve feet (12') beyond the exit stair or door.

(f) Exterior Exit. Any room, the floor of which is below grade and which is used by pupils shall have at least one exit leading directly to the exterior of the building, and such exit shall be not less in width than one-half the required aggregate width of exits from such room.

(g) Panic Bars. Panic bars shall be installed on exit doors if provided with a latch from rooms having an occupant load of more than 100 and from corridors.

Sec. 3318. (a) Separate Exits. Every room in a Group D occupancy shall have access to two separate exits.

(b) Corridor Dead Ends. There shall be no dead end in any corridor or hall more than ten feet (10') beyond the exit stair or door.

(c) Corridors. There shall be no change of elevation of less than two feet (2') in a corridor unless ramps are used.

The corridors shall be not less than six feet (6') wide in occupancies where bedridden patients are housed.
(d) **Basement Exits.** One exit from every room below grade shall be to the exterior.

(e) **Ramps.** Every portion of a Group D occupancy, Division 2, in buildings of Types II, III, IV, and V housing bedridden patients, shall have access to a horizontal exit or a ramp leading to the exterior.

(f) **Doors.** Exit doors serving areas housing bedridden patients shall be not less than three feet six inches (3'6") in width.

(g) **Locks.** No exterior door shall be lockable from the inside, except in sanitariums for mental patients.

(h) **Places of Detention.** No requirements of this Chapter shall be so construed as to prohibit the construction of cell blocks in jails or prevent the use of any locks or safety devices in buildings where it is necessary forcibly to restrain the inmates.

(i) **Exceptions.** Where construction meets the requirements of Section 902 (b), the exterior doors may be fastened with locks, provided that room doors shall not be fastened from the corridor side by other means than doorknobs or similar devices which can be opened readily from the inside without the use of keys.

Sec. 3319. Every portion of a Group E occupancy having a floor area of two hundred square feet (200 sq. ft.) or more shall be served by at least two separate exits.

Sec. 3320. (a) **Boiler Rooms.** Every boiler room and every room, except in Group I occupancies, containing an oil-fired furnace or incinerator shall be provided with at least two means of exit, one of which may be a ladder.

(b) **Cellulose Nitrate Handling.** Film laboratories, projection rooms, and nitrocellulose processing rooms shall have not less than two exits.
CHAPTER 34—DOORS, WINDOWS
AND SKYLIGHTS

Sec. 3401. Fire doors and windows where required shall be as specified in Section 4306.

Sec. 3402. All skylights constructed with metal frames shall be substantially built with interlocking seams. Frames of skylights shall be designed to carry loads required for roofs as specified in Section 2305. All skylights, the glass of which is set at an angle of less than 45 degrees from the horizontal, if located above the first story, shall be set at least one foot (1') above the roof. The curbs on which the skylight rests shall be constructed as required for inner court walls or for masonry.

When wire glass is required for skylights the size shall not exceed seven hundred and twenty square inches (720 sq. in.) in area or forty-eight inches (48") in any dimension in any one panel. All glass in skylights shall be wire glass, except that skylights over vertical shafts extending through two or more stories shall be glazed with plain glass as specified in this Section; provided, that wire glass may be used if ventilation equal to not less than one-eighth the cross-sectional area of the shaft but never less than four feet (4') is provided at the top of such shaft.

Any glass not wire glass shall be protected above and below with a screen constructed of wire not smaller than No. 12 B. and S. gauge with a mesh not larger than one inch (1"). The screen shall be substantially supported below the glass.

Skylights installed for the use of photographers may be constructed of metal frames and plate glass without wire netting.

Ordinary glass may be used in the roofs and skylights for greenhouses, provided the height of the greenhouse at the ridge does not exceed twenty feet (20') above the grade. The use of wood in the frames of skylights will be permitted in greenhouses outside of Fire Zones No. 1 and 2, if the height of the skylight does not exceed twenty feet (20') above the grade, but in other cases metal frames and metal sash bars shall be used.

Glass used for the transmission of light, if placed in floors or sidewalks, shall be supported by metal or reinforced concrete frames, and such glass shall be not less than one-half inch (\(\frac{1}{2}\") in thickness. Any such glass over sixteen square inches (16 sq. in.) in area, shall have wire mesh embedded in the same or shall be provided with a wire screen underneath as specified for skylights in this Section. All portions of the floor lights or sidewalk lights shall be of the same strength as is required by this Code for floor or sidewalk construction, except in cases where the floor is surrounded by a railing not less than three feet six inches (3'6") in height, in which case the construction shall be calculated for not less than roof loads.
CHAPTER 35—BAYS AND BALCONIES

Sec. 3501. Construction of walls and floors in bay and oriel windows shall conform to the construction allowed for exterior walls and floors of the type of construction of the building to which they are attached. The roof covering of a bay or oriel window shall conform to the requirements for roofing of the main roof of the building.

All exterior balconies attached to or supported by masonry walls shall have brackets or beams constructed of wire, steel, concrete or other incombustible material. All railings for balconies or porches shall be not less than three feet (3') in height above the floor of such balcony or porch.
CHAPTER 36—PENTHOUSES AND
ROOF STRUCTURES

Penthouses
and Roof
Structures

Sec. 3601. No penthouse or other projection above the roof in structures of other than Type I construction shall exceed twenty-eight feet (28') in height above the roof when used as an enclosure for tanks or for elevators which run to the roof and in all other cases shall not extend more than twelve feet (12') in height above the roof. The aggregate area of all penthouses and other roof structures shall not exceed 20 per cent of the area of the roof. No penthouse, bulkhead or any other similar projection above the roof shall be used for manufacturing or storage.

Roof structures of Type I buildings shall be constructed with walls, floors and roof as required for the main portion of the building.

EXCEPTION: Exterior walls and roofs of penthouses which are five feet (5') or more from the face of the exterior walls of the building may be of one-hour fire-resistive construction.

Walls of roof structures parallel to and within four feet (4') of the exterior walls of Type II or III buildings shall be constructed the same as the exterior wall of the story immediately below. Such wall shall project two feet (2') above the roof and two feet (2') beyond the sides of such roof structure, except that the side projection shall not be required when the adjoining side walls are of masonry. Walls other than those occurring within four feet (4') of an exterior wall on Type II or III buildings shall be of not less than one-hour fire-resistive construction. The restrictions of this paragraph shall not prohibit the placing of wood flagpoles or similar structures on the roof of any building.

Towers
and Spires

Sec. 3602. Towers or spires when enclosed shall have exterior walls as required for the building to which they are attached. Towers not enclosed and which extend more than seventy-five feet (75') above grade shall have their framework constructed of iron, steel or reinforced concrete. No tower or spire shall occupy more than one-fourth of the street frontage of any building to which it is attached and in no case shall the base area exceed sixteen hundred square feet (1600 sq. ft.) unless it conforms entirely to the type of construction requirements of the building to which it is attached and is limited in height as a main part of the building. If the area of the tower or spire exceeds one hundred square feet (100 sq. ft.) at any horizontal cross section, its supporting frame shall extend directly to the ground. The roof covering of spires shall be as required for the main roof of the rest of the structure.

Skeleton towers used as radio masts and placed on the roof of any building shall be constructed entirely of incombustible materials when more than twenty-five feet (25') in height and shall be directly supported on an incombustible framework to the ground. They shall be designed to withstand a wind load from any direction as specified in Section 2307 in addition to any other loads.
CHAPTER 37—CHIMNEYS, VENTS AND FIREPLACES

Sec. 3701. (a) Scope. Chimneys, fireplaces, flues and vents carrying products of combustion, and their connections, shall conform to the requirements of this Chapter.

(b) Appliances. See Chapter 51, Appendix.

Sec. 3702. (a) Design. Chimneys shall be reinforced and anchored as required in this Chapter and shall be designed to resist the loads specified in Chapters 23 and 28.

(b) Materials. Flue linings used in connection with solid or liquid fuel and bricks used in lieu of such flue linings shall have a softening point not lower than 1994 degrees Fahrenheit.

(c) Flue Area. No flue used in connection with solid or liquid fuel shall be smaller in area than the flue connection on the appliance attached thereto, and in no case shall the flue area be less than as set forth in Table No. 37-A.

(d) Height. Every chimney shall extend to a point at least two feet (2') above the highest elevation of any portion of the building within ten feet (10') of the chimney; provided that the Building Official may approve a chimney of lesser height installed with an approved vent cowl having a spark arrester whose opening shall be not less than six feet (6') from any portion of the building measured horizontally.

(e) Inlets. Every inlet to any chimney shall enter the side thereof and shall be of not less than one-eighth inch (\(\frac{3}{8}\)) thick metal or five-eighths inch (\(\frac{5}{8}\)) thick refractory material. Every inlet shall be at least six inches (6") from any combustible material. There shall be only one inlet connection to a flue.

TABLE NO. 37-A—FLUE AREA FOR SOLID OR LIQUID FUELS

<table>
<thead>
<tr>
<th>TYPE OF EQUIPMENT</th>
<th>MINIMUM AREA OF FLUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LINED</td>
</tr>
<tr>
<td></td>
<td>ROUND</td>
</tr>
<tr>
<td>Small stoves and heaters</td>
<td>28 sq. in.</td>
</tr>
<tr>
<td>Ranges and room heaters</td>
<td>40 sq. in.</td>
</tr>
<tr>
<td>Fireplaces</td>
<td>1/12 of opening — minimum 50 sq. in.</td>
</tr>
<tr>
<td>Warm air furnaces or boilers</td>
<td>70 sq. in.</td>
</tr>
</tbody>
</table>
Chimneys (Cont'd.)

(f) Loads on Chimney. No chimney shall support any load other than its own weight.

(g) Anchorage. Chimneys in wood frame buildings shall be anchored laterally at each floor and ceiling line which is more than six feet (6') above grade.

Masonry Chimneys

Sec. 3703. (a) Flue Lining. Masonry chimneys shall be lined with fire-clay flue lining not less than five-eighths inch (5/8") thick or with firebrick lining not less than four inches (4") thick. The lining shall extend from eight inches (8") below the lowest inlet to four inches (4") above enclosing walls.

(b) Wall Thickness. Walls shall be not less than eight inches (8") in thickness, except that, where flue lining is used, the thickness of brick may be reduced to four inches (4"). Division walls separating flues shall be at least three inches (3") in thickness including flue lining.

(c) Chimneys of Hollow Clay Tile. Chimneys shall not be built of hollow clay tile units unless such chimneys are an integral part of a wall of such units. Eight inches (8") of such wall may serve as the wall of the chimney.

(d) Support. Masonry chimneys shall be supported on foundations designed as required in Chapters 23 and 28.

(e) Protection. No combustible material shall be placed within two inches (2") of masonry chimneys.

Terra Cotta Chimneys

Sec. 3704. (a) Construction. Terra cotta chimneys erected on the exterior of a building shall be not less than six inches (6") from all combustible material, except that when encased in an incombustible casing they shall be not less than two inches (2") from combustible materials, as specified in Subsection (d). Such chimneys shall be exposed to view for the full length, and if erected in the interior of a building shall be encased in an incombustible casing so arranged as to provide not less than one inch (1") air space between the chimney and the casing. Such air space shall have ventilating openings top and bottom.

(b) Anchorage. Terra cotta chimneys shall be anchored each six feet (6') of their height. Such anchorage shall be designed to withstand a load of not less than 200 pounds applied in any direction.

(c) Support. Exterior terra cotta chimneys shall be supported directly on their own foundation or upon an incombustible support. Interior terra cotta chimneys shall not be supported on brackets but shall be carried on the floor system or directly on their own foundations.

(d) Protection. Incombustible casings of terra cotta chimneys required by Subsection (a) shall be not less than two inches (2") from combustible materials. When terra cotta chimneys are enclosed, the enclosures shall have ventilating openings at both top and bottom. The support for such chimneys shall be protected by four inches (4") of incombustible material in the bottom of the flue.
Sec. 3705. (a) Thickness. Metal smokestacks shall be constructed of material not less than one-eighth inch (1/8") in thickness.

(b) Location. Metal smokestacks shall be not less than twenty-four inches (24") from any combustible materials.

(c) Support. Metal smokestacks shall be supported directly on their own foundation or may be supported upon boilers which are designed to support them.

(d) Interior Smokestacks. Interior metal smokestacks extending through any story or roof space shall be enclosed in vertical shaft of two-hour fire-resistive construction. The shaft shall provide at least six inches (6") of clearance on all sides of stack. Every opening into the shaft, other than openings for inlet thimbles and for ventilation at top and bottom, shall be protected with an combustible one-hour fire-resistive door. The shaft shall have ventilating openings at top and bottom.

(e) Flue Linings. When flue gas temperatures exceed 1000 degrees Fahrenheit, flue lining shall be used.

Sec. 3706. (a) General. Smoke pipes are pipes used in connection with solid and liquid fuel connecting fire boxes or combustion chambers with chimneys or smokestacks.

(b) Materials. Every smoke pipe connecting a fire box or combustion chamber with a chimney or smokestack shall be of metal.

(c) Location. Combustible material within twelve inches (12") of any smoke pipe shall be protected by not less than three inches (3") of fire-resistive material. When within three feet (3'), such combustible material shall be protected by fire-resistive plaster. These distances shall be measured at right angles to the smoke pipe.

Sec. 3707. (a) Walls. Fireplace and smoke chamber walls shall be of solid masonry not less than eight inches (8") thick. The face of such walls exposed to fire shall be lined with material meeting the requirements of Section 3702 (b). Where four inches (4") of firebrick are used for lining, they may be included in the eight-inch (8") minimum thickness.

EXCEPTION: Approved metal heat circulators may be installed in fireplaces in lieu of the lining required by this subsection.

(b) Lintel. Masonry over the fireplace opening shall be supported by an incombustible lintel.

(c) Hearth. Every fireplace shall be provided with an incombustible hearth slab at least twelve inches (12") wider on each side than the fireplace opening and projecting at least twenty inches (20") therefrom. This slab shall be not less than four inches (4") thick and shall be supported by incombustible material or reinforced to carry its own weight and all imposed loads. Combustible forms and centering shall be removed.
(d) **Combustible Materials.** No wood or other combustible materials shall be placed within six inches (6") of the fireplace opening. No such combustible material within twelve inches (12") of the fireplace opening shall project more than one-eighth inch (\(\frac{1}{8}\)"") for each one-inch (1") clearance from such opening.

(e) **Imitation Fireplaces.** The maximum depth of the recess of any imitation fireplace or recess for heating equipment shall be six inches (6") unless such recess meets the requirements for fireplaces. The surface of the recess shall be of fire-resistive plaster or masonry. Location of combustible materials shall be as required for fireplaces in Subsection (d). No flue other than a gas vent shall be installed within the recess opening.

Gas Vents

Sec. 3708. (a) **Construction.** Gas vents shall be constructed of unglazed clay tile not less than one-half inch (\(\frac{1}{2}\)"") in thickness. The connections of such pipe shall be by sleeves or flanges well cemented. The pipe shall be securely fixed to the building frame at each sleeve or flange, and shall be at least three-fourths inch (\(\frac{3}{4}\)"") away from all combustible material between flanges. Vents of other materials or design may be approved by the procedure specified in Section 105.

(b) **Height.** Every gas vent shall extend above the roof surface and terminate in an approved hood or cap with a venting capacity not less than that of the vent.

(c) **Size.** Except as specified in Subsection (d), the area of any flue or vent shall be not less than the area of the largest connection plus 50 per cent of the areas of all additional connections with a minimum area of not less than twelve square inches (12 sq. in.) and a minimum dimension of not less than two inches (2").

(d) **Connection Inlet.** Any two inlets shall be staggered by not less than the diameter of the larger inlet. All inlets to any one vent shall be within the same story.

(e) **Connection.** The vent connection shall be of an incombustible material not less durable than galvanized or copper-bearing metal pipe exposed to view in a room throughout its entire length. It shall be not less in diameter than the vent outlet on the appliance. Vent connections shall have a rise of not less than one inch (1") per foot. The horizontal projected length shall not exceed the vertical projected length of the vent and vent connection.

(f) **Combustible Material.** Combustible material within twelve inches (12") vertically or six inches (6") horizontally of any vent connection shall be protected by fire-resistive material. These distances shall be measured at right angles to the vent connection.

(g) **Water Heater Vents.** Every gas water heater shall have an entirely separate and independent vent, except that not more than four gas water heaters may be connected to a common vent manifold if constructed and installed in accordance with the following additional requirements:

1. **Location.** All water heaters that are connected to the common vent shall be located in the same story of the building.
TABLE NO. 37-B—VENT AND VENT MANIFOLD FOR GAS HEATERS

<table>
<thead>
<tr>
<th>Number of Gas Water Heaters</th>
<th>Maximum Gas Input Rating of All Gas Water Heaters</th>
<th>Minimum Internal Diameter of Vent and Vent Manifold (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 or 3</td>
<td>75,000 B.t.u.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>100,000 B.t.u.</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>200,000 B.t.u.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>300,000 B.t.u.</td>
<td>8</td>
</tr>
</tbody>
</table>

2. Vent Manifold Required. If more than three feet (3’) of vent connection is required to connect a water heater to the common vent, the water heater shall be connected to a vent manifold.

3. Length of Vent Manifold. The length of the vent manifold shall not be greater than the height of the vertical vent to which it connects, nor shall the length of the vent manifold exceed fifteen feet (15’).

4. Slope. Vent manifold and vent connections shall slope upward toward the vent at a rate of not less than one inch (1”) per foot of length.

5. Connections. The connection between any heater and a vent manifold shall not exceed three feet (3’) in length.

Vent connections shall approach and intersect the vent manifold so that the flow of the products of combustion will converge at an angle of not more than 45 degrees.

6. Size of Vent. The size of the common vent and the vent manifold shall be not less than the values set forth in Table No. 37-B.

Sec. 3709. There shall be installed in the wall or ceiling, approximately over the cooking facilities, a ventilating opening with an area of not less than six inches by eight inches (6”x8”), connected to a ventilating duct leading to the outside air, such duct for each kitchen to be not less than thirty-six square inches (36 sq. in.) in cross-sectional area. An approved system of forced draft ventilation may be substituted for the natural draft ventilating system.

Sec. 3710. Combustible construction for heating equipment shall be protected as required in Chapter 51. (See Appendix.)

Sec. 3711. Incinerators, whether free-standing or within or attached to a building, shall meet the minimum construction requirements of fireplaces. Such incinerators with horizontal areas in excess of fifteen square feet (15 sq. ft.) shall have walls not less than twelve inches (12”) thick.

Chimneys for such incinerators shall be constructed as required in this Chapter and shall have an approved spark arrester over the top thereof.

Exception: Small free-standing incinerators approved by the Building Official need not comply with this Section.
CHAPTER 38—FIRE-EXTINGUISHING APPARATUS

Sec. 3801. Standard automatic sprinklers shall be installed as specified in this Chapter in the following places:

1. In the cellar of every building.

2. In assembly buildings with a stage: under the gridiron, under the stage floor, under all fly and tie galleries, in all dressing rooms, storerooms, property rooms, carpenter shops, paint shops, passageways and all places back of the proscenium wall. A line of sprinklers shall be installed on the stage side of, and immediately back of the proscenium curtain and not more than five feet (5') above the proscenium arch.

Over enclosed platforms, having a floor area in excess of one thousand square feet (1000 sq. ft.) and over any usable space under such platforms, together with dressing-room sections, workshops, and storerooms.

Over enclosed platforms less than one thousand square feet (1000 sq. ft.) and more than five hundred square feet (500 sq. ft.) in area, together with all dressing-room sections, workshops, and storerooms, when such enclosed platforms are in assembly rooms with an occupant load greater than 500.

3. In Divisions 1 and 3 of Group E occupancies.

4. In Groups B and C occupancies: in any enclosed occupied space below or over a stairway, except where the entire construction is as required for Type I buildings, and in all portions of basements or cellars used for storage or maintenance work rooms.

5. In all Group E occupancies occupied wholly or in part as a mattress factory used to manufacture, assemble or renovate mattresses or stuffed furniture using cotton, silk floss, mohair or other like material for packing or stuffing.

EXCEPTION: Automatic sprinklers shall not be required in the following places:

1. In the cellars of Groups H and I occupancies having four or less apartments.

2. In the cellars of Groups C, D, E, F, G, or H occupancies when the ceiling of such cellar or basement is three feet (3') above grade, nor when such cellars or basements have an area of fifteen hundred square feet (1500 sq. ft.) or less.

3. In Group E occupancies, occupied as paint or petroleum storage, dry cleaning plants, or paint shops where no spray painting is done.

4. In one-story Group E occupancies other than film exchanges having an area of fifteen hundred square feet (1500 sq. ft.) or less.

Sec. 3802. Required automatic sprinkler systems shall comply in all respects with the regulation of U.B.C. Standard No. 38-1.

EXCEPTIONS: A single water supply equal to the primary supply required by such regulations may be accepted as complying with the requirements of this Code.
In no case where a connection to a city water main constitutes the source of supply shall such connection be less than four inches (4") in diameter.

Sprinklers required in paragraph 4, Section 3801, may be supplied from the domestic water system and need not comply with the provisions of this Section except as to pipe sizes and spacing of heads, provided that where the domestic water supply has a pressure less than 15 pounds per square inch, an approved automatic chemical extinguisher may be used in lieu of the sprinklers.

The alarm valve required for a standard automatic sprinkler system shall not be required in the cellars of Groups B, C, D, E, F, G, and H occupancies where the area of such cellar is less than three thousand square feet (3000 sq. ft.).

Sec. 3803. Every building four or more stories in height shall be equipped with one or more dry standpipes.

Sec. 3804. (a) Construction. Dry standpipes shall be of wrought iron or galvanized steel and together with fittings and connections shall be of sufficient strength to withstand 300 pounds of water pressure to the square inch when ready for service, without leaking at the joints, valves or fittings.

Tests shall be conducted by the owner or contractor in the presence of a representative of the Fire Department whenever deemed necessary and ordered by the Building Official. The tests shall be applied at the top and bottom connections of such standpipes and the owner or contractor shall be responsible for any damage caused by breakage or faulty installation while such tests are being conducted. After such standpipes have been tested, the owner or contractor shall remove all water therefrom.

(b) Size. Dry standpipes shall be of such a size as to be capable of delivering 250 gallons per minute from each of any three outlets simultaneously under the pressure created by one fire engine or pumper, based on the existing city equipment available. No part of a dry standpipe system other than hose connections shall be less than three inches (3") in diameter.

(c) Number Required. Every building four or more stories in height where the area of any floor above the third floor is ten thousand square feet (10,000 sq. ft.) or less shall be equipped with not less than one dry standpipe and an additional standpipe shall be installed for each additional ten thousand square feet (10,000 sq. ft.) or fraction thereof.

(d) Location. Standpipes shall be located within stairway enclosures or as near such stairways as possible or shall be on the outside of, embedded within, or immediately inside of an exterior wall and within one foot (1') of an opening in a stairway enclosure or the balcony or vestibule of a smoke-proof tower or an outside exit stairway.

(e) Siamese Connections. All four-inch (4") dry standpipes shall be equipped with a two-way Siamese fire department connection. All five-inch (5") dry standpipes
Dry Standpipes (Cont'd.)

shall be equipped with a three-way Siamese fire department connection and all six-inch (6") dry standpipes shall be equipped with a four-way Siamese fire department connection. All Siamese inlet connections shall be located on a street front of the building and not less than one foot (1') nor more than four feet (4') above the grade and shall be equipped with clapper-checks and substantial plugs. All Siamese inlet connections shall be recessed in the wall or otherwise substantially protected.

(f) Outlets. All dry standpipes shall extend from the ground floor to and over the roof and shall be equipped with a two and one-half inch (2½") outlet not more than four feet (4') above the floor level at each story. All dry standpipes shall be equipped with a two-way two and one-half inch (2½") outlet above the roof. All outlets shall be equipped with gate-valves with substantial chains.

(g) Threads. All hose threads in connection with such standpipe installations shall be uniform with that used by the local fire department.

(h) Signs. An iron or bronze sign with raised letters at least one inch (1") high shall be rigidly attached to the building adjacent to all Siamese connections and such sign shall read: "CONNECTION TO DRY STANDPIPE."

Wet Standpipes; Where Required

Sec. 3805. Every Group A, B, and C occupancy of any height and every Group D, E, F, G and H occupancy three or more stories in height and every Group E and F occupancy over 20,000 square feet in area shall be equipped with one or more interior wet standpipes extending from the cellar or basement into the topmost story, provided that Group B and C buildings having no stage and having a seating capacity of less than 500 need not be equipped with interior standpipes.

Wet Standpipes; Detailed Requirements

Sec. 3806. (a) Construction. Interior wet standpipes shall be constructed as required for dry standpipes.

(b) Size. Interior wet standpipes shall have an internal diameter sufficient to deliver 50 gallons of water per minute under 30 pounds per square inch pressure at the hose connection, based on the available water supply. Buildings of Groups A and B occupancies shall have wet standpipe systems capable of delivering the required quantity and pressure from any two outlets simultaneously; for all other occupancies only one outlet need be figured to be open at one time. In no case shall the internal diameter of a wet standpipe be less than two inches (2").

Any approved formula which determines pipe sizes on a pressure drop basis may be used to determine pipe sizes for wet standpipe systems. The Building Official may require delivery and pressure tests on completed wet standpipe systems before approving such systems.

(c) Number Required. Wet standpipes shall be so located that any portion of the building can be reached therefrom with a hose not exceeding seventy-five feet (75') in length.
(d) Location. In Groups A and B occupancies, outlets shall be located as follows: On each side of the stage, on each side of the rear of the auditorium and on each side of the rear of the balconies. Where occupant loads are less than 500 the number of locations noted above may be reduced upon the approval of the Building Official. In Groups C, D, E, F, G, and H occupancies the location of all interior wet standpipes shall be approved by the Building Official.

(e) Outlets. All interior wet standpipes shall be equipped with a one and one-half inch (1 1/2") straightway composition gate-valve in each story including the basement or cellar of the building and located not less than one foot (1') nor more than five feet (5') above the floor.

(f) Threads. All hose threads in connection with the installation of such standpipes, including valves and reducing fittings, shall be uniform with that used by the local fire department.

(g) Water Supplies. All interior wet standpipes shall be connected to a street water main not less than four inches (4") in diameter, or when the water pressure is insufficient to maintain 30 pounds pressure at the highest hose outlet such standpipe shall be connected to a pressure tank, gravity tank or fire pump. Such supply shall be sufficient to furnish at least 30 pounds pressure at the topmost standpipe outlet. When more than one interior wet standpipe is required in the building, such standpipes shall be connected at their bases or at their tops by pipes of equal size.

(h) Pressure and Gravity Tanks. Tanks shall have a capacity sufficient to furnish at least 250 gallons per minute for a period of not less than 10 minutes. Such tanks shall be located so as to provide not less than 25 pounds pressure at the topmost hose outlet for its entire supply. Discharge pipes from pressure tanks shall extend two inches (2") into and above the bottom of such tanks. All tanks shall be equipped with a manhole, ladder and platform, drain pipe, water and pressure gauges. Every pressure tank shall be tested in place after installation and proved tight at a hydrostatic pressure 50 per cent in excess of the working pressure required. Where such tanks are used for domestic purposes the supply pipe for such purposes shall be located at or above the center line of such tanks. Incombustible supports shall be provided for all such supply tanks and not less than a three-foot (3') clearance shall be maintained over the top and under the bottom of all pressure tanks.

(i) Fire Pumps. Fire pumps shall have a capacity of not less than 250 gallons per minute with a pressure of not less than 25 pounds at the topmost hose outlet. The source of supply for such pump shall be a street water main of not less than four-inch (4") diameter or a well or cistern containing a one-hour supply. Such pumps shall be supplied with an adequate source of power and shall be automatic in operation.

(j) Hose and Hose Reels. Each hose outlet of all interior
wet standpipes shall be supplied with a hose not less than one and one-half inches (1 1/2") in diameter. Such hose shall be equipped with a suitable brass or bronze nozzle and shall be not over seventy-five feet (75') in length. An approved standard form of wall hose reel or rack shall be provided for the hose and shall be located so as to make the hose readily accessible at all times and shall be recessed in the walls or protected by suitable cabinets.

Sec. 3807. Basement pipe inlets shall be installed in the first floor of every store, warehouse or factory where there are cellars or basements under same, except where in such cellars or basements there is installed an automatic sprinkler system as specified by this Code, or where the cellars or basements are used for banking purposes, safe deposit vaults or similar uses.

All basement pipe inlets shall be of cast iron, steel, brass or bronze with lids of cast brass or bronze and shall consist of a sleeve not less than eight inches (8") in diameter through the floor extending to and flush with the ceiling below and with a top flange, recessed with an inside shoulder, to receive the lid and flush with the finish floor surface. The lid shall be a solid casting and have a ring lift recessed in the top thereof, so as to be flush. The lid shall have the words "Fire Department Only, Do Not Cover Up," cast in the top thereof. The lid shall be installed in such a manner as to permit its removal readily from the inlet.

The location of such basement pipe inlets shall be approved by the Building Official and shall be kept readily accessible at all times to the Fire Department.

Sec. 3808. All fire extinguishing apparatus, including automatic sprinklers, wet and dry standpipes, automatic chemical extinguishers, basement pipe inlets and the appurtenances thereto shall meet the approval of the chief of the Fire Department as to installation and location and shall be subject to such periodic tests as he may require.
CHAPTER 39—STAGES AND PLATFORMS

Sec. 3901. There shall be one or more ventilators constructed of metal or other incombustible material near the center and above the highest part of any working stage raised above the stage roof and having a total ventilation area equal to at least five per cent of the floor area within the stage walls. The entire equipment shall conform to the following requirements or their equivalent:

1. Doors shall open by force of gravity sufficient to overcome the effects of neglect, rust, dirt, frost, snow or expansion by heat or warping of the framework.

2. Glass, if used in ventilators, must be protected against falling on the stage. A wire screen, if used under the glass, must be so placed that if clogged it cannot reduce the required ventilating area or interfere with the operating mechanism or obstruct the distribution of water from the automatic sprinklers.

3. The doors and other covers shall be arranged to open instantly after the outbreak of fire, by the use of approved automatic fusible links which will fuse and separate at not more than 160 degrees Fahrenheit. A manual control must also be provided by a cord running down to the stage at a point on each side of the stage designated by the Building Official.

4. The fusible link and the cord must hold the doors closed against a force of at least 30 pounds excess counter weight tending to open the door. The fusible links shall be placed in the ventilator above the roof line and in at least two other points in each controlling cord and so located as not to be affected by the sprinkler heads above. Each stage ventilator shall be operated to an open and closed position at least once before each performance.

Sec. 3902. Gridirons, fly galleries and pin-rails shall be constructed of incombustible materials and fire-protection of steel and iron may be omitted. Gridirons and fly galleries shall be designed to support not less than 75 pounds live load per square foot.

The main counter-weight sheave beam shall be designed to support a horizontal and vertical uniformly distributed live load equal to not less than five pounds per square foot over the area of the gridiron directly back of the proscenium opening.

Sec. 3903. In buildings having a stage, the dressing room sections, workshops, and storerooms shall be located on the stage side of the proscenium wall and shall be separated from each other and from the stage by not less than a "Special Occupancy Separation."

Sec. 3904. A stage as defined in Section 401 shall be completely separated from the auditorium by a proscenium wall of not less than four-hour fire-resistive construction. The proscenium wall shall extend not less than four feet (4') above the roof over the auditorium.
Proscenium Walls (Cont'd.)

Proscenium walls may have, in addition to the main proscenium opening, one opening at the orchestra pit level and not more than two openings at the stage floor level, each of which shall be not more than twenty-five square feet (25 sq. ft.) in area.

Openings in the proscenium wall of a stage shall be protected on each side by Class “A” fire doors. The proscenium opening, which shall be the main opening for viewing performances, shall be provided with a self-closing fire-resistive curtain as provided in Chapter 41.

Stage Floors

Sec. 3905. All parts of stage floors shall be of Type I construction except the part of the stage extending back from and the full width of the proscenium opening, which may be constructed of steel or heavy timbers covered with a wood floor not less than two inches (2") nominal thickness. No part of the combustible construction except the floor finish shall be carried through the proscenium opening. All parts of the stage floor shall be designed to support not less than 125 pounds per square foot.

Openings through stage floors shall be equipped with tight-fitting trap doors of wood not less than two inches (2") nominal thickness.

Platforms

Sec. 3906. (a) Ventilators. There shall be one or more ventilators, conforming to the requirements of Section 3901, near the center and above the highest part of every enclosed platform having a floor area of five hundred square feet (500 sq. ft.) or more.

(b) Construction. Walls and ceiling of an enclosed platform in an assembly room shall be of not less than one-hour fire-resistive construction.

Any usable space having headroom of four feet (4') or more under a raised platform of an assembly room shall be of not less than one-hour fire-resistive construction.

(c) Accessory Rooms. In buildings having an enclosed platform, the dressing-room section, workshops, and storerooms shall be separated from each other and from the rest of the building by not less than an “Ordinary Occupancy Separation,” except that a chair-storage area having headroom of not more than four feet (4") need not be so separated.

Rooms containing heating apparatus and located under an enclosed platform shall be separated from the remainder of the building by a “Special Occupancy Separation.”

Stage Exits

Sec. 3907. At least one exit two feet six inches (2'6") wide shall be provided from each side of the stage opening directly or by means of a passageway not less than three feet (3') in width to a street or exit court. An exit stair not less than two feet six inches (2'6") wide shall be provided for egress from each fly gallery. Each tier of dressing rooms shall be provided with at least two means of egress each not less than two feet six inches (2'6") wide and all such stairs shall be constructed as specified in Chapter 33. The stairs required in this Subsection need not be enclosed.
Sec. 3908. A protecting hood shall be provided over the full length of the stage switchboard.

Sec. 3909. No combustible scenery, drops, props, decorations, or other combustible effects shall be placed on any stage or enclosed platform unless it is treated with an effective fire-retardant solution and maintained in a non-flammable condition as approved by the Fire Department.
CHAPTER 40—MOTION PICTURE
PROJECTION ROOMS

General

Sec. 4001. (a) Scope. The provisions of this Chapter shall apply only where nitrocellulose film is used.

(b) Projection Room Required. Every motion picture machine using nitrocellulose films, together with all electrical devices, rheostats, sewing machines and all such films present in any Group A, B, or C occupancy, shall be enclosed in a projection room large enough to permit the operator to walk freely on either side and back of the machine.

Construction

Sec. 4002. Every projection room shall be of not less than one-hour fire-resistive construction throughout and the walls and ceiling shall be finished with incombustible material.

The ceiling shall be not less than eight feet (8') from the finished floor. The room shall have a floor area of not less than eighty square feet (80 sq. ft.) and forty square feet (40 sq. ft.) for each additional machine.

Exits

Sec. 4003. Every projection room shall have at least two doorways separated by not less than one-third the perimeter of the room, each at least thirty inches (30") wide and eighty inches (80") high.

The entrances to the projection room shall be protected by Class "C" fire doors as specified in Section 4306. Such doors shall open outward and lead to proper exits as required in Chapter 33 and shall not be equipped with any latch. The maximum width of such door need be no more than thirty inches (30").

Ports and Openings

Sec. 4004. (a) Types. Ports in projection room walls shall be of three kinds: projection ports; observation ports; and combination ports used for both observation and for stereopticon, spot, or floodlight machines.

(b) Ports Required. There shall be provided for each motion picture projector not more than one projection port, which shall be limited in area to one hundred and twenty square inches (120 sq. in.), and not more than one observation port, which shall be limited in area to two hundred square inches (200 sq. in.). There shall be not more than three combination ports, each of which shall not exceed thirty inches (30") by twenty-four inches (24"). Each port opening shall be completely covered with a single pane of glass not less than one-quarter inch (¼") in thickness.

(c) Shutter. Each port and every other opening in projection room walls, including any fresh-air inlets but excluding exit doors and exhaust ducts, shall be provided with a shutter of not less than No. 10 U. S. gauge sheet metal or its equivalent large enough to overlap at least one inch (1") on all sides of such opening. Shutters shall be arranged to slide without binding in guides constructed of material equal to the shutters in strength and fire resistance. Each shutter shall be equipped with a 160-degree Fahrenheit fusible link, which when fused by heat will cause closure of the shutter.
by gravity. There shall also be a fusible link located over the upper magazine of each projector, which, upon operating, will close all the shutters. In addition, there shall be provided suitable means for manually closing all shutters simultaneously from any projector head and from a point within the projection room near each exit door. Shutters on openings not in use shall be kept closed.

Sec. 4005. (a) **Inlet.** A fresh-air inlet from the exterior of the building not less than one hundred and forty-four square inches (144 sq. in.) and protected with wire netting shall be installed within two inches (2") of the floor in every projection room, the source of which shall be remote from other outside vents or flues.

(b) **Outlets.** Ventilation shall be provided by one or more mechanical exhaust systems which shall draw air from each arc lamp housing and from one or more points near the ceiling. Systems shall exhaust to outdoors either directly or through a noncombustible flue used for no other purpose. Exhaust capacity shall be not less than fifteen cubic feet (15 cu. ft.) nor more than fifty cubic feet (50 cu. ft.) per minute for each arc lamp plus two hundred cubic feet (200 cu. ft.) per minute for the room itself. Systems shall be controlled from within the enclosure and have pilot lights to indicate operation. The exhaust system serving the projection room may be extended to cover rooms associated therewith such as rewind rooms. No dampers shall be installed in such exhaust systems.

Ventilation of these rooms shall not be connected in any way with ventilating or air-conditioning systems serving other portions of the building.

(c) **Exhaust Ducts.** Exhaust ducts shall be of incombustible material, and shall either be kept one inch (1") from combustible material or covered with one-half inch (1/2") of incombustible heat-insulating material.

Sec. 4006. (a) **Shelves and Fixtures.** All shelves, fixtures and fixed equipment in a projection room shall be constructed of incombustible materials.

(b) **Films.** All films not in actual use shall be stored in metal cabinets having individual compartments for reels or shall be in I.C.C. shipping containers. Metal used in the construction of cabinets shall be not less than No. 18 U. S. Standard gauge. No solder shall be used in the construction of such metal cabinets.

Sec. 4007. Every projection room shall be provided with an unenclosed water closet and lavatory.
CHAPTER 41—PROSCENIUM CURTAINS

General Requirements

Sec. 4101. Proscenium curtains when required shall be made of incombustible materials constructed and mounted so as to intercept hot gases, flames and smoke, and to prevent glow from a severe fire on the stage showing on the auditorium side within a period of five minutes. The curtain shall be raised and lowered each evening at the close of the performance. The closing of the curtain from the full open position shall be effected in less than thirty seconds, but the last five feet (5') of travel shall require not less than five seconds.

Curtain Coverings

Sec. 4102. A proscenium curtain shall be constructed and installed as specified in this Chapter. The curtain shall be made of one thickness of asbestos cloth weighing not less than three and one-quarter pounds per square yard.

The asbestos cloth used in the construction of the curtain shall have incorporated into the yarn before weaving, either monel metal, nickel, brass or other metal or alloy having not less strength than these metals at temperatures up to 1700 degrees Fahrenheit and no less resistance to corrosion at ordinary temperatures. Asbestos cloth made of long fiber blue crocidolite asbestos may be used in place of crysotile asbestos cloth of the same weight. The wires used to reinforce the yarn shall be either single or double but the tensile strength of each wire shall be sufficient to support a load of not less than three pounds at ordinary temperatures, and the strength of two strands of yarn and one wire twisted together shall be sufficient to support a load of six pounds. The strength of the cloth in tension when tested by the strip method shall be not less than 160 pounds per inch of width of warp and 52 pounds per inch of filling.

The asbestos fiber of yarns may contain cotton or other combustible fiber not to exceed 20 per cent of the weight of the asbestos. The total carbon content of the cloth shall not exceed 10 per cent of the total weight of the fiber. When required by the Building Official, a sample of the cloth of sufficient size for testing shall be submitted.

In addition to any decoration, the curtain shall be painted on both sides with a mineral paint having a silicate of soda binder, which will completely fill the cloth. Filler paint shall have not less than four parts of casein in each 10 parts of silicate of soda. This paint shall be well brushed into the cloth so that no light or smoke can come through.

Design and Construction

Sec. 4103. The curtain shall be made of continuous vertical strips of asbestos cloth. The widths of cloth shall overlap at the seams not less than one inch (1") and shall be sewed with a double row of stitching of asbestos thread.

The curtain shall be wide enough to extend into steel smoke grooves on each side of the proscenium opening at least eight inches (8") and shall overlap the top and sides of the proscenium opening at least twelve inches (12").

Six-inch (6") pockets shall be sewed in the top and the bottom of the curtain to hold the pipe battens; the sides
shall be hemmed at least six inches (6") deep. A two-inch pipe batten shall be placed at the top and a one and one-half inch (1½") batten at the bottom. For stage openings over forty feet (40') in width the bottom batten shall be not less than two and one-half inches (2½") in diameter. The battens shall be reinforced at the joints with twelve-inch (12") sections of pipe housed and riveted.

The curtain shall be held to the steel guides in the smoke pockets with substantial roller grips riveted or bolted to the side hem, not more than eighteen inches (18") on center. Each roller grip shall be fastened to the curtain with not less than three bolts or rivets.

No. 16 U. S. gauge galvanized metal shall be bent and placed vertically along each side hem of the curtain material, so that both faces of the hem are covered not less than six inches (6"). This metal edging shall be fastened to the side hem with rivets spaced not more than six inches (6") on center.

The top of the curtain shall have a smoke stop fitted to make it as smoke-tight as practicable. The bottom of the curtain shall have a yielding pad of incombustible material not less than three inches (3") thick to form a seal against the floor.

Sec. 4104. Smoke grooves which protect the sides of the curtain shall be of structural steel shapes and plates not less than one-quarter inch (¼") thick. These grooves shall be not less than fourteen inches (14") deep and six inches (6") wide and shall be set back from the face of the arch at least six inches (6"). Grooves shall extend from the stage floor to a point three feet (3') above the top of the raised curtain, and shall be securely bolted to the proscenium wall. Details of the grooves shall be submitted to the Building Official and Fire Chief for approval.

Steel tracks shall be built into the smoke grooves upon which shall travel the roller curtain guides and shall be installed rigidly in place and so that roller guides will operate smoothly. Safe support and smooth operation are required with a wind load of one pound per square foot over the entire area of the curtain.

Support for the curtain shall be by means of one-quarter inch (¼") flexible steel cables for curtains forty feet (40') or less in width, and three-eighths-inch (⅜") flexible steel cables for curtains over forty feet (40') in width. These cables shall be spaced not more than twelve feet (12') on centers, and the end overhang shall be not more than fifteen inches (15"). Supporting cables shall be tied to the top batten with a clove-hitch and the end secured with two iron rope clips. A substitute method of attachment will be allowed if approved by the Building Official.

The supporting cables shall pass through sheaves in the gridiron and over to the counterweight guides and shall fasten to the counterweight by means of three-eighths-inch (⅜") turnbuckles with clove-hitches and cable clips. Turnbuckles shall be locked to prevent backing out. Weight of the curtains shall be evenly divided on the cables.

There shall be safety stay chains of straight welded link
fastened to the top curtain batten of sufficient strength to support safely the weight of the curtain. There shall be one more stay chain than the number of supporting cables and, except for the stay chains at the ends of the curtain, shall be centered between the supporting cables. Stay chains shall be securely attached to the top batten of the curtain and thence to the gridiron, if of steel construction, or shall be bolted through the proscenium wall with three-fourths-inch (¾") bolts. Safety chains shall be so adjusted that they support the curtain when it is lowered and the bottom batten is resting on the pad supported by the floor.

All cables shall be carried over head and loft blocks fitted with ball or roller bearings of ample capacity to accommodate the weight at the speeds required. Grooves in the blocks shall be machined properly to cradle and protect the cable. All blocks supporting the proscenium curtain shall be supported on the proscenium wall by means of steel brackets of suitable size safely to carry the weight, or shall be mounted on structural steel beams.

Blocks shall be installed so that the head-block is sufficiently higher than the loft blocks to prevent cables from fouling loft block housings.

Diameters of the blocks shall be a minimum of twelve inches (12") for three-line sets and sixteen inches (16") for all other sets.

The mechanism and devices for controlling the curtain shall be of simple design and shall be positive in operation. Opening of the curtain shall be by hydraulic or electric power. For curtains where the overbalance on the curtain side does not exceed 150 pounds, manual operation may be used. In this case, manual operation will be allowable only if a method is provided which allows the curtain and counterbalance to be approximately equal under normal conditions, but which adds the required overweight on the curtain side automatically in case of an emergency.

Emergency release shall be by gravity obtained by overbalancing the curtain. The emergency control line shall be of cotton sash cord, fitted with not less than four fusible links, one on each side of the stage and two overhead in the gridiron, which when the links are fused or the sash cord burned will allow the curtain to lower itself automatically. This control line shall extend up both sides of the proscenium arch and across the gridiron, and shall be so arranged that when released it will also automatically open the stage ventilators.

On each side of the proscenium arch, at a location in plain view shall be located an easily read sign, bearing the inscription: "In case of fire, cut line to lower fire curtain," with an indicator pointing to the location of a knife for that purpose. The knives shall be attached to the wall by a chain sufficiently long to reach the release line.

For electric operation there shall be installed push buttons plainly marked: "Fire Curtain—stop: Fire Curtain—down." One set of control buttons shall be installed on each side of the proscenium opening. For hydraulic or manual operation the endless line shall be marked plainly with an arrow pointing the direction for closing.
For manual operation the operating hand line shall be not less than three-fourths inch (3/4") diameter manila rope secured to the top and bottom of the counterweight arbor, and shall pass under a floor block, adjustable for tension, of not less than twelve-inch (12") diameter.

The top and bottom counterweight sections of the arbor shall be of cast iron, sufficiently heavy to accommodate safely the loads. The top and bottom sections shall be connected with rods not less than three-fourths inch (3/4") in diameter, with one tie-plate for every four feet (4') of rod. There shall be smooth grooves on the ends of the top and bottom weights which engage the steel guides. Intermediate weights shall be of cast iron, grooved to drop into place on top of the lower carrying weight. The turnbuckles connecting the supporting cables to the top weight shall be attached to eye-bolts passing through the top weight.

Counterweight guide tracks shall be structural "T's" or angles, properly tied together and securely anchored to the proscenium wall. All joints where the counterweight travels shall be ground smooth and a liberal coating of grease shall be applied to the tracks. These guides shall extend from the gridiron a length equivalent to the length of the arbor, plus the travel of the curtain, plus five feet (5'). The specified length shall be considered as the minimum. A structural steel stop shall be provided at the bottom of the arbor.

For proscenium curtains in which the overbalance is in excess of 150 pounds, an approved adjustable checking device shall be installed to check the speed of fall during the last five feet (5') of travel and an alarm shall be installed at the center of the top of the proscenium arch, which will sound when the curtain is descending through the emergency release.

Sec. 4105. The complete installation of every proscenium curtain shall be subjected to operating tests and any theater in which such proscenium curtain is placed shall not be opened to public performances until after the proscenium curtain has been accepted and approved by the Building Official.

Sec. 4106. Curtains of other designs and materials, when not obviously of greater fire resistance than specified in this Chapter, shall before acceptance be subjected to the standard fire test specified in Chapter 43, as applicable to non-bearing partitions, except that such tests shall be continued only for a period of five minutes unless failure shall have occurred previously. The unexposed face of the curtain shall not glow within a period of five minutes nor shall there be any passage of smoke or flame through the curtain.
PART VIII
FIRE-RESISTIVE STANDARDS
FOR FIRE PROTECTION

CHAPTER 43—FIRE-RESISTIVE STANDARDS

General

Sec. 4301. In addition to all the other requirements of this Code, fire-resistive materials shall meet the requirements for fire-resistive construction given in this Chapter.

Fire-Resistive Materials

Sec. 4302. (a) General. Materials used for fire-resistive purposes shall be limited to those specified in this Chapter unless accepted under the procedure given in Section 4302 (b).

(b) Tests. For the purpose of determining the degree of fire resistance afforded, the materials of construction listed in this Chapter shall be assumed to have the fire-resistance ratings indicated. Any material or assembly of materials of construction tested in accordance with the requirements of U.B.C. Standard No. 43-1 shall be rated for fire resistance in accordance with the results of such tests, provided that it also meets the performance standards as specified in Section 105.

(c) Lath. Gypsum lath shall be not less than three-eighths inch (\(\frac{3}{8}\)\) inch) in thickness and shall be perforated with holes not less than three-fourths inch (\(\frac{3}{4}\) inch) in diameter. There shall be one hole for not more than each sixteen square inches (16 sq. in.) of lath surface. Application shall be as specified in Section 4703.

EXCEPTION: In two-inch (2") solid partitions, plain gypsum lath shall be used.

Metal lath shall be as specified in Section 4703.

(d) Plaster. Plaster shall be gypsum or portland cement plaster not less than one-half inch (\(\frac{1}{2}\)") thick and shall conform to Chapter 47.

(e) Concrete. Grade A Concrete is concrete in which at least 60 per cent of the coarse aggregate consists of pumice, limestone, calcareous gravel, trap rock, blast furnace slag, or burned clay or shale.

Grade B Concrete is concrete in which at least 60 per cent of the coarse aggregate consists of granite, sandstone, cinders or a mixture of any of these aggregates with aggregates for Grade A Concrete.

Grade C Concrete is any concrete not classed as Grade A or B.

Where the classification is in doubt, concrete shall be assumed to be Grade C unless tests on the aggregates by an approved agency prove otherwise.

(f) Pneumatically Placed Concrete. Pneumatically placed concrete without coarse aggregate shall be classified as
<table>
<thead>
<tr>
<th>Structural Parts to Be Protected</th>
<th>Insulating Material Used</th>
<th>Minimum Thickness of Material in Inches for the Following Fire Resistant Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 hr.</td>
</tr>
<tr>
<td>Steel or Cast Iron Columns; Projecting Steel Beam or Girder Flanges; All Members of Primary Trusses</td>
<td>Grade A concrete</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Grade B concrete</td>
<td>2 1/2</td>
</tr>
<tr>
<td></td>
<td>Grade C concrete</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Brick of clay, shale, concrete or sand-lime</td>
<td>3 1/2</td>
</tr>
<tr>
<td></td>
<td>Clay tile, clay tile and concrete or concrete block (see note 2)</td>
<td>4 or 4 or 2</td>
</tr>
<tr>
<td></td>
<td>Solid gypsum blocks</td>
<td>2 pl.</td>
</tr>
<tr>
<td></td>
<td>Hollow gypsum blocks</td>
<td>3 pl.</td>
</tr>
<tr>
<td></td>
<td>Poured gypsum</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Metal lath and portland cement plaster</td>
<td>......</td>
</tr>
<tr>
<td></td>
<td>Metal lath and gypsum plaster</td>
<td>......</td>
</tr>
<tr>
<td></td>
<td>Metal lath and gypsum-Vermiculite plaster **</td>
<td>......</td>
</tr>
<tr>
<td></td>
<td>Grade A concrete</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Grade B concrete</td>
<td>2 1/2</td>
</tr>
<tr>
<td></td>
<td>Grade C concrete</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Brick of clay, shale, concrete or sand-lime</td>
<td>3 1/2</td>
</tr>
<tr>
<td></td>
<td>Clay tile, clay tile and concrete or concrete block</td>
<td>3 or 2</td>
</tr>
<tr>
<td></td>
<td>Solid gypsum block</td>
<td>2 pl.</td>
</tr>
<tr>
<td></td>
<td>Hollow gypsum block</td>
<td>3 pl.</td>
</tr>
<tr>
<td></td>
<td>Poured gypsum</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Metal lath and gypsum-Vermiculite plaster</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Metal lath and gypsum or portland cement plaster</td>
<td>......</td>
</tr>
</tbody>
</table>

Webs of Steel Beams and Girders

<table>
<thead>
<tr>
<th>Reinforcing Steel in Reinforced Concrete Columns, Beams, Girder Trusses</th>
<th>Grade A or B concrete</th>
<th>1 1/2</th>
<th>1 1/2</th>
<th>1 1/2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcing Steel in Reinforced Concrete Joists</td>
<td>Grade A or B concrete</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grade C concrete</td>
<td>2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1</td>
</tr>
</tbody>
</table>

Ceiling Protection for Steel Roof Members Including Steel Roof Trusses and Secondary Trusses

| Metal or wire lath and gypsum or cement plaster, concrete, burned clay products or gypsum | 2 | 1 1/2 | 1 | % |
| Suspended metal lath and gypsum-Vermiculite plaster | 1 | % | % | % |

Reinforcing and Tie Rods in Floor and Roof Slabs

Grade A or B concrete	Thickness includes gypsum or cement plaster	1	1	%	%
Grade C concrete	1 1/4	1	1	%	%
Gypsum	1	1	%	%	

Note: (1) pl. in above table shall be not less than 1/8 in. gypsum or cement plaster.
(2) Reentrant parts of protected members shall be filled solid for 4 and 3 hour protections.
* Two layers with 1/8 in. air space between.
** Column protected with 1" Vermiculite plaster on metal lath. Lath spaced 1 1/4" from column. Space behind lath on flange faces filled with plaster.
Grade A, B or C Concrete in accordance with the aggregate used.

Sec. 4303. (a) Protective Coverings. 1. Thickness of Protection. The thickness of fire-resistive materials for protection of structural members shall be not less than that set forth in Table No. 43-A, except as modified in this Section. The figures shown shall be the net thickness of the protecting materials and shall not include any hollow space back of the protection.

2. Unit Masonry Protection. Unit masonry protection for metal columns shall have metal ties embedded in each transverse joint, where joints are more than sixteen inches (16") apart, and shall be spaced not more than sixteen inches (16") in other cases. Soffit tile protecting beam and girder flanges shall be tied to the flange. Ties shall have a cross-sectional area equal to that of No. 8 gauge wire.

3. Reinforcement for Cast-In-Place Protection. Cast-in-place protection for metal structural members shall be reinforced at the edges of such members with wire or mesh with a maximum spacing of six inches (6") wound around or attached to the member. The sum of the cross-sectional area in each direction shall be not less than 0.025 square inches per foot.

4. Embedment of Pipes. Conduits and pipes shall not be embedded in required fire protection of structural members.

5. Column Jacketing. Where the fire-resistive covering on columns is exposed to injury from moving vehicles, the handling of merchandise, or by other means, it shall be jacketed to a minimum height of six feet (6') from the floor with an adequate protective covering.

(b) Protected Members. 1. Attached Metal Members. The edges of lugs, brackets, rivets, and bolt heads attached to structural members may extend to within one inch (1") of the surface of the fire-protection.

2. Reinforcing. Thickness of protection for concrete or masonry reinforcement shall be measured to the outside of the reinforcement, except that stirrups and ties may project not more than one-half inch (1/2") into the protection.

3. Steel Studs and Joists. Steel studs and joists are not required to have individual protection when part of an assembly which has a fire-resistive rating.

Sec. 4304. (a) General. Fire-resistive walls and partitions shall have the ratings set forth in Table No. 43-B.

(b) Combustible Members. Combustible members framed into a wall shall be protected at their ends by not less than one-half the required fire-resistive thickness of such wall.

Sec. 4305. (a) General. Fire-resistive floors or ceilings shall have the ratings set forth in Table No. 43-C.

(b) Ceilings. Where a ceiling of lath and plaster as approved for one-hour fire-resistive construction as specified in this Chapter is used below slabs or structural members not otherwise required to be protected by such a ceiling, the
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CONSTRUCTION</th>
<th>Minimum Finished Thickness (face to face) (including plaster, where mentioned) in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4-hr.</td>
</tr>
<tr>
<td>Brick of Clay, Shale, Sand-Lime or Concrete, and Plain Concrete</td>
<td>Solid unplastered</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Solid plastered</td>
<td>9</td>
</tr>
<tr>
<td>Hollow (rowlock) unplastered</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Hollow (rowlock) plastered</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Hollow Clay Tile Wall</td>
<td>End or side construction. One cell in wall thickness. Plastered</td>
<td>3*</td>
</tr>
<tr>
<td></td>
<td>End or side construction. Two cells in 8-in. or less. Plastered</td>
<td>8*</td>
</tr>
<tr>
<td></td>
<td>End or side construction. Two cells in 8-in. or less. Unplastered</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>End or side construction. Three cells in 8-in. or less. Plastered</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>End or side construction. Three cells in 8-in. or less. Unplastered</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>End or side construction. Three cells in 8-in. or less. Plastered</td>
<td>5*</td>
</tr>
<tr>
<td>Hollow Clay Tile Bearing (U.S.C. Standard 24-7)</td>
<td>End or side construction. Three cells in 8-in. or less. Plastered</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>End or side construction. Three cells in 8-in. or less. Unplastered</td>
<td>8</td>
</tr>
<tr>
<td>Combination of Brick and Load-Bearing Tile, (U.S.C. Standard 24-7) or Hollow Concrete Block or Tile.</td>
<td>End or side construction. Three cells in 8-in. or less. Plastered</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4-in brick and 4-in. tile. Plastered one side (title side)</td>
<td>9</td>
</tr>
</tbody>
</table>

Aggregate—Expanded Slag, Bentonite Clay or Shale, Cinders	1\%-in. face Shells	Unplastered	8
	Plastered one side	8*	
	Plastered each side	9	
	1\%-in. face Shells	Unplastered	8
	Plastered each side	8*	
	2\%-in. face Shells	Unplastered	8

Other Aggregates—	1\%-in. face Shells	Unplastered	8
	Plastered each side	8*	
	1\%-in. face Shells	Unplastered	8
	Plastered each side	8*	
	1\%-in. face Shells	Unplastered	8
	Plastered each side	8*	

Solid Concrete		Reinforcement not less than 0.2% in each direction	6
	Unplastered	6*	
	Plastered each side	6*	

Hollow Gypsum Blocks	Outer shell 2-in. thick for 10-in. wall and 1\%-in. thick for 8-in. wall	10
	Unincombustible studding with metal or wire lath	2*
	Unincombustible studding with metal or wire lath, next wood fiber gypsum plaster	2*
	Stud walls, unincombustible runners, 1\%-in. or 1\%-in. planks, gypsum lath, gypsum plaster on each side	2*
	Unincombustible studding with metal or wire lath, 1-in. plaster on each side	3
	Unincombustible studding with metal or wire lath, 1-in. plaster on each side	3

Hollow Wall of Reinforced Pneumatically Placed Concrete	Wood studs with metal or wire lath, Fire-stopped, 1\%-in. plaster on each side	3 or 5
	Wood studs with metal or wire lath, Fire-stopped, 1\%-in. plaster on each side	5
	Wood studs with 1\%-in. perforated gypsum lath, Fire-stopped, 1\%-in. gypsum plaster each side	3 or 5
	Wood studs with 1\%-in. perforated gypsum lath, Fire-stopped, 1\%-in. gypsum plaster each side	3 or 5
	Wood studs with 1\%-in. perforated gypsum lath, Fire-stopped, 1\%-in. gypsum plaster each side	3 or 5

| Solid Gypsum or Portland Cement Plaster | Exterior—Drop siding over 1\%-in. gypsum sheathing, Interior—1\%-in. gypsum plaster over 1\%-in. perforated gypsum lath | 5 |
| | Exterior—Drop siding over 1\%-in. gypsum sheathing, Interior—two thicknesses of 1\%-in. gypsum wallboard | 5 |

*Shall be used for non-bearing purposes only.
**1\% in. for Expanded Slag.
***Mineral or slag wool batts shall weigh not less than 1.0 lb. and glass wool batts not less than 0.6 lb. per sq. ft. of wall surface.
†One part gypsum to one part sand by weight for scratch coat and one part gypsum to two parts sand by weight for brown coat.

231
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CONSTRUCTION</th>
<th>MINIMUM THICKNESS OF FLOOR OR ROOF SLAB IN INCHES</th>
<th>MINIMUM THICKNESS OF CEILING IN INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid masonry, concrete or gypsum</td>
<td>Slab or arch</td>
<td>4 3 2½ 2½</td>
<td></td>
</tr>
<tr>
<td>Hollow masonry</td>
<td>Slab or arch</td>
<td>4* 3½* 3* 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slab</td>
<td>2½ 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspended ceiling on metal or wire lath gypsum or portland cement plaster **</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slab</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reinforced concrete joists</td>
<td>Concrete or gypsum slab</td>
<td>2½ 2½ 2½ 2</td>
<td>2 1½ % %</td>
</tr>
<tr>
<td></td>
<td>Ceiling, gypsum plaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete or gypsum slab</td>
<td>2½ 2½ 2 2</td>
<td>2 1½ % %</td>
</tr>
<tr>
<td></td>
<td>Ceiling, gypsum vermiculite plaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concrete or gypsum slab</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceiling, portland cement plaster **</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Steel joist or light steel construction, with attached or suspended</td>
<td>T. & G. wood flooring on wood stripping</td>
<td>1 nom</td>
<td></td>
</tr>
<tr>
<td>ceiling of metal or wire lath</td>
<td>Ceiling, gypsum plaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIAL</td>
<td>CONSTRUCTION</td>
<td>MINIMUM THICKNESS OF FLOOR OR ROOF SLAB IN INCHES</td>
<td>MINIMUM THICKNESS OF CEILING IN INCHES</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Steel roof deck on steel framing with suspended ceiling of metal or wire lath</td>
<td>Fiberboard insulation or wood fiber and cement binder on top of deck</td>
<td>1½</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ceiling, gypsum plaster sanded 1:2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wood sheathing or fiberboard insulation on top of deck</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ceiling, gypsum or portland cement plaster **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel or precast concrete joists with attached or suspended ceiling of metal or wire lath</td>
<td>Double wood floor with building paper between</td>
<td></td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>Ceiling, gypsum or portland cement plaster **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood joists</td>
<td>Sub-floor of 1" nom. boarding or ¾" plywood, a layer of building paper and ½" T. & G. flooring</td>
<td></td>
<td>1½</td>
</tr>
<tr>
<td></td>
<td>Attached ceiling of gypsum lath† and gypsum plaster.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Attached or suspended ceiling of metal lath and gypsum or portland cement plaster **</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
*Requires top covering of solid masonry equal to ¼ thickness of slab or arch.
**Portland cement plaster with 15 pounds of hydrated lime and 3 pounds of asbestos fiber per bag of portland cement.
†All joists reinforced with 3" strips of metal lath.
‡Neat wood fiber gypsum plaster.
required thickness of slab and fire-protection of structural
members may be reduced one-half inch (1/2") but in no case
shall the slab thickness be less than two inches (2").

(c) **Unusable Space Above or Below.** In one-hour fire-
resistive construction the ceiling may be omitted over un-
usable space and flooring may be omitted where unusable
space occurs above.

Fire-Resistive
Assemblies for
Protection
of Openings

Sec. 4306. (a) **Where Required.** Class "A" fire doors shall
be installed when required in Sections 501, 503 (c) and 3904.
Class "B" fire doors shall be installed when required in
Sections 503 (c), 1807, 3305 (e), 3308 (c), and 3309 (d).
Class "C" fire doors shall be installed when required in
Sections 503 (c), 1308, and 4003.
Class "D," "E," and "F" fire doors shall be installed when
required in Sections 501, 504, 608, 708, 808, 1008, 1102,
1602 (c), 1603 (c), 1807, 1813, 1815, 1913, 3305 (h), 3308 (c),
3311 (d), and 3316.
Fire doors and windows are not required in fire-resistive
walls or partitions unless specified elsewhere in this Code.

(b) **Scope.** Fire doors and windows wherever specified
in this Code shall meet the requirements of this Section.

(c) **Classification of Openings.** Openings requiring fire
doors or windows shall be classified as follows:
"Class 'A' openings" are openings in three-hour fire-
resistive "Special Occupancy Separation."
"Class 'B' openings" are openings in "Ordinary Occupancy
Separation" and in enclosures to vertical shafts.
"Class 'C' openings" are in corridor or room partitions.
"Class 'D,' 'E,' and 'F' openings" are in exterior walls which
have severe, moderate, or light fire exposure, respectively.

(d) **Class "A" Openings.** Class "A" openings shall be pro-
tected by two automatic Class "A" fire doors, one on each
side of the opening and interconnected.
Each Class "A" fire door shall have a fire resistance time
period of three hours and shall be without glazed openings.

(e) **Class "B" Openings.** Class "B" openings shall be pro-
tected by one automatic or self-closing Class "B" fire door.
A Class "B" fire door shall have a fire resistance time
period of one and one-half hours.
Glass panels in a Class "B" fire door shall be limited to
one observation panel not exceeding twelve inches (12") in
width or height and one hundred square inches (100 sq. in.)
in area. Where doors are hung on each jamb of a Class "B"
opening, an observation panel may be installed in each of the
two doors.

(f) **Class "C" Openings.** Class "C" openings shall be pro-
tected by one self-closing Class "C" fire door.
A Class "C" fire door shall have a fire resistance time
period of one hour, except that doors with glass panels larger
than one hundred square inches (100 sq. in.) may have a fire
resistance time period of 45 minutes.
Individual glass lights in glazed openings shall be limited
in area to twelve hundred and ninety-six square inches (1296
sq. in.).
(g) Class "D" Openings. Class "D" openings shall be protected by one automatic closing Class "D" fire door. Class "D" fire doors shall have a fire resistance time period of one and one-half hours and shall have no glazed openings.

(h) Class "E" and "F" Openings. Class "E" and "F" openings shall be protected by a Class "E" or "F" fire door or fire window. Self-closing devices shall not be required.
Class "E" and "F" fire doors and fire windows shall have a time period of fire resistance of 45 minutes.
Individual glass lights shall be limited to fifty-four inches (54") in height, forty-eight inches (48") in width, and seven hundred and twenty square inches (720 sq. in.) in area.
Class "E" and "F" fire windows shall be limited in area to eighty-four square feet (84 sq. ft.) with neither width nor height exceeding twelve feet (12').
Double hung fire windows shall be not more than six feet (6') wide nor more than twelve feet (12') high.

(i) Glass. Glass used in fire doors or fire windows shall be not less than one-quarter inch (1/4") thick and shall be reinforced with wire mesh, 24 gauge or heavier, with openings not larger than one inch (1") square.
Glass shall be held in place by metal glazing angles, except that in casement windows wire clips may be used.

(j) Closing Devices. Automatic fire doors shall be designed to close automatically when the temperature of a heat-actuated device reaches 165 degrees Fahrenheit or 50 degrees above maximum room temperature under normal conditions. Heat-actuated devices shall be installed, one on each side of the wall at the top of the opening and one on each side of the wall at ceiling height where the ceiling is more than three feet (3') above the opening.
Interconnected doors shall be designed so that both doors will close automatically by the action of any of the heat-actuated devices.
Self-closing doors shall be designed to close by gravity or by the action of a mechanical device. Self-closing doors shall have no attachments capable of preventing the operation of the closing devices.

(k) Fire Resistance Tests. The fire resistance time rating of every type of required fire protection assembly shall be determined in the manner prescribed by U.B.C. Standard No. 43-2. A minimum transmitted temperature end point shall not be required.

(l) Label. Every fire door and fire window shall bear the label or other identification of an approved testing agency showing the classification thereof. The following labels of the Underwriters' Laboratories, Inc., shall be approved labels within the meaning of this Section:
Label marked "Fire Door for Opening in Fire Wall" shall be approved for Class "A" fire doors.
Label marked "Fire Door for Opening in Vertical Shaft" shall be approved for Class "B" fire doors.
Label marked "Fire Door for Opening in Corridor or Room Partition" shall be approved for Class "C" fire doors.
Label marked "Fire Door for Opening in Exterior Wall"
Fire-Resistive Assemblies (Cont'd.) shall be approved for Class "D," "E," and "F" fire doors. Label marked "Fire Window Frame for Light Exposures" shall be an approved label for fire windows when glazed with wired glass conforming to Subsection (h).

EXCEPTION: Unlabeled passenger elevator hoistway doors may be installed if the panels are of equivalent fire resistance.

(m) Tin-Clad Doors. If constructed as specified in U.B.C. Standard No. 43-3, tin-clad fire doors shall be considered as meeting the requirements of this Section, provided each door bears the label of an approved inspection agency showing the classification thereof.

(n) Installation. Fire doors and fire windows shall be installed as specified in U.B.C. Standard No. 43-4.

Roof Coverings Sec. 4307. Fire-resistant roof coverings shall be as specified in Section 3204.
PART IX

REGULATIONS FOR USE OF PUBLIC STREETS AND PROJECTIONS OVER PUBLIC PROPERTY

CHAPTER 44—PROTECTION OF PEDESTRIANS DURING CONSTRUCTION OR DEMOLITION

Sec. 4401. No person shall place or store any material or equipment necessary for the work under a building permit on a street, alley or public sidewalk, nor shall any work be performed except in accordance with the provisions of this Chapter.

No person shall perform any work on any building or structure, if by so doing he endangers pedestrians on the street that abuts the property line, unless the pedestrians are protected as specified in this Chapter.

Sec. 4402. Material or equipment necessary for the work under a building permit may be placed or stored on public property in the following locations:

(a) In Front of the Building Site. In the one-third portion of the roadway of the street that is adjacent to the curb in front of the building site for which a permit has been issued; provided that no material or equipment shall be placed or stored within five feet (5') of any rail or any street railway track.

(b) In Front of the Adjoining Site. In the roadway of the street adjoining the building site for which a permit has been issued to the same extent and under the same restrictions as specified in Subsection (a) of this Section.

A due waiver of claim against the city for damages on account of such placement or storage must be obtained from the owner of such property and filed in the office of the Building Official before such materials or equipment may be placed or stored.

(c) In the Alley. In the alley adjoining the building site for which a permit has been issued, provided that a clear and unobstructed roadway not less than ten feet (10') in width is maintained through such alley along the building site.

(d) Public Sidewalk in Front of Building Site. On any portion of the public sidewalk in front of the building site for which a permit has been issued, except on the walkway required to be maintained.

Sec. 4403. Material and equipment necessary for work to be done under a permit shall not be placed or stored on public property so as to obstruct free and convenient approach to any fire hydrant, fire or police alarm box, any utility box or to any catch-basin or manhole, or so as to interfere with the free flow of water in any street or alley gutter.
TABLE NO. 44-A—TYPE OF PROTECTION REQUIRED FOR PEDESTRIANS

<table>
<thead>
<tr>
<th>HEIGHT OF CONSTRUCTION</th>
<th>DISTANCE FROM CONSTRUCTION TO WALKWAY</th>
<th>PROTECTION REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eight feet or less</td>
<td>Less than six feet</td>
<td>Railing</td>
</tr>
<tr>
<td></td>
<td>Six feet or more</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Less than six feet</td>
<td>Fence and Canopy</td>
</tr>
<tr>
<td>More than eight feet</td>
<td>Six feet or more and one-quarter height of construction or less</td>
<td>Fence and Canopy</td>
</tr>
<tr>
<td></td>
<td>Six feet or more and one-fourth to one-half height of construction</td>
<td>Fence</td>
</tr>
<tr>
<td></td>
<td>Six feet or more and at least one-half height of construction</td>
<td>None</td>
</tr>
</tbody>
</table>

Mixing Mortar on Public Property

Sec. 4404. The mixing of mortar or concrete on public property shall be done in a mechanical mixer or in a tight box in such a manner as to prevent dripping or splashing on the public property.

Protection of Utilities

Sec. 4405. A substantial protective frame and boarding shall be built around and over every street lamp, utility box, fire or police alarm box, fire hydrant, and every catch basin and manhole that may be damaged by any work being done under the permit. This protection shall be maintained while such work is being done.

Protection of Pedestrians on Public Property

Sec. 4406. (a) Walkway. A walkway not less than four feet (4') wide with a railing on the street side shall be maintained on the sidewalk in front of the building site during construction, alterations or demolition.

(b) Type of Protection Required. Protection shall be provided for pedestrians as set forth in Table No. 44-A, and be constructed as specified in this Chapter.

Such protection shall be maintained in place and kept in good order for the entire length of time pedestrians on the street that abuts the property line may be endangered, and shall be completely removed as soon as such construction work permits.

(c) Construction of Railings. Railings shall be substantially built and not less than three feet (3') high.

(d) Construction of Fences. Fences shall be substantially built of tight boards eight feet (8') high above grade, placed on the side of the walkway nearest to the building site. Fences shall extend the entire length of the building site and each end shall be turned and extended to the building line.

Doorways may be cut in the fence if they are protected by doors and kept closed, except when opened to permit materials or persons to pass through.
(e) **Construction of Canopies.** The protective canopy shall have a clear height of ten feet (10') above the walkway. The roof shall be tightly boarded. Every canopy shall have a tight board fence built along its entire length, on the side thereof next to the building site. The fence shall be solid from the sidewalk or walkway to the canopy roof and each end shall be turned and extended solid to the building site.

The entire structure shall be designed to carry the loads to be imposed on it, provided, the minimum live load to be used in design shall be not less than 35 pounds per square foot, uniformly loaded.

If materials are stored or work is done on the roof of the canopy, the street sides and ends of the canopy roof shall be protected by a tight curb board not less than one foot (1') high and a railing not less than three feet (3') high.

The space under the canopy over the walkway and the approaches thereto shall be kept well lighted with artificial lighting continuously between sunset and sunrise.

Sec. 4407. When the area or a portion thereof occupied by a public sidewalk is to be excavated, the holder of the building permit shall construct a substantial temporary walkway not less than four feet (4') in width for pedestrian travel over the areas to be excavated or around the same.

The walkway over the evacuated area shall be designed for a uniform live load of 150 pounds per square foot. The walkway shall be provided with suitable ramps or stairs at each end and with a handrail not less than three feet (3') high along each side or with a railing on one side and a fence on the other, as the case may require.

The walkway around the excavated area shall be as close to the excavation on the street side as possible and constructed with a railing not less than three feet (3') high and a fence on the excavation side of the walkway.
CHAPTER 45—PERMANENT OCCUPANCY OF PUBLIC PROPERTY

General

Sec. 4501. No part of any structure or any appendage thereto, except signs, shall project beyond the property line of the building site, except as specified in this Chapter.

Structures or appendages regulated by this Code shall be constructed of materials as required in Sections 1814, 1914, 2014, 2114 and 2214 and Chapter 35.

The projection of any structure or appendage shall be the distance measured horizontally from the property line to the outermost point of the projection.

Projection Into Alleys

Sec. 4502. No part of any structure or any appendage thereto, except signs, shall project into any alley except that a curb or buffer block may project not more than nine inches (9") and not exceed a height of nine inches (9") above grade.

Space Below Sidewalk

Sec. 4503. The space adjoining a building below a sidewalk on public property may be used and occupied in connection with the building for any purpose not inconsistent with this Code or other laws or ordinances regulating the use and occupancy of such spaces on condition that the right so to use and occupy may be revoked by the city at any time and that the owner of the building will construct the necessary walls and footing to separate such space from the building and pay all costs and expenses attendant therewith.

Balconies and Appendages

Sec. 4504. Oriel windows, balconies, unroofed porches, cornices and belt courses and appendages such as water-tables, sills, capitals, bases and other decorative features may project over the public property of the building site a distance as determined by the clearance of the lowest point of the projection above the grade immediately below, as follows:

- Clearance above grade less than eight feet (8')—no projection is permitted.
- Clearance above grade over eight feet (8')—one inch (1") of projection is permitted for each additional inch of clearance, provided that no such projection shall exceed a distance of four feet (4').

Marquees

Sec. 4505. (a) General. For the purpose of this Section a marquee shall include any object or decoration attached to or a part of said marquee.

(b) Projection and Clearance. The horizontal clearance between a marquee and the curb line shall be not less than two feet (2').

A marquee projecting more than two-thirds of the distance from the property line to the curb line shall be not less than twelve feet (12') above the ground or pavement below.

A marquee projecting less than two-thirds of the distance from the property line to the curb line shall be not less than eight feet (8') above the ground or pavement below.

(c) Length. A marquee projecting more than two-thirds
the distance from the property line to the curb line shall not exceed twenty-five feet (25') in length along the direction of the street.

(d) Thickness. The maximum height or thickness of a marquee measured vertically from its lowest to its highest point shall not exceed three feet (3') when the marquee projects more than two-thirds of the distance from the property line to the curb line and shall not exceed nine feet (9') when the marquee is less than two-thirds of the distance from the property line to the curb line.

(e) Construction. A marquee shall be supported entirely from the building and constructed as specified under Types of Construction and shall be of incombustible material or of not less than one-hour fire-resistive construction.

(f) Roof Construction. The roof or any part thereof may be a skylight provided wire glass is used not less than one-fourth inch (1/4") thick with no single pane more than eighteen inches (18") wide.

Every roof and skylight of a marquee shall be sloped to downspouts which shall conduct any drainage from the marquee under the sidewalk to the curb.

(g) Location Prohibited. Every marquee shall be so located as not to interfere with the operation of any exterior stand-pipe or to obstruct the clear passage of stairways or exits from the building or the installation or maintenance of electrolizers.

Sec. 4506. Movable awnings or hoods may have combustible coverings supported on incombustible frames attached to the building.

Such awning or hood may extend over the public property not more than two-thirds the distance from the property line to the nearest curb in front of the building site.

The lowest part of any movable awning or hood frame shall be not less than eight feet (8') above the ground immediately below, and the lowest part of any fringe attached to such awning or hood shall be not less than seven feet (7') above the grade immediately below.

Sec. 4507. Doors in Fire Zones Nos. 1 and 2, either fully opened or when opening, shall not project more than one foot (1') beyond the property line, except that in alleys no projection beyond property line is permitted. Doors in Fire Zone No. 3, that swing over the property line, shall be maintained normally closed.
PART X
PLASTERING

CHAPTER 47—LATHING AND PLASTERING

General

Sec. 4701. Lathing and plastering shall be done in the manner and with the materials specified in this Chapter, and when required for fire protection shall also comply with the provisions of Chapter 43.

No plaster shall be applied until the lathing has been inspected and approved by the Building Official.

The Building Official may require that test holes be made in the wall for the purpose of determining the thickness of the plaster, provided the permit holder has been notified 24 hours in advance of the time of making such test.

Materials

Sec. 4702. (a) Aggregate. Sand shall be washed sand conforming to U.B.C. Standard No. 47-1; except that when used with portland cement for scratch coat plastering, the amount of sand retained on a No. 8 sieve shall be not less than 10 per cent or more than 30 per cent.

Vermiculite shall conform in particle size to the above standard and shall weigh not less than seven and one-half nor more than ten pounds per cubic foot.

(b) Gypsum Plaster. Gypsum plaster shall conform to U.B.C. Standard No. 47-2.

(c) Lime. Lime shall conform to the requirements of U.B.C. Standard No. 24-12 or U.B.C. Standard No. 24-13.

Lime putty shall be made from quicklime or hydrated lime, and shall be prepared in an approved manner, stored and protected for an approved period of time.

(d) Keene’s Cement. Keene’s cement shall conform to U.B.C. Standard No. 47-3.

(e) Portland Cement. Portland cement shall be Type I, II, or III conforming to U.B.C. Standard No. 26-1, except with respect to insoluble residue.

Approved types of plasticity agents may be added to portland cement, Types I or II, in the manufacturing process or when mixing the plaster, but in no case shall the amount of plasticity agent exceed 10 per cent of the volume of cement in the plaster mixture.

(g) Fiber Insulation. Fiber insulation lath shall be manufactured from wood or other vegetable fiber in accordance with U.B.C. Standard No. 47-5.

(h) Gypsum Lath. Gypsum lath shall conform to U.B.C. Standard No. 47-6, and shall be not less than five-sixteenths inch (5/16") in thickness.

(i) Metal and Wire Lath. Metal and wire lath, metal accessories and channels shall conform to the requirements of U.B.C. Standard No. 47-7.
Sec. 4703. (a) Distance Between Supports. For gypsum, wood, and fiber insulation laths, the distance between supports shall not exceed sixteen inches (16”).

Internal angles, external angles, coves, arches and junctions between wood, fiber insulation, gypsum lath and other plaster bases shall be reinforced with cornerite, except where metal or wire lath is carried around such intersections. Cornerite shall be fastened only sufficiently to retain position during plastering and shall not be rigidly attached to the wood framing.

No interior lath shall be applied until all exterior framing is covered.

(b) Gypsum Lath. Gypsum lath shall be nailed to wood supports at intervals not to exceed four inches (4”) with 13-gauge, one and one-eighth inch (1¼”) , three-eighths inch (3/8”) flathead, galvanized or blued nails and shall be secured to horizontal or vertical metal supports by means of approved special clips.

Joints between walls and ceilings shall be staggered. Lath shall be applied with joints broken in each course. Lath shall not be butted tightly together, nor be more than one-quarter inch (¼”) apart.

(c) Wood Lath. Wood lath shall be spaced not less than one-quarter inch (¼”) or more than three-eighths inch (3/8”) apart at edges, one-quarter inch (¼”) apart at ends, and shall be nailed with 3d fine, 16-gauge, blued nails, full driven. Joints shall be broken every seventh lath and above or below all openings.

Lath shall run approximately at right angles to the supporting members, and no lath shall extend through any wall.

Wood lath shall be thoroughly soaked before being nailed in place, and kept damp until plaster is applied.

(d) Fiber Insulation Lath. Fiber insulation lath shall be nailed to wood supports at intervals not to exceed four and one-half inches (4½”) with nails of the following sizes, placed not less than three-eighths inch (3/8”) from the ends, and not less than one-half inch (½”) from shiplapped, tongued and grooved, or interlocking edges:

For one-half inch (½”) lath—One and one-eighth inch (1¼”) fiberboard nails or 4d box nails.

For one-inch (1”) lath—One and three-fourths inch (1¾”) fiberboard nails or 6d box nails.

End joints, except in interlocking type lath, shall be not less than three-sixteenths inch (3/16”) wide. Shiplapped, tongued and grooved, or interlocking edges shall be fitted to contact.

(e) Metal and Wire Lath. 1. The weight of metal and wire lath and the spacings of supports shall conform to the requirements set forth in Table No. 47-A.

2. Metal and wire lath shall be lapped at least one mesh at side and ends, but need not exceed one inch (1”).

243
TABLE NO. 47-A—WEIGHTS OF METAL AND WIRE LATH

<table>
<thead>
<tr>
<th>WEIGHT (Lbs. per sq. yd.)</th>
<th>TYPE OF LATH</th>
<th>MAXIMUM SPACING OF SUPPORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>For Walls</td>
</tr>
<tr>
<td>2.5</td>
<td>Flat expanded metal lath</td>
<td>16"</td>
</tr>
<tr>
<td>3.4</td>
<td>Flat expanded metal lath</td>
<td>16"</td>
</tr>
<tr>
<td>2.75</td>
<td>Flat Rib metal lath</td>
<td>16"</td>
</tr>
<tr>
<td>2.1</td>
<td>Flat Rib metal lath</td>
<td>24"</td>
</tr>
<tr>
<td>3.4</td>
<td>¼" Rib metal lath*</td>
<td>24"</td>
</tr>
<tr>
<td>4.5</td>
<td>Sheet metal lath</td>
<td>24"</td>
</tr>
<tr>
<td>2.48</td>
<td>Wire lath</td>
<td>16"</td>
</tr>
<tr>
<td>**</td>
<td>Wire fabric</td>
<td>16"</td>
</tr>
</tbody>
</table>

* Rod-stiffened or V-stiffened flat expanded metal lath of equal rigidity and weight is permissible on the same spacings as ¾-inch rib metal lath.

** Paper-backed wire fabric, No. 16 gauge wire, 2" x 2" mesh, with stiffener.

TABLE NO. 47-B—SIZES OF MAIN RUNNERS IN SUSPENDED AND FURRED CEILINGS

<table>
<thead>
<tr>
<th>DISTANCE CENTER TO CENTER OF HANGERS</th>
<th>SIZE</th>
<th>MAIN RUNNERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hot Rolled</td>
</tr>
<tr>
<td>Up to 2 feet</td>
<td>¾"</td>
<td>300 lb./1000 ft.</td>
</tr>
<tr>
<td>Up to 3 feet</td>
<td>1"</td>
<td>410 lb./1000 ft.</td>
</tr>
<tr>
<td>Up to 4 feet</td>
<td>1¼"</td>
<td>600 lb./1000 ft.</td>
</tr>
</tbody>
</table>

3. Metal and wire lath shall be attached to vertical wood supports at not to exceed six-inch (6") spacing with not less than 4d common nails driven to a penetration of at least three-quarters inch (¾") and bent over to engage not less than three strands of lath. Metal and wire lath shall be attached to ceiling joists or other horizontal wood supports with not less than one and one-half inches (1½"), 11 gauge, barbed nails with a head not less than seven-sixteenths inch (7/16") in diameter, or an equivalent approved attachment.

4. Metal and wire lath shall be attached to horizontal and vertical metal supports at not to exceed six-inch (6") spacing with not less than No. 18 W. & M. gauge, galvanized annealed wire, or an equivalent approved attachment.

Sec. 4704. Where reinforced plaster or pneumatically placed plaster partitions are used they shall have vertical steel or iron channels with a depth of not less than one-third the thickness of the partition, made of not less than No. 16 U. S. gauge metal and spaced not more than twenty-four inches (24") on center. They shall be securely fastened and anchored to adjoining framing members.

Hollow non-bearing partitions of reinforced plaster or pneumatically placed plaster shall have a shell thickness of not less than three-fourths inch (¾").

Metal reinforcing shall be as set forth in Table No. 47-A, and gypsum lath shall not be less than three-eighths inch.
TABLE NO. 47-C—SIZES OF CROSS FURRING IN SUSPENDED AND FURRED CEILINGS

<table>
<thead>
<tr>
<th>DISTANCE CENTER TO CENTER OF MAIN RUNNER</th>
<th>SIZE OF CROSS FURRING</th>
<th>MAXIMUM SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2 feet</td>
<td>(\frac{3}{4})" pencil rods</td>
<td>12"</td>
</tr>
<tr>
<td>Up to 3 feet</td>
<td>(\frac{3}{8})" channels</td>
<td>24"</td>
</tr>
<tr>
<td>Up to 4 feet</td>
<td>(\frac{3}{8})" channels</td>
<td>16"</td>
</tr>
</tbody>
</table>

TABLE NO. 47-D—REQUIRED THICKNESS OF INTERIOR PLASTER

<table>
<thead>
<tr>
<th>TYPE OF LATH</th>
<th>THICKNESS OF PLASTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal or wire lath</td>
<td>(\frac{1}{6})" minimum</td>
</tr>
<tr>
<td>All other types allowed in Chapter 47</td>
<td>(\frac{1}{4})" minimum</td>
</tr>
</tbody>
</table>

(\(\frac{3}{8} \)"") in thickness. The minimum thickness of metal lath and plaster, or pneumatically placed plaster partitions shall be not less than two inches (2") nor one eighty-fourth of the distance between supports. Studless solid partitions of metal lath and plaster or gypsum lath and plaster shall be not more than twelve feet (12') in height.

Sec. 4705. (a) General. Suspended or furred ceilings shall be designed to meet the requirements of this Section, or shall be designed for a live load of 10 pounds per square foot.

(b) Main Runners. Main runners shall be hot rolled or cold rolled steel channels, and shall be not less than the sizes and weights set forth in Table No. 47-B.

(c) Cross Furring. Cross furring for various spacings of main runners or other supports shall be not less than as set forth in Table No. 47-C.

Cross furring shall be securely attached to the main runners or other supports by not less than two strands of No. 16 W. & M. gauge galvanized wire or equivalent approved attachments.

(d) Hangers. Hangers for suspended ceilings shall be not less than No. 8 W. & M. gauge galvanized wire, fastened to or embedded in the structural framing, masonry or concrete. Not less than two strands of No. 14 W. & M. gauge galvanized wire or equivalent approved attachments shall be used to attach carrying members to joists or beams.

Hangers shall be saddle tied or wrapped around main runners so as to develop the full strength of the hangers. Lower ends of flat hangers shall be bolted with three-eighths inch (\(\frac{3}{8} \)") bolts to runner channels, or bent tightly around runners and bolted to the main part of the hanger.

Sec. 4706. (a) Number of Coats. Pastering with gypsum, hardwall, lime or cement plaster shall be three-coat work when applied over metal and wire lath, and shall be not less than two-coat work when applied over other plaster bases allowed in this Chapter.
Lime or cement plaster shall not be applied directly to fiber insulation lath or gypsum lath.

In no case shall a brush coat be accepted as a required coat where three-coat work is required by this Section.

(b) **Thickness.** Grounds shall be installed to provide for the thicknesses of plaster, from face of plaster base to finished plaster surfaces, set forth in Table No. 47-D.

If monolithic concrete ceiling surfaces require more than three-eighths inch (\(\frac{3}{8}\)"") of plaster to produce desired lines or surfaces, metal lath or wire lath shall be attached thereto.

Sec. 4707. (a) Base Coats. The base coats shall be mixed and proportioned in accordance with the following procedure:

1. **Gypsum or Hardwall Plaster.** First coat on all types of lath shall be mixed in the proportion of one part of gypsum or hardwall plaster to not more than two parts of sand, by weight.

 First coat on masonry surfaces (except monolithic concrete) and second coat (brown) in all three-coat work shall be mixed in the proportions of one part of gypsum or hardwall plaster to not more than three parts of sand, by weight.

 When vermiculite is used in place of sand, the first coat on all types of lath shall be mixed in the proportion of 100 pounds of gypsum plaster to not more than two and one-half cubic feet (2\(\frac{1}{2}\) cu. ft.) of vermiculite; the first coat on masonry surfaces (except monolithic concrete) and the second coat in all three-coat work shall be mixed in the proportion of 100 pounds of gypsum plaster to not more than three and one-half cubic feet (3\(\frac{1}{2}\) cu. ft.) of vermiculite.

2. **Wood Fiber Gypsum Plaster.** Wood fiber gypsum plaster shall be mixed with water only, for use on all types of lath, and shall be mixed in the proportion of one part of plaster to one part of sand by weight for use on masonry.

3. **Lime Plaster.** The first coat for three-coat work on metal and wire lath shall be composed of eleven cubic feet (11 cu. ft.) of lime putty or 500 pounds of hydrated lime, 150 pounds of Keene's cement and six pounds of fiber to one cubic yard (1 cu. yd.) of sand.

 The second coat for three-coat work on metal and wire lath and for two-coat work on wood lath, brick, tile, or concrete, shall be composed of ten cubic feet (10 cu. ft.) of lime putty or 450 pounds of hydrated lime, 150 pounds of Keene's cement and four pounds of fiber to one cubic yard (1 cu. yd.) of sand.

4. **Portland Cement Plaster.** For three-coat work, the first two coats shall be as required for the first two coats of exterior work.

(b) **Finish Coats for Gypsum or Lime Plaster.** The finish coats shall be mixed and proportioned in accordance with the following procedure:

1. **Smooth white finish,** mixed in the proportion of not less than one part gypsum gauging plaster or Keene's cement
to three parts lime putty by volume, or a prepared gypsum trowel finish.

2. Sand-float finish, mixed in the proportion of one part gypsum neat unfibered plaster to not more than two parts sand by weight, or one and one-half parts of Keene's cement to two parts of lime putty and not more than four and one-half parts of sand by volume, or a prepared gypsum sand-float finish.

3. Keene's cement finish, mixed in the proportions of three parts Keene's cement to one part lime putty, by volume.

4. Lime sand-float finish shall be mixed in the proportion of one part of gypsum gauging plaster or Keene's cement, three parts of lime putty, and three parts of sand by volume.

5. Interior stucco finish shall be mixed in the proportion of one part of Keene's cement, two parts of lime putty, and three parts of white sand by volume, or a prepared color finish.

(c) Finish Coat for Portland Cement Plaster. Finish coats for interior portland cement plaster may be:

1. As required for the third coat of exterior stucco.

2. A gauged cement plaster mixed in proportion of one part portland cement to not more than two and one-half parts of lime putty and not more than four parts of sand by volume.

3. Smooth white finish, mixed in the proportion of not less than one part gypsum gauging plaster or Keene's cement to three parts lime putty by volume.

4. Keene's cement finish, mixed in the proportions of three parts Keene's cement to one part lime putty, by volume.

5. Lime sand-float finish shall be mixed in the proportion of one part gypsum gauging plaster or Keene's cement, three parts of lime putty, and three parts of sand, by volume.

6. Interior stucco finish shall be mixed in the proportion of one part of Keene's cement, two parts of lime putty, and three parts of white sand by volume, or a prepared color finish.

EXCEPTION: When finishes No. 3, No. 4, No. 5, or No. 6 are used, portland cements having plasticity agents added in the manufacturing process shall not be used in the coat to which this finish is applied.

Sec. 4708. (a) Base Coats. 1. Gypsum Plaster. The scratch coat shall be applied with sufficient material and pressure to form a full key or bond.

For two-coat work it shall be doubled back to bring the plaster out to grounds and straightened to a true surface and left rough to receive the finish coat. For three-coat work, the surface shall be scratched to provide a bond for the brown coat and shall have been in place at least 12 hours before the second or brown coat is applied. The second or brown coat shall be brought out to grounds, and straightened to a true surface and left rough, ready to receive the finish coat.

2. Lime Plaster. The first two coats shall be applied in
TABLE NO. 47-E—EXTERIOR PLASTER REINFORCEMENT

<table>
<thead>
<tr>
<th>TYPE OF REINFORCEMENT</th>
<th>MINIMUM GAUGE</th>
<th>MINIMUM WEIGHT (lbs. per sq. yd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanded Metal</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Metal Lath</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Welded or Woven Wire Netting</td>
<td>18</td>
<td>1.4</td>
</tr>
<tr>
<td>Welded Wire Fabric</td>
<td>18</td>
<td>1.0</td>
</tr>
</tbody>
</table>

the same manner as gypsum plaster, except that in three-coat work, the second coat (brown) shall be applied over a dry base coat.

3. Portland Cement Plaster. The first two coats shall be as required for the first two coats of exterior work, except that the interval between the first and second coats shall be not less than 24 hours.

(b) Finish Coats. 1. Smooth white finish shall be applied over base coat which has set and is surface-dry. Thickness shall be from one-sixteenth inch (1/16") to one-eighth inch (¼").

2. Sand-float finish shall be applied over set base coat which is not quite dry.

3. Keene's cement finish shall be applied over set base coat which is not quite dry. Thickness shall be from one-sixteenth inch (1/16") to one-eighth inch (¼"), unless finish coat is marked off or jointed, in which case the thickness may be increased as required by depth of marking or jointing.

4. The finish coat for interior portland cement plastering shall be applied in the same manner as required for the third coat of exterior stucco, except that other types of finish coat may be applied as specified in Section 4707 (c).

(c) Plaster on Concrete. Monolithic concrete surfaces shall be clean, free from efflorescence, damp and sufficiently rough to insure adequate bond.

Gypsum plaster applied to monolithic concrete ceilings shall be specially prepared bond plaster for use on concrete, to which water only shall be added. Gypsum plaster on monolithic walls and columns shall be applied over a scratch coat of bond plaster before it has set. The brown coat shall be brought out to grounds, straightened to a true surface and left rough, ready to receive finish coat.

Lime plaster applied to concrete walls shall be as specified in Section 4707.

Portland cement plaster applied to interior concrete walls or ceilings shall conform to requirements for application to exterior concrete walls as specified in Section 4711 (c).

Sec. 4709. Staff. Staff shall be soaked before sticking. Lugs shall be of pure fiber and plaster of paris. Rust-resistive fastenings of sufficient strength to anchor the staff to the support shall be not less than No. 14 B. & S. gauge copper wire.
TABLE NO. 47-F—EXTERIOR PORTLAND CEMENT PLASTER

<table>
<thead>
<tr>
<th>COAT</th>
<th>MAXIMUM VOLUME OF SAND PER VOLUME OF CEMENT</th>
<th>MINIMUM THICKNESS</th>
<th>MINIMUM PERIOD OF MOIST CURING</th>
<th>MINIMUM INTERVAL BEFORE APPLICATION OF SUCCEEDING COAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>First or scratch</td>
<td>3½</td>
<td>¾"**</td>
<td>48 hrs.</td>
<td>7 days</td>
</tr>
<tr>
<td>Second or brown</td>
<td>4½ (1st & 2nd coats)</td>
<td>¾"**</td>
<td>48 hrs.</td>
<td>7 days</td>
</tr>
<tr>
<td>Third or finish</td>
<td>2**</td>
<td>¾"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Measured from backing to crest of scored plaster.

**Approved prepared finish coats containing not less than 1/3 by weight of portland cement may be used.

Sec. 4710. (a) **Backing.** Studs shall be sheathed, or wire of not less than No. 18 W. & M. gauge shall be stretched taut horizontally at intervals not exceeding six inches (6") on centers vertically and securely fastened in place. This shall not be required with metal lath or paper-backed wire fabric.

(b) **Weather Protection.** Weather protection shall be as specified in Section 2217.

(c) **Metal Reinforcement.** Exterior plaster, except when applied to concrete or masonry, shall be reinforced with one of the materials having a rust-resistive coating as set forth in Table No. 47-E.

Metal reinforcement shall be furred out from the backing at least one-quarter inch (¾") by an approved furring method, and shall be nailed with galvanized nails or approved furring devices driven to at least three-quarters inch (¾") penetration which shall be spaced not more than six inches (6") apart vertically and sixteen inches (16") apart horizontally. Metal reinforcement shall be lapped at least one full mesh at all joints. When no sheathing is used, all vertical joints shall be made at the studs, and horizontal joints where expanded metal or metal lath is used shall have at least one tie between studs, made with No. 18 W. & M. gauge galvanized annealed tie wire.

Sec. 4711. (a) **General.** Exterior cement plaster shall be portland cement plaster meeting the requirements of Table No. 47-F, except when applied over concrete or masonry.

(b) **Plasticity Agents.** Plasticity agents shall be of approved types and amounts, and if added to portland cement in the manufacturing process, no later additions shall be made.

(c) **Application.** 1. General. Except when applied to concrete or masonry, and except as otherwise provided for pneumatically applied plaster, exterior cement plastering materials shall be mixed by machine methods for not less than two minutes, and shall be applied in three coats as set forth in Table No. 47-F.

The first coat shall be forced through all openings in the
reinforcement so as solidly to fill all spaces. It shall then be scored horizontally with a scratcher having one-eighth inch (\(\frac{1}{8}\)”) clipped teeth and grooves not more than one-half inch (\(\frac{1}{2}\)”) deep.

The second coat shall be rodded and water floated, with no variation greater than one-quarter inch (\(\frac{1}{4}\)”) in any direction under a five-foot (5’) straightedge.

The third coat shall not be a brush coat.

2. Plastering on Masonry or Concrete. The masonry surface on which plaster is to be applied shall be clean, free of efflorescence, damp and sufficiently rough to insure proper bond. Mixtures specified for the second coat in this Section may be applied directly to masonry.

Pneumatically Placed Plaster

Sec. 4712. Pneumatically placed cement plaster shall be a mixture of portland cement and sand, mixed dry, conveyed by air through a pipe or flexible tube, hydrated at the nozzle at the end of the conveyor and deposited by air pressure in its final position.

Rebound material may be screened and re-used as sand in an amount not greater than 25 per cent of the total sand in any batch.

Pneumatically placed cement plaster shall consist of a mixture of one part cement to not more than five parts of sand. Plasticity agents may be used as specified in Section 4711 (b). Except when applied to concrete or masonry, such plaster shall be applied in not less than two coats to a minimum total thickness of seven-eighths inch (\(\frac{7}{8}\)”). The first coat shall be rodded as specified in Section 4711 (c) for the second coat. The curing period and time interval shall be as set forth in Table No. 47-F.
PART XI

SPECIAL SUBJECTS

CHAPTER 48—FILM STORAGE

Secs. 4801, 4802 and 4803. Where it is desired to regulate film storage, complete provisions covering handling and storage of photographic and X-ray nitrocellulose films may be found in Appendix Chapter 48.

CHAPTER 49—MECHANICAL REFRIGERATION

Secs. 4901 and 4902. Where it is desired to regulate the type and installation of mechanical refrigeration, complete provisions may be found in Appendix Chapter 49.

CHAPTER 50—PREFABRICATED CONSTRUCTION

Sec. 5001. (a) Purpose. The purpose of this Chapter is to regulate materials and establish methods of safe construction where any structure or portion thereof is wholly or partially prefabricated.

(b) Scope. Unless otherwise specifically stated in this Chapter, all prefabricated construction and all materials used therein shall conform to all the requirements of this Code. (See Section 105.)

(c) Definition. Prefabricated Assembly is a structural unit, the integral parts of which have been built up or assembled prior to incorporation in the building.

Sec. 5002. Every approval of a material not specifically mentioned in this Code shall incorporate as a proviso the kind and number of tests to be made during prefabrication.

Sec. 5003. The Building Official may require special tests to be made on assemblies to determine their durability and weather resistance.

Sec. 5004. (a) Design. Every device designed to connect prefabricated assemblies shall be capable of developing the strength of the members connected, except in the case of members forming part of a structural frame designed as specified in Chapter 23. The connection device shall be designed as required by the other chapters in this Code. Connections between roofs and the supporting walls shall be capable of withstanding an uplift equal to five pounds per square foot of roof.

Sec. 5005. (a) Structural Design. In structural design, due allowance shall be made for any material to be removed for the installation of pipes, conduits, or other equipment.
Sec. 5006. (a) Materials. Materials and the assembly thereof shall be inspected to determine compliance with this Code. Every material shall be grade marked or labeled where required elsewhere in this Code.

(b) Certificate. A certificate of approval shall be furnished with every prefabricated assembly, except where the assembly is readily accessible to inspection at the site. The certificate of approval shall certify that the assembly in question has been inspected and meets all the requirements of this Code. When mechanical equipment is installed so that it cannot be inspected at the site, the certificate of approval shall certify that such equipment complies with the laws applying thereto.

(c) Certifying Agency. To be acceptable under this Code, every certificate of approval shall be made by an approved agency.

(d) Field Erection. Placement of prefabricated assemblies at the building site shall be inspected by the Building Official to determine compliance with this Code.

(e) Continuous Inspection. If continuous inspection is required for certain materials where construction takes place on the site, it shall also be required where the same materials are used in prefabricated construction.

EXCEPTION: Continuous inspection will not be required during prefabrication if the approved agency certifies to the construction and furnishes evidence of compliance.

CHAPTER 51—HEATING APPLIANCES
(See Appendix)
PART XII

LEGISLATIVE

CHAPTER 60—LEGISLATIVE

Sec. 6001. If any section, subsection, sentence, clause or phrase of this Ordinance is, for any reason, held to be unconstitutional, such decision shall not affect the validity of the remaining portions of this Ordinance. The City Council hereby declares that it would have passed this Ordinance, and each section, subsection, clause or phrase thereof, irrespective of the fact that any one or more sections, subsections, sentences, clauses and phrases be declared unconstitutional.

Sec. 6002. The U.B.C. Standards which are referred to in various parts of this Ordinance shall be the Uniform Building Code Standards, 1949 Edition, and are hereby declared to be a part of this Ordinance.

Sec. 6003. Ordinance No.................................and all ordinances amendatory thereto, and all ordinances or parts of ordinances in conflict with this Ordinance are hereby repealed.

Sec. 6004. This Ordinance shall be, and is hereby declared to be in full force and effect, from and after 30 days from its date of final passage and approval.
PART XII

LEGISLATIVE

CHAPTER 60—LEGISLATIVE

Sec. 6001. If any section, subsection, sentence, clause or phrase of this Ordinance is, for any reason, held to be unconstitutional, such decision shall not affect the validity of the remaining portions of this Ordinance. The City Council hereby declares that it would have passed this Ordinance, and each section, subsection, clause or phrase thereof, irrespective of the fact that any one or more sections, subsections, sentences, clauses and phrases be declared unconstitutional.

Sec. 6002. The U.B.C. Standards which are referred to in various parts of this Ordinance shall be the Uniform Building Code Standards, 1949 Edition, and are hereby declared to be a part of this Ordinance.

Sec. 6003. Ordinance No...........................and all ordinances amendatory thereto, and all ordinances or parts of ordinances in conflict with this Ordinance are hereby repealed.

Sec. 6004. This Ordinance shall be, and is hereby declared to be in full force and effect, from and after 30 days from its date of final passage and approval.
APPENDIX

The Appendix, pages 254-272, contains suggested ordinances covering subjects which may not be desired in all cities, also other pertinent information designed to be of assistance to the Building Official.

REVIEWING STANDS

Refer to Sec. 702 (c). The following suggestions are given as a guide for the detailed design and construction of reviewing stands:

Every reviewing stand shall be constructed with four-inch by six-inch (4"x6") girders running parallel to the front of such stand, spaced not more than six feet (6') apart, and supported at distances not exceeding six feet (6') apart by posts of not less than four inches by six inches (4"x6"). These posts shall be braced diagonally with one-inch by six-inch (1"x6") bracing, forming a continuous herringbone bracing, the full length of such stand for each vertical six feet (6') of such posts. The girders at the top of the posts shall be braced with braces not less than four inches by four inches (4"x4") at right angles to the joists above the girders. Every post or brace shall be thoroughly secured to a foot plate, which shall be of sound wood not less than two inches by six inches (2"x6") in cross section laid solidly on the ground at right angles to the front of the stand and forming the base for each line of posts. There shall be joists resting on the girders of not less than two inches by eight inches (2"x8") cross section. Such joists shall be spaced not exceeding forty inches (40") apart and two-inch (2") plank shall be used for the seats and steps. Braces shall be provided whenever necessary to make a solid, substantial structure, which shall be safe under any possible emergency. All timbers forming the framing shall be thoroughly spiked together. There shall be a level stringer of two inches by six inches (2"x6") cross section at the bottom of each line of posts, parallel to the stand; also a horizontal piece of two inches by six inches (2"x6") cross section the full length of the stand and at right angles to same for every row of posts, and every six feet (6') of vertical height thereof. All timbers used in the construction of reviewing stands shall be sound (no second-hand or broken lumber permitted). Wherever the stand, or a portion thereof, extends over an excavation, the posts shall be extended to the bottom of said excavation and shall be braced with horizontal braces as hereinbefore provided.

EXISTING BUILDINGS

Sec. 1309. (a) Purpose. The purpose of this Section is to provide a reasonable degree of safety to persons living and sleeping in apartment houses and hotels through providing for alterations to such existing buildings as do not conform with the minimum safety requirements of this Code.
(b) Scope. The provisions of this Section shall apply exclusively to existing non-conforming Group H occupancies more than two stories in height.

(c) Effective Date. Eighteen months after the effective date of this Section, every building falling within its scope shall be vacated until made to conform to the requirements of this Section.

(d) Number of Exits. Every apartment and every other sleeping room shall have access to not less than two exits. A fire escape as specified herein may be used as one required exit.

(e) Stair Construction. All stairs shall have a minimum run of nine inches (9") and a maximum rise of eight inches (8") and a minimum width exclusive of handrails of thirty inches (30"). Every stairway shall have at least one handrail. A landing having a minimum horizontal dimension of thirty inches (30") shall be provided at each point of access to the stairway.

(f) Interior Stairways. Every interior stairway shall be enclosed with walls of not less than one-hour fire-resistive construction.

Where existing partitions form part of a stairwell enclosure, wood lath and plaster in good condition will be acceptable in lieu of one-hour construction. Doors to such enclosures shall be protected by self-closing Class "B" fire doors or solid wood doors not less than one and three-eighths inch (1¾") thick. Enclosures shall include landings between flights and any corridors, passageways or public rooms necessary for continuous exit to the exterior of the building.

The stairway need not be enclosed in a continuous shaft if cut off at each story by the fire-resistive construction required by this Subsection for stairwell enclosures.

Enclosures shall not be required if an automatic sprinkler system is provided for all portions of the building except bedrooms, apartments and rooms accessory thereto.

(g) Exterior Stairways. Exterior stairs shall be incombustible or of wood of not less than two-inch (2") nominal thickness with solid treads and risers.

(h) Fire Escapes. Fire escapes may be used as one means of egress, if the pitch does not exceed 60 degrees, the width is not less than eighteen inches (18"), the treads are not less than four inches (4") wide, and they extend to the ground or are provided with counterbalanced stairs reaching to the ground. Access shall be by an opening having a minimum dimension of twenty-nine inches (29") when open. The sill shall be not more than thirty inches (30") above the floor and landing.

(1) Doors. Exit doors shall swing in the direction of exit travel, shall be self-closing and shall be openable from the inside without the use of key or any special knowledge or effort. Doors shall not reduce the required width of stairway more than six inches (6") when open.
(j) Exit Signs. Every exit doorway or change of direction of a corridor shall be marked with a well lighted exit sign having letters at least five inches (5") high.

(k) Enclosure of Vertical Openings. Elevators, shafts, ducts and other vertical openings shall be enclosed as required for stairways in Subsection (f) or by wired glass set in metal frames. Doors shall be incombustible, or as regulated in Subsection (f).

(l) Separation of Occupancies. Occupancy separations shall be provided as specified in Section 503. Lobbies, and public dining rooms not including cocktail lounges, shall not require a separation if the kitchen is so separated from the dining room. Boiler rooms or heater rooms containing a central heating plant using solid or liquid fuel shall be separated from the rest of the building by a “Special Occupancy Separation.”

(m) Alternates. No alternate method of obtaining the fire protection and safety required by this Section may be used unless the Board of Examiners and Appeals, including as a voting member for this purpose the Chief of the Fire Department, finds that such alternate method provides protection and safety equivalent to that required herein.

Refer to Sec. 2301.

WEIGHTS OF BUILDING MATERIALS

<table>
<thead>
<tr>
<th>Weights of Building Materials</th>
<th>Lbs. Per Cu. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick, pressed</td>
<td>150</td>
</tr>
<tr>
<td>Brick, common</td>
<td>125</td>
</tr>
<tr>
<td>Brick, common, laid 3/8" joints</td>
<td>120</td>
</tr>
<tr>
<td>Brick, soft, laid 3/8" joints</td>
<td>100</td>
</tr>
<tr>
<td>Cast iron</td>
<td>450</td>
</tr>
<tr>
<td>Cinders, dry, bituminous, in bulk</td>
<td>45</td>
</tr>
<tr>
<td>Concrete—</td>
<td></td>
</tr>
<tr>
<td>Cinder, structural</td>
<td>110</td>
</tr>
<tr>
<td>Stone or gravel</td>
<td>144</td>
</tr>
<tr>
<td>Concrete building tile, 60% solid</td>
<td>87</td>
</tr>
<tr>
<td>Concrete building tile, 55% solid</td>
<td>79</td>
</tr>
<tr>
<td>Earth—</td>
<td></td>
</tr>
<tr>
<td>Common loam, dry and loose</td>
<td>76</td>
</tr>
<tr>
<td>Clay and gravel, dry and loose</td>
<td>100</td>
</tr>
<tr>
<td>Common earth, dry and packed</td>
<td>100</td>
</tr>
<tr>
<td>Wet mud</td>
<td>120</td>
</tr>
<tr>
<td>Glass</td>
<td>157</td>
</tr>
<tr>
<td>Granite</td>
<td>170</td>
</tr>
<tr>
<td>Gravel, dry</td>
<td>120</td>
</tr>
<tr>
<td>Granite masonry, dressed</td>
<td>165</td>
</tr>
<tr>
<td>Granite masonry, rubble</td>
<td>155</td>
</tr>
<tr>
<td>Limestone masonry, dressed</td>
<td>162</td>
</tr>
<tr>
<td>Marble masonry, dressed</td>
<td>170</td>
</tr>
<tr>
<td>Mortar, hard, cement</td>
<td>135</td>
</tr>
<tr>
<td>Mortar, hard, lime</td>
<td>105</td>
</tr>
</tbody>
</table>

256
<table>
<thead>
<tr>
<th>Building Materials (Cont'd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbs. Per Cu. Ft.</td>
</tr>
<tr>
<td>Slag (blast furnace)</td>
</tr>
<tr>
<td>Steel</td>
</tr>
<tr>
<td>Terra cotta, filled with brickwork</td>
</tr>
<tr>
<td>Terra cotta, Dennison interlock tile, laid</td>
</tr>
<tr>
<td>Timber—</td>
</tr>
<tr>
<td>Fir, dry</td>
</tr>
<tr>
<td>Fir, wet</td>
</tr>
<tr>
<td>Oak</td>
</tr>
<tr>
<td>Water, fresh at 60 degrees Fahrenheit</td>
</tr>
<tr>
<td>Sand, dry</td>
</tr>
<tr>
<td>Sand, wet</td>
</tr>
<tr>
<td>Lbs. Per Sq. Ft.</td>
</tr>
<tr>
<td>Ceilings—</td>
</tr>
<tr>
<td>Wood, lath and plaster</td>
</tr>
<tr>
<td>Metal lath and plaster suspended</td>
</tr>
<tr>
<td>Partitions—</td>
</tr>
<tr>
<td>2"x4" studs, wood lath, 1/2" plaster, both sides</td>
</tr>
<tr>
<td>2"x4" studs, plaster board, 3/4" plaster, both sides</td>
</tr>
<tr>
<td>Channel studs, metal lath, cement plaster, solid 2" thick</td>
</tr>
<tr>
<td>Plaster on hollow clay tile (one side)</td>
</tr>
<tr>
<td>2" hollow clay tile</td>
</tr>
<tr>
<td>3" hollow clay tile</td>
</tr>
<tr>
<td>4" hollow clay tile</td>
</tr>
<tr>
<td>5" hollow clay tile</td>
</tr>
<tr>
<td>6" hollow clay tile</td>
</tr>
<tr>
<td>8" hollow clay tile</td>
</tr>
<tr>
<td>12" hollow clay tile</td>
</tr>
<tr>
<td>Plaster on plaster block partitions (one side)</td>
</tr>
<tr>
<td>2" plaster blocks</td>
</tr>
<tr>
<td>2 1/2" plaster blocks</td>
</tr>
<tr>
<td>3" plaster blocks</td>
</tr>
<tr>
<td>3 1/2" plaster blocks</td>
</tr>
<tr>
<td>4" plaster blocks</td>
</tr>
<tr>
<td>5" plaster blocks</td>
</tr>
<tr>
<td>6" plaster blocks</td>
</tr>
<tr>
<td>8" plaster blocks</td>
</tr>
<tr>
<td>Roofings—</td>
</tr>
<tr>
<td>Wood shingles</td>
</tr>
<tr>
<td>Slate 3/16"</td>
</tr>
<tr>
<td>Slate 1/4"</td>
</tr>
<tr>
<td>Tile and clay shingles</td>
</tr>
<tr>
<td>Roman tile, clay</td>
</tr>
<tr>
<td>Spanish tile, clay</td>
</tr>
<tr>
<td>Ludowici tile, Spanish</td>
</tr>
<tr>
<td>Tile roof laid in mortar, add</td>
</tr>
<tr>
<td>Copper (if no weight is specified)</td>
</tr>
<tr>
<td>Tin</td>
</tr>
<tr>
<td>Corrugated iron</td>
</tr>
<tr>
<td>Tar and gravel</td>
</tr>
<tr>
<td>Prepared composition</td>
</tr>
<tr>
<td>Skylights, metal covered, wire glass</td>
</tr>
</tbody>
</table>
LATERAL BRACING

Refer to Sec. 2312. The following provisions are suggested for inclusion in the Code by cities located within an area subject to earthquake shocks:

Sec. 2312. (a) General. Every building or structure and every portion thereof, except Type V buildings of Group I occupancy which are less than twenty-five feet (25') in height, and minor accessory buildings, shall be designed and constructed to resist stresses produced by lateral forces as provided in this Section. Stresses shall be calculated as the effect of a force applied horizontally at each floor or roof level above the foundation. The force shall be assumed to come from any horizontal direction.

All bracing systems both horizontal and vertical shall transmit all forces to the resisting members and shall be of sufficient extent and detail to resist the horizontal forces provided for in this Section and shall be located symmetrically about the center of mass of the building or the building shall be designed for the resulting rotational forces about the vertical axis.

Junctures between distinct parts of buildings, such as wings which extend more than twenty feet (20') from the main portion of the building, shall be designed at the juncture with other parts of the building for rotational forces, or the juncture may be made by means of sliding fragile joints having a minimum width of not less than eight inches (8"). The details of such joints shall be made satisfactory to the Building Official.

(b) Horizontal Force Formula. In determining the horizontal force to be resisted, the following formula shall be used:

\[F = CW \]

WHERE

"F" equals the horizontal force in pounds,

"W" equals the total dead load, tributary to the point under consideration, except for warehouses and tanks, in which case "W" shall equal the total dead load plus the total vertical designed live load tributary to the point under consideration. Machinery or other fixed concentrated loads shall be considered as part of the dead load.

"C" equals a numerical constant as shown in Table No. 23-C.

(c) Foundation Ties. In the design of buildings of Types I, II and III, where the foundations rest on piles or on soil having a safe bearing value of less than 2000 pounds per square foot, the foundations shall be completely interconnected in two directions approximately at right angles to each other. Each such inter-connecting member shall be capable of transmitting by both tension and compression at least 10 per cent of the total vertical load carried by the heavier only of the footings or foundations connected. The minimum gross size of each such member if of reinforced
TABLE NO. 23-C—HORIZONTAL FORCE FACTORS

<table>
<thead>
<tr>
<th>PART OR PORTION</th>
<th>VALUE OF "C"*</th>
<th>DIRECTION OF FORCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floors, roofs, columns and bracing in any story of a building or the structure</td>
<td>.15</td>
<td>Any direction horizontally</td>
</tr>
<tr>
<td>as a whole**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing walls, non-bearing walls, partitions, free standing masonry walls over</td>
<td>.05</td>
<td>Normal to surface of wall</td>
</tr>
<tr>
<td>6' in height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantilever parapet and other cantilever walls, except retaining walls</td>
<td>.25</td>
<td>Normal to surface of wall</td>
</tr>
<tr>
<td>Exterior and interior ornamentations and appendages</td>
<td>.25</td>
<td>Any direction horizontally</td>
</tr>
<tr>
<td>When connected to or a part of a building: towers, tanks, towers and tanks plus</td>
<td>.05</td>
<td>Any direction horizontally</td>
</tr>
<tr>
<td>contents, chimneys, smokestacks and penthouses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated water tanks and other tower supported structures not supported by a</td>
<td>.03</td>
<td>Any direction horizontally</td>
</tr>
<tr>
<td>building</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*See Map on inside back cover for zones. The values given "C" are minimum and should be adopted in locations not subject to frequent seismic disturbances as shown in Zone 1. For locations in Zone 2, "C" shall be doubled. For locations in Zone 3, "C" should be multiplied by 4.

**Where wind load as set forth in Section 2307 would produce higher stresses, this load shall be used in lieu of the factor shown.

†N is number of stories above the story under consideration, provided that for floors or horizontal bracing, N shall be only the number of stories contributing loads.

Concrete shall be twelve inches by twelve inches (12"x12") and shall be reinforced with not less than the minimum reinforcement specified in Section 2620. If the inter-connecting members are of structural steel, they shall be designed as provided in Section 2702, and encased in concrete. A reinforced concrete slab may be used in lieu of inter-connecting tie members, providing the slab thickness is not less than one forty-eighth of the clear distance between the connected foundations; also providing the thickness is not less than six inches (6").

Inter-connecting slabs shall be reinforced with not less than eleven-hundredths square inch (.11 sq. in.) of steel per foot of slab in a longitudinal direction and the same amount of steel in a transverse direction. The bottom of such slab shall not be more than twelve inches (12") above the
tops of at least 80 per cent of the piers or foundations. The footings and foundations shall be tied to the slab in such a manner as to be restrained in all horizontal directions.

(d) Plans and Design Data. With each set of plans filed, a brief statement of the following items shall be included:

1. A summation of the dead and live load of the building, floor by floor, which was used in figuring the shears for which the building is designed.

2. A brief description of the bracing system used, the manner in which the designer expects such system to act, and a clear statement of any assumptions used. Assumption as to location of all points of counter-flexure in members must be stated.

3. Sample calculation of a typical bent or equivalent.

(e) Stresses. For combined stresses due to lateral forces and other loads the allowable unit stresses and the allowable load on connections may be increased 33⅓ per cent. In no case shall the section be less than required if the lateral force stress be neglected.

(f) Detailed Requirements. 1. Bonding and Tying. Cornices and ornamental details shall be bonded in the structure so as to form an integral part of it. This applies to the interior as well as to the exterior of the building.

2. Overturning Moment. In no case shall the calculated overturning moment of any building or structure due to the forces provided for in this Section exceed two-thirds of the moment of stability of such building or structure. Moment of stability shall be calculated using the same loads as used in calculating the overturning moment.

3. Additions. Every addition to an existing building or structure shall be designed and constructed to resist and withstand the forces provided for in this Section, and in any case where an existing building or structure is increased in height all portions thereof affected by such increased height shall be reconstructed to resist and withstand the forces provided for in this Section.

4. Alterations. No existing building or structure shall be altered or reconstructed in such a manner that the resistance to the forces provided for in this Section will be less than that before such alteration or reconstruction was made; provided, however, that this provision shall not apply to non-bearing partitions, and shall not apply to other minor alterations which are made in a manner satisfactory to the Building Department.

(g) Lime Mortars. Lime mortars shall not be used in any unit masonry construction forming a part of a building.

(h) Veneer Ties. Veneer ties provided in Section 2902 (c) shall be of sufficient strength to support four times the weight of the attached veneer.

(i) Intention or Interpretation of Lateral Force Provisions. These lateral force requirements are intended to make buildings earthquake-resistive. The provisions of this Section
apply to the buildings as a unit and also to all parts thereof, including the structural frame or walls, floor and roof systems, and other structural features.

The provisions incorporated in this Section are general and, in specific cases, may be interpreted or added to as to detail by rulings of the Building Official in order that the intent shall be fulfilled.

Refer to Section 2415.

Sec. 2415. (a) Soil. The soil used shall contain not more than 45 per cent of material passing a No. 200 mesh sieve. The soil shall contain sufficient clay to bind the particles together when an asphalt stabilizer is used but shall not contain more than 0.2 per cent of water-soluble salts.

(b) Stabilizer. The stabilizing agent shall be emulsified asphalt, portland cement, or other approved material, and shall be uniformly mixed with the soil in amounts sufficient to provide the required resistance to absorption.

(c) Sampling. Each of the tests prescribed in this Section shall be applied to five sample brick selected at random from each 5000 brick to be used.

(d) Compressive Strength. The brick shall have an average compressive strength of 300 pounds per square inch. One sample out of five may have a compressive strength not less than 250 pounds per square inch.

(e) Modulus of Rupture. Bricks shall average 50 pounds per square inch in modulus of rupture, when tested by applying a centrally located concentrated load at a uniform rate by the use of two-inch (2") cylinders to a unit having a test span of four inches (4") less than its length.

(f) Moisture Content. The moisture content of the brick shall be not more than four per cent, by weight.

(g) Absorption. A dried four-inch (4") cube cut from a sample brick shall absorb not more than two and one-half per cent moisture, by weight, when placed upon a constantly water-saturated porous surface for seven days.

(h) Shrinkage Cracks. No brick shall contain more than three shrinkage cracks and no shrinkage crack shall exceed three inches (3") in length or one-eighth inch (1/8") in width.

(i) Mortar. Mortar shall be portland cement mortar as specified in Section 2403, to which a stabilizer may be added in an approved amount.

(j) Weathering. A unit when exposed to water sprayed at 20 pounds pressure for two hours from a standard four-inch (4") shower head set seven inches (7") from its face shall not show an erosion of more than one-sixteenth inch (1/16") nor any appreciable pitting.

(k) Footings. Footing walls shall be of concrete, burned clay units, or solid concrete units, and shall extend not less than six inches (6") above the adjacent ground at all points.
TABLE NO. 24-I—WORKING STRESSES IN MASONRY
OF UNBURNED CLAY UNITS
(Pounds per Square Inch Gross Area)

<table>
<thead>
<tr>
<th>TYPE OF MORTAR</th>
<th>COMPRESSION</th>
<th>TENSION IN FLEXURE</th>
<th>SHEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, or C</td>
<td>30</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

(1) **Laying.** At the time of laying, units shall be free of foreign material. Joints shall be solidly filled with mortar. Bond shall be provided as required for masonry of hollow units in Section 2408 (b).

(m) **Limitations.** Masonry of unburned clay units shall not be used in any building more than one story in height.

No bearing wall of unburned clay units shall have a height of more than 10 times the thickness of such walls, and the thickness shall in no case be less than sixteen inches (16”).

Fireplaces and chimneys of unburned clay units shall be lined with fire brick not less in thickness than four inches (4”).

(n) **Allowable Stresses.** The maximum allowable working stresses in masonry of unburned clay units shall not exceed the values set forth in Table No. 24-I except as provided in Chapter 23.

TERMITE PROVISIONS

Refer to Sec. 2525. The following precautions are recommended for territories where foundation timber is subject to special hazard of decay and termite damage:

1. Before any new building is erected all stumps and roots shall be removed from the soil to a depth of at least twelve inches (12”) below the surface of the ground in the area to be occupied by the building.

2. All wood members used to support permanently a load of any kind, in buildings over four hundred square feet (400 sq. ft.) in area, shall be of the grade and kind of lumber specified in Section 2204 when any part of such member is placed within eighteen inches (18”) of any earth, either natural ground or earth fill.

3. Wood posts or columns shall not extend through or be placed directly on concrete floors. They shall be supported on concrete footings extending at least two inches (2”) above the finished floor or may be placed on a corrosion-resisting metal plate at least one-sixteenth inch (1/16”) thick and not smaller than the base of the post or column. Such plate may be flush with the concrete floor.

4. Where timbers extend into a masonry wall at a point below the level of the ground outside of the wall, metal wall boxes shall be provided or the end and all surfaces of the timber within one foot (1’) of the end shall be painted with at least two coats of hot coal tar creosote or other approved wood preservative.
5. All wood forms which have been used in placing concrete, if within the ground or less than eighteen inches (18") above the ground, shall be removed before a building is occupied or used for any purpose.

6. Loose or casual wood shall not be stored in direct contact with the ground under any building.

PHOTOGRAPHIC AND X-RAY FILMS

Refer to Chapter 48. The following provisions are recommended for inclusion in the Code where provisions covering the handling and storage of photographic and X-ray nitrocellulose films are desired:

Sec. 4801. The provisions of this Chapter do not apply to:

1. Film for amateur photographic use in original packages of "roll" and "film pack" films in quantities of less than fifty cubic feet (50 cu. ft.).
2. Safety film (cellulose acetate base).
3. Dental X-ray film.
4. Establishments manufacturing photographic films and storage incidental thereto.
5. Films stored or being used in standard motion picture booths (see Chapter 40).
Safety photographic and X-ray film (cellulose acetate base) may be identified by the marking on the edge of the film. This marking shows plainly before and after developing. Where film is not so marked it shall be inspected to determine whether it is of the safety acetate or nitrate type.

Sec. 4802. All regulations for the storage and handling of photographic and X-ray nitrocellulose films shall conform to U.B.C. Standard No. 48-1.

EXCEPTION: Where definite fire-resistive materials are specified, materials of equal fire resistance as specified in this Code may be used.

Sec. 4803. The storage and handling of nitrocellulose motion picture film shall conform to U.B.C. Standard No. 48-2.

REFRIGERATION SYSTEMS

Refer to Chapter 49. Where it is desired to regulate the installation or alteration of refrigeration systems, the following provisions are recommended for inclusion in the Code:

Sec. 4901. It shall be unlawful for any person, firm or corporation to install or alter or cause to be installed or altered, any system of refrigeration, unless such system is an approved type and is installed in accordance with the provisions of U.B.C. Standard No. 49-1.

Sec. 4902. Regulations of this Chapter shall apply to all refrigeration systems hereafter installed and to alterations of and additions to such existing systems.
CHAPTER 51—HEATING APPLIANCES

Sec. 5101. (a) General. Warm air heating appliances used for house heating shall conform to recognized standards for construction and performance, or shall have the approval of the Building Official.

(b) Solid Fuel Furnaces and Oil-Burning Equipment. Solid fuel-burning warm air furnaces designed to circulate air mechanically; oil-burning apparatus using commercial fuel oil, furnace oil, diesel oil, or other flammable liquids; oil-burning floor furnaces equipped with vaporizing pot-type burners, and liquid-fuel-burning warm air furnaces designed to operate with mechanical draft shall be reasonably safe to persons and property and in conformity with this Code.

The Building Official may base his findings that the construction and performance of gas-burning appliances are reasonably safe to persons and property on the presence of a seal of approval of a recognized testing laboratory.

(c) Label on Oil-Burning Appliances. Every oil burner and every oil-burning furnace, heater, and boiler regulated by this Code shall bear a permanent name plate on which shall appear in permanent form:

1. The manufacturer's or distributor's name.
2. The manufacturer's hourly B.t.u. output rating of the burner or appliance.
3. The manufacturer's or distributor's number of the appliance.
4. Instructions for the lighting, operation, care, and shutdown of the burner or appliance.
5. Grade of fuel oil approved for use in such burner or appliance. (Commercial Standard Grade Number).
6. Seal of approval of such burner or appliance by a recognized testing laboratory.

(d) Gas-Burning Furnaces and Equipment. The construction and performance of all gas-burning central warm air furnaces, unit heaters, duct furnaces, floor furnaces, and permanently installed recessed wall heaters shall be reasonably safe to persons and property and in conformity with the provisions of this Code.

The Building Official may base his findings that the construction and performance of gas-burning appliances are reasonably safe to persons and property on the presence of a seal of approval of a recognized testing laboratory.

Sec. 5102. (a) Air Supply for Combustion. An air supply for combustion shall be provided for every gas-burning warm air furnace. Such supply shall be from outside the building into the furnace space through two or more openings of approximately equal area; one or more in or near the ceiling and one or more in or near the floor. These openings shall have a total net area of not less than one square inch (1 sq. in.) for each 1000 B.t.u. maximum input rating of all fuel-burning appliances installed in such space. In no case
shall the total net area of such openings be less than two hundred square inches (200 sq. in.).

No obstruction of any kind shall be placed over these openings except wire netting, with openings not less than one-quarter inch (¼") square.

The net area of the openings required by this Subsection shall be in addition to that required by Subsection (b) of this Section.

(b) Circulating Air Supply. In addition to openings provided for combustion air, intake openings shall be provided for circulating air from inside or outside the building, or both. Ducts shall be of incombustible material.

No damper shall be placed in any air intake, except that a diverting damper may be placed in a combination fresh air intake and return air intake so arranged that, for all possible positions of the damper, the cross-sectional area of the circulating air intake to the furnace is not less than the total cross-sectional area of all hot air outlets.

Circulating air supply openings or ducts for gravity type warm air furnaces shall have a total net area of not less than two square inches (2 sq. in.) for each 1000 B.t.u. maximum input of all such furnaces being supplied. In no case shall the total net area of such openings or ducts be less than two hundred square inches (200 sq. in.).

Circulating air for blower type warm air furnaces shall be conducted into the blower housing from outside the furnace space by continuous air-tight ducts. Circulating air supply inlets for such furnaces shall not be located closer than ten feet (10') from any appliance vent outlet or from a firebox opening or down draft diverter located in the same space as the air supply inlet; or where they may pick up odors, fumes or flammable vapors.

Sec. 5103. Every warm air furnace burning gas or liquid fuel shall be equipped with an automatic control or controls. Such controls shall be arranged to shut off the main fuel supply in the event that the temperature in the warm air pipe exceeds 250 degrees Fahrenheit, within twenty-four inches (24") of the point where the hot air pipe connects to the furnace.

Where a gravity warm air heating system is installed with at least one warm air outlet having an area not less than thirty-five square inches (35 sq. in.) and permanently open and unobstructed, except by an open-faced grill, the automatic control will not be required. Such warm air outlet shall not be subject to control by any manually operated shutter, louver, or damper.

Sec. 5104. (a) Access. Every appliance shall be accessible for inspection, repair, or replacement, and sufficient room shall be available to enable the operator to observe the firebox, burner, and pilot while starting the appliance.

An opening or door not less in size than two feet six inches by six feet three inches (2'6" x 6'3") shall be pro-
vided for access to the room or space in which any furnace except a floor or attic furnace is installed.

(b) **Furnace Room.** Every warm air furnace shall be installed in a room or space not less than six feet (6') in width and not less than forty-eight square feet (48 sq. ft.) in area with a ceiling height of not less than seven feet (7'), unless the warm air furnace is designed and approved for installation adjacent to combustible materials and is installed in accordance with the conditions of approval.

Gas-Burning Warm Air Furnaces—Clearances

Sec. 5105. (a) **Floor Protection under Gas-Burning Appliances.** Every floor of combustible construction under a gas-burning warm air furnace shall be covered with one-fourth inch (¼") of asbestos millboard, or other equivalent fire protective material. The floor protection shall project at least twelve inches (12") beyond all sides of the furnace or to the furnace enclosure. The floor covering may be omitted on a wood floor under any gas-burning warm air furnace, if the combustion chamber is not less than twenty-four inches (24") distant from the floor and is separated therefrom by a metal plate or shield.

(b) **Clearances from Combustible Materials.** The top of every warm air gas furnace shall be not less than nine inches (9") from protected combustible material, nor less than eighteen inches (18") from unprotected combustible material. The side walls of such furnace shall be not less than twelve inches (12") from unprotected combustible material, nor less than six inches (6") from protected combustible material. The clearances may be reduced for appliances which are designed and approved for installation adjacent to combustible materials and installed in accordance with the conditions of such approval.

Venting Gas Furnaces

Sec. 5106. Every warm air furnace designed to burn gas for fuel shall be vented into a gas vent as provided for in Section 3708, or into a terra cotta chimney as specified in Section 3704.

When a chimney with a cross-sectional area over 50 per cent larger than the cross-sectional area of the vent connections to the chimney, is used as a vent, the chimney shall contain a gas vent as specified in Section 3708 or a terra cotta chimney as specified in Section 3704, and such vent or terra cotta chimney shall be used to vent the gas appliance.

No damper shall be installed in any vent, vent connection, or terra cotta chimney to which a gas appliance is vented.

Every unused vent opening shall be securely closed or capped.

Solid-Fuel-Burning Warm Air Furnaces

Sec. 5107. (a) **Furnace Clearances.** The clear distance between a warm air furnace burning solid fuel, and combustible material, including plaster on combustible base, shall not be less than four feet (4') at the top or front, and not less than three feet (3') at the sides and rear; provided, that when the appliance is encased in brick or has an incombustible protective covering not less than one and one-half inches (1½") thick, such distance may be three feet (3') at the top and two feet (2') at the sides and rear.
(b) **Smoke Pipe Installation.** The smoke pipe of warm air furnaces designed to burn solid fuel shall be at least eighteen inches (18") from any combustible materials. This distance may be reduced to nine inches (9") when such combustible material is protected by a covering of No. 24 U. S. Gauge galvanized iron, furred with metal furring not less than one and one-half inches (1 1/2") from such combustible construction, or when entirely covered with one-hour fire-resistant construction.

(c) **Chimney.** Every such furnace shall be connected to a chimney as specified in Section 3702.

The smoke pipe of a heating appliance shall not be connected into the flue of an incinerator which has the rubbish chute identical with the smoke flue.

All unused openings in any chimney, except fireplace openings, shall be closed or capped with non-combustible material.

Sec. 5108. Stoves, furnaces, and other heating or power apparatus in which oil burners are installed, unless conforming to Section 5105, shall be constructed and installed as required for similar apparatus using solid fuel.

Sec. 5109. (a) **Location.** No floor furnace shall be installed in the floor of any aisle or passageway of any room used as a place of public assembly or in any egress from such room.

No floor furnace shall be installed where it will extend below the floor into any garage, finished room, or space used for storage of flammable materials or wastes, unless portions of the furnace extending below the floor are entirely encased within a metal enclosure constructed of No. 20 U. S. Gauge iron or steel. The enclosure shall be connected with the outside air through metal ducts of sufficient capacity properly to support combustion in such furnace within the enclosure. The metal enclosure shall be made or installed so as to make the furnace accessible for inspection or repair.

(b) **Accessibility.** The space in which any floor furnace or attic furnace is installed shall be accessible by an opening or trapdoor not less than eighteen by twenty-four inches (18" x 24") in any cross section thereof, and a passageway not less than twenty-four by twenty-four inches (24" x 24") in any cross section thereof. The passageway shall be continuous from the opening or trapdoor to the furnace controls and valves, and the openings to the passageway shall be located not more than twenty feet (20') from the furnace.

(c) **Protection from Flooding.** Every portion of the ground within twenty-four inches (24") horizontally from any floor furnace which projects below the first floor of any building shall be excavated to a level not less than six inches (6") below the lowest portion of the furnace. Any excavation which is lined with galvanized iron of not less than No. 24 U. S. Gauge with an exterior coating of red lead or tar or lined with not less than three inches (3") of concrete shall not be required to extend more than twelve inches (12") in a horizontal direction from any gas control valve on the
floor furnace and not more than six inches (6") from any other portion of the heater. The metal lining shall be securely held in place by a structural steel angle riveted, bolted, or welded to each corner of the lining and bolted or spiked to the adjoining framework of the building.

Sec. 5110. (a) Length and Slope. For gravity systems no leader heat pipes shall be over twenty feet (20') in length measured horizontally, except where a booster fan is installed, when the length shall not exceed forty feet (40'). All heat pipes under first floor joists shall have a uniform rise of at least one inch (1") per lineal foot or horizontal run.

(b) Size. Warm air pipes and appurtenances serving first floor rooms shall have a minimum cross-sectional area in square inches of not less than the cubic foot capacity of the room or rooms in which registers are located, divided by 40; provided, that no leader pipe shall have a net area of less than fifty square inches (50 sq. in.). Risers and appurtenances serving floors above the first floor shall have a net area of not less than two-thirds that required to serve the first floor.

(c) Material for Ducts. Ducts shall be of incombustible material equivalent in structural strength and durability to galvanized sheet iron or steel of the thickness set forth in Table No. 51-A. Wire glass may be used for inspection windows in ducts.

(d) Ducts Formed by Part of the Building Structure. Ducts may be of independent construction or may be formed by parts of the building structure if they conform to the requirements of this Section. Duct walls may be of lath and plaster as approved for one-hour fire-resistive construction.

(e) Registers. Registers shall be located in or near the wall of the room nearest the furnace. No register shall be located in outside walls unless the weather side is covered with air-cell asbestos paper.

Where double registers are supplied by one leader pipe, each register shall have a capacity of not less than two-thirds the area of the leader pipe.

(f) Construction and Installation. Ninety-degree bends in round pipe shall be made by not less than four piece elbows. Sixty-degree bends shall be made by means of not less than three piece elbows.

All warm air pipes and fittings, cold air or circulating pipes, ducts, boxes and fittings shall be made of bright tin or galvanized iron, and shall be covered with two thicknesses of asbestos paper weighing at least eight pounds to one hundred square feet (100 sq. ft.), or with air-cell asbestos insulation, or shall be double walled, with one-quarter inch (¼") space between the inner and outer walls.

In addition, leader heat pipes under the first floor shall be kept at least three inches (3") from any combustible material or shall be protected with an asbestos shield and a one-inch (1") air space. Air-cell asbestos paper not less than
TABLE NO. 51-A—THICKNESS OF METAL FOR AIR DUCTS

<table>
<thead>
<tr>
<th>ROUND DUCTS</th>
<th>RECTANGULAR DUCTS</th>
<th>MINIMUM THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER</td>
<td>MAXIMUM SIDE</td>
<td>U. S. Gauge</td>
</tr>
<tr>
<td>(In Inches)</td>
<td>(In Inches)</td>
<td></td>
</tr>
<tr>
<td>Up to 18</td>
<td>Up to 12</td>
<td>26</td>
</tr>
<tr>
<td>19 to 30</td>
<td>13 to 30</td>
<td>24</td>
</tr>
<tr>
<td>31 to 45</td>
<td>31 to 60</td>
<td>22</td>
</tr>
<tr>
<td>46 to 60</td>
<td>61 to 90</td>
<td>20</td>
</tr>
<tr>
<td>61 and above</td>
<td>91 and above</td>
<td>18</td>
</tr>
</tbody>
</table>

one-quarter inch (\(\frac{1}{4}\)”) in thickness shall be securely cemented around all leader heat pipes.

(g) Support. All riser pipes shall be held in place by means of metal strips securely fastened to the pipe and shall in no case be held in place by nailing diagonally through the corners of such pipe. No joint shall depend wholly upon solder to make it tight. All leader pipes shall be securely fastened in place by means of wires or metal strips.

(h) Branch or Y-Runs. In the installation of Y-runs or branch runs, the cross-sectional area of the warm air pipe at the furnace shall equal in square inches the cubic contents of all the rooms served by such warm air pipe divided by 40.

Sizes of branch runs shall be determined in the same manner on the basis of the room or rooms served. Branches from trunk lines shall be taken off in a generally horizontal plane at an angle not more than 45 degrees from the line of the pipe. Fifteen-degree Y-branches may be permitted in forced draft systems. Riser pipes shall not be taken off the top of the first floor register boxes.

(i) Clearance between Joists or Studs. Where warm air pipes and appurtenances are to be installed in a building, the joists and studs shall be so arranged as to provide not less than fourteen inches (14") clear space in continuous horizontal runs and vertical risers from the furnace to the register served.

(j) Air Filters. Air filters shall be of a type that will not burn freely or emit large volumes of smoke or other objectionable products of combustion when attacked by flames. Liquid adhesive coatings used on filters shall have a flash point of 350 degrees Fahrenheit, Cleveland open cup tester, or higher.

Sec. 5111. (a) Protection of Combustible Material. Combustible partitions or walls within six inches (6”) of any ordinary domestic water heater and within three inches (3”) of any approved domestic automatic storage water heater shall be protected by one-fourth inch (\(\frac{1}{4}\)”) of asbestos, covered with a No. 26 gauge metal covering, or shall have not less than one-hour fire-resistive protection.

(b) Location. A compartment used to house a water heater shall be of such size that the heater is readily acces-
Water Heaters (Cont'd.)

sible for adjusting, servicing or replacement, with one side completely open unless closed by a removable panel. Openings for air shall be provided not less than thirty-six square inches (36 sq. in.) in area, each, near the floor and ceiling of the compartment.

No open flame water heater shall be installed in any room used or designed to be used for sleeping purposes, bathroom, closet, attic, garage or under any stairs or landing.

(c) Venting. All gas-fired water heaters shall be connected to a gas vent as provided for in Section 3708.

Ranges for Commercial Cooking

Sec. 5112. (a) Protection of Combustible Materials. Ranges used for commercial cooking, such as in school cafeterias, hotels, restaurants, churches, and other establishments doing large-volume cooking, shall be supported at least six inches (6") above any wood floor and if less than twelve inches (12") above the floor the wood shall be protected by a metal shield. Such ranges shall be separated from wood partitions or other combustible material by not less than six inches (6"), and if nearer than twelve inches (12") the combustible material shall be protected with a metal or asbestos shield. The distance from any such range to a wood ceiling or other combustible material above shall not be less than twelve inches (12"), and if less than three feet (3') the ceiling or combustible material above shall be protected with a double metal shield with one inch (1") air space between or with lath and plaster as approved for one-hour fire-resistive construction.

(b) Hoods. Ranges used for commercial cooking shall be provided with a ventilating hood and duct to take off smoke, gases, and vapors. The ducts shall be separate from any other ventilating system, provided, however, that a single flue may serve one or more hoods.

Hoods provided for commercial ranges shall be constructed of metal or masonry and if of metal shall be not less than No. 22 gauge thickness galvanized iron, or other equivalent corrosion resistant material.

Every ventilating hood shall be provided with a grease trough extending around the entire inside perimeter of the hood draining to a grease container outside the hood.

(c) Ventilating Ducts. Flues or ducts for any ventilating hood shall be constructed of metal or masonry, and if of metal shall have not less than the thickness set forth in Table No. 51-B.

The face of any square or rectangular metal duct which is more than thirty-six inches (36") in its greatest width shall have a standing seam at every lateral joint and at intervals not exceeding four feet (4').

Every duct shall be so constructed that grease or other material cannot become pocketed in any portion thereof.

A sufficient number of cleanout openings shall be provided in every duct to permit cleaning all portions of the interior of such duct system. All such openings shall be provided with tight-fitting metal doors.
TABLE NO. 51-B—DUCT THICKNESS

<table>
<thead>
<tr>
<th>MAXIMUM WIDTH OR DIAMETER OF DUCT (In Inches)</th>
<th>MINIMUM THICKNESS OF METAL (U. S. Standard Gauge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>48</td>
<td>18</td>
</tr>
<tr>
<td>over 48</td>
<td>16</td>
</tr>
</tbody>
</table>

All seams in any hood or duct shall be grease tight. Solder shall not be used for the purpose of making joints or seams grease tight.

Every hood and duct shall be securely attached to the building by means of non-flammable supports.

(d) **Insulation.** All combustible materials within eighteen inches (18") of any metal hood or duct shall be covered with a one-fourth inch (¼") thickness of asbestos covered with sheet metal or other equivalent insulation.

All combustible materials within nine inches (9") of any metal hood or duct shall be covered with lath and plaster as approved for one-hour fire-resistive construction or other equivalent insulation.

Every hood or duct shall be at least four inches (4") from any combustible material.

Sec. 5113. (a) **Protection of Combustible Materials.** All stoves used for heating, cooking, or laundry purposes using solid or liquid fuel shall have all combustible partitions in back of and extending not less than twelve inches (12") beyond each side of such stove protected by not less than one-hour fire-resistive construction. Such stoves shall be securely supported at least twelve inches (12") above any wood floors by metal supports and there shall be a metal and asbestos pad at least three-eighths inch (¾") thick below such stove extending at least six inches (6") beyond each side and at least twelve inches (12") in front of such stove. Such stoves shall not be placed nearer than six inches (6") to any combustible partition.

Stoves and ranges using solid or liquid fuel shall be separated from unprotected combustible material by not less than three feet (3’); shall be separated from wood lath and plaster by not less than eighteen inches (18’’); and shall be separated from incombustible lath and plaster on wood studs by not less than twelve inches (12’’). Such separations may be reduced 50 per cent if a sheet-metal shield is used, set out at least one inch (1”) from the partition and extending three feet (3’) above the top and one foot (1’) below the sides of the stove or range.

(b) **Smoke Pipe Connection.** All such stoves shall be connected by a smoke pipe conforming to the requirements of Section 3706 or to a chimney meeting the requirements of Section 3702.
Sec. 5114. (a) Protection of Combustible Material. Steam heating plants, for not more than 15 pounds pressure and water heaters using solid or liquid fuel, shall rest upon masonry or concrete floors and shall be protected on the outside by asbestos. The clearance of wooden partitions, ceilings, and other combustible materials shall be the same as given for warm air furnaces.

(b) Air Supply for Combustion. An air supply for combustion shall be supplied for all low pressure steam heating plants. The air supply shall be from outside the building into the space in which the boiler is installed through two or more openings. The openings shall have a net area of not less than two hundred square inches (200 sq. in.) plus not less than one hundred square inches (100 sq. in.) for each 100,000 B.t.u. or fraction thereof in excess of 100,000 B.t.u. of the approved fuel input rating for such boiler.

Sec. 5115. (a) Protection of Combustible Material. Large boilers for power or steam purposes or for generating high pressure steam shall be so located that no wood or other combustible material shall be less than five feet (5') from the top or sides or ten feet (10') from the front of such apparatus and all combustible material less than ten feet (10') from the top or sides or less than twenty feet (20') from the front shall be protected with at least four inches (4") of concrete, brick, or other similar incombustible material. No boiler shall be so located as to cause the temperature of any adjoining combustible portion of any building to exceed 120 degrees Fahrenheit above the ambient temperature at any time such boiler is in operation at its approved B.t.u. ratings. Steel, cast iron or concrete columns adjacent to such boilers shall not be in direct contact with furnace settings but there shall be an open and unobstructed space at least four inches (4") wide for ventilation.

(b) Air Supply for Combustion. An air supply for combustion shall be supplied for all large boilers. Such air supply shall meet the requirements specified in Section 5114 for air supply for low pressure boilers.
INDEX

For Index by Parts, Chapters and Sections, see Pages 5 to 17

Section

A—OCCUPANCIES ... 601
ACCESSORY BUILDINGS .. 1501
ADDITIONS—To buildings ... 104 (c)
ADJOINING BUILDINGS (see LOCATION ON PROPERTY)
Foundation—to be protected when ... 2801
ADMINISTRATION BUILDINGS (see ASSEMBLY BUILDINGS)
ADMINISTRATIVE (see Part I for complete details) .. 101
Appeals .. 204
Approval required—by Building Official, when ... 302, 304 (c), 105
Board of Examiners and Appeals .. 204
Building classified by Building Official, when ... 501
Building Official acts as secretary .. 204
Building Official approves plans, when ... 302
Building Official—definition of ... 401
Certificates required ... 306
Condemnation—proceedings for ... 203
Inspection of buildings .. 304
Permits (see BUILDING PERMITS) ... 301, 309, 202
Powers and duties of Building Official ... 202
Records kept by Building Official .. 202
Special inspector—duties of .. 306
Tests .. 106
ADOBE CONSTRUCTION .. 2415 (appendix)
AGED—HOMES FOR .. 1301
AGGREGATES
Concrete .. 2604 (b)
Moisture content of .. 2608
Proportions in concrete ... 2607
AIR INTAKES
Furnaces ... 3707
Motion picture machine booths ... 4001
Private garages ... 1506
AIR SPACE
Around timber in masonry ... 2517 (f)
In wood construction—to be divided .. 2522, 2505
Under flooring—to be divided ... 1810
AISLES .. 3313
ALARMS—AUTOMATIC SPRINKLERS ... 3802
ALLEY—Definition of .. 401
ALLOWABLE WORKING STRESSES (see WORKING STRESSES ALLOWABLE)
ALTERATION
Definition of .. 401
Limited how .. 104 (a)
Non-structural alterations and repairs ... 104 (a)
Structural alterations and repairs .. 104 (b), (c), (d)
When in Fire Zones No. 1 and No. 2 ... 1602 (d), 1603 (c)
ALTERNATE MATERIALS AND CONSTRUCTION
Board of Appeals ... 305
May be approved by Building Official, when ... 105
May be used, when ... 106
Tests, required when .. 106
AMUSEMENT PARK STRUCTURES (see GROUP B)
Construction ... 702 (c)
Special loads ... 702 (c)
ANCHORAGE
Chimneys .. 3702 (g), 3704 (b)
Masonry construction ... 2404 (h), 2618
Steel in reinforced concrete ... 2618

273
ANCHORS

Floor framing .. 2517 (g)
Joists .. 2518
Masonry construction .. 2404 (h), 2414 (d)
Panel and enclosure walls 2404 (h)
Reinforcing in concrete 2618
Steel joists .. 2714 (d)
Veneer—attachment of .. 2515
Wood columns .. 2515

APARTMENT—Definition of 401

APARTMENT HOUSE
Classed as .. 1301
Definition of .. 401
Non-conforming ... 1309 (appendix)

APPEAL
Board acts, how .. 204

APPLICATION
For permit—details required 301
Of Code to buildings or structures 102
To additions .. 104 (b), (c), (d)
To alterations or repairs 104, 105
To changed use or occupancy 104 (g)
To existing buildings .. 104, 1309 (appendix)
To non-structural alterations and repairs 104 (e)
To roofing repairs or removal 104 (f)
To structural alterations or repairs 104 (b), (c), (d)

APPROVAL
After called inspection 304 (c), (d)
After final inspection 306 (c)
For new materials ... 105
For storage of materials in street 4402
Of plans for permit .. 302 (a)
Of proscenium curtian after test 4105
Of special inspector ... 305

APPROVED—Definition of 401

APPROVED AGENCY
Definition of .. 401
Certifies prefabricated assembly 5006

ARCHES
In masonry ... 2404 (f)
Over proscenium opening 3904

ARC WELDS (see WELDING)

AREA
Allowable (see OCCUPANCY, FIRE ZONES, and TYPES OF CONSTRUCTION)
Definition of .. 401

ARMORIES (see ASSEMBLY BUILDINGS)

ARTIFICIAL STONE
General requirements .. 2402 (d)
Requirements for veneer 2902

ASBESTOS
As roofing material ... 3204
For heating equipment 5105, 5110 (f), 5111 (a), 5112 (a), (d), 6113 (a), 5114 (appendix)
For proscenium curtains 4102
For warm air ducts ... 5110 (appendix)

ASPHALT
In roof coverings .. 3204
Paper on exterior walls 2217

ASSEMBLY BUILDINGS .. 601, 701, 801
Definition of .. 401

ASSUMPTIONS
For lateral forces ... 2307; 2312 (appendix)
For live loads used in design 2304, 2305
For reinforced concrete design 2611
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYLUMS</td>
</tr>
<tr>
<td>ATTIC</td>
</tr>
<tr>
<td>Access to—required</td>
</tr>
<tr>
<td>Story—definition of</td>
</tr>
<tr>
<td>Subdivision required</td>
</tr>
<tr>
<td>AUDITORIUMS (see ASSEMBLY BUILDINGS)</td>
</tr>
<tr>
<td>AUTOMATIC SPRINKLERS</td>
</tr>
<tr>
<td>Design and installation</td>
</tr>
<tr>
<td>Where required</td>
</tr>
<tr>
<td>Awnings</td>
</tr>
<tr>
<td>Fixed—regulations for</td>
</tr>
<tr>
<td>Movable—regulations for</td>
</tr>
<tr>
<td>B—OCCUPANCIES</td>
</tr>
<tr>
<td>BALCONY</td>
</tr>
<tr>
<td>Exits from</td>
</tr>
<tr>
<td>Exterior—construction of</td>
</tr>
<tr>
<td>For smokeproof enclosures</td>
</tr>
<tr>
<td>May project, how</td>
</tr>
<tr>
<td>BALUSTRADES</td>
</tr>
<tr>
<td>For ramps</td>
</tr>
<tr>
<td>Must resist horizontal thrust</td>
</tr>
<tr>
<td>Required for stairways, when</td>
</tr>
<tr>
<td>When measuring stair clear width</td>
</tr>
<tr>
<td>BARRICADES—construction</td>
</tr>
<tr>
<td>BARS</td>
</tr>
<tr>
<td>For concrete reinforcing (see REINFORCED CONCRETE)</td>
</tr>
<tr>
<td>Panic (see PANIC BARS)</td>
</tr>
<tr>
<td>BASEMENT</td>
</tr>
<tr>
<td>Definition of</td>
</tr>
<tr>
<td>Protection of ceiling, Type III</td>
</tr>
<tr>
<td>Sprinklers—when required</td>
</tr>
<tr>
<td>Walls and floors—design of</td>
</tr>
<tr>
<td>BASEMENT PIPE INLETS</td>
</tr>
<tr>
<td>BAY WINDOWS</td>
</tr>
<tr>
<td>Construction of</td>
</tr>
<tr>
<td>Definition of</td>
</tr>
<tr>
<td>May project how</td>
</tr>
<tr>
<td>BEAMS</td>
</tr>
<tr>
<td>Reinforced concrete</td>
</tr>
<tr>
<td>Reinforced masonry</td>
</tr>
<tr>
<td>T-Beams of reinforced concrete</td>
</tr>
<tr>
<td>Wood</td>
</tr>
<tr>
<td>Wood in heavy timber construction</td>
</tr>
<tr>
<td>BEARING PARTITIONS (see WALLS)</td>
</tr>
<tr>
<td>BEARING PLATES</td>
</tr>
<tr>
<td>For steel joists</td>
</tr>
<tr>
<td>For wood beams and girders</td>
</tr>
<tr>
<td>For wood columns</td>
</tr>
<tr>
<td>BEARING WALLS (see WALLS)</td>
</tr>
<tr>
<td>BELT COURSES—May project</td>
</tr>
<tr>
<td>BENDING MOMENTS (see REINFORCED CONCRETE)</td>
</tr>
<tr>
<td>BLEACHERS (see REVIEWING STANDS)</td>
</tr>
<tr>
<td>BLOCKS—CONCRETE (see CONCRETE BLOCKS)</td>
</tr>
<tr>
<td>BOARD OF EXAMINERS AND APPEALS</td>
</tr>
<tr>
<td>Appointed how</td>
</tr>
<tr>
<td>BOILER</td>
</tr>
<tr>
<td>General requirements</td>
</tr>
<tr>
<td>Room for (see BOILER ROOM—CONSTRUCTION)</td>
</tr>
<tr>
<td>Smoke pipes for</td>
</tr>
<tr>
<td>Smokestacks for</td>
</tr>
<tr>
<td>BOILER ROOM—CONSTRUCTION</td>
</tr>
</tbody>
</table>
BOLTS
For foundations .. 2204
In masonry .. 2405 (k)
In reinforced concrete 2626
In steel construction 2709
In wood construction 2503
Washers for .. 2614

BOND
Allowable stresses—concrete 2614
Allowable stresses—reinforced masonry 2407 (d)
For computations of—concrete 2614
For concrete surfaces 2609 (f)
For faced walls .. 2414 (b), (c), (d)
For hollow masonry construction 2408 (b)
For plain masonry construction 2405 (b)
For stone walls .. 2410 (b)
For veneer .. 2903

BOXES—THEATER (see GROUPS—OCCUPANCY)

BRACING
For reinforced concrete forms 2610
For steel construction during erection 2311, 2711
For stud walls and partitions 2611 (f)
For underpinning 2521 (I)

BRICK—CLAY, CONCRETE, SAND-LIME (See MASONRY)
Quality .. 2401 (a), 2402 (a)
Walls of (see WALLS)
Working stresses—brick masonry 2405 (d), 2406 (c), 2407 (d)

BRIDGING
For concrete joists 2622
For steel joists 2715, 3108
For wood joists 2517 (c)

BUILDING CODE
Adopted when 6004
Application of 106, 104
Enforced by .. 202
Purpose of .. 102
Scope of .. 103
Title of .. 101

BUILDING MATERIALS—May be stored 4401

BUILDING OFFICIAL
Acts as secretary 204
Approves structural frame 304
Approves Special Inspector, when 305 (b)
Classifies buildings, when 301
Definition of 401
Issues permit, when 302
May approve alternate construction or materials .. 105
May enter premises 302 (d)
May require Special Inspector 305
May require tests 106
May stop work 202 (e)
Powers and duties of 202
Record of permits required 302 (c)
Shall make inspections, when 304
Shall require reports 305 (b)

BUILDING OFFICIAL'S AUTHORIZATION REQUIRED
Before changing plans 302 (a)
For changes of use or occupancy 104 (g), 306 (b), 502
For structural alterations 302

BUILDING PAPER 2217

BUILDING PERMITS
When required 301
Issuance .. 302 (a)
Validity .. 305 (c)
Expiration .. 302 (d)

BUILDINGS
Change of use, when 105 (g), 306 (b), 502
Classified by type of construction 1702
Classified by use or occupancy 501, 503

276
C—OccuPancies .. 801
Canopies .. 4505, 4506
Cast Stone ... 401, 2402 (f)
Cedar—MudSills .. 2204
Ceilings
Fire-resistive required—above furnaces...5105 (b), 5107 (a) (appendix)
Fire-resistive required—in Type III buildings 2010
For fire protection purposes .. 4305
Minimum height of (see Story)
Cellar
Definition of .. 401
Protection of ceiling, when ... 2010
Sprinklers—when required ... 3801
Cement—Portland (see Portland Cement)
Certificate
Of Occupancy—for change of use 306, 502
Of Occupancy—issued to owner 306
Of Occupancy—temporary ... 306 (d)
Change of Occupancy—Certificate required 306, 502
Chases (see Recesses)
Chief of the FIRE Department
Definition of .. 401
Chimneys
Anchorage ... 3702 (g)
Design .. 3702 (a)
Firestopping around ... 2522
For incinerators .. 3711
General requirements ... 3702
Height above roof ... 3702 (d)
Of masonry .. 3703
Of terra cotta ... 3704
Wood frame—spaced from .. 2521
Churches (see Assembly Buildings)
City
Adopted this Code, when ... 6004
Council orders repairs, when 208
Grants permission for storage in streets 4401
Levies penalties, when .. 205
Permits use of space under sidewalks 4503
Requires permit, when ... 301
Classification
Of fire-resistive construction (see Chapter 43) 501, 503
Of Occupancies ... 1701, 1702
Classification of Buildings ... 1602-1604
By fire zones ... 1603
By occupancy ... 503
By type of construction ... 1702
Clay Roof Tile .. 3204 (e)
Clay Tile—Hollow
Allowable stress for .. 2408 (c), 2409 (c)
Bearing walls of (see Hollow Masonry) 2402 (c)
Specifications for ... 2402 (c)
CLEAN-OUT
For concrete forms .. 2610 (a)

CLEARANCE
Around reinforcing in concrete .. 2610 (d)
Around smoke pipes .. 2706
Around smokestack ... 2706
Around stoves and heaters ... 5105, 5107, 5112, 5113 (appendix)
Around timber in masonry .. 2617
Around warm air ducts ... 5110 (i) (appendix)
Around warm air furnaces ... 5105, 5107 (appendix)
Between marquee and curb line 4505
For swelling of wood floor ... 1910
Of balconies above grade ... 4504
Of wood framing from chimneys 2621
Under first floor joists ... 2527, 3105

CLUBS (see ASSEMBLY BUILDINGS)

COLD STORAGE (see GROUP G)

COLUMNS
Combination .. 2620
Composite .. 2620
Fire-protection of ... 4303
Heavy timber .. 1908
Masonry ... 3414
Mill construction ... 1908
Projects beyond property line, when 2620
Reinforced concrete ... 2620
Reinforced concrete, definition of 2603
Round—footings supporting .. 2621 (f)
Structural steel, allowable stresses 2620
Wood—allowable stresses 2603, 2505
Wood—framing details .. 1908, 2515 to 2522

COMBINED STRESSES
Concrete columns .. 2620
General requirements ... 2307; 2312 (appendix)
Wood ... 2503

COMBUSTIBLE GOODS—Sales and Storage (see GROUP F)

COMBUSTIBLE MATERIALS
Prohibited in Fire Zone No. 1 1602
Regulated in Types of Construction 1816, 1916, 2016, 2216

COMPOSITION ROOFINGS ... 3204

COMPUTATIONS—May be required 301 (d)

CONCENTRATED LOADS
Assumed distribution on walls 2404 (a), 2620 (k)
Special requirements for ... 2303

CONCRETE
Blocks of (see CONCRETE BLOCKS) 2402
Brick—quality and design ... 2402
Definition of ... 2620
Design of—when reinforced 2603
Fire-resistive classification (see Chapter 43) 4302
For roofs—slab or tile .. 3204
Piles .. 2807 (f), (g), (h), (i)
Plain—quality and design ... 2624
Pneumatically placed ... 2625, 4302
Reinforced—definition of ... 2603
Reinforced—design of (see Chapter 26) 2602
Tests—on reinforced concrete 2606, 2611
Transferring and placing ... 2609
Walls—plain ... 2405, 2408, 2409
Walls—reinforced ... 2620 (k)
Working stresses of ... 2615, 2624
Working stresses—masonry units 2405, 2408

CONCRETE BLOCKS
For masonry walls ... 2402
Quality and design of ... 2402
Working stresses to .. 2405 (d), 2408 (c)

CONDEMNATION ... 203

CONNECTIONS
Between fresh and hardened concrete 2609 (h)
Between wood and masonry ... 2618
CONSTRUCTION

For structural steel ... 2708-2710 incl.
In wood framing .. 2508-2521, incl.

CONSTRUCTION JOINTS

In concrete .. 2610 (g)

CONSTRUCTION MATERIAL

Allowed in streets, when ... 4402
Load to be provided for, when 2311

CONVENTS .. 1301

CORBELING—in masonry walls 2405 (c)

CORNICES (see also TYPES OF BUILDINGS) 4504

CORRIDORS—as required exits 3304

COST OF BUILDINGS—

For permits .. 202, 301

COVERINGS

For exteriors of frame buildings 2205
For fire protection .. 4303
For roofs ... 3204
For warm air ducts ... 5110 (f) (appendix)
For wood doors, when ... 4306

CURB

Allowed in alley—when ... 4502
For skylights—constructed how 3402

CURTAIN (see PROSCENIUM CURTAIN)

CURTAIN WALL (see WALLS—NON-BEARING)
Masonry, construction of ... 2404 (c)
Reinforced concrete, construction of 2620 (I)

D—OCCUPANCIES ... 901

DANCE HALLS (see ASSEMBLY BUILDING)

DEAD LOAD—Definition of ... 401, 2301

DECORATIVE FEATURES—May project how 4504

DEFINITIONS

Of certain words ... 401, 2603, 2204, 3301, 5001
Of occupancies ... "01" Sections, Chapters 6-15, incl.
Of terms in concrete regulations 2803
Of Types of Construction .. 1801, 1901, 2001, 2101, 2201

DEMOLITION—required when 203

DEPTH OF FOUNDATIONS

Affects excavations when .. 2801
Governed by frost line .. 2805
Governed by soil conditions 2803

DESIGN

Footings and foundations (see also Chapter 28) 2306
General .. 2302 (b)
Live loads for (see Chapter 23) 2401
Masonry ... 2401
Must be approved by Building Official 302
Proscenium curtains ... 4101-4106, incl.
Reinforced concrete .. 2602
Structural steel ... 2701
Walls .. 2404, 2620
Wood ... 2501

DOORS

Construction—for one-hour rating 4306
Fire-resistive—classification, design, hanging 4306
Fire-resistive—when required (see under OCCUPANCY,
FIRE ZONES, and TYPES OF CONSTRUCTION) 3003
For enclosure of vertical openings 503
For fire separations .. 3315 (a), 3316 (b), 3317 (e), 3318 (f)

279
Section

Reinforced concrete (quality and design) ... 2601-2623, incl.
Steel and iron (quality and design) ... 2701-2713, incl.
Wood (quality and design) ... 2501-2530, incl.

ENGINEERING SUPERVISION—Required, when 304, 305

ERECITION
Concrete forms ... 2610
Masonry walls .. Chapter 24
New buildings ... 301
Wireless masts ... 3602
Wood construction ... 2515-2522, incl.

EXCAVATIONS
General details for ... 2801
Water to be removed from, when .. 2609 (c)

EXHAUST VENTILATION (see VENTILATION)

EXISTING BUILDINGS
Application of Code to .. 104
Definition of ... 401
Non-conforming Group H occupancies 1309 (appendix)

EXIT FACILITIES (see Chapter 83)
For occupancy groups ... 2315, 2316, 2317, 2318, 2319
General requirements ... 3301
Required .. 3302

EXIT LIGHTS
For Group A occupancies ... 3312 (c)
General requirements ... 3312

EXPANSION
Plain concrete .. 2624
Steel ... 2702 (h), 2715

EXPLOSIVES—STORAGE .. 1901

EXTERIOR OPENINGS—PROTECTION REQUIRED
Because of location in Fire Zone .. 1602, 1603
Because of location on property (see OCCUPANCY GROUP)
Because of Type of Construction (see TYPES OF CONSTRUCTION)

EXTERIOR STAIRWAYS ... 3305

EXTERIOR WALLS
Construction of (see LOCATION ON PROPERTY or TYPES
OF CONSTRUCTION)
Construction when in Fire Zone No. 2 1603

F—OCCUPANCIES ... 1101

FACED WALLS (see WALLS)

FACTORIES
Moderately hazardous (see GROUP F) 1101
Non-hazardous (see GROUP G) ... 1201

FAMILY—Definition of ... 401

FEES
Additional fee required, when ... 303
Doubled—when ... 303 (a)
For building permits ... 303

FENCES
Classed as ... 1501
For construction purposes .. 1602, 4406

FILLED GROUND ... 2802

FILL UNDER FLOOR ... 1810

FILM EXCHANGES
Classed as .. 1001
Sprinklers required for ... 3501

FILMS—FLAMMABLE
Classes of, excepted ... 4501
General regulations ... 4802
Storage and use of ... 4001, 4802

FINAL INSPECTION
Made when ... 306
Required when ... 304

281
FLOOR FILL—Required, when .. 1810
FLOOR FURNACES .. 5109 (appendix)
FLOOR LEVELS
Determine sprinkler requirements, when 3801
For Groups A and B occupancies ... 603, 702
FLOOR LOADS
Assumed live .. 2304
Definitions of .. 2301
Reductions allowed ... 2308
Required to be posted .. 2308
Special considerations .. 2303
FLOOR OPENINGS
Enclosures of—when required (see VERTICAL OPENINGS—
ENCLOSURE OF)
In stages—construction of .. 3905
FLOOR PROTECTION
Over heating plants .. 5106, 5107 (appendix)
Over ranges .. 5112 (appendix)
Required in Type III buildings ... 2010
Under stoves .. 5113 (appendix)
FLUES
Area required .. 3702 (c)
Lining for chimneys ... 3702 (b)
Lining for smokestacks ... 3705
FLY GALLERIES—Construction of .. 3902
FOOTINGS
Concrete—design of .. 2621
Design of—general .. 2306, 2310, 2805
Protection of steel in grillage footings .. 2806
FORMS
For concrete construction .. 2610
May be removed, when ... 2610 (b)
FOUNDATION
Concrete—design of .. 2621
Construction allowed (see TYPES OF CONSTRUCTION) 2621
Definition of .. 401
Design of .. 2301
Excavations for .. 2301
Footings design—isolated .. 2310, 2805
For retaining wall .. 2204, 2309
Inspection required for Type V buildings 304
Liability of adjoining property .. 2801
May be omitted in Type V buildings, when 2204
May project beyond property line—when 4502
Openings in wall for ventilation ... 2523
Owner's liability for .. 2801
Piling for ... 2807
Soil pressure allowed ... 2303
Stepped in Type V buildings, when ... 2204
FRAME BUILDINGS (see TYPE V BUILDINGS) 2201
FRAME INSPECTION—Required, when 304
FRAMEWORK—OF BUILDINGS (see TYPES OF
CONSTRUCTION)
FRAMING
Around chimneys .. 2524
Of wood construction (see WOOD)
Design ... 2529
General requirements ... 2528
Requirements for glue ... 2526
Stressed skin panel design 2530
Tests for glues ... 2527
Type I glue ... 2526 (c), 2527 (c)
Type II glue ... 2526 (c), 2527 (d)

GRADE
Brick ... 2402
Ground level, definition of 401
Lumber .. 2501, 2503

GRANDSTANDS .. Chapter 7

GRAVITY TANKS
For wet standpipe supply .. 3806

GREENHOUSE—Roofs ... 2305, 3402

GRIDIRONS—Construction of 3902

GROUPS—OCCUPANCY
Area .. 505, 506
Automobile ramps ... 1004
Automobile storage—limited 1509
Chimneys and heating apparatus 608, 708, 808, 908, 1008, 1108, 1208, 1308, 1408, 1508
Construction ... 602, 702, 802, 902, 1002, 1102, 1202, 1302, 1402, 1502
Definition ... 501, 701, 801, 901, 1001, 1101, 1201, 1301, 1401, 1501
Doors ... Chapter 33
Dry cleaning—special construction 1008
Dwellings when on roof ... 1403, 3801
Enclosure of vertical openings 606, 706, 806, 906, 1006, 1106, 1206, 1306, 1406, 1506
Exit courts ... Chapter 33
Exit facilities .. Chapter 33
Exit lights ... Chapter 33
Fire-extinguishing apparatus 607, 707, 807, 907, 1007, 1107, 1207, 1307, 1407, 1507, 3801
Flammable liquids prohibited 608, 708
Flammable liquids—storage regulated 808, 908, 1008, 1108, 1208, 1308, 1408, 1508
Gasoline filling station, Type V 1102 (b)
Height .. 507
Light, ventilation, and sanitation 605, 705, 805, 905, 1005, 1105, 1205, 1305, 1405, 1506
Location on property ... 603, 703, 803, 903, 1003, 1103, 1203, 1303, 1403, 1503
Mixture occupancies—separations for 503
Motion picture machines—Groups A, B, and C 4001
Obstruction in exits .. 3301 (h)
Prohibited in Fire Zones No. 1 and 2 1602, 1603
Protection of exterior openings 608, 708, 808, 908, 1008, 1108, 1208, 1308, 1408, 1508
Pumps required, when ... 3318 (e)
Running tracks—construction permitted—Groups A, B, and C ... 609, 709, 809
Seats .. 3314
Self-releasing latches or panic bolts 3315 (c), 3316 (b), 3317 (h), 3318 (1)
Smokeproof enclosure—Group A 3315 (b)
Special hazards .. "08" Sections of Chapters 6-15, incl.
Special provisions ... "02 (b)" Sections of Chapters 6-13, incl.
Stage construction—Groups A, B, and C 602, 702, 802, Chapter 39
State laws applicable .. 1305, 1306, 1405

GROUT ... 2403 (d)

GROUNTED MASONRY ... 2406

GUEST—Definition of ... 401

GUNITE (see PNEUMATICALLY PLACED CONCRETE and
PNEUMATICALLY PLACED PLASTER)

GUTTERS—to be kept free of obstructions—when 4403

285
GYMNASIUMS ... 601, 701, 801
GYMNASIUMS—Special construction .. 609, 709, 809
GYPSUM
Concrete ... 2412
Lath for fire-resistive construction 4302
Masonry ... 2411
Partitions—non-bearing .. 2404 (c)
Plaster for fire-resistive purposes 4302
Plaster lath .. 4203, 4702 (h), 4703 (b)
Quality and design ... 2411, 2412
Slabs on steel joists ... 3103
Working stresses ... 2411, 2412

H—OCCUPANCIES ... 1301
HANGARS, AIRCRAFT
Allowable area increases .. 506 (e)
Classified, how .. 1001, 1101
Exterior walls in .. 1002, 1102 (b)
Ventilating equipment in ... 1006
HANGERS REQUIRED—For joists ... 2517 (e)

HAZARDOUS OCCUPANCIES
Highly hazardous (see GROUP E) 1001
Moderately hazardous (see GROUP F) 1101
Non-hazardous (see GROUP G) ... 1201

HEADER—IN FRAME CONSTRUCTION
Joists—support required .. 2517 (e), 2524
Over opening in stud partitions 2524 (j)

HEATERS
For water .. 5111 (appendix)
General requirements ... 5101 (a) (appendix)
Using gas for fuel ... 5111 (e), 5111 (appendix)
Using solid or liquid fuel .. 5101, 5113, 5114 (appendix)
Vents for, (gas) .. 3708

HEATING PLANTS—LOW PRESSURE STEAM 5114 (appendix)

HEAVY TIMBER CONSTRUCTION
(see TYPE II BUILDINGS) .. 1901-1916, Incl.

HEIGHT
Additional for roof structures ... 3601
Affects exits required .. 3302
Awnings ... 4506
Definition of ... 401
Marquees above sidewalk .. 4506
Occupancy groups .. 507
Of masonry walls (see WALLS) ... 4501
Permanent projections over property line 4501
Towers or spires .. 3602
Types I, II, III, IV and V .. 1902, 1902, 2002, 2102, 2202
Veneered walls .. Chapter 29

HOLLOW CLAY TILE (see CLAY TILE—HOLLOW)
HOLLOW CONCRETE BLOCK OR TILE (see CONCRETE BLOCKS)

HOLLOW MASONRY
Units .. 2402
Walls .. 2408

HORIZONTAL EXITS
General requirements ... 3307
Signs for .. 3312
Substitute for stairways, when ... 3307

HOSE—As equipment for wet standpipe 3306

HOSE CONNECTIONS
To dry standpipes ... 3804
To wet standpipes .. 3806

HOSPITALS ... 901

HOTELS
Classified how ... 1301
Definition of ... 401
Non-conforming .. 1309 (appendix)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOUSES OF CORRECTION</td>
<td>901</td>
</tr>
<tr>
<td>I—OCCUPANCIES</td>
<td>1401</td>
</tr>
<tr>
<td>ICE PLANTS</td>
<td>1201</td>
</tr>
<tr>
<td>INCINERATORS</td>
<td></td>
</tr>
<tr>
<td>Chimneys for</td>
<td>3709</td>
</tr>
<tr>
<td>Construction of</td>
<td>3709</td>
</tr>
<tr>
<td>INFLAMMABLE LIQUIDS (see FLAMMABLE LIQUIDS)</td>
<td></td>
</tr>
<tr>
<td>INNER COURT WALLS (see TYPES OF CONSTRUCTION)</td>
<td></td>
</tr>
<tr>
<td>INSPECTION</td>
<td></td>
</tr>
<tr>
<td>By Special Inspector</td>
<td>305</td>
</tr>
<tr>
<td>Final—required when</td>
<td>304</td>
</tr>
<tr>
<td>For change of occupancy</td>
<td>306</td>
</tr>
<tr>
<td>Material for prefabrication</td>
<td>5006</td>
</tr>
<tr>
<td>Plans</td>
<td>302</td>
</tr>
<tr>
<td>Plastering</td>
<td>304, 4701</td>
</tr>
<tr>
<td>Record card</td>
<td>304 (b)</td>
</tr>
<tr>
<td>Required when</td>
<td>304</td>
</tr>
<tr>
<td>INSULATING MATERIAL—Regulations for</td>
<td>2016, 2216</td>
</tr>
<tr>
<td>INTERIOR TRIM</td>
<td></td>
</tr>
<tr>
<td>Type I buildings</td>
<td>1816</td>
</tr>
<tr>
<td>Type II buildings</td>
<td>1916</td>
</tr>
<tr>
<td>INTERIOR WALLS (see WALLS)</td>
<td></td>
</tr>
<tr>
<td>INTERPRETATION OF CODE</td>
<td></td>
</tr>
<tr>
<td>By Board of Examiners and Appeals</td>
<td>204</td>
</tr>
<tr>
<td>By Building Official</td>
<td>202</td>
</tr>
<tr>
<td>IRON</td>
<td></td>
</tr>
<tr>
<td>Cast—allowable working stresses</td>
<td>2702</td>
</tr>
<tr>
<td>Cast columns—painted, when</td>
<td>2718</td>
</tr>
<tr>
<td>Galvanized—for exterior walls</td>
<td>2205 (c)</td>
</tr>
<tr>
<td>Galvanized—for roofs</td>
<td>3204</td>
</tr>
<tr>
<td>J—OCCUPANCIES</td>
<td>1501</td>
</tr>
<tr>
<td>JAILS</td>
<td>901</td>
</tr>
<tr>
<td>JOINTS IN STEEL (see STEEL—STRUCTURAL)</td>
<td></td>
</tr>
<tr>
<td>JOINTS IN WOOD</td>
<td></td>
</tr>
<tr>
<td>Bolts</td>
<td>2508</td>
</tr>
<tr>
<td>Cylindrical pins</td>
<td>2510</td>
</tr>
<tr>
<td>Lag screws</td>
<td>2511</td>
</tr>
<tr>
<td>Nails</td>
<td>2512</td>
</tr>
<tr>
<td>Timber connectors</td>
<td>2509</td>
</tr>
<tr>
<td>Washers</td>
<td>2514</td>
</tr>
<tr>
<td>JOIST HANGERS</td>
<td>2517 (e)</td>
</tr>
<tr>
<td>JOISTS</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>2622</td>
</tr>
<tr>
<td>Fire protection of</td>
<td>4303</td>
</tr>
<tr>
<td>Steel</td>
<td>2715, 3103</td>
</tr>
<tr>
<td>Steel—tests required when</td>
<td>2715</td>
</tr>
<tr>
<td>Wood</td>
<td>2517, 3105</td>
</tr>
<tr>
<td>Wood—header and trimmer</td>
<td>2524 (j)</td>
</tr>
<tr>
<td>KEENE'S CEMENT—Specifications for</td>
<td>4702 (d)</td>
</tr>
<tr>
<td>KITCHENS—Ventilation of</td>
<td>3709</td>
</tr>
<tr>
<td>LABELS</td>
<td></td>
</tr>
<tr>
<td>Fire doors by Underwriters' Laboratories</td>
<td>4306</td>
</tr>
<tr>
<td>Roofing by Underwriters' Laboratories</td>
<td>3204</td>
</tr>
<tr>
<td>Windows by Underwriters' Laboratories</td>
<td>4306</td>
</tr>
<tr>
<td>LACING</td>
<td>2712</td>
</tr>
<tr>
<td>LADDERS—As access to roof space</td>
<td>3205</td>
</tr>
<tr>
<td>LAITANCE—Definition of</td>
<td>2603</td>
</tr>
<tr>
<td>LAMINATED FLOORS</td>
<td>2528, 3106</td>
</tr>
<tr>
<td>LANDING OF STAIRS</td>
<td>3305</td>
</tr>
<tr>
<td>LATERAL BRACING</td>
<td>2812 (appendix)</td>
</tr>
<tr>
<td>LATH</td>
<td></td>
</tr>
<tr>
<td>Fiber board</td>
<td>4702 (g), 4703 (d)</td>
</tr>
<tr>
<td>Fire-resistive</td>
<td>4302</td>
</tr>
</tbody>
</table>

287
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum</td>
<td>4702 (h), 4703 (b), 4704</td>
</tr>
<tr>
<td>Metal (see METAL OR WIRE LATH)</td>
<td>4702 (l), 4703 (e), 4704</td>
</tr>
<tr>
<td>Wood</td>
<td>4702 (f), 4703 (c)</td>
</tr>
<tr>
<td>LIBRARIES</td>
<td>601, 701, 801</td>
</tr>
<tr>
<td>LIGHT</td>
<td>3312</td>
</tr>
<tr>
<td>For exit signs</td>
<td>3312</td>
</tr>
<tr>
<td>For occupancy groups</td>
<td>"05" Sections, Chapters 6-15, Incl.</td>
</tr>
<tr>
<td>For stairways and exits</td>
<td>3312</td>
</tr>
<tr>
<td>LIGHT INCOMBUSTIBLE FRAME (see TYPE IV CONSTRUCTION)</td>
<td>2715</td>
</tr>
<tr>
<td>LIGHT STEEL CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>LIME</td>
<td>2402 (p), (q)</td>
</tr>
<tr>
<td>Proportions for mortar</td>
<td>2403 (b)</td>
</tr>
<tr>
<td>Proportions for plaster</td>
<td></td>
</tr>
<tr>
<td>Specifications for</td>
<td>3402, 4702 (c)</td>
</tr>
<tr>
<td>LINING</td>
<td>3703</td>
</tr>
<tr>
<td>Of chimneys</td>
<td>3705</td>
</tr>
<tr>
<td>Of smokestacks</td>
<td></td>
</tr>
<tr>
<td>LINTEL</td>
<td>401</td>
</tr>
<tr>
<td>Definition of</td>
<td>1809 (a) 2, 1909 (a) 2</td>
</tr>
<tr>
<td>Fire-protection omitted when</td>
<td></td>
</tr>
<tr>
<td>LIQUIDS (see FLAMMABLE LIQUIDS)</td>
<td></td>
</tr>
<tr>
<td>LIVE LOADS</td>
<td>2303</td>
</tr>
<tr>
<td>Concentrations of</td>
<td>401, 2201</td>
</tr>
<tr>
<td>Definition of</td>
<td></td>
</tr>
<tr>
<td>For roofs</td>
<td>2308</td>
</tr>
<tr>
<td>Provisions allowed</td>
<td></td>
</tr>
<tr>
<td>Required to be posted</td>
<td>2308</td>
</tr>
<tr>
<td>Special considerations</td>
<td></td>
</tr>
<tr>
<td>Unit—for certain occupancies</td>
<td>2304</td>
</tr>
<tr>
<td>LOADING PLATFORMS</td>
<td>1814, 1914, 2014</td>
</tr>
<tr>
<td>LOADS (see LIVE, DEAD, FLOOR LOADS)</td>
<td></td>
</tr>
<tr>
<td>球星的 building</td>
<td>2309</td>
</tr>
<tr>
<td>Flies—bearing power of</td>
<td>2303</td>
</tr>
<tr>
<td>Roof</td>
<td>2306</td>
</tr>
<tr>
<td>Soil—bearing capacity of</td>
<td>2802</td>
</tr>
<tr>
<td>Snow</td>
<td>2305</td>
</tr>
<tr>
<td>Wind pressure</td>
<td>2307</td>
</tr>
<tr>
<td>LOBBIES IN THEATERS</td>
<td>3301 (h)</td>
</tr>
<tr>
<td>Obstructions</td>
<td>3302 (a)</td>
</tr>
<tr>
<td>Size required</td>
<td></td>
</tr>
<tr>
<td>LOCATION IN FIRE ZONES</td>
<td>1602, 1603, 1604</td>
</tr>
<tr>
<td>LOCATION ON PROPERTY</td>
<td>504</td>
</tr>
<tr>
<td>General requirements</td>
<td>"03" Sections, Chapters 6-15, Incl.</td>
</tr>
<tr>
<td>LODGES (see ASSEMBLY BUILDINGS)</td>
<td></td>
</tr>
<tr>
<td>LODGING HOUSE</td>
<td>1301</td>
</tr>
<tr>
<td>LOT LINES (see LOCATION ON PROPERTY)</td>
<td></td>
</tr>
<tr>
<td>LUMBER (see WOOD)</td>
<td>2501</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>104 (l)</td>
</tr>
<tr>
<td>Of buildings or structures</td>
<td></td>
</tr>
<tr>
<td>Of present safety devices</td>
<td>104 (l)</td>
</tr>
<tr>
<td>MARQUEES (see TYPES OF CONSTRUCTION)</td>
<td>4605</td>
</tr>
<tr>
<td>MASONRY</td>
<td>2403 (h)</td>
</tr>
<tr>
<td>Anchorage</td>
<td>2403 (j)</td>
</tr>
<tr>
<td>Arches and lintels for openings in</td>
<td>2403 (b)</td>
</tr>
<tr>
<td>Bearing walls</td>
<td>2404 (c)</td>
</tr>
<tr>
<td>Bolts in</td>
<td>2402</td>
</tr>
<tr>
<td>Brick, grouted</td>
<td>2407</td>
</tr>
<tr>
<td>Brick, reinforced</td>
<td>2408</td>
</tr>
<tr>
<td>Cavity wall</td>
<td>2409</td>
</tr>
<tr>
<td>Chases in</td>
<td>2403 (e)</td>
</tr>
<tr>
<td>Combination of units</td>
<td>2401 (b)</td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
</tbody>
</table>

288
Section

Faced walls ... 2414
General requirements 2403
Glass block ... 2413
GROUTED .. 2406
Gypsum ... 2411, 2412
Hollow units ... 2408
Materials classified 2402
Mortar for ... 2402
Non-bearing walls 2408 (c)
Ordinary (Type III buildings) 2001-2013, incl.
Piers ... 2403 (1)
Plain solid ... 2405
Protected against freezing 2401 (c)
Quality and design (see Chapter 24) 2415 (appendix)
Reinforced .. 2407
Reinforced gypsum 2412
Reinforcement of openings in 2403 (j)
Stone ... 2410
 Supported members in 2403 (f)
Tests required, for mortar 2403 (a)
Unburned clay ... 2415 (appendix)
Walls and partitions (see WALLS and Chapter 29) 2415 (appendix)
Working stresses .. Chapter 24

MASONRY VENEER (see VENEER)

MATTRESS FACTORIES 1001

MEASUREMENT OF HEIGHTS
Of buildings (see definition of HEIGHT) 401

MECHANICAL VENTILATION (see VENTILATION)

METAL
As lath (see METAL OR WIRE LATH) 3204
As roof covering ... 3204
Exterior wall covering 2105, 2205
Frames with wire glass 4305
Gas vent connections of 3708
Inspected for doors—wood 4508
Smoke pipes of ... 3706
Smokestacks of ... 3705

METAL FRAME BUILDINGS (see TYPE IV BUILDINGS)

METAL OR WIRE LATH
For exterior and interior plastering 4702 (1), 4703 (e)
For fire-resistant construction 4302
For partitions ... 4302
For stucco reinforcing 4710 (c)

METHODS OF CALCULATIONS 2302

MEZZANINE OR MEZZANINE FLOOR
Construction for Type I buildings 1816
Construction for Type II buildings 1916
Definition of ... 401

MILL CONSTRUCTION (see TYPE II BUILDINGS)

MINIMUM REQUIREMENTS
For classification by type of construction 1702
For fire protection of structural parts 4302
Purpose of Code .. 102

MIX
For masonry mortars 2403
For reinforced concrete 2606-2609 (a)

MIXED OCCUPANCIES—Separations required 503

MONASTERIES ... 1301

MORTAR
Classification of ... 2402 (a)
For masonry construction 2403
For reinforced masonry 2407 (b)
May be mixed in street—how 4404
Strength of .. 2402 (b)
Tests for classification of 2402 (a)

MOTION PICTURE MACHINE BOOTHS
Construction and design 4002

For Group A, B, C, and D occupancies 608, 708, 808, 908
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employs Special Inspector, when</td>
<td>305</td>
</tr>
<tr>
<td>May occupy sidewalk space, when</td>
<td>4402 (d)</td>
</tr>
<tr>
<td>Occupies building, when</td>
<td>206</td>
</tr>
<tr>
<td>Permits storage of materials in street—when</td>
<td>4402</td>
</tr>
<tr>
<td>Required to post signs</td>
<td>2308, 2301, 2312, 3804, 2807</td>
</tr>
<tr>
<td>Required to repair buildings, when</td>
<td>203</td>
</tr>
<tr>
<td>Responsibility of, when adjoining</td>
<td>2801</td>
</tr>
<tr>
<td>Of cast iron, when</td>
<td>2718</td>
</tr>
<tr>
<td>Of structural steel</td>
<td>2718</td>
</tr>
<tr>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>PANEL WALL (see WALLS)</td>
<td>1001, 1101</td>
</tr>
<tr>
<td>PANIC BARS</td>
<td>3301 (c)</td>
</tr>
<tr>
<td>Definition</td>
<td>3315, 3316, 3317</td>
</tr>
<tr>
<td>in Group A, B, and C occupancies</td>
<td>3315, 3316, 3317</td>
</tr>
<tr>
<td>PAPER—Waterproof—required when</td>
<td>2217, 4710 (b)</td>
</tr>
<tr>
<td>PARAPET WALL</td>
<td>401</td>
</tr>
<tr>
<td>Definition of</td>
<td>1807</td>
</tr>
<tr>
<td>For Type I buildings</td>
<td>1905, 1907</td>
</tr>
<tr>
<td>For Type II buildings</td>
<td>2005, 2007</td>
</tr>
<tr>
<td>For Type III buildings</td>
<td>2107</td>
</tr>
<tr>
<td>For Type IV buildings</td>
<td>2107</td>
</tr>
<tr>
<td>PARTITIONS</td>
<td>2521</td>
</tr>
<tr>
<td>Bearing—combustible</td>
<td>2404 (b), 2620 (k), 2715</td>
</tr>
<tr>
<td>Bearing—Incombustible</td>
<td>4304</td>
</tr>
<tr>
<td>Fire-resistive</td>
<td>2521</td>
</tr>
<tr>
<td>For frame construction</td>
<td>2404 (c), 2620 (l), 2715, 4704</td>
</tr>
<tr>
<td>General (see TYPES OF CONSTRUCTION)</td>
<td>2521</td>
</tr>
<tr>
<td>Non-bearing—Incombustible</td>
<td>2521</td>
</tr>
<tr>
<td>PASSAGEWAYS</td>
<td>3311</td>
</tr>
<tr>
<td>As discharge for exit courts</td>
<td>3308 (d)</td>
</tr>
<tr>
<td>As horizontal exits</td>
<td>3309 (f)</td>
</tr>
<tr>
<td>As stairway enclosures</td>
<td>3309 (f)</td>
</tr>
<tr>
<td>For smokeproof enclosures</td>
<td>3309 (f)</td>
</tr>
<tr>
<td>To be sprinklered, when</td>
<td>3801</td>
</tr>
<tr>
<td>PASSENGER STATIONS (see ASSEMBLY BUILDINGS)</td>
<td>205</td>
</tr>
<tr>
<td>PEDESTAL</td>
<td>2603</td>
</tr>
<tr>
<td>Concrete—definition of</td>
<td>2611, 2620</td>
</tr>
<tr>
<td>Concrete—design of</td>
<td>Chapter 44</td>
</tr>
<tr>
<td>PEDESTRIANS—PROTECTION OF</td>
<td>205</td>
</tr>
<tr>
<td>PENALTIES AND VIOLATIONS—Provided by Code</td>
<td>3001</td>
</tr>
<tr>
<td>PENTHOUSE</td>
<td>1815, 1915, 2015, 2115, 2215</td>
</tr>
<tr>
<td>For Type I to V buildings</td>
<td>1815, 1915, 2015, 2115, 2215</td>
</tr>
<tr>
<td>General requirements</td>
<td>3001</td>
</tr>
<tr>
<td>PERMIT</td>
<td>301</td>
</tr>
<tr>
<td>Application for</td>
<td>302 (c)</td>
</tr>
<tr>
<td>Does not permit violation</td>
<td>302 (d)</td>
</tr>
<tr>
<td>Expires when</td>
<td>303</td>
</tr>
<tr>
<td>Fees doubled—when</td>
<td>303 (e)</td>
</tr>
<tr>
<td>Fees for alteration</td>
<td>301</td>
</tr>
<tr>
<td>For change of occupancy</td>
<td>303</td>
</tr>
<tr>
<td>For demolishing</td>
<td>301</td>
</tr>
<tr>
<td>For moving</td>
<td>301</td>
</tr>
<tr>
<td>For new buildings or structures</td>
<td>301</td>
</tr>
<tr>
<td>For storage of construction materials in street</td>
<td>4401</td>
</tr>
<tr>
<td>For temporary buildings</td>
<td>1602, 4403</td>
</tr>
<tr>
<td>For use or occupancy</td>
<td>301</td>
</tr>
<tr>
<td>Not valid, when</td>
<td>302 (d)</td>
</tr>
<tr>
<td>Plans required for</td>
<td>301</td>
</tr>
<tr>
<td>When required</td>
<td>301</td>
</tr>
<tr>
<td>PERSON—Definition of</td>
<td>401</td>
</tr>
<tr>
<td>PETROLEUM STORAGE</td>
<td>1001</td>
</tr>
<tr>
<td>PHOTOGRAPHY</td>
<td>3601</td>
</tr>
<tr>
<td>Roof structures allowed for</td>
<td>3402</td>
</tr>
<tr>
<td>Special skylight construction for</td>
<td>291</td>
</tr>
</tbody>
</table>
PIERS—Masonry .. 2404 (1)

PILES—General requirements 2897

PIN-RAILS (see GRIDIRONS)

PINS
Allowable stresses .. 2702
General requirements .. 2713

PLAIN CONCRETE
Pedestals and footings in 2624 (e)
Quality and design ... 2624
Walls (see WALLS) .. 2624
Working stresses .. 2624

PLAIN MASONRY .. 2405

PLAN CHECKING .. 302, 303

PLANING MILLS ... 1001

PLANS
Approved by Building Official 302
Required for permit when 301
Shall bear name of whom .. 201
Show water-cement ratio, when 2006

PLASTER AND PLASTERING
Aggregate .. 4702
As stucco (exterior) .. 4710
Fire-resistive .. 4302 (d)
General .. 4701
Inspection of .. 304, 4701
Interior, general ... 4703
Materials for fire-resistive construction 4302 (d)
Over fiber board (interior) 4703
Over masonry ... 4711 (c) 2
Over metal lath (interior) 4703
Over plaster lath (interior) 4703
Over wood lath (interior) 4703
Pneumatically placed (exterior or Interior) 4712
Reinforcing for .. 4704
Sand ... 4702
Suspended ceiling .. 4703
Vermiculite ... 4702, 4707 (a)

PLASTERBOARD—GYPSUM
For fire resistance—ceilings 4305
For fire resistance—partitions 4304

PLATE
In bearing partitions ... 2521
Sill (see MUDSILL) .. 2521

PLATE GIRDERS .. 2704

PLATFORM, ENCLOSED
Definition of ... 491
Requirements for .. 3906
Sprinklers for .. 3901

PLYWOOD
For exterior sheathing ... 2205 (c) 3

PNEUMATICALLY PLACED CONCRETE
Definition of ... 2603
Fire-resistive standards 4301, 4302
Partitions—non-bearing 2620 (1)
Tests of .. 2606

PNEUMATICALLY PLACED PLASTER
As exterior covering for frame construction 4712
Definition .. 4712
Non-bearing partitions of 4704

POLICE STATIONS .. 1101

PORCHES (see TYPES OF CONSTRUCTION)
May project—when ... 4504

PORTLAND CEMENT
Definition of ... 2603
For plaster ... 4707 (a) 4
In masonry mortar .. 2403
Specifications for .. 2604 (a), 4702
Storage of .. 2604 (e)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER PLANTS</td>
<td>1201</td>
</tr>
<tr>
<td>PREFABRICATION CONSTRUCTION</td>
<td>3806</td>
</tr>
<tr>
<td>PRESSURE TANKS—For wet standpipe supply</td>
<td>3806</td>
</tr>
<tr>
<td>PRINTING PLANTS</td>
<td>1101</td>
</tr>
<tr>
<td>PRISONS</td>
<td>901</td>
</tr>
<tr>
<td>PRIVATE GARAGE (see GARAGE, PRIVATE)</td>
<td></td>
</tr>
<tr>
<td>PROJECTIONS FROM BUILDING (see TYPES OF CONSTRUCTION)</td>
<td></td>
</tr>
<tr>
<td>Awnings</td>
<td>4506</td>
</tr>
<tr>
<td>Bays and balconies</td>
<td>3501</td>
</tr>
<tr>
<td>Below sidewalk</td>
<td>4502</td>
</tr>
<tr>
<td>Cornices, etc.</td>
<td>4501</td>
</tr>
<tr>
<td>In alleys—When</td>
<td>4502</td>
</tr>
<tr>
<td>Marquees</td>
<td>3504</td>
</tr>
<tr>
<td>Permanent (allowed over public property)</td>
<td>4503</td>
</tr>
<tr>
<td>PSOCENIUM</td>
<td></td>
</tr>
<tr>
<td>Construction of</td>
<td>4101</td>
</tr>
<tr>
<td>Sprinklerizing of opening required</td>
<td>4102</td>
</tr>
<tr>
<td>Wall</td>
<td>3801</td>
</tr>
<tr>
<td>Wall openings allowed</td>
<td>3804</td>
</tr>
<tr>
<td>PROSCENIUM CURTAIN</td>
<td></td>
</tr>
<tr>
<td>Asbestos cloth—type of</td>
<td>4102</td>
</tr>
<tr>
<td>Automatic controls for</td>
<td>4104</td>
</tr>
<tr>
<td>Design of</td>
<td>4103</td>
</tr>
<tr>
<td>General requirements</td>
<td>4101</td>
</tr>
<tr>
<td>Materials</td>
<td>4102</td>
</tr>
<tr>
<td>New designs of</td>
<td>4106</td>
</tr>
<tr>
<td>Operation—required when</td>
<td>4101</td>
</tr>
<tr>
<td>Required where</td>
<td>3904</td>
</tr>
<tr>
<td>Tests of</td>
<td>4106</td>
</tr>
<tr>
<td>PUBLIC GARAGES (see GARAGE, PUBLIC)</td>
<td></td>
</tr>
<tr>
<td>PUBLIC PROPERTY</td>
<td></td>
</tr>
<tr>
<td>Permanent use of</td>
<td>4501</td>
</tr>
<tr>
<td>Temporary use of</td>
<td>4402</td>
</tr>
<tr>
<td>PUMPING PLANTS</td>
<td>1201</td>
</tr>
<tr>
<td>PUMPS</td>
<td></td>
</tr>
<tr>
<td>For part of oil storage equipment</td>
<td>1006</td>
</tr>
<tr>
<td>For wet standpipe supply</td>
<td>3806</td>
</tr>
<tr>
<td>QUALITY AND DESIGN OF THE MATERIALS OF CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Masonry</td>
<td>2401-2415, incl.</td>
</tr>
<tr>
<td>Reinforced concrete</td>
<td>2601-2623, incl.</td>
</tr>
<tr>
<td>Steel and iron</td>
<td>2701-2718, incl.</td>
</tr>
<tr>
<td>Wood</td>
<td>2501-2530, incl.</td>
</tr>
<tr>
<td>RADIO TOWERS</td>
<td>3602</td>
</tr>
<tr>
<td>RAFTERS (see ROOF CONSTRUCTION)</td>
<td></td>
</tr>
<tr>
<td>RAILWAY STATIONS (see ASSEMBLY BUILDINGS)</td>
<td></td>
</tr>
<tr>
<td>RAMPS</td>
<td></td>
</tr>
<tr>
<td>Construction of</td>
<td>3806</td>
</tr>
<tr>
<td>Doors in automobile enclosures</td>
<td>1006</td>
</tr>
<tr>
<td>Enclosure for</td>
<td>3806</td>
</tr>
<tr>
<td>For automobile storage</td>
<td>1004</td>
</tr>
<tr>
<td>For hospitals and sanitariums</td>
<td>3818 (e)</td>
</tr>
<tr>
<td>For temporary walkway</td>
<td>4406</td>
</tr>
<tr>
<td>Gradient of</td>
<td>3306 (e)</td>
</tr>
<tr>
<td>Required</td>
<td>3818 (e)</td>
</tr>
<tr>
<td>Substituted for stairways, when</td>
<td>3806</td>
</tr>
<tr>
<td>RANGE HOODS</td>
<td>5112 (appendix)</td>
</tr>
<tr>
<td>RANGES—GAS</td>
<td>5112 (appendix)</td>
</tr>
<tr>
<td>Recesses—In masonry</td>
<td>2404 (e)</td>
</tr>
<tr>
<td>REDUCTIONS OF LIVE LOADS</td>
<td>2306</td>
</tr>
<tr>
<td>REDWOOD</td>
<td>2204</td>
</tr>
</tbody>
</table>

293
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFORMATORIES</td>
</tr>
<tr>
<td>REFRIGERATION</td>
</tr>
<tr>
<td>Definitions</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>REGISTERS</td>
</tr>
<tr>
<td>Equipped with fusible links, when</td>
</tr>
<tr>
<td>For warm air ducts</td>
</tr>
<tr>
<td>REINFORCED CONCRETE</td>
</tr>
<tr>
<td>Aggregates—quality of</td>
</tr>
<tr>
<td>Anchorages of reinforcement</td>
</tr>
<tr>
<td>Assumptions for design</td>
</tr>
<tr>
<td>Beams—composite</td>
</tr>
<tr>
<td>Beams—depth of</td>
</tr>
<tr>
<td>Beams—lateral support for</td>
</tr>
<tr>
<td>Bending moments</td>
</tr>
<tr>
<td>Bonding—of concrete</td>
</tr>
<tr>
<td>Bonds for anchorage</td>
</tr>
<tr>
<td>Columns</td>
</tr>
<tr>
<td>Computations—flexural</td>
</tr>
<tr>
<td>Concrete—quality of</td>
</tr>
<tr>
<td>Consistency—of mix</td>
</tr>
<tr>
<td>Construction joints</td>
</tr>
<tr>
<td>Curing</td>
</tr>
<tr>
<td>Definitions—of certain words</td>
</tr>
<tr>
<td>Depositing in cold weather</td>
</tr>
<tr>
<td>Design—assumptions for</td>
</tr>
<tr>
<td>Design—general</td>
</tr>
<tr>
<td>Diagonal tension</td>
</tr>
<tr>
<td>Edge thickness, minimum</td>
</tr>
<tr>
<td>Fire-protection of (see TYPES OF CONSTRUCTION)</td>
</tr>
<tr>
<td>Flat slab—shear in</td>
</tr>
<tr>
<td>Footings—anchorage for steel</td>
</tr>
<tr>
<td>Footings—design of</td>
</tr>
<tr>
<td>Footings—shear in</td>
</tr>
<tr>
<td>Forms</td>
</tr>
<tr>
<td>Joists—precast</td>
</tr>
<tr>
<td>Load tests</td>
</tr>
<tr>
<td>Materials—specifications for</td>
</tr>
<tr>
<td>Materials—storage of</td>
</tr>
<tr>
<td>Materials—tests of</td>
</tr>
<tr>
<td>Mixing—of concrete</td>
</tr>
<tr>
<td>Notation—for formulas used</td>
</tr>
<tr>
<td>Placing—of concrete</td>
</tr>
<tr>
<td>Portland cement—quality of</td>
</tr>
<tr>
<td>Proportions—control of</td>
</tr>
<tr>
<td>Proportions of mix</td>
</tr>
<tr>
<td>Quality of materials</td>
</tr>
<tr>
<td>Reinforcement (see REINFORCEMENT)</td>
</tr>
<tr>
<td>Ribbed floor construction</td>
</tr>
<tr>
<td>Shear and diagonal tension</td>
</tr>
<tr>
<td>Shear in slabs</td>
</tr>
<tr>
<td>Slabs—flat—design and construction</td>
</tr>
<tr>
<td>Slabs—thickness of</td>
</tr>
<tr>
<td>Slabs, two-way</td>
</tr>
<tr>
<td>Stresses—maximum allowable</td>
</tr>
<tr>
<td>Symbols for formulas</td>
</tr>
<tr>
<td>Tests of materials</td>
</tr>
<tr>
<td>Transporting</td>
</tr>
<tr>
<td>Walls of (see WALLS)</td>
</tr>
<tr>
<td>Web reinforcement—anchorage of</td>
</tr>
<tr>
<td>Web reinforcement—design of</td>
</tr>
<tr>
<td>REINFORCED GROUTED MASONRY</td>
</tr>
<tr>
<td>Mortar for</td>
</tr>
<tr>
<td>Working stresses</td>
</tr>
<tr>
<td>REINFORCEMENT</td>
</tr>
<tr>
<td>Bending of</td>
</tr>
<tr>
<td>Cleaning of</td>
</tr>
<tr>
<td>Compression steel—beams</td>
</tr>
<tr>
<td>Effective area of—definition</td>
</tr>
<tr>
<td>For columns—reinforced concrete</td>
</tr>
<tr>
<td>For stucco</td>
</tr>
<tr>
<td>For T-beams—reinforced concrete</td>
</tr>
</tbody>
</table>
For two-way slabs—reinforced concrete .. 2616 (b)
For web (diagonal tension)—concrete .. 2817
Negative—definition of .. 2608
Of fire protection .. 4303
Offsets in .. 2610 (c)
Placing—in reinforced concrete ... 2610
Positive—definition of .. 2608
Protection of .. 2610 (f)
Ratio—definition of .. 2803
Shrinkage .. 2815
Specifications for ... 2604 (d)
Splices of ... 2610 (e)
Stress—allowable unit .. 2613
Temperature .. 2615
Unit stresses allowable—in concrete ... 2613

REPAIR
Applied to change of use ... 104
Definitions of ... 401
Of existing buildings ... 104

REPORTS
Of Board of Examiners and Appeals .. 204
Of fees collected by Building Official ... 202 (c)
Of Special Inspector ... 306
Of tests of concrete .. 2605
Of tests of structural steel .. 2701

REQUIREMENTS BASED ON LOCATION IN FIRE ZONES
(see Part IV)
Fire zones defined ... 1601
For Fire Zones No. 1, 2, and 3 .. 1602, 1603, 1604

REQUIREMENTS BASED ON OCCUPANCY
Classification of all occupancies .. 501-503, Incl.
For Groups A to J Chapters 6 to 15, Incl.

REQUIREMENTS BASED ON TYPES OF CONSTRUCTION
Classification of buildings ... 1701, 1702
For Type I to Type V buildings .. Chapters 18 to 22, Incl.

RESISTING MOMENT—DEAD LOAD
For wind calculations ... 2307

RESTAURANTS .. 1101

RETAIL STORES ... 1101

RETAINING WALL
Definition of ... 401
Design of ... 2509
Used as foundation walls for Type V buildings 2204

REVIEWING STANDS
Fire protection of .. 702 (c)
Occupancy provisions .. 701
Permitted in Fire Zone No. 1, when ... 1602

RIBBON—In frame construction .. 2617

RISERS
For dry standpipes ... 3804
For stairways ... 3805
For warm air furnaces .. 6110 (appendix)
For wet standpipes .. 3806

RIVETS
Construction details .. 2711
General .. 2709
Holes—to be deducted, when ... 2707
In connections .. 2708
To be driven how .. 2717
Working stresses for .. 2702

ROOF CONSTRUCTION (see TYPES OF CONSTRUCTION)
Access to roof ... 3206 (1)
Access to roof space ... 3205
Construction and design ... 3202, 3203
Covering of .. 3204
Divided roof ... 3205
Drainage .. 3206
General .. 3201
Of marquee ... 4006
Rafters .. 3203 and Chapter 25

295
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOFING (see TYPES OF CONSTRUCTION) 3204</td>
</tr>
<tr>
<td>Application 3204</td>
</tr>
<tr>
<td>Classified—all types 3204</td>
</tr>
<tr>
<td>Composition 3204</td>
</tr>
<tr>
<td>Fire-retardant—details for 3204 (e)</td>
</tr>
<tr>
<td>Materials defined 3204 (b)</td>
</tr>
<tr>
<td>Ordinary—details for 3204 (f)</td>
</tr>
<tr>
<td>ROOF STRUCTURES 3601</td>
</tr>
<tr>
<td>Building requirements (see PENTHOUSE)</td>
</tr>
<tr>
<td>General requirements 3601</td>
</tr>
<tr>
<td>RUBBLE MASONRY 2405, 2410</td>
</tr>
<tr>
<td>RUNNING TRACKS (see GYMNASIUMS)</td>
</tr>
<tr>
<td>SALES ROOMS 1101</td>
</tr>
<tr>
<td>For combustible goods 1101</td>
</tr>
<tr>
<td>For incombustible goods 1201</td>
</tr>
<tr>
<td>SAND 2604 (b)</td>
</tr>
<tr>
<td>For concrete 2604 (b)</td>
</tr>
<tr>
<td>For mortar 2402</td>
</tr>
<tr>
<td>For plaster 4702</td>
</tr>
<tr>
<td>SAND LIME BRICK (see BRICK—SAND LIME) 901</td>
</tr>
<tr>
<td>SANITARIUMS 801-809</td>
</tr>
<tr>
<td>SCHOOLS—General requirements 801-809</td>
</tr>
<tr>
<td>SCUTTLE 3205</td>
</tr>
<tr>
<td>Access to roof space 3205</td>
</tr>
<tr>
<td>Access to roof—when required 3205</td>
</tr>
<tr>
<td>SEATING CAPACITY (see also OCCUPANT LOAD) 3301 (i)</td>
</tr>
<tr>
<td>Required to be posted, when 3301 (i)</td>
</tr>
<tr>
<td>SEATS 3314 (a)</td>
</tr>
<tr>
<td>Number of—to be posted when 3301 (i)</td>
</tr>
<tr>
<td>Spacing 3314 (a)</td>
</tr>
<tr>
<td>Width 3314 (b)</td>
</tr>
<tr>
<td>SELF-CLOSING DOOR 3205</td>
</tr>
<tr>
<td>Attic partitions 3205</td>
</tr>
<tr>
<td>Automobile ramp enclosures 1006</td>
</tr>
<tr>
<td>Basement stairways 3305 (a)</td>
</tr>
<tr>
<td>Exit enclosures 3308 (c)</td>
</tr>
<tr>
<td>Exterior stairways 3305 (h)</td>
</tr>
<tr>
<td>Fire doors 4306</td>
</tr>
<tr>
<td>Motion picture machine booths 4003</td>
</tr>
<tr>
<td>Smokeproof enclosures 3309 (e)</td>
</tr>
<tr>
<td>SERVICE STATIONS—GASOLINE (see GASOLINE SERVICE STATIONS) 3003</td>
</tr>
<tr>
<td>SHAFT 401</td>
</tr>
<tr>
<td>Construction—general 3003</td>
</tr>
<tr>
<td>Definition of 401</td>
</tr>
<tr>
<td>Elevator 3003</td>
</tr>
<tr>
<td>For air duct 3004</td>
</tr>
<tr>
<td>Required to be enclosed—when (see TYPES OF CONSTRUCTION) 3004</td>
</tr>
<tr>
<td>Special requirements (see OCCUPANCY GROUPS and TYPES OF CONSTRUCTION)</td>
</tr>
<tr>
<td>SHALL—Definition of 401</td>
</tr>
<tr>
<td>SHEAR 2614</td>
</tr>
<tr>
<td>Reinforced concrete—allowable stresses 2614</td>
</tr>
<tr>
<td>Reinforced concrete—design of 2617</td>
</tr>
<tr>
<td>Structural steel 2702</td>
</tr>
<tr>
<td>Wood, horizontal 2503, 2504</td>
</tr>
<tr>
<td>Wood, longitudinal 2506</td>
</tr>
<tr>
<td>SHEATHING, WALL 2205</td>
</tr>
<tr>
<td>SHINGLES AND SHAKES 3204</td>
</tr>
<tr>
<td>As roof covering 2205 (b)</td>
</tr>
<tr>
<td>As siding 2205 (b)</td>
</tr>
<tr>
<td>SHOW WINDOWS 1816</td>
</tr>
<tr>
<td>In Type I buildings 1816</td>
</tr>
<tr>
<td>In Type II buildings 1916</td>
</tr>
</tbody>
</table>

296
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTTERS</td>
</tr>
<tr>
<td>For motion picture machine booths</td>
</tr>
<tr>
<td>Required for stage vent ducts</td>
</tr>
<tr>
<td>SIAMESE CONNECTIONS</td>
</tr>
<tr>
<td>For dry standpipes</td>
</tr>
<tr>
<td>SIDEWALKS</td>
</tr>
<tr>
<td>Glass lights in</td>
</tr>
<tr>
<td>Live load for design of</td>
</tr>
<tr>
<td>Railing required around, when</td>
</tr>
<tr>
<td>Required to be protected, when</td>
</tr>
<tr>
<td>Space under—may be occupied when</td>
</tr>
<tr>
<td>SIGNS</td>
</tr>
<tr>
<td>For basement pipe inlets</td>
</tr>
<tr>
<td>For dry standpipes</td>
</tr>
<tr>
<td>For exits</td>
</tr>
<tr>
<td>For gas shut-off</td>
</tr>
<tr>
<td>For live load—required</td>
</tr>
<tr>
<td>For seating capacity—required</td>
</tr>
<tr>
<td>For stage curtains</td>
</tr>
<tr>
<td>For stairs</td>
</tr>
<tr>
<td>SKYLIGHTS</td>
</tr>
<tr>
<td>General requirements (see TYPES OF CONSTRUCTION)</td>
</tr>
<tr>
<td>SLAB</td>
</tr>
<tr>
<td>Gypsum</td>
</tr>
<tr>
<td>Minimum thickness—for fire-resistive purposes</td>
</tr>
<tr>
<td>Minimum thickness—for floors</td>
</tr>
<tr>
<td>Minimum thickness—for roofs</td>
</tr>
<tr>
<td>Reinforced concrete (see REINFORCED CONCRETE)</td>
</tr>
<tr>
<td>SLATE—For roof covering</td>
</tr>
<tr>
<td>SLEEPERS—WOOD</td>
</tr>
<tr>
<td>To be divided—how</td>
</tr>
<tr>
<td>SMOKE</td>
</tr>
<tr>
<td>Curtain to be tight for</td>
</tr>
<tr>
<td>Pipes for</td>
</tr>
<tr>
<td>Stacks for</td>
</tr>
<tr>
<td>SMOKE PIPES</td>
</tr>
<tr>
<td>SMOKEPROOF ENCLOSURE—REQUIRED</td>
</tr>
<tr>
<td>Construction and design</td>
</tr>
<tr>
<td>For occupancy groups</td>
</tr>
<tr>
<td>Where and when</td>
</tr>
<tr>
<td>SMOKE VENTS—Over stage</td>
</tr>
<tr>
<td>SOIL</td>
</tr>
<tr>
<td>Allowable pressures</td>
</tr>
<tr>
<td>Bearing allowable</td>
</tr>
<tr>
<td>Classification of</td>
</tr>
<tr>
<td>Requirements</td>
</tr>
<tr>
<td>Retaining walls for</td>
</tr>
<tr>
<td>Tests required</td>
</tr>
<tr>
<td>SOLID MASONRY (see MASONRY)</td>
</tr>
<tr>
<td>SOLID MASONRY WALLS (see WALLS)</td>
</tr>
<tr>
<td>SPECIAL INSPECTOR</td>
</tr>
<tr>
<td>SPECIFICATIONS—Required for permit</td>
</tr>
<tr>
<td>SPIRES (see TOWERS)</td>
</tr>
<tr>
<td>SPILICES</td>
</tr>
<tr>
<td>Reinforcing steel</td>
</tr>
<tr>
<td>Structural steel</td>
</tr>
<tr>
<td>SPRINKLERS—AUTOMATIC (see AUTOMATIC SPRINKLERS)</td>
</tr>
<tr>
<td>STADIUMS</td>
</tr>
<tr>
<td>STAGE</td>
</tr>
<tr>
<td>Construction (see Chapter 39)</td>
</tr>
<tr>
<td>Curtain</td>
</tr>
<tr>
<td>Exits from</td>
</tr>
<tr>
<td>Floors</td>
</tr>
<tr>
<td>Gridirons</td>
</tr>
<tr>
<td>Proscenium opening</td>
</tr>
</tbody>
</table>
STAIRS
Access and arrangement .. 3304, 3305
Access to roof ... 3305 (i)
Application—general (see GROUPS— OCCUPANCY AND TYPES OF CONSTRUCTION)
Design—general ... 3305
Doors—leading to .. 3303 (h)
Enclosures for ... 3308
Exterior .. 3305 (k)
Firestopping (wood frame construction) 2626
Headroom clearance ... 3305 (m)
Horizontal exits—affect number required 3307
In smokeproof enclosure ... 3309
Intermediate landings ... 3305 (d)
Lighting .. 3312
Locks—if provided ... 3303 (c)
Number required ... 3302
Obstructions prohibited .. 3301 (h)
Passageways as enclosures for .. 3308 (d)
Railings .. 3306 (g), 4406 (c)
Ramps—may be substituted .. 3305
Requirements—detailed ... 3305
Requirements—general .. 3301, 3302
Rise and tread ... 3305 (b)
Signs required ... 3312
Space under .. 3306 (f)
Width—minimum ... 3305 (a)
Winders—permitted when .. 3305 (c)

STANDARDS—UNIFORM BUILDING CODE (U. B. C.) 401, 6002

STANDPIPES
Dry standpipes—design and construction 3804
Dry standpipes—where required .. 3803
Wet standpipes—design and construction 3806
Wet standpipes—where required .. 3806

STATE LAWS
Governing Group E .. 1008
Governing Group H ... 1303, 1305
Governing Group I .. 1406

STEAM HEATING PLANTS—Low Pressure 5114 (appendix)

STEEL—STRUCTURAL
Allowable unit stresses .. 2702, 2715
Beams and girders .. 2704
Bearing plates and anchorage .. 2714
Bolts ... 2709
Cast—allowable stresses for .. 2702
Cast—properly annealed .. 2717
Connections in .. 2718
Construction details ... 2711, 2715
Crane runways .. 2704 (e)
Design .. 2701
Eccentric loads ... 2703
Erection of .. 2311
Expansion ... 2716
Fire-protection of (see also TYPES OF CONSTRUCTION) 4303
Gas cutting ... 2717
Girders, plate .. 2704
Joists—design of ... 2715
Lattice—design of .. 2712
Light steel construction ... 2715
Load sections—in computations ... 2717
Quality .. 2701
Painting of ... 2718
Piles ... 2807 (f)
Pins ... 2713
Plumbing of frame .. 2311
Reversal of stress ... 2702 (f)
Rivets ... 2709, 2717

298
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splices—compression</td>
<td>2706</td>
</tr>
<tr>
<td>Stresses, allowable unit</td>
<td>2715</td>
</tr>
<tr>
<td>Tension members—net section</td>
<td>2707</td>
</tr>
<tr>
<td>Tests of</td>
<td>2701</td>
</tr>
<tr>
<td>Thickness of—minimum</td>
<td>2705</td>
</tr>
<tr>
<td>To be painted, when</td>
<td>2718</td>
</tr>
<tr>
<td>Trusses—design of</td>
<td>2711</td>
</tr>
<tr>
<td>Welded connections</td>
<td>2710</td>
</tr>
<tr>
<td>Working stresses—allowable</td>
<td>2702, 2710</td>
</tr>
<tr>
<td>Workmanship</td>
<td>2717</td>
</tr>
<tr>
<td>STIFFENERS</td>
<td>2704 (d)</td>
</tr>
<tr>
<td>STIRREUPS REQUIRED</td>
<td>2617</td>
</tr>
<tr>
<td>Concrete</td>
<td>2617</td>
</tr>
<tr>
<td>Wood</td>
<td>2517 (g)</td>
</tr>
<tr>
<td>STONE (see also ARTIFICIAL STONE)</td>
<td>2414</td>
</tr>
<tr>
<td>Facing of</td>
<td>2410</td>
</tr>
<tr>
<td>Masonry</td>
<td>2402</td>
</tr>
<tr>
<td>Quality and design</td>
<td>2502</td>
</tr>
<tr>
<td>Veneer of</td>
<td>2402</td>
</tr>
<tr>
<td>Walls of (see WALLS)</td>
<td>2502</td>
</tr>
<tr>
<td>STORAGE</td>
<td>1101</td>
</tr>
<tr>
<td>Combustible goods</td>
<td>Chapter 48</td>
</tr>
<tr>
<td>Film</td>
<td>1201</td>
</tr>
<tr>
<td>Incombustible goods</td>
<td>1201</td>
</tr>
<tr>
<td>STORAGE OF FLAMMABLES</td>
<td>1001 and "08" Sections, Chapters 6-15, Incl.</td>
</tr>
<tr>
<td>STORAGE OF MATERIALS IN STREETS</td>
<td>4401</td>
</tr>
<tr>
<td>STOREROOMS—GROUP A, B, and C OCCUPANCIES</td>
<td>3902</td>
</tr>
<tr>
<td>Fire protection of</td>
<td>3902</td>
</tr>
<tr>
<td>Flammable liquids—storage regulated</td>
<td>608, 708, 808</td>
</tr>
<tr>
<td>Location of</td>
<td>3902</td>
</tr>
<tr>
<td>STORES—RETAIL AND WHOLESALE</td>
<td>1101</td>
</tr>
<tr>
<td>STORY—Definition of</td>
<td>401</td>
</tr>
<tr>
<td>STOVES</td>
<td>3702</td>
</tr>
<tr>
<td>Chimneys for</td>
<td>3702</td>
</tr>
<tr>
<td>General requirements</td>
<td>5113 (appendix)</td>
</tr>
<tr>
<td>STREET</td>
<td>504 (a)</td>
</tr>
<tr>
<td>Center line of</td>
<td>504 (a)</td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>Permanent use of</td>
<td>4501</td>
</tr>
<tr>
<td>Temporary use of</td>
<td>4402</td>
</tr>
<tr>
<td>STRENGTH OF MATERIALS (see QUALITY AND DESIGN OF THE MATERIALS OF CONSTRUCTION)</td>
<td></td>
</tr>
<tr>
<td>STRESS</td>
<td>4705</td>
</tr>
<tr>
<td>(see WORKING STRESSES—ALLOWABLE)</td>
<td>4705</td>
</tr>
<tr>
<td>STRUCTURAL FRAMEWORK (see TYPES OF CONSTRUCTION)</td>
<td></td>
</tr>
<tr>
<td>STUCCO (see PLASTERING)</td>
<td></td>
</tr>
<tr>
<td>STUDS</td>
<td>2521</td>
</tr>
<tr>
<td>Minimum size</td>
<td>2521</td>
</tr>
<tr>
<td>SUSPENDED CEILINGS</td>
<td>4705</td>
</tr>
<tr>
<td>Method of hanging</td>
<td>4705</td>
</tr>
<tr>
<td>Required to support load</td>
<td>4705</td>
</tr>
<tr>
<td>SYMBOLS (in reinforced concrete formulas)</td>
<td>2612</td>
</tr>
<tr>
<td>TANKS</td>
<td>2614 (d)</td>
</tr>
<tr>
<td>For storage of flammable liquids</td>
<td>1008</td>
</tr>
<tr>
<td>For wet standpipe supply</td>
<td>3806</td>
</tr>
<tr>
<td>Horizontal forces, design for</td>
<td>2812 (appendix)</td>
</tr>
<tr>
<td>Roof structures for</td>
<td>3801</td>
</tr>
<tr>
<td>Water</td>
<td>1601</td>
</tr>
<tr>
<td>T-BEAMS IN REINFORCED CONCRETE</td>
<td>2614 (d)</td>
</tr>
<tr>
<td>TEMPORARY BUILDINGS</td>
<td>1601 (d), 4402</td>
</tr>
<tr>
<td>Permitted during construction</td>
<td>1601 (d), 4402</td>
</tr>
<tr>
<td>Permitted in fire zones</td>
<td>1601 (d)</td>
</tr>
<tr>
<td>TEMPORARY PARTITIONS</td>
<td>1806, 1906, 2006</td>
</tr>
<tr>
<td>For Type I, II, and III buildings</td>
<td>299</td>
</tr>
<tr>
<td>Section</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>TENANT'S RESPONSIBILITY .. 2308</td>
<td></td>
</tr>
<tr>
<td>TERMITE PROVISIONS .. 2415 (appendix)</td>
<td></td>
</tr>
</tbody>
</table>

TESTS
- Cast iron .. 2701
- Cast steel .. 2701
- Clay roofing tile .. 3204
- Concrete ... 2805
- Concrete aggregates ... 2604 (b)
- Dry standpipes ... 3804
- Fire-resistive materials .. 4302
- Materials in prefabrication 5002
- May be required .. 2005 (d)
- Metal reinforcement ... 105, 106
- New materials and devices 2807
- Pile—safe bearing ... 2802
- Portland cement .. 1101, 4105
- Prosciennum curtains ... 4101, 4105
- Soil bearing ... 2802
- Sprinkler systems .. 3802
- Stage ventilators ... 105, 106
- Structural steel .. 2701
- Wet standpipes .. 3806
- To classify mortars ... 2403

THEATERS (see ASSEMBLY BUILDINGS)

TIE RODS
- Design of .. 2711

TILE
- Of clay (see CLAY TILE) .. 605, 705, 805, 905, 1005, 1105, 1205, 1305
- Of concrete (see CONCRETE BLOCKS) 3802
- Of gypsum (see GYPSUM) ... 2802

TIMBER (see WOOD)

TOILETS REQUIRED
- For Group A, B, C, E, F, G, and H occupancies 605, 705, 805, 905, 1005, 1105, 1205, 1305

TOWERS (see TYPES OF CONSTRUCTION)
- General requirements .. 9002
- Horizontal forces, design for 2312 (appendix)
- Wind pressure ... 2307

TRANSOMS ... 1304

TRAP DOORS, STAGES ... 3905

TRIM
- For Type I buildings ... 1816 (3)
- For Type II buildings .. 1916 (3)

TRUSSES
- Fire-protection of (see TYPES OF CONSTRUCTION) 4303
- Steel frame ... 2711

TYPES OF CONSTRUCTION
- Area allowable ... 505, 506, 1805, 1806, 2005, 2103, 2203
- Attic space—divided how .. 2207, 3205
- Basement—special construction 2010
- Bays and balconies ... 1814, 1914, 2014, 3601
- Classification of buildings 1701, 1702
- Combustible materials regulated 1818, 1918, 2018, 2118
- Cornices .. 1814, 1914, 2014, 2114, 4601
- Definition of .. 1801, 1901, 2001, 2101, 2201
- Doors and windows ... 1818, 1918, 2018, 2118, 2218, 3401
- Drainage fill on roofs .. 1311
- Enclosure of vertical openings 1807, 1907, 2007, 2107, 2207
- Exterior openings—protection required 1818, 1918, 2018, 2118, 2218
- Fire-protection—floor construction 1810, 1910, 2010, 2110
- Fire-protection—may be omitted, when 1203 (b), 1809 (a) 3, 1909 (a) 3, 2009, 2109, 2209
- Fire-protection—of structural frame 1809, 1909, 2009, 2109, 2209
- Floor construction ... 1810, 1910, 2010, 2110, 2210
- Foundations ... 1804, 1904, 2004, 2104, 2204
- Foundations—ventilating openings 2622
- Height allowable .. 507, 1802, 1902, 2002, 2102, 2202
- Insulating materials—placed how 2016, 2216
Marquees .. 1814, 1914, 2014, 2114, 4505
Mezzanine floors .. 1816, 1916
Parapet wall—required when 1807, 1907, 2007, 2107
Partitions, interior 1806, 1906, 2006, 2106, 2206
Partitions, temporary 1806, 1906, 2006
Penthouses .. 1815, 1915, 2015, 2115, 2215, 3601
Projections from buildings 1814, 1914, 2014, 2114, 2214
Roof construction ... 1809, 1811, 1909, 1911, 2011,
... 2111, 2211, Chapter 32
Roof covering ... 1811, 1911, 2011, 2111,
... 2211, 3244
Roof structures .. 1815, 1915, 2015, 2115, 2215, 3601
Shafts—construction of 1807, 1907, 2007, 2107,
... 2207
Sheathing, exterior 2205
Show windows .. 1816, 1916
Skylights .. 1815, 1915, 2015, 2115, 2215, 3402
Stair construction ... 1812, 1912, 2012, 2112,
... 2212, Chapter 33
Structural framework 1808, 1908, 2008, 2108,
... 2208
Structural members, fire-protection of 1809, 1909, 2009,
... 2109, 2209
Towers and spires ... 1902, 2002, 2102, 2202,
... 3602
Trim ... 1816, 1916
Ventilation under first floor 2523
Vertical openings, enclosure of 1807, 1907, 2007, 2107,
... 2207
Wall coverings (siding, stucco, veneer, etc.) 2205, 4719
... 4711, Chapter 29
Walls—exterior and inner court 1805, 1905, 2005, 2105,
... 2205
Walls—parapet ... 1807, 1907, 2007, 2107
Windows and doors .. 1813, 1913, 2013, 2113,
... 2213, 3401
Wood platforms—permitted when 1814, 1914, 2014, 2114

U. S. C. STANDARDS (see UNIFORM BUILDING CODE
STANDARDS)

UNDERPINNING—Required, when 2521 (1), 2801

UNDERTAKING PARLORS ... 1101

UNDERWRITERS' LABORATORIES, INC.—Inspection Service
Doors and windows ... 4306
Roofings .. 3204

UNIFORM BUILDING CODE STANDARDS 401, 6002

UNIT STRESSES (see WORKING STRESSES)

UNLAWFUL TO OCCUPY—When 203 (b), 306

VACATE—Required, when 203 (b)

VALIDITY—Of this ordinance 6001

VALUATION—Of buildings by Building Official 202 (a)

VALUE—Definition of 401

VENEER
Definition of ... 401
For masonry walls Chapter 29
Over wood frame ... Chapter 29
Walls of (see WALLS)

VENTILATION
As air supply for warm air furnace 5102 (appendix)
Automobile storage .. 1006, 1505
Dry cleaning establishments 1006
Kitchens .. 3709
Motion picture machine booths 4005
Occupancy groups .. "05" Sections of Chapters 8-15 incl.
Over stages .. 3901
Private garages .. 1506
Under first floor of Type V buildings 2522

VENTS
For dry cleaning plants 1008
For gas .. 5106 (appendix)
For motion picture machine booths 4005
For private garages 1505
For public garages 1505
For stages .. 3901
Intake for warm air furnaces 5102 (appendix)

301
VENT SHAFTS (see VERTICAL OPENINGS)

VERTICAL OPENINGS—ENCLOSURE OF
For air ducts ... 3004
For ducts and chutes .. 3002
For elevators ... 3002
For occupancy groups .. 3002
For Type I to V buildings .. 1807, 1907, 2007, 2107, 2207
Other vertical openings ... 3003
When required .. 3001

VIOLATIONS AND PENALTIES—Provided in this Code 205

WALLS
Anchoring of ... 2404 (h)
Bearing .. 2404 (b)
Chases in masonry ... 2404 (e)
Concentrated loads on .. 2620 (k)
Construction required (see GROUPS—OCCUPANCY and TYPES OF CONSTRUCTION)
Curtain (see Non-bearing, below) 401
Definition of .. 2404 (b), (c), 2620 (k), (l)
Eccentricity of ... 2620 (k)
Faced ... 4304
Fire-resistive ... 2805
Foundation ... 2805
Hollow masonry—bearing partitions 2404 (b), 2408
Hollow masonry—fire-resistive classification 4304
Hollow masonry—panel and enclosure (see Non-bearing, below)
Hollow masonry—thickness of exterior 2404 (a)
Hollow masonry—working stresses 2408 (c)
Lintels .. 2404 (l)
Non-bearing .. 2404 (c), 2620 (k)
Non-bearing—reinforcement ... 2404 (e)
Of bays and oriel windows ... 3501
Of elevator shafts ... 3002
Of exit enclosures ... 3308
Of motion picture machine booths 4002
Of roof structures ... 3601
Of smokeproof enclosures .. 3309
Openings in .. 2404 (l)
Panel and enclosure (see Non-bearing, above)
Parapet (see PARAPET WALL) ... 2404 (c)
Partitions (see PARTITIONS) ..
Piers ... 2404 (l)
Reinforced concrete ... 2620 (k)
Reinforcement of non-bearing .. 2404 (c)
Reinforcement of openings .. 2604 (j)
Retaining (see RETAINING WALLS)
Solid masonry—bearing partitions 2404 (b), 2405
Solid masonry—fire-resistive rating 4304
Solid masonry—foundation walls 2805
Solid masonry—general provisions 2405
Solid masonry—thickness of exterior 2404 (a)
Solid masonry—separation of combustible members 4304
Solid masonry—working stresses 2405 (d)
Stone—bond ... 2410
Stone—thickness .. 2404 (a)
Stone—working stresses ... 2410 (c)
Veneered—allowable height of .. 2301
Veneered—attachment of .. Chapter 29
Veneered—on wood ... Chapter 29
Veneered—quality of material .. Chapter 29
Veneered—working stresses ... Chapter 29
Wood stud walls ... 2621

WASHERS ... 2514

WATER
Removal from excavations, when 2609 (c)
Requirements for concrete .. 2604 (c)
Retaining walls—design of .. 2309
Supply for automatic sprinkler system 3802
Supply for wet standpipes .. 3806
Used for mixing mortar .. 2402 (k)
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER CEMENT RATIO</td>
</tr>
<tr>
<td>Consistency required</td>
</tr>
<tr>
<td>Control of proportions</td>
</tr>
<tr>
<td>Requirements for use</td>
</tr>
<tr>
<td>WATER PRESSURE</td>
</tr>
<tr>
<td>In wet standpipes</td>
</tr>
<tr>
<td>Retaining walls—design of</td>
</tr>
<tr>
<td>WEATHERBOARDING</td>
</tr>
<tr>
<td>WELDING</td>
</tr>
<tr>
<td>Connection—stresses allowed</td>
</tr>
<tr>
<td>Electric spot</td>
</tr>
<tr>
<td>Electrode wire for</td>
</tr>
<tr>
<td>For steel joists</td>
</tr>
<tr>
<td>WET STANDPIPES (see STANDPIPES)</td>
</tr>
<tr>
<td>WHOLESALE STORES</td>
</tr>
<tr>
<td>WIDTH</td>
</tr>
<tr>
<td>Aisles</td>
</tr>
<tr>
<td>Corridors</td>
</tr>
<tr>
<td>Entrance doors</td>
</tr>
<tr>
<td>Exit courts</td>
</tr>
<tr>
<td>Stair landings</td>
</tr>
<tr>
<td>Stairs</td>
</tr>
<tr>
<td>Stair treads</td>
</tr>
<tr>
<td>Street allowed for storage</td>
</tr>
<tr>
<td>WIND</td>
</tr>
<tr>
<td>For roof design</td>
</tr>
<tr>
<td>Increased stresses for</td>
</tr>
<tr>
<td>In erection—to be provided for</td>
</tr>
<tr>
<td>Pressure for vertical surfaces</td>
</tr>
<tr>
<td>Steel—increased stresses for</td>
</tr>
<tr>
<td>WINDOWS</td>
</tr>
<tr>
<td>General requirements</td>
</tr>
<tr>
<td>Fire-resistive—design of</td>
</tr>
<tr>
<td>For occupancy groups 603, 605, 703, 705, 803, 805, 903, 905, 1003, 1005, 1103, 1105, 1203, 1205, 1303, 1305, 1403, 1405</td>
</tr>
<tr>
<td>In Fire Zone No. 1</td>
</tr>
<tr>
<td>In Type I to V buildings</td>
</tr>
<tr>
<td>WIND PRESSURE</td>
</tr>
<tr>
<td>Design requirements and stresses</td>
</tr>
<tr>
<td>Steel stresses may be increased for</td>
</tr>
<tr>
<td>WIRE</td>
</tr>
<tr>
<td>For attaching cross-furring</td>
</tr>
<tr>
<td>For proscenium curtain reinforcing</td>
</tr>
<tr>
<td>For stucco reinforcing</td>
</tr>
<tr>
<td>For tying roofing materials</td>
</tr>
<tr>
<td>Hangers for suspended ceilings</td>
</tr>
<tr>
<td>Ties for fire-resistive materials</td>
</tr>
<tr>
<td>WIRE GLASS</td>
</tr>
<tr>
<td>In fire-resistive doors</td>
</tr>
<tr>
<td>In fire-resistive windows</td>
</tr>
<tr>
<td>In skylights, when</td>
</tr>
<tr>
<td>Required by location (see LOCATION ON PROPERTY, FIRE ZONES, DOORS AND WINDOWS)</td>
</tr>
<tr>
<td>WIRE LATH (see METAL OR WIRE LATH)</td>
</tr>
<tr>
<td>WIRE MESH REQUIRED</td>
</tr>
<tr>
<td>For exterior plaster</td>
</tr>
<tr>
<td>For skylights, when</td>
</tr>
<tr>
<td>For stage ventilators, when</td>
</tr>
<tr>
<td>Over gypsum plaster lath, when</td>
</tr>
<tr>
<td>WOOD</td>
</tr>
<tr>
<td>Allowable stresses tabulated—flexure</td>
</tr>
<tr>
<td>Anchors and ties</td>
</tr>
<tr>
<td>Beams and girders</td>
</tr>
<tr>
<td>Beams and joists—may be cut, when</td>
</tr>
<tr>
<td>Bridging</td>
</tr>
<tr>
<td>Built-up members in compression</td>
</tr>
<tr>
<td>Ceiling joists—deflection of</td>
</tr>
<tr>
<td>Column—allowable unit stresses</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Columns—or posts</td>
</tr>
<tr>
<td>Combined stresses</td>
</tr>
<tr>
<td>Compression members—built up</td>
</tr>
<tr>
<td>Compression on inclined surfaces</td>
</tr>
<tr>
<td>Deflection</td>
</tr>
<tr>
<td>Diaphragms</td>
</tr>
<tr>
<td>Firestops—required</td>
</tr>
<tr>
<td>Floors—laminated</td>
</tr>
<tr>
<td>General requirements</td>
</tr>
<tr>
<td>Horizontal members—framing details</td>
</tr>
<tr>
<td>Horizontal shear</td>
</tr>
<tr>
<td>Joints</td>
</tr>
<tr>
<td>Longitudinal shear</td>
</tr>
<tr>
<td>Partitions—framing details</td>
</tr>
<tr>
<td>Piles of</td>
</tr>
<tr>
<td>Plaster lath</td>
</tr>
<tr>
<td>Plywood</td>
</tr>
<tr>
<td>Required sizes—determination of</td>
</tr>
<tr>
<td>Roof framing</td>
</tr>
<tr>
<td>Shear—horizontal</td>
</tr>
<tr>
<td>Sheathing</td>
</tr>
<tr>
<td>Shingles—for exterior walls</td>
</tr>
<tr>
<td>Shingles—for roofs</td>
</tr>
<tr>
<td>Siding</td>
</tr>
<tr>
<td>Stud walls—framing details</td>
</tr>
<tr>
<td>Subfloor</td>
</tr>
<tr>
<td>Termite protection</td>
</tr>
<tr>
<td>Unit stresses—decrease for exposure</td>
</tr>
<tr>
<td>Unit stresses—intermittent load</td>
</tr>
<tr>
<td>Unit stresses—may be increased, when</td>
</tr>
<tr>
<td>Use—conditions defined</td>
</tr>
<tr>
<td>Ventilation—underfloor</td>
</tr>
<tr>
<td>Walls of</td>
</tr>
<tr>
<td>Weatherboarding</td>
</tr>
<tr>
<td>WOOD CONNECTIONS Chapter 25</td>
</tr>
<tr>
<td>WOOD FRAME BUILDINGS (see TYPE V BUILDINGS)</td>
</tr>
<tr>
<td>WOODWORKING FACTORIES</td>
</tr>
<tr>
<td>WORKING STRESSES—ALLOWABLE</td>
</tr>
<tr>
<td>Cast iron</td>
</tr>
<tr>
<td>Cloth—asbestos curtain</td>
</tr>
<tr>
<td>Increase allowed for seismic forces</td>
</tr>
<tr>
<td>Increase allowed for wind</td>
</tr>
<tr>
<td>Increase allowed—steel and iron</td>
</tr>
<tr>
<td>Increase allowed—wood</td>
</tr>
<tr>
<td>Masonry construction</td>
</tr>
<tr>
<td>May be increased</td>
</tr>
<tr>
<td>Piles</td>
</tr>
<tr>
<td>Reinforced concrete</td>
</tr>
<tr>
<td>Soil</td>
</tr>
<tr>
<td>Steel</td>
</tr>
<tr>
<td>Wood</td>
</tr>
<tr>
<td>WORKMANSHIP</td>
</tr>
<tr>
<td>Inspection of</td>
</tr>
<tr>
<td>Structural steel</td>
</tr>
<tr>
<td>WORKSHOPS</td>
</tr>
<tr>
<td>In Groups A, B, and C occupancies</td>
</tr>
<tr>
<td>Moderately hazardous</td>
</tr>
<tr>
<td>Non-hazardous</td>
</tr>
<tr>
<td>YARD</td>
</tr>
<tr>
<td>Definition of</td>
</tr>
</tbody>
</table>

INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS