Concrete Making
Architectural News

Architectural Expression

Many of today’s buildings have new treatments of line and mass to express their purpose. Concrete gives the designer equal freedom in the development of flat surfaces and fitting decorative motifs. Decorative use of concrete has been perfected by the patience and skill of architectural and sculptural craftsmen.

Structural Adaptability

The successful use of concrete—whether for hidden girders or the severest exposure—is controlled by basic principles which, though exacting, are simple. Carefully observed, they permit the design of enduring buildings to meet every requirement, structural as well as architectural. For example: the rigid frame of hollow box-girder type, with 77-ft. span, being used in the new auditorium of a school at Placentia, California.

And Now Beautiful Colors

Recent developments in the manufacture of colored aggregates and in concrete making technique have opened up a new vista of possibilities in the use of concrete for fadeless color effects.

The Portland Cement Association, through its own laboratories and cooperation with the engineering profession, is constantly striving to perfect and broaden the applications of concrete in the building arts. It is a SERVICE organization, supported by the manufacturers of Portland Cement. Its facilities are offered to building officials, architects and structural engineers.

PORTLAND CEMENT ASSOCIATION

DEPT. I 1-16 816 W. FIFTH STREET LOS ANGELES, CALIFORNIA
DEPT. N 1-51 564 MARKET STREET SAN FRANCISCO, CALIFORNIA
For RESIDENTIAL CONSTRUCTION

where high durability is required

FOUNDATION GRADE REDWOOD

Nature made California Redwood durable. A staff of competent inspectors select a particularly durable grade of Redwood for special use in foundations.

Nine rigid tests keep Foundation Grade Redwood uniform in quality, consistently high in durability rating.

Every piece is indelibly marked—easily recognizable. Wherever you see this familiar mark you know that PCBOC standards are being rigidly upheld.

CRA FOUNDATION REDWOOD

CALIFORNIA REDWOOD ASSOCIATION

405 Montgomery Street
San Francisco, Calif.

832 West Fifth St.
Los Angeles, Calif.

155 East 44th St.
New York, N. Y.
COLUMBIA

can fill every steel need

National Pipe and Boiler Tubes
Electrical Wires — Wire Rope
Nails — Wire — Wire Fence — Gates
Structural Shapes — Plates
Reinforcing Bars — Merchant Bars
Stainless Steels — Alloy Steels
Steel Sheets — Sheet Steel Piling

COLUMBIA STEEL COMPANY
San Francisco Los Angeles Portland Seattle Salt Lake City
Mills at San Francisco, Torrance and Pittsburg, Calif.

Also Pacific Coast Distributors for
American Bridge Company
American Steel & Wire Company
Carnegie-Illinois Steel Corporation
National Tube Company
Tennessee Coal, Iron & Railroad Co.

UNITED STATES STEEL
UNIFORM BUILDING CODE

1937 Edition

ADOPTED BY THE
Pacific Coast Building Officials' Conference
at the 6th Annual Meeting
October, 1927

With Revisions and Additions Approved
at the 14th Annual Meeting
October, 1936

PUBLISHED APRIL—1937
Printing of July, 1939

$1.00 PER COPY

COPYRIGHT, 1939

by

Pacific Coast
Building Officials' Conference

124 West Fourth Street,
Los Angeles, California
PRINTED IN THE U. S. A.
Dedication

The Uniform Building Code is dedicated to the development of better building construction and greater safety to the public, through the elimination of needless red tape, favoritism and local politics by uniformity in building laws; to the granting of full justice to all building materials on the fair basis of the true merits of each material; and to the development of a sound economic basis for the future growth of cities through unbiased and equitable dealing with structural design and fire hazards.
OUTLINE OF CONTENTS BY PARTS, CHAPTERS AND SECTIONS

Part I—Administrative.

CHAPTER 1. Title and Scope ... 19

SEC. 101. Title
102. Purpose
103. Scope
104. Application to Existing Buildings
 (a) Major Alterations and Repairs
 (b) Changed Use
 (c) Additions
 (d) Minor Alterations and Repairs
105. Maintenance

CHAPTER 2. General Provisions .. 21

SEC. 201. Application for Permit
202. Building Permits
203. Fees
204. Inspection and Registered Inspectors
 Special Engineering Supervision
205. Certificate of Compliance
206. Certificate of Occupancy
207. Change of Occupancy

CHAPTER 3. Enforcement .. 26

SEC. 301. Powers and Duties of
 Building Inspector
302. Alternate Materials and Types of
 Construction
303. Appeals
304. Board of Examiners and Appeals
305. Violations and Penalties

Part II—Definitions.

CHAPTER 4. Definitions .. 30

SEC. 401. Definitions

Part III—Requirements Based on Occupancy.

CHAPTER 5. Classification of All Buildings by Use or Occupancy and General Requirements for All Occupancies ... 36

SEC. 501. Occupancy Classified
502. Change in Use
503. Mixed Occupancy
504. Location on Property

CHAPTER 6. Requirements for Group A Occupancies 40

SEC. 601. Group A Occupancies Defined
602. Construction, Height and Area Allowable
603. Location on Property
604. Exit Facilities
605. Light and Ventilation
606. Enclosure of Vertical Openings
607. Fire Extinguishing Apparatus
608. Special Hazards
609. Exceptions and Deviations
610. Mixed Occupancies

CHAPTER 7. Requirements for Group B Occupancies.. 46
SEC. 701. Group B Occupancies Defined
702. Construction, Height and Area Allowable
703. Location on Property
704. Exit Facilities
705. Light and Ventilation
706. Enclosure of Vertical Openings
707. Fire Extinguishing Apparatus
708. Special Hazards
709. Exceptions and Deviations
710. Mixed Occupancies

CHAPTER 8. Requirements for Group C Occupancies.. 49
SEC. 801. Group C Occupancies Defined
802. Construction, Height and Area Allowable
803. Location on Property
804. Exit Facilities
805. Light and Ventilation
806. Enclosure of Vertical Openings
807. Fire Extinguishing Apparatus
808. Special Hazards
809. Exceptions and Deviations
810. Mixed Occupancies

CHAPTER 9. Requirements for Group D Occupancies.. 54
SEC. 901. Group D Occupancies Defined
902. Construction, Height, and Area Allowable
903. Location on Property
904. Exit Facilities
905. Light and Ventilation
906. Enclosure of Vertical Openings
907. Fire Extinguishing Apparatus
908. Special Hazards
909. Exceptions and Deviations
910. Mixed Occupancies

CHAPTER 10. Requirements for Group E Occupancies 57
SEC. 1001. Group E Occupancies Defined
1002. Construction, Height and Area Allowable
1003. Location on Property
1004. Exit Facilities
1005. Light, Ventilation and Sanitation
1006. Enclosure of Vertical Openings
1007. Fire Extinguishing Apparatus
1008. Special Hazards
1009. Exceptions and Deviations
1010. Mixed Occupancies

CHAPTER 11. Requirements for Group F Occupancies 60
SEC. 1101. Group F Occupancies Defined
1102. Construction, Height and Area
1103. Location on Property
1104. Exit Facilities
1105. Light, Ventilation and Sanitation
1106. Enclosure of Vertical Openings
1107. Fire Extinguishing Apparatus
1108. Special Hazards
1109. Exceptions and Deviations
1110. Mixed Occupancies

CHAPTER 12. Requirements for Group G Occupancies 62
SEC. 1201. Group G Occupancies Defined
1202. Construction, Height and Area
1203. Location on Property
1204. Exit Facilities
1205. Light, Ventilation and Sanitation
1206. Enclosure of Vertical Openings
1207. Fire Extinguishing Apparatus
1208. Special Hazards
1209. Exceptions and Deviations
1210. Mixed Occupancies

CHAPTER 13. Requirements for Group H Occupancies 64
SEC. 1301. Group H Occupancies Defined
1302. Construction, Height and Area
1303. Location on Property
1304. Exit Facilities
1305. Light, Ventilation and Sanitation
1306. Enclosure of Vertical Openings
1307. Fire Extinguishing Apparatus
1308. Special Hazards
1309. Exceptions and Deviations
1310. Mixed Occupancies

CHAPTER 14. Requirements for Group I Occupancies 67
SEC. 1401. Group I Occupancies Defined
1402. Construction, Height and Area
1403. Location on Property
1404. Exit Facilities
1405. Light, Ventilation and Sanitation
1406. Enclosure of Vertical Openings
1407. Fire Extinguishing Apparatus
1408. Special Hazards
1409. Exceptions and Deviations
1410. Mixed Occupancies

CHAPTER 15. Requirements for Group J Occupancies 68
SEC. 1501. Group J Occupancies Defined
1502. Construction, Height and Area Allowable
1503. Location on Property
1504. Exit Facilities
1505. Light and Ventilation
1506. Enclosure of Vertical Openings
1507. Fire Extinguishing Apparatus
1508. Special Hazards
1509. Exceptions and Deviations
1510. Mixed Occupancies

Part IV—Requirements Based on Location in Fire Zones.

CHAPTER 16. Restrictions in Fire Zones......................... 71
SEC. 1601. Fire Zones Defined
1602. Restrictions in Fire Zone No. 1
1603. Restrictions in Fire Zone No. 2
1604. Restrictions in Fire Zone No. 3

Part V—Requirements Based on Types of Construction.

CHAPTER 17. Classification of All Buildings by Types of Construction.......................... 74
SEC. 1701. General
1702. Classification by Types of Construction

CHAPTER 18. Type I Buildings (Fire-Resistive)........... 75
SEC. 1801. Definition
1802. Height Allowable
1803. Area Allowable
1804. Foundations
1805. Exterior and Inner Court Walls
1806. Partitions
1807. Enclosure of Vertical Openings
1808. Structural Framework
1809. Fire-protection of Structural Members
1810. Floor Construction
1811. Roof Construction
1812. Stairs
1813. Doors and Windows
1814. Projections from the Building
1815. Penthouses and Skylights
1816. Combustible Materials Regulated
CHAPTER 19. Type II Buildings (Heavy Timber Construction) .. 80

SEC. 1901. Definitions
1902. Height Allowable
1903. Area Allowable
1904. Foundations
1905. Exterior and Inner Court Walls
1906. Partitions
1907. Enclosure of Vertical Openings
1908. Structural Framework
1909. Fire-protection of Structural Members
1910. Floor Construction
1911. Roof Construction
1912. Stair Construction
1913. Doors and Windows
1914. Projections from the Building
1915. Penthouses and Skylights
1916. Combustible Materials Regulated

CHAPTER 20. Type III Buildings (Ordinary Masonry) ... 85

SEC. 2001. Definition
2002. Height Allowable
2003. Area Allowable
2004. Foundations
2005. Exterior and Inner Court Walls
2006. Partitions
2007. Enclosure of Vertical Openings
2008. Structural Framework
2009. Fire-protection of Structural Members
2010. Floor Construction
2011. Roof Construction
2012. Stair Construction
2013. Doors and Windows
2014. Projections from the Building
2015. Penthouses and Skylights
2016. Combustible Materials Regulated

CHAPTER 21. Type IV Buildings (Metal Frame) 88

SEC. 2101. Definition
2102. Height Allowable
2103. Area Allowable
2104. Foundations
2105. Exterior Walls
2106. Partitions
2107. Enclosure of Vertical Openings
2108. Structural Framework
2109. Fire-protection of Structural Members
2110. Floor Construction
2111. Roof Construction
2112. Stair Construction
2113. Doors and Windows
2114. Projections from the Building
2115. Penthouses and Skylights
2116. Combustible Materials Regulated
CHAPTER 22. Type V Buildings (Wood Frame) 90

SEC. 2201. Definition
2202. Height Allowable
2203. Area Allowable
2204. Foundations
2205. Exterior Walls and Wall Coverings
2206. Interior Partitions
2207. Enclosure of Vertical Openings
2208. Structural Framework
2209. Fire-Protection of Structural Members
2210. Floor Construction
2211. Roof and Ceiling Construction
2212. Stair Construction
2213. Doors and Windows
2214. Projections from Building
2215. Penthouses and Skylights
2216. Combustible Materials Regulated

Part VI—Engineering Regulations, Quality and Design of the Materials of Construction.

CHAPTER 23. Live and Dead Loads 113

SEC. 2301. Definitions
2302. Loads
2303. Special Load Considerations
2304. Unit Live Loads
2305. Roof and Skylight Loads
2306. Reduction of Live Loads
2307. Wind Pressure
2308. Live Loads and Seating Capacity
2309. Occupancy Permits for Changed Floor Loading
2310. Retaining Walls and Basement Floors
2311. Footing Design
2312. Earthquake Regulations

CHAPTER 24. Masonry (Quality and Design) 117

SEC. 2401. General
2402. Burned Clay or Shale Brick
2403. Sand-Lime Brick
2404. Concrete Brick
2405. Hollow Clay Tile
2406. Hollow Concrete Block or Tile
2407. Plain Concrete
2408. Cast Stone
2409. Gypsum
2410. Mortar
2411. Allowable Working Stresses
2412. Special Requirements

CHAPTER 25. Wood (Quality and Design) 125

SEC. 2501. General
2502. Determination of Required Sizes
2503. Allowable Unit Stresses
2504. Horizontal Shear
2505. Columns
2506. Longitudinal Shear
2507. Compression on Inclined Surfaces
2508. Bolted Joints
2509. Timber Connectors
2510. Cylindrical Pins
2511. Lag Screws
2512. Wood Screws
2513. Nails
2514. Washers
2515. Columns or Posts
2516. Built Up Columns or
 Compression Members
2517. Horizontal Members
2518. Wall Anchors and Ties
2519. Head and Tail Joists
2520. Bridging
2521. Cutting and Notching
2522. Deflections
2523. Laminated Floors
2524. Stud Walls
2525. Nailing and Fastening
2526. Fire Stops
2527. Foundation Ventilation
2528. Wood Diaphragms
2529. Termite Provisions

CHAPTER 26. Reinforced Concrete (Quality and
 Design) ..142

SEC. 2601. Quality
2602. Design
2603. Definitions
2604. Materials
2605. Tests
2606. Quality of Concrete
2607. Proportions and Consistency
2608. Control of Proportions
2609. Mixing and Placing Concrete
2610. Forms and Details of Construction
2611. Assumptions for Design
2612. Symbols and Notations
2613. Working Stresses
2614. Flexural Computations
2615. Shrinkage and Temperature Reinforcement
2616. Two-Way Slabs
2617. Shear and Diagonal Tension
2618. Bond and Anchorage
2619. Flat-Slab Construction
2620. Reinforced Concrete Columns
2621. Footings
2622. Precast Joists
2623. Composite Beams

CHAPTER 27. Steel and Iron (Quality and Design)....183

SEC. 2701. Quality and Design
2702. Allowable Unit Stresses
2703. Eccentric Loads
2704. Beams and Girders
2705. Thickness of Materials
2706. Compression Splices
2707. Gross and Net Sections
2708. Connections
2709. Rivets and Bolts
2710. Welded Connections
2711. Construction Details
2712. Lattice
2713. Pins and Pin Holes
2714. Bearing Plates and Anchorage
2715. Steel Joists
2716. Expansion
2717. Workmanship
2718. Painting
2719. Erection

Part VII—Detailed Regulations.

CHAPTER 28. Excavations, Footings and Foundations

SEC. 2801. Excavations
2802. Footings and Foundations
2803. Piles
2804. Caissons

CHAPTER 29. Walls and Partitions

SEC. 2901. Solid Masonry
2902. Working Stresses
2903. Thickness of Exterior Walls other than Skeleton Construction
2904. Bond
2905. Piers
2906. Chases and Recesses
2908. Working Stresses
2909. Thickness and Height of Walls other than Skeleton Construction
2910. Bond
2911. Beam Supports
2912. Piers
2913. Chases and Recesses
2914. Reinforced Concrete Walls: General Provisions
2915. Minimum Thickness
2916. Anchorage and Reinforcement
2917. Piers
2918. Chases and Recesses
2919. Quality of Material (Stone Walls)
2920. Working Stresses
2921. Lateral Support and Thickness
2922. Bond
2923. Chases and Recesses
2924. Quality of Material (Veneered Walls)
2925. Working Stresses
CHAPTER 30. Enclosure of Vertical Openings

- **SEC. 3001.** Enclosures; When Required
- **SEC. 3002.** Stairway, Ramp and Elevator Enclosures
- **SEC. 3003.** Other Vertical Openings

CHAPTER 31. Floor Construction

- **SEC. 3101.** General
- **SEC. 3102.** Concrete Floors
- **SEC. 3103.** Steel Joisted Floors
- **SEC. 3104.** Mill Constructed Floors
- **SEC. 3105.** Wood Joisted Floors

CHAPTER 32. Roof Construction and Covering

- **SEC. 3201.** General
- **SEC. 3202.** Construction
- **SEC. 3203.** Design
- **SEC. 3204.** Roof Coverings
- **SEC. 3205.** Attics: Access and Area
- **SEC. 3206.** Roof Drainage

CHAPTER 33. Stairs, Ramps and Smokeproof Towers

- **SEC. 3301.** General Requirements
- **SEC. 3302.** General Design
- **SEC. 3303.** Arrangement and Access
- **SEC. 3304.** Doors
- **SEC. 3305.** Railings
- **SEC. 3306.** Lighting
- **SEC. 3307.** Detailed Requirements
- **SEC. 3308.** Stairway Enclosures
- **SEC. 3309.** Stairways Required
- **SEC. 3310.** Ramps
- **SEC. 3311.** Horizontal Exits
- **SEC. 3312.** Signs and Lighting
- **SEC. 3313.** Passageways and Corridors
- **SEC. 3314.** Exceptions
- **SEC. 3315.** Smokeproof Towers
- **SEC. 3316.** Outside Stairways

CHAPTER 42. General ...255
SEC. 4201. Fire-Resistive Construction Defined
4202. Fire-Resistive Materials
4203. Fire-Resistive Construction

CHAPTER 43. Fire-Resistive Standards....................................257
SEC. 4301. Protection of Structural Parts
4302. Fire-Resistive Walls and Partitions
4303. Fire-Resistive Floor Construction
4304. Fire Doors, Shutters and Windows
4305. Roof Coverings

Part IX—Regulations for Use or Occupancy of Streets and Projections Over Public Property.

CHAPTER 44. Temporary Use of Streets During Construction ...272
SEC. 4401. Temporary Use of Streets During Construction

CHAPTER 45. Permanent Occupancy of Public Property ...274
SEC. 4501. Permanent Occupancy of Public Property

Part X—Legislative.

CHAPTER 46. Legislative ...276
SEC. 4601. Validity
4602. Appended Documents
4603. Ordinances Repealed
4604. Date Effective

Part XI—Special Subjects

CHAPTER 47. Plastering ...276
SEC. 4701 to 4721. Plastering Provisions

CHAPTER 48. Film Storage...276
(See Appendix, page 300)

CHAPTER 49. Mechanical Refrigeration ...276
(See Appendix, page 301)

APPENDIX ...277
INDEX ...305

17
An ordinance regulating the erection, construction, enlargement, alteration, repair, moving, removal, demolition, conversion, occupancy, equipment, use, height, area, and maintenance of buildings and/or structures in the City of ..

...; providing for the issuance of permits and collection of fees therefor; declaring and establishing Fire Districts; providing penalties for the violation thereof, and repealing all ordinances and/or parts of ordinances in conflict therewith.

Be it ordained by the ...of the City of .. as follows:
PART I

ADMINISTRATIVE

CHAPTER 1 — TITLE AND SCOPE

Sec. 101. This Ordinance shall be known as the "Building Code," may be cited as such and will be referred to in this Ordinance as "this Code."

Sec. 102. The purpose of this Code is to provide certain minimum standards, provisions and requirements for safe and stable design, methods of construction and uses of materials in buildings and/or structures hereafter erected, constructed, enlarged, altered, repaired, moved, converted to other uses or demolished and to regulate the equipment, maintenance, use and occupancy of all buildings and/or structures.

The provisions of this Code shall be deemed to supplement any and all state laws of the State relating to buildings.

Sec. 103. New buildings and/or structures hereafter erected in the City shall conform to all requirements of this Code; and all requirements in this Code, unless otherwise specifically provided, shall apply to new buildings.

Additions, alterations, repairs and changes of use or occupancy in all buildings shall comply with the requirements for new buildings except as otherwise provided in Section 104 of this Code.

Sec. 104. The following specified requirements shall apply to existing buildings which for any reason whatsoever do not conform to the requirements of this Code for new buildings:

(a) Major Alterations and Repairs. If alterations and/or repairs in excess of 50 per cent of the value of an existing building are made to such building within any period of 12 months, the entire building shall be made to conform with the requirements given herein for new buildings. Any existing building which for any reason whatsoever, requires repairs, at any one time, in excess of 50 per cent of the value thereof, not deducting from such value any loss caused by fire or any other reason, shall be made to conform to the requirements of this Code or shall be demolished, except as specified in Section 1602.

(b) Changed Use. If the existing use or occupancy of an existing building is changed to a use or occupancy which would not be permitted in a similar building hereafter erected, the entire building shall be made to conform with the requirements given herein for new buildings; provided, however, that if the use or occupancy of only a portion or portions of an existing building is changed and such portion or portions are segregated as specified in Section 503 of this Code then only such portion or portions of the building need to be made to comply with said requirements; and provided, further, that the Building Inspector is hereby given authority to approve any change in the use or occupancy of any existing building within any one Group of Occupancy as specified in Part III, even though such building is
not made to fully conform to the requirements of this Code, when it is obvious that such a change in the use or occupancy of the existing building will not extend or increase any existing non-conformity or hazard of the building.

(c) **Additions.** Any existing building not covered by the preceding paragraphs (a) and (b) which has its floor area or its number of stories increased or its use or occupancy changed in any way from its former or existing use or occupancy shall be provided with stairways, emergency exits and fire protection facilities as specified in this Code for buildings hereafter erected for similar uses or occupancies.

(d) **Minor Alterations and Repairs.** Every alteration or repair to any structural part or portion of an existing building shall, when deemed necessary in the opinion of the Building Inspector, be made to conform to the requirements of this Code for new buildings. Minor alterations, repairs and changes not covered by the preceding paragraphs (a), (b) and (c) may be made with the same materials of which the building is constructed; provided, that not more than 25 per cent of the roof covering of any building shall be replaced in any period of 12 months unless the entire roof covering is made to conform to the requirements of this Code for new buildings.

New roofing meeting the requirements of this Code may be placed over existing roofing when the existing roofing and roof framing are such as to permit the new roofing to be properly supported and securely fastened.

Maintenance

Sec. 105. The requirements contained in this Code, covering the maintenance of buildings, shall apply to all buildings and/or structures now existing or hereafter erected. All buildings and/or structures and all parts thereof shall be maintained in a safe condition, and all devices or safeguards which are required by this Code at the erection, alteration or repair of any building shall be maintained in good working order.

This section shall not be construed as permitting the removal or non-maintenance of any existing devices or safeguards unless authorized in writing by the Building Inspector.
CHAPTER 2 — GENERAL PROVISIONS

Sec. 201. No person shall erect or construct or proceed with the erection or construction of any building or structure, nor add to, enlarge, move, improve, alter, repair, convert, extend or demolish any building or structure, or cause the same to be done, without first obtaining a building permit therefor from the Building Inspector.

Any person desiring a building permit as required by this Code shall file with the Building Inspector an application therefor in writing on a blank form to be furnished for that purpose.

Every such application for a permit shall describe the land upon which the proposed building or work is to be done, either by lot, block and/or tract, or similar general description that will readily identify and definitely locate the proposed building or work.

Every such application shall show the use or occupancy of all parts of the building and such other reasonable information as may be required by the Building Inspector.

Copies of plans and specifications and a lot plan showing the location of the proposed building and of every existing building thereon, shall accompany every application for a permit, and shall be filed in duplicate with the Building Inspector; provided, however, that the Building Inspector may authorize the issuance of a permit without plans or specifications for small or unimportant work.

Plans shall be drawn to scale upon substantial paper or cloth and the essential parts shall be drawn to a scale of not less than one-eighth inch (\(\frac{1}{8}\)"") to one foot (1').

Plans and specifications shall be of sufficient clarity to indicate the nature and character of the work proposed and to show that the law will be complied with. Computations, strain sheets, stress diagrams and other data necessary to show the correctness of the plans, shall accompany the plans and specifications when required by the Building Inspector.

Any specifications in which general expressions are used to the effect that "work shall be done in accordance with the Building Code" or "to the satisfaction of the Building Inspector" shall be deemed imperfect and incomplete and every reference to this Code shall be to the section or subsection applicable to the material to be used or to the method of construction proposed.

All plans shall bear the name of the Architect, Structural Engineer or person responsible therefor.

Sec. 202. The application, plans and specifications filed by an applicant for a permit shall be checked by the Building Inspector and if found to be in conformity with the requirements of this Code and all other laws or ordinances applicable thereto, the Building Inspector shall upon receipt of the required permit fee issue a permit therefor.

When the Building Inspector issues the permit, he shall endorse in writing or stamp on both sets of plans and specifications
“APPROVED.” One such approved set of plans and specifications shall be retained by the Building Inspector as a public record, and one set of approved plans and specifications shall be returned to the applicant, which set shall be kept on such building or work at all times during which the work authorized thereby is in progress, and shall be open to inspection by public officials. Such approved plans and specifications shall not be changed, modified or altered without authorization from the Building Inspector, and all work shall be done in accordance with the approved plans.

Sec. 203. Any person desiring a building permit shall, at the time of filing an application therefor, as provided in Sec. 201 of this Code, pay to the Building Inspector a fee as required in this section.

For a total valuation of $50.00 or less no fee.
For a total valuation from $50.00 to $1,001 a $2.00 fee; and an additional fee of $2.00 for each additional $1,000 or fraction thereof of total valuation to and including $15,000; and an additional fee of $1.00 for each additional $1,000 or fraction thereof of total valuation to and including $50,000; and an additional fee of 50¢ for each additional $1,000 or fraction thereof of total valuation exceeding $50,000.

The city, county, state, or the United States of America shall be exempt from the paying of any fee for any building.

Where work for which a permit is required by this Code is started or proceeded with prior to obtaining said permit, the fees above specified shall be doubled, but the payment of such double fee shall not relieve any persons from fully complying with the requirements of this Code in the execution of the work nor from any other penalties prescribed herein.

The Building Inspector shall keep a permanent, accurate account of all fees and other monies collected and received under this Code and give the names of the persons upon whose account the same were paid, the date and amount thereof, together with the location of the building or premises to which they relate.

Sec. 204. The Building Inspector shall inspect or cause to be inspected at various intervals during the erection, construction, enlarging, alteration, repairing, moving, demolition, conversion, occupancy and underpinning all buildings and/or structures referred to in this Code and located in the City, and a final inspection shall be made of every building and/or structure hereafter erected prior to the issuance of the Certificate of Occupancy as specified in Section 206.

No building construction, alteration, repair or demolition requiring a building permit shall be commenced until the permit holder or his agent shall have posted the building permit card in a conspicuous place on the front premises and in such position as to permit the Building Inspector to conveniently make the required entries thereon respecting inspection of the work. This permit card shall be maintained in such position by the permit holder until the Certificate of Occupancy has been issued by the Building Inspector.

The Building Inspector upon notification from the permit
holder or his agent shall make the following inspections of Type V buildings and shall either approve that portion of the construction as completed or shall notify the permit holder or his agent wherein the same fails to comply with the law.

Foundation Inspection: To be made after trenches are excavated and the necessary forms erected and when all materials for the foundation are delivered on the job. Where concrete from a central mixing plant (commonly termed "transit mixed") is to be used, materials need not be on the job.

Frame Inspection: To be made after the roof, all framing, fire-blocking and bracing is in place and all pipes, chimneys and vents are complete.

Stucco Inspection: To be made after all lathing and backing is in place and all plastering and stucco materials are delivered on the job, but before any stucco is applied.

Final Inspection: To be made after building is completed and is ready for occupancy.

No work shall be done on any part of the building and/or structure beyond the point indicated in each successive inspection without first obtaining the written approval of the Building Inspector. Such written approval shall be given only after an inspection shall have been made of each successive step in the construction as indicated by each of the above four inspections.

No reinforcing steel or structural framework of any part of any building or structure shall be covered or concealed in any manner whatsoever without first obtaining the approval of the Building Inspector.

In all buildings where plaster is used for fire protection purposes the permit holder or his agent shall notify the Building Inspector after all lathing and backing is in place and all plastering materials are delivered on the job and no plaster shall be applied until the approval of the Building Inspector has been received.

Any person engaged in the erection or causing the erection of a building and/or structure, except Type V buildings and/or structures, where the estimated cost exceeds $20,000 shall employ a "registered inspector" properly qualified as specified in this section or shall cause his employment by the architect, structural engineer or designer of such structure; provided, that the Building Inspector may authorize the proposed construction without requiring a "registered inspector" when in his estimation such special supervision is not necessary. The Building Inspector may designate any building and/or structure as requiring a "registered inspector" when deemed necessary or where there is a complicated design or where new materials or methods of construction are intended to be used.

The "registered inspector" shall be approved by, registered with, deputized by and assigned to a particular building or structure by the Building Inspector. Such "registered inspector" shall be thoroughly qualified by knowledge and experience in the design and construction of the structure to which he is assigned by the Building Inspector and be shall be thoroughly familiar with the requirements of this Code applying to that
building or structure and with their practical application. The Building Inspector may authorize one such “registered inspector” to supervise the simultaneous construction of a limited number of buildings and/or structures, provided that his service shall extend over all the important details of framing, erection and assembly and that he is able to render full engineering inspection service on each building and/or structure under his supervision and control.

Before commencing his duties the “registered inspector” shall obtain a certificate of registration from the Building Inspector for which he shall pay the sum of $1.00, and he shall deposit with the City a surety bond in the sum of $5000, conditioned upon the faithful and efficient performance of his duties, said bond to be made payable to the City and to be furnished for the term of one year. The “registered inspector” shall remain constantly upon the work during the process of construction and his duties shall terminate only when a Certificate of Compliance is issued by the Building Inspector in approval and acceptance of the work on which he may be engaged as specified in Section 205.

Each such “registered inspector” shall carefully inspect all materials entering into the construction of the structure and be responsible for obtaining full information regarding the strength of materials where new or untried materials are intended for any use involving structural safety. He shall report in writing, upon the special forms furnished by the Building Department, the true details regarding the progress of the work, the condition of same, deviation, defects, delays, general character of materials, working situations, weather conditions and all and any influencing factors that affect in any manner the structural safety and strength of the building. He shall be held directly responsible for the enforcement of this Code wherever same is applicable to the structure upon which he is engaged. He shall notify the Building Inspector of any attempt to cover, conceal, patch or repair any defect in materials or workmanship before such materials have been examined by the Building Inspector or his duly authorized representative. He shall be held directly responsible for the infraction of any ruling of the Building Inspector and shall have the authority to compel the removal of defective materials or to suspend or stop work pending the rulings of the Building Inspector. He shall not be engaged in any other labor on the project upon which he is employed.

Sec. 205. The duties of the “registered inspector” shall terminate only when a Certificate of Compliance has been issued by the Building Inspector. Such Certificate of Compliance shall bear a statement signed by the “registered inspector” stating that the work upon the building or structure to which he has been assigned has been completed in a satisfactory manner and that the regulations of this Code affecting the structural features of such building or structure have been fully complied with. If there have been any infractions of this ordinance they shall be noted in this statement. The Building Inspector shall approve such Certificate of Compliance filed by the “registered inspector” if after inspection the structural features of such building or structure are found to be in accordance with the provisions of this Code. Each Certificate of Compliance shall
bear the legal description of the property upon which such
building or structure is located and an identifying description
of the building. A duplicate of each Certificate of Compliance
shall be kept on file permanently in the office of the Building
Inspector.

Sec. 206. No building shall be occupied in any part thereof
unless or until a Certificate of Occupancy has been issued by the
Building Inspector. The Building Inspector shall, after an appli-
cation therefor has been filed by the owner or his agent, issue a
Certificate of Occupancy for such building, if after inspection it
is found that such building complies with the provisions of this
Code and all other requirements of law or ordinance applicable
thereto. Such Certificate of Occupancy shall show the use to
which the structure may be put and the maximum allowable
floor loads for each floor thereof. A temporary Certificate of
Occupancy may be issued by the Building Inspector for the tem-
porary use of a portion of a building prior to the completion
and occupancy of the entire building.

Sec. 207. The use or occupancy of any building shall not be
changed until a Certificate of Occupancy permitting the new
use or occupancy is issued by the Building Inspector when the
new occupancy is such as to require alterations or repairs of the
building, as specified in this Code. No such Certificate of Occu-
pancy shall be issued unless the building shall comply with the
requirements of this Code as specified in Section 104.
CHAPTER 3 — ENFORCEMENT

Sec. 301. The office of Building Inspector is hereby created and the Building Inspector is hereby authorized and directed to enforce all of the provisions of this Code and for such purpose he shall have the powers of a police officer.

The Building Inspector or his authorized representative may enter any building or premises for the purpose of inspection or to prevent violation of this Code, upon presentation of the proper credentials.

Whenever any building work is being done contrary to the provisions of this Code, or is being done in an unsafe or dangerous manner, the Building Inspector may order the work stopped by notice in writing served on any persons engaged in the doing or causing such work to be done, and any such persons shall forthwith stop such work until authorized by the Building Inspector to recommence and proceed with the work.

Whenever any building or portion thereof is being used or occupied contrary to the provisions of this Code the Building Inspector shall order such use or occupancy discontinued and the building or portion thereof vacated by notice served on any person using or causing such use or occupancy to be continued and such person shall vacate such building or portion thereof within ten days after receipt of such notice, or make the building or portion thereof comply with the requirements of this Code; provided however, that in the event of an emergency the following paragraph shall apply:

Any building or portion thereof, including buildings and/or structures in process of erection, if found to be dangerous to persons or property, or unsafe for the purpose for which it is being used, or in danger from fire due to defects in construction, or dangerous for use because of insufficient means of egress in case of fire, or which violates the provisions of this Code due to the removal, decay, deterioration or the falling off of any thing, appliance, device or requirement originally required by this Code, or which has become damaged by the elements or fire to an extent of 50 per cent of its value, may be condemned by the Building Inspector. The Building Inspector may order portions of the structural frame of a building or structure to be exposed for inspection when in his opinion they are in an unsafe condition. In any of the aforesaid cases the Building Inspector shall serve notice in writing on the owner, reputed owner or person in charge of such a building or premises, setting forth what must be done to make such building safe. The person receiving such notice shall commence within 48 hours thereafter to make the changes, repairs or alterations set out in such notice and diligently proceed with such work or demolish the building. No such building shall be occupied or used for any purpose after the Building Inspector serves written notice of its unsafe or dangerous condition until the instructions of the Building Inspector have been complied with.

If, at the expiration of the time as set forth in the first notice, the instructions, as stated, have not been complied with, a second notice shall be served personally upon the owner, his agent, or the person in possession, charge or control of such building or structure or part thereof, stating therein such pre-
cautionary measures as may be necessary or advisable to place such building or structure or part thereof in a safe condition. Should the necessary changes not be made within 30 days after the service of such second notice the City Council may order the owner or agent of the building prosecuted as a violator of the provisions of this Code and/or may order the Building Inspector to proceed with the work specified in such notice. A statement of the cost of such work shall be transmitted to the City Council, who shall cause the same to be paid and levied as a lien against the property. Proper service of either of such notices shall be personal service upon the owner of record, if he shall be found within the city limits. If he is not found within the city limits such service may be had upon any person accustomed to collect rents on the property in question who may be in the city and in the absence of such a person, upon the tenant of the premises. In the event such premises are vacant, and the owner is not found in the city, such service will be completed when the notice is sent by registered mail to the last known address of the said owner. Whenever the owner, agent or tenant is a corporation, service may be made upon the president, vice-president, secretary or treasurer, or in the absence of any of these, the local representatives of such corporation.

Sec. 302. The provisions of this Code are not intended to prevent the use of types of construction or materials offered as an alternate for the types of construction or materials required by this Code, but such alternate types of construction or materials to be given consideration shall be offered for approval as specified in this chapter. Corresponding materials or types of construction referred to in this Code, the use of which is the same as is intended for the new material or construction, and approved, shall be considered as standards of quality and strength if no specification is provided.

Any person desiring to use types of construction or materials not specifically mentioned in this Code shall file with the Building Inspector authentic proof in support of claims that may be made regarding the sufficiency of such types of construction and materials and request approval and permission for their use.

The Building Inspector may approve such alternate types of construction or materials and/or may recommend an amendment to this Code in order to make permissible the use of same. If the evidence and proof are not sufficient, in the opinion of the Building Inspector, to justify approval or recommendation for an amendment, the applicant may refer the entire matter to the Board of Examiners and Appeals as specified in Section 303.

Sec. 303. Any person whose application for a building permit for the use of an alternate material or type of construction has been refused by the Building Inspector or who may consider that the provisions of this Code do not cover the point raised or that any particular provision would cause a manifest injury to be done may appeal to the Board of Examiners and Appeals by serving written notice on the Building Inspector in which it shall be stated that the applicant desiring to use the alternate materials or types of construction shall guarantee payment of all expenses for necessary tests made or ordered by the Board of Examiners and Appeals. Such notice shall be at once trans-
mitted to the Board, which Board shall arrange for a hearing on the particular point raised.

Such written notice shall be accompanied with the sum of $10.00 payable to the City. If the appeal is denied such fee shall be retained by the City, otherwise the fee shall be returned to the appellant.

Sec. 304. In order to determine the suitability of alternate materials and construction and to provide for reasonable interpretations of the provisions of this Code, there shall be and is hereby created a Board of Examiners and Appeals, consisting of five members, who are qualified by experience and training to pass upon matters pertaining to building construction. One member shall be a practicing architect, one a competent builder, one a lawyer and two structural engineers, each of whom shall have had at least 10 years' experience as an architect, builder, lawyer or structural engineer. The Building Inspector shall be an ex-officio member and shall act as Secretary to the Board. The Board of Examiners and Appeals shall be appointed by the Mayor and shall hold office at his pleasure. The Board shall adopt reasonable rules and regulations for conducting its investigations and shall render all decisions and findings in writing to the Building Inspector with a duplicate copy to the appellant and may recommend to the City Council such new legislation as is consistent therewith.

The Board of Examiners and Appeals may interpret the provisions of this Code to cover a special case, if it appears that the provisions of this Code do not definitely cover the point raised or that a manifest injustice might be done, provided that every such decision shall be by unanimous vote of the Board of Examiners and Appeals. Decisions as to the use of alternate materials and/or types of construction shall be by majority vote and if not permitted by this Code shall become effective only when authorized by an amendment to this Code.

Sec. 305. It shall be unlawful for any person, firm or corporation to erect, construct, enlarge, alter, repair, move, remove, demolish, convert, equip, use or occupy or maintain any building and/or structure or any portion of any building and/or structure in the city, contrary to or in violation of any provision of this Code or to cause, permit or suffer the same to be done.

Any person, firm or corporation violating any of the provisions of this Code shall be deemed guilty of a misdemeanor and each such person shall be deemed guilty of a separate offense for each and every day or portion thereof during which any violation of any of the provisions of this Code is committed, continued or permitted, and upon the conviction of any such violation such person shall be punishable by a fine of not more than $500, or by imprisonment in the city jail for not more than six months, or by both such fine and imprisonment.

The issuance or granting of a permit or approval of plans and/or specifications shall not be deemed or construed to be a permit for, or an approval of, any violation of any of the provisions of this Code. No permit presuming to give authority to violate or cancel the provisions of this Code shall be valid, except insofar as the work or use which it authorizes is lawful.
The issuance of a permit upon plans and specifications shall not prevent the Building Inspector from thereafter requiring the correction of errors in said plans and specifications or from preventing building operations being carried on thereunder when in violation of this Code or of any other ordinance of the City.

Every permit issued by the Building Inspector under the provisions of this Code shall expire by limitation and become null and void, if the building or work authorized by such permit is not commenced within 60 days from the date of such permit, or if the building or work authorized by such permit is suspended or abandoned at any time after the work is commenced for a period of 60 days. Before such work can be recommenced a new permit shall be first obtained so to do, and the fee therefor shall be one-half the amount required for a new permit.

Expiration of Permit
PART II
DEFINITIONS

CHAPTER 4—DEFINITIONS

Sec. 401. For the purpose of this Code, certain terms, phrases and words and their derivatives shall be construed as set out in this Section. Words used in the singular include the plural and the plural the singular. Words used in the masculine gender include the feminine, and the feminine the masculine. Wherever a section, chapter or part is referred to in this Code by number it shall be understood to refer to a section, chapter or part of this Code.

ALLEY. Any public space, public park or thoroughfare less than sixteen feet (16') but not less than ten feet (10') in width which has been dedicated or deeded to the public for public use.

ALTERATION. Alter or alteration means any change, addition or modification in construction or occupancy.

APARTMENT is a room or suite of rooms which is occupied or which is intended or designed to be occupied by one family for living and sleeping purposes.

APARTMENT HOUSE is any building, or portion thereof, which is designed, built, rented, leased, let or hired out to be occupied, or which is occupied as the home or residence of three or more families living independently of each other and doing their own cooking in the said building, and shall include flats and apartments.

APPROVED as to materials and types of construction, refers to approval by the Building Inspector as the result of investigation and tests conducted by him, or by reason of accepted principles or tests by national authorities, technical or scientific organizations.

AREA (see “Floor Area”).

ATTIC STORY is any story situated wholly or partly in the roof, so designated, arranged or built as to be used for business, storage or habitation.

BALCONY is that portion of the seating space of an assembly room, the lowest part of which is raised four feet (4') or more above the level of the main floor.

BASEMENT is that portion of a building between floor and ceiling, which is partly below and partly above grade (as defined in this Section), but so located that the vertical distance from grade to the floor below is less than the vertical distance from grade to ceiling. (See “Story”).
BAY WINDOW is a rectangular, curved or polygonal window, supported on a foundation extending beyond the main wall of the building.

BUILDING is any structure built for the support, shelter, or enclosure of persons, animals, chattels, or property of any kind.

BUILDING INSPECTOR—the Chief Building Inspector or any regularly authorized deputy.

CAST STONE shall mean a building stone manufactured from cement concrete, precast and used as a trim, veneer and/or facing on or in buildings and structures.

CELLAR is that portion of a building between floor and ceiling which is wholly or partly below grade (as defined in this Section) and so located that the vertical distance from grade to the floor below is equal to or greater than the vertical distance from grade to ceiling. (See "Story").

COURT is an open, unoccupied space, bounded on two or more sides by the walls of the building. An inner court is a court entirely within the exterior walls of a building. All other courts are outer courts.

DEAD LOAD in a building includes the weight of the walls, permanent partitions, framing, floors, roofs and all other permanent, stationary construction forming a part of the building.

DWELLING is any building or any portion thereof, which is not an "Apartment House" or a "Hotel" as defined in this Code, which contains one or more "Apartments" or "Guest Rooms", used, intended or designed to be built, used, rented, leased, let or hired out to be occupied, or which is occupied for living purposes.

EXISTING BUILDING is a building already erected or one for which a legal permit has been issued prior to the adoption of this Code.

FAMILY is one person living alone or a group of two or more persons living together, whether related to each other or not.

FLOOR AREA is the area included within surrounding walls of a building (or portion thereof), exclusive of vent shafts and courts.

FOOTING or FOUNDATION is the spreading course at the base or bottom of a foundation wall, column or pier.

FRONT OF LOT means the front boundary line of lot bordering on the street, and in the case of a corner lot may be either frontage.
Definitions (Con’t.)

GALLERY is that portion of the seating space of an assembly room having a seating capacity of more than 10 and located above a balcony.

GARAGE is a building or portion thereof in which a motor vehicle containing gasoline, distillate or other volatile, flammable liquid in its tank, is stored, repaired, or kept.

GARAGE, PRIVATE, is a building, or a portion of a building, in which only motor vehicles used by the tenants of the building or buildings on the premises are stored or kept, and with space for not more than 10 automobiles. (See Section 1509.)

GARAGE, PUBLIC, is any garage other than a private garage.

GRADE (Ground Level). 1. For buildings adjoining one street only, the elevation of the sidewalk at the center of that wall adjoining the street.
2. For buildings adjoining more than one street, the average of the elevations of the sidewalk at centers of all walls adjoining streets.
3. For buildings having no wall adjoining the street, the average level of the ground (finished surface) adjacent to the exterior walls of the building. All walls approximately parallel to and not more than five feet (5') from a street line are to be considered as adjoining a street.

GRADE (Lumber) when used in connection with lumber, means the division of sawn lumber into quality classes with respect to its physical and mechanical properties as defined in published lumber manufacturers' standard grading rules.

GUEST means any person hiring and/or occupying a room for living and/or sleeping purposes.

GUEST ROOM means a room in a building occupied, or intended and designed to be occupied, let or hired out to “Guests”.

HEIGHT OF BUILDING is the vertical distance from the “Grade” to the highest point of the coping of a flat roof or to the deck line of a mansard roof or to the average height of the highest gable of a pitch or hip roof.

HOTEL is any building containing six or more rooms intended or designed to be used, or which are used, rented or hired out to be occupied, or which are occupied for sleeping purposes by guests.

LINTEL is the beam or girder placed over an opening in a wall, and which supports the wall construction above.

LIVE LOADS are all imposed, fixed or transient loads other than “Dead Loads”.

MASONRY is that form of construction, composed of stone, brick, concrete, gypsum, hollow clay tile, concrete
block or tile, or other similar building units or materials or a combination of these materials laid up unit by unit and set in mortar. For the purpose of this Code plain monolithic concrete shall be considered as Masonry. (See Section 2407.)

MASONRY, SOLID, means masonry built without hollow spaces.

MEZZANINE or MEZZANINE FLOOR is an intermediate floor placed in any story or room. When the total area of any such “Mezzanine Floor” exceeds 33 1/3 per cent of the total floor area in that room, it shall be considered as constituting an additional “Story”. The clear height above or below a “Mezzanine Floor” construction shall be not less than seven feet (7').

OCCUPANCY is the purpose for which a building is used or intended to be used. Change of occupancy is not intended to include change of tenants or proprietors.

ORIEL WINDOW is a window that projects from the main line of an enclosing wall of a building and is carried on brackets or corbels.

PERSON means a natural person, his heirs, executors, administrators or assigns, and also includes a firm, partnership or corporation, its or their successors or assigns, or the agent of any of the aforesaid.

REPAIR means the reconstruction or renewal of any part of an existing building for the purpose of its maintenance. The word “Repair” or “Repairs” shall not apply to any change of construction.

SEATING CAPACITY. The seating capacity of a theater, auditorium, or any room or place of public assemblage in which seats are not fixed, shall be determined on the basis of seven square feet (7 sq. ft.) of floor, balcony and/or gallery area per person, and in the case of fixed seats such as pews or benches the seating capacity shall be based on one person to each eighteen inches (18") of pew or bench length.

Exceptions:
1. The capacity of dance floors or the playing areas of gymnasiums when such areas or floors are not to be used for general assembly purposes shall be determined on the basis of fifteen square feet (15 sq. ft.) of floor area per person.
2. The capacity of school class rooms, individual rooms in public libraries and museums, when two thousand square feet (2000 sq. ft.) or less in floor area, shall be determined on the basis of twenty square feet (20 sq. ft.) of floor area per person.

SHAFT means a vertical opening through a building for elevators, dumb waiter, light, ventilation or similar purposes.

SHALL as used in this Code, is mandatory.

STAGE is a raised platform in an assembly room which is cut off from the audience section by a proscenium wall and where the wing space is over three feet (3') beyond the prosc-
Definitions (Con't.)

cenium opening on one or both sides and/or where there is more than three feet (3') of open space above the proscenium opening.

STORY means that portion of a building included between the upper surface of any floor and the upper surface of the floor next above, except that the topmost story shall be that portion of a building included between the upper surface of the topmost floor and the ceiling or roof above. If the finished floor level directly above a basement or cellar is more than six feet (6') above grade such basement or cellar shall be considered a story.

STREET is any thoroughfare or public park not less than sixteen feet (16') in width which has been dedicated or deeded to the public for public use.

STRUCTURE is that which is built or constructed, an edifice or building of any kind, or any piece of work artificially built up or composed of parts joined together in some definite manner.

THEATER is a building or part thereof which contains an assembly hall, having a stage which may be equipped with curtains and/or permanent stage scenery or mechanical equipment adaptable to the showing of plays, operas, motion pictures, performances, spectacles and similar forms of entertainment.

VALUE of a building shall be the estimated cost to replace the building in kind.

VENEER is a facing of brick, stone, concrete tile or similar material attached to a wall for the purpose of providing ornamentation, protection or insulation but not counted as adding strength to the wall.

WALLS shall be defined as follows:

Bearing Wall is a wall which supports any load other than its own weight.

Curtain Wall is a non-bearing wall between columns or piers which is not supported by girders or beams.

Enclosure Wall is an exterior, non-bearing wall in skeleton construction, anchored to columns, piers or floors, but not necessarily built between columns or piers.

Faced Wall is a wall in which the masonry facing and backing are so bonded as to exert a common action under load.

Interior Wall is a wall entirely surrounded by the exterior walls of the building.

Non-Bearing Wall is a wall which supports no load other than its own weight.

Panel Wall is a non-bearing wall in skeleton construction built between columns or piers and wholly supported at each story.
Parapet Wall is that part of any wall entirely above the roof line.

Party Wall is a wall used or adapted for joint service between two buildings.

Retaining Wall is any wall used to resist the lateral displacement of any material.

YARD is an open, unoccupied space, other than a court, unobstructed from the ground to the sky, except where specifically provided by this Code, and on the lot on which a building is situated.
PART III

REQUIREMENTS BASED ON OCCUPANCY

CHAPTER 5—CLASSIFICATION OF ALL BUILDINGS BY USE OR OCCUPANCY AND GENERAL REQUIREMENTS FOR ALL OCCUPANCIES

Sec. 501. Every building, whether existing or hereafter erected, shall be classified by the Building Inspector according to its use or the character of its occupancy, as a building of Group A, B, C, D, E, F, G, H, I or J, as defined in Chapters 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 respectively. (See Tables No. I and II of this Chapter.)

When a building is used for more than one occupancy purpose it shall be classified in the occupancy group representing the greatest occupancy hazard. Group A Occupancy shall be considered the most hazardous and Group J the least hazardous. When portions of a building are separated from the remainder of a building by one or more unpierced continuous walls extending from the foundation of the building to and through the roof and affording four-hour fire-resistive protection (see Sec. 4302), such portions shall be considered as separate buildings.

Any occupancy not mentioned specifically or about which there is any question shall be classified by the Building Inspector and included in the Group which its use most nearly resembles based on the existing or proposed life and fire hazard.

Sec. 502. No change shall be made in the character of occupancy or use of any building which would place the building in a different Group of occupancy, unless such building is made to comply with the requirements of this Code for that Group.

Exceptions: The character of the occupancy of existing buildings may, subject to the approval of the Building Inspector, be changed and the building may be occupied for purposes in other Groups without conforming to all the requirements of this Code for those Groups, provided the new or proposed use is less hazardous, based on life and fire risk, than the existing use.

No change in the character of occupancy of a building shall be made without a Certificate of Occupancy, as required in Section 207 of this Code.

Buildings in existence at the time of the passage of this Code, may have their existing use or occupancy continued, if such use or occupancy was legal at the time of the passage of this Code, provided such continued use is not dangerous to life.

Sec. 503. (a) General. When a building is used for more than one occupancy purpose each part of the building comprising a distinct “Occupancy Division,” as specified in Chapters 5 to
shall be separated from any other occupancy division as required in Tables No. I and II of this Chapter.

(b) **Forms of Occupancy Separations.** Occupancy separations shall be vertical or horizontal or both or, when necessary, of such other form as may be required to afford a complete separation between the various occupancy divisions in the building.

(c) **Types of Occupancy Separation.** Occupancy separations shall be classed as “Absolute”, “Special” and “Ordinary”.

1. An “Absolute Occupancy Separation” shall have no openings therein and shall be of not less than four-hour fire-resistive construction as specified in Chapters 42 and 43.

2. A “Special Occupancy Separation” shall be of not less than three-hour fire-resistive construction as specified in Chapters 42 and 43. All openings in walls forming such separation shall be protected on each side thereof by self-closing one-hour fire-resistive doors as specified in Section 4304 (a) and such doors shall be kept normally closed. The total width of all openings in any “Special Occupancy Separation” wall in any one-story shall not exceed 25 per cent of the length of the wall in that story and no single opening shall have an area greater than one hundred and twenty square feet (120 sq. ft.).

All openings in floors forming a “Special Occupancy Separation” shall be protected by vertical enclosures, extending above and below such openings. The walls of such vertical enclosures shall be of not less than two-hour fire-resistive construction as specified in Chapters 42 and 43 and all openings therein shall be protected on one side thereof by self-closing one-hour fire-resistive doors as specified in Section 4304 (a) and such doors shall be kept normally closed.

3. An “Ordinary Occupancy Separation” shall be of not less than one-hour fire-resistive construction specified in Chapters 42 and 43. All openings in such separations shall be protected with self-closing metal-clad doors, as specified in Section 4304 (a) and such doors shall be kept normally closed.

(d) **Fire Ratings for Occupancy Separations.** Occupancy separations shall be provided between the various groups and divisions of occupancies as specified in Tables No. I and II of this Chapter, except that in no case need the separation be more fire-resistive than the exterior walls of the building in which the separation occurs, unless such walls are less than one-hour fire-resistive construction. Where any occupancy separation is required the minimum shall be an “Ordinary Occupancy Separation”.

Sec. 504. The location of all buildings and the protection of certain openings shall conform to the requirements of the occupancy group in which such building is classified in this Code according to the use or character of the occupancy; provided, that exterior walls which form an angle of 75 degrees or more with the adjacent property line may have openings therein which are protected by not less than one-hour fire-resistive construction as specified in Section 4304.

The specific requirements given in Sections 603, 703, 803, 903, 1003, 1103, 1203, 1303, 1403, and 1503, regulating the con-
TABLE No. I—OCCUPANCY CLASSIFICATIONS

<table>
<thead>
<tr>
<th>Chapter Reference</th>
<th>Group</th>
<th>DIVISION*</th>
<th>Permanent Stage</th>
<th>Seating Capacity in Any One Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>A</td>
<td>1—All theaters, etc..</td>
<td>Yes</td>
<td>1000 or more</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Assembly halls..</td>
<td>No</td>
<td>3500 or more</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>1—Same as Group “A”, Division 1.....................................</td>
<td>Yes</td>
<td>300-1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Same as Group “A”, Division 2.....................................</td>
<td>No</td>
<td>750-3500</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>1—Same as Group “A”, Division 1.....................................</td>
<td>Yes</td>
<td>Less than 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Same as Group “A”, Division 2.....................................</td>
<td>No</td>
<td>50-750</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3—Same as Group “A”, Division 2.....................................</td>
<td>No</td>
<td>Less than 50</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1—Jails, prisons, reformatories, asylums, similar buildings........</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Hospitals, sanitariums, orphanages, nurseries and similar buildings (accommodating more than 6 patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>1—Public garages, paint or petroleum products storage, dry cleaning..................</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Printing mills, box factories, woodworking and mattress factories.................</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3—Storage of hay and highly flammable or explosive materials.........................</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>1—Wholesale and retail stores, office buildings, restaurants, undertaking parlors, printing plants, municipal police and fire stations.................</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Factories and workshops using materials not highly flammable or explosive........</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3—Storage and sales rooms for combustible goods.................................</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>G</td>
<td>1—Ice plants, power plants, pumping plants, cold storage, creameries................</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Factories and workshops using incendiary or non-explosive materials..............</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3—Storage and sales rooms of incendiary or non-explosive goods...................</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>1—Hotels, apartment houses, dormitories, lodging houses..........................</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Convents, monasteries, old peoples’ homes (accommodating 10 or more)............</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I</td>
<td>1—Dwellings..</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>J</td>
<td>1—Private garages...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2—Accessory buildings and structures such as sheds, fences over 8 feet high, water tanks, towers..</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3—Stadiums, reviewing stands, amusement park structures...........................</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Refer to Chapters 6 to 15, inclusive, for more complete listing of occupancies and definitions.

The construction of exterior walls and the protection of openings therein with respect to adjacent property lines, shall apply to buildings erected on the same property, but with reference to an imaginary property line located between such buildings and parallel to the face of either building.
TABLE No. II—GROUPS AND DIVISIONS OF OCCUPANCY

Legend:
A—Absolute Separation. S—Special Separation.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIVISION</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

Note:

†Provided that any two garages, two paint or petroleum storage spaces, two dry cleaning plants, may occur in the same building without any separation being required.

‡Provided that an "Ordinary Separation" shall be permitted between public garages and dwellings.

†‡Provided that in Type I buildings, no separation shall be required.

§Provided that three-fourths inch (\(3/4\)) of metal lath and plaster on the garage side and a self-closing, tight-fitting one and three-eighths inch (\(1\frac{3}{8}\)) solid slab wood door shall be permitted where the private garage space will accommodate not more than four automobiles.
CHAPTER 6—REQUIREMENTS FOR GROUP A OCCUPANCIES

Sec. 601. Group A Occupancies shall include:

Division 1: Theaters, motion picture theaters, auditoriums, schools, churches, lodges, clubs, museums, dance halls, armories, libraries, gymnasiums, passenger stations, administration buildings of city, county or state and similar buildings having a permanent stage and seating capacity of 1000 or more in any one room.

Division 2: The same as Division 1 except, not having a permanent stage and having a seating capacity of 3500 or more in any one room.

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Sec. 602. (a) General. Buildings or parts of buildings classed in Group A because of use or occupancy shall be of Type I Construction and shall not be limited as to location in fire zones, seating capacity, height or floor area.

Platforms which are used in lieu of stages shall be included in the floor area of the assembly room, when determining the seating capacity as defined in Section 401.

(b) Special Construction. Stages as defined in Section 401 shall be of Type I Construction, except as specified in Section 3905.

The slope of the main floor of the auditorium shall not exceed one in five. Ramps steeper than one in eight shall have non-slip floor surfaces.

Sec. 603. All buildings housing Group A occupancies shall front directly upon at least one public street not less than twenty feet (20') in width in which front shall be located the main entrance and exit of such building. The main floor of every Group A occupancy shall be located at or near the ground floor level.

All exterior walls or parts of walls, except on street fronts, of Group A occupancies which are less than five feet (5') from adjacent property lines shall have no openings therein. All openings in exterior walls, except on street fronts, which are less than ten feet (10') from adjacent property lines shall be protected by doors or windows of one-hour fire-resistant construction as specified in Section 4304. See Section 504 for regulating adjacent buildings on the same property.

Sec. 604. (a) Main Entrance and Exits. In every Group A occupancy there shall be not less than one exit on each of three sides of the auditorium. Each of these exits shall be not less than five feet (5') in width and shall open directly upon a street or into an open exit court which shall be directly connected to a street as specified in paragraph (b) of this Section.

One such exit on a street front which shall serve as the main entrance shall be proportioned on the basis of two feet (2') of width for each 100 persons or major fraction thereof to and
including 1000 persons, with an additional one foot (1') per 100 persons for each additional 100 persons or major fraction thereof and including 2000 persons and an additional six inches (6") for each additional 100 persons or major fraction thereof, all based upon the total seating capacity of the building served by such entrance and/or exit.

At the main entrance of each Group A occupancy there shall be a foyer having an area of one square foot (1 sq. ft.) to each seat in such building having access to such foyer. The required width of the foyer at any point shall be the combined width of the aisles, passageways and/or stairways tributary thereto at that point but need not exceed the required width of the entrance. The foyer shall be at the same level as the back of the auditorium and all changes in elevation between the foyer and the public street adjacent thereto shall be by ramps with a slope of not more than one in 10.

The foyer if not abutting directly upon a public street shall communicate therewith by a straight and unobstructed corridor or passageway equal in width to that required for the main entrance which shall be used only as an exit or entrance; provided, however, that not to exceed 10 per cent of such required width may be used for the placing of a ticket booth.

(b) Exit Courts. Along each side of, and long enough to accommodate all side exits of the auditorium not fronting directly upon a street, (not including that side bounded by the stage) shall be an open court, or a passageway of Type I construction, not less than five feet (5') in width when the total seating capacity is 1000 or less, and such width shall be increased by one foot (1') for each additional 500 persons or major fraction thereof. These are required widths and shall not be reduced in any manner.

The courts shall extend full width to a street or shall be connected to the street by a passageway of the same required width, with a height of not less than seven feet (7') and such passageway shall not exceed a length of fifty feet (50'). The court or passageway shall meet the street level and all changes in elevation shall be by ramps with a slope of not more than one in eight.

All doors opening into such open courts or passageways of Type I construction shall be arranged so as not to decrease the clear width of the court when open.

(c) Main Floor Auditorium Exits. There shall be provided at the rear of the auditorium leading into the foyer, exits which shall not be less in width than the full width of the aisle or aisles leading thereto. Additional exits, located on each side of and not less than one-half the length of the auditorium from the foyer, shall be provided on the main floor of each Group A occupancy. These exits shall be proportioned on the basis of not less than twenty-two inches (22") of combined width to each 150 seats or major fraction thereof on the main floor of the auditorium, and this exit width shall be equally divided to each side of the auditorium. All such exits shall open directly upon a
street or upon an exit court or upon corridors connected to an exit court. Each such corridor shall have a clear width not less than the required width of the largest door opening into the corridor, plus one-half the sum of the widths of all other doors opening into the corridor. There shall be no openings in such corridors other than the exit openings, and the exit doors shall be hung so as not to decrease the required width. Egress from the main floor of the auditorium to the street shall be by means of ramps having a slope of not more than one in eight, except as specified in part (a) of this Section.

Where fixed seats are not provided the exits shall be proportioned on the seating capacity as defined in Section 401 and shall be evenly distributed and so arranged that the distance between adjacent exits shall not exceed one hundred feet (100') measured along the wall.

(d) Balcony and Gallery Exits. For balconies or galleries having a seating capacity of over 50, exits shall be provided from each side of each balcony or gallery, leading directly to a street or exit court. These exits shall have a combined width of not less than twenty-two inches (22") for every 75 seats or major fraction thereof in such balcony or gallery and such exits shall be equally divided on each side. No exit shall be less than three feet six inches (3'-6") in width. All exits shall be served by stairs or ramps completely enclosed and constructed as specified in Chapter 33. Balconies or galleries having a seating capacity of 50 or less shall be provided with not less than two means of egress at least one of which shall lead directly to a street or court. These exits shall be not less than three feet six inches (3'-6") in width. All such exits shall be located as far apart as is practicable and all combined exits shall continue the full combined width to the street. No stair exit shall be continued to or communicate with a basement.

Exits leading to the foyer shall have a combined width of not less than twenty-two inches (22") for each 150 seats or major fraction thereof in such balcony or gallery. No such exit shall be less than three feet six inches (3'-6") in width.

Where fixed seats are not provided the exits shall be proportioned on the seating capacity as defined in Section 401.

Hand rails shall be provided for stairs as specified in Section 3305.

Stairs emptying into exit courts shall meet the court floor at not less than the stair width from the near side of any main floor exit opening into such exit court.

(e) Stage Exits. For size and location of stage exits see Section 3907.

(f) Aisles. Aisles on the main floor shall be located so that there are not more than six seats between any seat and an aisle. Every aisle shall be not less than three feet (3') wide if having seats on only one side and not less than three feet six inches (3'-6") wide if having seats on both sides. Such minimum width shall be measured at the end farthest from the foyer and shall be increased by one and one-half inches (1 1/2") for each five feet (5') in length toward the foyer. There shall be no
steps or obstructions of any kind in any aisles, and aisles may have a slope of not more than one in five. Ramps steeper than one in eight shall have non-slip floor surfaces.

Aisles in balconies or galleries shall be located so that there are not more than six seats between any seat and an aisle.

Aisles in balconies and galleries shall have the same minimum width as for aisles on the first floor and shall have the same ratio of increase in width with the exception that the increase shall be in the direction of exit travel. There shall be provided in all balconies or galleries having more than 20 rows of seats a cross aisle not less than four feet (4') wide from the back of one chair to the edge of the seat when down in the next row. Such cross aisle shall lead directly to an entrance or to an emergency exit.

Risers shall be not more than seven and one-half inches (7½") and shall be the full width of the aisle and no tread shall be less than ten inches (10"). When the slope of the aisle is not more than one in five it shall be ramped. All aisles shall lead directly to exits.

The floor between rows of seats shall be on the same level as the aisles where they intersect.

(g) Seats. Seats shall be spaced not less than thirty-three inches (33") back to back.

All seats in occupancies of Division 1 of Group A on the main floor and in balconies and galleries shall be fastened securely to the floor and shall be not less than eighteen inches (18") in minimum width.

(h) Boxes. Boxes may be served by stairs not less than three feet (3') in width with a rise and tread as required for main stair exits. Boxes accommodating more than 25 persons shall be considered as balconies. Seats in boxes need not be fastened to the floor.

(i) Doors and Gates. All exit and entrance doors or gates shall swing in the direction of exit travel and if provided with latches such latches shall be of self-releasing type, such as panic bolts or similar devices, which will permit the door to open when pressed against. All doors shall be installed so as not to decrease the required width of any opening, passageway or corridor in any manner whatsoever. No single door shall be more than three feet six inches (3'-6") in width and every exit door on the exterior of such building shall be not less than one-hour fire-resistive construction as specified in Section 4304 except at the main entrance and exit. Doors opening from within the building into a stair or ramp enclosure may be metal-clad doors as specified in Section 4304.

(j) Exit Lights. All exits shall be marked with illuminated signs bearing the word “EXIT” in letters at least five inches (5") high. Each sign shall be provided with two separate electric light globes on separate circuits, one such circuit being separate from any other circuit in the building. All exit signs shall be illuminated at all times when the building is occupied.

(k) Smokeproof Tower. Where there is more than one
balcony or gallery all balconies or galleries above the first shall be served by not less than one smokeproof tower located on each side of such balcony or gallery and constructed as specified in Chapter 33.

(1) General. No persons or obstructions of any kind, either permanent or movable shall be placed in any aisle, exit, foyer, passageway or corridor and all dimensions given shall refer to the clear width. This shall be construed as prohibiting radiators, chairs, stools, stands, slot machines, easels and similar objects from being placed in any aisle, exit, foyer, passageway or corridor. No furniture or fixtures of any kind shall be placed in the foyer in such a manner as to diminish its required width.

No bars shall be placed upon any window or any other opening in any Group A occupancy except on the windows of a private office.

All doors shall have a clear height of not less than six feet eight inches (6’-8”).

Sec. 605. All portions of Group A occupancies customarily used by human beings and all dressing rooms shall be provided with light and ventilation by means of windows and/or skylights with an area not less than one-eighth of the total floor area, or shall be provided with artificial light and a mechanically operated ventilating system. The mechanically operated ventilating system shall supply at least thirty cubic feet (30 cu. ft.) of pure air per minute per seat in all portions of the building and such system shall be kept continuously in operation during such time as the building is occupied. If the velocity of the air at the register exceeds ten feet (10’) per second the register shall be placed more than eight feet (8’) above the floor directly beneath.

Lights in all parts of the building customarily used by human beings shall be on a separate circuit from that of the stage and shall be controlled from the box office. All lights in corridors, exit courts and exit passageways shall be protected by a wire cage.

All registers or vents supplying air backstage shall be equipped with automatic closing devices with fusible links.

Sec. 606. Main stair or ramp exits from the first or lower balcony or gallery need not be enclosed but all other stair exits shall be enclosed as specified in Chapter 30. There shall be no openings into stair or ramp enclosures except necessary entrance and exit doors. All emergency stair or ramp enclosures shall lead directly to a public street or alley or exit court.

All elevator shafts, vent shafts and other vertical openings shall be enclosed as specified under Types of Construction.

Sec. 607. Group A occupancies shall be equipped with automatic sprinklers as provided in Chapter 38.

Wet and dry standpipes shall be provided as specified in Chapter 38.

Stages shall be equipped with automatic ventilators as provided in Section 3901.
Sec. 608. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

Motion picture machine booths shall conform to the requirements of Chapter 40.

No flammable liquids shall be placed or stored in a Group A occupancy.

Every gas service to the stage portion of the building shall be separated from any other service to the building and each gas service shall be provided with an approved shut-off valve at a convenient and conspicuous place outside the building and adequately marked.

Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building with a "Special Occupancy Separation" as specified in Sec. 503.

Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building with not less than an "Ordinary Occupancy Separation" as specified in Section 503.

Sec. 609. Gymnasiums and similar occupancies may have running tracks constructed of wood or unprotected steel or iron.

Note: Existing buildings not complying with the requirements of this chapter may be classed as Group A occupancies and so used if the requirements of Sections 602, 604, 607, 608 and 609 are fully complied with and not less than a "Special Occupancy Separation" as specified in Section 503 is provided as a separation between the Group A occupancy and all other adjacent occupancies.

Sec. 610. Separation of Group A occupancies from all other occupancies shall be provided as specified in Section 503.
CHAPTER 7—REQUIREMENTS FOR GROUP B OCCUPANCIES

Sec. 701. Group B occupancies shall include:
Division 1: Theaters, motion picture theaters, auditoriums, schools, churches, lodges, clubs, museums, dance halls, armories, libraries, gymnasiums, passenger stations, administration buildings of city, county or state and similar buildings having a permanent stage and a seating capacity of 300 or more but less than 1000 in any one room.

Division 2: The same as Division 1, except, not having a permanent stage and having a seating capacity of 750 or more but less than 3500 in any one room.

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Sec. 702. (a) General. Buildings classed in Group B, because of the use or character of the occupancy shall be one of the "Types of Construction" and shall conform to the other specific requirements given in Table No. I of this Chapter.

(b) Special Construction. Stages as defined in Section 401 and platforms shall be constructed as provided in Chapter 39. Platforms which are used in lieu of stages shall be included in the floor area of the assembly room when determining the seating capacity, as defined in Section 401.

Any usable space below bleachers in a gymnasium shall be protected with the fire-resistive equivalent of metal lath and plaster.

Sec. 708. All buildings housing Group B occupancies shall front directly upon at least one public street not less than twenty feet (20') in width, in which front shall be located the main entrance and exit of such building, or such building may be connected to the street by an entrance passageway as specified.

TABLE No. I—TYPES OF CONSTRUCTION, SEATING CAPACITIES AND FLOOR AREAS PERMITTED FOR GROUP B OCCUPANCIES

<table>
<thead>
<tr>
<th>Type of Construction Permissible</th>
<th>Maximum Total Seating Capacity in Any One Room</th>
<th>Floor Area Permissible (Sq. Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>3500</td>
<td>No limit</td>
</tr>
<tr>
<td>Type II</td>
<td>1000*</td>
<td>25,000</td>
</tr>
<tr>
<td>Type III</td>
<td>750*</td>
<td>15,000</td>
</tr>
</tbody>
</table>

* Seating capacity may be increased, except for Division 1 Group B occupancies, not to exceed 50 per cent when no balconies or galleries are constructed as a part of such building and when the auditorium floor is located at or near ground floor level, in which case all exits shall be at street level or shall meet street level by means of ramps.

Note: For attic space partitions and draft stops see Section 3205.
in Section 604 (a). The main floor of each Group B occupancy shall be located at or near the ground floor level, provided that occupancies in Division 2 of Group B having a total seating capacity of not more than 1500, may be located above the ground floor or in the first basement, and stairs may be used as a means of ingress and egress.

All exterior walls or parts of walls, except on street fronts, of Group B occupancies which are less than five feet (5') from adjacent property lines shall have no openings therein. All openings in exterior walls, except on street fronts, which are less than ten feet (10') from adjacent property lines shall be protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304. See Section 504 for regulating adjacent buildings on the same property.

Sec. 704. Requirements in this Section for Group B occupancy shall be the same as for Group A occupancies as specified in Section 604 with the following exceptions:

1. A foyer shall not be required.
2. No balcony or gallery shall be allowed except in buildings of Type I construction.

Exception: This shall not apply to balconies in a school gymnasium, provided that there is no stage in the gymnasium; that the seating capacity of each such balcony does not exceed 300 persons, and that there are not more than two such balconies in any gymnasium.

Sec. 705. All portions of Group B occupancies customarily used by human beings and all dressing rooms shall be provided with light and ventilation, either natural or artificial, as specified in Section 605.

Sec. 706. All vertical openings such as elevator shafts, stairs, ramps and vent shafts shall be enclosed as specified in Chapter 30, provided, however, that stair or ramp exits serving only a Group B occupancy on the second floor of a building need not be enclosed. There shall be no openings into stair or ramp enclosures except necessary entrance and exit doors.

Sec. 707. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 708. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

Motion picture machine booths shall conform to the requirements of Chapter 40.

No flammable liquids shall be placed or stored in a Group B occupancy.

Every gas service to a Group B occupancy shall be provided with an approved outside shut-off valve conspicuously marked.

Exterior openings in a boiler room or room containing central heating equipment, if located below openings in another story or if less than ten feet (10') from other doors or windows of the same building, shall be provided with one-hour fire-resistive protection as specified in Section 4304.

Every boiler room or room containing a heating plant which
burns liquid or solid fuel shall be separated from the rest of the building with a “Special Occupancy Separation” as specified in Section 503. Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building with not less than an “Ordinary Occupancy Separation” as specified in Section 503.

Exceptions and Deviations

Sec. 709. Gymnasiums and similar occupancies may have running tracks constructed of wood or unprotected steel or iron.

All partitions and floors in Group B occupancies and all bearing partitions and floors below a Group B occupancy when such occupancy is placed or is to be placed above the first floor of a building or structure shall be of not less than one-hour fire-resistive construction as specified in Chapter 43.

Mixed Occupancies

Sec. 710. Separation of Group B occupancies from any other occupancies shall be provided as specified in Section 503.
CHAPTER 8—REQUIREMENTS FOR GROUP C OCCUPANCIES

Sec. 801. Group C occupancies shall include:

Division 1: Theaters, motion picture theaters, auditoriums, schools more than one story in height, churches, lodges, clubs, museums, dance halls, armories, libraries, gymnasiums, passenger stations, administration buildings of city, county or state and similar buildings having a permanent stage and having a seating capacity of less than 300, and one-story schools having a seating capacity of not more than 500 in any one room.

Division 2: The same as Division 1, except, not having a permanent stage but having a seating capacity of 50 or more, but less than 750.

Division 3: The same as Division 1, except, not having a permanent stage but having a seating capacity of less than 50.

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Sec. 802. (a) General, Buildings classed as Group C shall be one of the "Types of Construction," and shall not exceed the number of stories shown in Table No. I of this chapter. The floor area of any such buildings shall not exceed that permitted for the corresponding type of construction and number of stories.

Exceptions: (1) When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas shown may be increased 100 per cent.

TABLE No. I—TYPES OF CONSTRUCTION, NUMBER OF STORIES AND FLOOR AREAS PERMITTED FOR GROUP C OCCUPANCIES

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Number of Stories</th>
<th>Maximum Floor Areas (Sq. Ft.)</th>
<th>When Building Fronts on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 street</td>
</tr>
<tr>
<td>Type I</td>
<td></td>
<td>NO RESTRICTIONS</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>6 or 7 stories</td>
<td>12,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>2 to 5 stories</td>
<td>15,000</td>
<td>18,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>20,000</td>
<td>25,000</td>
</tr>
<tr>
<td>Type III</td>
<td>2 to 5 stories</td>
<td>12,000</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>18,000</td>
<td>22,000</td>
</tr>
<tr>
<td>Type IV</td>
<td>1 story*</td>
<td>15,000*</td>
<td>18,000*</td>
</tr>
<tr>
<td></td>
<td>2 stories**</td>
<td>6,000**</td>
<td>7,000**</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>8,500</td>
<td>9,500</td>
</tr>
</tbody>
</table>

* See Section 802, Sub-section (c).
** See Section 802, Sub-section (d).

Note: For attic space partitions and draft stops see Section 3205.
(2) When a building of Type IV or V construction is provided with certain fire-resistive protection, as specified in Sub-Sections (c) and (d) of this Section, the permissible floor areas shown in the table may be increased as indicated.

Division 1 and 2 occupancies shall not be located above the first story, except in buildings protected throughout with not less than one-hour fire-resistive construction.

Stairs and corridors in Group C occupancies shall be of not less than one-hour fire-resistive construction.

A side or rear yard which is forty feet (40') or more in width to the adjacent property line or to another building, and which affords unobstructed access to a street, may be considered a street for the purpose of determining the allowable area of a school building.

(b) Special Provisions. All public and private school buildings more than two stories in height shall be of Type I construction.

Platforms which are used in lieu of stages shall be included in the floor area of the assembly room when determining the seating capacity as defined in Section 401.

Any usable space below bleachers in a gymnasium shall be protected with the fire-resistive equivalent of metal lath and plaster.

Stages as defined in Section 401 and platforms shall be constructed as provided in Chapter 39.

(c) Special Type IV Construction—Increase in Area Allowed. Buildings of Type IV construction one or two stories in height, having areas not exceeding 50 per cent over those shown in the table for one-story buildings may be allowed for Group C occupancy provided the following restrictions are adhered to in addition to those set up in Chapter 21.

Exterior walls and court walls shall be not less than two-hour fire-resistive construction.

The structural framework shall be protected with one-hour fire-protection.

All ducts, pipe sleeves and vents shall be fire-protected between ceiling and floor or roof where they cut through the ceiling space.

The floors shall be of incombustible materials and shall be of not less than one-hour fire-resistive construction or may be of a steel deck type or other incombustible materials protected from below with the equivalent of metal lath and three-quarters inch ($\frac{3}{4}$") of gypsum or portland cement plaster. Wood, linoleum, or other approved wearing surfaces, may be used provided they are laid on the floors with no concealed air space; and provided further, where wood sleepers are used for laying approved wearing surfaces, the space between the floor and the under side of the wearing surfaces shall be filled with incombustible material in such a manner that there shall be no open spaces under the wearing surfaces, which will exceed 100 square feet in area, and such space shall be filled solidly under all partitions so that there can be no communication under the wearing surface between adjoining rooms.
Mezzanine floors shall be as required for other floors in the building.

(d) Special Type V Construction—Increase in Area Allowed. The allowable floor area for one-story Type V buildings may be increased 50 per cent provided one-hour fire-resistive construction is used throughout. The allowable floor area for two-story Type V buildings may be increased 50 per cent, provided the construction up to and including the first floor is of Type I construction and the rest of the building of one-hour fire-resistive construction throughout.

Sec. 803. All Group C occupancies shall front directly upon at least one public street not less than twenty feet (20') in width, in which front shall be located the main entrance and exit of such building, or such building may be connected to such street by an entrance passageway as specified in Section 604(a).

All exterior walls or parts of walls, except on street fronts, of Group C occupancies which are less than three feet (3') from adjacent property lines shall be of masonry or reinforced concrete. Walls which are three feet (3') or more but less than ten feet (10') from adjacent property lines except street fronts, shall be of not less than two-hour fire-resistive construction.

All openings in exterior walls, except on street fronts, which are less than ten feet (10') from adjacent property lines, shall be protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304. When openings are placed closer than three feet (3') to property lines other than street fronts, the sum of the widths of such openings shall constitute not more than 25 per cent of the total length of the walls affected. See Section 504 for regulating adjacent buildings on the same property.

Sec. 804. Requirements in this section for Group C occupancies shall be the same as for Group A occupancies as specified in Section 604 with the following exceptions:

1. A foyer shall not be required.
2. Seats shall not be required to be fixed.
3. Divisions 2 and 3 when located above the first floor may be served by stairs in place of ramps.
4. No balcony or gallery shall be allowed unless the balcony or gallery and all exits therefrom are of incombustible construction.

Exceptions: This shall not apply to balconies in a school gymnasium, provided that there is no stage in the gymnasium, that the seating capacity of each balcony does not exceed 300 persons and that there are not more than two such balconies in any gymnasium.

5. In Division 3 all required exits may be located on one side of the room provided that in no case shall any part of a room be more than thirty-five feet (35') from an exit.

6. Except as required in Section 803, the provisions requiring fire-protected doors given in Section 604 (1) shall not apply.

7. For classroom portions of school buildings, and similar small assembly rooms, the aggregate width of exit stairs in any story shall be on the basis of whole units of twenty-two inches
(22") each. The required number of units shall be determined by dividing the greatest number of people on any one floor above the stairs in question by 100 and no stairs shall be decreased in width toward the building exit. Each floor shall have not less than two exit stairs. Each classroom, the floor of which is more than four feet (4') above the finished grade, shall have an exit door not more than one hundred feet (100') (measured along the line of travel) from the nearest building exit or exit stairway. For other requirements see Chapter 33.

The clear width of hallways in school buildings shall be measured in whole twenty-two inch (22") units and shall have a width of one more than the number of units obtained by dividing the total number of people in all rooms opening into such hallway by 100, provided that such hallway shall have a minimum clear width of four feet six inches (4' 6") and the required clear width shall not be diminished by any furniture, fixtures or locker or room doors when such doors are fully open. There shall be no dead end in exit hallways more than ten feet (10') beyond the stairway or exit. Where an auditorium exits into a hallway that serves as an egress from other rooms of a school, the hallway between the auditorium and the exit to the exterior need only provide for the occupants of either the auditorium or the classrooms, whichever requires the greater width. The minimum width of exit doors at either end of a hallway to a yard or passage shall be eighteen inches (18") less than the required width of the hallway.

Single classrooms and other similar small assembly rooms accommodating 40 or more pupils or persons shall have not less than two exit doors each three feet (3') wide and there shall be not less than two means of exit available from each door.

8. Any room in a school basement used by students shall have at least one exit leading directly to the outside of the building and this exit shall be not less in width than one-half the total required width of all room exits for that room.

9. Exit lights need not be installed over classroom exits.

10. All stairs and ramps serving as entrances or exits for any Group C occupancy shall be not less in width than the width required for the doors serving such stairs and shall be designed and constructed as specified in Chapter 33; provided, that when such Group C occupancy is located on the second floor of a two-story building or when leading to and serving such occupancy only, such stairs or ramps need not be enclosed when stairs lead directly to the outer air or are connected thereto by direct passages with unpierced walls and ceilings.

All emergency stairs and ramps shall lead directly to a public street or alley or to a court or space not less than five feet (5') in clear width connected directly to a street or alley.

Sec. 805. All portions of Group C occupancies customarily used by human beings shall be provided with light and ventilation, either natural or artificial, as specified in Section 605.

Sec. 806. All vertical openings such as elevator shafts, stair wells and vent shafts which permit the passage of fire or smoke through more than one floor shall be enclosed as specified in Chapter 30.
Sec. 807. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 808. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

Motion picture machine booths shall conform to the requirements of Chapter 40.

Where the basement and first floor of a Type V building is required to be of Type I construction the first floor shall be unpierced for human access. No usable underfloor space or basement shall be allowed in a two-story Type V building unless such space or basement is surrounded by four-hour fire-resistive construction.

Exterior openings in a boiler room or room containing central heating equipment, if located below openings in another story or if less than ten feet (10') from other doors or windows of the same building, shall be provided with one-hour fire-resistant protection as specified in Section 4304.

Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building with a "Special Occupancy Separation" as specified in Section 503. Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building with not less than an "Ordinary Occupancy Separation" as specified in Section 503.

No flammable liquids shall be placed, used or stored in any Group C occupancy except in small quantities as necessary in laboratories, and such liquids shall be kept in tight or sealed containers when not in actual use.

Sec. 809. Gymnasiums and similar buildings may have running tracks constructed of wood or unprotected steel or iron.

All walls, partitions and floors of Group C occupancies when more than one story in height and all walls, bearing partitions and floors below a Group C occupancy when such occupancy is placed or is to be placed above the first floor of a building or structure shall be of not less than one-hour fire-resistant construction as specified in Chapter 43.

Roof trusses, roof girders and beams twenty-five feet (25') or more above the nearest floor or balcony need not be fire-protected.

Rooms in school buildings having a seating capacity of more than 300 shall not be located above the first story above grade except in buildings of Type I construction.

No school classroom used for kindergarten, first or second grade pupils shall be located above the first story above grade except in buildings of Type I construction.

An arcade connecting buildings and used exclusively as a passageway, need not be considered as an adjacent building for the provisions of this Chapter, provided the walls of the buildings adjoining the arcade are finished with the same construction as required for the exterior walls of the building and with no communicating openings between the arcade and the building, except a door, and provided the arcade is of not less than one-hour fire-resistive construction or entirely of incombustible materials.

Sec. 810. Separation of Group C occupancies from any other occupancies shall be provided as specified in Section 503.
CHAPTER 8—REQUIREMENTS FOR GROUP C OCCUPANCIES

Sec. 801. Group C occupancies shall include:

Division 1: Theaters, motion picture theaters, auditoriums, schools more than one story in height, churches, lodges, clubs, museums, dance halls, armories, libraries, gymnasiums, passenger stations, administration buildings of city, county or state and similar buildings having a permanent stage and having a seating capacity of less than 300, and one-story schools having a seating capacity of not more than 500 in any one room.

Division 2: The same as Division 1, except, not having a permanent stage but having a seating capacity of 50 or more, but less than 750.

Division 3: The same as Division 1, except, not having a permanent stage but having a seating capacity of less than 50.

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Sec. 802. (a) General, Buildings classed as Group C shall be one of the “Types of Construction,” and shall not exceed the number of stories shown in Table No. I of this chapter. The floor area of any such buildings shall not exceed that permitted for the corresponding type of construction and number of stories.

Exceptions: (1) When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas shown may be increased 100 per cent.

TABLE No. I—TYPES OF CONSTRUCTION, NUMBER OF STORIES AND FLOOR AREAS PERMITTED FOR GROUP C OCCUPANCIES

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Number of Stories</th>
<th>Maximum Floor Areas (Sq. Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>When Building Fronts on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 street</td>
</tr>
<tr>
<td>Type I</td>
<td></td>
<td>NO RESTRICTIONS</td>
</tr>
<tr>
<td>Type II</td>
<td>6 or 7 stories</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>2 to 5 stories</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>20,000</td>
</tr>
<tr>
<td>Type III</td>
<td>2 to 5 stories</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>18,000</td>
</tr>
<tr>
<td>Type IV</td>
<td>1 story*</td>
<td>15,000*</td>
</tr>
<tr>
<td></td>
<td>2 stories**</td>
<td>6,000**</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>8,500</td>
</tr>
</tbody>
</table>

* See Section 802, Sub-section (c).
** See Section 802, Sub-section (d).

Note: For attic space partitions and draft stops see Section 3205.
(2) When a building of Type IV or V construction is provided with certain fire-resistive protection, as specified in Sub-Sections (c) and (d) of this Section, the permissible floor areas shown in the table may be increased as indicated.

Division 1 and 2 occupancies shall not be located above the first story, except in buildings protected throughout with not less than one-hour fire-resistive construction.

Stairs and corridors in Group C occupancies shall be of not less than one-hour fire-resistive construction.

A side or rear yard which is forty feet (40') or more in width to the adjacent property line or to another building, and which affords unobstructed access to a street, may be considered a street for the purpose of determining the allowable area of a school building.

(b) Special Provisions. All public and private school buildings more than two stories in height shall be of Type I construction.

Platforms which are used in lieu of stages shall be included in the floor area of the assembly room when determining the seating capacity as defined in Section 401.

Any usable space below bleachers in a gymnasium shall be protected with the fire-resistive equivalent of metal lath and plaster.

Stages as defined in Section 401 and platforms shall be constructed as provided in Chapter 39.

(c) Special Type IV Construction—Increase in Area Allowed. Buildings of Type IV construction one or two stories in height, having areas not exceeding 50 per cent over those shown in the table for one-story buildings may be allowed for Group C occupancy provided the following restrictions are adhered to in addition to those set up in Chapter 21.

Exterior walls and court walls shall be not less than two-hour fire-resistive construction.

The structural framework shall be protected with one-hour fire-protection.

All ducts, pipe sleeves and vents shall be fire-protected between ceiling and floor or roof where they cut through the ceiling space.

The floors shall be of incombustible materials and shall be of not less than one-hour fire-resistive construction or may be of a steel deck type or other incombustible materials protected from below with the equivalent of metal lath and three-quarters inch (3/4") of gypsum or portland cement plaster. Wood, linoleum, or other approved wearing surfaces, may be used provided they are laid on the floors with no concealed air space; and provided further, where wood sleepers are used for laying approved wearing surfaces, the space between the floor and the under side of the wearing surfaces shall be filled with incombustible material in such a manner that there shall be no open spaces under the wearing surfaces, which will exceed 100 square feet in area, and such space shall be filled solidly under all partitions so that there can be no communication under the wearing surface between adjoining rooms.
Mezzanine floors shall be as required for other floors in the building.

(d) Special Type V Construction—Increase in Area Allowed. The allowable floor area for one-story Type V buildings may be increased 50 per cent provided one-hour fire-resistive construction is used throughout. The allowable floor area for two-story Type V buildings may be increased 50 per cent, provided the construction up to and including the first floor is of Type I construction and the rest of the building of one-hour fire-resistive construction throughout.

Sec. 803. All Group C occupancies shall front directly upon at least one public street not less than twenty feet (20’) in width, in which front shall be located the main entrance and exit of such building, or such building may be connected to such street by an entrance passageway as specified in Section 604(a).

All exterior walls or parts of walls, except on street fronts, of Group C occupancies which are less than three feet (3’) from adjacent property lines shall be of masonry or reinforced concrete. Walls which are three feet (3’) or more but less than ten feet (10’) from adjacent property lines except street fronts, shall be of not less than two-hour fire-resistive construction. All openings in exterior walls, except on street fronts, which are less than ten feet (10’) from adjacent property lines, shall be protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304. When openings are placed closer than three feet (3’) to property lines other than street fronts, the sum of the widths of such openings shall constitute not more than 25 per cent of the total length of the walls affected. See Section 504 for regulating adjacent buildings on the same property.

Sec. 804. Requirements in this section for Group C occupancies shall be the same as for Group A occupancies as specified in Section 604 with the following exceptions:

1. A foyer shall not be required.
2. Seats shall not be required to be fixed.
3. Divisions 2 and 3 when located above the first floor may be served by stairs in place of ramps.
4. No balcony or gallery shall be allowed unless the balcony or gallery and all exits therefrom are of incombustible construction.

Exceptions: This shall not apply to balconies in a school gymnasium, provided that there is no stage in the gymnasium, that the seating capacity of each balcony does not exceed 300 persons and that there are not more than two such balconies in any gymnasium.

5. In Division 3 all required exits may be located on one side of the room provided that in no case shall any part of a room be more than thirty-five feet (35’) from an exit.
6. Except as required in Section 803, the provisions requiring fire-protected doors given in Section 604 (1) shall not apply.
7. For classroom portions of school buildings, and similar small assembly rooms, the aggregate width of exit stairs in any story shall be on the basis of whole units of twenty-two inches
(22") each. The required number of units shall be determined by dividing the greatest number of people on any one floor above the stairs in question by 100 and no stairs shall be decreased in width toward the building exit. Each floor shall have not less than two exit stairs. Each classroom, the floor of which is more than four feet (4") above the finished grade, shall have an exit door not more than one hundred feet (100') (measured along the line of travel) from the nearest building exit or exit stairway. For other requirements see Chapter 33.

The clear width of hallways in school buildings shall be measured in whole twenty-two inch (22") units and shall have a width of one more than the number of units obtained by dividing the total number of people in all rooms opening into such hallway by 100, provided that such hallway shall have a minimum clear width of four feet six inches (4'6") and the required clear width shall not be diminished by any furniture, fixtures or locker or room doors when such doors are fully open. There shall be no dead end in exit hallways more than ten feet (10') beyond the stairway or exit. Where an auditorium exits into a hallway that serves as an egress from other rooms of a school, the hallway between the auditorium and the exit to the exterior need only provide for the occupants of either the auditorium or the classrooms, whichever requires the greater width. The minimum width of exit doors at either end of a hallway to a yard or passage shall be eighteen inches (18") less than the required width of the hallway.

Single classrooms and other similar small assembly rooms accommodating 40 or more pupils or persons shall have not less than two exit doors each three feet (3') wide and there shall be not less than two means of exit available from each door.

8. Any room in a school basement used by students shall have at least one exit leading directly to the outside of the building and this exit shall be not less in width than one-half the total required width of all room exists for that room.

9. Exit lights need not be installed over classroom exits.

10. All stairs and ramps serving as entrances or exits for any Group C occupancy shall be not less in width than the width required for the doors serving such stairs and shall be designed and constructed as specified in Chapter 33; provided, that when such Group C occupancy is located on the second floor of a two-story building or when leading to and serving such occupancy only, such stairs or ramps need not be enclosed when stairs lead directly to the outer air or are connected thereto by direct passages with unpierced walls and ceilings.

All emergency stairs and ramps shall lead directly to a public street or alley or to a court or space not less than five feet (5') in clear width connected directly to a street or alley.

Sec. 805. All portions of Group C occupancies customarily used by human beings shall be provided with light and ventilation, either natural or artificial, as specified in Section 605.

Sec. 806. All vertical openings such as elevator shafts, stair wells and vent shafts which permit the passage of fire or smoke through more than one floor shall be enclosed as specified in Chapter 30.
Sec. 807. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 808. Chimneys and heating apparatus shall conform to the requirements of Chapter 37. Motion picture machine booths shall conform to the requirements of Chapter 40.

Where the basement and first floor of a Type V building is required to be of Type I construction the first floor shall be unpierced for human access. No usable underfloor space or basement shall be allowed in a two-story Type V building unless such space or basement is surrounded by four-hour fire-resistive construction.

Exterior openings in a boiler room or room containing central heating equipment, if located below openings in another story or if less than ten feet (10') from other doors or windows of the same building, shall be provided with one-hour fire-resistive protection as specified in Section 4304.

Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building with a “Special Occupancy Separation” as specified in Section 503. Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building with not less than an “Ordinary Occupancy Separation” as specified in Section 503.

No flammable liquids shall be placed, used or stored in any Group C occupancy except in small quantities as necessary in laboratories, and such liquids shall be kept in tight or sealed containers when not in actual use.

Sec. 809. Gymnasiums and similar buildings may have running tracks constructed of wood or unprotected steel or iron.

All walls, partitions and floors of Group C occupancies when more than one story in height and all walls, bearing partitions and floors below a Group C occupancy when such occupancy is placed or is to be placed above the first floor of a building or structure shall be of not less than one-hour fire-resistive construction as specified in Chapter 43.

Roof trusses, roof girders and beams twenty-five feet (25') or more above the nearest floor or balcony need not be fire-protected.

Rooms in school buildings having a seating capacity of more than 300 shall not be located above the first story above grade except in buildings of Type I construction.

No school classroom used for kindergarten, first or second grade pupils shall be located above the first story above grade except in buildings of Type I construction.

An arcade connecting buildings and used exclusively as a passageway, need not be considered as an adjacent building for the provisions of this Chapter, provided the walls of the buildings adjoining the arcade are finished with the same construction as required for the exterior walls of the building and with no communicating openings between the arcade and the building, except a door, and provided the arcade is of not less than one-hour fire-resistive construction or entirely of incombustible materials.

Sec. 810. Separation of Group C occupancies from any other occupancies shall be provided as specified in Section 503.
CHAPTER 9—REQUIREMENTS FOR
GROUP D OCCUPANCIES

Group D Occupancies Defined

Sec. 901. Group D occupancies shall include:

Division 1: Jails, prisons, reformatories, houses of correction, asylums for the insane or feeble-minded, and similar buildings.

Division 2: Hospitals, sanitariums, orphanages, nurseries and similar buildings (accommodating more than six).

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Construction Height and Area Allowed

Sec. 902. (a) General. Buildings classed as Group D shall be one of the Types of Construction, and shall not exceed the number of stories shown in Table No. I of this chapter. The floor area of any such building shall not exceed that permitted for the corresponding Type of Construction and number of stories.

Exceptions: When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas shown may be increased 100 per cent.

(b) Special Construction. All Division 1 occupancies of Group D shall be of Type I construction throughout; and all Division 2 occupancies more than one story in height shall have all floors and partitions of not less than one-hour fire-resistive construction as specified in Chapter 43.

Location on Property

Sec. 903. All exterior walls or parts of walls, except on street fronts, of Group D occupancies which are less than five feet (5') from adjacent property lines shall have no openings

TABLE No. I—TYPES OF CONSTRUCTION, NUMBER OF STORIES AND FLOOR AREAS PERMITTED FOR GROUP D OCCUPANCIES

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Number of Stories</th>
<th>Maximum Floor Areas (Sq. Ft.) When Building Fronts on</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 street</td>
</tr>
<tr>
<td>Type I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO RESTRICTIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>2 to 5 stories</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>20,000</td>
</tr>
<tr>
<td>Type III</td>
<td>2 to 3 stories</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>15,000</td>
</tr>
<tr>
<td>Type IV</td>
<td>1 story</td>
<td>15,000</td>
</tr>
<tr>
<td>Type V</td>
<td>1 story</td>
<td>5,000</td>
</tr>
</tbody>
</table>

Note: For attic space partitions and draft stops, see Section 3205.

54
therein and shall be of masonry or reinforced concrete. All openings in exterior walls, except on street fronts, which are less than ten feet (10’) from adjacent property lines shall be protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304. See Section 504 for regulating adjacent buildings on the same property.

Sec. 904. Not less than two exits shall be provided from each floor in every Group D occupancy regardless of the height or area of the building, and additional exits shall be provided as specified in Chapter 33.

In hospitals or sanitariums, ramps with a slope of not more than one in six shall be installed instead of stairways or in addition thereto to serve all portions of the building where bed-ridden patients are or may be placed. These ramps shall land at the first or ground floor level at points giving the most direct access practicable to the outer air.

Except in places of detention, exit doors shall not be fastened against exit by any device except self-releasing latches, panic bolts or similar devices which can be opened readily from the inside at all times without the use of keys or any special knowledge or effort.

Smokeproof towers shall be provided as specified in Chapter 33.

Sec. 905. All portions of Group D occupancies customarily used by human beings shall be provided with light and ventilation by means of windows and/or skylights with an area equal to one-eighth of the total floor area, or shall be provided with artificial light and a mechanically operated ventilating system. The mechanically driven ventilating system shall supply at least thirty cubic feet (30 cu. ft.) of pure air per minute for each occupant thereof in all portions of the building and such system shall be kept continuously in operation while the building is occupied.

Sec. 906. All elevator shafts, vent shafts and other vertical openings shall be enclosed as specified under Types of Construction.

Sec. 907. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 908. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

Motion picture machine booths shall conform to the requirements of Chapter 40.

No storage of volatile flammable liquids shall be allowed in Group D occupancies and the handling of such liquid shall not be permitted in any Group D occupancies in quantities of more than one gallon unless such handling complies with the suggested Fire Prevention Ordinance, Edition of 1933,¹ recommended by the National Board of Fire Underwriters.

¹See Specification Documents, for provisions for handling flammable liquids.
Any gas service to a Group D occupancy shall be provided with an approved outside shut-off valve conspicuously marked.

Every boiler room or room containing a heating plant which burns liquid or solid fuel shall be separated from the rest of the building with a "Special Occupancy Separation" as specified in Section 503. Every boiler room or room containing a heating plant which burns gas as fuel shall be separated from the rest of the building by not less than an "Ordinary Occupancy Separation" as specified in Section 503.

Sec. 909. No requirements of this Chapter shall be so construed as to prohibit the construction of cell blocks in jails or prevent the use of any locks or safety devices in buildings where it is necessary to forcibly restrain the inmates.

Sec. 910. Separation of Group D occupancies from any other occupancies shall be provided as specified in Section 503.
CHAPTER 10—REQUIREMENTS FOR GROUP E OCCUPANCIES

Sec. 1001. Group E occupancies shall include:
Division 1: Public garages, paint or petroleum storage, dry cleaning plants, gasoline service stations, paint shops.
Division 2: Planing mills, box factories, woodworking and mattress factories.
Division 3: Storage of hazardous and highly flammable or explosive materials and/or liquids.
See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Note:—Flammable liquids shall be deemed to be those with a flash point below 190 degrees Fahrenheit as determined by the closed cup tester.

Sec. 1002. Buildings classed in Group E shall be one of the “Types of Construction,” and shall not exceed the number of stories shown in Table No. I of this chapter. The floor area of any such buildings shall not exceed that permitted for the corresponding type of construction and number of stories.

Exception: When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas shown may be increased 100 per cent.

Sec. 1003. All exterior walls or parts of walls, except on street fronts, of Group E occupancies which are less than five feet (5’) from adjacent property lines shall have no openings therein and shall be of masonry or reinforced concrete. All openings in exterior walls, except on street fronts which are less than ten feet (10’) from adjacent property lines shall be

<table>
<thead>
<tr>
<th>TABLE No. I—TYPES OF CONSTRUCTION, NUMBER OF STORIES AND FLOOR AREAS PERMITTED FOR GROUP E OCCUPANCIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of Construction</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Type I</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Type II</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Type III</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Type IV</td>
</tr>
<tr>
<td>Type V</td>
</tr>
</tbody>
</table>

Note: For attic space partitions and draft stops see Section 3205.
protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304. See Section 504 for regulating adjacent buildings on the same property.

Sec. 1004. All Group E occupancies shall have not less than two means of egress from each story including basements or cellars unless such basements or cellars are used for heating apparatus only, in which case only one exit shall be required.

All stairs and exits shall comply with the requirements specified in Chapter 33.

Smokeproof towers shall be installed as and when specified in Chapter 33.

Where ramps are used for the transfer of automobiles from one floor to another such ramps shall meet the ground floor level at a point not less than twenty feet (20') from the exit from such building.

Sec. 1005. All portions of Group E occupancies customarily used by human beings shall be provided with light and ventilation by means of windows and/or skylights with an area equal to one-eighth of the total floor area or shall be provided with artificial light and a mechanically operated ventilating system. The mechanically driven ventilating system shall supply at least thirty cubic feet (30 cu. ft.) of pure air per minute for each occupant thereof in all portions of the building and such system shall be kept continuously in operation while the building is occupied.

In all buildings used for the storing or handling of automobiles operated under their own power and in all buildings where flammable liquids are used exhaust ventilation shall be provided sufficient to produce one complete change of air every 15 minutes. Such exhaust ventilation shall be taken from a point at or near the floor level.

All buildings where more than four persons are employed shall be provided with at least one toilet. All buildings and each subdivision thereof where both sexes are employed shall be provided with access to at least two toilets, located either in such building or conveniently in a building adjacent thereto.

Sec. 1006. All elevator shafts, vent shafts and other vertical openings shall be enclosed as specified under “Types of Construction.”

Doors which are part of an automobile ramp enclosure may be kept normally open but shall be equipped with fusible links and so arranged as to be self-closing when released.

Sec. 1007. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 1008. Chimneys and heating apparatus shall conform to the requirements of Chapter 37. In any room in which volatile flammable liquids are used or stored no device generating a glow or flame capable of igniting gasoline vapor shall be installed or used within twenty-four inches (24”) of the floor.

The use, handling, storage and sale of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group E
occupancy unless such use, handling, storage and sale comply with the suggested Fire Prevention Ordinance, Edition of 1933.1 recommended by the National Board of Fire Underwriters.

Dry cleaning plants in which combustible solvents are used or stored shall be of Type I construction and shall not exceed one story in height. All partitions shall be of four-hour fire-resistant construction, except for the necessary openings for the vent ducts, piping and shafting. All openings in exterior walls, except wall vents, shall be protected with one-hour fire-resistant doors or windows. Wall vents having an area of not less than sixteen square inches (16 sq. in.) each, shall be placed in the exterior walls near the floor line, not more than six feet (6') apart horizontally. Each building shall be provided with a power driven fan exhaust system of ventilation which shall be arranged and operated so as to produce a complete change of air in each room every three minutes.

Each machine in dry cleaning establishments which uses a volatile flammable liquid shall have an adequate steam line directly connected to it, so arranged as to have the steam automatically released to the inside of such machine should an explosion occur in the machine.

Laws of the State regulating the construction and maintenance of dry cleaning plants or other buildings containing any occupancy or special hazard covered by this Chapter, shall be deemed to be a part of this Code and such buildings shall conform to the provisions of such state laws.

Sec. 1009. Public garages shall not be of Type V construction, shall not be of Type III construction when more than two stories in height, and shall be not over six hundred square feet (600 sq. ft.) in area or twenty-five feet (25') in height when of Type IV construction.

All public garage floors shall be of incombustible materials and if not placed directly on the ground shall conform to the requirements for floors of Type I construction, or the floors may be of Type II construction properly protected with incombustible materials against saturation by oil and grease.

Gasoline filling stations of Type V construction shall have incombustible exterior wall covering.

Division 3 occupancies of Group E more than five stories in height shall have all floors of not less than three-hour fire-resistant construction as specified in Section 4303.

Sec. 1010. Separation of Group E occupancies from all other occupancies shall be provided as specified in Section 503.

11See Specification Documents, for provisions for handling flammable liquids.
CHAPTER 11—REQUIREMENTS FOR
GROUP F OCCUPANCIES

Group F Occupancies Defined

Sec. 1101. Group F occupancies shall include:
Division 1: Wholesale and retail stores, office buildings, restaurants, undertaking parlors, printing plants, municipal police and fire stations.
Division 2: Factories and workshops using materials not highly flammable or combustible.
Division 3: Storage and sales rooms for combustible goods.

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Construction Height and Area Allowable

Sec. 1102. Buildings classed as Group F shall be one of the “Types of Construction,” and shall not exceed the number of stories shown in Table No. I of this Chapter. The floor area of any such building shall not exceed that permitted for the corresponding type of construction and number of stories.

Exception: When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas shown may be increased 100 per cent.

Location on Property

Sec. 1103. All exterior walls or parts of walls, except on street fronts, of Group F occupancies which are less than four feet from adjacent property lines shall be of masonry or reinforced concrete. All openings in exterior walls, except on street fronts, which are less than eight feet (8') from adjacent property lines shall be protected by doors or windows of one-

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Number of Stories</th>
<th>Maximum Floor Areas (Sq. Ft.) When Building Fronts on</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 story</td>
<td></td>
<td>1 street</td>
</tr>
<tr>
<td>Type I NO RESTRICTIONS</td>
<td>6 or 7 stories</td>
<td>12,000</td>
</tr>
<tr>
<td>2 to 5 stories</td>
<td>15,000</td>
<td>18,000</td>
</tr>
<tr>
<td>1 story</td>
<td>20,000</td>
<td>25,000</td>
</tr>
<tr>
<td>Type II</td>
<td>2 to 5 stories</td>
<td>12,000</td>
</tr>
<tr>
<td>1 story</td>
<td>18,000</td>
<td>22,500</td>
</tr>
<tr>
<td>Type III</td>
<td>1 story</td>
<td>20,000</td>
</tr>
<tr>
<td>Type IV</td>
<td>2 or 3 stories</td>
<td>5,000</td>
</tr>
<tr>
<td>1 story</td>
<td>10,000</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Note: For attic space partitions and draft stops see Section 3205.
hour fire-resistive construction as specified in Section 4304. When openings are placed closer than three feet (3') to property lines other than street fronts, the sum of the widths of such openings shall constitute not more than 25 per cent of the total length of the walls affected. See Section 504 for regulating adjacent buildings on the same property.

Sec. 1104. Stairs and exits shall be provided as specified in Chapter 33.

Smokeproof towers shall be provided as and when specified in Chapter 33.

Sec. 1105. All portions of Group F occupancies customarily used by human beings shall be provided with light and ventilation by means of windows and/or skylights with an area not less than one-eighth of the total floor area or shall be provided with artificial light and a mechanically operated ventilating system. In no case shall less than four changes of air per hour be provided.

Every building or portion thereof where more than four persons are employed shall be provided with at least one toilet. Every building and each subdivision thereof where both sexes are employed shall be provided with access to at least two toilets located either in such building or conveniently in a building adjacent thereto.

Sec. 1106. All elevator shafts, vent shafts and other vertical openings shall be enclosed as specified under “Types of Construction.”

Sec. 1107. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 1108. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

No storage of volatile flammable liquids shall be allowed in Group F occupancies and the handling and use of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group F occupancy unless such use and handling comply with the suggested Fire Prevention Ordinance, Edition of 1933 recommended by the National Board of Fire Underwriters.

In any room in which volatile flammable liquids are used or stored no device generating a glow or flame capable of igniting gasoline vapor shall be installed or used within twenty-four inches (24") of the floor.

Sec. 1109. Roof covering on Type V buildings may be of galvanized iron or sheet metal laid directly on the wood roof framing without solid sheathing.

Division 3 occupancies of Group F more than six stories in height shall have all floors of not less than three-hour fire-resistive construction as specified in Section 4303.

Sec. 1110. Separation of Group F occupancies from all other occupancies shall be provided as specified in Section 503.

\(^{1}\)See Specification Documents, for provisions for handling flammable liquids.
CHAPTER 12—REQUIREMENTS FOR
GROUP G OCCUPANCIES

Group G Occupancies Defined

Sec. 1201. Group G occupancies shall include:
Division 1: Ice plants, power plants, pumping plants, cold storage, creameries.
Division 2: Factories and workshops using incombustible and/or non-explosive materials.
Division 3: Storage and sales rooms of incombustible and/or non-explosive materials.

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Construction Height and Area Allowable

Sec. 1202. Buildings classed as Group G shall be one of the "Types of Construction," and shall not exceed the number of stories shown in Table No. I of this Chapter. The floor area of any such building shall not exceed that permitted for the corresponding type of construction and number of stories.

Exception: When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas may be increased 100 per cent.

Location on Property

Sec. 1203. All exterior walls or parts of walls, including windows and doors, except on street fronts, of Group G occupancies which are less than three feet (3') from adjacent property lines shall be of not less than one-hour fire-resistive construction as specified in Section 4302. When openings are placed closer than three feet (3') to property lines other than street fronts, the sum of the widths of such openings shall constitute

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Number of Stories</th>
<th>Maximum Floor Areas (Sq. Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>When Building Fronts on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 street</td>
</tr>
<tr>
<td>Type I</td>
<td>NO RESTRICTIONS</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>6 or 7 stories</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>2 to 5 stories</td>
<td>20,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>NO RESTRICTIONS</td>
</tr>
<tr>
<td>Type III</td>
<td>2 to 5 stories</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>20,000</td>
</tr>
<tr>
<td>Type IV</td>
<td>1 story</td>
<td>25,000</td>
</tr>
<tr>
<td>Type V</td>
<td>2 or 3 stories</td>
<td>10,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Note: For attic space partitions and draft stops see Section 3205.
not more than 25 per cent of the total length of the wall. See Section 504 for regulating adjacent buildings on the same property.

Sec. 1204. Stairs and exits shall be provided as specified in Chapter 33.

Smokeproof towers shall be provided as and when required in Chapter 33.

Sec. 1205. All portions of Group G occupancies customarily used by human beings shall be provided with light and ventilation.

Every building or portion thereof where more than four persons are employed shall be provided with at least one toilet. Every building and each subdivision thereof where both sexes are employed shall be provided with access to at least two toilets located either in such building or conveniently in a building adjacent thereto.

Sec. 1206. Except as specified in Chapter 33, vertical openings are not required to be enclosed.

Sec. 1207. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 1208. Chimneys and heating apparatus shall conform to the requirements of Chapter 37. In any room in which volatile flammable liquids are used or stored, no device generating a glow or flame capable of igniting gasoline vapor shall be installed or used within twenty-four inches (24") of the floor.

The storage, use and handling of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group G occupancy unless such storage and handling comply with the suggested Fire Prevention Ordinance, Edition of 1933, recommended by the National Board of Fire Underwriters.

Sec. 1209. Roof covering on Type V buildings may be of galvanized iron or sheet metal laid directly on the wood roof framing without solid sheathing. Fire protection of the underside of all roof framing of Group G occupancies may be omitted in all "Types of Construction."

Sec. 1210. Separation of Group G occupancies from all other occupancies shall be provided as specified in Section 503.

*See Specification Documents, for provisions for handling flammable liquids.
CHAPTER 13—REQUIREMENTS FOR GROUP H OCCUPANCIES

Group H Occupancies Defined

Sec. 1301. Group H occupancies shall include:
Division 1: Hotels, apartment houses, dormitories, lodging houses.
Division 2: Convents, monasteries, old people’s homes (accommodating 10 or more persons).

See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Construction, Height and Area Allowable

Sec. 1302. Buildings classed in Group H shall be one of the “Types of Construction,” and shall not exceed the number of stories shown in Table No. I of this chapter. The floor area of any such building shall not exceed that permitted for the corresponding type of construction and number of stories.

Exception: When the entire building is protected by an automatic sprinkler system as provided in Chapter 38, the permissible areas shown may be increased 100 per cent.

Location on Property

Sec. 1303. All exterior walls or parts of walls, except on street fronts, of Group H occupancies which are less than three feet (3’) from adjacent property lines shall be of not less than one-hour fire-resistive construction as specified in Section 4302. All openings in exterior walls, except on street fronts, which are less than five feet (5’) from adjacent property lines shall be protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304. When openings are placed closer than three feet (3’) to property lines other than street

TABLE No. I—TYPES OF CONSTRUCTION, NUMBER OF STORIES AND FLOOR AREAS PERMITTED FOR GROUP H OCCUPANCIES

<table>
<thead>
<tr>
<th>Types of Construction</th>
<th>Number of Stories</th>
<th>Maximum Floor Areas (Sq. Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>When Building Fronts on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 street</td>
</tr>
<tr>
<td>Type I</td>
<td>NO RESTRICTIONS</td>
<td></td>
</tr>
<tr>
<td>Type II</td>
<td>6 or 7 stories</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>2 to 5 stories</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>20,000</td>
</tr>
<tr>
<td>Type III</td>
<td>2 to 5 stories</td>
<td>12,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>18,000</td>
</tr>
<tr>
<td>Type IV</td>
<td>1 story</td>
<td>15,000</td>
</tr>
<tr>
<td>Type V</td>
<td>2 or 3 stories</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td>1 story</td>
<td>8,000</td>
</tr>
</tbody>
</table>

Note: For attic space partitions and draft stops see Section 3205.

64
fronts, the sum of the widths of such openings shall constitute not more than 25 per cent of the total length of the wall. See Section 504 for regulating adjacent buildings on the same property.

Location of Group H occupancies on the property shall meet the requirements of any State laws which are intended to regulate such location.

Sec. 1304. Stairs and exits shall be provided as specified in Chapter 33.

Smokeproof towers shall be provided as and when specified in Chapter 33.

All stairs and exits in Group H occupancies shall open directly upon a street or alley or upon a yard or court not less than four feet (4') in width directly connected to a street or alley by means of a passageway not less in width than the stairway opening into such passageway and not less than seven feet (7') in height.

Sec. 1305. All rooms of Group H occupancies used for eating, living and/or sleeping purposes shall be provided with light and ventilation by means of windows with an area not less than one-eighth of the total floor area of such room or rooms.

Every building shall be provided with at least one toilet. Every building and each subdivision thereof where both sexes are accommodated shall be provided with at least two toilets located in such building and one such toilet shall be conspicuously marked “For Women” and the other conspicuously marked “For Men.” Not less than one toilet shall be provided for each 15 persons or major fraction thereof that such building is designed to accommodate.

Light, ventilation and sanitation shall be provided as specified by any State laws intended to regulate such light, ventilation and sanitation.

Sec. 1306. All elevator shafts, vent shafts, stairways and other vertical openings shall be enclosed as specified under “Types of Construction,” except stairways in buildings two stories in height.

Sec. 1307. Automatic sprinklers, standpipes and basement pipe inlets shall be installed as and when specified in Chapter 38.

Sec. 1308. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

Every boiler room or room containing a central heating plant using solid or liquid fuel shall be separated from the rest of the building by a “Special Occupancy Separation” as specified in Section 503; except, that in buildings of Type V Construction an “Ordinary Occupancy Separation” may be used.

The storage and handling of gasoline, fuel oil and other flammable liquids shall not be permitted in any Group H occupancy unless such storage and handling comply with the suggested
Fire Prevention Ordinance, Edition of 1933, recommended by the National Board of Fire Underwriters.

All doors leading into rooms in which volatile flammable liquids are used or kept shall be of one-hour fire-resistive construction as specified in Section 4304 and shall be kept normally closed.

Sec. 1309. Furnaces may be used without an “Occupancy Separation” in buildings not more than two stories in height.

Sec. 1310. Separations between Group H occupancies and all other occupancies shall be provided as specified in Section 503.

See Specification Documents, for provisions for handling flammable liquids.
CHAPTER 14 — REQUIREMENTS FOR
GROUP I OCCUPANCIES

Sec. 1401. Group I occupancies shall include dwellings.

See Tables Nos. I and II, Section 503, for all occupancy
classifications and separations.

Sec. 1402. Buildings or parts of buildings classed in Group I
because of use or the character of the occupancy shall be of
Types I, II, III, IV or V Construction. The floor areas of Types
I and II shall be unlimited, the floor area of Types III and IV
shall be limited to ten thousand square feet (10,000 sq. ft.),
and the floor area of Type V shall be limited to seventy-five
hundred square feet (7500 sq. ft.).

Sec. 1403. All exterior walls or parts of walls (including
windows and doors), except on street fronts, of Group I occu-
pancies which are less than three feet (3') from adjacent prop-
erty lines shall be of not less than one-hour fire-resistive con-
struction as specified in Section 4302. When openings are
placed closer than three feet (3') to property lines other than
street fronts, the sum of the widths of such openings shall con-
stitute not more than 25 per cent of the total length of the
walls affected. See Section 504 for regulating adjacent build-
ings on the same property.

Sec. 1404. Stairs and exits shall be provided as and when
specified in Chapter 33.

Sec. 1405. All rooms of Group I occupancies used for eating,
living and/or sleeping purposes shall be provided with light and
ventilation by means of windows with an area not less than
one-eighth of the total floor area of such room or rooms.

Light, ventilation and sanitation shall be provided as specified
by any state laws which are intended to regulate such
light, ventilation and sanitation.

Sec. 1406. Stairs in Group I occupancies need not be en-
closed. Dumb-waiter shafts, clothes chutes and other similar
vertical openings shall be protected as specified in Section 3003.

Sec. 1407. Fire extinguishing apparatus when installed shall
conform to the requirements of Chapter 38.

Sec. 1408. Chimneys and heating apparatus shall conform to
the requirements of Chapter 37.

Flammable liquids shall not be stored or used in Group I
occupancies in quantities in excess of one gallon and all such
flammable liquids shall be kept in tight or sealed containers
when not in actual use.

Sec. 1409. Dwellings constructed on the roof of multiple sto-
ried buildings shall be considered as an additional story in so
far as the construction, location, exposure, stairs, exits and fire
extinguishing apparatus is concerned.

Sec. 1410. Separation of Group I occupancies from all other
occupancies shall be provided as specified in Section 503.
CHAPTER 15 — REQUIREMENTS FOR GROUP J OCCUPANCIES

Sec. 1501. Group J occupancies shall include:
Division 1—Private garages.
Division 2—Accessory buildings and structures, such as sheds, fences over six feet (6') high, water tanks, towers.
Division 3—Stadiums, reviewing stands and amusement park structures.
See Tables Nos. I and II, Section 503, for all occupancy classifications and separations.

Sec. 1502. Buildings or parts of buildings classed in Group J because of the use or character of the occupancy shall be of Types I, II, III, IV, or V construction as regulated by the requirements of Chapter 16 hereof. The floor area and height of buildings of Types I and II construction shall not be limited. The floor area of Types III and IV shall be limited to ten thousand square feet (10,000 sq. ft.) and buildings of Type V construction shall not exceed one thousand square feet (1000 sq. ft.) in area and/or two stories in height, except that such restriction of Type V construction shall not apply to stadiums, reviewing stands or amusement park structures of the open skeleton-framed type.

Reviewing stands and amusement park structures shall be designed and constructed in a substantial manner so as to fully withstand all impact loads in addition to the static loads specified in Chapter 23.

Sec. 1503. All exterior walls or parts of walls (including windows and doors), except on street fronts, of Group J occupancies which are less than three feet (3') from adjacent property lines shall be of not less than one-hour fire-resistive construction as specified in Section 4302. See Section 504 for regulating adjacent buildings on the same property.

Sec. 1504. (a) General. Stairs and exits for amusement park devices shall be provided as specified in Chapter 33 except that stairs and ramps in buildings not exceeding two stories in height need not be enclosed.
(b) Special. Stairs, exits, aisles and seating for stadiums and reviewing stands shall be as follows:

1. Stairs. All stairs shall have a rise of not more than seven and one half inches (7\frac{1}{2}"") and a tread of not less than ten inches (10"") not including the nosing.

2. Exits. There shall be provided one exit not less than seven feet (7') wide for each 2000 persons or major fraction thereof which the stadium or reviewing stand is designed to seat. Such exits shall be spaced not more than seventy-five feet (75') apart. Passageways serving such exits shall be not less than seven feet (7') in clear height nor less than seven feet (7') in clear width.

3. Aisles. Aisles not less than three feet six inches (3' 6")
in width shall be provided so that there are not more than 20 seats between any seat and an aisle.

4. Seats. Where seats are not spaced or marked off in any stadium or reviewing stand, a distance of eighteen inches (18") along any bench or platform shall constitute one seat in computing the required aisles, stairs and exits. Seats shall be spaced not less than twenty-six inches (26") back to back and where backs are provided for the seats they shall be spaced thirty inches (30") back to back.

Where the space under the stadium or reviewing stand is used for any purpose, exits passing through this space shall be separated therefrom by walls, floors and ceilings of not less than one-hour fire-resistive construction.

Sec. 1505. Private garages which are constructed in conjunction with any Group H or I occupancies and which have openings into such buildings shall be equipped with fixed louvered or screened openings or exhaust ventilation with exhaust openings located within six inches (6") of the floor. The clear area of the louvered opening or of the openings into the exhaust ducts shall be not less than sixty square inches (60 sq. in.) per car stored in such private garage. Under no circumstances shall a private garage have any opening into a living or sleeping room.

Amusement park structures which have enclosed spaces open to and used by the public shall be provided with light and ventilation, either natural or artificial, sufficient for safe and healthful conditions.

Sec. 1506. Elevator shafts, vent shafts, stair-wells and similar vertical openings shall be enclosed as specified in Chapter 30 when extending through three or more stories.

Sec. 1507. Fire extinguishing apparatus shall be installed as and when specified in Chapter 38.

Where more than three automobiles are stored in any private garage there shall be installed not less than one two-and-one-half gallon chemical extinguisher to each five cars or major fraction thereof.

Sec. 1508. Chimneys and heating apparatus shall conform to the requirements of Chapter 37.

Flammable liquids shall not be stored, handled or used in Group J occupancies unless such storage or handling shall comply with the suggested Fire Prevention Ordinance recommended by the National Board of Fire Underwriters, Edition of 1933.¹

Sec. 1509. When storage space, termed by this Code a private garage, is provided in a building used for the storage of more than 10 automobiles, such storage space shall meet the requirements for public garages.

When storage space termed in this Code a private garage is provided in any building of mixed occupancies, such storage

¹See Specification Documents, for provisions for handling flammable liquids.
Sections 1509-1510

space shall be limited to six hundred and fifty square feet (650 sq. ft.) of floor area unless such storage space is separated from other portions of the building as required for public garages.

Amusement park structures into which the public is admitted, other than those of the open frame type of construction, when more than one story in height or two hundred square feet (200 sq. ft.) in area shall have the exterior walls, bearing partitions and floors of not less than one-hour fire-resistive construction as specified in Chapter 43.

Mixed Occupancies

Sec. 1510. Separation of Group J occupancies from any other occupancies shall be provided as specified in Sections 503 and 1509.
PART IV

REQUIREMENTS BASED ON LOCATION
IN FIRE ZONES

CHAPTER 16—RESTRICTIONS IN FIRE ZONES

Sec. 1601. For the purpose of this Code, the entire city is hereby declared to be and is hereby established a Fire District and said Fire District shall be known and designated as Fire Zones One, Two and Three, and shall include such territory or portions of said City as outlined in an ordinance of said City, entitled: “An Ordinance Creating and Establishing Fire Zones.” Wherever in such ordinance creating and establishing fire zones, reference is made to any fire zone, it shall be construed to mean one of the three fire zones designated and referred to in this Chapter.

Sec. 1602. (a) Type V. No building or structure of Type V Construction shall be erected or constructed in or moved into Fire Zone No. 1.

(b) Type IV. No building or structure of Type IV Construction having an area greater than four hundred square feet (400 sq. ft.) shall be erected or constructed in or moved into Fire Zone No. 1.

(c) Alteration. Any building or structure in Fire Zone No. 1 which is enlarged, altered, raised or built upon to an extent exceeding an expenditure of 20 per cent of the value of such building, shall be made to comply with all the requirements of a building hereafter erected in such Fire Zone.

(d) Buildings Moved In. Any building or structure moved into Fire Zone No. 1 shall comply with all the requirements for new buildings in Fire Zone No. 1.

(e) Buildings Which Do Not Comply. No building of Type IV Construction in excess of four hundred square feet (400 sq. ft.) in area nor any building of Type V Construction already erected in Fire Zone No. 1 shall hereafter be altered, raised, enlarged, added to or moved, except as follows:

1. Such building may be demolished.
2. Such building may be moved outside the limits of Fire Zone No. 1.
3. Changes, alterations and repairs to the interior of such building or to the front facing a public street may be made, provided such changes shall not increase the fire hazard of the building, in the opinion of the Building Inspector.
4. Roofs of such buildings may be covered only with “Fire-Retardant” roofing as specified in Section 4305.

(f) Temporary Buildings. Temporary buildings such as reviewing stands and other miscellaneous structures conforming to the requirements of this Code, and sheds, canopies or fences used for the protection of the public around and in conjunction
with construction work may be erected in Fire Zone No. 1 by special permit from the Building Inspector for a limited period of time and such structures shall be completely removed upon the expiration of the time limit stated in the permit.

(g) Fire Resistive Openings. All doors, windows and other openings in exterior walls of all buildings erected in Fire Zone No. 1 shall be protected by doors or windows of one-hour fire-resistive construction as specified in Section 4304.

Exceptions: The provisions of paragraph (g) shall not apply to doors, windows or other openings which face directly upon and are not within fifty feet (50’) of the opposite side of a public street or other public place, this distance to be measured at right angles to the plane of the wall in which such openings occur.

The provisions of paragraph (g) shall not apply to openings twenty feet (20’) or more from buildings on the same property, and twenty feet (20’) or more from adjacent property lines other than street fronts, as regulated by the first exceptions; nor shall such provisions apply to openings in courts which are at least twenty feet (20’) in their least dimension. For the purpose of this paragraph the adjacent property line may be considered as the opposite side of adjoining alleys, streets or other public places if such exist.

(h) Type III. All buildings of Type III construction erected in Fire Zone No. 1 shall have all partitions and floors of not less than one-hour fire-resistive construction as specified in Chapter 43.

(i) Group E. No Group E occupancies except public garages or gasoline filling stations shall be constructed or erected in Fire Zone No. 1 and no existing buildings shall be used or occupied in any manner whatsoever by Group E occupancies except as public garages or gasoline filling stations.

(j) Buildings Located in More Than One Fire Zone. A building or structure, which is or may be located partly in one fire zone and partly in another, shall be considered to be in the most highly restricted fire zone when more than one-third of its total floor area is located in such zone.

Sec. 1603. (a) Type V. Buildings of Type V construction erected or constructed in Fire Zone No. 2 shall have all exterior walls of not less than one-hour fire-resistive construction as specified in Section 4302; provided, that when such exterior walls are less than three feet (3’) from adjacent property lines or less than six feet (6’) from buildings on the same property the exterior walls shall be of masonry or reinforced concrete and in both cases the roofs of such buildings shall be covered with a “Fire Retardant” roofing as specified in Section 4305.

(b) Type IV. No building of Type IV construction having an area greater than one thousand square feet (1000 sq. ft.) shall be erected or constructed in Fire Zone No. 2.

(c) Percentage of Alteration. Any building in Fire Zone No. 2 which is enlarged, altered, raised or built upon to an extent exceeding an expenditure of 50 per cent of the value of such

72
building shall be made to comply with the requirements of a new building in such fire zone.

(d) **Buildings Moved In.** Any building or structure moved into Fire Zone No. 2 shall comply with all the requirements for new buildings in Fire Zone No. 2.

(e) **Buildings Which Do Not Comply.** No building of Type IV Construction in excess of one thousand square feet (1000 sq. ft.) in area, nor any building of Type V Construction, except as specified in paragraph (a) of this section, already erected in Fire Zone No. 2 shall hereafter be altered, raised, enlarged, added to or moved except as follows:

1. Such building may be demolished.
2. Such building may be moved outside the limits of Fire Zone No. 2.
3. Such building may be made to conform to the provisions of paragraph (a) of this Section.
4. Changes, alterations and repairs to the interior of such building or to the front facing a public street may be made provided such changes do not increase the fire hazard of the building.
5. Roofs of such buildings may be covered only with “Fire-Retardant” roofing as specified in Section 4305.

(f) **Temporary Buildings.** Temporary buildings such as reviewing stands and other miscellaneous structures conforming to the requirements of this Code, and sheds, canopies or fences used for the protection of the public around and in conjunction with construction work may be erected in Fire Zone No. 2 by special permit from the Building Inspector for a limited period of time and such structures shall be completely removed upon the expiration of the time limited stated in the permit.

(g) **Group E.** No Group E occupancies except public garages or gasoline filling stations shall be constructed or erected in Fire Zone No. 2 and no existing buildings shall be used or occupied in any manner whatsoever by Group E occupancies except as public garages or gasoline filling stations.

(h) **Buildings Located in More Than One Fire Zone.** A building which is partly in Fire Zone No. 2 and partly in Fire Zone No. 3 shall conform to all the restrictions of Fire Zone No. 2 if more than one-third of the area of the building is in Fire Zone No. 2.

Sec. 1604. Any building complying with the requirements specified in this Code may be erected or moved into or within Fire Zone No. 3.
PART V

REQUIREMENTS BASED ON TYPES OF CONSTRUCTION

CHAPTER 17—CLASSIFICATION OF ALL BUILDINGS BY TYPES OF CONSTRUCTION

General

Sec. 1701. The requirements of Part V are the minimum requirements for the various Types of Construction. In order that a building may be classed in any specific Type of Construction, it is necessary that all of the requirements for that Type of Construction be complied with.

No building or portion thereof shall be required to conform to the details of a Type of Construction higher than that Type which meets the minimum requirements based on Occupancy (Part III) or Location in Fire Zone (Part IV) even though certain features of such building actually conform to a higher Type of Construction.

The various Types of Construction herein specified represent varying degrees of public safety and resistance to fire. Where specific materials, types of construction or fire-resistive protection are required, such requirements shall be the minimum requirements and any materials, types of construction or fire-resistive protection which will afford equal or greater public safety or resistance to fire, as specified in this Code, may be used.

Any system or method of construction to be used shall admit of a rational analysis in accordance with well established principles of mechanics.

Classification by Types of Construction

Sec. 1702. All buildings shall be divided into the following Types of Construction based upon their resistance to fire, and Type I shall be deemed to be the most fire-resistive and Type V the least fire-resistive Type of Construction.

Type I—FIRE-RESISTIVE Construction.
Type II—HEAVY TIMBER Construction.
Type III—ORDINARY MASONRY Construction.
Type IV—METAL FRAME Construction.
Type V—WOOD FRAME Construction.

When two or more types of construction occur in the same building and are not separated by an unpierced wall of four-hour fire-resistive construction, the entire building shall be classed in the least fire-resistive type of construction and such buildings shall be subject to the restrictions of such type. Any building erected prior to the passage of this Code, which by its construction cannot be classified definitely as Type I, II, III, IV or V as defined herein, shall for the purpose of this Code be deemed to belong to the least fire-resistive class of the two types to which it most nearly conforms. Any building which cannot be classed as Type I, II, III or IV construction shall be considered to be of Type V construction.
CHAPTER 18 — TYPE I BUILDINGS
(Fire-Resistive)

Sec. 1801. In "Type I Buildings," the structural frame shall be of structural steel or iron which shall be fire-protected, or shall be of reinforced concrete. The exterior walls, inner court walls, and walls enclosing vertical openings, shall be of fire-resistive construction. The roof construction and floors shall be of fire-resistive materials. Exterior doors and windows, except as specified in Section 1813 shall be of fire-resistive construction.

Note: Fire-resistive materials and fire-resistive construction have a specific meaning in this Code, as specified in Chapters 42 and 43.

Sec. 1802. The height of Type I buildings shall not be limited.

Sec. 1803. The floor area of Type I buildings shall not be limited.

Sec. 1804. Foundation walls and footings shall be of solid masonry as specified in Chapter 29 or of reinforced concrete as specified in Chapters 26 and 29, and shall be designed as specified in Sections 2306 and 2802.

Sec. 1805. All exterior walls shall be of masonry or reinforced concrete as specified in Chapter 29 and shall be of not less than four-hour fire-resistive construction as specified in Section 4302.

Inner court walls shall be of masonry or reinforced concrete of not less than three-hour fire-resistive construction as specified in Section 4302.

Walls fronting on streets having a width of at least fifty feet (50') in Fire Zone No. 1, or thirty feet (30') in Fire Zones No. 2 and 3, may be of noncombustible construction with all structural members fire-protected as required in Section 1809.

Sec. 1806. Interior partitions shall be constructed of noncombustible materials and shall be of not less than one-hour fire-resistant construction as specified in Section 4302.

Exceptions: Partitions dividing portions of stores, offices or similar places occupied by one tenant only may be constructed of wood panels or similar light construction up to three-fourths the height of the room in which placed; when more than three-fourths the height of the room, such partitions shall have not less than the upper one-fourth of the partition constructed of glass set in sash.

Sec. 1807. Enclosures for elevator shafts, vent shafts, stair wells and other vertical openings, when required because of Occupancy in Part III shall be of two-hour fire-resistive construction and all openings therein shall be protected by fire-resistive doors or windows as specified in Chapters 30 and 43.

A parapet wall or hand rail at least thirty inches (30") in
height above the roof shall be provided around all open shaft enclosures extending through the roof.

Sec. 1808. Structural framework shall be of structural steel or iron as specified in Chapter 27 or shall be of reinforced concrete as specified in Chapter 26.

The structural frame shall be considered as the columns, and all girders, beams, trusses or spandrels having rigid connections to the columns and all other members essential to the stability thereof. The members of floor or roof panels which have no connection to the columns, shall be considered secondary members. The structural frame and secondary members shall be designed and constructed to carry all dead, live and other loads to which they may be subjected both during erection and after completion of the structure. Unless otherwise provided for in the structural frame the floor and roof panel construction shall be designed and constructed to carry the horizontal forces to such parts of the structural frame as are designed to carry the horizontal forces to the foundations.

The entire structural frame and each member which is a part of such frame shall be so designed and constructed that the stresses may be satisfactorily determined by a rational analysis in accordance with well established principles of mechanics and sound engineering practice.

Sec. 1809. (a) Structural Steel or Iron Members. All structural steel or iron members, not including forms or structural members for elevators and elevator enclosures, shall be thoroughly fire-protected with not less than four-hour fire-resistive protection for columns, beams and girders and three-hour fire-resistive protection for floors, for all buildings more than eight stories or eighty-five feet (85') in height; and with three-hour fire-resistive protection for columns, beams and girders and two-hour fire-resistive protection for floors; for all buildings which are eight stories or eighty-five feet (85') or less in height; and all such fire-resistive protection shall be as specified in Chapter 43.

Exceptions: 1. The thickness of the fire-protection on the outer edge of lugs or brackets on columns may be reduced to not less than one inch (1").

2. The masonry over window openings may be supported by a steel plate, angle or similar member which is not fire-protected on the under side, provided the member is supported at proper intervals from a structural beam or girder which is fire-protected on all sides. For openings in masonry bearing walls not exceeding four feet (4') in width, an angle or similar member supported by masonry and not fire-protected on the under side may be used.

3. Where every part of the structural steel framework of the roof of a Group A, B or C occupancy is not less than twenty-five feet (25') above any floor or balcony, fire-protection of all members of the roof construction may be omitted.

4. Where every part of the structural steel framework of the roof of a Group A, B or C occupancy is more than eighteen feet (18') and less than twenty-five feet (25') above
any floor or balcony the roof construction shall be protected by a suspended ceiling of not less than one-hour fire-resistive construction as specified in Chapter 43, and such ceiling shall be not less than six inches (6") distant from any part of such roof construction.

(b) **Reinforced Concrete Members.** All reinforced concrete columns, beams and girders shall be thoroughly fire-protected with four-hour fire-resistive protection and all floors, joists and slabs shall be thoroughly fire-protected with not less than three-hour fire-resistive protection, for all buildings more than eight stories or eighty-five feet (85') in height; and all reinforced concrete columns, beams and girders shall be thoroughly fire-protected with not less than three-hour fire-resistive protection and all floors, joists and slabs shall be thoroughly fire-protected with not less than two-hour fire-resistive protection, for all buildings which are eight stories or eighty-five feet (85') or less in height; and all such fire-resistive protection shall be as specified in Chapter 43.

Sec. 1810. Floors shall be constructed of reinforced concrete, brick or hollow tile arches, reinforced gypsum or may be composite floors of those materials in combination with structural steel or iron or reinforced concrete; or such floor panel construction shall consist of any floor system providing not less than two-hour fire-resistive construction as specified in Section 4303 for buildings which are eight stories or eighty-five feet (85') or less in height and providing not less than three-hour fire-resistive construction is used as specified in Section 4303 for all buildings more than eight stories or eighty-five feet (85') in height.

The type of floor construction used shall provide means to keep the beams and girders from spreading, either by installing ties or bridging, with no laterally unsupported length of joists being permitted to exceed eight feet (8') except as otherwise provided in Sections 3102 and 3103. The floor and roof panel construction shall be so designed and constructed as to transfer horizontal forces to such parts of the structural frame as are designed to carry the horizontal forces to the foundations, unless such forces are provided for otherwise.

Where wood sleepers are used for laying wood floors the space between the floor slab and the underside of the wood flooring shall be filled with incombustible material in such a manner that there will be no open spaces under the flooring which will exceed one hundred square feet (100 sq. ft.) in area and such space shall be filled solidly under all partitions so that there is no communication under the flooring between adjoining rooms.

Sec. 1811. Roofs shall be constructed of any materials or combination of materials as allowed for floors in Section 1810. Roof Covering shall be a "Fire-Retardant" roofing as specified in Section 4305.

Any drainage fill placed on a roof deck of any building shall be of incombustible material and such fill shall be considered as a part of the dead load in designing the roof framing.

Sec. 1812. Stairs and stair platforms shall be constructed of reinforced concrete, iron or steel with treads and risers of con-
crete, iron or steel. Brick, marble, tile or other hard incombustible materials may be used for the finish of such treads and risers.

All stairs shall be designed and constructed as specified in Chapter 33 and as specified under Occupancy in Part III.

Doors and Windows

Sec. 1813. Doors, windows and other openings in the exterior walls shall be protected by one-hour fire-resistive construction as specified in Section 4304.

Exceptions: 1. The provisions of this Section shall not apply to doors, windows and other openings which face directly upon, and are not within fifty feet (50') in Fire Zone No. 1 or are not within thirty feet (30') in Fire Zones No. 2 and 3, of the opposite side of a public street or other public place, this distance to be measured at right angles to the plane of the wall in which such openings occur.

2. The provisions of the first paragraph of this Section shall not apply to openings in an outer court twenty feet (20') or more in width parallel to and facing upon a street or public place, provided such openings are not within twenty feet (20') of an adjacent property line.

Projections from the Building

Sec. 1814. Bays, oriels and similar projections shall be constructed of incombustible materials with walls, floors and roofs as specified in this Chapter and as specified in Chapter 35.

Porches and exterior balconies shall be constructed of incombustible materials but structural steel or iron members need not be fire-protected; provided, that loading platforms for warehouses, freight depots and similar buildings may be of heavy timber construction with wood floors not less than one and five-eighths inches (1 5/8") thick. Such wood construction shall not be carried through the exterior walls of any Type I building.

Cornices, marquises and similar appendages which are a part of a Type I building shall be constructed of substantial incombustible materials and as specified in Chapter 45.

Penthouses and Skylights

Sec. 1815. Penthouses and other roof structures shall be constructed of masonry or reinforced concrete, and all doors, windows and other openings therein shall be protected by one-hour fire-resistive construction or shall have one-hour fire-resistive windows as specified in Chapters 36 and 43.

Skylights shall be constructed of one-hour fire-resistive materials as specified in Chapter 43 and in Section 3402.

Combustible Materials Regulated

Sec. 1816. Wood or unprotected steel or iron shall be permitted in the following places:

1. Mezzanine floors may be of wood or unprotected steel provided that there shall be not more than two such mezzanines in any room of any building and provided, further, that no such mezzanine floor or floors shall cover more than 33 1/3 per cent of the area in the room where located. Such mezzanine floors constructed in Fire Zone No. 1 shall be of heavy timber construction as specified for floor construction in Type II buildings.

2. Show window frames and aprons, also show cases and other appurtenances on the first floors of stores or other similar
buildings may be of wood with or without unprotected steel or iron.

3. Trim, picture molds, chair rails, wainscoting, baseboards, hand rails, show window backing, temporary partitions, floors, and sleepers may be of wood. Wood doors may be used except in stair, elevator or other shaft enclosures or where not specifically prohibited under Occupancy in Part III.

4. Roofs may be sheathed by wood planks of two and one-half inch (2½") nominal thickness when such sheathing is more than thirty feet (30') distant from any floor, balcony or gallery and when such plank sheathing is protected on the underside by a ceiling of not less than one-hour fire-resistive construction as specified in Section 4301.
CHAPTER 19 — TYPE II BUILDINGS
(Heavy Timber Construction)

Definition
Sec. 1901. In “Type II Buildings” the structural frame shall be of structural steel or iron which shall be fire-protected, of reinforced concrete, of masonry or of heavy timbers, provided, that in buildings not exceeding one story and sixty-five feet (65’) in height the structural steel or iron may have the fire-protection omitted. Exterior walls shall be of fire-resistive construction. Inner court walls shall be of incombustible materials or protected solid wood. Roof construction shall be of wood, or incombustible materials. Floors and non-bearing partitions shall be of wood or incombustible materials.

Height Allowable
Sec. 1902. Type II buildings shall not exceed a height of seventy-five feet (75’) in which height there shall be not more than seven stories; provided, that the height of a building erected on sloping ground may be not to exceed seventy-five feet (75’) plus a vertical distance equal to the vertical change in slope along the length of any side of such building but in no case shall such height exceed eighty-five feet (85’) above the adjacent finished ground level; provided, further, that no one-story building shall exceed a height of sixty-five feet (65’).

Towers, spires and steeples erected as a part of the building and not used for habitation or storage may extend not to exceed twenty feet (20’) above such height limit.

Area Allowable
Sec. 1903. The floor area of Type II buildings shall be limited according to occupancy as specified in Part III of this Code.

Foundations
Sec. 1904. Foundation walls and footings shall be of solid masonry as specified in Chapter 29 or of reinforced concrete as specified in Chapters 26 and 29, and shall be designed as specified in Sections 2306 and 2802.

Exterior and Inner Court Walls
Sec. 1905. All exterior walls shall be of masonry or reinforced concrete as specified in Chapter 29 and shall be of not less than four-hour fire-resistive construction as specified in Section 4302.

All walls within five feet (5’) of adjacent property lines (excepting property lines abutting a street or an alley) and all walls within ten feet (10’) of other buildings on the same property shall be provided with a parapet wall at least thirty inches (30”) high above the roof at all points, provided that parapet walls need not be constructed on buildings twenty feet (20’) or less in height or where the roof slopes more than 20 degrees from the horizontal back from the exterior wall of such building.

Walls fronting on streets having a width of at least fifty feet (50’) in Fire Zone No. 1, or thirty feet (30’) in Fire Zones No. 2 and 3, may be of incombustible construction with all structural members fire-protected as required in Sec. 1909.

Inner court walls shall be constructed the same as exterior walls or shall be of not less than four-inch solid wood laminated
construction protected on the weather side thereof by incombustible fire-resistive materials as provided in Section 4202.

Sec. 1906. Interior partitions shall be of one-hour fire-resistive construction as specified in Section 4302 or may be of solid wood construction formed of two layers of one-inch (1") nominal matched boards or of two-inch (2") nominal tongued and grooved wood planking or of solid wood laminated construction not less than three and five-eighths inches (3%") thick.

Where wood partitions abut or adjoin masonry walls they shall be tied as specified in Section 2518.

Temporary partitions as specified in Section 1806 may be used.

Sec. 1907. Enclosures for elevator shafts, vent shafts, stair wells and other vertical openings shall be of two-hour fire-resistive construction as specified in Chapters 30 and 43; provided, that in buildings not more than three stories in height which are completely sprinklered as specified in Chapter 38 such enclosure walls may be of any construction permitted for interior partitions.

A parapet wall or hand rail at least thirty inches (30") in height above the roof shall be provided around all open shaft enclosures extending through the roof.

Sec. 1908. The structural frame shall be of reinforced concrete, as provided in Chapter 26, structural steel as provided in Chapter 27, or of solid wood construction as specified in Chapter 25.

All wood columns in such structural frame shall be directly superimposed, one above the other, (no girders or bolster between columns) and shall be provided with steel or cast iron caps or pintles which shall be self-releasing wherever any horizontal members are framed into such columns. No wood column shall be less than eight inches (8") nominal in its least dimension and no beam, girder or joist shall be less than six inches (6") nominal in its least dimension nor less than forty-eight square inches (48 sq. in.) nominal in cross-sectional area. In no case shall masonry or reinforced concrete be supported on wood construction, except tile or concrete floor finishes not more than three inches (3") in thickness.

Sec. 1909. (a) Structural Steel or Iron Members. All structural steel or iron members (not including frames and structural members for elevators and elevator enclosures) shall be thoroughly fire-protected. Such fire-protection shall be of three-hour fire-resistive protection for columns, and two-hour fire-resistive protection for beams, girders and floor systems, and all fire-protection shall be determined as specified in Chapter 43; provided, that such fire-protection may be omitted when the building does not exceed a height of one story and sixty-five feet (65').

Exceptions: 1. The thickness of the fire-protection on the outer edge of lugs or brackets on columns may be reduced to not less than one inch (1").

2. The masonry over window openings may be supported
by a steel plate, angle or similar member which is not fire-protected on the under side, provided the member is supported at proper intervals from a structural beam or girder which is fire-protected on all sides. For openings in masonry bearing walls not exceeding four feet (4') in width, an angle or similar member supported by masonry and not fire-protected on the under side may be used.

3. Where the structural steel framework of the roof of a Group A, B, or C occupancy is not less than twenty-five feet (25') above any floor or balcony, fire-protection of all members of the roof construction may be omitted.

4. Where the structural steel framework of the roof of a Group A, B or C occupancy is more than eighteen feet (18') and less than twenty-five feet (25') above any floor or balcony the roof construction shall be protected by a suspended ceiling of not less than two-hour fire-resistive construction as specified in Chapter 43, and such ceiling shall be not less than six inches (6") distant from any part of such roof construction.

(b) **Wood Structural Members.** Wood structural members shall not be required to be fire-protected.

(c) **Reinforced Concrete Members.** All reinforced concrete columns shall be thoroughly fire-protected with not less than three-hour fire-resistive protection and all joists, beams, girders and slabs shall be thoroughly fire-protected with not less than two-hour fire-resistive protection outside of all steel reinforcing as specified in Section 4301.

Floor Construction

Sec. 1910. Floor construction shall be as specified for Type I buildings or shall be of one of the types noted below:

1. Floor construction shall be of tongued and grooved or splined lumber not less than three inches (3") nominal thickness with a top layer of flooring of one inch (1") nominal thickness laid thereon.

2. Construction of solid lumber placed on edge and securely spiked together to make a floor not less than four inches (4") nominal thickness.

 If such floor is six inches (6") nominal or more in thickness the lumber shall be air seasoned or kiln dried.

 A space of one-half inch (1/2") shall be required between all floor construction and the wall which it adjoins, to allow for swelling in case the floor becomes wet. This space shall be properly covered by a molding so arranged that it will not interfere with the swelling and shrinking movements of the flooring.

 Wood joists, beams and girders supported by masonry walls shall be anchored thereto as specified in Chapter 25. Ventilation shall be provided between the ground and a wood floor as specified in Section 2527.

 The timbers and planking shall be self-releasing at end support on walls and no planking or timber shall extend through or across any party or occupancy separation walls.

Roof Construction

Sec. 1911. Roof construction shall be as specified for floor construction in Section 1910 except that the minimum allowable thickness shall be two and one-half inches (2 1/2") nominal.
Attic or roof spaces shall be divided into areas not exceeding twenty-five hundred square feet (2500 sq. ft.) as specified in Section 3205.

Roof covering shall be a “Fire-Retardant” roofing as specified in Section 4305 and shall be required over all combustible roof construction.

Sec. 1912. Stair construction may be of wood in buildings not exceeding three stories in height.

In buildings four or more stories in height all stairs and stair construction shall be as required for Type I buildings.

All stairs and exits shall be designed and constructed as specified in Chapter 33 and as specified under Occupancy in Part III.

Sec. 1913. Doors, windows and other openings in the exterior walls shall be protected by one-hour fire-resistive construction as specified in Section 4304.

Exceptions: 1. The provisions of this Section shall not apply to doors, windows and other openings which face directly upon, and are not within fifty feet (50') in Fire Zone No. 1 or are not within thirty feet (30') in Fire Zones No. 2 and 3, of the opposite side of a public street or other public place, this distance to be measured at right angles to the plane of the wall in which such openings occur.

2. The provisions of the first paragraph of this section shall not apply to openings in an outer court twenty feet (20') or more in width parallel to and facing upon a street or public place, provided such openings are not within twenty feet (20') of an adjacent property line.

Sec. 1914. Bays, oriels and similar projections shall be constructed of incombustible materials with walls, floors and roof as specified in this Chapter and in Chapter 35.

Porches and exterior balconies shall be constructed of incombustible materials but structural steel or iron members need not be fire-protected; provided, that loading platforms for warehouses, freight depots and other similar buildings may be of heavy timber construction with wood floors not less than one and five-eighths inches (1 5/8") thick. Such wood construction shall not be carried through the exterior walls of any Type II building.

Cornices, marquees and similar appendages which are a part of a Type II building shall be constructed of substantial incombustible materials and as specified in Chapter 45.

Sec. 1915. Penthouses shall be as required for Type I construction or shall be constructed with two-hour fire-resistive construction as specified in Chapters 36 and 43.

Skylights shall be of one-hour fire-resistive construction as specified in Chapters 34 and 43.

Sec. 1916. No wood lath or wood furring shall be allowed in any building of Type II construction, but unprotected steel or iron or wood will be allowed in the following places:
1. Mezzanine floors may be of wood or unprotected steel, provided that there shall be not more than two such mezzanines in any room of any building, and provided, further, that no such mezzanine floor or floors shall cover more than 33½ per cent of the area in the room where located.

2. Show window frames and aprons, also show cases and other appurtenances on the first floors of stores and other similar buildings may be of wood, with or without unprotected steel or iron.

3. Trim, hand rails, show window backing and temporary partitions as specified in Section 1906, picture molds, chair rails and wainscotting or baseboards may be of wood. Wood doors may be used, except in stair, elevator and other shaft enclosures, or where not specifically prohibited under Occupancy in Part III.
CHAPTER 20 — TYPE III BUILDINGS
(Ordinary Masonry)

Sec. 2001. In "Type III Buildings," the interior load bearing construction may be masonry or reinforced concrete walls or a structural frame of steel, reinforced concrete or wood. Exterior walls shall be of fire-resistive materials. Partitions, floors and roof framing may be of wood.

Sec. 2002. Type III buildings shall not exceed a height of fifty-five feet (55') in which height there shall be not more than five stories; provided, that the height of a building erected on sloping ground may be fifty-five feet (55') plus a vertical distance equal to the vertical change in slope along and in the length of any side of such building, but in no case shall such height exceed sixty-five feet (65') above the adjacent finished ground level; and provided, further, that towers, spires and steeples erected as a part of such building and not used for habitation or storage may extend not to exceed fifteen feet (15') above such height limit.

Sec. 2003. The floor area of Type III buildings shall be limited according to Occupancy as specified in Part III.

Sec. 2004. Foundation walls and footings shall be of solid masonry as specified in Chapter 29 or of reinforced concrete as specified in Chapters 26 and 29, and shall be designed as specified in Sections 2306 and 2802.

Sec. 2005. All exterior walls shall be of masonry or reinforced concrete as specified in Chapter 29 and shall be of not less than four-hour fire-resistive construction as specified in Section 4302.

Inner court walls and all other walls not forming the exterior walls of the building may be constructed as required for Type I or Type II buildings, or shall be of not less than one-hour fire-resistive construction as specified in Chapter 43.

All walls within five feet (5') of adjacent property lines (except property lines abutting a street or alley) and all walls within ten feet (10') of other buildings on the same property shall be provided with parapet walls at least thirty-inches (30") high above the roof at all points; provided, that parapet walls need not be constructed on buildings twenty feet (20') or less in height or where the roof slopes more than 20 degrees from the horizontal back from the exterior wall of such building.

Exceptions: Walls fronting on streets having a width of at least fifty feet (50') in Fire Zone No. 1 or thirty feet (30') in Fire Zones No. 2 and 3, may be of incombustible construction with all structural members fire-protected with not less than one-hour fire-resistive protection. Such wall assemblies shall have at least a one-hour fire-resistive rating except when the space between the roof and a plastered ceiling is less than three feet, the part of the wall covering this space need not be plastered on the inside.
Sec. 2006. Partitions of wood shall be constructed as re-quired in Chapter 25. In buildings of four stories or more in height all partitions shall be of one-hour fire-resistive con-struction as specified in Section 4302. Bearing partitions, when constructed of wood, shall not support more than two stories and a roof.

Exceptions: Partitions dividing portions of stores, offices or similar places occupied by one tenant only may be con-structed of wood panels or similar light construction up to three-fourths of the height of the room in which placed; when more than three-fourths the height of the room, such partitions shall have not less than the upper one-fourth of the partition constructed of glass set in sash.

Sec. 2007. Enclosures for elevator shafts, vent shafts, stair wells and other vertical openings when required because of Occupancy in Part III shall be of one-hour fire-resistive con-struction as specified in Chapters 30 and 43.

A parapet wall or hand rail at least thirty inches (30") in height above the roof shall be provided around all open shaft enclosures extending through the roof.

Sec. 2008. Structural framework shall be of steel, iron, rein-forced concrete, masonry or wood and shall be designed and erected as specified in Chapter 26 for reinforced concrete, Chap-ter 27 for steel and iron, Chapters 22 and 25 for wood and Chap-ters 24 and 29 for masonry.

Sec. 2009. Fire-protection of steel, iron, or wood structural members may be omitted unless otherwise provided, because of location as in Part IV or occupancy as in Part III, or as required in this chapter.

All members carrying masonry in buildings over one story in height shall be fire-protected with not less than one-hour fire-protection. Bottom flanges of exterior lintels need not be fire-protected.

Sec. 2010. Floors may be constructed of reinforced concrete as specified in Chapter 26, of masonry as specified in Chapter 24, of wood as specified in Chapter 25, or of steel or iron as specified in Chapter 27.

In buildings of four stories or more in height the lower side of all metal or wood floor or roof construction shall be entire-ly protected by a ceiling of one-hour fire-resistive construc-tion as specified in Chapter 43.

In all buildings having a cellar or basement, except Group I occupancies, the under side of the first floor construction when of metal or wood shall be protected by a ceiling of one-hour fire-resistive construction as specified in Chapter 43.

Wood joists, beams and/or girders supported by masonry walls shall be anchored thereto as specified in Section 2518. Ven-tilation shall be provided between the ground and a wood floor as specified in Section 2527.

Sec. 2011. Roof construction shall be of any Type of Con-struction permitted for floors except in buildings four stories
or more in height as specified in Section 2010 and except where otherwise required because of Occupancy in Part III.

Wood rafters, joists, purlins, beams and girders supported by masonry walls shall be anchored thereto as specified in Chapter 25.

Attic or roof spaces shall be divided into areas not exceeding twenty-five hundred square feet (2500 sq. ft.) as specified in Section 3205.

Roof covering shall be a "Fire-Retardant" roofing as specified in Section 4305.

Sec. 2012. Stairs may be of steel, iron, reinforced concrete, masonry or wood and shall be designed and constructed as specified in Chapter 33, and as specified under Occupancy in Part III.

Sec. 2013. Doors, windows and other openings in exterior walls may be of wood or of plain glass and wood sash unless otherwise specified under Occupancy in Part III or Location in Part IV.

Sec. 2014. Bays, oriel and similar projections shall be constructed of incombustible materials with walls, floors and roof as specified in this Chapter and in Chapter 35.

Porches and exterior balconies shall be constructed of incombustible materials but structural steel or iron members need not be fire-protected; provided that loading platforms for warehouses, freight depots and similar buildings may be of heavy timber construction with wood floors not less than one and five-eighths inches (1\%") thick. Such wood construction shall not be carried through the exterior walls of any Type III building.

Cornices, marquees and similar appendages which are a part of a Type III building shall be constructed of substantial incombustible materials and as specified in Chapter 45.

Sec. 2015. Penthouses and other roof structures shall be of not less than one-hour fire-resistive construction as specified in Chapters 36 and 43.

Skylights shall be of not less than one-hour fire-resistive construction as specified in Chapters 34 and 43.

Sec. 2016. Wood shall be permitted in a building of Type III Construction except where specifically prohibited as specified under Occupancy in Part III or Location in Part IV.

No enclosed air space in any vertical wood framing shall have any dimension greater than seven feet (7').

Combustible insulating materials may be placed in the partition, floor or roof framing but shall in no way interfere with the fire blocking or fire separations required by this Code.
CHAPTER 21 — TYPE IV BUILDINGS
(Metal Frame)

Definition
Sec. 2101. In "Type IV Buildings" the structural framework shall be of steel, iron, masonry or reinforced concrete and the exterior walls and roofs shall be of metal or other incombustible materials. Foundations shall be of masonry or reinforced concrete. Partitions and floor construction shall be as specified in this Chapter.

Height Allowable
Sec. 2102. Type IV buildings shall not exceed a height of forty-five feet (45') in which height there shall be not more than one story, except as provided in Section 802; and except for Groups F and G which are not limited. The height of a Type IV building erected on sloping ground may be forty-five feet (45') plus a vertical distance equal to the vertical change of slope along and in the length of any side of such building; but at no point shall such height exceed fifty-five feet (55') above the adjacent finished ground level. Towers, spires and steeples erected as part of the building and not used for habitation or storage may extend not to exceed ten feet (10') above such height limit.

Area Allowable
Sec. 2103. The floor area of a Type IV building shall be limited as specified under Occupancy in Part III and Location in Part IV.

Foundations
Sec. 2104. Foundation walls and footings shall be of masonry as specified in Chapter 29 or of reinforced concrete as specified in Chapters 26 and 29, and shall be designed as specified in Sections 2306 and 2802.

Exterior Walls
Sec. 2105. Exterior walls shall be of galvanized iron or other metal of not less than 26 gauge or shall be of incombustible materials.

Partitions
Sec. 2106. Interior partitions shall be of metal or other incombustible materials.

Enclosure of Vertical Openings
Sec. 2107. No restrictions, except for schools as specified in Section 806.

Structural Framework
Sec. 2108. The structural framework shall be of steel or iron as specified in Chapter 27, or masonry as specified in Chapters 24 and 29 or of reinforced concrete as specified in Chapter 26.

Fire-Protection of Structural Members
Sec. 2109. Fire-protection of structural members shall not be required.

Floor Construction
Sec. 2110. The floors shall be of any type of construction permitted in Type III buildings or may be of wood blocks or of any incombustible material.

Roof Construction
Sec. 2111. Roof construction shall be entirely of metal or other incombustible materials provided that wood purlins not
less than four inches (4") nominal in least dimension may be
used to support metal roof covering.

Roof covering shall be of a non-corrosive metal or may be
a "Fire-Retardant" roofing as specified in Section 4305.

Sec. 2112. Stairs shall be of steel, iron, reinforced concrete,
masonry or wood and shall comply with the requirements of
Chapter 33.

Sec. 2113. Openings in exterior walls shall be protected by
doors, windows or shutters of metal or of metal frame, metal
sash and wire glass; provided that such protection may be
omitted when such openings are sixteen feet (16') or more from
the opposite side of any street, alley or public place, from an
adjoining building or from adjacent property lines.

Sec. 2114. Porches, cornices, marquees, canopies and all
other similar projections from the building shall be of metal
or incombustible materials, except that a loading platform may
be constructed of wood.

Sec. 2115. Penthouses and other roof structures shall be
constructed entirely of incombustible materials except that
roofs of such structures may be constructed as specified in Sec-
tion 2111.

Skylights shall be of one-hour fire-resistant construction as
specified in Chapters 34 and 43.

Sec. 2116. The inner side of walls and under side of roof
shall not be ceiled with wood or wood lath and plaster but may
be ceiled with any incombustible material.
CHAPTER 22 — TYPE V BUILDINGS
(Wood Frame)

Definition

Sec. 2201. In “Type V Buildings,” enclosing walls, interior walls, partitions, floors and roofs shall be of wood as specified in Chapter 25 or of wood in combination with other materials except where prohibited as specified under Occupancy in Part III. Any building which cannot be classed as Type I, II, III or IV construction shall be considered to be of Type V.

Height Allowable

Sec. 2202. Type V buildings shall not exceed a height of thirty-eight feet (38’) in which height there shall be not more than three stories; provided that the height of a building erected on sloping ground may be thirty-eight feet (38’) plus a vertical distance equal to the vertical change in slope along and in the length of any side of such building but in no case shall such height exceed forty-five feet (45’) above the adjacent finished ground level; provided, further, that spires, towers or steeples erected as a part of such building and not used for habitation or storage may extend not to exceed ten feet (10’) above such height limit.

Area Allowable

Sec. 2203. The maximum floor area allowable for a Type V building shall in no case exceed that specified under Occupancy in Part III or Location in Part IV.

Foundations

Sec. 2204. All exterior walls of Type V buildings shall be supported on continuous masonry or reinforced concrete walls or footings which shall be of sufficient size to safely support the loads imposed as determined from the character of the soil. Masonry foundation walls shall extend at least six inches (6”) above the finished grade adjacent to the exterior wall at all points. Mudsills shall be bolted to the foundation with not less than one-half inch (1/2”) bolts, embedded at least seven inches (7”) into the masonry and spaced not more than six feet (6’’) apart. (See appendix for table of footing dimensions for Type V buildings.)

Exceptions: 1. For Type V buildings, (except Group I occupancies) of post and girder construction continuous walls or footings shall not be required.

2. A one-story building (except a Group I occupancy) which does not exceed four hundred square feet (400 sq. ft.) in area, may be constructed without a masonry or reinforced concrete foundation if the walls are supported on a wood mudsill. Such mudsill shall be of all-heart cedar, all-heart cypress or Foundation Grade redwood, or any species of wood treated under pressure with an approved preservative.

Foundation Grade redwood shall conform to such grade as defined by paragraph 146 of the Standard Grading and Dressing Rules of the California Redwood Association dated July 15, 1936. Such redwood shall bear the official Association grade mark, or evidence of compliance with Foundation Grade requirements, satisfactory to the Building Inspector, shall be filed with the Building Inspector.
Foundations for all buildings where the surface of the ground slopes more than one foot (1') in ten feet (10') shall be level or shall be stepped so that both top and bottom of such foundation shall be level.

Foundation walls used as retaining walls and all retaining walls shall be not less than eight inches (8") in thickness when five feet (5') or less in height. Such walls when more than five feet (5') in height shall be not less than eight inches (8") in thickness at the top and shall be increased one inch (1") in thickness for every additional foot in height.

Foundations of Type V buildings may be of piles, constructed as provided in Chapter 28.

Sec. 2205. Exterior walls of all Type V buildings having a floor area of four hundred square feet (400 sq. ft.) or more shall be constructed with studing not less than two inches by four inches (2"x4") spaced not more than sixteen inches (16") on centers, or such walls may be constructed of not less than four inch by four inch (4"x4") posts spaced not more than five feet (5') on centers or of larger members designed as specified in Chapter 25, or may be of post and beam framing with plank sheathing not less than one and one-half inches (1 1/2") thick or may be of laminated construction not less than four inches (4") nominal in thickness with the structural assembly properly designed to support all loads.

Buildings two stories in height shall have walls constructed as specified above. Buildings three stories in height shall have the first story studs not less than two inches by six inches (2"x6") spaced not more than sixteen inches (16") on centers.

Underpinning shall be not less in size than the studing of the story above; provided, that all underpinning exceeding four feet (4') in height shall be not less in size than the studing required for an additional story. All such underpinning shall be effectively braced.

Where studs continue through more than one story, joists shall be nailed securely to the studs and shall be supported upon a one inch by three inch (1"x3") ribbon notched into the studs and securely nailed thereto, or by other means affording equivalent strength and rigidity. Where stories are framed separately, each tier of studing shall have top and bottom plates and the top plates shall be doubled and lapped at all corners and intersections. Laps in separate pieces of the top plate shall be staggered not less than four feet (4').

All exterior walls and partitions shall be thoroughly and effectively angle braced.

Maximum allowable height of two inch by four inch (2"x4") stud framing shall be fourteen feet (14') and of two inch by six inch (2"x6") stud framing shall be twenty feet (20') unless the wall is supported laterally by adequate framing in a horizontal direction, perpendicular to the direction of the stud wall. All walls shall be effectively fire-stopped in accordance with Section 2526.

All openings four feet (4') wide or less shall be provided with double headers not less than two inches (2") thick placed on
edge, and such headers shall have two inch (2") solid bearing to the floor or bottom plate. All openings more than four feet (4') wide shall be trussed or provided with lintels which shall have not less than two inch (2") solid bearing to the floor or bottom plate.

Ventilating openings under first floor joists shall be provided in accordance with Section 2527.

A wood mudsill, not less than two inches (2") thick and not less in width than the wall framing supported thereon, and of the quality specified in Section 2204 shall be placed under all wood frame walls or partitions directly supported by masonry or reinforced concrete foundations.

All Type V buildings three stories in height shall have the exterior walls thoroughly covered with a solid sheathing of wood not less than five-eighths inch (%") thick or approved fiber-board not less than seven-sixteenths inch (1/4") thick, or approved incombustible sheathing not less than one-half inch (1/2") thick.

All exterior walls shall be covered on the outside with weatherboarding, shingles, stucco, masonry veneer or galvanized metal as specified in this section or by other similar approved materials, provided that one story buildings having a total floor area of not more than four hundred square feet (400 sq. ft.) may have exterior walls of vertical one inch (1") boards and battens without studs.

The minimum requirements for wall coverings for Type V buildings are as specified in parts (a), (b), (c), (d), and (e) of this Section.

(a) Weatherboarding. Studs shall be covered on the outside face with one layer of two-ply waterproofed building paper applied and tacked shingle fashion with joints horizontal. Horizontal joints of the paper shall be lapped at least two inches (2") and perpendicular joints at least six inches (6"). Weatherboarding, when in place, shall have an average thickness of not less than five-eighths inch (%") and a minimum thickness of not less than three-eighths inch (%"). Such weatherboarding shall be placed over the paper and shall be securely nailed to the studding with not less than two nails to each stud in each piece of such weatherboarding. Horizontal joints in the weatherboarding shall be tongued and grooved or ship lapped joints, or such weatherboarding shall be laid shingle fashion and lapped not less than one-half inch (1/2"). Building paper may be omitted where the interior face of the studs is not covered or where there is no human occupancy. Siding patterns known as rustic, drop siding or ship lap shall have an average thickness in place of not less than nineteen thirty-seconds inch (1/4") and a minimum thickness of not less than three-eighths inch (%"). Bevel siding shall have a minimum thickness measured at the butt section of not less than twenty-one thirty-seconds inch (1/4") and a tip thickness of not less than one-quarter inch (1/4"). Siding of lesser dimensions may be used provided the outside face of the studs is first sheathed solid with boards not less than five-eighths inch (%") in thickness.
(b) **Shingles or Shakes.** Shingles or shakes may be used for the exterior wall covering when applied as follows: The outside face of the studs shall be first sheathed with boards of uniform thickness not less than twenty-five thirty-seCONDS inch ($\frac{5}{16}$") thick and such sheathing shall be securely nailed to the studding with not less than two eight penny common nails to each stud in each piece of sheathing eight inches (8") or less in width and not less than three such nails when such sheathing boards exceed eight inches (8") in width. In all cases, except where the building is not intended for human occupancy, or where the interior face of the studs is not covered, an approved waterproof building paper shall be applied directly over the outer face of the sheathing in the same manner as specified in Sub-Sec. (a) of this Section. Shingles or shakes shall be nailed securely to the wall sheathing with at least two nails in each piece.

(c) **Stucco.** Stucco may be applied with or without sheathing or similar backing.

In all cases except in back-plastered construction an approved waterproof paper or asphalt saturated felt weighing not less than fourteen pounds per one hundred square feet (100 sq. ft.) or any substantial waterproof paper which successfully passes a 60-pound Mullen test shall be applied weatherboard fashion directly over the studs or sheathing. Horizontal joints shall be lapped not less than two inches (2") and vertical joints not less than six inches (6"). Where sheathing or similar backing is not used an 18 W. & M. gauge wire stretched taut horizontally across the stud frame at not more than six inch (6") centers shall be securely fastened in place before the paper or felt is applied; provided, that where such paper or felt is fastened to the metal reinforcing in such a manner as not to affect the waterproof qualities of such paper or felt the wire need not be installed. Skeleton sheathing shall be of boards not less than four inches (4") wide, spaced not to exceed four inches (4") apart.

In all cases a metal reinforcement of either expanded metal or wire fabric shall be used as follows:

1. Expanded metal cut from sheets not less than 20 U. S. gauge in thickness with mesh not less than three-fourths inch ($\frac{3}{8}$") in least dimension, nor more than four inches (4") in greatest dimension and not exceeding six square inches (6 sq. in.) in area; the fabric shall weigh not less than one and eight-tenths pounds per square yard.

2. Wire fabric composed of wires with no openings or mesh therein less than three-fourths inch ($\frac{3}{8}$") nor greater than two inches (2"). The minimum allowable gauge of the wire for the various meshes shall be as follows:
 - For openings not exceeding 1 inch—18 W. & M. Gauge.
 - For openings not exceeding 2 inches—16 W. & M. Gauge.

3. Expanded metal lath weighing not less than three pounds per square yard.

4. Electrically welded wire of 16 W. & M. gauge with openings not exceeding two inches (2") in greatest dimension and not exceeding four square inches (4 sq. in.) in area.
Metal reinforcing shall be securely fixed in place using a furring device that will positively fur the metal reinforcing at least one-fourth inch ($\frac{1}{4}''$) from the studs, sheathing or other backing. No form of strips or metal rods shall be used for furring which will serve to weaken the stucco. Metal reinforcing shall be secured with not less than four penny nails driven to at least three-fourths inch ($\frac{3}{8}''$) penetration in the studs or sheathing. Nails and furring devices shall be not more than six inches (6'') apart vertically. Horizontal and vertical joints of the metal reinforcing shall be lapped at least one full mesh. All horizontal joints between studding shall have not less than one tie with number 18 annealed tie wire, except when building is sheathed, and all vertical joints shall be made at the studs when attached directly thereto.

Stucco shall consist of three coats: (1) First or scratch coat, (2) Second or brown coat, (3) Finish coat. The total thickness of the three coats shall be not less than seven-eighths inch ($\frac{7}{8}''$) at every point. No one coat of stucco shall be less than one-fourth inch ($\frac{1}{4}''$) thick, except the finish coat, which shall be not less than one-eighth inch ($\frac{1}{8}''$) in thickness at any point.

The stucco shall be of portland cement and sand as specified in Chapter 26, with an addition of not more than 10 per cent of hydrated lime or similar material based on volume of cement in either the scratch coat or brown coat and with not more than 33\% per cent of hydrated lime or similar material based on volume of cement in the finish coat.

The first or scratch coat of stucco shall be shoved thoroughly through the metal reinforcing until all space between the metal and the backing is filled solidly and such coat shall be kept thoroughly moist during the first 24 hours after being applied. The brown coat shall be kept thoroughly moist during the first twenty-four hours after being applied and at least seven days shall elapse between the application of the scratch coat and the brown coat, except when an approved high-early-strength cement is used, when at least 48 hours shall elapse between the application of the scratch coat and brown coat.

The above requirements shall not apply to stucco placed on masonry backing. Before applying stucco on any masonry backing such backing shall be thoroughly washed and cleaned. (For complete plastering provisions see Appendix. Refer to Chapter 47.)

Gunite, as defined in Chapter 26, shall be applied in not less than two coats, and shall be reinforced as specified for "Stucco" in this Section. Gunite shall be not less than three-fourths inch ($\frac{3}{4}''$) in thickness on one or two-story buildings and not less than one inch (1'') in thickness on three-story buildings.

(d) Masonry Veneer. Masonry veneer on wood frame construction shall be not less than two inches (2'') thick for one-story only, and not less than three and three-fourths inches ($3\frac{3}{4}''$) thick for more than one-story. The masonry shall be bonded to the studs by means of 30d large head nails driven to a two-inch (2'') penetration not more than twelve inches (12'') on
center vertically nor more than sixteen inches (16") on center horizontally. Corrugated metal clips and other forms of ties are prohibited unless approved by the Building Inspector. Such veneer shall not be permitted above two stories, except for gables. The veneer shall be supported directly on the foundation.

In all cases before applying masonry veneer an approved waterproof paper or asphalt-saturated felt weighing not less than 14 pounds per one hundred square feet (100 sq. ft.) shall be applied weatherboard fashion directly over the studs, sheathing or backing as specified for "Stucco" under part (c) of this Section, except that no wire need be stretched back of such paper.

(e) **Galvanized Iron.** Galvanized iron not less than 28 gauge may be used on stud walls without sheathing. Walls shall be effectively braced and nailing strips shall be placed in such manner as to permit the metal to be nailed at vertical intervals of not more than four feet (4').

Sec. 2206. Interior partitions may be of any material permitted for exterior walls in this Code. If of wood, interior partitions shall be constructed, framed and firestopped as required for exterior walls as specified in Chapter 25, except that interior non-bearing partitions may have a single top plate, and except that where non-bearing partitions are approximately parallel and not more than four feet (4') apart, two-inch by three-inch (2"x3") studs sixteen inches (16") on centers, may be used.

Section 2207. Enclosure walls for elevator shafts, vent shafts, stair wells and similar vertical openings through a building shall be of not less than one-hour fire-resistive construction as specified in Chapters 30 and 43 and where required under Occupancy in Part III, except that chutes and dumb-waiter shafts with a cross sectional area of not more than nine square feet (9 sq. ft.) may be lined with not less than one-fourth inch (1/4") asbestos covered with not less than 26 gauge sheet metal with all joints in such sheet metal lock-lapped. All openings into any such vertical enclosures shall be protected by metal or metal-clad doors with either metal or metal-clad jambs, casings or frames.

Sec. 2208. Structural framework may be of any type of construction permitted in this code.

Sec. 2209. Fire-protection of structural framework shall not be required.

Sec. 2210. Floors may be of any type of construction permitted in this code.

Sec. 2211. Roof construction may be of any type of construction permitted in this code. When roof construction is of wood it shall conform to the requirements of Chapter 25.

Attic or roof spaces shall be divided into areas not exceeding
twenty-five hundred square feet (2500 sq. ft.) as specified in Section 3205.

Roof covering shall be a “Fire Retardant” roofing, except that for Groups H, I and J occupancies, an ordinary roofing may be used as specified in Section 4305. Wherever a composition roofing is used, the roof construction shall be solidly sheathed with wood, sheathing to be not less than twenty-five thirty-seconds inch (\(\frac{25}{32}\)) thick.

Stair Construction

Sec. 2212. Stair construction may be of any type permitted in this code and shall conform to the requirements of Chapter 33.

Doors and Windows

Sec. 2213. Doors and windows may be of any type permitted in this code.

Projections from Building

Sec. 2214. Any projections from the building shall conform to the requirements for exterior walls, as specified in Chapter 45.

Penthouses and Skylights

Sec. 2215. Penthouses and skylights may be of any materials permitted in Chapters 34 and 36 of this Code.

Combustible Materials Regulated

Sec. 2216. Combustible insulating materials may be used in any part of the building but shall not be installed in such a manner as to interfere with the firestopping elsewhere herein required.
BAXCO Brand

IT'S LIFE INSURANCE TO WOOD

Specify and use BAXCO Chromated Zinc Chloride pressure treated lumber below the first floor subfloor for protection against termites and decay. BAXCO CZC lumber is available from your dealer. BAXCO lumber is—

CLEAN ODORLESS PAINTABLE

Write for information on Creosoted Foundation Piling, Wood Block Floors, Poles and Cross Arms.

J. H. BAXTER & CO.
SAN FRANCISCO
LOS ANGELES

Agents
West Coast Wood Preserving Co., Seattle

BASALITE CAMBERED SHINGLE TILE

Meet the "Fire Retardant" requirements of Par. 8, Section 4305 of the Uniform Building Code and are manufactured as specified in Chapter 26. They are securely fastened to the supporting roof construction by projection lugs which hook over open sheathing and by nails. Factory recommended methods of laying tile at 4½" and 5" to the weather (depending on pitch) without underlay and at 8½" exposure with 12" strips of 65-Lb. membrane are in accordance with the Uniform Building Code.

FIRE-SAFE — PERMANENT
DISTINCTIVE — ECONOMICAL

Manufactured by

BASALT ROCK COMPANY, Inc.
NAPA
CALIFORNIA
The following recommendation has been made by the Research Department of the Pacific Coast Building Officials Conference:

At the request of Frank X. Enderle, Inc., Ltd., the Research Department of the Pacific Coast Building Officials Conference has approved the test program, witnessed tests, made a thorough study of all available data in regard to the Enderle Vent and Flue Pipe. The tests on this type of vent pipe were made at the Smith-Emery Testing Laboratories, 920 Santee Street, Los Angeles, Calif.

The Enderle Vent and Flue Pipe is made in varying diameters. The standard joint length is three feet (3'). Elbow fittings are also manufactured. Joints are the bell and spigot type. The cement used in the joints is a standard portland mixed neat. The pipe is a light grey cement having a very smooth dense appearance. The material of the pipe is approximately ½-inch thick. The elbows and T-fittings are cast in one piece.

The Research Department has examined Chapter 37, Section 3703 and finds no material other than clay or concrete for vent pipe is mentioned. It has been necessary therefore to set up a test program which must be passed successfully in order to obtain a recommendation. This type of vent pipe has passed these tests satisfactorily. The research department therefore recommends the approval of the Enderle Vent and Flue Pipe in lieu of the clay and concrete pipe specified in Section 3703.

Attention is particularly directed to the care necessary in the installation of this pipe with the caution that the manufacturers' specification should be carefully followed.
SisalKraft
"BETTER BUILDING PAPER"

WATERPROOF

WINDPROOF

DURABLE

STRONG

USE IT

— Back of Stucco
— Over Sheathing
— For Concrete Curing

THE SISALKRAFT CO.

CHICAGO NEW YORK
SAN FRANCISCO

Los Angeles—Frank Miller, 10519 Dunleer Drive
Telephone: ARdmore 8-3283
A Red Cedar Shingle Roof is fundamentally sound, both architecturally and from an engineering viewpoint. Architecturally it lends itself to more designs of beauty than any other type of roof covering, and engineers everywhere realize no roof adds strength to the structure as does the roof of Red Cedar Shingles... beauty plus strength plus a superior insulation value.

But the major factor of value as well as safety to home builder, contractor and architect who intelligently specifies Red Cedar Shingles is the "Certigrade" label, an absolute guarantee of quality, a guarantee of an association of nearly two hundred of the leading manufacturers of Red Cedar Shingles. Shingles bearing this label are known as Certigrade Shingles. They are inspected at the mill before shipment.

Every No. 1 Certigrade Red Cedar Shingle is all-heartwood, all edge-grain and manufactured to conform to the grade requirements of Commercial Standard C.S. 31-38 as issued by the U. S. Department of Commerce—and every one of them is clear from butt to tip.

Always specify "CERTIGRADE" as your major factor of safety.

RED CEDAR SHINGLE BUREAU
5508 White Building 811 Metropolitan Bldg.
Seattle, Washington Vancouver, B. C.

An interesting and valuable 100-page illustrated Handbook on Certigrade Shingles will be mailed free on your request.
• Withstands terrific strain
• More earthquake resisting
• Exceptionally high slab tests
• Heavy grade for exterior plastering
• Light grade for interior plastering
• Ideal for reinforcing under tile work, etc.

Approved by the Pacific Coast Building Officials Conference
Research Department

Pacific Wire Products Co.

Manufacturers of "Pacific" Insect Screen
DIAMOND SPRINGS LIME CO.
guarantees

"DISPLICO"
BRAND
Processed

LIME

to comply with Federal Specification Number SS-Q-351
for QUICKLIME for STRUCTURAL PURPOSES and
also with standard C-6-26 of the American Society for
Testing Materials.

Unquestionably the most economical and satis-
factory form in which lime can be purchased

DO NOT ACCEPT A SUBSTITUTE

DIAMOND SPRINGS LIME CO.
656 East 61st Street, Los Angeles, California
100 Howard Street, San Francisco, California

Head Office and Plant at Diamond Springs, California
Grouted wall joints with reinforced steel placed vertically and horizontally for permanent, durable and low cost construction. 11 gauge steel ties placed in holes of units every third course. The corrugations are spaced to allow steel reinforcing, also to form a key which ties the wall in all directions.

Sizes of units 37/8 x 37/8 x 8 to 81/4 in.

For Cost, Samples, and Information Write or Phone

DAVIDSON BRICK COMPANY

ANGelus 11178 4701 Floral Drive Los Angeles
GYPSUM

A BASIC PRODUCT . . .

Gypsum is a widely distributed mineral which is the basic product used in the manufacture of Gypsum Plasters, Gypsum Lath, and other fireproofing building materials.

FIREPROOFING QUALITY . . .

The fire-resistive quality of Gypsum is inherent in every gypsum product which has been definitely established by tests made by the Underwriters' Laboratories, Inc., the National Bureau of Standards, Columbia University, and by the Bureau of Buildings in many large cities. It is this barrier of any gypsum product which stubbornly resists the progress of fire.

CODE ACCEPTANCE . . .

Recognition is given to the fire-protection value and rigidity to construction by Building Departments of the largest cities in the country and by inclusion in codes such as the Uniform Code and standards of leading fire-protection and construction authorities.

Use Gypsum Products for Fire Protection

PACIFIC COAST DIVISION OF THE GYPSUM ASSOCIATION
Your Aide

The famous A.G.A. SEAL OF APPROVAL is the Inspector's assurance of safety and quality in gas appliances. Appliances bearing this seal merit your complete confidence. They must conform to rigid standards—pass searching laboratory tests.

★ You can be positive that appliances "A.G.A. Tested and Approved" will exceed your city's strength-and-safety requirements. Look for this mark of merit—the star within a circle, of the American Gas Association—on every gas appliance.

THE PACIFIC COAST GAS ASSOCIATION
(a non-profit service organization of which your Gas Company is a member) 447 Sutter Street, San Francisco

P.C.S.I.B. Certified RED CEDAR SHINGLES

These Red Cedar Shingles are rigidly inspected and graded in strict conformity with U. S. Government standards. They are consistently high in quality and meet all the requirements of building association standards. Each bundle of shingles bears the label P.C.S.I.B. CERTIFIED under the band stick—the "P.C.S.I.B." linked with the word "CERTIFIED". This label is your guarantee of quality. Literature on request.

PACIFIC COAST SHINGLE INSPECTION BUREAU, Inc.
Stuart Building, Seattle, Washington
WOLMANIZED LUMBER

CLEAN - ODORLESS
PROTECTED AGAINST DECAY AND TERMITES
Pressure-treated Wolmanized Lumber* is easy to handle. It takes paint as well as untreated wood. To assure the buyer the material is genuine, and that the lumber has been thoroughly and accurately treated, each piece is branded with the seal shown below. Sold by retail lumber dealers.

AMERICAN LUMBER & TREATING CO.
General Offices . . . CHICAGO
1031 South Broadway LOS ANGELES
Rialto Building SAN FRANCISCO
*Registered Trademark

for Enduring Construction

1938 Edition
SPECIFICATION DOCUMENTS
for Building Materials and Construction

The appended documents of the Uniform Building Code as of July 1, 1938, giving a complete set of specifications for materials and types of construction used in cities and counties operating under any building code referring to national standard specifications.

published by R. C. Colling and Associates

PRICE $400

order from

Pacific Coast Building Official Conference
124 West Fourth Street Los Angeles, California
Look for Douglas Fir Plywood with these “grade trade-marks” . . . It Conforms to Code Requirements

There can be no question about a Douglas Fir Plywood panel bearing one of the "grade trade-marks" of the Douglas Fir Plywood Association. Each panel, so marked, has been manufactured in accordance with U. S. Commercial Standard CS45-38—thus conforming to the requirements of the Uniform Building Code.

Popular uses of Douglas Fir Plywood with thickness and grades recommended are:

Sheathing, Sidewalls—5/16 in., PLYSCORD, the special sheathing grade, is for all types of exterior wall coverings.

Subfloors—1/2 in., 5/8 in. PLYSCORD.

Roofs—5/16 in., 3/8 in., 1/2 in., 5/8 in. PLYSCORD, thickness used depending upon structural requirements.

Interiors—1/4 in., or 3/8 in. PLYWALL or PLYPANEL.

Permanent Exteriors—3/8 in. or thicker EXT-DFPA, the one grade made with a waterproof glue, manufactured especially for exterior purposes.

Temporary and general utility uses—5/16 in., 3/8 in., 1/2 in. or 5/8 in. PLYSCORD.

Our Technical Division will be glad to answer your inquiries regarding uses of Douglas Fir Plywood for structural purposes. Write today for your free copy of our convenient grade use guide.

DOUGLAS FIR PLYWOOD ASSOCIATION
TACOMA BUILDING TACOMA, WASHINGTON
Reinforced

Groutlock Brick Masonry

using all around open pore, rough surfaced, soft mud brick units (no laminations or slick sides) is portland cement's best friend and body-guard. It uses all of the strength of portland cement and protects it against the structural hazards of Volume Change Cracks.

All of the many jobs of Reinforced Groutlock Brick Masonry made perfect records of resistance to the 1933 earthquakes in Southern California.

NOT EVEN A HAIR LINE CRACK

Inquiries solicited

SIMONS BRICK COMPANY

8th and Boyle Ave. • LOS ANGELES • Phone ANgelus 6121

A respectable business concern backed by fifty years of integrity
Expanded and Sheet

METAL LATH

Insures Full Thickness of Plaster
Continuously Reinforced with Steel
Resists TEMBLORS
and provides

FIRESAFE BARRIERS

(a) As solid and hollow metal lath and metal stud partitions
(b) As hollow metal lath and wood stud partitions
(c) For masonry, steel and wood joisted floor assemblies

Ratings from one hour up to five hours and forty-four minutes, depending on type of construction and kind of plaster, have been received as the result of tests conducted in accordance with the procedure of the American Standards Association at official testing laboratories.

In a new type of test of metal stud partitions, the 100 per cent mechanical bond of Metal Lath with its thousand positive keys per square foot functioned to grip and hold the plaster intact so that the fire resistance of the partitions continued beyond the scope of the test to provide an effective fire barrier (such as for fire exits, corridors, etc.,) for four hours under conditions of extreme heat and physical strain. This same bond holds the fire-resisting protective plaster covering safe against dislodgement by quake or hurricane.

A wood-joisted floor assembly protected by an expanded metal lath and gypsum plaster ceiling is the ONLY TYPE OF COMBUSTIBLE FLOOR in common use in residential construction with FULL ONE-HOUR FIRE RATING by the Underwriters' Laboratories.

Most of these ratings are either recognized specifically in the Uniform Code, or where of very recent origin, by official approval of the Research Department of the Pacific Coast Building Officials Conference. Details upon request to

METAL LATH MANUFACTURERS ASSOCIATION
209 South Wells Street • • Chicago, Illinois
PACIFIC COAST OFFICE: 816 WEST FIFTH STREET, LOS ANGELES, CALIFORNIA
SMITH-EMERY Co.
(Since 1910)

TESTING ENGINEERS
AND CHEMISTS

- Concrete Mixes designed and controlled.
- Cylinders cut from structures and tested.
- Investigations and bearing tests of soils.
- Tests and investigations of structural materials.
- Inspection of structural steel, mill, shop and erection.

Office and Laboratories
920 Santee Street Los Angeles
Telephone Trinity 4791

MEETS EVERY REQUIREMENT
for
PERMANENT
EFFICIENT
ECONOMICAL
INSULATION

Palco Wool being installed with new Modern Blowing Machine. Also installed by hand.

Palco INSULATION WOOL

SAN FRANCISCO LOS ANGELES THE PACIFIC LUMBER COMPANY CHICAGO NEW YORK
TESTING equipment has been designed and test programs set up by which the Underwriters’ Laboratories, Inc., determine the ability of a roof covering to resist ignition from severe heat, the ability to prevent the spread of fire, and resistance to burning brands which might cause a conflagration.

Asphalt shingle roofs laid as specified in Chapter 43 of the Uniform Building Code (Fire Retardant Roofs) stand up under all of these tests and are given a rating as fire-resistive roofing material by the Underwriters Laboratories, and automatically receive the same rating from the Pacific Coast Building Officials Conference Research Department.

Members of

PACIFIC COAST
ASPHALT SHINGLE & ROOFING INSTITUTE
Index to Advertisers

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Lumber and Treating Company</td>
<td>106</td>
</tr>
<tr>
<td>Basalt Rock Company</td>
<td>97</td>
</tr>
<tr>
<td>J. H. Baxter and Company</td>
<td>97</td>
</tr>
<tr>
<td>California Redwood Association</td>
<td>3</td>
</tr>
<tr>
<td>Columbia Steel Company</td>
<td>4</td>
</tr>
<tr>
<td>Davidson Brick Company</td>
<td>103</td>
</tr>
<tr>
<td>Diamond Springs Lime Company</td>
<td>102</td>
</tr>
<tr>
<td>Douglas Fir Plywood Assn.</td>
<td>107</td>
</tr>
<tr>
<td>F. X. Enderle, Inc., Ltd.</td>
<td>98</td>
</tr>
<tr>
<td>Metal Lath Manufacturers Association</td>
<td>109</td>
</tr>
<tr>
<td>Pacific Coast Division of the Gypsum Association</td>
<td>104</td>
</tr>
<tr>
<td>Pacific Coast Gas Association</td>
<td>105</td>
</tr>
<tr>
<td>Pacific Coast Asphalt Shingle and Roofing Institute</td>
<td>111</td>
</tr>
<tr>
<td>Pacific Coast Shingle Inspection Bureau</td>
<td>105</td>
</tr>
<tr>
<td>Pacific Lumber Company</td>
<td>110</td>
</tr>
<tr>
<td>Pacific Wire Products Company</td>
<td>101</td>
</tr>
<tr>
<td>Portland Cement Association</td>
<td>1</td>
</tr>
<tr>
<td>Red Cedar Shingle Bureau</td>
<td>100</td>
</tr>
<tr>
<td>Simons Brick Company</td>
<td>108</td>
</tr>
<tr>
<td>Sisalkraft Company</td>
<td>99</td>
</tr>
<tr>
<td>Summerbell Roof Structures</td>
<td>Second Cover</td>
</tr>
<tr>
<td>Smith-Emery Company</td>
<td>110</td>
</tr>
<tr>
<td>West Coast Wood Preserving Company</td>
<td>97</td>
</tr>
</tbody>
</table>
PART VI
ENGINEERING REGULATIONS, QUALITY
AND DESIGN OF THE MATERIALS OF
CONSTRUCTION

CHAPTER 23—LIVE AND DEAD LOADS

Sec. 2301. Dead Load. The dead load of a building shall include the weight of the walls, permanent partitions, framing, floors, roofs and all other permanent stationary construction entering into and becoming a part of a building. (See Appendix for weights of construction materials.)

Live Load. The live load includes all loads except dead and lateral loads.

Sec. 2302. (a) General. Buildings and all parts thereof shall be of sufficient strength to support the estimated or actual imposed dead and live loads in addition to their own proper dead load, without exceeding the stresses noted elsewhere in this Code, provided that no building or part thereof shall be designed for live loads less than those specified in the following sections. Impact shall be considered in the design of any structure where impact loads occur.

(b) Special. Provision shall be made in designing office floors for load of 2000 pounds placed upon any space two and one-half feet (2½') square wherever this load upon an otherwise unloaded floor would produce stresses greater than those caused by a uniformly distributed load of 50 pounds per square foot.

In designing floors to be used for industrial or commercial purposes the actual live load caused by the use to which the building or part of the building is to be put, shall be used in the design of such building or part thereof, and special provision shall be made for machine or apparatus loads when such machine or apparatus would cause a greater load than specified for such use in Section 2304.

Floors in office buildings and in other buildings subject to shifting of partitions without reference to arrangement of floor beams or girders shall be designed to support in addition to other loads a single partition of the type used in the building placed in any position.

Public garages and commercial or industrial buildings in which loaded trucks are placed, used or stored shall have the floor systems designed to support a concentrated rear wheel load of a loaded truck placed in any possible position.

Sec. 2303. Any system or method of construction to be used shall admit of a rational analysis in accordance with well established principles of mechanics.

Sec. 2304. The following unit loads shall be taken as the minimum live loads in pounds per square foot to be used in the design of buildings for the occupancies listed, and loads at least equal shall be assumed for uses not listed in this Section but which create or accommodate similarloadings.
Sections 2304-2306

Apartments ... 40
Armories ... 150
Auditoriums—Fixed Seats 50
Movable Seats .. 100
Balconies and Galleries—Fixed Seats 50
Movable Seats .. 100
Dance Halls ... 100
Drill Rooms ... 100
Dwellings ... 40
Exterior Balconies 100
Fire Escapes .. 100
Garages .. 100
Gymnasiums .. 100
Hospitals—Wards and Rooms 40
Corridors and Public Rooms 100
Hotels—Guest Rooms and Private Corridors ... 40
Public Rooms .. 100
Corridors (Public) 100
Libraries—Reading Rooms 60
Corridors .. 100
Stack Rooms ... 125
Loft Building ... 100
Manufacturing — Light 75
Heavy .. 125
Marquees .. 60
Offices .. 50
Printing Plants—Press Rooms 150
Composing and Linotype Rooms 100
Public Rooms .. 100
Rest Rooms .. 50
Reviewing Stands and Bleachers 100
Roof Loads (See Section 2305)
Schools—Class Rooms 40
Corridors ... 100
Sidewalks—800 lbs. Concentrated or 250
Skating Rinks .. 100
Stairways ... 100
Storage — Light 125
Heavy (Load to be determined from proposed use or occupancy, but never less than) 250
Stores—Retail (Light Merchandise) 75
Wholesale (Light Merchandise) 100

Roof Loads

Sec. 2305. Roofs shall be designed for a vertical live load of 20 pounds per square foot of horizontal projection applied to any and all slopes, except as hereinafter provided.

Where the rise exceeds twelve inches (12") per foot no vertical live loads need be assumed, but the roof shall be designed for the dead load and for a wind load of 15 pounds per square foot of vertical projection.

Where snow loads occur, roofs shall be designed for the increase in loading.

Reduction of Live Loads

Sec. 2306. The following reductions in assumed live loads shall be permitted in designing of columns, piers, walls, foundations, trusses and girders.

114
1. No reduction of the assumed live load shall be allowed in the design of any slabs, joists or beams.

2. A reduction of the total live load used in the design of girders based on a certain tributary floor area shall be permitted as noted in the following schedule. This reduction shall not be carried into the columns nor shall such reduction be used in design of buildings to be used or occupied as warehouses or for storage purposes.

<table>
<thead>
<tr>
<th>Reduction Allowed</th>
<th>Tributary Floor Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%</td>
<td>100 sq. ft.</td>
</tr>
<tr>
<td>10%</td>
<td>200 sq. ft.</td>
</tr>
<tr>
<td>15%</td>
<td>300 sq. ft. or more</td>
</tr>
</tbody>
</table>

3. For determining the total live loads carried by columns the following reductions shall be permitted, the reductions being based on the assumed live loads applied to the entire tributary floor area:

Allowable Reductions for Warehouses and Storage Buildings

Carrying the roof .. 0 per cent
Carrying 1 floor and roof 0 per cent
Carrying 2 floors and roof 5 per cent
Carrying 3 floors and roof 10 per cent
Carrying 4 floors and roof 15 per cent
Carrying 5 or more floors and roof 20 per cent

Live Load Reductions for Manufacturing Buildings, Stores and Garages

Carrying the roof .. 0 per cent
Carrying 1 floor and roof 0 per cent
Carrying 2 floors and roof 10 per cent
Carrying 3 floors and roof 20 per cent
Carrying 4 or more floors and roof 30 per cent

Allowable Live Load Reductions for All Other Buildings

Carrying the roof .. 0 per cent
Carrying 1 floor and roof 0 per cent
Carrying 2 floors and roof 10 per cent
Carrying 3 floors and roof 20 per cent
Carrying 4 floors and roof 30 per cent
Carrying 5 floors and roof 40 per cent
Carrying 6 floors and roof 45 per cent
Carrying 7 or more floors and roof 50 per cent

Sec. 2307. For purposes of design the wind pressure upon all vertical plane surfaces of all buildings and structures shall be taken at not less than 15 pounds per square foot for those portions of the building less than sixty feet (60') above ground and at not less than 20 pounds per square foot for those portions more than sixty feet (60') above ground.

The wind pressure upon sprinkler tanks, sky signs, or other similar exposed structures and their supports shall be taken as not less than 30 pounds per square foot of the gross area of the plane surface, acting in any direction. In calculating the wind pressure on circular tanks, towers or stacks this pressure shall be assumed to act on six-tenths of the projected area.

The overturning moment resulting from the above calcula-
tions shall in no case exceed 50 per cent of the dead load resisting moment.

The weight of earth superimposed over footings may be used to calculate the dead load resisting moment.

For combined stresses due to wind and other loads the allowable unit stresses may be increased 33 1/3 per cent in excess of the values given in Chapters 24, 25, 26, and 27. For members carrying wind stresses only the allowable unit stresses may be increased 33 1/3 per cent. In no case shall the section be less than required if the wind stress be neglected.

Sec. 2308. The live loads for which each floor or part there-of of a commercial or industrial building is or has been designed, shall have such designed live loads conspicuously posted by the owner in that part of each story in which they apply using durable metal signs, and it shall be unlawful to remove or deface such notices. The occupant of the building shall be responsible for keeping the actual load below the allowable limits.

The maximum seating capacity shall be conspicuously posted by the owner of the building by means of durable metal signs placed in each assembly room, auditorium or room used for a similar purpose where fixed seats are not installed, and it shall be unlawful to remove or deface such notice or to permit more than this legal number of persons within such space.

Sec. 2309. Plans for other than residential buildings filed with the Building Inspector with applications for permits shall show on each drawing the live loads per square foot of area covered, for which the building is designed, and occupancy permits for buildings hereafter erected shall not be issued until the floor load signs, required by Section 2308, have been installed. No changes in the occupancy of a building now existing or hereafter erected shall be made until a revised occupancy permit has been issued by the Building Inspector certifying that the floors are suitable for the loads characteristic of the proposed occupancy. (See Sections 206 and 207.)

Sec. 2310. When earth or water, or earth and water cause or may cause a pressure on any building or structure, such total pressure created shall be calculated in accordance with the best accepted engineering practice, and such calculations and design shall take into account any possible surcharge due to moving or fixed loads.

Sec. 2311. The base area of the footings of all buildings shall be designed in the following manner: The area of the footing which has the largest percentage of live load to total load shall be determined by dividing the total load by the allowable soil load. From the area thus obtained the dead load soil pressure of such footing is determined and the areas of all other footings of the building shall be determined on the basis of their respective dead loads only and such dead load soil pressure. In no case shall the load per square foot under any portion of any footing, due to the combined dead, live, wind and/or any other loads, exceed the safe sustaining power of the soil upon which the footing rests. The total reduced live load occurring in the column immediately above the footing shall be the live load used in the above computation.

Sec. 2312. (See Appendix.)

116
CHAPTER 24—MASONRY
(Quality and Design)

Sec. 2401. The quality and design of masonry construction and materials shall conform to the minimum standards specified in this Chapter.

The following materials shall be classed as masonry, and wherever used in any building, shall conform to the minimum requirements as specified in this chapter.

When laid up in mortar:

1. Brick.
2. Concrete Block or Tile.
3. Gypsum Block or Tile.
5. Stone.
6. Concrete—Plain.
7. Gypsum—Plain poured*.

*Note: This applies only to gypsum used in roof construction, non-bearing walls or partitions, fire-protection or similar uses where not exposed to the weather.

The term “Brick Masonry” as used in this code shall be defined to mean masonry of burned clay or shale brick, sand-lime brick or concrete brick as specified in Sections 2402, 2403 and 2404, respectively.

The term “Brick” as used in this code shall be defined to mean a structural unit of burned shale or clay, sand-lime or concrete, usually solid and about eight inches by three and three-quarters inches by two and one-half inches (8” x 3-3/4” x 2-1/2”) in size.

The term “Masonry of Hollow Units” as used in this code shall be defined to mean masonry of hollow clay tile or concrete tile or blocks or gypsum tile or blocks as specified in Sections 2405 and 2406 and Section 2409 respectively.

Tests of materials shall be made in accordance with the standard specifications of the American Society for Testing Materials as such standard specifications are noted in this Chapter.

Sec. 2402. Brick of burned clay or shale, except for thickness, shall meet the requirements for Grade “B” brick given in the “Standard Specifications for Building Brick” (A.S.T.M. Designation C62-37)\(^1\) of the American Society for Testing Materials.

Sec. 2404. Concrete brick shall meet the requirements for Grade “B” brick, given in the “Standard Specifications for Concrete Building Brick”, (A.S.T.M. Designation C55-37T)\(^1\) of the American Society for Testing Materials.

\(^1\)See “Specification Documents”.

117
Sec. 2405. Hollow clay tile used for exterior walls and bearing walls shall meet the requirements for the "5-16" clay tile given in the "Standard Specifications and Tests for Structural Clay Load Bearing Wall Tile" (A. S. T. M. Designation C34-36)\(^1\) of the American Society for Testing Materials. The exterior shell of such tile shall be not less than three-quarters of an inch (\(\frac{3}{4}\)"") thick, except that a tolerance of one sixteenth of an inch (1/16") will be permitted in such shell thickness.

Hollow clay tile used in non-bearing partitions, fire protection and furring, shall meet the requirements of the "Standard Specifications for Structural Clay Non Load-Bearing Tile" (A. S. T. M. Designation C56-36) of the American Society for Testing Materials.

Sec. 2406. Hollow concrete tile or blocks shall be units designed for wall construction and shall meet the requirements of the "Tentative Specifications and Tests for Load Bearing Concrete Masonry Units" (A. S. T. M. Designation C90-36)\(^1\) of the American Society for Testing Materials.

"Special Concrete Block or Tile," in addition to meeting the requirements in this section, shall comply with the Underwriters Laboratory Standard for Hollow Concrete Building Units, dated June 8, 1932\(^2\) and shall have a compressive strength of not less than 1000 pounds per square inch gross area as laid in the wall. Underwriters Laboratory certificated hollow concrete building units may be considered as special units.

Sec. 2407. Monolithic concrete construction containing less than .25 per cent of reinforcement shall be classified as plain concrete. Plain concrete in piers and walls shall have a strength of not less than 1500 pounds per square inch and shall be governed by the requirements specified in Chapter 26.

Cement, fine aggregate and coarse aggregate shall conform to the requirement specified in Chapter 26.

Sec. 2408. All cast stone shall be branded with a permanent identification mark of the manufacturer which shall be registered with the Building Inspector.

The average compressive strength of cast stone taken on four representative samples at the age of 28 days or when delivered on the job shall be not less than 5000 pounds per square inch with an individual minimum of 4500 pounds per square inch, and the average absorption of such samples shall be not more than seven per cent of their dry weight with an individual maximum of eight per cent.

Test samples shall consist of two inch by two inch (2" x 2") cylinders or two-inch (2") cubes, cut from the stone as delivered on the job or from the regular stock in the yard, and shall be taken in such a manner that they are composed of approximately one-half of the facing and one-half of the backing material and so that they can be tested in the position in which the cast stone will be laid in the masonry. Tests of cast stone

\(^1\)See "Specification Documents".
specimens shall be made in accordance with the "Tentative Specifications for Cast Stone," (Serial Designation P-3-A29T) of the American Concrete Institute.

Sec. 2409. Gypsum as used in this section means a product containing not less than 64–1/2 per cent by weight of calcium sulphate combined with water.

Neat gypsum, gypsum fiber concrete, or gypsum coarse aggregate concrete used in floor and roof construction of either the reinforced gypsum suspension system or reinforced gypsum in which the gypsum acts structurally shall develop the following minimum ultimate compressive strength in pounds per square inch when dried to constant weight.

(a) Neat gypsum (as used in pre-cast tile).............1800

(b) Gypsum fiber concrete containing not more than three (3) per cent by weight of wood chips, excelsior or fiber..1000

(c) Gypsum fiber concrete containing not more than twelve and one-half (12 1/2) per cent by weight of wood chips, excelsior or fiber.......................... 500

Gypsum coarse aggregate concrete of the following volumetric mixes:

(d) 1 1/2 parts gypsum cement; 1 part sand; 3 parts cinders... 500

(e) 1 1/2 parts gypsum cement; 1 part sand; 3 parts slag... 800

(f) 1 1/2 parts gypsum cement; 1 part sand; 3 parts gravel... 800

(g) 1 1/2 parts gypsum cement; 1 part sand; 3 parts stone... 800

Note: Compressive tests shall be made on cylinders six inches (6") in diameter and twelve inches (12") long. The average compressive strength shall be not less than noted above and no one specimen shall test less than 75 per cent of the average of the lot tested and not less than five samples from the lot shall be tested to determine the average.

Gypsum tile or block used for partitions, walls, furring and enclosures may contain, intimately mixed, not more than 15 per cent by weight of binding material consisting of wood chips, excelsior or fiber. Gypsum partition tile or block shall be equal in quality to that specified in the "Standard Specifications for Gypsum Partition Tile or Block," (A. S. T. M. Designation C52-33) of the American Society for Testing Materials.

The chemical and physical properties of the gypsum and calcined gypsum shall be equal to that specified in the "Standard Specifications for Gypsum and Calcined Gypsum" (A. S. T. M. Designation C22-25' and C23-30') respectively, of the American Society for Testing Materials.

Sec. 2410. All cements and limes used in mortars shall conform to the requirements of the standard specifications for these
TABLE No. I—GRADING LIMITS FOR SAND

<table>
<thead>
<tr>
<th>Passing a number</th>
<th>Percentage by Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 sieve, not less than:</td>
<td>90</td>
</tr>
<tr>
<td>30 sieve:</td>
<td>20 to 50</td>
</tr>
<tr>
<td>50 sieve:</td>
<td>10 to 30</td>
</tr>
<tr>
<td>100 sieve, not more than:</td>
<td>5</td>
</tr>
</tbody>
</table>

materials issued by the American Society for Testing Materials, having designations listed as follows:

"Quicklime for Structural Purposes." (C5-34T)¹
"Hydrated Lime for Structural Purposes." (C6-34T)¹
"Specifications for Portland Cement." (C9-37)¹

Lime putty shall be made from quick lime or from hydrated lime. If made from quick lime the lime shall be properly slaked and then screened through a sieve having not less than 16 meshes per linear inch. After screening and before using the slaked lime shall be properly stored and protected for not less than 10 days. The resulting lime putty shall weigh not less than 83 pounds per cubic foot.

Sand for mortar shall conform to the "Tentative Specifications for Concrete Aggregates" (A.S.T.M. Designation C33-37T) except as these requirements may conflict with the following provisions: Sand for mortar shall be graded from coarse to fine within the limits shown in Table No. I of this Chapter.

Water used in mixing mortar shall be clean, and free from deleterious acids, alkalis, salts or organic materials.

All mortar used in unit masonry construction shall be either lime-cement mortar or cement mortar. For isolated piers, footings and exterior foundation walls, and for all unit masonry below the grade where subjected to wet conditions, only cement mortar shall be used.

Cement-lime mortar shall be composed of one part lime putty or hydrated lime, one part portland cement and six parts of sand by volume.

Cement mortar shall be composed of one part of cement and three parts of sand by volume with an allowable addition of lime putty or hydrated lime of not to exceed 20 per cent by volume of the cement content.

Sec. 2411. (a) Unreinforced Brick Masonry. The maximum allowable working stresses in unreinforced brick masonry due to combined live, dead and other loads, shall not exceed the values given in Table No. II of this Chapter, except as noted in Chapter 23.

The maximum allowable compressive stresses in hollow walls of brick shall not exceed the stresses given in Table No. II of this Chapter based on the effective net cross sectional area of the wall.

¹See "Specification Documents".
TABLE NO. II—ALLOWABLE UNIT WORKING STRESSES
Unreinforced Brick Masonry

<table>
<thead>
<tr>
<th>Type of Stress</th>
<th>Cement-Lime Mortar</th>
<th>Cement Mortar</th>
<th>Cement Grout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Pounds per square inch)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression</td>
<td>250</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Modulus of Rupture</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Shear</td>
<td>20</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Modulus of Elasticity</td>
<td>400,000</td>
<td>500,000</td>
<td>500,000</td>
</tr>
</tbody>
</table>

TABLE NO. III—ALLOWABLE UNIT WORKING STRESSES
Reinforced Brick Masonry

<table>
<thead>
<tr>
<th>Type of Stress</th>
<th>1C-1/4L-4/8S Mortar Pounds per sq. in.</th>
<th>1C-4/8S Cement Grout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression (Extreme fibre stress in bending)</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Direct Compression on Piers</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Shear (no web reinforcement)</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Shear (with web reinforcement, taking entire shear)</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Bond: Deformed bars, Vertical bars; Horizontal bars</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Modulus of Elasticity E</td>
<td>1,200,000</td>
<td>1,500,000</td>
</tr>
<tr>
<td>Modulus of Rigidity G (Modulus of Elasticity in shear)</td>
<td>480,000</td>
<td>600,000</td>
</tr>
</tbody>
</table>

(b) Reinforced Brick Masonry. The formulas and assumptions used in the design of reinforced brick masonry shall be the same as required for reinforced concrete in Chapter 26.

The unit working stresses used in the design of reinforced brick masonry shall not exceed the values given in Table No. III of this Chapter, except as noted in Section 2307.

Mortar for reinforced brick masonry shall be composed of not more than one-half part by volume of lime putty or hydrated lime to one part by volume of portland cement and the sand content shall be equal to not more than three times the combined volumes of cement and lime.

Cement grout shall be composed of not less than one part portland cement to four and one-half parts of sand by volume. Sufficient water shall be added to produce a proper consistency for pouring without segregation of constituents.

All reinforced brick masonry shall be laid with full header courses at least every fourth course in height or there shall be at least one full header in every 48 square inches of wall surface, except that in brick work laid with all interior joints grouted, headers need not be used. All bed, end and wall joints shall be completely filled with mortar and all reinforcing steel shall be entirely embedded in the mortar. The vertical wall
TABLE NO. IV-(a)—ALLOWABLE WORKING STRESSES
Masonry of Hollow Units (End Construction)

<table>
<thead>
<tr>
<th>Type of Stress</th>
<th>Cement-Lime Mortar (Pounds per sq. in. gross area)</th>
<th>Cement Mortar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Modulus of Rupture</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Shear</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

TABLE NO. IV-(b)—ALLOWABLE WORKING STRESSES
Masonry of Hollow Units (Side Construction)

<table>
<thead>
<tr>
<th>Type of Stress</th>
<th>Cement-Lime Mortar (Pounds per sq. in. gross area)</th>
<th>Cement Mortar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Modulus of Rupture</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Shear</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

joints in grouted brick masonry shall be not less than three-quarters of an inch (¾”) wide. The clearance between the bar and the brick shall be at least one-half the diameter of the bar.

Reinforcing steel shall be deformed bars and shall be braced and held in place firmly enough to prevent the breaking of bond while brick is being laid.

All brick shall be thoroughly wet not less than one hour before laying and shall be damp at the time of laying.

(c) Concrete—Plain. The maximum allowable working stresses in masonry of plain concrete shall be the following percentages of the ultimate strength of the concrete in compression as determined by the requirements of Chapter 26.

Compression \(\leq 0.20f'_{c} \)

Shear or diagonal tension \(\leq 0.02f'_{c} \)

where \(f'_{c} \) represents the ultimate compressive strength.

(d) Masonry of Hollow Units. The maximum allowable working stresses in masonry of hollow units laid with cells vertical (end construction) shall not exceed the values shown in Table No. IV-(a) of this Chapter.

The maximum allowable stresses in masonry of hollow units laid with cells horizontal (side construction) shall not exceed the values shown in Table No. IV-(b) in this Chapter.

(e) Gypsum. Gypsum suspension systems, poured-in-place or precast, shall be not less than three inches (3”) in thickness, and shall be designed to carry the total estimated dead, live and other loads, with a factor of safety of not less than four, and shall be of such character as to be readily calculable by the use of accepted engineering formulas, in which the stress in the suspension wires or cables shall be determined by the formula:
\[T = \frac{WL}{8d} \sqrt{L^2 + 16d^2} \]

WHERE:

- \(T \) = Maximum tension in wires or cables in pounds per foot width of slab.
- \(W \) = Load in pounds per square foot.
- \(L \) = Clear span in feet between supports.
- \(d \) = Deflection or "dip" of wires or cables in feet at center of span.

TABLE NO. V—ALLOWABLE UNIT WORKING STRESSES

<table>
<thead>
<tr>
<th>TYPE OF STRESS</th>
<th>NEAT GYPSUM</th>
<th>GYPSUM FIBER CONCRETE with not more than 3 per cent of wood chips, excelsior or fiber</th>
<th>GYPSUM FIBER CONCRETE with not more than 12½ per cent of wood chips, excelsior or fiber</th>
<th>GYPSUM, Coarse, Aggregate Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extreme fiber stress in compression in flexure</td>
<td>350</td>
<td>220</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td>Direct compression or bearing</td>
<td>200</td>
<td>165</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bond between gypsum and reinforcing</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Shearing Stress</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>1,000,000</td>
<td>600,000</td>
<td>200,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Ratio of modulus of elasticity of steel to that of gypsum ((n))</td>
<td>30</td>
<td>50</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>
TABLE NO. VI—ALLOWABLE UNIT WORKING STRESSES

Ashlar Masonry

<table>
<thead>
<tr>
<th>Kind of Stone</th>
<th>Laid in Lime-Cement Mortar (Pounds per square inch)</th>
<th>Laid in Cement Mortar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>640</td>
<td>800</td>
</tr>
<tr>
<td>Limestone</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Marble</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>Sandstone</td>
<td>320</td>
<td>400</td>
</tr>
</tbody>
</table>

The wires or cables used shall be cold drawn steel in which the allowable working stress shall not exceed 20,000 pounds per square inch.

When precast or poured-in-place slabs or tiles of reinforced gypsum, in which the gypsum acts structurally, are used, they shall be designed to carry the total dead, live and other loads in accordance with the formulas for reinforced concrete construction as provided in Chapter 26.

The allowable working stresses shown in Table No. V of this Chapter shall not be exceeded.

(f) Stone Masonry. The maximum allowable compressive stresses in rubble stonework, due to combined live and dead loads, shall not exceed 140 pounds per square inch when laid in portland cement mortar, nor 100 pounds per square inch when laid in lime-cement mortar.

The maximum allowable compressive stress in ashlar masonry due to combined live and dead loads shall not exceed the limits given in Table No. VI of this Chapter.

Sec. 2412. The effects of eccentric loads and lateral forces shall be fully analyzed and allowances made for them in design. Concentrated loads shall be distributed so as not to exceed the allowable working stresses as specified in Sec. 2411 by more than 25 per cent.
CHAPTER 25—WOOD
(Quality and Design)

Sec. 2501. The quality and design of all wood except finish
and millwork, used in the construction of all buildings shall con-
form to the requirements of this chapter.

All members shall be so framed, anchored, tied and braced
together as to develop the strength and rigidity necessary for
the purpose for which they are used. No member shall be
stressed in excess of the strength of its details and connections.

Sec. 2502. All wood structural members shall be of suf-
ficient size and strength to carry their imposed loads safely
and without exceeding the allowable working stresses as speci-
ﬁed in Section 2503.

In determining the safe load which a member will sustain
or in determining the required size of a member the following
provisions shall govern:

(a) Rough Lumber. Where rough lumber is designated on
the plans and in the specifications, the full nominal size of the
member may be used for determining cross sectional area.

(b) Surfaced Lumber. Where surfaced lumber is designated
on the plans and in the specifications, the minimum surfaced
dressed sizes corresponding to nominal dimensions as indicated
in regional lumber manufacturers' association grading rules as
listed in Table No. I of this chapter shall be used unless actual
dressed sizes are indicated on plans.

(c) Unspeciﬁed Lumber. Where nominal dimensions of lum-
ber are indicated on plans and specifications, without reference
to surfacing, the minimum surfaced sizes corresponding to such
nominal dimensions shall be used for determining the cross sec-
tional area.

Sec. 2503. (a) Classiﬁcation of Lumber. For the purpose of
assigning allowable unit stresses to lumber used where its
strength is the controlling consideration, two general classes of
lumber shall be recognized, namely, “Structural Lumber” and
“Yard Lumber”.

(b) Structural Lumber: 1. Structural Lumber is that con-
forming to the requirements for the several grades in speciﬁca-
tions or grading rules designated in Table No. I of this chap-
ter which are based on the grading procedure of American
Lumber Standards, as set forth in “Wood Handbook”, U. S.
Department of Agriculture, September, 1935. Structural Lum-
ber shall be officially grade marked or accompanied by an of-
ﬁcial certificate of inspection from the regional lumber manu-
facturers’ association under whose rules the lumber is graded
unless other evidence as to its grade or quality is furnished to
and approved by the Building Inspector.

2. For long time loading conditions the maximum allow-
able stresses for lumber qualifying as “Structural Lumber” for
the species listed in Table No. 1 of this chapter, shall not ex-
<table>
<thead>
<tr>
<th>SPECIES</th>
<th>COMMERCIAL GRADE</th>
<th>Rules under which Graded</th>
<th>ALLOWABLE UNIT STRESSES, POUNDS PER SQ. INCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compression Parallel to Grain (Short Columns)</td>
</tr>
<tr>
<td>Western Red Cedar</td>
<td>Structural</td>
<td>West Coast Lumbermen's Assn. Seattle, Wash.; Standard Grading and Dressing Rules No. 10; July 1, 1934.</td>
<td>800</td>
</tr>
<tr>
<td>Tidewater Red Cypress</td>
<td>1400 # f Tidewater Red Cypress</td>
<td>Southern Cypress Mfgs. Assn. Jacksonville, Fla., May 16, 1934.</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>1200 # c</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>1000 # c</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Douglas Fir (Coast Region)</td>
<td>Dense Select Structural—210, 214, 218, 303</td>
<td>West Coast Lumbermen's Assn. Seattle, Wash.; Standard Grading and Dressing Rules No. 10; July 1, 1934.</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Select Structural No. 1 Timbers—210, 214, 218</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>No. 1 Dimension—195, 305(c)</td>
<td></td>
<td>880</td>
</tr>
<tr>
<td>Douglas Fir (Inland Empire)</td>
<td>Select Structural</td>
<td>Western Pine Assn. Portland, Ore.; Standard Grading Rules; Effective Jan. 1, 1934.</td>
<td>1300</td>
</tr>
<tr>
<td></td>
<td>Structural Common Structural</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>315</td>
<td>1200</td>
</tr>
<tr>
<td>Eastern Hemlock</td>
<td>Select Structural</td>
<td>Northern Hemlock & Hdw. Mfgs. Assn. Oshkosh, Wis., Nov. 19, 1932.</td>
<td>700</td>
</tr>
<tr>
<td>West Coast Lumbermen's Assn.</td>
<td>Seattle, Wash.; Standard Grading and Dressing Rules No. 10; July 1, 1934.</td>
<td>720</td>
<td>300</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Larch</td>
<td>Western Pine Assn. Portland, Ore.; Standard Grading Rules, Effective Jan. 1, 1934.</td>
<td>1300</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>345</td>
<td>1600</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>325</td>
<td>1200</td>
</tr>
<tr>
<td>Oak</td>
<td>Nat'l Hardwood Lumber Assn. Chicago, Ill., Jan., 1936.</td>
<td>1100</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>500</td>
<td>1100</td>
</tr>
<tr>
<td>Longleaf So. Pine</td>
<td>Southern Pine Assn. New Orleans, La., Sept. 1, 1932.</td>
<td>1400</td>
<td>2000</td>
</tr>
<tr>
<td>Select Structural</td>
<td>1300</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Prime Structural</td>
<td>1200</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>Merchantable Structural</td>
<td>1000</td>
<td>1400</td>
<td></td>
</tr>
<tr>
<td>Structural Sq. Edge and Sound No. 1 Structural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortleaf So. Pine</td>
<td>Southern Pine Assn. New Orleans, La., Sept. 1, 1932.</td>
<td>1400</td>
<td>2000</td>
</tr>
<tr>
<td>Dense Select Structural</td>
<td>1300</td>
<td>1800</td>
<td></td>
</tr>
<tr>
<td>Dense Structural</td>
<td>1200</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>Dense Str. Sq. Edge and Sound No. 1 Structural</td>
<td>900</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Redwood</td>
<td>California Redwood Assn. San Francisco, Calif., July, 1938.</td>
<td>1250</td>
<td>1700(1500) (^s)</td>
</tr>
<tr>
<td>Prime Structural</td>
<td>1100</td>
<td>1300(1300) (^s)</td>
<td></td>
</tr>
<tr>
<td>Select Structural</td>
<td>1000</td>
<td>1000(1100) (^s)</td>
<td></td>
</tr>
<tr>
<td>Heart Structural</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Length not more than ten times least dimension. This grade not intended for members to be used in bending.

2. With slope of grain not more than one inch (1") in ten inches (10").

3. Numbers refer to paragraph numbers, W.C.L.A. Standard Grading Rules No. 10.

4. Values in parentheses for Beams and Stringers, 5 inch and thicker; for side cut pieces, values 10% higher than these may be used. Other values for 4 inch and thinner.

5. Values in parentheses for Beams and Stringers thicker than 4 inches. Other values for thinner material.
ceed the values therein given. For species and grades not given in Table No. 1 of this chapter, the working stresses therefor shall be established by the Building Inspector in accordance with the principles in the “Guide to the Grading of Structural Timbers and the Determination of Working Stresses” (Miscellaneous Publication No. 185 of the U. S. Department of Agriculture.)

(c) Yard Lumber. Yard Lumber, for the purpose of this code, shall consist of grades not specifically designated as Structural Lumber and shall comply with Section 2502. Yard Lumber shall be grade marked as required for structural lumber unless other evidence as to its grade or quality is furnished to and approved by the Building Inspector. Yard Lumber, when used for load-bearing purposes for which computations are required, shall be assigned unit stresses by the Building Inspector in accordance with the procedure set forth in the “Wood Handbook”, September, 1935, U. S. Department of Agriculture. In no case shall an allowable unit stress assigned to Yard Lumber exceed 80 per cent of the corresponding allowable stress given in Table No. 1 of this chapter for the lowest of the structural grades there recognized.

Studding, posts and similar load-bearing members stressed primarily in compression shall be not lower in grade than No. 2 Common Dimension. Joists, rafters, planks, beams, stringers and similar horizontal load-bearing members stressed primarily in flexure shall be not lower in grade than No. 1 Common Dimension.

(d) Decrease of Unit Stresses for Various Conditions of Exposure. The various allowable unit stresses named in this Section are assigned for lumber used in continuously dry locations. For the condition of occasionally wet and quickly dried, the allowable unit stresses of Table No. 1 of this chapter shall be multiplied by the following reduction factors expressed in percentages:

- Extreme fiber in bending: 87 1/2 %
- Compression perpendicular to grain: 70 %
- Compression parallel to grain: 92 %
- Horizontal Shear: 100 %

For other conditions of exposure, allowable unit stresses of Table No. 1 of this Chapter shall be reduced as may be required by the Building Inspector.

(e) Unit Stresses—Intermittent Live Load. For the case of members designed for a live load that will be intermittent, or of infrequent occurrence and duration of less than 24 hours insofar as maximum conditions are concerned, unit stresses for bending in the extreme fiber and compression parallel to the grain may be increased 25 per cent. Such increase shall be applicable to roof rafters, roof joists and roof trusses. Such increase shall not be applicable where the dead load is greater than the live load, nor to the minimum required live loads on floors, nor shall it be applicable to columns. Allowable unit stresses may be used without allowance for impact up to impact of 100 per cent of loads figured.
(f) **Supplementary Provisions.** For joists spiked to studding and supported on a ribbon board gained into the studding the allowable unit stress in compression perpendicular to the grain may be increased 50 per cent above that specified elsewhere in this section, provided that the vertical load shall be considered to be transferred directly to the ribbon. For other conditions of bearing such unit stresses may be increased in accordance with the following factors for bearings less than six inches (6") in length and located three inches (3") or more from the end of the timber.

<table>
<thead>
<tr>
<th>Length of bearing (inches)</th>
<th>$\frac{1}{2}$</th>
<th>1</th>
<th>$1\frac{1}{2}$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor</td>
<td>1.85</td>
<td>1.60</td>
<td>1.45</td>
<td>1.30</td>
<td>1.15</td>
<td>1.10</td>
<td>1.00</td>
</tr>
</tbody>
</table>

For stress under a washer or small plate the factor of increase may be taken as for a bearing the length of which equals the diameter of the washer.

Sec. 2504. The maximum allowable unit stress in horizontal shear may be increased 50 per cent for the purpose of assigning safe allowable unit shearing stress values in designing the details of joints.

The maximum allowable unit stress in horizontal shear in beams and other members in flexure shall be computed by use of the following formula:

$$H = \frac{3R}{2bh}$$

WHERE

- $H =$ maximum unit horizontal shear, pounds per square inch
- $b =$ breadth of beam, inches
- $h =$ height of beam, inches
- $R =$ Reaction, pounds, under the following conditions: (1) Distribution of load to adjacent beams through flooring or other members shall be considered. (2) All loads uniform or concentrated, within a distance of the height of the beam from the nearest support shall be neglected.

Horizontal shear for notched members shall be computed in accordance with stress values given in Section 2521.

Sec. 2505. Columns, including struts and other members in compression parallel to grain, shall be designed structurally as follows:

(a) **Short Columns.** The safe load, in pounds per square inch of net cross sectional area, for columns and other members stressed in compression parallel to the grain, with a ratio of unsupported length to least dimension l/d not exceeding 11 (short columns), shall not exceed the allowable unit compression stress parallel to grain for short columns, as shown in Table No. I of this chapter, i.e.:

$$\frac{P}{A} = c$$

(b) **Intermediate columns.** For columns with a ratio of unsupported length to least dimension greater than 11 (intermediate columns), the following formula shall be used until the
reduction in allowable stress equals one-third the stress permitted for short columns:

\[
\frac{P}{A} = c \left[1 - \frac{1}{3} \left(\frac{l}{Kd} \right)^4 \right]
\]

(c) Long Columns. For columns with a ratio of unsupported length to least dimension greater than \(K\), (long columns), the safe unit load shall be determined by the following formula:

\[
\frac{P}{A} = \frac{\pi^2 E}{36 \left(\frac{l}{d} \right)^3} \left(\frac{l}{d} \right)^3
\]

WHERE
\[
P = \text{total load in pounds}
\]
\[
A = \text{area in square inches of net cross-section}
\]
\[
P = \text{working stress or maximum load per square inch}
\]
\[
c = \text{allowable unit stress in compression parallel to grain for short columns (Table No. I of this Chapter)}.
\]
\[
l = \text{unsupported length of column in inches}
\]
\[
d = \text{least dimension of column in inches}
\]
\[
E = \text{modulus of elasticity}
\]
\[
K = \frac{\pi}{2} \sqrt{\frac{E}{6c}}; \quad \text{at which} \quad \frac{P}{A} = \frac{2c}{3}
\]

Columns shall be limited in maximum length to \(L = 50(d)\).

(d) Round Columns. The safe load on a column of round cross-section shall not exceed that permitted for a square column of the same cross-sectional area.

\[
\text{Sec. 2506.} \quad \text{The maximum allowable intensity of horizontal shear due to beam action in any structural member may be increased to two and one-half times that allowed in Section 2503, provided this increased unit stress does not occur over a length greater than one and one-half times the depth of the member.}
\]

\[
\text{Sec. 2507.} \quad \text{The unit stress normal to a plane inclined to the fiber of a wood member shall not exceed that determined from the formula:}
\]

\[
n = \frac{Pq}{p \sin^2 \theta + q \cos^2 \theta}
\]

WHERE
\[
n = \text{allowable unit stress on inclined surface, pounds per square inch.}
\]
\[
p = \text{allowable compressive unit stress parallel to grain (Table No. I of this Chapter).}
\]
\[
q = \text{allowable compressive unit stress perpendicular to grain (Table No. I of this Chapter).}
\]
\[
\theta = \text{angle between the direction of the load and the direction of the grain in degrees.}
\]
TABLE NO. II-(a)—HOLDING POWER OF BOLTS
Loads Parallel to Grain (p)

<table>
<thead>
<tr>
<th>Length of Bolt in main member, in inches*</th>
<th>Diameter of Bolt in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>960</td>
</tr>
<tr>
<td>3</td>
<td>1050</td>
</tr>
<tr>
<td>4</td>
<td>1050</td>
</tr>
<tr>
<td>5</td>
<td>1050</td>
</tr>
<tr>
<td>6</td>
<td>1640</td>
</tr>
<tr>
<td>7</td>
<td>1640</td>
</tr>
<tr>
<td>8</td>
<td>1640</td>
</tr>
<tr>
<td>10</td>
<td>3210</td>
</tr>
<tr>
<td>12</td>
<td>4190</td>
</tr>
</tbody>
</table>

* This assumes full size lumber, i.e., not dressed sizes. Safe loads on dressed sizes may be obtained by interpolation.

TABLE NO. II-(b)—HOLDING POWER OF BOLTS
Loads Perpendicular to Grain (q)

<table>
<thead>
<tr>
<th>Length of Bolt in main member, in inches*</th>
<th>Diameter of Bolt in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>2</td>
<td>460</td>
</tr>
<tr>
<td>3</td>
<td>690</td>
</tr>
<tr>
<td>4</td>
<td>810</td>
</tr>
<tr>
<td>5</td>
<td>780</td>
</tr>
<tr>
<td>6</td>
<td>1110</td>
</tr>
<tr>
<td>7</td>
<td>1060</td>
</tr>
<tr>
<td>8</td>
<td>980</td>
</tr>
<tr>
<td>10</td>
<td>1800</td>
</tr>
<tr>
<td>12</td>
<td>2180</td>
</tr>
</tbody>
</table>

* This assumes full size lumber, i.e., not dressed sizes. Safe loads on dressed sizes may be obtained by interpolation.

Sec. 2508. (a) Design of Bolted Joints. Bolted joints wherein bolts are used to resist stresses in wood structures shall be designed in accordance with the principles set forth in the "Wood Handbook," U. S. Department of Agriculture, September, 1935, and in addition thereto shall comply with the requirements of this section.

(b) Safe Loads, Double Shear. Safe loads, in pounds on bolts in seasoned lumber of the following species: cedar, eastern red; cypress, southern; Douglas fir (coast region); larch, western; pine, southern yellow; redwood and tamarack, in joints consisting of three members in which the side members are one-half the thickness of the main member, shall not exceed values stated in Tables II-(a) and II-(b) of this Chapter.
(c) **Loads at Angle to Grain.** When a force is applied by means of a bolt at an angle with the fiber of a wood member, the safe load shall be determined in accordance with the formula:

\[
 n = \frac{p q}{p \sin^2 \theta + q \cos^2 \theta}
\]

WHERE

- \(n \): safe load in pounds on bolt.
- \(p \): safe load on bolt parallel to grain as determined from Table No. II-(a).
- \(q \): safe load on bolt perpendicular to grain from Table No. II-(b).
- \(\theta \): angle between direction of load and direction of member, in degrees.

(d) **Bolts in Other Species of Wood.** For species of wood other than those specified in the Table No. II, (a) and (b) of this section, bolt values shall be derived in accordance with the principles stated in "Wood Handbook", U. S. Department of Agriculture, September, 1935.

(e) **Joints Other than Double Shear.** When a joint consists of two members (single shear) of equal thickness, one-half the tabulated load for a piece twice the thickness of one of the members shall be used. When members of a two-member joint are of unequal thickness, one-half the tabulated load for a piece twice the thickness of the thinner member shall be used.

For multiple-member joints other than two or three members, the load for each shear plane shall be computed in the same manner as for a two-member joint.

(f) **Metal Side Plates.** When metal plates are used each side of a wood member, tabulated bolt values may be increased one-quarter for values parallel to the grain.

(g) **Joints in Wet Locations.** When the joint is to be used in a location "occasionally wet but quickly dried," tabulated bolt values shall be reduced one-quarter.

In locations "usually wet," tabulated bolt values shall be reduced one-third.

(h) **Definition of Seasoned Lumber.** "Seasoned lumber" for the purpose of this section, is defined as lumber which has been air-dried for at least 60 days, or which has at the time of installation in the structure reached a moisture content approximately equal to that which it will eventually contain in service.

Where green or recently cut lumber is used, tabulated bolt values shall be reduced one-third.

(i) **Bolt Holes.** Bolt holes in wood members shall be made the same diameter as the bolt, unless otherwise specified on plans. Bolt holes may be specified to be not more than one-sixteenth of an inch larger than the bolt, in which case allowable loads shall be reduced 10 per cent.

(j) **Bolt Hole Spacing.** "Row of Bolts is defined as a number of bolts placed in a line parallel to the direction of load. Minimum center-to-center spacing of bolts in any one row
for full design loads shall be four times the bolt diameter. In no case shall the bolt bearing capacity of any member be exceeded.

Spacing between rows of bolts for loads perpendicular to grain shall be not less than two and one-half times the bolt diameter for an I/d ratio of two, and not less than five times the bolt diameter for I/d ratios of six or more. Intermediate values shall be directly interpolated.

Spacing between rows of bolts for loads parallel to grain shall be such that the net tension area remaining at a critical section shall be not less than 80 per cent for softwoods, and 100 per cent for hardwoods, of the total area in bearing under all bolts in the particular timber.

End margin is defined as the distance from the end of a bolted member to the center of the bolt hole nearest the end. This distance, for a member in tension, shall be not less than seven times the bolt diameter for softwoods and five times for hardwoods. End margin, for members in compression, shall be not less than four times the bolt diameter.

Edge margin is defined as the distance from the edge of the timber to the center of the nearest bolt hole. For members loaded perpendicular to grain, edge margin nearest the edge toward which the load is acting shall be at least four times the bolt diameter. For members loaded parallel to grain, edge margin shall be at least one and one-half times the bolt diameter.

Sec. 2509. Joints wherein timber connectors are used with bolts to transmit stresses between structural or load-bearing members shall be designed in accordance with the principles and recommended safe loads set forth in "Wood Handbook" published by U. S. Department of Agriculture, September, 1935.

Safe loads and design practice for types of connectors not mentioned or fully covered by the above publication may be determined from other published recommendations, provided such recommendations are first approved by the Building Inspector. Allowable load values for timber connectors shall be based on empirical test data. Connector safe load values shall be determined from the combined resistance of the connector and its bolt.

Sec. 2510. In connections involving the use of tightly fitting cylindrical pins of iron, steel, heavy steel pipe or hardwood, the allowable load on a pin shall be determined in the same manner as for bolts as set forth in the "Wood Handbook," published by the U. S. Department of Agriculture, September, 1935.

Sec. 2511. (a) Penetration. Lag screws shall penetrate into the farther member not less than one and one-half times the thickness of the side member.

(b) Safe Lateral Strength. The safe lateral strength shall be equal to 75 per cent of the single shear value of a bolt of the same diameter in a main member of thickness equal to one and one-half times the thickness of the side member.

(c) Screws with Side Plates. Where lag screws are used with steel side plates the safe load shall be determined as for bolts in single shear with a wood side plate, considering the thickness of main member to be two-thirds of the penetration of lag screws into the timber member.
TABLE No. III-(a)—SAFE LATERAL RESISTANCE OF WOOD SCREWS
In Pounds Per Screw

<table>
<thead>
<tr>
<th>Kind of Wood</th>
<th>Gauge of Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Douglas fir</td>
<td>159</td>
</tr>
<tr>
<td>Redwood</td>
<td>124</td>
</tr>
</tbody>
</table>
| Other Species| | | | | | | Refer to "Wood Handbook"—U. S. Department of Agriculture, 1935.

TABLE NO. III-(b)—SAFE RESISTANCE OF WOOD SCREWS TO WITHDRAWAL
When Inserted Perpendicular to Grain of Wood in Pounds per Linear Inch of Screw

<table>
<thead>
<tr>
<th>Kind of Wood</th>
<th>Gauge of Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Douglas fir</td>
<td>125</td>
</tr>
<tr>
<td>Redwood</td>
<td>75</td>
</tr>
<tr>
<td>Other Species</td>
<td></td>
</tr>
</tbody>
</table>

(d) Placing. All lag screws shall be screwed and not driven into place.
In placing lag screws in wood, a hole shall first be bored of the same diameter and depth as the shank, after which the hole shall be continued to a depth equal to the length of the lag screw with a diameter equal to the diameter of the screw at the root of the thread.

(e) Holes. Holes for lag screws in steel plates shall be drilled to a diameter one-thirty-second of an inch larger than the nominal diameter of the lag screw.

Wood Screws

Sec. 2512. (a) Shear Connections. A wood screw used to fasten a metal plate to a wooden member or a wooden member to a wooden member shall not be subjected to a greater load causing shear and bending than the safe lateral strength of the wood screw as determined from Table No. III-(a) of this Chapter. Screws shall have an embedment into the farther member of at least six-tenths of the length of the screw. The length of the screw shall be not less than seven times the diameter of the screw.

(b) Tension Connections. A wood screw inserted perpendicular to the grain of the wood shall not be subjected to a greater load tending to cause withdrawal than the safe resistance of the screw to withdrawal as determined from Table No. III-(b) of this Chapter.
A wood screw inserted parallel to the grain of the wood shall not be allowed for resisting computed tensile stresses.
TABLE NO. IV-(a)—SAFE LATERAL STRENGTH OF COMMON WIRE NAILS
Inserted Perpendicular to the Grain of the Wood, in Pounds Per Nail

<table>
<thead>
<tr>
<th>Kind of Wood</th>
<th>Size of Nail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6d 8d 10d 12d 16d 20d 30d 40d 50d 60d</td>
</tr>
<tr>
<td>Length of Nail</td>
<td>2" 2(\frac{1}{2}" 3" 3(\frac{1}{4}" 3(\frac{1}{2}" 4" 4(\frac{1}{2}" 5" 5(\frac{1}{2}" 6"</td>
</tr>
<tr>
<td>Douglas fir or</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td></td>
</tr>
<tr>
<td>Redwood</td>
<td>70 100 120 130 160 190 220 270 310 360</td>
</tr>
<tr>
<td>Other Species</td>
<td>58 82 98 106 123 155 188 220 250 295</td>
</tr>
</tbody>
</table>

TABLE NO. IV-(b)—SAFE RESISTANCE TO WITHDRAWAL OF COMMON WIRE NAILS
Inserted Perpendicular to the Grain of the Wood, in Pounds Per Linear Inch of Penetration into the Main Member

<table>
<thead>
<tr>
<th>Kind of Wood</th>
<th>Size of Nail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6d 8d 10d 12d 16d 20d 30d 40d 50d 60d</td>
</tr>
<tr>
<td>Douglas Fir or</td>
<td></td>
</tr>
<tr>
<td>Southern Pine or Redwood</td>
<td></td>
</tr>
<tr>
<td>Other Species</td>
<td>27 29 35 35 39 48 52 56 61 67</td>
</tr>
</tbody>
</table>

Sec. 2513. (a) Safe Lateral Strength. A wire nail inserted perpendicular to the grain of the wood when used to fasten wooden members together, shall not be subjected to a greater load causing shear and bending than the safe lateral strength of the wire nail or spike as determined from Table IV-(a).

A wire nail inserted parallel to the grain of the wood shall not be subjected to more than three-fourths of the lateral load allowable when inserted perpendicular to the grain.

(b) Safe Resistance to Withdrawal. A wire nail inserted perpendicular to the grain of the wood shall not be subjected to a greater load, tending to cause withdrawal, than the safe resistance of the nail to withdrawal, as determined from Table No. IV-(b).

Nails inserted parallel to the grain of the wood shall not be allowed for resisting computed tensile stresses.

(c) Spacing and Penetration. Nails shall not be driven closer together than one-half their length unless driven in bored holes nor closer to the edge of the timber than one-quarter their length. Holes for nails when necessary to prevent splitting,
shall be bored of diameter smaller than that of the nails. Nails shall be of such length that, when joining one timber to another, the penetration of the nail into the second or farther timber shall be not less than one-half the length of the nail.

Washers

Sec. 2514. All bolts in direct tension shall be provided with steel plate washers under heads and nuts. The area of these washers must be such that the unit bearing stress on the wood shall not exceed the allowable unit stress. The washer shall be not less in thickness than one-tenth the diameter or the length of the longer side of the washer.

Bolts taking shear only shall have Standard O. G. malleable iron washers, or equivalent, under head and nuts.

Columns or Posts

Sec. 2515. For allowable unit stresses see Sections 2503, 2504 and 2505.

All wood columns and posts shall be framed to true end bearings; shall extend down to supports of such design as to securely hold the column or post in position and to protect its base from deterioration; shall be supported in basements by footings projecting at least two inches above the finished floor and separated therefrom by a metal plate of not less than one-quarter inch (1/4") thickness; shall not rest directly or indirectly on floor beams except in cases where there is no column below.

Preservatives shall be applied to column ends where necessary to protect against dampness.

Untreated wood columns in basements, when built into masonry partitions or walls, shall be exposed on at least two sides.

Wood posts, where used as foundations below ground and as piles, (except for minor structures), shall be pressure-treated with an approved preservative.

Built-Up Columns or Compression Members

Sec. 2516. The compressive strength of built-up columns or compression members, when composed of two or more members spiked or bolted together, either with or without spacing blocks between members, shall be taken as the combined compressive strength of the individual pieces, each considered as an independent column; provided, however, that compression members which are fastened together by bolts and timber connectors, or otherwise used in such a manner as to approach fixed-end conditions, or which are laterally braced parallel to the least dimension of the individual members, may be calculated as having 80 per cent of the compressive strength of long columns

\[
\frac{l}{d}
\]

having a slenderness ratio \(\frac{l}{d}\) based on the least overall dimension of the composite member.

Specially designed spaced compression members shall be based upon design principles acceptable to the Building Inspector.

Horizontal Members

Sec. 2517. Where joists enter stud walls, either exterior or interior, in which the studs are not cut off and capped underneath the joists thus giving bearing support thereto, such joists shall be bolted to the studs or may be supported on a wooden
ribbon not less than one inch by four inches (1"x4") set snugly into the studs. In the latter case design shall be in accordance with Section 2503 (f).

Joists under bearing partitions and running parallel thereto shall be doubled and well spiked or separated by solid bridging not more than sixteen inches (16") on centers to permit the passage of pipes.

The bearing surfaces of masonry on which wooden structural members are to rest shall be finished to give true and even support. When less than three feet (3') from the ground, the bearing surfaces of wooden joists, beams, girders, built-up girders, or rafters over six inches (6") in width of bearing, which would otherwise rest directly upon masonry or concrete shall be protected by approved metal bearing plates.

Every wooden joist, rafter, beam or girder entering any interior masonry or reinforced concrete wall shall be separated from any wood members entering the opposite side of said wall by at least four inches (4").

Ends of wood members entering masonry or concrete walls shall be treated with approved preservative or shall be provided with metal wall boxes affording one-half inch (½") air space on each side or shall be provided with at least one inch (1") of air space at top and sides.

Header beams shall be placed not closer than eighteen inches (18") from the face of a chimney. All spaces between chimneys and wood joists or beams shall be filled with loose incombustible materials placed in an incombustible support, or a metal collar connected to the chimney and fastened to the joists, beams or flooring to form an effective fire stop.

All joists shall have a minimum bearing of two inches (2") except when supported on a ribbon board and nailed securely to the adjoining stud.

Cutting of wood girders, beams or joists shall be limited to that permitted in Sections 2506 and 2521.

Sec. 2518. When timber construction is used in connection with masonry or reinforced concrete walls, the walls shall be tied to the interior timber construction at each floor and roof at horizontal intervals as required by design loads and stresses.

Where the joists, rafters or beams are supported by wooden girders, such girders shall be anchored to the walls so as to furnish resistance as required by the design loads and stresses.

Sec. 2519. Header joists over six feet (6') long and tail joists over twelve feet (12') long shall be hung in joist or beam hangers, or secured by other devices affording equivalent support.

Trimmers and header joists more than four feet (4') long shall be doubled.

Sec. 2520. Wooden cross bridging or metal cross bridging of equal strength shall be placed between joists if the span of the joists is greater than eight feet (8'). The distance between bridging or between bridging and bearing shall not exceed eight
feet (8'). Each member of wood cross bridging shall be not less than two inches by three inches (2"x3") nominal.

Solid bridging shall be placed between joists at all points of support, except when resting on ribbons, and at the edges of openings where the flooring is not continued.

Sec. 2521. Girders, beams or joists, may be notched or bored in any part of the section within three times the beam depth from either support. Such notches or holes shall not exceed one-fifth of the depth of beam except at point of support and as hereinafter provided.

Where girders, beams or joists are notched at points of support they shall meet design requirements for net section in bending and also for shear. Shear value shall be checked in accordance with the following formula:

\[
V = \frac{2b d^2 H}{3h}
\]

WHERE

- \(V\) = vertical shear at section under consideration.
- \(b\) = width of beam.
- \(d\) = actual depth of beam at the notch.
- \(h\) = total depth of beam.
- \(H\) = allowable unit horizontal shear stress.

Where notches or holes are made in other portions of the beam, the net remaining depth of beam shall be used in determining the bending strength.

Deflection

Sec. 2522. Joists supporting plastered ceilings shall be so proportioned that their deflection under full live load and dead load, exclusive of weight of plaster, shall not exceed one three-hundred-and-sixtieth of the span length.

Laminated Floors

Sec. 2523. Every member of a solid or laminated floor, consisting of members set closely together on edge, shall be firmly nailed with two nails at each end and at intervals along its length not greater than eighteen inches (18""). The nails used shall be of a length equal to two and one-half times the thickness of a single lamination. Devices of equivalent strength may be used in lieu of nails.

In the case of laminated floors in structures of more than one span, at least two-thirds of the members shall pass over the supports. In any three consecutive members, no two splices shall be nearer to each other than one-quarter of a span length. No member shall be spliced more than once in a distance equal to a span length.

In all single span laminated floors the members forming the floor shall be full length and free from joints.

When laminated floors bear on a masonry wall, suitable anchorage shall be provided capable of resisting the design forces. (See also Section 3104.)
Sec. 2524. (a) Placing. Studs in walls and partitions may be placed with the longest dimension parallel with the wall or partition, provided the studs are considered as columns and comply with the column formulas. Such walls shall have top and bottom plates except when framed as provided in Section 2517, first paragraph.

(b) Plates. In bearing partitions the top plate shall be doubled and lapped at each intersection with walls or partitions. Joints in the upper and lower members of the top plate shall be staggered not less than four (4) feet.

(c) Bridging. All stud partitions or walls over ten feet (10') in height shall have herringbone bridging, not less than two inches (2") in thickness and of the same width as the stud, fitted snugly and spiked into the studs at mid-height of stud, or other means for giving equal lateral support to the studs. Herringbone bridging may serve as fire-stopping as required in Section 2526.

(d) Size and Height. Exterior stud walls and bearing partitions for buildings of two stories or less shall consist of not less than two-inch by four-inch (2"x4") studs; for buildings of three stories, the stud framing shall be not less than three-inch by four-inch (3"x4") or two-inch by six-inch (2"x6") to the bottom of the second floor joists and two-inch by four-inch (2"x4") for the two upper stories. Maximum allowable height of two-inch by four-inch (2"x4") and three-inch by four-inch (3"x4") stud framing shall be fourteen feet (14') and of two-inch by six-inch (2"x6") stud framing shall be twenty feet (20') unless the wall is supported laterally by adequate framing. No studding shall be spaced more than sixteen inches (16") center, except that in lieu of this requirement the studs and plates may be designed as a system of columns and beams, provided structural grade material is used.

(e) Base Plates. Stud walls resting on masonry shall have base plates or sills of foundation grade redwood, cedar, cypress or wood treated with approved preservative. Such sills shall be bolted to the masonry at corners and between corners with bolts not less than one-half inch (\(\frac{1}{2}\)"") in diameter, embedded not less than seven inches (7") into the masonry and spaced not more than six feet (6') apart, center to center. These sills shall be not less than the width of the studs nor less than two inches (2") thick.

(f) Corners. Angles at corners where stud walls or partitions meet shall be framed solid so that no lath can extend from one wall to another. All exterior and main cross stud partitions shall be effectively and thoroughly angle braced.

(g) Pipes in Walls. Stud partitions containing plumbing, heating or other pipes shall be so framed and the joists underneath so spaced as to give proper clearance for the piping. Where a partition containing such piping runs parallel to the floor joists, the joists underneath such partitions shall be doubled and spaced to permit the passage of such pipes and shall be bridged with solid bridging. Where plumbing, heating or other pipes are placed in or partly in a partition, necessitating the cutting of the soles or plates, a metal tie not less than
one-eighth inch (3/8") thick and one-and one-half inches (1 1/2") wide shall be fastened to the plate across and to each side of the opening with not less than four 16d nails.

(h) Chimney Space. Wood lath, furring or framing shall be placed not less than two inches (2") from any chimney and not less than four inches (4") from the back of any fireplace.

(i) Underpinning. The underpinning of bearing stud walls shall be so constructed as to resist the design forces.

(j) Headers. All wall openings four feet (4') wide or less shall be provided with double headers not less than two inches (2") thick, placed on edge, securely fastened together, and such headers shall have two-inch (2") solid bearing to the floor or bottom plate. All openings more than four feet (4') wide shall be trussed or provided with lintels which shall have not less than two-inch (2") solid bearing at each end to the floor or bottom plate.

Nailing and Fastening

Sec. 2525. The wooden framework of all buildings shall be connected together in a secure manner, and the connections between the various parts shall be such that all forces will be adequately resisted. The sheathing and the sub-flooring shall be fastened to the studs, rafters or joists with nails which shall be in length at least two and one-half times the nominal thickness of the sheathing or subflooring. The nailing shall have an average spacing not more than four inches (4") along each stud, rafter or joist.

Fire Stops

Sec. 2526. Firestopping shall be provided to cut off all concealed draft openings (both vertical and horizontal), and form an effective fire barrier between stories, and between a top story and the roof space. It shall be used in specific locations, as follows:

1. In exterior or interior stud walls, at ceilings and floor levels.
2. In all stud walls and partitions, including furred spaces, so placed that the maximum dimension of any concealed space is not over seven feet (7').
3. In furred masonry walls.
4. Between stair stringers at least once in the middle portion of each run, at top and bottom, and between studs, along and in line with run of stair adjoining such partition.
5. Around top, bottom, sides and ends of sliding door pockets.
6. Spaces between chimneys and wood framing; these shall be solidly filled with mortar, loose cinders or other incombustible material placed in incombustible supports.
7. Any other locations not specifically mentioned above, such as holes for pipes, shafting, etc., which could afford a passage for flames.
Fire stops shall be of two-inch (2") nominal material. If width of opening is such that more than one piece of lumber is necessary, there shall be two thicknesses of one-inch (1") material with joints broken.

Sec. 2527. The space between bottom of floor joists and the ground of any building (except such space as is occupied by a basement or cellar) shall be provided with a sufficient number of ventilating openings through foundation walls or exterior walls to insure ample ventilation, and such openings shall be covered with a corrosion-resistant wire mesh with openings in such mesh not greater than one-half inch (½") in any dimension. The minimum total area of ventilating openings shall be proportioned on the basis of two square feet (2 sq. ft.) for each twenty-five linear feet (25 lin. ft.) or major fraction thereof of exterior wall. Such openings need not be placed in the front of the building.

Minimum clearance between bottom of floor joists and the ground beneath shall be eighteen inches (18").

Sec. 2528. Wood diaphragms may be used to distribute horizontal forces to resisting elements such as walls or partitions, provided the maximum deflection in the plane of the diaphragm, as determined by tests or analogies drawn therefrom, does not exceed the permissible deflection of such wall or partition.

In determining the permissible deflection of walls or partitions, the actual elastic properties of the materials (modulus of elasticity, allowable extreme fiber stresses, etc.) may be determined by tests or other data acceptable to the Building Inspector, or the assigned values for such properties elsewhere herein provided shall be used.

In determining the maximum horizontal deflection of a proposed wood diaphragm under assumed design loads, data from actual tests of diaphragms corresponding to the type proposed may be used or an analogy may be drawn from data furnished in an article entitled "Tests Indicate Design Methods for Earthquake-Proof Timber Floors" appearing in the Engineering News-Record for June 20, 1933, or in "The Rigidity and Strength of Frame Walls" published by the U. S. Forest Products Laboratory.

Connections and anchorage of wood diaphragms to resisting elements shall be provided along all the margins of the diaphragm. Such connections shall be capable of resisting the design loads or forces elsewhere herein prescribed.

Sec. 2529. For termite and fungus control provisions, see Appendix.
CHAPTER 26—REINFORCED CONCRETE
(Quality and Design)

Quality

Sec. 2601. The quality of the materials used in reinforced concrete and the quality of reinforced concrete shall conform to the physical and chemical properties as specified in Sections 2604, 2605 and 2606.

Design

Sec. 2602. The design of reinforced concrete shall conform to the rules and principles specified in this Chapter.

Definitions

Sec. 2603. The following definitions give the meaning of certain terms as used in this Chapter.

Aggregate—Inert material which is mixed with portland cement and water to produce concrete.

Column—An upright compression member the length of which exceeds three times its least lateral dimension.

Column Capital—An enlargement of the upper end of a reinforced concrete column designed and built to act as a unit with the column and flat slab.

Column Strip—A portion of a flat slab panel one-half panel in width occupying the two quarter-panel areas outside of the middle strip, and extending through the panel in the direction in which bending moments are being considered.

Combination Column—A column in which a structural steel section, designed to carry the principal part of the load, is wrapped with wire and encased in concrete of such quality that some additional load may be allowed.

Composite Column—A column in which a steel or cast-iron section is completely encased in concrete containing reinforcement of spiral reinforcement and longitudinal bars.

Concrete—A mixture of portland cement, fine aggregate, coarse aggregate and water.

Deformed Bar—Reinforcing bars with closely spaced shoulders, lugs or projections formed integrally with the bar during rolling so as to firmly engage the surrounding concrete. Wire mesh with welded intersections not farther apart than twelve inches (12") in the direction of the principal reinforcement and with cross wires not smaller than No. 10 may be rated as a deformed bar.

Diagonal Band—A group of bars covering a width approximately 0.4 the average span, symmetrical with respect to the diagonal running from corner to corner of the panel of a flat slab.

Direct Band—A group of bars, covering a width approximately 0.4 \(l_n \), symmetrical with respect to the center lines of the supporting columns of a flat slab.

Dropped Panel—The structural portion of a flat slab which is thickened throughout an area surrounding the column capital.

Effective Area of Concrete—The area of a section which lies between the centroid of the tensile reinforcement and the compression face of a slab or beam.
Effective Area of Reinforcement—The area obtained by multiplying the right cross-sectional area of the metal reinforcement by the cosine of the angle between its direction and that for which the effectiveness of the reinforcement is to be determined.

Flat Slab—A concrete slab reinforced in two or more directions, generally without beams or girders to transfer the loads to supporting columns.

Gunite—A mixture of portland cement and fine aggregate, mixed dry, passed through a cement gun, or other similar device, hydrated at the nozzle and deposited under pressure in its place of final repose. It shall be considered as concrete for particulars of design as specified in this Chapter.

Laitance—Extremely fine material of little or no hardness which may collect on the surface of freshly deposited concrete or mortar, resulting from the use of excess mixing water and usually recognized by its relatively light color.

Middle Strip—A portion of a flat slab panel one-half panel in width, symmetrical with respect to the panel center line and extending through the panel in the direction in which bending moments are being considered.

Mortar—A mixture of portland cement, fine aggregate and water.

Negative Reinforcement—Reinforcement so placed as to take tensile stress due to negative bending moment.

Panelized Ceiling—The ceiling of a flat slab in which approximately that portion of the area enclosed within the intersection of the two middle strips is reduced in thickness.

Panel Length—The distance along a panel side from center to center of columns of a flat slab.

Pedestal—An upright compression member whose height does not exceed three times its least lateral dimension.

Plain Concrete—Concrete without metal reinforcement, or reinforced only for shrinkage or temperature changes.

Portland Cement—The product obtained by finely pulverizing clinker produced by calcining to incipient fusion an intimate and properly proportioned mixture of argillaceous and calcareous materials, with no additions subsequent to calcination excepting water and calcined or uncalcined gypsum.

Positive Reinforcement—Reinforcement so placed as to take tensile stress due to positive bending moment.

Ratio of Reinforcement—The ratio of the effective area of the reinforcement cut by a section of a beam or slab to the effective area of the concrete at that section.

Reinforced Concrete—Concrete in which metal other than that provided for shrinkage or temperature changes is embedded in such a manner that the two materials act together in resisting forces.

Surface Water—The water carried by the aggregate except that held by absorption within the aggregate particles themselves.

(b) **Concrete Aggregates.** Concrete aggregates shall conform to the “Tentative Specifications for Concrete Aggregates” (A. S. T. M. Designation: C33-37T) including the methods of sampling and testing. Except that aggregates that have been shown by test or actual service to produce concrete of the required strength, durability, water-tightness and wearing qualities may be used under Sec. 2606 Method 2, where authorized by the Building Inspector.

The maximum size of the aggregate shall be not larger than one-fifth of the narrowest dimension between forms of the member for which the concrete is to be used nor larger than three-fourths of the minimum clear spacing between reinforcing bars.

(c) **Water.** Water used in mixing concrete shall be clean and free from injurious amounts of oil, acid, alkali, organic matter or other harmful substances.

(d) **Metal Reinforcement.** Metal reinforcement shall conform to the requirements of “Standard Specifications for Billet-Steel Reinforcement Bars” (A. S. T. M. Designation A15-35)\(^1\) of the American Society of Testing Materials for structural, intermediate or hard grade, or “Standard Specifications for Rail-Steel Concrete Reinforcement Bars” (A. S. T. M. Designation A16-35)\(^1\) of the American Society for Testing Materials; or “Standard Specifications for Cold-Drawn Steel Wire for Concrete Reinforcement” (A. S. T. M. Designation A82-34)\(^1\); provided, that hard grade billet steel bars larger than three-fourths inch (\(\frac{3}{8}\)) in diameter shall not be used where bending would be required; and provided, further, that the requirements in the above mentioned specifications for machining of deformed bars shall be eliminated.

Deformed bars, to receive that rating which permits the use of higher bond stresses than allowed for plain bars, shall show a bond strength 25 per cent greater than that shown by plain bars of equivalent cross-sectional area.

(e) **Storage.** Storage of cement and aggregates shall be in a manner to prevent deterioration or the intrusion of foreign matter. Any material which has been damaged shall be immediately and completely removed from the work.

Sec. 2605. On concrete or reinforced concrete work the Building Inspector shall have the right to require the owner or his agent to make tests of the concrete and other materials from time to time to determine whether the materials and methods in use are such as to produce concrete or reinforced concrete of the quality specified and used in the design of the building or

\(^{1}\)See “Specification Documents”.

144
structure. The tests shall be made, when ordered by the Building Inspector, by the owner or his authorized representative and no responsibility for the expense of these tests shall attach to the Building Department. All such tests shall be made by competent persons approved by the Building Inspector and copies of the results shall be kept on file in the office of the Building Inspector for a period of not less than two years after the acceptance of the structure. Specimens for concrete cylinder tests shall be taken at the place where the concrete is being deposited and shall be taken, cured and tested in accordance with the “Standard Method of Making and Storing Specimens of Concrete in the Field,” (A.S.T.M. Designation C31-33)\(^1\) of the American Society for Testing Materials.

The Building Inspector shall have the right to order the test under load of any portion of a completed structure, when the conditions have been such as to leave reasonable doubt as to the adequacy of the structure to serve the purpose for which it is intended.

When a load test is required, the member or portion of the structure under consideration shall be subject to a superimposed load equal to one and one-half times the live load plus one-half of the dead load. This load shall be left in position for a period of 24 hours before removal. If, during the test, or upon removal of the load, the member or portion of the structure shows evident failure, such changes or modifications as are necessary to make the structure adequate for the rated capacity shall be made; or, where lawful, a lower rating shall be established. The structure shall be considered to have passed the test if the maximum deflection at the end of the 24 hour period does not exceed the value of \(D\) as given by the following:

\[
D = \frac{0.001}{12} \left(\frac{L^2}{t}\right) \tag{1}
\]

WHERE:

- \(L\) is the span,
- \(t\) is the total depth of the slab or beam and
- \(D\) is the maximum deflection—all expressed in the same units.

If the deflection exceeds the value of \(D\) as given in formula (1), the construction shall be considered to have passed the test if within 24 hours after the removal of the load the slabs or beams show a recovery of at least 75 per cent of the observed deflection.

Sec. 2606. For the design of reinforced concrete structures, the value of \(f'\) used for determining the working stresses as stipulated in Section 2613 shall be based on the specified minimum ultimate 28-day compressive strength of the concrete, or on the specified minimum ultimate compressive strength at the earlier age at which the concrete may be expected to receive its full load. All plans, submitted for approval or used on the job shall clearly show the assumed strength of concrete at a specified age for which all parts of the structure were designed.

\(^1\)See “Specification Documents”.

145
TABLE No. I.—ASSUMED STRENGTH OF CONCRETE MIXTURES

<table>
<thead>
<tr>
<th>Water-Content U.S. Gallons Per 94-lb. Sack of Cement</th>
<th>Assumed Compressive Strength at 28 Days in p.s.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7½</td>
<td>2000</td>
</tr>
<tr>
<td>6½</td>
<td>2500</td>
</tr>
<tr>
<td>6</td>
<td>3000</td>
</tr>
<tr>
<td>5</td>
<td>3750</td>
</tr>
</tbody>
</table>

NOTE: In interpreting this table, surface water contained in the aggregate must be included as part of the mixing water in computing the water-content.

All concrete exposed to freezing and thawing weather shall have a minimum ultimate 28-day compressive strength of not less than 3000 pounds per square inch. All other concrete shall have a minimum compressive strength of 2000 pounds per square inch.

The determination of the proportions of cement, aggregate and water to attain the required strengths shall be made by one of the following methods:

Method 1—Concrete made from average materials—When no preliminary tests of the materials to be used are made, the water-content per sack of cement shall not exceed the values in Table No. I of this chapter. Method 2 shall be employed when artificial aggregates or admixtures are used.

Method 2—Controlled Concrete—Proportions of the materials and water-content, other than those shown in Table No. I, may be used provided that the strength-quality of the materials proposed for use in the structure shall be established by tests which shall be made in advance of the beginning of operations, using the consistencies suitable for the work and in accordance with the "Standard Method of Making Compression Tests of Concrete" (A. S. T. M. Designation: C39-33)\(^1\). A curve representing the relation between the water-content and the average 28-day compressive strength or earlier strength at which the concrete is to receive its full working load, shall be established for a range of values including all the compressive strengths called for on the plans. The curve shall be established by at least four points, each point representing average values from at least four test specimens. The water-content used in the concrete for the structure as determined from the curve, shall correspond to a strength which is 20 per cent greater than that called for on the plans, for concrete of a compressive strength less than 2500 pounds per square inch and 15 per cent greater for concrete of a compressive strength of 2500 pounds per square inch or more. No substitutions shall be made in the materials used on the work without additional tests in accordance herewith to show that the quality of the concrete is satisfactory.

\(^1\)See "Specification Documents".
Sec. 2607. The proportions of aggregate to cement for any concrete shall be such as to produce a mixture which will work readily into the corners and angles of the forms and around reinforcement with the method of placing employed on the work, but without permitting the materials to segregate or excess free water to collect on the surface. The combined aggregates shall be of such composition of sizes that when separated on the No. 4 standard sieve, the weight passing the sieve (fine aggregate) shall be not less than 30 per cent nor greater than 50 per cent of the total unless otherwise required by the Building Inspector, except that these proportions do not necessarily apply to light-weight aggregates.

Admixtures of lime or finely pulverized inert materials may be added but not in excess of six per cent by volume of the cement used.

Sec. 2608. The methods of measuring concrete materials shall be such that the proportions of all materials can be accurately controlled during the progress of the work and easily checked at any time by the Building Inspector or his authorized representative. A tolerance of one-fourth gallon of water per sack of cement in any batch of concrete will be allowed provided that the average for any 10 consecutive batches does not show a water content greater than that shown in Table No. I of this Chapter, and on plans as specified in Section 2606.

The method of delivering the aggregates to the work and of storing and handling shall be such that the moisture content of the aggregates as they come to the mixer shall not be subject to frequent or unnecessary changes.

Sec. 2609. (a) Mixing. The concrete shall be mixed until there is a uniform distribution of the materials and the mass is uniform in color and homogeneous. In machine mixing, only batch mixers shall be used. Each batch shall be mixed not less than one minute after all the materials are in the mixer and must be discharged completely before the mixer is recharged. Machine mixers shall have a peripheral speed of approximately two hundred feet (200') per minute.

Ready mixed concrete shall be mixed and delivered in accordance with the requirements set forth in the "Standard Specifications for Ready Mixed Concrete" (A. S. T. M. Designation: C94-35).

(b) Cleaning Forms and Equipment. Before concrete is placed all equipment for mixing and transporting the concrete shall be cleaned, all debris shall be removed from the spaces to be occupied by the concrete, forms shall be thoroughly wetted (except in freezing weather) or oiled, and masonry that will be in contact with concrete shall be well drenched (except in freezing weather). Reinforcement shall be thoroughly cleaned
and secured in position. Concrete shall not be placed until the forms and reinforcement have been inspected and approved by the Building Inspector.

(c) **Removal of Water From Excavations.** Water shall be removed from excavations before concrete is deposited, unless otherwise directed by the Building Inspector. Any flow of water into an excavation shall be diverted through proper side drains to a sump, or be removed by other approved methods which will avoid washing the freshly deposited concrete. Water vent pipes and drains shall be filled by grouting or otherwise, after the concrete has hardened thoroughly.

(d) **Transporting Concrete.** Concrete shall be handled from the mixer to the place of final deposit as rapidly as practicable by methods which shall prevent the separation or loss of the ingredients. It shall be deposited as nearly as practicable in its final position to avoid rehandling or flowing. Under no circumstances shall concrete that has attained its initial set be used.

Equipment for chuting, pumping and pneumatically conveying concrete shall be of such size and design as to insure a practically continuous flow of concrete at the delivery end without separation of the materials.

(e) **Placing.** Concrete shall be thoroughly compacted with suitable tools. When necessary, openings shall be provided in the forms to permit the placing of concrete in such a manner as to avoid accumulations of hardened concrete on the forms or reinforcing bars. The concrete shall be thoroughly worked around the reinforcement.

(f) **Curing.** Exposed surfaces of concrete shall be kept moist for a period of at least seven days after being deposited for ordinary cement and three days for high early strength cement.

(g) **Depositing in Cold Weather.** Adequate equipment shall be provided for heating the concrete materials and protecting the concrete during freezing or near-freezing weather. No frozen materials or materials containing ice shall be used.

All concrete materials and all reinforcement, forms, fillers and ground with which the concrete is to come in contact, shall be free from frost. Whenever the temperature of the surrounding air is below 40 degrees Fahrenheit all concrete placed in the forms shall have a temperature of between 70 degrees Fahrenheit and 100 degrees Fahrenheit, and adequate means shall be provided for maintaining a temperature of 50 degrees Fahrenheit for not less than 72 hours after placing or for as much more time as is necessary to insure proper curing of the concrete. No dependence shall be placed on salt or other chemicals for the prevention of freezing. Manure, when used for protection shall not be applied directly to concrete.

(h) **Bonding Fresh and Hardened Concrete.** Before new concrete is deposited on or against concrete which has set, the forms shall be re-tightened, the surface of the set concrete shall be roughened, cleaned of foreign matter and laitance and thor-
oughly wetted but not saturated. The cleaned and wetted surfaces of the hardened concrete, including vertical and inclined surfaces, shall first be slushed with a coating of 1:2 cement mortar against which the new concrete shall be placed before the mortar has attained its initial set.

Sec. 2610. (a) Design of Forms. Forms shall conform to the shape, lines and dimensions of the member as called for on the plans and shall be substantial and sufficiently tight to prevent leakage of mortar. They shall be properly braced or tied together so as to maintain position and shape. If adequate foundation for shores cannot be secured, trussed supports shall be provided.

Temporary openings shall be provided at the base of column and wall forms, and at other points where necessary, to facilitate cleaning and inspection.

(b) Removal of Forms. Forms shall not be disturbed until the concrete has hardened sufficiently to permit their removal with safety. Shoring shall not be removed until the member has acquired sufficient strength to support safely its own weight and the load upon it. Members subject to additional loads during construction shall be adequately shored to support both the member and construction loads in a manner that will protect the member from damage.

The Building Inspector may require forms to remain in place for a specified time.

(c) Cleaning and Bending Reinforcement. Metal reinforcement, at the time concrete is placed, shall be free from rust scale or other coatings that will destroy or reduce the bond. Bends for stirrups and ties shall be made around a pin having a diameter not less than two times the minimum thickness of the bar. Bends for other bars shall be made around a pin having a diameter not less than six times the minimum thickness of the bar, except that for bars larger than one inch, the pin shall be not less than eight times the minimum thickness of the bar. All bars shall be bent cold.

(d) Placing Reinforcement. Metal reinforcement shall be accurately placed and secured and shall be supported by chairs, spacers, or hangers. The minimum clear distance between parallel bars shall be one and one-half times the diameter for round bars or one and one-half times the diagonal for square bars. The minimum clear distance between bars and forms shall be the diameter of round bars and the diagonal of square bars. If the ends of bars are anchored as specified in Section 2618, the clear spacing may be made equal to the diameter of round bars or to the diagonal of square bars, but in no case shall the spacing between bars be less than one inch (1"), nor less than one and one-third times the maximum size of the coarse aggregate. Bars shall be embedded a distance from any face of any member not less than the minimum distance as specified in Sec. 4301.

When wire or other reinforcement, not exceeding one-fourth inch (1/4") in diameter is used as reinforcement for slabs not exceeding ten feet (10') in span, the reinforcement may be
curved from a point near the top of the slab over the support to a point near the bottom of the slab at mid-span; provided such reinforcement is either continuous over, or securely anchored to the support.

(e) Splices and Offsets in Reinforcement. In slabs, beams and girders, splices of reinforcement shall not be made at points of maximum stress without the approval of the Building Inspector. Splices, where permitted, shall provide sufficient lap to transfer the stress between bars by bond and shear. In such splices the bars shall be spaced at the minimum distance specified in paragraph (d) of this Section.

Where changes in the cross section of a column occur, the longitudinal bars shall be offset in a region where lateral support is afforded. Where offset, the slope of the inclined portion shall not be more than 1 in 6, and in the case of tied columns the ties shall be spaced not over three inches (3") on centers for a distance of one foot (1') below the actual point of offset.

(f) Protective Covering of Concrete. At the under side of footings metal reinforcement shall have a minimum covering of three inches (3") of concrete.

In fire-resistant construction, metal reinforcement shall be protected as specified in Section 4301.

Exposed reinforcement bars intended for bonding with future extensions shall be protected from corrosion.

(g) Construction Joints. Joints not indicated on the plans shall be so made and located as to least impair the strength of the completed structure. Where a joint is to be made, any excess water and laitance shall be removed from the surface after concrete is deposited. Before depositing of concrete is resumed the hardened surface shall be treated as specified in paragraph (h) of Section 2609.

At least two hours must elapse after concrete is deposited in the columns or walls before depositing in beams, girders, or slabs supported thereon. Haunches and column capitals shall be considered as part of, and to act continuous with, the floor.

Construction joints in floors shall be located near the middle spans of slabs, beams or girders, unless a beam intersects a girder at this point, in which case the joints in the girders shall be offset a distance equal to twice the width of the beam. Provision shall be made for shear by use of reinforcement, inclined in both directions across the joint.

Pipes which will contain liquid, gas or vapor at other than room temperature shall not be embedded in concrete necessary for structural stability or fire protection. Drain pipes and pipes whose contents will be under pressure greater than atmospheric pressure by more than one pound per square inch shall not be embedded in structural concrete except in passing through from one side to the other of a floor, wall or beam. Electric conduits and other pipes whose embedment is allowed shall not, with their fittings, displace that concrete of a column on which stress is calculated or which is required for fire protection, to greater extent than four per cent of the area of the cross section. Sleeves or other pipes passing through floors, walls or beams shall not be of such size or in such location as unduly to impair the strength of the construction; such sleeves or pipes
may be considered as replacing structurally the displaced concrete, provided they are not exposed to rusting or other deterioration, are of uncoated iron or steel not thinner than standard wrought-iron pipe, have a nominal inside diameter not over two inches, and are spaced not less than three diameters on centers. Embedded pipes or conduits other than those merely passing through shall not be larger in outside diameter than one-third the thickness of the slab, wall or beam in which they are embedded; shall not be spaced closer than three diameters on centers, nor so located as unduly to impair the strength of the construction. Circular uncoated or galvanized electric conduit of iron or steel may be considered as replacing the displaced concrete.

Sec. 2611. The design of reinforced concrete members shall be made with reference to working stresses and safe loads. The accepted theory of flexure as applied to reinforced concrete shall be applied to all members resisting bending. The following assumptions shall be made:

1. The steel takes all the tensile stress.
2. In determining the ratio \(n \) for design purposes, the modulus of elasticity for the concrete shall be taken as \(1000\psi_c \), and that for steel as 30,000,000 pounds per square inch.

Sec. 2612. The symbols and notations used in these regulations are defined as follows:

\[
\begin{align*}
 a &= \text{Width of face of column or pedestal.} \\
 \alpha &= \text{Angle between inclined web bars and axis of beam.} \\
 A &= \text{Total area of top of pedestal, pier, or footing at the column base; the span length between opposite supports in one direction (floors with supports on four sides).} \\
 A' &= \text{Loaded area of pedestal, pier, or footing at the column base.} \\
 A_c &= \text{Area of core of a spirally-reinforced column measured to the outside diameter of the spiral; net area of concrete section of a composite column.} \\
 A_t &= \text{The overall or gross area of spirally-reinforced or tied columns; the total area of the concrete encasement of combination columns.} \\
 A_r &= \text{Area of the steel or cast iron core of a composite column; the area of the steel core in a combination column.} \\
 A_s &= \text{Effective cross-sectional area of reinforcement in tension in beams or in compression in columns; the effective cross-sectional area of reinforcement which crosses any of the principal design sections of a flat slab.} \\
 A_w &= \text{Total area of web reinforcement in tension within a distance of \(s \), or the total area of all bars bent up in any one plane.} \\
 b &= \text{Width of rectangular beam or width of flange of T-beam.} \\
 b' &= \text{Thickness of web in beams of I or T sections.} \\
 b_1 &= \text{Dimension of the dropped panel of a flat slab in the direction parallel to \(l_1 \).} \\
 B &= \text{Span at right angles to span \(A \) (floors with supports on four sides).} \\
 c &= \text{Diameter, in feet, of column capital of a flat slab at the underside of the slab, or dropped panel. No portion of}
\end{align*}
\]
the column capital shall be considered for structural purposes which lies outside of the largest 90° cone that can be included within the outlines of the column capital; distance from gravity axis to extreme fiber in compression (in a column).

\[d = \text{Depth from compression face of beam or slab to center of longitudinal tensile reinforcement; the least lateral dimension of a concrete column; the diameter of a round bar or side of a square bar.} \]

\[D = \text{Deflection of a floor member under test load.} \]

\[e = \text{Eccentricity of the resultant load on a column, measured from the gravity axis.} \]

\[e_A, e_B = \text{Plate action factors for spans A and B respectively.} \]

\[E_c = \text{Modulus of elasticity of concrete in compression.} \]

\[E_s = \text{Modulus of elasticity of steel in tension or compression (30,000,000 lbs. per sq. in.).} \]

\[f_c = \text{Compressive unit stress in extreme fiber of concrete in flexure or axial compression in concrete columns.} \]

\[f'_c = \text{Ultimate compressive strength of concrete usually at age of 28 days. (See Section 2606).} \]

\[f_r = \text{Permissible unit stress in the metal core of a composite column.} \]

\[f'_r = \text{Permissible unit stress on unencased steel columns and pipe columns.} \]

\[f_t = \text{Tensile unit stress in longitudinal reinforcement; nominal working stress in vertical column reinforcement.} \]

\[f'_t = \text{Useful limit stress of spiral reinforcement.} \]

\[f_w = \text{Tensile unit stress in web reinforcement.} \]

\[F_A = \text{Ratio of the distance between assumed inflection points of the span A to span A in an isolated strip extending the entire width of the structure when a uniformly distributed load is applied to span A only (floors with supports on four sides).} \]

\[F_B = \text{Ratio as defined above, but applying to Span B (floors with supports on four sides).} \]

\[F_{AA}, F_{BB} = \text{The distances, assumed for purposes of load distribution, between inflection points in spans A and B respectively (floors with supports on four sides).} \]

\[h = \text{Unsupported length of column.} \]

\[I = \text{Moment of inertia of a section about the neutral axis for bending.} \]

\[i = \text{Ratio of distance between centroid of compression and centroid of tension to the depth (d).} \]

\[K = \text{Least radius of gyration of a metal pipe section (in pipe columns); the stiffness factor, that is, the moment of inertia divided by the span (floors with supports on four sides.)} \]

\[K_A = \text{Stiffness factor } \left(\frac{I}{A} \right) \text{ for span A of panel AB (floors with supports on four sides).} \]

\[K_B = \text{Stiffness factor } \left(\frac{I}{B} \right) \text{ for span B of panel AB (floors with supports on four sides).} \]

\[K_{AR}, K_{AL} = \text{Stiffness factor for spans to right and left respectively of span A (floors with supports on four sides).} \]
\[K_{BR} \]
\[K_{BL} \]

\(l \) = Span length of beam or slab; span length of flat slab (usually expressed in feet) center to center of columns in the direction in which moments are considered (see Section 2619).

\(l_1 \) = Span length of flat slab panel center to center of columns, perpendicular to the rectangular direction in which moments are considered.

\(l' \) = Clear span for positive moment and the average of the two adjacent clear spans for negative moment (see Section 2614 [a]).

\(L \) = Span of member under load test (see Section 2605).

\(M \) = Bending moment or moment of resistance in general.

\(M_o \) = Sum of positive and negative bending moments at the principal design sections of a panel of a flat slab.

\(n \) = Ratio of positive and negative bending moments at the principal design sections of a panel of a flat slab.

\[n = \frac{E_s}{E_c} \]

\(N \) = The sum of the lengths of those edges of panel \(AB \) supporting continuous adjacent spans (floors with supports on four sides).

\(\Sigma_o \) = Sum of perimeters of bars in one set.

\(\rho \) = Ratio of effective area of tensile reinforcement to effective area of concrete in beams.

\(p_k \) = Ratio of effective cross-sectional area of vertical reinforcement to the gross area \(A_k \) (see Section 2620).

\(p' \) = Ratio of volume of spiral reinforcement to the volume of the concrete core (out to out of spirals) of a spirally reinforced concrete column.

\(P \) = Total allowable axial load on a column whose length does not exceed 10 times its least cross-sectional dimension.

\(P' \) = Total allowable axial load on a long column.

\(r_{a} \) = Permissible unit working stress in concrete over the loaded area of a pedestal, pier, or footing.

\(r_{A} \) = Load distribution factors, that is, the proportion of total load \(u'AB \) carried in the directions \(A \) and \(B \) respectively (floors supported on four sides).

\(R \) = Least radius of gyration of a section; ratio of gross area to core area of a spirally-reinforced concrete column,

\[\frac{A_k}{A_c} \]

\(s \) = Spacing of stirrups or of bent bars in a direction parallel to that of the main reinforcement.

\(t \) = Thickness of the flange of T-beams; the total thickness or depth of a member under load test.

\(t_1 \) = Thickness of flat slab without dropped panels; or the thickness of flat slabs, including dropped panels where such are used.

\(t_2 \) = Thickness of flat slabs with dropped panels at points outside the dropped panel.

\(t_3 \) = Total thickness of slab (floors supported on four sides).

\(u \) = Bond stress per unit of surface area of bar.
\(v \) = Shearing unit stress.

\(v_c \) = Unit shearing stress permitted on the concrete of the web.

\(V \) = Total shear.

\(V' \) = Excess of the total shear over that permitted on the concrete.

\(w \) = Uniformly distributed load per unit of length of beam or slab.

\(w' \) = Uniformly distributed dead and live load per unit of area of a floor or roof.

\(W \) = Total dead and live load uniformly distributed over a single panel area.

Working Stresses

Sec. 2613. As specified in Section 2606, the structural drawings and plans shall show the ultimate strength of concrete for which the several parts of the structures were designed. The working stresses for the design of buildings or

<table>
<thead>
<tr>
<th>Description</th>
<th>For Any Strength of Concrete as Fixed by Test in Accordance with Sec. 2606 & 2608</th>
<th>When Strength of Concrete is Fixed by the Water-Content in Accordance with Sec. 2608</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(f_s' = 2000) p. s. i. (n = 15)</td>
<td>(f_s' = 2500) p. s. i. (n = 12)</td>
</tr>
<tr>
<td>Tension: (f_s)</td>
<td>(f_s = 0.40'')</td>
<td>800</td>
</tr>
<tr>
<td>Flexure: (f_a)</td>
<td>(f_a = 0.45'')</td>
<td>900</td>
</tr>
<tr>
<td>Shear: (v)</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Beam with no web reinforcement and without special anchorage of longitudinal steel</td>
<td>(v_s = 0.02'')</td>
<td>60</td>
</tr>
<tr>
<td>Beam with web reinforcement, but without special anchorage of longitudinal steel</td>
<td>(v_s = 0.03'')</td>
<td>120</td>
</tr>
<tr>
<td>Beam with properly designed web reinforcement, but without special anchorage of longitudinal steel</td>
<td>(v_s = 0.06'')</td>
<td>240</td>
</tr>
<tr>
<td>Bond: (w)</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Bond on one-way footings:</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Bond on two-way footings:</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>Bearing: (f_s)</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>On full area</td>
<td>(f_s = 0.25'')</td>
<td>750</td>
</tr>
<tr>
<td>On one-third area*</td>
<td>(f_s = 0.375'')</td>
<td></td>
</tr>
</tbody>
</table>

*The allowable bearing stress on an area greater than one-third but less than the full area shall be interpolated between the values given.

154
structures shall be based on the ultimate strength indicated on the drawings as specified in Section 2606 and shall be in the ratios specified in this Chapter. The ultimate strength (f'_c) shall be the average strength attained at 28 days, based on six-inch by twelve-inch (6"x12") or eight-inch by sixteen-inch (8"x16") cylinders made, cured and tested in accordance with the "Standard Methods of Making and Storing Specimens of Concrete in the Field" (A.S.T.M. Designation C31-33)\(^1\) and "Standard Methods of Making Compression Tests of Concrete" (A. S. T. M. Designation C39-33)\(^1\) of the American Society for Testing Materials. Gunite test cylinders shall be made in a manner that will permit the blast of air to firmly compact the materials and provide proper escapement of the air to eliminate possible back pressure, and such cylinders shall be cured and tested as specified above.

The unit stresses in pounds per square inch on concrete to be used in the design shall not exceed the values shown in Table No. II of this Chapter where f'_c equals the minimum ultimate compressive strength at 28 days.

The following unit stresses in reinforcing steel shall not be exceeded:

Allowable Unit Stresses in Reinforcement

Tension

- Intermediate grade billet steel..................(f_s) = 20,000 p. s. i.
- Rail steel bars.......................................(f_s) = 20,000 p. s. i.
- Web reinforcement(f_s) = 20,000 p. s. i.
- Structural steel shape.........................(f_s) = 18,000 p. s. i.
- Wire mesh or other steel reinforcement, not exceeding \(\frac{3}{8}\) inch in diameter (used in one-way slabs), 50 percent of the minimum yield point as established by the A. S. T. M. Standards for the particular grade of steel used; but not to exceed..........................(f_s) = 30,000 p. s. i.

Compression

- Structural Steel section in composite columns .. 16,000 p. s. i.
- Cast-Iron section in composite columns ... 10,000 p. s. i.

Note: If special conditions require the use of billet-steel concrete reinforcement bars of structural or hard grades, the allowable unit stress shall not exceed 18,000 p. s. i. for structural grade nor 20,000 p. s. i. for hard grade bars.

Sec. 2614. All members shall be designed to resist at all sections the maximum bending moments and shears produced by dead load, live load and wind load, as determined by the principle of continuity. In the case of approximately equal spans with loads uniformly distributed, where the intensity of live load does not exceed three times the intensity of dead load, this is satisfied essentially by the following moments:

\(^1\)See "Specification Documents".
Negative moment at face of first interior support:

For beams and girders and for slabs exceeding 10 feet:

Two spans \[\frac{1}{8} \frac{wl^2}{l'^2} \]

More than two spans \[\frac{1}{10} \frac{wl^2}{l'^2} \]

For slabs not exceeding 10 feet in span

Two spans \[\frac{1}{10} \frac{wl^2}{l'^2} \]

More than two spans \[\frac{1}{12} \frac{wl^2}{l'^2} \]

Negative moment at face of other interior supports \[\frac{1}{12} \frac{wl^2}{l'^2} \]

Positive moment at center of span

End spans \[\frac{1}{10} \frac{wl^2}{l'^2} \]

Interior spans \[\frac{1}{12} \frac{wl^2}{l'^2} \]

Shear in end members at first interior support \[\frac{wl'}{2} \frac{wl'}{2} \]

Shear at other supports \[\frac{wl'}{2} \]

For the purpose of applying this method "approximately" shall be construed to mean that the longer of two adjacent spans shall not exceed the shorter by more than 20 per cent.

In these expressions \(l' \) is the clear span for positive moments and the average of the two adjacent clear spans for negative moment.

(a) Permissible Assumptions. The span length of freely supported beams and slabs shall be the clear span plus the depth of beam or slab, but shall not exceed the distance between centers of the supports.

In the application of the principle of continuity, the following assumptions shall be permissible:

1. Consideration may be limited to combinations of dead load on all spans with full live load on two adjacent spans and with full live load on alternate spans.

2. Any reasonable and consistent assumption may be made as to the relative stiffness of the floor construction and columns. In computing the relative stiffness of floors to columns, the value \(I \) of the floor members may be based on the entire concrete section neglecting the reinforcement, and that of columns on the entire concrete section plus the transformed steel section. The moment of inertia assumed for the columns in computing bending moments must also be used in computing stresses.
3. The far ends of columns above and below the floor under consideration may be considered fixed.

4. When members are deepened near their ends by haunches they may be analyzed as members of constant section provided the minimum depth is used throughout in computing stresses due to bending; otherwise a complete analysis is required. Where members are widened near their supports the additional width may be neglected in computing moments but may be used in computing stresses.

Additional section at the end may in any case be utilized in resisting shear if properly reinforced.

5. Where slabs of uniform thickness are built integrally with their supports the span length may be taken equal to the clear span between faces of supports and the width of support otherwise neglected.

6. In the application of the principle of continuity, center to center distances may be used in the moment determination of all members.

Moments prevailing at the faces of support may be used to proportion the members at these sections.

7. In slabs other than ribbed floor construction or flat slabs, the principal reinforcement shall not be spaced farther apart than three times the slab thickness.

8. All beams except cantilevers shall have positive reinforcement of not less than .005 b'd.

9. Not less than .005 b'd of negative reinforcement shall be provided at the outer end of members built integrally with their supports.

10. Where analysis indicates negative reinforcement along the full length of a span, the reinforcement need not be extended beyond the point where the required amount is .0025 b'd or less.

11. In slabs of uniform thickness the minimum amount of reinforcement in the direction of principal stress shall be

For structural, intermediate and hard grades and rail steel .. .0025 bd

For steel having a minimum yield point of 56,000 lb.002 bd

(b) Distance between Lateral Supports. The clear distance between lateral supports of a beam shall not exceed 32 times the least width of compression flange.

(c) Depth of Beam or Slab. The depth of the beam or slab shall be taken as the distance from the centroid of the tensile reinforcement to the compression face of the structural members. Any floor finish not placed monolithically with the floor slab shall not be included as a part of the structural member. When the finish is placed monolithically with the structural slab in buildings of the warehouse or industrial class, the overall depth shall be at least one-half inch (1/2") over that required by the design of the member.

(d) Requirements for T-Beams. 1. In T-beam construction the slab and beam shall be built integrally or otherwise

157
effectively bonded together. The effective flange width to be used in the design of symmetrical T-beams shall not exceed one-fourth of the span length of the beam, and its overhanging width on either side of the web shall not exceed eight times the thickness of the slab nor one-half the clear distance to the next beam.

2. For beams having a flange on one side only, the effective overhanging flange width shall not exceed one-twelfth of the span length of the beam, nor six times the thickness of the slab, nor one-half the clear distance to the nearest beam.

3. Where the principal reinforcement in a slab which is considered as the flange of a T-beam (not a rib in ribbed floors) is parallel to the beam, transverse reinforcement shall be provided in the top of the slab. This reinforcement shall be designed to carry the load on the portion of the slab assumed as the flange of the T-beam. The spacing of the bars shall not exceed five times the thickness of the flange, nor in any case eighteen inches (18").

4. Provisions shall be made for the compressive stress at the support in continuous T-beam construction, care being taken that the provisions of Section 2610 relating to the spacing of bars, and Section 2609(e), relating to the placing of concrete shall be fully met. In no case shall the area of steel in compression at any cross-section adjacent to the support exceed two per cent of the cross-sectional area of the stem of the beam in that section.

5. The overhanging portion of the flange of the beam shall not be considered as effective in computing the shear and diagonal tension resistance of T-beams.

6. Isolated beams in which the T-form is used only for the purpose of providing additional compression area, shall have a flange thickness not less than one-half the width of the web and a total flange width not more than four times the web thickness.

(e) One-way Ribbed Floor Construction. 1. Ribbed floor construction consists of concrete ribs and slabs placed monolithically with or without burned clay or concrete tile fillers. The ribs shall not be farther apart than thirty inches (30") face to face. The ribs shall be straight, not less than four inches (4") wide, nor of a depth more than three times the width.

2. When burned clay or concrete tile fillers, of material having a unit compressive strength at least equal to that of the designed strength of the concrete in the ribs, are used, and the fillers are so placed that the joints in alternate rows are staggered, the shells of the fillers in contact with the ribs may be included in the calculations involving shear or negative bending moment. No other portion of the fillers may be included in the design calculations.

3. The concrete slab over the fillers shall be not less than one and one-half inches (1\(\frac{1}{2}\") in thickness, nor less in thickness than one twelfth of the clear distance between ribs. Shrinkage reinforcement in the slab shall be provided as required in Section 2615.
4. Where removable forms or fillers not complying with (2) are used, the thickness of the concrete slab shall not be less than one-twelfth of the clear distance between ribs and in no case less than two inches (2″). Such slab shall be reinforced at right angles to the ribs with a minimum of .049 square inches of reinforcing steel per foot of width, and in slabs on which the prescribed live load does not exceed 50 pounds per square foot, no additional reinforcement will be required.

5. When the finish used as a wearing surface is placed monolithically with the structural slab in buildings of the warehouse or industrial class, the thickness of the concrete over the fillers shall be one-half inch (½”) greater than the thickness used for design purposes.

6. Where the slab contains conduits or pipes, the thickness shall be not less than one inch (1″) plus the total over-all depth of such conduits or pipes at any point. Such conduits or pipes shall be so located as not to impair the strength of the construction.

(f) Compression Steel in Flexural Members. Where it is necessary to introduce steel in compression in girders, beams, or slabs, such steel shall be thoroughly anchored by ties or stirrups not less than one-fourth inch (¼”) in size which shall be spaced not more than eight inches (8”) apart over the distance where the compression steel is required.

Sec. 2615. Reinforcement for shrinkage and temperature stresses normal to the principal reinforcement shall be provided in floor and roof slabs where the principal reinforcement extends in one direction only. Such reinforcement shall provide for the following minimum ratios of reinforcement area to concrete area (bd), but in no case shall such reinforcing bars be placed farther apart than five times the slab thickness nor more than eighteen inches (18”).

<table>
<thead>
<tr>
<th>Condition</th>
<th>Minimum Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor slabs where plain bars are used</td>
<td>0.0025</td>
</tr>
<tr>
<td>Floor slabs where deformed bars are used</td>
<td>0.002</td>
</tr>
<tr>
<td>Floor slabs where wire fabric is used, having welded intersections not farther apart in the direction of stress than 12 inches</td>
<td>0.0018</td>
</tr>
<tr>
<td>Roof slabs where plain bars are used</td>
<td>0.003</td>
</tr>
<tr>
<td>Roof slabs where deformed bars are used</td>
<td>0.0025</td>
</tr>
<tr>
<td>Roof slabs where wire fabric is used, having welded intersections not farther apart in the direction of stress than 12 inches</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

Sec. 2616. (a) General Provisions. This construction, consisting of floors reinforced in two directions and supported on four sides, includes solid reinforced concrete slabs; concrete ribs with burned clay or concrete tile fillers, with or without concrete top slabs; and concrete ribs with top slabs placed monolithically with the ribs. The supports for the floor slabs may be walls, reinforced concrete beams, or steel beams fully encased in concrete.

When burned clay or concrete tile fillers, of material having a unit compressive strength at least equal to that of the designed strength of the concrete in the ribs are used, the shells in contact with the concrete ribs may be included in calculations.
involving resistance to shear and bending moment, and the top and bottom shells may be included in calculations involving resistance to bending moment.

When a concrete top slab, placed monolithically with the ribs is used, it shall be not less in thickness than one and one-half inches (1½\(\text{"}\)) nor less than one-twelfth of the clear distance between ribs. It shall be reinforced for shrinkage as required in Section 2615.

Where removable forms or fillers not complying with this Sub-Section are used, the thickness of the concrete slab shall be not less than one-twelfth of the clear distance between ribs and in no case less than two inches (2\(\text{"}\)). Such slab shall be reinforced to provide sufficient strength to carry the imposed loads.

(b) Factors. The values of the factors to be used in computations are as follows:

1. For simple spans

\[F_A = F_B = 1 \]

2. For end spans, continuous at one end only

\[
F_A = 1 - \left[\frac{0.25}{1 + \frac{7}{8} K_A} \right] \\
F_B = 1 - \left[\frac{0.25}{1 + \frac{7}{8} K_B} \right]
\]

3. For interior continuous spans

\[
F_A = \frac{1}{2} \sqrt{1 - U_{AR}} + \frac{1}{2} \sqrt{1 - U_{AL}} \\
F_B = \frac{1}{2} \sqrt{1 - U_{BR}} + \frac{1}{2} \sqrt{1 - U_{BL}}
\]

in which

\[
U_{AR} = \frac{1}{1.5 + \frac{7}{8} K_A}
\]

and

\[
U_{AL} = \frac{1}{1.5 + \frac{7}{8} K_AL}
\]

4. For strips rigidly anchored to the supports

\[
e_A = \frac{2}{4 - D_B} \quad \text{(for span A)} \\
e_B = \frac{2}{4 - D_A} \quad \text{(for span B)}
\]
in which
\[D_A = \frac{F_{AA}}{F_{BB}} \]
\[D_B = \frac{F_{BB}}{F_{AA}} \]

5. For strips not rigidly anchored at one or both ends, and for ribbed construction without filler blocks
\[e_A = 1.0 \text{"} \text{(for span A)} \]
\[e_B = 1.0 \text{"} \text{ (for span B)} \]

6. Load distribution factor
\[r_A = \frac{1}{1 + D_A^3} \text{ (for span A)} \]................. (7)
\[r_B = 1 - r_A \text{ (for span B)} \]................. (7a)

(c) Slab Thickness. The minimum thickness of the slab which shall not be less than 4 inches shall be computed by formula (8).
\[t_3 = \frac{A + B - 0.10 N}{72} \sqrt[3]{\frac{2000}{f'_c}} \]................. (8)

(d) Bending Moments. The bending moments at any section of any strip one foot wide, extending the full length of the continuous slab, shall be determined on the basis of the recognized principles of mechanics relating to continuous beams for those conditions of loading which cause maximum moment at any section, using an equivalent uniform load of \(e_A r_A w \) in the A direction, and \(e_B r_B w \) in the B direction.

(e) Supporting Beams. (1) For Span A, the maximum bending moments in the supporting beams may be determined from an equivalent uniformly distributed load per linear foot of
\[w = \frac{B}{2} (1 - e_A r_A) \]......................... (9)

(2) For span A, the maximum shear in the supporting beams may be determined by formula (10).
\[w = \frac{BA}{4} (1 - r_A) \]......................... (10)

(3) For the purpose of computing shear and bending moments at intermediate points for the supporting beams of span A, the total load from a two-way panel \(AB \), carried on the beam of span A shall at least be equal to
\[\text{Total Load} = w \frac{BA}{2} (1 - r_A), \text{ considered uniformly varying in intensity} \]
from \(w \frac{B}{2} (1 + 2r_A - 3e_A r_A) \) at the center........... (11)

161
(4) For span \(B \), in the foregoing formulas, replace \(A \) with \(B \), \(B \) with \(A \), \(r_A \) with \(r_B \), and \(e_A \) with \(e_B \).

(f) Panels of Approximately Uniform Stiffness. When the ratio of the stiffness factor of the span under consideration to that of each adjacent span is at least \(\frac{3}{2} \) and at most \(3/2 \), \(F_A \) or \(F_B \), may be taken as 0.76 for interior spans, 0.87 for end spans and 1.0 for simple spans.

(g) Shear in Slab. 1. For purposes of determining shear in the strip one foot wide carrying the maximum load, the total load for the length of span \(A \) shall be

\[
\text{Total Load} = r_A w A, \text{considered uniformly varying in intensity}
\]

from \(r_A w (3e_A - 2) \) at the center of the span......... (12)

to \(r_A w (4 - 3e_A) \) at the supports............ (12a)

2. Similarly, the total load carried on a strip one foot (1') wide for the length of span \(B \) shall be

\[
\text{Total Load} = r_B w B, \text{considered uniformly varying in intensity}
\]

from \(r_B w (3e_B - 2) \) at the center of the span......... (13)

to \(r_B w (4 - 3e_B) \) at the supports............ (13a)

(h) Arrangement of Reinforcement. 1. In any panel, the reinforcement per unit width in the long direction shall be at least one-third of that provided in the short direction.

2. The positive moment reinforcement adjacent to a continuous edge only and for a width not exceeding one-fourth of the shorter dimension of the panel may be reduced 25 per cent.

3. At a non-continuous edge negative moment reinforcement per unit width in amount at least as great as one-half that required for maximum positive moment for the center half of the panel shall be provided across the entire width of the exterior support.

4. The spacing of the reinforcement shall be not more than three times the slab thickness and the ratio of reinforcement shall be at least 0.0025.

5. The amount of reinforcement in any one foot wide strip shall be at least 0.003 times the product of the width of strip by the effective depth.

Sec. 2617. (a) Shearing Unit Stress. The shearing unit stress \((v) \) in reinforced concrete beams shall be computed by formula (14):

\[
v = \frac{V}{b'jd} \tag{14}
\]

For beams of \(I \) or \(T \) section \(b' \) shall be substituted for \(b \) in formula (14).

In ribbed construction, where burned clay or concrete tile are used, \(b' \) may be taken as a width equal to the thickness of the concrete web plus the thickness of the vertical shells of the concrete or burned clay tile in contact with the joist as in Sections 2614 and 2616.

Where the value of the shearing unit stress computed by formula (14) exceeds the shearing unit stress \((v_s) \) permitted
on the concrete of an unreinforced web (see Section 2613), web reinforcement shall be provided to carry the excess.

(b) **Types of Web Reinforcement.** Web reinforcement may consist of:

1. Stirrups or web reinforcement bars perpendicular to the longitudinal steel.
2. Stirrups or web reinforcement bars welded or otherwise rigidly attached to the longitudinal steel and making an angle of 30 degrees or more thereto.
3. Longitudinal bars bent so that the axis of the inclined portion of the bar makes an angle of 15 degrees or more with the axis of the longitudinal portion of the bar.
4. Special arrangements of bars with adequate provisions to prevent slip of bars or splitting of the concrete by the reinforcement [See Sub-section (d) last paragraph].

Stirrups or other bars to be considered effective as web reinforcement shall be anchored at both ends, according to the provisions of Section 2618.

(c) **Stirrups.** The area of steel required in stirrups placed perpendicular to the longitudinal reinforcement shall be computed by formula (15).

\[A_v = \frac{V' s}{f_v j d} \] \hspace{1cm} (15)

Inclined stirrups shall be proportioned by formula (17).

Stirrups placed perpendicular to the longitudinal reinforcement shall not be used alone as web reinforcement when the shearing unit stress \(v \) exceeds 0.08\(f'_{c} \).

(d) **Bent Bars.** When the web reinforcement consists of a single bent bar or of a single group of bent bars the required area of such bars shall be computed by formula (16).

\[A_v = \frac{V'}{f_v \sin \alpha} \] \hspace{1cm} (16)

In formula (16) \(V' \) shall not exceed 0.040\(f'_{c} \), \(bjd \).

Only the center three-fourths of the inclined portion of such bar, or group of bars, shall be considered effective as web reinforcement.

Where there is a series of parallel bent bars, the required area shall be determined by formula (17).

\[A_v = \frac{V' s}{f_v j d (\sin \alpha + \cos \alpha)} \] \hspace{1cm} (17)

When bent bars, having a radius of bend of not more than two times the diameter of the bar are used alone as web reinforcement, the allowable shearing unit stress shall not exceed 0.060\(f'_{c} \). This shearing unit stress may be increased at the rate of 0.01\(f'_{c} \), for each increase of four bar diameters in the radius of bend until the maximum allowable shearing unit stress is reached. (See Section 2613).

The shearing unit stress permitted when special arrangements of bars are employed shall be that determined by making
comparative tests, to destruction, of specimens of the proposed system and of similar specimens reinforced in conformity with the provisions of this code, the same factor of safety being applied in both cases.

(e) **Combined Web Reinforcement.** Where more than one type of reinforcement is used to reinforce the same portion of the web, the total shearing resistance of this portion of the web shall be assumed as the sum of the shearing resistances computed for the various types separately. In such computations the shearing resistance of the concrete shall be included only once, and no one type of reinforcement shall be assumed to resist more than \(2V' \). 3

(f) **Spacing of Web Reinforcement.** Where web reinforcement is required it shall be so spaced that every 45 degree line (representing a potential crack) extending from the mid-depth of the beam to the longitudinal tension bars shall be crossed by at least one line of web reinforcement. If a unit shearing stress in excess of 0.06\(f'\) is used, every such line shall be crossed by at least two such lines of web reinforcement.

(g) **Shearing Stress in Flat Slabs.** In flat slabs, the shearing unit stress on a vertical section which lies at a distance \(t = 1\frac{1}{2} \) inches beyond the edge of the column capital and parallel with it, shall not exceed the following values when computed by formula (14) (in which \(d \) shall be taken as \(t = 1\frac{1}{2} \) inches):

1. \(0.03 f' \), when at least 50 per cent of the total negative reinforcement passes directly over the column capital.
2. \(0.025 f' \), when 25 per cent of the total negative reinforcement passes directly over the column capital.
3. For intermediate percentages, intermediate values of the shearing unit stress shall be used.

In flat slabs, the shearing unit stress on a vertical section which lies at a distance of \(t = 1\frac{1}{2} \) inches beyond the edge of the dropped panel and parallel with it shall not exceed 0.03 \(f' \) when computed by formula (14) in which \(d \) shall be taken as \(t = 1\frac{1}{2} \) inches. At least 50 per cent of the cross-sectional area of the negative reinforcement in the column strip must be within the width of strip directly above the dropped panel.

(h) **Shear and Diagonal Tension in Footings.** The shearing unit stress computed by formula (14) on the critical section [see Section 2621 (d)], shall not exceed 0.02 \(f' \) for footings with straight bars, nor 0.03 \(f' \) for footings in which the bars are anchored at both ends by adequate hooks or as otherwise specified in Section 2618.

Bond and Anchorage

Sec. 2618 (a) **Computation of Bond Stress in Beams.** In flexural members in which the tensile reinforcement is parallel to the compression face, the bond stress at any cross section shall be computed by formula (18).

\[
u = \frac{V}{\Sigma ojd} \quad \text{................................. (18)}
\]

in which \(V \) is the shear at that section.
Adequate end anchorage shall be provided for the tensile reinforcement in all flexural members to which formula (18) does not apply, such as footings, brackets and other tapered or stepped beams in which the tensile reinforcement is not parallel to the compression face.

(b) Ordinary Anchorage Requirements. Tensile negative reinforcement in any span of a continuous, restrained, or cantilever beam, or in any member of a rigid frame shall be adequately anchored by bond, hooks or mechanical anchors in or through the supporting member. Within any such span every reinforcing bar shall be extended at least 12 diameters beyond the point at which it is no longer needed to resist stress. In cases where the length from the point of maximum tensile stress in the bar to the end of the bar is not sufficient to develop this maximum stress by bond, the bar shall extend into a region of compression and be anchored by means of a standard hook or it shall be bent across the web at an angle of not less than 15 degrees with the longitudinal portion of the bar and either made continuous with the positive reinforcement or anchored in a region of compression.

Of the positive reinforcement in continuous beams not less than one-fourth the area shall extend along the same face of the beam into the support a distance of 10 or more bar diameters, or shall be extended as far as possible into the support and terminated in standard hooks.

In simple beams, or at the outer ends of freely supported end spans of continuous beams, at least one-half the positive reinforcement shall extend along the same face of the beam into the support a distance of 10 or more bar diameters, or shall be extended as far as possible into the support and terminated in standard hooks.

(c) Special Anchorage Requirements. Where increased shearing or bond stresses are permitted because of the use of special anchorage (see Section 2613), every bar shall be terminated in a standard hook in a region of compression, or it shall be bent across the web at an angle of not less than 15 degrees with the longitudinal portion of the bar and made continuous with the negative or positive reinforcement.

(d) Anchorage of Web Reinforcement. Single separate bars used as web reinforcement shall be anchored at each end by one of the following methods:

1. Welding to longitudinal reinforcement.

2. Hooking tightly around the longitudinal reinforcement through 180 degrees.

3. Embedment in the compression area of the beam a distance sufficient to develop the allowable tensile stress specified in Section 2613 at a bond stress not exceeding 0.04 ft. on plain bars nor 0.05 ft. on deformed bars.

4. Standard hook plus embedment in the compression area of the beam, which embedment exclusive of the hook shall be sufficient to develop by bond a stress of not less than 10,000 pounds per square inch at a bond stress of not more than 0.04 ft. on plain bars nor 0.05 ft. on deformed bars.
The extreme ends of bars forming simple U or multiple stirrups shall be anchored by one of the methods of sub-section (d) or shall be bent through an angle of at least 90 degrees tightly around a longitudinal reinforcing bar not less in diameter than the stirrup bar, and shall project beyond the bend at least 12 diameters of the stirrup bar.

The loops or closed ends of such stirrups shall be anchored by bending around the longitudinal reinforcement through an angle of at least 90 degrees, or by being welded or otherwise rigidly attached thereto.

Hooking or bending stirrups or separate web reinforcement bars around the longitudinal reinforcement shall be considered effective only when these bars are perpendicular to the longitudinal reinforcement.

Longitudinal bars bent to act as web reinforcement shall, in a region of tension, be continuous with the longitudinal reinforcement. The tensile stress in each bar shall be fully developed in both the upper and the lower half of the beam by one of the following methods:

I. As specified in sub-section (d-3).

II. As specified in sub-section (d-4).

III. By bond, at unit bond stress not exceeding $0.04f'\text{e}$ on plain bars nor $0.05f'\text{e}$ on deformed bars, plus a bend of radius not less than two times the diameter of the bar, parallel to the upper or lower surface of the beam, plus an extension of the bar of not less than 12 diameters of the bar terminating in a standard hook. This short radius bend extension and hook shall together not be counted upon to develop a tensile unit stress in the bar of more than 10,000 pounds per square inch.

IV. By bond, at a unit bond stress not exceeding $0.04f'\text{e}$ on plain bars nor $0.05f'\text{e}$ on deformed bars, plus a bend, of radius not less than two times the diameter of the bar, parallel to the upper or lower surface of the beam and continuous with the longitudinal reinforcement. The short radius bend and continuity shall together not be counted upon to develop a tensile unit stress in the bar of more than 10,000 pounds per square inch.

V. The tensile unit stress at the beginning of a bend may be increased from 10,000 pounds per square inch when the radius of bend is two bar diameters, at the rate of 1,000 pounds per square inch tension for each increase of one and one-half bar diameters in the radius of bend, provided that the length of the bar in the bend and extension is sufficient to develop this increased tensile stress by bond at the unit stresses given in sub-section (d-III).

In all cases web reinforcement shall be carried as close to the compression surface of the beam as fireproofing regulations and the proximity of other steel will permit.

(e) **Anchorage of Bars in Footing Slabs.** All bars in footing slabs, except the longitudinal reinforcement between loads in continuous slab footings, shall be anchored by means of
standard hooks. The outer faces of these hooks shall be not less than three inches (3") nor more than six inches (6") from the face of the footing.

(f) Hooks. The terms "hook" or "standard hook" as used herein shall mean a complete semicircular turn with a radius of bend on the axis of the bar of not less than three and not more than six bar diameters, plus an extension of at least four bar diameters at the free end of the bar. Hooks having a radius of bend of more than six bar diameters shall be considered merely as extensions to the bars, and shall be treated as in Subsection (d)-V.

In general, hooks shall not be permitted in the tension portion of any beam except at the ends of simple or cantilever beams or at the freely supported ends of continuous or restrained beams.

No hook shall be assumed to carry a load which would produce a tensile stress in the bar greater than 10,000 pounds per square inch.

Any mechanical device capable of developing the strength of the bar without damage to the concrete may be used in lieu of a hook. Tests must be presented to show the adequacy of such devices.

Sec. 2619. (a) Limitations. The term flat slabs as used in these regulations refers to concrete slabs, without beams or girders to carry the load to supporting members, reinforced with bars extending in two or four directions. Slabs with dropped panels or paneled ceilings shall be considered as flat slabs provided that they meet the requirements herein given for such construction.

The moment coefficients, moment distribution, and slab thicknesses specified herein are for a series of rectangular slabs of approximately uniform size arranged in three or more rows of panels in each direction, and in which the ratio of length to width of panel does not exceed 1.33.

For structures having a width of less than three rows of panels, or in which irregular panels are used, an analysis shall be made of the moments developed in both slabs and columns.* When so required, computations shall be submitted to the Building Inspector.

(b) Panel Strips and Principal Design Sections. A flat slab panel shall be considered as consisting of strips in each direction as follows:

A middle strip one-half panel in width, symmetrical about panel center line and extending through the panel in the direction in which moments are considered.

A column strip one-half panel in width occupying the two-quarter panel areas outside of the middle strip.

The critical sections for moment calculations are referred to as principal design sections and are located as follows:

*It is not the intention to prohibit flat slab construction for panels longer than 1.33 times the width, or for buildings less than three bays wide, provided the moment factors are properly adjusted.
1. Sections for Negative Moment. These shall be taken along the edges of the panel, on lines joining the column centers, except that they follow the perimeter of the column capital instead of passing through it.

2. Sections for Positive Moment. These shall be taken on the center lines of the panel.

In the two-way system it shall be assumed that the various moments in the strips are resisted by the bands located within the strips, each band being \(.5l_n \) in width.

In the four-way system, it shall be assumed that the column strip positive moment is resisted by the direct band; that the column strip negative moment is resisted by the direct band plus the two diagonal bands multiplied by the cosine of the angle between the direct band and the diagonal bands; that the middle strip positive moment is resisted by the two diagonal bands multiplied by the cosine of the angle between the axis of the middle strip and the diagonal bands; and that the middle strip negative moment is resisted by an independent top band across the middle of the direct band. The width of direct and middle strip negative bands shall be approximately \(.4l_n \), the width of the diagonal bands shall be approximately \(.4 \) of the average span length or

\[
\frac{(l + l_i)}{5}
\]

The width of the column head section for compression shall be taken as the width of the dropped panel \((l_i) \), or half the width of the panel \((.5l_n) \) where no dropped panel is used.

(c) Slab Thickness and Dropped Panel Sizes. In Table No. III of this Chapter are given the thicknesses, dimensions and moments governing flat slab design when \(f' \), equals 2,000 pounds per square inch. The general formulas are given under the heading “General Case”; the formulas for the case where the diameter of the column capital \((c) = 0.225 l \) are given under the heading “Special Case” for \((c) = 0.225 l \).

Where \(f' \), is greater than 2,000 pounds per square inch, the required and minimum slab thicknesses given in Table III of this Chapter may be reduced by multiplying by the factor

\[
\frac{3}{\sqrt{2000 \frac{f'}{f'c}}}
\]

in which \(f'c \) is the ultimate 28-day compressive strength of the concrete to be used.

(d) Column Capital Sizes. The average \((c) \) for the columns at the four corners of a panel shall be used in obtaining the slab thickness, the numerical sum of the total positive and negative moments \((M_n) \) in either direction and the middle strip positive and negative moments in either direction.

The average \((c) \) for two adjacent columns shall be used in obtaining the positive and negative moments in the column strip between these adjacent columns.

(e) Panels with Marginal Beams or Reinforced Bearing Walls. Moments to be used in the design of panels with mar-
TABLE NO. III—LIMITATIONS FOR SLAB THICKNESSES—DROPPED PANELS AND MOMENTS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>General Case</th>
<th>Special Case For c = .225t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Floor Slab Thickness</td>
<td>t_1 or t_2</td>
<td>Inches</td>
<td>.375 (long l)</td>
</tr>
<tr>
<td>Minimum Roof Slab Thickness</td>
<td>t_1 or t_2</td>
<td>Inches</td>
<td>.300 (long l)</td>
</tr>
<tr>
<td>Slab Thickness without Dropped Panel</td>
<td>t_1</td>
<td>Inches</td>
<td>$0.038 \left(1 - 1.445 \frac{c}{l} \right) l \sqrt{w'} + 1.5g$ (19)</td>
</tr>
<tr>
<td>Slab Thickness beyond Dropped Panel</td>
<td>t_1</td>
<td>Inches</td>
<td>$0.025 \frac{c}{l} \sqrt{w'} + 1.5g$ (19a)</td>
</tr>
<tr>
<td>Slab Thickness through Dropped Panel</td>
<td>t_1</td>
<td>Inches</td>
<td>$0.02 t_1 \sqrt{w'} + 1$ (20)</td>
</tr>
<tr>
<td>Minimum side or diameter of Dropped Panel</td>
<td>b_1</td>
<td>Feet</td>
<td>0.35i</td>
</tr>
<tr>
<td>Numerical sum of positive and negative moments in direction of either side of interior rectangular panel</td>
<td>M_s</td>
<td>ft. lb.</td>
<td>$0.0961 \left(1 - \frac{2a}{3l}\right)$ (21)</td>
</tr>
</tbody>
</table>

Maximum l shall be used in thickness formulas.
In these tables (l, t_1, b_1 and c) are always expressed in feet while the units to which the formulas develop are shown in the column headed “units.”

TABLE NO. IV—MOMENTS TO BE USED IN DESIGN OF AN INTERIOR PANEL OF FLAT SLAB

<table>
<thead>
<tr>
<th>TWO-WAY SYSTEM WITH DROPPED PANEL</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case c = .225t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip, Negative Moment</td>
<td>$-M_s$</td>
<td>ft. lb.</td>
<td>0.50I_s</td>
<td>0.0325I_s</td>
</tr>
<tr>
<td>Column Strip, Positive Moment</td>
<td>$+M_s$</td>
<td>ft. lb.</td>
<td>0.20I_s</td>
<td>0.0130I_s</td>
</tr>
<tr>
<td>Middle Strip, Negative Moment</td>
<td>$-M_s$</td>
<td>ft. lb.</td>
<td>0.15I_s</td>
<td>0.0095I_s</td>
</tr>
<tr>
<td>Middle Strip, Positive Moment</td>
<td>$+M_s$</td>
<td>ft. lb.</td>
<td>0.15I_s</td>
<td>0.0095I_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TWO-WAY SYSTEM WITHOUT DROPPED PANEL</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip, Negative Moment</td>
<td>$-M_s$</td>
<td>ft. lb.</td>
<td>0.46I_s</td>
<td>0.030I_s</td>
</tr>
<tr>
<td>Column Strip, Positive Moment</td>
<td>$+M_s$</td>
<td>ft. lb.</td>
<td>0.23I_s</td>
<td>0.0142I_s</td>
</tr>
<tr>
<td>Middle Strip, Negative Moment</td>
<td>$-M_s$</td>
<td>ft. lb.</td>
<td>0.16I_s</td>
<td>0.0084I_s</td>
</tr>
<tr>
<td>Middle Strip, Positive Moment</td>
<td>$+M_s$</td>
<td>ft. lb.</td>
<td>0.16I_s</td>
<td>0.0084I_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOUR-WAY SYSTEM WITH DROPPED PANELS (MOMENTS BY STRIPS)</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case c = .225t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip, Negative Moment</td>
<td>$-M_s$</td>
<td>ft. lb.</td>
<td>0.54I_s</td>
<td>0.035I_s</td>
</tr>
<tr>
<td>Column Strip, Positive Moment</td>
<td>$+M_s$</td>
<td>ft. lb.</td>
<td>0.19I_s</td>
<td>0.0124I_s</td>
</tr>
<tr>
<td>Middle Strip, Negative Moment</td>
<td>$-M_s$</td>
<td>ft. lb.</td>
<td>0.68I_s</td>
<td>0.0052I_s</td>
</tr>
<tr>
<td>Middle Strip, Positive Moment</td>
<td>$+M_s$</td>
<td>ft. lb.</td>
<td>0.68I_s</td>
<td>0.0052I_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOMENTS BY BANDS</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Band, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.307I_s</td>
<td>0.0200I_s</td>
</tr>
<tr>
<td>Direct Band, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.19I_s</td>
<td>0.0124I_s</td>
</tr>
<tr>
<td>Diagonal Band, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.18I_s</td>
<td>0.0105I_s</td>
</tr>
<tr>
<td>Diagonal Band, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.134I_s</td>
<td>0.0087I_s</td>
</tr>
<tr>
<td>Cross Band, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.086I_s</td>
<td>0.0052I_s</td>
</tr>
<tr>
<td>Cross Band, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.086I_s</td>
<td>0.0052I_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOUR-WAY SYSTEM WITHOUT DROPPED PANELS (MOMENTS BY STRIPS)</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case c = .225t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.50I_s</td>
<td>0.0325I_s</td>
</tr>
<tr>
<td>Column Strip, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.20I_s</td>
<td>0.0130I_s</td>
</tr>
<tr>
<td>Middle Strip, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.10I_s</td>
<td>0.0065I_s</td>
</tr>
<tr>
<td>Middle Strip, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.20I_s</td>
<td>0.0130I_s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOMENTS BY BANDS</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Band, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.30I_s</td>
<td>0.0192I_s</td>
</tr>
<tr>
<td>Direct Band, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.20I_s</td>
<td>0.0130I_s</td>
</tr>
<tr>
<td>Diagonal Band, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.14I_s</td>
<td>0.0092I_s</td>
</tr>
<tr>
<td>Diagonal Band, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.14I_s</td>
<td>0.0092I_s</td>
</tr>
<tr>
<td>Cross Band, Negative Moment</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>0.10I_s</td>
<td>0.0065I_s</td>
</tr>
<tr>
<td>Cross Band, Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>0.10I_s</td>
<td>0.0065I_s</td>
</tr>
</tbody>
</table>

169
TABLE NO. V—MOMENTS TO BE USED IN DESIGN OF AN EXTERIOR PANEL OF FLAT SLAB

Moments in the strips perpendicular to the discontinuous edge where they differ from an interior panel, are given in the following table. Negative moments in the column strip and middle strip on the line of the first interior columns are the same as for an interior panel. Moments in the strips parallel to the discontinuous edge are the same as for an interior panel.

<table>
<thead>
<tr>
<th>TWO-WAY SYSTEM WITH DROPPED PANEL</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip Negative Moment at discontinuous edge</td>
<td>$-M_1$</td>
<td>ft. lb.</td>
<td>$0.45M_1$</td>
<td>$0.029W_1$</td>
</tr>
<tr>
<td>Column Strip Positive Moment</td>
<td>$+M_1$</td>
<td>ft. lb.</td>
<td>$0.25M_1$</td>
<td>$0.016W_1$</td>
</tr>
<tr>
<td>Middle Strip Negative Moment at discontinuous edge</td>
<td>$-M_M$</td>
<td>ft. lb.</td>
<td>$0.10M_M$</td>
<td>$0.005W_1$</td>
</tr>
<tr>
<td>Middle Strip Positive Moment</td>
<td>$+M_M$</td>
<td>ft. lb.</td>
<td>$0.19M_M$</td>
<td>$0.012W_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TWO-WAY SYSTEM WITHOUT DROPPED PANEL</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip Negative Moment at discontinuous edge</td>
<td>$-M_1$</td>
<td>ft. lb.</td>
<td>$0.41M_1$</td>
<td>$0.027W_1$</td>
</tr>
<tr>
<td>Column Strip Positive Moment</td>
<td>$+M_1$</td>
<td>ft. lb.</td>
<td>$0.28M_1$</td>
<td>$0.018W_1$</td>
</tr>
<tr>
<td>Middle Strip Negative Moment at discontinuous edge</td>
<td>$-M_M$</td>
<td>ft. lb.</td>
<td>$0.10M_M$</td>
<td>$0.007W_1$</td>
</tr>
<tr>
<td>Middle Strip Positive Moment</td>
<td>$+M_M$</td>
<td>ft. lb.</td>
<td>$0.20M_M$</td>
<td>$0.013W_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOUR-WAY SYSTEM WITH DROPPED PANELS (MOMENTS BY STRIPS)</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip Negative Moment at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.45M_1$</td>
<td>$0.031W_1$</td>
</tr>
<tr>
<td>Column Strip Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.24M_1$</td>
<td>$0.016W_1$</td>
</tr>
<tr>
<td>Middle Strip Negative Moment at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.05M_M$</td>
<td>$0.003W_1$</td>
</tr>
<tr>
<td>Middle Strip Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.24M_M$</td>
<td>$0.015W_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(MOMENTS BY BANDS) (FOR SQUARE PANEL)</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Band at Column Head at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.25M_1$</td>
<td>$0.018W_1$</td>
</tr>
<tr>
<td>Direct Band at Center</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.24M_1$</td>
<td>$0.016W_1$</td>
</tr>
<tr>
<td>Diagonal Bands at Column Head at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.15M_M$</td>
<td>$0.010W_1$</td>
</tr>
<tr>
<td>Diagonal Bands at Center</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.17M_M$</td>
<td>$0.014W_1$</td>
</tr>
<tr>
<td>Top Band (across Middle of Direct) at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.05M_M$</td>
<td>$0.003W_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOUR-WAY SYSTEM WITHOUT DROPPED PANELS (MOMENTS BY STRIPS)</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Strip Negative Moment at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.45M_1$</td>
<td>$0.029W_1$</td>
</tr>
<tr>
<td>Column Strip Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.25M_1$</td>
<td>$0.016W_1$</td>
</tr>
<tr>
<td>Middle Strip Negative Moment at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.06M_M$</td>
<td>$0.004W_1$</td>
</tr>
<tr>
<td>Middle Strip Positive Moment</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.25M_M$</td>
<td>$0.016W_1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(MOMENTS BY BANDS) (FOR SQUARE PANEL)</th>
<th>Symbol</th>
<th>Units</th>
<th>General Case</th>
<th>Special Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Band at Column Head at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.27M_1$</td>
<td>$0.017W_1$</td>
</tr>
<tr>
<td>Direct Band at Center</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.25M_1$</td>
<td>$0.016W_1$</td>
</tr>
<tr>
<td>Diagonal Bands at Column Head at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.13M_M$</td>
<td>$0.009W_1$</td>
</tr>
<tr>
<td>Diagonal Bands at Center</td>
<td>$+M$</td>
<td>ft. lb.</td>
<td>$0.18M_M$</td>
<td>$0.017W_1$</td>
</tr>
<tr>
<td>Top Band (across Middle of Direct) at discontinuous edge</td>
<td>$-M$</td>
<td>ft. lb.</td>
<td>$0.06M_M$</td>
<td>$0.004W_1$</td>
</tr>
</tbody>
</table>

Original beams or reinforced concrete bearing walls shall be as given in Table No. VI.

(f) Limitations (Applicable to Tables IV, V and VI of this Chapter). Any of the above moments may be varied by not more than six per cent, provided that the total numerical sum of the positive and negative moments on the principal design sections is not reduced.

170
TABLE NO. VI—MOMENTS TO BE USED IN DESIGN OF PANELS WITH MARGINAL BEAMS OR REINFORCED BEARING WALLS

<table>
<thead>
<tr>
<th>(a) Load to be carried by Marginal Beam or Wall.</th>
<th>Marginal Beams with Depth greater than 1½ times the Slab Thickness; or reinforced Bearing Wall</th>
<th>Marginal Beam with depth 1½ times the Slab Thickness or less.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loads directly superimposed upon it plus a uniform load equal to one-quarter of the total live and dead panel load.</td>
<td>Loads directly superimposed upon it exclusive of any panel load.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Two-Way System</td>
<td>Four-Way System</td>
</tr>
<tr>
<td></td>
<td>With Drop</td>
<td>Without Drop</td>
</tr>
<tr>
<td>(b) Moment to be used in the design of Half Column Strip adjacent and parallel to Marginal Beam or Wall.</td>
<td>Neg.</td>
<td>.125M*</td>
</tr>
<tr>
<td></td>
<td>Pos.</td>
<td>.05M*</td>
</tr>
<tr>
<td>(c) Negative Moment to be used in Design of Middle Strip continuous over Beam or Wall.</td>
<td>Neg.</td>
<td>.105M*</td>
</tr>
</tbody>
</table>

The ratio of reinforcement considered in any strip shall not exceed the value of \((p) \) calculated for balanced reinforcement by Section 2613. The ratio of reinforcement in any strip shall be not less than .0025. Bars shall not be spaced farther apart than one and one-half times the slab thickness for the full width of the bands.

Moments for the four-way system are shown in Table No. V of this Chapter by strips, and for convenience, also by bands.

Slabs supported by marginal beams on opposite edges shall be designed as solid one or two-way slabs to carry the entire panel load.

(g) **Length of Bars and Points of Bend.** The positive moment reinforcement perpendicular to the discontinuous edge shall extend to this edge and have an embedment of at least six inches \((6"\) in spandrel beams or columns. All negative moment reinforcement shall be bent or hooked at spandrel beams or columns to provide adequate bond resistance. Length of bars and points of bend shall be as given in Table No. VII of this Chapter.

(h) **Arrangement of Reinforcement.** The slab reinforcement shall be accurately placed so as to resist not only the moments at the critical sections, but also the moments at intermediate sections, and shall be secured and supported by concrete or metal chairs and spacers.

(i) **Brackets.** Brackets extending the full width of the column may be substituted for column capitals at exterior columns, provided the sloping face of the bracket makes an angle not more than forty-five degrees with the face of the column, projected upward.
TABLE VII—LENGTH OF BARS AND POINTS OF BEND

<table>
<thead>
<tr>
<th></th>
<th>With Drop</th>
<th>Without Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Case</td>
<td>$c = .225\ell$</td>
</tr>
<tr>
<td>TWO-WAY FLAT SLAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(COLUMN STRIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of straight bars (not less than 4 of total band steel)</td>
<td>$l - b + (2' or 40d)$</td>
<td>$.65l + (2' or 40d)$</td>
</tr>
<tr>
<td>Length of bent bars (not less than 4 total band steel)</td>
<td>$1.5l + .6l\dagger$</td>
<td>$1.035l\dagger$</td>
</tr>
<tr>
<td>Length of additional straight bars over column head (if required)</td>
<td>$.5l + .6l$</td>
<td>$.635l$</td>
</tr>
<tr>
<td>Point of top bend in bent bars (from column centers)</td>
<td>$.25l$</td>
<td>$.25l$</td>
</tr>
<tr>
<td>MIDDLE STRIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of straight bars (not more than .5 total band steel)</td>
<td>$.65l$</td>
<td>$.55l$</td>
</tr>
<tr>
<td>Length of bent bars (not less than .5 total band steel)</td>
<td>$1.5l\dagger$</td>
<td>$1.5l\dagger$</td>
</tr>
<tr>
<td>Point of top bend in bent bars (from column centers)</td>
<td>$.175l$</td>
<td>$.175l$</td>
</tr>
<tr>
<td>FOUR-WAY FLAT SLAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(COLUMN STRIP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of straight bars (not less than 4 total band steel)</td>
<td>$l - b + (2' or 40d)$</td>
<td>$.65l + (2' or 40d)$</td>
</tr>
<tr>
<td>Length of bent bars (not less than 4 total band steel)</td>
<td>$1.5l + .6l\dagger$</td>
<td>$1.035l\dagger$</td>
</tr>
<tr>
<td>Length of additional straight bars over column head (if required)</td>
<td>$.5l + .6l$</td>
<td>$.635l$</td>
</tr>
<tr>
<td>Point of bend for bent bars (from column centers)</td>
<td>$.2l$</td>
<td>$.2l$</td>
</tr>
<tr>
<td>DIAGONAL BAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of straight bars (not more than .5 total band steel)</td>
<td>$l - b + (2' or 40d)$</td>
<td>$.65l + (2' or 40d)$</td>
</tr>
<tr>
<td>(area)</td>
<td>$2.21l\dagger$</td>
<td>$2.21l\dagger$</td>
</tr>
<tr>
<td>Length of bent bars (not less than .5 total band steel area)</td>
<td>$.33l$</td>
<td>$.33l$</td>
</tr>
<tr>
<td>Point of bend for bent bars (from column centers)</td>
<td>$.8l$</td>
<td>$.8l$</td>
</tr>
<tr>
<td>Length of additional straight bars over column head (if required)</td>
<td>$.5l$</td>
<td>$.5l$</td>
</tr>
<tr>
<td>Top band across middle of direct band (length of straight bars)</td>
<td>$.5l$</td>
<td>$.5l$</td>
</tr>
</tbody>
</table>

*Note: To these lengths proper allowance to be added for bends.

The value of (c) where brackets are used is twice the distance from the center of the column to a point where the bracket is one and one-half inches $(1\frac{1}{2}\text{"})$ thick.

(j) Columns Without Capitals or Brackets. Brackets and column capitals may be omitted altogether, provided the slab thickness is sufficient to fully resist the moments and shears at the column head section.

The value of (c) where brackets and column capitals are omitted is the width of the column in the direction in which moments are considered, except that, when a beam of greater depth than the thickness of the slab or dropped panel extends into the column in the direction in which moments are considered, the value of (c) may be taken as the width of the column plus twice the projection of the beam below the slab or dropped panel.

(k) Openings in Flat Slabs. Openings of any size may be cut through the floor in the area common to two intersecting middle strips, provided the total positive and negative resisting moments be maintained as required in Sub-section (d) and that these total positive and total negative moments be redistributed.
between the remaining principal design sections to meet the
new conditions.

In any area common to two column strips, not more than
one opening shall be allowed and the greatest dimension of
such an opening shall not exceed .05 l.

In any area common to one column strip and one middle
strip, openings shall not interrupt more than one-quarter of
the bars in either strip and the equivalent of the bars so in-
terrupted shall be provided by extra steel on both sides of the
opening.

Any opening larger than described above shall be complete-
ly framed on all sides with beams to carry the loads to the
columns.

(1) Shearing Stresses in Flat Slabs. See Section 2617.

Sec. 2620. (a) Limiting Dimensions. The following sections
on reinforced concrete and composite columns except Sub-sec-
tion (g) apply to a short column, for which the unsupported
length is not greater than 10 times the least lateral dimension.
When the unsupported length exceeds this value, the design
shall be modified as shown in Sub-section (g). Principal col-
umns in buildings shall have a minimum diameter or thickness
of ten inches (10") and a minimum gross area of one hundred
and twenty square inches (120 sq. in.). Posts that are not con-
tinuous from story to story shall have a minimum diameter or
thickness of six inches (6").

(b) Unsupported Length of Columns. For purposes of de-
termining the limiting dimensions of columns, the unsupported
length of reinforced concrete columns shall be taken as the
clear distance between floor slabs, except that

1. In flat slab construction, it shall be the clear distance
between the floor and the lower extremity of the capital.

2. In beam and slab construction, it shall be the clear dis-
tance between the floor and the under side of the deeper beam
framing into the column in each direction at the next higher
floor level.

3. In columns restrained laterally by struts, it shall be the
clear distance between consecutive struts in each vertical plane;
provided that to be an adequate support, two such struts shall
meet the column at approximately the same level, and the an-
gle between vertical planes through the struts shall not vary
more than 15 degrees from a right angle. Such struts shall
be of adequate dimensions and anchorage to restrain the col-
umn against lateral deflection.

4. In columns restrained laterally by struts or beams, with
brackets used at the junction, it shall be the clear distance be-
tween the floor and the lower edge of the bracket, provided that
the bracket width equals that of the beam or strut and is at
least half that of the column.

For rectangular columns, that length shall be considered
which produces the greatest ratio of length to depth of section.
(c) Spirally Reinforced Columns. 1. Permissible Load—The maximum permissible axial load, \(P \), on columns with closely spaced spirals enclosing a circular concrete core reinforced with longitudinal bars shall be that given by Formula (22).

\[
P = A_e (0.22 f'_c + f_s p_e) \quad \text{............... (22)}
\]

WHERE

\(A_e \) = the gross area of the column.
\(f'_c \) = compressive strength of the concrete.
\(f_s \) = nominal working stress in vertical column reinforcement, to be taken at 40 per cent of the minimum specification value of the yield point; viz., 16,000 pounds per square inch for intermediate grade steel and 20,000 pounds per square inch for rail or hard grade steel.*

\(p_e \) = ratio of the effective cross-sectional area of vertical reinforcement to the gross area, \(A_e \).

2. Vertical Reinforcement—The ratio \((p_e) \) shall not be less than 0.01 nor more than 0.08. The minimum number of bars shall be six, and the minimum diameter shall be \(\frac{5}{8} \) in. The center to center spacing of bars within the periphery of the column core shall be not less than 2½ times the diameter for round bars or 3 times the side dimension for square bars. The clear spacing between bars shall not be less than one and one-half inches (1\(\frac{1}{2} \)”), or one and one-half times the maximum size of the coarse aggregate used. These spacing rules also apply to adjacent bars at a lapped splice.

3. Splices in Vertical Reinforcement—Where lapped splices in the column verticals are used, the minimum amount of lap shall be as follows:

(I) For deformed bars—with concrete having a strength of 3000 pounds per square inch or above, 24 diameters of bar of intermediate grade steel and 30 diameters of bar of rail steel. For bars of higher yield point, the amount of lap shall be increased in proportion to the nominal working stress. When the concrete strengths are less than 3000 pounds per square inch, the amount of lap shall be one-third greater than the values given above.

(II) For plain bars—the minimum amount of lap shall be 25 per cent greater than that specified for deformed bars.

(III) Welded splices or other positive connections may be used instead of lapped splices. Welded splices shall preferably be used in cases where the bar diameter exceeds one and one-fourth inch (1\(\frac{1}{4} \)”). An approved welded splice shall be defined as one in which the bars are butted and welded and that will develop in tension at least the yield point stress of the reinforcing steel used.

(IV) Where changes in the cross section of a column occur, the longitudinal bars shall be offset in a region where

*Nominal working stresses for reinforcement of higher yield point may be established at 40 per cent of the yield point stress, but not more than 30,000 pounds per square inch, when the properties of such reinforcing steels have been definitely specified by standards of A. S. T. M. designation. If this is done, the lengths of splice required by Section 2620, Sub-section (c) paragraph (3) shall be increased accordingly.
lateral support is afforded by a concrete capital, floor slab or by metal ties or reinforcing spirals. Where bars are offset, the slope of the inclined portion from the axis of the column shall not exceed one in six and the bars above and below the offset shall be parallel to the axis of the column.

4. Spiral Reinforcement—The ratio of spiral reinforcement, \(p' \) shall be not less than the value given by Formula (23), nor shall it be less in any case than 0.0112 for hot rolled spirals of intermediate grade or 0.0075 for cold drawn wire spirals.

\[
p' = 0.45 (R - 1) \frac{f'c}{f'}, \quad \text{.................................. (23)}
\]

WHERE

\(p' \) = ratio of volume of spiral reinforcement to the volume of the concrete core (out to out of spirals).

\(R \) = ratio of gross area to core area of column, \(A_g/A_c \).

\(f'c \) = useful limit stress of spiral reinforcement, to be taken as 40,000 pounds per square inch for hot rolled rods of intermediate grade (A. S. T. M. Designation: A15-35) and 60,000 pounds per square inch for cold drawn wire (A. S. T. M. Designation: A82-34).

The spiral reinforcement shall consist of evenly spaced continuous spirals held firmly in place and true to line by at least three vertical spacer bars. Anchorage of spiral reinforcement shall be provided by one and one-half extra turns of spiral rod or wire at each end of the spiral unit. Splices, when necessary, shall be made in spiral rod or wire by welding or by a lap of one and one-half turns. The center to center spacing of the spirals shall not exceed one-sixth of the core diameter. The clear spacing between spirals shall not exceed three inches (3") nor be less than one and three-eighths inches (1 3/8") or one and one-half times the maximum size of coarse aggregate used. The reinforcing spiral shall extend from the floor level in any story or from the top of the footing in the basement, to the level of the lowest horizontal reinforcement in the slab, dropped panel or beam above. In a column with a capital, it shall extend to the plane at which the diameter or width of the capital is twice that of the column.

5. Protection of Reinforcement — The column reinforcement shall be protected everywhere by a covering of concrete cast monolithically with the core, for which the thickness shall not be less than one and one-half inches (1 1/2") nor less than one and one-half times the maximum size of the coarse aggregate, nor shall it be less than required by the fire protection and weathering provisions of Section 2610 (f).

6. Limits of Column Section — For columns built monolithically with concrete walls or piers, the outer boundary of the column section shall be taken either as a circle one and one-half inches (1 1/2") outside the column spiral or as a square or rectangle of which the sides are one and one-half inches

\(^1\)See "Specification Documents".
(1½") outside the spiral. The value of \(A_d \) thus defined shall be used in both Formulas (22) and (23). In any case it shall be permissible to design a circular column and to build it as a square column of the same least lateral dimension. In such case the permissible load, the gross area considered, and the required percentage of reinforcement must be taken as those of the circular column.

(d) Tied Columns. 1. Permissible Load — The maximum permissible axial load on columns reinforced with longitudinal bars and separate lateral ties shall be 70 per cent of that given by Formula (22). The ratio, \((p_0) \), to be considered in tied columns shall be not less than 0.01 nor more than 0.04. The longitudinal reinforcement shall consist of at least four bars, of minimum diameter of five-eighths of an inch (5/8"). Splices in reinforcing bars shall be made as described in Subsection (c), paragraph (3).

2. Lateral Ties—Lateral ties shall be at least one-fourth inch (3/\(4\)) in diameter and shall be spaced apart not over 16 bar diameters, 48 tie diameters or the least dimension of the column. When there are more than four vertical bars, additional ties shall be provided so that every longitudinal bar is held firmly in its designed position and has lateral support equivalent to that provided by a 90-degree corner of a tie.

3. Limits of Column Section — In a tied column which for architectural reasons has a larger cross section than required by consideration of loading, a reduced effective area \((A_d) \) not less than one-half of the total area may be used in applying the provisions of Subsection (d), paragraph (1).

(e) Composite Columns. 1. Permissible Load — The permissible load on a composite column consisting of a structural steel or cast-iron column thoroughly encased in concrete reinforced with both longitudinal and spiral reinforcement, shall not exceed that given by Formula (24).

\[
P = 0.22 \left(A_d f'_c + f_r A_r + f_r A_r \right) \quad \ldots (24)
\]

WHERE

\[
A_d = \text{net area of concrete}
\]

\[
A_t = A_f - A_r.
\]

\[
A_r = \text{cross-sectional area of longitudinal bar reinforcement.}
\]

\[
f_r = \text{permissible unit stress in metal core, not to exceed 16,000 pounds per square inch for a steel core; or 10,000 pounds per square inch for a cast-iron core.}
\]

The remaining notation is that of Subsection (c).

2. Details of Metal Core and Reinforcement—The cross-sectional area of the metal core shall not exceed 20 per cent of the gross area of the column. If a hollow metal core is used it shall be filled with concrete. The amounts of longitudinal and spiral reinforcement and the requirements as to spacing of bars, details of splices and thickness of protective shell outside the spiral shall conform to the limiting values specified in Subsection (c), paragraphs (2), (3) and (4). A clearance of at least three inches (3") shall be maintained be-
between the spiral and the metal core at all points except that when the core consists of a structural steel H-column, the minimum clearance may be reduced to two inches (2"").

3. Splices and Connections of Metal Cores—Metal cores in composite columns shall be accurately milled at splices and positive provision shall be made for alignment of one core above another. At the column base, provision shall be made to transfer the load to the footing at safe unit stresses in accordance with Section 2613 and Table No. II. The base of the metal section shall be designed to transfer the load from the entire composite column to the footing, or it may be designed to transfer the load from the metal section only, provided it is so placed in the pier or pedestal as to leave ample section of concrete above the base for the transfer of load from reinforced concrete section of the column by means of bond on the vertical reinforcement and by direct compression on the concrete. Transfer of loads to the metal core shall be provided for by the use of bearing members such as billets, brackets or other positive connections; these shall be provided at the top of the metal core and at intermediate floor levels where required. The column as a whole shall satisfy the requirements of Formula (24) at any point; in addition to this, the reinforced concrete portion shall be designed to carry, in accordance with Formula (22), all floor loads brought onto the column at levels between the metal brackets or connections. In applying Formula (22), the value of \(A_g \) shall be interpreted as the area of the concrete section outside the metal core, and the permissible load on the reinforced concrete section shall be further limited to 0.35 \(f'_e A_g \). Ample section of concrete and continuity of reinforcement shall be provided at the junction with beams or girders.

4. Permissible Load on Metal Core Only — The metal cores of composite columns shall be designed to carry safely any construction or other loads to be placed upon them prior to their encasement in concrete.

(f) Combination Columns. 1. Steel Columns Encased in Concrete. The permissible load on a structural steel column which is encased in concrete at least two and one-half inches (2½") thick over all metal (except rivet heads) reinforced as hereinafter specified, shall be computed by Formula (25).

\[
P = A_r f'_r \left(1 + \frac{A_g}{100 A_r} \right)
\]

WHERE

- \(A_r \) = cross-sectional area of steel column.
- \(f'_r \) = permissible stress for unencased steel column.
- \(A_g \) = total area of concrete section.

The concrete used shall develop a compressive strength, \(f'_c \) of at least 2000 pounds per square inch at 28 days. The concrete shall be reinforced by (the equivalent of) welded wire mesh having wires of No. 10 W. & M. gage, the wires encircling the column being spaced not more than four inches (4") apart and those parallel to the column axis not more than eight inches (8") apart. This mesh shall extend entirely around the column at a distance of one inch (1") inside the outer concrete surface and shall be lap-spliced at least 40 wire diameters and wired at the splice. Special brackets shall be used to receive the en-
tire floor load at each floor level. The steel column shall be designed to carry safely any construction or other loads to be placed upon it prior to its encasement in concrete.

2. Pipe Columns. — The permissible load on columns consisting of steel pipe filled with concrete shall be determined by Formula (26).

\[P = 0.22 f'_c A_c + f'_r A_r \]
\[(26) \]

The value of \(f'_r \) shall be that given by Formula (27).

\[f'_r = \left(18,000 - 70 \frac{h}{K} \right) F \]
\[(27) \]

WHERE

\(f'_r \) = average unit stress in metal core.
\(h \) = unsupported length of column.
\(K \) = least radius of gyration of metal core section.
\(F \) = (yield point of pipe)
\[45,000 \]

If the yield point of the pipe is not known, the factor \(F \) shall be taken as 0.5.

Long Columns

(g) Long Columns. The maximum permissible load \(P' \) on axially loaded reinforced concrete or composite columns having a length, \((h) \), greater than 10 times the least lateral dimension, \((d) \), shall be given by Formula (28).

\[P' = P \left(1.3 - .03 \frac{h}{d} \right) \]
\[(28) \]

where \(P \) is the permissible axial load on a short column as given by Formulas (22) and (24).

The maximum permissible load \(P' \) on eccentrically loaded columns in which \(\frac{h}{d} \) exceeds 10 shall also be given by Formula (28), in which \(P \) is the permissible eccentrically applied load on a short column as determined by the provisions of Subsections (i) and (j). In long columns subjected to definite bending stresses, as determined in Subsection (h), the ratio \(h/d \) shall not exceed 20.

(h) Bending Moments in Columns. The bending moments in the columns of all reinforced concrete structures shall be determined on the basis of loading conditions and restraint and shall be provided for in the design. When the stiffness and strength of the columns are utilized to reduce moments in beams, girders, or slabs, as in the case of rigid frames, or in other forms of continuous construction wherein column moments are unavoidable, they shall be provided for in the design. In building frames, particular attention shall be given to cases of unbalanced floor loads on both exterior and interior columns and of eccentric loading due to other causes. Wall columns shall be designed to resist moments produced by
1. Loads on all floors of the building

2. Loads on a single exterior bay at two adjacent floor levels, or

3. Loads on a single exterior bay at one floor level.

Resistance to bending moments at any floor level shall be provided by distributing the moments between the columns immediately above and below the given floor in proportion to their relative stiffness and conditions of restraint.

(i) Combined Axial and Bending Stress. In reinforced concrete columns subjected to bending moments, the recognized methods of analysis shall be followed in calculating the stresses due to combined axial load and bending. The maximum fiber stress in compression and (in case of large eccentricities of loading) the tensile stress in the vertical bars will govern the design. The gross area of both spiral and tied columns shall be used in the computations.

Note: For preliminary designs it will usually give satisfactory results to compute the combined fiber stress in compression on the basis of an uncracked section of the column, using Formula (29).

\[
f_c = \frac{P}{A_t} \left(1 + \frac{e c}{R^2} \right) \quad \frac{1}{1 + (n-1) \frac{p_t}{R^2}} \quad \text{(29)}
\]

WHERE

\(e \) = eccentricity of resultant load, measured from the gravity axis.
\(c \) = distance from gravity axis to extreme fiber in compression.
\(R \) = radius of gyration of equivalent concrete section.\(^*\)
\(n = \frac{30,000}{f'c} \)

This will result in a fairly accurate design if the eccentricity is less than one-half the over-all column depth and the value of \(p_t n \) is 0.3 or more.

\[e c \]

The term \(6 e \) may be replaced by the value \(6 e \) for rectangular columns and \(8 e \) for round columns without appreciable error \(t \)

\(t \) = over-all depth of section. This design shall then be analyzed by more accurate methods to insure that permissible stresses are not exceeded.

(j) Permissible Combined Compressive and Tensile Stress. The maximum permissible compressive fiber stress, \(f_c \), in eccentrically loaded columns shall be given by Formulas (30) and (31).
For spiral columns

\[
f_s = \frac{0.22 \, f'c + f_p \, p_k}{1 + (n-1) \, p_k} \left[1 + \frac{ec}{R^2} \right] \frac{1}{1 + 0.8 \, \frac{ec}{R^2}}
\]

\[\text{(30)}\]

For tied columns

\[
f_s = \frac{0.154 \, f'c + 0.7 \, f_p \, p_k}{1 + (n-1) \, p_k} \left[1 + \frac{ec}{R^2} \right] \frac{1}{1 + 0.8 \, \frac{ec}{R^2}}
\]

\[\text{(31)}\]

wherein the notation is that of Sub-sections (c) and (l).

The permissible tensile stress in the longitudinal reinforcement may equal that specified for flexural members, provided however that splices in the tensile steel at or near the section of maximum column moment are capable of developing fully the yield point strength of the reinforcement.

Footings

Sec. 2621 (a) Loads. Footings resting directly on soil or on piles shall be proportioned as to area or number of piles on the basis of the total column load plus the weight of the footing itself. For computations of moments and shears, an upward reaction per unit area or per pile shall be based on the total column load (not including the weight of the footing itself) divided by the area or by the number of piles.

(b) Sloped or Stepped Footings. Footings in which the thickness has been determined by the requirements for shear as specified in Section 2617, Subsection (h), may be sloped or stepped, provided that the shear on no section outside the critical section exceeds the value specified, and provided further that the thickness of the footing above the reinforcement at the edge shall not be less than six inches (6") for footings on soil, nor less than twelve inches (12") for footings on piles. Sloped or stepped footings shall be cast as a unit.

(c) Bending Moment in Footings. The critical section for bending moment in a concrete footing which supports a concrete column, pedestal or wall, shall be considered to be at the face of the column, pedestal or wall. For footings under masonry walls, the critical section shall be assumed as halfway between the middle and edge of the wall. For footings under metallic bases, the critical section shall be assumed as halfway between the face of the column or pedestal and the edge of the metallic base.

The bending moment at the critical section in a square footing, or in a rectangular footing having its side not greater than one and one-half times its width, shall be computed from the load on trapezoids bounded by the line of the critical section for moment, the corresponding outside edge of the footing, and the portions of the two diagonals. The load on the two corner triangles of the trapezoid shall be considered as applied at a distance equal to six-tenths of the projection of the footing from the line of critical section for moment. The load on the rectangular portion of the trapezoid shall be considered as applied at its center of gravity.
For a round or octagonal concrete column or pedestal, the face of the column shall be taken as the side of a square of an area equal to the area enclosed within the perimeter of the column or pedestal.

(d) Shearing and Bond Stresses. The critical section for diagonal tension in footings on soil shall be assumed as a vertical section at a distance \(d\) from the face of the column or pedestal supported by the footing.

In footings on piles the critical section shall be assumed at a distance \(\frac{d}{2}\) from the face of the column or pedestal, and any piles whose centers are at or within the section shall be excluded in computing shear.

For shearing stresses see Section 2617, Subsection (h).

The critical sections for bond shall be assumed at the face of the column or pedestal; at vertical planes where changes occur, and near the end of the bending moment reinforcement.

For bond stresses see Section 2618, Sub-sections (a) to (e) inclusive.

(e) Transfer of Stress at Base of Column. The compressive stress in longitudinal reinforcement at the base of a column shall be transferred to the pedestal or footing by dowels. There shall be at least one dowel for each column bar, and the total sectional area of the dowels shall not be less than the sectional area of the longitudinal reinforcement in the column. The dowels shall extend up into the column and down into the pedestal or footing the distance required for lap of longitudinal column bars [see Section 2620, subsection (c)].

The permissible compressive unit stress on top of the pedestal or footing directly under the column shall not be greater than that determined by formula (32).

\[
r_s = 0.25 \sigma' \frac{A}{A'} \tag{32}
\]

In sloped or stepped footings, \(A\) may be taken as the area of the top horizontal surface of the footing, or as the area of the lower base of the largest frustum of a pyramid or cone contained wholly within the footing and having for its upper base the loaded area \(A'\), and having side slopes of one vertical to two horizontal.

(f) Pedestals and Footings (Plain Concrete). The allowable compressive unit stress on the gross area of a concentrically loaded pedestal shall not exceed \(0.25\sigma'_c\). Where this stress is exceeded, reinforcement shall be provided and the member designed as a reinforced concrete column.

The depth and width of a pedestal or footing of plain concrete shall be such that the tension in the concrete shall not exceed \(0.03\sigma'_c\), and the average shearing stress shall not exceed \(0.02\sigma'_c\) taken on critical sections as determined for reinforced concrete footings.

Sec. 2622. The depth of precast concrete joists shall be not more than four times the width of the top or bottom flanges nor less than one-twenty-fourth of the span length.
The thickness of the top slab shall be not less than onetwelfth of the clear span between joists nor less than two and one-half inches (2\(\frac{1}{2}\)) for floors nor less than two inches (2") for roofs and not less than one and one-half inches (1\(\frac{1}{2}\)) over the joists. The slab shall have not less than 0.2 per cent reinforcement at right angles to the span of joists. The reinforcement shall be spaced not farther apart than five times the slab thickness.

When the top slab is adequately reinforced and bonded to the joist, the construction may be considered as a T-beam.

Precast joists shall be bridged as provided in Section 3102.

Sec. 2623. The term "Composite Beam" shall apply to any rolled or fabricated steel floor beam entirely encased in poured concrete at least four inches (4") wider, at its narrowest point, than the flange of the beam, supporting a concrete slab on each side without openings adjacent to the beam; provided that the top of the beam is at least one and one-half inches (1\(\frac{1}{2}\)) below the top of the slab and at least two inches (2") above the bottom of the slab; provided that a good grade of stone or gravel concrete with portland cement, is used; and provided that the concrete has adequate mesh, or other reinforcing steel, throughout its whole depth and across the soffit.

Composite beams may be figured on the assumption that:

1. The steel beam carries unassisted all dead loads prior to the hardening of the concrete, with due regard for any temporary support provided.

2. The steel and concrete carry by joint action all loads, dead and live, applied after the hardening of the concrete.

The total tensile unit stress in the extreme fiber of the steel beam thus computed shall not exceed 20,000 pounds per square inch. (Sec. 2702).

The maximum stresses in concrete, and the ratio of Young's moduli for steel and concrete, shall be as prescribed by the specifications governing the design of reinforced concrete for the structure.

The web and end connections of the steel beam shall be adequate to carry the total dead and live load without exceeding the unit stresses prescribed in this Code, except as this may be reduced by the provision for other proper support.
CHAPTER 27—STEEL AND IRON

(Quality and Design)

Sec. 2701. The quality and design of all structural steel and iron used in buildings or structures shall conform to the requirements specified in this Chapter.

Structural steel shall be of such quality as to conform to "Standard Specifications for Structural Steel for Buildings," A. S. T. M. Designation A9-36, of the American Society for Testing Materials.¹

Cast steel used in buildings and/or structures shall be of such quality as to conform with the "Tentative Specifications for Steel Castings," A. S. T. M. Designation A27-36T, of the American Society for Testing Materials.¹

Cast iron used in buildings and/or structures shall be of such quality as to conform with the "Standard Specifications for Gray Iron Castings," A. S. T. M. Designation A48-36, of the American Society for Testing Materials.¹

All structural steel shall be tested in accordance with the above specifications when deemed necessary by the Building Inspector and copies of such tests shall be filed in the office of the Building Inspector. No structural steel shall be used in any building or structure which does not comply with the above requirements or for which no test results have been filed with the Building Inspector. All steel tests shall be made by competent testing laboratories at the expense of the owner.

The computations and design shall be properly made so that the unit working stresses specified in this Chapter are not exceeded. The structure and its details shall possess the requisite strength and rigidity for proper stability and the design of every structural frame shall be such as to admit of a rational analysis according to well established principles of mechanics and sound engineering practice.

All structural steel sections shall be straight and true and any section so damaged as to affect its proper carrying capacity shall not be used in the construction of any building or structure.

Sec. 2702. All parts of the structure shall be so proportioned that the sum of the maximum static stresses in pounds per square inch shall not exceed those specified in this Section.

(a) Tension

<table>
<thead>
<tr>
<th>Material</th>
<th>Allowable Stresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel, net section</td>
<td>20,000</td>
</tr>
<tr>
<td>Cast Steel on net section</td>
<td>15,000</td>
</tr>
<tr>
<td>Cast Iron on net section</td>
<td>(not allowed)</td>
</tr>
<tr>
<td>Rivets, on area based on nominal diameter</td>
<td>15,000</td>
</tr>
</tbody>
</table>

¹See "Specification Documents".

183
Section 2702

(b) **Compression**

Columns, gross section

For columns with values of \(l/r \) not

\[
\begin{align*}
& \text{greater than } 120 \quad \frac{17,000 - 0.485}{r^2} \\
& \text{For columns with values of } l/r \\
& \text{greater than } 120 \quad \frac{18,000}{1 + \frac{l^2}{18,000 r^2}}
\end{align*}
\]

Plate Girder Stiffeners, gross section................. 20,000
Webs of Rolled Sections at toe of fillet.................. 24,000

For main compression members, the ratio \(l/r \) shall not exceed 120 and for bracing, struts and similar members 200.

On gross section of steel pipe columns, with square or fixed ends;

\[
P = 11,000 - 35 \frac{l}{r}
\]

with a minimum gross diameter of five inches (5").

On cast iron columns, with square or fixed ends;

\[
P = 9,000 - 40 \frac{l}{r}
\]

with a minimum gross diameter of six inches (6") and with the ratio \(l/r \) never in excess of 70.

In the foregoing formulas "\(P \)" equals the maximum unit working stress in pounds per square inch; \(l \) equals the unsupported length of the column or compression member in inches; and \(r \) equals the least radius of gyration of the column or compression member.

(c) **Bending**

Tension in extreme fibers of rolled sections, plate girders, and built-up members............. 20,000

Compression on extreme fibers of rolled sections, plate girders, and built-up members, for values of \(l/b \) not greater than

\[
\begin{align*}
& \text{40} \quad \frac{22,500}{1 + \frac{l^2}{1800 b^2}}
\end{align*}
\]

with a maximum of 20,000 in which \(l \) is the unsupported length of the member, and \(b \) is the width of the compression flange, both in inches.

Girders, beams, lintels and similar members may be laterally braced by joists, tie rods or similar members anchored thereto so as to laterally stay such members in both directions. Two or more cast iron or steel separators rigidly joining such members together shall be considered as lateral support if the length of flanges between separators does not exceed 40b.

On extreme fibers of pins, when the forces are assumed as acting at the center of gravity of the pieces..................30,000

184
(d) Shearing
 Rivets, pins, and turned bolts in reamed or drilled holes.......................... 15,000
 Unfinished bolts.. 10,000
 Webs of beams and plate girders, gross section 13,000

(e) Bearing

<table>
<thead>
<tr>
<th>Double Shear</th>
<th>Single Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivets, and turned bolts in reamed or drilled holes........ 40,000</td>
<td>32,000</td>
</tr>
<tr>
<td>Unfinished bolts... 25,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Pins.. 32,000</td>
<td></td>
</tr>
<tr>
<td>Contact Area</td>
<td></td>
</tr>
<tr>
<td>Milled Stiffeners and other Milled Surfaces...... 30,000</td>
<td></td>
</tr>
<tr>
<td>Fitted Stiffeners.. 27,000</td>
<td></td>
</tr>
</tbody>
</table>

(f) Combined Stresses. For combined stresses due to wind and other loads, the permissible working stress may be increased 33 1/3 per cent, provided the section thus found is not less than that required by the dead and live loads alone.

 Members subject to both direct and bending stresses shall be so proportioned that the greatest combined stresses shall not exceed the allowed limits.

 All members and their connections which are subject to stresses of both tension and compression due to the action of live loads shall be designed to sustain the stress giving the largest section, with 50 per cent of the smaller stress added to it. If the reversal of stress is due to the action of wind, the member shall be designed for the stress giving the largest section and the connections proportioned for the largest stress.

(g) Members Carrying Wind Only. For members carrying wind stresses only, the permissible working stresses may be increased 33 1/3 per cent.

(h) Roller Loads. The load in pounds per lineal inch on expansion rollers shall not exceed 600 times the diameter of the roller in inches.

Sec. 2708. Every member and combination of members shall be designed to provide for any stress due to an eccentric load or force, whenever the increase in stress due to eccentric load or force exceeds 10 per cent of the stress due to a direct load or force on the member or members; but a member framed directly to a central web of another member shall not be considered an eccentric load or force in case the resultant of the load or force acts parallel with the said central web.

 Where a structural member is directly connected or framed to the flange of another member by means of a web connection, the lever arm shall be taken as the distance in the direction of bending from the neutral axis to the flange connection plus one-half inch (½”); and in all other cases of an
eccentric load or force, the lever arm shall be taken as the distance in the direction of bending from the neutral axis to the center line or center of bearing of the load or force.

Where an eccentric load or force acts parallel with the axis of a compression member, the stresses due to the eccentric action may be provided for by adding to any direct load or force on the compression member an amount equal to $M \cdot K$, as given in the following formula, and by then designing the compression member so that the maximum unit stress therein will not exceed that specified in Section 2702.

$$M \cdot K = A \left(\frac{P_x}{S} \right)$$

in which formula $M \cdot K$, equals an equivalent concentric load or force for any given eccentric load or force; A equals the cross sectional area of the compression member; P equals the amount of the eccentric load or force in pounds; x equals the distance from the neutral axis of the compression member to the line of action of the eccentric load or force; and S equals the section modulus of the compression member in the direction of the bending.

Sec. 2704. (a) Riveted Plate Girders. Riveted plate girders, cover-plated beams, and rolled beams shall in general be proportioned by the moment of inertia of the gross section. No deduction shall be made for standard shop or field rivet holes in either flange; (except that in special cases where the reduction of the area of either flange by such rivet holes, calculated in accordance with the provisions of Section 2707, exceeds 15 per cent of the gross flange area, the excess shall be deducted.) If such members contain other holes, as for bolts, pins, or countersunk rivets, the full deduction for such holes shall be made. The deductions thus applicable to either flange shall be made also for the opposite flange if the corresponding holes are there present. When two or more rolled beams or channels are used to form a girder, they shall be so connected to each other as to properly distribute the loads to be carried.

(b) Plate Girder Webs. Plate girder webs shall have a thickness of not less than 1/170 of the unsupported distance between flanges.

(c) Web Splices in Plate Girders. Web splices in plate girders shall be proportioned to transmit the full shearing and bending stresses in the web at the point of splice.

(d) Stiffeners. Stiffeners shall be placed on the webs of plate girders at the ends and at points of concentrated loads. They shall have a close bearing against the flanges, shall extend as closely as possible to the edges of the flange angles, and shall not be crimped. They shall be connected to the web by enough rivets to transmit the stress. Only that portion of the outstanding legs outside the fillets of the flange angles shall be considered effective in bearing. The bearing value of such portion of the angles may be taken at not to exceed 24,000 pounds per square inch.
Intermediate stiffeners shall be required at all points where

\[
\frac{h}{t} > \frac{8000}{\sqrt{s}}
\]

WHERE

- \(h \) = clear depth between flanges, in inches.
- \(t \) = thickness of the web, in inches.
- \(s \) = greatest unit shear in panel, in pounds per square inch, under any condition of complete or partial loading.

The clear distance between stiffeners, when stiffeners are required by the foregoing, shall not exceed eighty-four inches (84") or that given by the formula

\[
d = \frac{270,000 \times \frac{s \text{ st}}{s}}{s} \times \sqrt{\frac{s}{h}}
\]

in which \(d \) equals the clear distance between stiffeners, in inches.

Plate girder stiffeners shall be in pairs, one on each side of the web, and shall be connected to the web by rivets spaced not more than eight times their nominal diameter apart.

Intermediate stiffeners may be crimped over the flange angles.

(c) **Crane Runway Girders.** Crane runway girders shall be proportioned to resist any lateral forces produced by loads carried by them. These lateral forces shall in no case be less than 20 per cent of the maximum wheel loads.

(f) **Rivets Connecting Flanges to Web.** Rivets connecting the flanges to the web shall be proportioned to resist the horizontal shear due to bending as well as any loads applied directly to the flange.

(g) **Unstiffened Cover Plates.** Cover plates of all girders shall extend not more than six inches (6") nor more than 12 times the thickness of the thinnest plate beyond the outer row of rivets connecting them to the angles.

(h) **Cover Plates.** Cover plates, when required, shall be of equal thickness or shall diminish in thickness from the flange angles outward. No plate shall be thicker than the flange angles.

(i) **Flange Sections.** The gross section of the compression flange of a plate girder shall be not less than the gross section of the tension flange.

(j) **Rolled Beams.** Rolled beams shall be so proportioned that the unit compression stresses at the web toe of the fillets resulting from concentrated loads shall not exceed 24,000 pounds. Such stresses shall be determined by the formulas:
For interior loads \(\frac{R}{t \ (A + 2N)} \), but not to exceed 24,000

For end bearing \(\frac{R}{t \ (A + N)} \), but not to exceed 24,000

WHERE

\(R \) = concentrated interior load or end reaction, in pounds.

\(t \) = thickness of web, in inches.

\(A \) = Length of bearing, in inches.

\(N \) = distance from outer face of flange to web toe of fillet, in inches.

(k) **Effective Span Length.** Beams, girders and trusses shall ordinarily be designated on the basis of simple spans whose effective length is equal to the distance between centers of gravity of the members to which they deliver their end reactions.

If, on the assumption of end restraint, full or partial, based on continuous or cantilever action, beams, girders, and trusses are designed for a shorter effective span length than that specified in the paragraph above, their sections, as well as the sections of the members to which they connect, shall be designed to carry the shears and moments so introduced, in addition to all other forces without exceeding at any point the unit stresses specified in Section 2702.

Sec. 2705. The minimum thickness of metal in structural steel shapes shall be: for sections exposed to the weather five-sixteenths inch (5/16") ; for interior construction one-quarter inch (\(\frac{1}{4} \)) ; and shall be not less than one-half inch (\(\frac{1}{2} \)) at every point for any cast iron or cast steel member, except as follows:

Exceptions: The webs of channels and I-beams, the edges of rolled steel sections, steel joists, signs, skylight bars, non-bearing walls and partitions, suspended ceilings, cornice brackets, steel studs, and similar steel shapes shall not be limited to the above thickness requirements. (See also Section 3316 for outside stairways.)

Sec. 2706. Compression members when faced for bearings shall be spliced sufficiently to hold the connected members accurately in place. Other joints in riveted work, whether in tension or compression, shall be spliced so as to transfer the stress to which the member is subject.

Sec. 2707. (a) **Riveted Holes.** In computing net area the diameter of a rivet hole shall be taken as one-eighth inch (\(\frac{1}{8} \)) greater than the nominal diameter of the rivet.

(b) **Pin Holes.** In pin connected tension members, the net section across the pin hole, transverse to the axis of the member, shall be not less than 140 per cent and the net section beyond the pin hole, parallel with the axis of the member, not less than 100 per cent, of the net section of the body of the member.
In all pin connected riveted members the net width across the pin hole, transverse to the axis of the member, shall preferably not exceed 12 times the thickness of the member at the pin.

(c) Chain of Holes. In the case of a chain of holes extending across a part in any diagonal or zigzag line, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters of all the holes in the chain, and adding to the section so obtained for each gauge space in the chain, the quantity \[\frac{s^2}{4g} \]

WHERE

\[s = \text{longitudinal pitch of any two successive holes} \]
\[g = \text{transverse gauge of the same two holes.} \]

The critical net section of the part is obtained from the chain which gives the least net width.

(d) Gross Width of Angles. For angles, the gross width shall be the sum of the widths of the legs less their thickness. The gauge for the holes in opposite legs shall be the sum of the gauges from back of angle less the thickness.

(e) Splice Members. For splice members, the thickness shall be only that part of the thickness of the member which has been developed by rivets beyond the section considered.

(f) Designed Sections. Unless otherwise specified, tension members shall be designed on the basis of net section. Columns shall be designed on the basis of gross section. Beams and girders shall be designed in accordance with Section 2704.

Sec. 2708. (a) Minimum Number of Rivets. Connections carrying calculated stresses, except for lacing, sag bars and girts, shall have not fewer than two rivets.

(b) Eccentricity in Members. Members meeting at a joint shall have their gravity axis meet at a point if practicable; if not, provision shall be made for their eccentricity.

(c) Eccentricity in Rivets. The rivets at the ends of a member transmitting stresses into that member should have their centers of gravity on the line of the center of gravity of the member; if not, provision shall be made for the effect of the resulting eccentricity. Pins may be so placed as to counteract the effect of bending due to dead load.

(d) Eccentricity in Angles. Where angles in tension are connected through but one leg and the eccentricity is not taken into account, only 80 per cent of the net section of the angle shall be considered as effective.

(e) Eccentricity in Members in Flexure. When beams, girders or trusses are designed on the basis of simple spans, their end connections may ordinarily be designed for the reaction shears only. If, however, the eccentricity of the connection is excessive, provision shall be made for the resulting moment.
(f) Combined Shear and Moment. When beams, girders or trusses are subject both to reaction shear and end moment, due to full or partial end restraint, based on continuous or cantilever action, their connections shall be especially designed to carry both shear and moment without exceeding at any point the unit stresses prescribed in Section 2702. Ordinary end connections comprising only a pair of web angles, with not more than nominal seat and top angle, shall not be assumed to provide for this kind of end moment.

(g) Filler Plates in Trusses. In truss construction when rivets carrying computed stress pass through fillers, the fillers shall be extended beyond the connected member and the extension secured by sufficient rivets to develop the strength of the filler.

(h) Fillers Under Stiffeners. Fillers under plate girder stiffeners at end bearing or points of concentrated loads shall be secured by sufficient rivets to prevent excessive bending and bearing stresses.

(i) Riveted Joints. All joints in riveted work, whether in tension or compression, shall be so spliced as properly to transmit all stresses, except as provided in Section 2706.

The minimum distance from the center of any rivet or bolt hole to any edge shall be that given in Table No. I of this chapter.

The minimum distance between centers of rivet holes shall

<table>
<thead>
<tr>
<th>Rivet Diameter (Inches)</th>
<th>Minimum Edge Distance (Inches) for Punched Holes in</th>
<th>Rolled Edge of Plates & Sections with Parallel Flanges</th>
<th>Rolled Edge of Plates & Sections with Sloping Flanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>1</td>
<td>7/8</td>
<td>7/8</td>
</tr>
<tr>
<td>5/8</td>
<td>1 1/8</td>
<td>1 1/8</td>
<td>1 1/8</td>
</tr>
<tr>
<td>7/8</td>
<td>1 1/4</td>
<td>1 1/4</td>
<td>1 1/4</td>
</tr>
<tr>
<td>1</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>1 1/8</td>
<td>2</td>
<td>1 3/8</td>
<td>1 3/8</td>
</tr>
<tr>
<td>1 1/4</td>
<td>2 1/8</td>
<td>2 1/8</td>
<td>2 1/8</td>
</tr>
</tbody>
</table>

*May be decreased 1/8 inch when holes are near end of beam.

<table>
<thead>
<tr>
<th>Rivet Diameter (in Inches)</th>
<th>Center to Center Spacing (in Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4</td>
<td>4 1/2</td>
</tr>
<tr>
<td>1 1/8</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7/8</td>
<td>3 1/2</td>
</tr>
<tr>
<td>5/8</td>
<td>3</td>
</tr>
<tr>
<td>3/4</td>
<td>2 1/2</td>
</tr>
<tr>
<td>5/8</td>
<td>2</td>
</tr>
<tr>
<td>7/8</td>
<td>1 1/4</td>
</tr>
</tbody>
</table>
be three diameters of the rivet; but the distance shall be not
less than shown in Table No. II of this Chapter.

The maximum pitch in the line of stress of compression
members composed of plates and shapes shall not exceed 16
times the thinnest outside plate or shape, or 20 times the
thinnest enclosed plate or shape with a maximum of twelve
inches (12""); and at right angles to the direction of stress the
distance between lines of rivets shall not exceed 30 times the
thinnest plate or shape. For angles in built sections with two
gauge lines, with rivets staggered, the maximum pitch in the
line of stress in each gauge line shall not exceed 24 times the
thinnest plate with a maximum of eighteen inches (18"").

In tension members composed of two angles, a pitch of
three feet six inches (3'-6") will be allowed, and in compression
members two feet (2'-0") but the ratio l/r for each angle be-
tween rivets shall be not more than three-fourths of that of
the whole member.

The pitch of rivets at the ends of built compression mem-
bers shall not exceed four diameters of the rivets for a length
equal to one and one-half times the maximum width of the
member.

The minimum distance between the center of any rivet
under computed stress, and the end or other boundary of the
connected member toward which the pressure of the rivet is
directed, shall be not less than the shearing area of the rivet
shank (single or double shear respectively) divided by the
plate thickness. This end distance may however be decreased in
such proportion as the stress per rivet is less than that per-
mitted under Section 2702; and the requirement may be disre-
garded in case the rivet in question is one of three or more in a
line parallel to the direction of the stress.

Sec. 2709. In proportioning rivets, the nominal diameter of
the rivet shall be used.

Rivets carrying calculated stresses, and whose grip exceeds
five diameters, shall have their number increased one per cent
for each additional one-sixteenth inch (\(\frac{1}{16} \)”) in the rivet grip.
Special care shall be used in heating and driving such rivets.

Rivets shall be used for the connections of main members
carrying live loads which produce impact, and for connections
subject to reversal of stresses.

Unfinished bolts may be used in shop or field work for con-
nections in small structures used for shelters, and for secondary
members of all structures such as purlins, girts, door and win-
dow framing, alignment bracing and secondary beams in floor.

The effective bearing area of pins, bolts, and rivets shall be
the diameter multiplied by the length in bearing; except that
for countersunk rivets, half the depth of the countersink shall
be deducted.

Rivets shall be used in the following cases:

In all connections in structures over one hundred feet (100')
in height when the height is more than two and one-half times
the minimum horizontal dimension at the ground line.
In all connections in structures one hundred feet (100') or less in height where the height is more than four times the least horizontal dimension at the ground line.

In all connections of beams and girders to columns and of beams and girders bracing columns in buildings over one hundred feet (100') in height, and in column splices of buildings more than two hundred feet (200') in height.

In all connections for supports of machinery or other moving loads.

Unfinished bolts may be used for connections not mentioned in the preceding paragraphs.

Turned bolts in reamed holes may be used, in place of rivets, in either shop or field work where it is impracticable to obtain satisfactory power driven rivets, provided holes are as specified in Section 2717. The finished shank shall be long enough to provide a full grip for the nut, and washers shall be used under all nuts.

The end reaction stresses of trusses, girders, or beams, and the axial stresses of tension or compression members which are carried on rivets, shall have such stresses developed by the shearing and bearing values of the rivets or bolts.

Sec. 2710. Fusion welding may be used (in place of riveting or bolting) for connecting structural steel or wrought iron parts or members to one another, but in no case shall the stresses in such joints exceed the allowable unit working stresses given in the following table:

<table>
<thead>
<tr>
<th>Allowable Unit Working Stresses for Static Loads</th>
</tr>
</thead>
</table>
| Tension in weld metal (butt welds).............13,000 lbs. per sq. in.
| Shear in weld metal (fillet welds).............11,300 lbs. per sq. in.
| Compression in weld metal........................18,000 lbs. per sq. in.

Maximum fiber stresses due to bending shall not exceed the values prescribed above for tension and compression, respectively. In designing welded joints adequate provision shall be made for bending stresses due to eccentricity, if any, in the disposition or section of base metal parts.

The same proportional increase in the above working stresses shall be allowed for the various given conditions as specified in parts (f) and (g) in Section 2702.

Sections one to eight inclusive of the Code for Fusion Welding and Gas Cutting in Building Construction, Code I, Part A; also Appendices I, II, III, and IV, Edition of 1937,* formulated by the American Welding Society, shall be followed in the design and execution of structural welding.

Sec. 2711. Trusses shall be riveted structures preferably and only when there is sufficient reason to justify, such as where riveted field connections become unwieldy, may they be designed as pin-connected structures.

All joints in riveted work, whether in tension or compression, shall be spliced properly to transmit the stresses.

Bracing shall be sufficient to withstand safely wind and other forces when the building is in the process of erection as well as after completion.
When two or more plates are in contact they shall be stitch riveted with rivets not more than twelve inches (12") apart in either direction.

The ends of beams, channels, girders and trusses that bear on masonry or reinforced concrete shall be so framed that the allowable stresses for masonry or reinforced concrete shall not be exceeded, and anchors of ample size and strength shall be provided thoroughly embedded in the masonry or reinforced concrete construction.

The ends of all beams, channels, girders, girts, purlins and similar members, that meet on a beam, girder, truss, column or pier shall be connected to each other by a strap or through the carrying members with not less than two bolts or rivets each not less than five-eighths inch (5/8") in diameter in the end of each connecting member.

Tie rods shall be proportioned to resist their respective stresses, and holes for them shall be placed as near the spring of the arches as practicable.

Sec. 2712. (a) Compression Members. The open sides of compression members shall be provided with lacing having tie plates at each end and at intermediate points if the lacing is interrupted. Tie plates shall be as near the ends as practicable. In main members carrying calculated stresses the end tie plates shall have a length of not less than the distance between the lines of rivets connecting them to the flanges, and intermediate ones of not less than one-half of this distance. The thickness of tie plates shall be not less than one-fiftieth of the distance between the lines of rivets connecting them to the segments of the members, and the rivet pitch shall be not more than four diameters.

(b) **Tension Members.** Tie plates shall be used to secure the parts of tension members composed of shapes. They shall have a length not less than two-thirds of the length specified for tie plates in compression members. The thickness shall be not less than one-fiftieth of the distance between the lines of rivets connecting them to the segments of the member and they shall be connected to each segment by at least three rivets.

(c) **Spacing of Lacing Bars.** Lacing bars of compression members shall be so spaced that the ratio l/r of the flange included between their connections shall be not over three-fourths of that of the member as a whole.

(d) **Proportioning of Lacing Bars.** Lacing bars shall be proportioned to resist a shearing stress normal to the axis of the member equal to two per cent of the total compressive stress of the member. In determining the section required the compression formula shall be used, l being taken as the length of the bar between the outside rivets connecting it to the segment for single lacing and 70 per cent of that distance for double lacing. The ratio l/r shall not exceed 140 for single lacing and 200 for double lacing.

\(^{1}\text{See "Specification Documents".}\)
(e) **Thickness of Lacing Bars.** The thickness of lacing bars shall be not less than one-fortieth for single lacing and one-sixtieth for double lacing of the distance between end rivets; their minimum width shall be three times the diameter of the rivets connecting them to the segments.

(f) **Inclination of Lacing Bars.** The inclination of lacing bars to the axis of the members shall preferably be not less than 45 degrees for double lacing and 60 degrees for single lacing. When the distance between rivet lines in the flanges is more than 15 inches (15”) the lacing shall be double and riveted at the intersection if bars are used, or else shall be made of angles.

Sec. 2713. Pins shall be long enough to insure a full bearing of all parts connected upon the turned-down body of the pin.

Members packed on pins shall be held against lateral movement.

Pin holes shall be reinforced by plates wherever necessary to give proper bearing. At least one plate shall be as wide as the projecting flanges will allow. Where angles are used this plate shall contain sufficient rivets to distribute their portion of the pin pressure to the full cross section of the member.

Sec. 2714. Provision shall be made to transfer the column loads to the footings and foundations.

Column bases shall be set level and to correct elevation with full bearing on the masonry.

Column bases shall be finished to accord with the following requirements:

1. Rolled steel bearing plates two inches (2”) or less in thickness may be used without planing or straightening; rolled steel bearing plates over two inches (2”) but less than four inches (4”) in thickness may be straightened by pressing, or planed on all bearing surfaces if presses are not available; rolled steel bearing plates four inches (4”) or over in thickness shall be planed on all bearing surfaces (except as noted under paragraph 3 of this section).

2. Column bases other than rolled steel bearing plates shall be planed on all bearing surfaces (except as noted in paragraph 3).

3. The bottom surfaces of column bases which rest on masonry foundations and are grouted to insure full bearing contact need not be planed.

4. Anchor bolts shall be of sufficient size and number to develop the computed stresses.

Sec. 2715. (a) **Structural Form.** Steel joists may be rolled structural steel sections, sections built up of rolled structural sections, or shapes made from strip or sheet steel securely spot-welded together so as to form a cohesive structural unit, all of which shall have the general shape or contour of an I-Beam; or such steel joist may be of a determinate truss design built up of rolled structural steel sections effectively fusion welded.
together as specified in part (f) of this Section. Joists other than those consisting of a single rolled structural steel section with solid web, shall not be used in the floor construction of buildings over eight stories in height.

(b) Secondary Members. Steel joists shall be considered as secondary members of the structural steel frame. They shall be designed to carry all dead, live and other loads to which they may be subjected during the erection and after the completion of the structure. Such secondary members shall not be considered as affecting the vertical rigidity of the framework but they shall be designed and considered as carrying horizontal forces to such parts of the frame as are designed to carry these horizontal forces to the foundation.

(c) Stresses and Bridging. Stresses in steel joists shall not exceed those specified in Section 2702 and no joist under its calculated load shall have a deflection exceeding one three-hundred-sixtieth of the span. Bridging shall be provided during the period of construction to adequately support the top chord or flange against lateral movement and such bridging shall be designed to hold each joist in a vertical plane. Permanent bridging shall be installed sufficient to laterally stay the joists and to transmit any horizontal forces in either direction perpendicular to the direction of the joists. Such bridging shall consist of solid concrete sections, structural steel shapes or plates, portal bridging, diagonal rods, or other bridging which will provide equivalent stiffness. Any row of bridging shall be capable of transferring 500 pounds from each joist to the adjoining joists. The actual spacing of the joists center to center shall be determined by their capacity to sustain the loads which they carry and the allowable load carrying capacity of the floor structure between the members.

(d) End Connections and Anchorage. When used in buildings of Type I Construction, steel joists shall be connected to the supporting beams and/or girders by fusion welding, riveting, bolting or rigidly connecting. Fusion welds shall be made on both sides of each bearing, shall be not less than one inch (1") in length measured from the starting end to the center of the finishing crater, and shall have a minimum bead of one-fourth inch (1/4"). Riveting and bolting shall comply with the requirements of Section 2709. When steel joists are supported on masonry or reinforced concrete the end bearing shall be not less than four inches (4") in length and the ends of such joists shall be provided with approved joist anchors thoroughly embedded in the supporting masonry or reinforced concrete placed at not to exceed six feet (6') center to center. Bearing plates securely welded, bolted or riveted to the joists shall be provided when required by the design of the joist. In buildings over eight stories in height in which steel joisted floor construction is used, all connections between steel joists and primary members of the structure shall be approved standard connection angles and power driven rivets, or unfinished bolts as provided for light steel beams in the handbook, Steel Construction, of the American Institute of Steel Construction, Inc., dated January, 1934.

195
(e) **Strip Steel Joist.** Strip or sheet steel used to produce strip steel joists shall in no case be less than seventy-two thousands of an inch (0.072) in thickness. The flange width of such joists shall not exceed one-half their depth.

(f) **Trussed Steel Joist.** Trussed steel joists shall be so constructed that the lines of force of all connected members shall intersect at a point or proper allowance shall be made in the design of any resulting stress.

The joints of all trussed steel joists shall be made by connecting the members directly to one another by fusion welds or by rivets of sufficient capacity to develop the ultimate strength of the smallest connected member. When welds are used, each connection of member to member shall be made with not less than two welds, and each weld shall be not less in length measured from starting end to the center of the finishing crater than twice the diameter of the smallest member connected, nor less in cross sectional area than one-fourth of the cross sectional area of the smallest member connected. Welds shall be located symmetrically on both sides of all connected members so as to eliminate eccentricity at joints. When sections other than round bars are used, the length and cross sectional area of the welds shall be the same as those required for round bars of equivalent area.

(g) **Welded Connections.** Whenever deemed necessary by the Building Inspector any welded connections or welded joints shall be tested to not less than twice the designed load by the manufacturer or user and such load shall be sustained without any signs of failure. Should any signs of failure develop the joist or joists shall be rejected and removed immediately from the premises.

Expansion

Sec. 2716. Proper provision shall be made for expansion and contraction.

Workmanship

Sec. 2717. All workmanship shall be equal to the best practice in modern structural shops.

Drifting to enlarge unfair holes shall not be permitted. Holes that must be enlarged to admit the rivets shall be reamed. Poor matching of holes shall be cause for rejection.

All material shall be clean and straight. If straightening or flattening is necessary, it shall be done by a process that will not injure the material. Sharp kinks or bends shall be cause for rejection.

Rolled sections except for minor details, shall preferably not be heated, or, if heated shall be annealed.

All steel castings shall be properly annealed.

Material may be punched one-sixteenth inch (1/₁₆") larger than the nominal diameter of the rivets, whenever the thickness of the metal is equal to or less than the diameter of the rivets, plus one-eighth inch (1/₈"). When the metal is thicker than the diameter of the rivet, plus one-eighth inch (1/₈"), the holes shall be drilled, or sub-punched and reamed.

Holes for shop turned bolts shall be sub-punched and reamed.
or drilled from the solid. Holes for field turned bolts shall be sub-punched in the shop and reamed in the field.

When sub-punching and reaming is required the die used for punching shall be one-sixteenth inch (\(\frac{1}{192}\)") smaller than the nominal diameter of the rivet. Rivet holes, after assembling, shall be reamed to a diameter one-sixteenth inch (\(\frac{1}{192}\)") greater than the nominal diameter of the rivet. Turned bolt holes, after assembling, shall be reamed (for field bolts in the field) to a diameter one-fiftieth inch (1/50") larger than the diameter of the turned bolt.

Rivets are to be driven hot, and wherever practicable, by power. Rivet heads shall be of hemispherical shape and uniform in size throughout the work for the same size rivet, full, neatly finished, and concentric with the holes. Rivets, after driving, shall be tight, completely filling the holes, and with heads in full contact with the surface.

Rivets shall be heated uniformly to a temperature not exceeding 1950° F. They shall not be driven after their temperature is below 1000° F. Loose, burned and otherwise defective rivets shall be replaced.

Compression joints depending upon contact bearing shall have the bearing surfaces truly faced after the members are riveted. All other joints shall be cut or dressed true and straight.

Finished members shall be true to line and free from twists, bends and open joints.

Compression members may have a lateral variation not greater than 1/1000 of the axial length between points which are to be laterally supported.

An allowable variation of one-thirty-second inch (\(\frac{1}{32}\)") is permissible in the overall length of members with both ends milled.

Members without milled ends which are framed to other steel parts of the structure may have a variation from the detailed length not greater than one-sixteenth inch (\(\frac{1}{192}\)") for members thirty feet (30') or less in length, and not greater than one-eighth inch (\(\frac{1}{8}\)") for members over thirty feet (30') in length.

Planing or finishing of sheared plates or shapes will not be required unless specifically called for on the drawings.

All parts of riveted members shall be well pinned or bolted and rigidly held together while riveting. Drifting done during assembling shall not distort the metal or enlarge the holes.

Gas cutting may be done under the following conditions:

1. The contractor shall be required to satisfy the Building Inspector as to his ability to produce satisfactory gas cuts.

2. Gas cut edges shall be regular in contour.

3. Gas cutting may be used in the preparation of base metal parts for welding, provided the edges so cut are thoroughly cleaned after cutting so as to expose clean metal.

4. Gas cutting shall not be permitted to replace the milling of surfaces specified elsewhere in this Code.

5. Gas cutting shall not be permitted on any member while it is carrying stress. To determine the net area of members so cut, one-eighth inch (\(\frac{1}{8}\)") shall be deducted from the gas cut
edges. The radius of re-entrant gas cut fillets shall be as large as possible, but never less than one inch (1""). This restriction shall not apply to detail cutting for the correction of minor fabricating errors, where the removal of metal resulting from such gas cutting would not reduce the required strength of the member that is to be cut.

6. Gas cutting of holes in any member which has not been designed therefor shall not be permitted.

Painting

Sec. 2718. Parts not in contact, but inaccessible after assembling, shall be properly protected by paint.

All steel work, except where entirely encased in concrete, shall be thoroughly cleaned and given one coat of acceptable metal protection well worked into the joints and open spaces.

Machine finished surfaces shall be protected against corrosion.

Cast iron columns shall not be painted until after acceptance by the Building Inspector.

Erection

Sec. 2719. The frame of all steel skeleton buildings shall be carried up true and plumb, and temporary bracing shall be introduced wherever necessary to take care of all loads to which the structure may be subjected, including erection equipment, and the operation of same. Such bracing shall be left in place as long as required for safety or deemed necessary by the Building Inspector.

As erection progresses the work shall be securely bolted up to take care of all dead load, wind and erection stresses.

Wherever piles of material, erection equipment, or other loads are carried during erection, proper provision shall be made to take care of the resulting stresses.

No riveting or welding shall be done until the structure has been properly aligned.

Rivets driven in the field shall be heated and driven with the same care as those driven in the shop.

In the setting or erecting of steel work the individual pieces shall be considered plumb or level when the error does not exceed 1 to 500. For exterior columns and columns adjacent to elevator shafts of multiple story buildings the error shall not exceed 1 to 1000 of the total height of the column.

Field painting shall be considered a phase of maintenance, not covered by this specification, and shall include spot painting of field rivet heads and all abrasions of the shop coat etc.
PART VII

DETAILED REGULATIONS

CHAPTER 28—EXCAVATIONS, FOOTINGS AND FOUNDATIONS

Sec. 2801. All excavations for buildings and excavations accessory thereto shall be protected and guarded against danger to life and property. All permanent excavations shall have retaining walls of masonry or reinforced concrete of sufficient strength to retain the embankment together with any surcharged loads. No excavation for any purpose shall extend within one foot (1') of the angle of repose or natural slope of the soil under any footing or foundation, unless such footing or foundation is first properly underpinned or protected against settlement.

Any person making or causing an excavation to be made to a depth of twelve feet (12'), or less, below the grade, shall protect the excavation so that the soil of adjoining property will not cave in or settle, but shall not be liable for the expense of underpinning or extending the foundation of buildings on adjoining properties where his excavation is not in excess of twelve feet (12') in depth. Before commencing the excavation the person making or causing the excavation to be made shall notify in writing the owners of adjoining buildings not less than 10 days before such excavation is to be made that the excavation is to be made and that the adjoining buildings should be protected. The owners of the adjoining properties shall be given access to the excavation for the purpose of protecting such adjoining buildings.

Any person making or causing an excavation to be made exceeding twelve feet (12') in depth below the grade, shall protect the excavation so that the adjoining soil will not cave in or settle, and shall extend the foundation of any adjoining buildings below the depth of twelve feet (12') below grade at his own expense. The owner of the adjoining buildings shall extend the foundations of his building to a depth of twelve feet (12') below grade at his own expense as provided in the preceding paragraph.

Sec. 2802. Footings and foundations, unless specifically provided, shall be constructed of masonry or reinforced concrete and shall in all cases extend below the frost line. Masonry units used in foundation walls and footings shall be laid up in portland cement mortar. The base areas of all footings and foundations shall be proportioned as specified in Section 2306.

Footings shall be so designed that the allowable bearing capacity of the soil in tons per square foot as given below shall not be exceeded unless the particular soil on which the building is to be placed shows a greater bearing capacity than that specified in this Section.
Rock...Not more than 20 per cent of the ultimate crushing strength of such rock.
Gravel or coarse sand, well cemented.......................... 6 tons
Dry, hard clay or coarse firm sand (hardpan)........... 4 tons
Moderately dry clay or moderately dry sand and clay... 3 tons
Ordinary clay and sand.................................. 2 tons
Soft clay, sandy loam or silt................................. 1 ton
Adobe.. ½ ton

Where the bearing capacity of the soil is not definitely known or is in question, the Building Inspector may require load tests or other adequate proof as to the permissible safe bearing capacity at that particular location. To determine the safe bearing capacity of soil it shall be tested by loading an area not less than two square feet (2 sq. ft.) to not less than twice the maximum bearing capacity desired for use. Such double load shall be sustained by the soil until no additional settlement takes place for a period of not less than 48 hours in order that such desired bearing capacity may be used. Examination of sub-soil conditions may be required when deemed necessary.

Foundations shall be built upon natural solid ground where possible. Loam or soil containing organic matter shall not be used to support buildings exceeding one story in height. Where solid natural ground does not occur at the foundation depth, such foundations shall be extended down to natural solid ground or piles shall be used, unless there is a practically level fill of good ground which has been in place a sufficient length of time to settle properly, when such fill may be used.

Piles

Sec. 2803. (a) General Requirements. All piles used to support any building or part thereof shall be driven to a reasonably solid bearing in such a manner as not to impair their strength. No pile or group of piles shall be loaded eccentrically.

(b) Wood Piles. Wood piles shall be of oak, Douglas fir, Southern pine, cedar, or other approved wood containing no evidences of decay. The piles shall be free from short kinks or reverse bends and shall have a uniform taper from butt to tip. A straight line drawn from the center of the butt to the tip shall lie wholly within the body of the pile. The diameter of wood piles at the point shall be not less than six inches (6") and at the butt shall be not less than ten inches (10") for piles twenty-five feet (25') or less in length, and not less than twelve inches (12") at the butt for piles more than twenty-five feet (25') in length. No piles with spiral grain which exceeds one complete turn in forty feet (40'), shall be used. All wood piles and capping shall be cut off and/or placed below mean low water level or below lowest ground water level; with the exception of creosoted piles as covered in this Section.

Creosoted piles of Douglas fir or Southern pine when treated with Grade 1 creosote under pressure with the full-cell creosote treatment complying with Specification No. 41-a or No. 39-a of the American Wood Preservers Association in such a manner as to provide a final retention of not less than 12 pounds per cubic foot in Douglas fir piling and not less than 15 pounds per cubic foot in Southern pine piling may be used as follows:
1. Where the upper portion of the creosoted piling is to be exposed and available for inspection the cut-off may be above ground level or above water level.

2. Where the upper part of the creosoted piling will not be readily available for inspection the cut-off shall be below ground level but may be above ground water level provided the tops of the cut-off piles are treated with three coats of hot creosote and capped with concrete so that no part of the pile will be exposed to the air.

No creosoted piling shall be used which have been so injured in handling or driving as to penetrate the creosoted shell, except in the case of bolt holes and unavoidable framing including the top cut-off, all of which shall be treated with three coats of hot creosote.

The allowable load on wood piles shall be in conformity with the requirements of Section 2803 (e).

(c) Concrete Piles. Concrete piles shall be of material complying with the requirements for portland cement, fine aggregate, coarse aggregate and reinforcement as specified in Chapter 26 and steel as specified in Chapter 27. The maximum allowable working stress on any concrete pile shall not exceed 20 per cent of the ultimate compressive strength of the concrete used in the piles, determined by tests as specified in Chapter 26. The maximum allowable load on any pile shall not exceed such working stress multiplied by the average cross sectional area of the pile.

Exception: When such pile is cast in a tight steel tube not less than five-sixteenths inch (\(\frac{5}{16}\)”) thick, the allowable working stress shall be not more than 25 per cent of the ultimate compressive strength of the concrete plus an allowable stress of not to exceed 7500 pounds per square inch for the steel tube, not including in such latter computation the outer one-sixteenth inch (\(\frac{1}{16}\)”) of the steel shell.

Concrete piles cast in place shall be made in such a manner as to insure the exclusion of any foreign matter and to secure a full sized shaft. The length of such piles shall be limited to not more than 30 times the average diameter, except that when cast in steel tubes with a thickness of not less than five-sixteenths inch (\(\frac{5}{16}\)”) the length of such piles shall be not greater than 40 times the average diameter. The diameter of concrete-filled steel tubes shall be not less than ten inches (10”), and such piles shall be driven to a full bearing on rock. The diameter of other piles cast in place shall be not less than eight inches (8”) at the point and shall have an average diameter of not less than eleven inches (11”).

Pre-cast concrete piles shall be sufficiently cured to attain the ultimate strength upon which their use is based, before driving. Such piles shall be reinforced and so handled as not to be fractured in any manner which will affect their durability or strength. Pre-cast concrete piles shall have a diameter at the point of not less than eight inches (8”), and an average diameter of not less than twelve inches (12”). The length of such piles when driven to rock shall be limited to 20 times the
average diameter and shall not exceed 40 times the average diameter in any other case.

The allowable load on concrete piles shall be in conformity with the requirements of Section 2803 (e).

(d) Steel Piles. Rolled structural steel piles shall comply with the requirements for structural steel as specified in Chapter 27. The minimum thickness of metal shall be three-eighths inch (\(\frac{3}{8} \)”). The allowable load on structural steel piles shall be in conformity with the requirements of Section 2803 (e).

(e) Safe Load. The assumed safe load on a pile shall not exceed the value given by the following formula, unless such safe load is determined by test loading as provided in this section:

\[
\text{Safe load} = \frac{R}{5} \text{ for steel piles,}
\]

\[
\text{Safe load} = \frac{R}{4} \text{ for all other piles,}
\]

WHERE:

\[
R \text{ (for steel piles)} = \frac{12 Wh}{W + P} + \frac{0.25P}{RL 24,000 + \frac{AE}{S}}
\]

\[
R \text{ (for other piles)} = \frac{12 Wh}{W + P} + \frac{0.1P}{RL 24,000 + \frac{AE}{S}}
\]

WHERE—

R = ultimate driving resistance, in tons
W = weight of hammer, in tons
P = weight of pile in tons
S = permanent settlement of pile under the average of the last 10 blows, in inches
h = height of fall of hammer, in feet
L = length of pile, in feet
A = average right cross-sectional area of pile, in square inches
E = modulus of elasticity of pile, in pounds per square inch

No wooden pile shall be loaded in excess of 500 pounds per square inch of the right section of the pile at mid-length.

The safe bearing value of a pile may be determined by a load test, upon due notice to the Building Inspector. The assumed safe load shall not exceed one-half of the load which shows no settlement for 24 hours, and a total settlement not to exceed 0.01 inch per ton of test load.

The supporting value of piles depending solely upon friction when driven in clusters or groups, shall be determined by multi-
plying the bearing value of a single pile by an efficiency factor as determined by the following formula:

\[
\text{Efficiency} = 1 - \left(\frac{\theta (n-1) n + (m-1) n}{90 \cdot mn} \right), \quad \text{in which}
\]

- \(n \) = number of piles in a row
- \(m \) = number of rows
- \(d \) = diameter of pile
- \(s \) = center to center spacing of piles

\[
\tan \theta = \frac{d}{s}, \quad \text{in which}
\]

\(\theta \) is numerically equal to the angle expressed in degrees

Piles standing free in water or very soft soil shall conform with the applicable column formula as stated in this Code. Piles driven into firm ground may be considered fixed at five feet (5') below the ground surface and in soft material at ten feet (10') below the ground surface.

When precast concrete piles frame into a concrete deck structure, the unsupported length may be taken as two-thirds the distance from the top of the pile to the point of fixity as stated in the foregoing paragraph.

Sec. 2804. (a) Caissons. The footings of any structure may be carried down to a firm foundation by isolated piers of reinforced concrete or by open or pneumatic caissons either with or without enlarged base or bell at the bottom. The safe carrying capacity of such shafts or caissons shall not exceed the allowable unit bearing capacity of the soil multiplied by the area of the base or bell at bottom.

(b) Caissons With Belled Footings. In the case of piers or caissons with belled footings, the slope of the sides of the bell shall not exceed one foot horizontally for each two feet vertically unless properly reinforced in accordance with Section 2622.
CHAPTER 29—WALLS AND PARTITIONS
(Solid Masonry Walls)

Sec. 2901. Solid masonry walls shall be supported at right angles to the wall face at intervals not exceeding 18 times the wall thickness in the top story of buildings more than one story in height, or 20 times the wall thickness elsewhere, except as specifically provided in Section 2903. Such lateral support may be obtained by masonry cross walls, piers or buttresses when the limiting distance is measured horizontally or by floors or roof when the limiting distance is measured vertically. Bonding and anchoring of horizontal and vertical framing members to the wall shall be provided sufficient to resist the assumed wind force acting in an outward direction. Floors and roofs shall be so constructed and anchored to such walls as to form a continuous and sufficient anchorage across the building from wall to wall. Anchoring of wood framing to masonry walls shall be as specified in Chapter 25. Piers or buttresses relied upon for lateral support shall have sufficient strength and stability to transfer the wind force acting in either direction to the ground. When walls are dependent upon floors for their lateral support provision shall be made in the building to transfer the lateral forces resisted by all floors to the ground.

Corbels may be built into masonry walls to furnish bearing for joists or other structural parts, but such corbels shall not exceed one-fourth the total thickness of the wall and the projection for each course in such corbel shall not exceed one-half inch (½”). Corbeling of walls eight inches (8”) or less in thickness shall not be allowed.

Sec. 2902. The maximum allowable compressive stresses in solid masonry due to combined live, dead and other loads shall not exceed those specified in Sections 2411 and 2412.

Sec. 2903. (a) Solid Masonry Bearing Walls. The thickness of solid masonry walls shall be sufficient at all points to keep the combined stresses due to live, dead and other loads for which the building is designed within the limits specified in Sections 2411 and 2412.

TABLE No. I—MINIMUM THICKNESS, SOLID MASONRY BEARING WALLS

<table>
<thead>
<tr>
<th>Stories</th>
<th>Nominal Thickness In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>8th</td>
<td>12</td>
</tr>
<tr>
<td>7th</td>
<td>12</td>
</tr>
<tr>
<td>6th</td>
<td>12 12</td>
</tr>
<tr>
<td>5th</td>
<td>16 12 12</td>
</tr>
<tr>
<td>4th</td>
<td>16 16 12 12</td>
</tr>
<tr>
<td>3rd</td>
<td>16 16 16 12 12</td>
</tr>
<tr>
<td>2nd</td>
<td>20 20 20 16 16 12 12</td>
</tr>
<tr>
<td>1st</td>
<td>20 20 20 16 16 16 12</td>
</tr>
<tr>
<td>Basement</td>
<td>20 20 20 20 16 16 16 16 12</td>
</tr>
</tbody>
</table>
The minimum thickness of solid masonry exterior, bearing or party walls shall be not less in thickness than specified in Table No. I of this Chapter; provided, that in no case shall the uppermost thirty-five feet (35') of such walls be less than twelve inches (12") in thickness, and each successive thirty-five feet (35') or fraction thereof measured downward from the top shall be increased not less than four inches (4") in thickness.

Exceptions: 1. The top story exterior or bearing walls of a building not exceeding four stories or fifty-five feet (55') in height, or the wall of a one-story building of Group E, F or G may be eight inches (8"), provided, that such eight inch (8") wall does not exceed twelve feet (12') unsupported height and that the roof beams or trusses are so placed or constructed as not to develop any direct thrust against the wall.

2. Exterior walls for Group I occupancies shall be as specified in part (c) of this Section.

3. Solid masonry exterior bearing or party walls constructed as specified in part (d) of this Section may be of lesser thickness.

(b) Non-Bearing Walls. Non-bearing walls of solid masonry shall be not less in thickness than specified in Table No. II of this Chapter; provided, that in no case shall the uppermost fifteen feet (15') of such wall be less than eight inches (8") thick and that each successive fifty feet (50') or fraction thereof measured downward from the top shall be increased not less than four inches (4") in thickness.

Exceptions: 1. Solid masonry non-bearing walls for Group I occupancies not over three stories high shall be as specified in part (c) of this Section.

(c) Walls for Group I Occupancies. Solid masonry walls, either bearing or non-bearing, for Group I occupancies not over three stories in height shall not be less in thickness than specified in Table No. III of this Chapter.

(d) Stiffened Walls. Where solid masonry bearing or non-bearing walls are strengthened laterally by masonry buttresses or cross walls the wall thicknesses specified in parts (a), (b)

<table>
<thead>
<tr>
<th>Stories</th>
<th>Nominal Thickness In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>8th</td>
<td>8</td>
</tr>
<tr>
<td>7th</td>
<td>12</td>
</tr>
<tr>
<td>6th</td>
<td>12</td>
</tr>
<tr>
<td>5th</td>
<td>12</td>
</tr>
<tr>
<td>4th</td>
<td>12</td>
</tr>
<tr>
<td>3rd</td>
<td>12</td>
</tr>
<tr>
<td>2nd</td>
<td>12</td>
</tr>
<tr>
<td>1st</td>
<td>16</td>
</tr>
<tr>
<td>Basement</td>
<td>20</td>
</tr>
<tr>
<td>Stories</td>
<td>8</td>
</tr>
</tbody>
</table>

205
TABLE No. III—MINIMUM THICKNESS, WALLS OF GROUP I OCCUPANCIES

<table>
<thead>
<tr>
<th>Stories</th>
<th>Nominal Thickness in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd</td>
<td>8</td>
</tr>
<tr>
<td>2nd</td>
<td>8</td>
</tr>
<tr>
<td>1st</td>
<td>12</td>
</tr>
<tr>
<td>Basement</td>
<td>12</td>
</tr>
<tr>
<td>Stories</td>
<td>3</td>
</tr>
</tbody>
</table>

and (c) of this Section may be reduced between buttresses by one-half the thickness added at the buttress, except that no part of such buttressed wall shall be less than eight inches (8") thick. Buttresses shall be not less in width than one-eighth the clear distance between them and their clear distance apart shall not exceed 24 times the reduced wall thickness. Principal girders and trusses shall rest on the buttresses.

In one-story buildings having walls not over sixteen feet (16') high to the under side of girders or trusses and pilastered as above provided for an eight inch (8") wall between pilasters, such walls may be considered as bearing walls for roof loads and parapet walls only. All materials used in solid masonry walls shall conform in all respects to the requirements for such materials in Chapters 24 and 26.

Bond

Sec. 2904. In all solid unit masonry walls at least every sixth course on both sides of the wall shall be a header course or there shall be at least one full header in every seventy-two square inches (72 sq. in.) of each wall surface. In walls more than twelve inches (12") thick the inner joints of header courses shall be covered with another header course which shall break joints with the course below.

Where running bond is used, every sixth course on each face shall be bonded into the backing by using a full header course at right angles to the face behind split brick.

Piers

Sec. 2905. The unsupported height of isolated piers shall not exceed 10 times their least dimension. Piers of solid unit masonry shall be laid up in cement mortar.

Walls in which the openings are of such an extent as to leave relatively narrow sections exceeding ten feet (10') in height shall have such narrow sections computed and constructed as for isolated piers.

Chases and Recesses

Sec. 2906. There shall be no chases in eight inch (8") walls or within the required area of any pier, and no chase in any wall or pier shall be deeper than one-third the wall thickness. No horizontal chase shall exceed four feet (4') in length nor shall the horizontal projection of any diagonal chase exceed four feet (4'). No vertical chase shall be closer than two feet (2') to any pilaster, cross wall, end wall or other stiffener.

Recesses for stairways or elevators may be made in walls, but in no case shall the walls at such points be less than the
required thickness of walls of the fourth story above the ground floor unless reinforced by additional piers, by steel or reinforced concrete girders or steel or reinforced concrete columns and girders, securely anchored to the walls on each side of such recesses. Recesses for alcoves and similar purposes shall have not less than eight inches (8") of material at the back. Such recesses shall be not more than eight feet (8') in width and shall be arched over or spanned with lintels.

The aggregate area of recesses and chases in the wall of any one story shall not exceed one-fourth the whole area of the face of the wall in that story.

No chases or recesses shall be permitted in any wall which will reduce the fire-resistance of such wall below the minimum specified in this Code.

Openings for doors and windows shall have well buttressed arches or lintels of masonry, or of metal with bearing at each end of not less than four inches (4") on the wall. On the inside of openings less than four feet (4') wide, in which the thickness of arches and lintels is less than that of the wall supported, timber may be used, which will rest at each end not more than two inches (2") on the wall and be chamfered or cut to serve as arch centers.

The maximum percentage of openings in the horizontal cross section of any wall shall not exceed 50 per cent unless the wall is increased four inches (4") in thickness or such portions of the wall between openings shall be as required for piers in Section 2905.

Walls of Hollow Tile, Concrete Block or Tile, Hollow Walls of Brick and Hollow Monolithic Plain Concrete Walls

Sec. 2907. Walls of hollow clay tile, of concrete block or tile, hollow walls of solid masonry units and hollow monolithic plain concrete walls shall be supported at right angles to the face at intervals not exceeding 16 times the wall thickness in top stories of buildings more than one story in height, or 18 times the wall thickness elsewhere.

The general provisions relating to solid masonry walls shall apply to hollow walls as included in this Section; provided, that corbeling from hollow walls shall not be permitted except when such corbels are constructed of solid masonry or reinforced concrete.

Where air spaces are built into the wall the area of such air spaces combined with the area of the cellular space in the tile used in the construction of the wall shall not exceed 45 per cent of the gross cross-sectional area of the wall.

Masonry walls composed of a combination of solid and hollow units shall be not less in thickness than the minimum thickness required for hollow walls as provided in Section 2909.

All materials used in walls of hollow clay tile or concrete block or tile, hollow walls of solid masonry units and hollow monolithic concrete walls shall conform in all respects to the requirements in Chapters 24 and 26 for such materials.
TABLE No. IV—MINIMUM THICKNESSES—HOLLOW WALLS

<table>
<thead>
<tr>
<th>Stories</th>
<th>Nominal Thickness In Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>8th</td>
<td>12</td>
</tr>
<tr>
<td>7th</td>
<td>12</td>
</tr>
<tr>
<td>6th</td>
<td>12</td>
</tr>
<tr>
<td>5th</td>
<td>12</td>
</tr>
<tr>
<td>4th</td>
<td>12</td>
</tr>
<tr>
<td>3rd</td>
<td>20</td>
</tr>
<tr>
<td>2nd</td>
<td>20</td>
</tr>
<tr>
<td>1st</td>
<td>20</td>
</tr>
<tr>
<td>Basement</td>
<td>20</td>
</tr>
<tr>
<td>Stories</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Sec. 2908. The maximum allowable compressive stresses in walls of hollow tile, concrete block or tile, hollow walls of brick or hollow monolithic plain concrete walls due to combined live, dead and other loads shall not exceed those specified in Chapters 24 and 26.

Sec. 2909. Walls of hollow clay tile and concrete block or tile, hollow walls of solid masonry units and hollow monolithic concrete walls shall be not less in thickness than as specified in Table No. IV of this Chapter; provided, that in no case shall the uppermost twenty-five feet (25’) of such walls be less than twelve inches (12”) in thickness, and each successive twenty-five feet (25’) or fraction thereof measured downward from the top shall be increased not less than four inches (4”) in thickness.

Exceptions: Walls constructed with either hollow clay tile, as specified in Section 2405 for exterior and bearing walls or hollow concrete block or tile as specified in Section 2406 may be of the same thickness as solid masonry walls when not exceeding two stories in height, and such walls shall be laid in cement mortar proportioned as specified in Sec. 2410. One-story private garages and one-story residences may have bearing and non-bearing walls of hollow tile, concrete block or tile, hollow brick or hollow monolithic plain concrete walls six inches (6”) thick.

Sec. 2910. All hollow masonry units in a wall shall have all contact surfaces solidly embedded in mortar and laid with a full bond.

Where two or more hollow units are used to make up the thickness of a wall the inner and outer courses shall be bonded at vertical intervals not exceeding three courses by lapping at least one cell completely over a cell of the unit below.

Sec. 2911. Suitable provision shall be made in hollow walls or walls of hollow units at each line of floor joists or beams to shut off the spaces above from those below with incombustible material.
Except where hollow units having at least three cells in each eight inches (8") of thickness are laid with cells horizontal, joists, beams or other structural members shall not be seated directly on hollow walls or walls of hollow units, but shall be supported on at least three courses of brick or equivalent concrete or metal plate of sufficient thickness and size to distribute the load to the webs and shells in such a manner as not to exceed the allowable unit stress.

Sec. 2912. Hollow clay tile or concrete block or tile, except hollow clay tile as specified in Section 2405 for exterior and bearings walls, and special hollow concrete block or tile, as specified in Section 2406, shall not be used for isolated piers. Wall sections greater in height than 10 times their least dimension and two feet (2') or less in width shall be considered as isolated piers. Isolated piers shall be laid up in cement mortar.

Sec. 2913. Chases and recesses in walls of hollow tile, hollow concrete block or tile, or in hollow walls of brick shall not exceed in extent those permitted for solid masonry walls under the same conditions. Chases and recesses shall not be cut in walls of the above types, but may be built in. No chases or recesses shall be permitted in any wall which will reduce the fire-resistance of such wall below the minimum specified in this Code.

Reinforced tile lintels over openings made by filling the cells of the hollow units with cement mortar or concrete and inserting reinforcing bars may be used. Such lintels shall be computed as reinforced concrete beams on the basis of the enclosed concrete or mortar.

Reinforced Concrete Walls

Sec. 2914. The general provisions of Chapter 26 of this Code shall apply to the design and construction of reinforced concrete walls provided that where any conflict may occur the provisions of Sections 2914 to 2918 inclusive, shall govern.

Walls shall be designed for any lateral or other loads to which they are subjected. Proper provision shall be made for eccentric loads and wind stresses.

The maximum allowable compressive stress in reinforced concrete bearing walls with minimum reinforcement as required by Section 2916 shall not exceed 0.2/", when the unsupported height does not exceed 10 times the thickness nor 0.11/", when the unsupported height is 25 times the thickness with allowable stresses proportional between these limits. When the reinforcement in bearing walls is designed, placed and anchored in position as for columns, the working stresses shall be on the basis of formulas in Chapter 26 for columns. In the case of concentrated loads, the length of the wall to be considered as effective for each shall not exceed the center to center distance between loads, nor shall it exceed the width of the bearing plus four times the wall thickness. Ratio of p_e as defined in Chapter 26 shall not exceed 0.04.

Sec. 2915. Reinforced concrete bearing walls shall have a thickness of at least one twenty-fifth of the unsupported height or width, whichever is the shorter; provided however, that approved buttresses, built-in columns, or piers designed to
carry all the vertical loads, may be used in lieu of increased thickness.

Bearing walls of reinforced concrete shall be not less than six inches (6") in thickness for the uppermost fifteen feet (15') of their height; and for each successive twenty-five feet (25') or fraction thereof downward, the minimum thickness shall be increased one inch (1").

Panel and enclosure walls of reinforced concrete shall have a thickness of not less than five inches (5") and not less than one-thirtieth the distance between the supporting or enclosing members.

Exterior basement walls, foundation walls, and party walls shall be not less than eight inches (8") thick.

Sec. 2916. Reinforced concrete walls shall be anchored to concrete floors, columns, pilasters, buttresses and intersecting walls with reinforcement at least equivalent to three-eighths inch (3/8") round bars eighteen inches (18") on centers, for each layer of wall reinforcement.

Reinforced concrete walls shall be reinforced with an area of steel in each direction, both vertical and horizontal, at least equal to 0.0025 times the cross-sectional area of the wall, if of bars, and 0.0018 times the area, if of electrically welded wire fabric. The wire of the welded fabric shall be of not less than No. 10 W. & M. gauge. Walls more than eight inches (8") in thickness shall have the reinforcement for each direction placed in two layers parallel with the faces of the wall. One layer consisting of not less than one-half and not more than two-thirds the total required shall be placed not less than one and one-half inches (1 1/2") nor more than one-third the thickness of the wall from the exterior surface. The other layer, comprising the balance of the required reinforcement, shall be placed not less than three-fourths inch (3/4") and not more than one-third the thickness of the wall from the interior surface. Bars, if used, shall be not less than the equivalent of three-eighths inch (3/8") round bars, nor shall they be spaced more than eighteen inches (18") on centers. Welded wire reinforcement for walls shall be in flat sheet form.

Sec. 2917. The unsupported height of piers of reinforced concrete walls shall not exceed 10 times their least dimension unless designed as reinforced concrete columns.

Walls in which the openings are of such an extent as to leave relatively narrow sections exceeding ten (10) times their least dimension in height shall be considered as piers.

Sec. 2918. Chases and recesses shall be as permitted in solid masonry walls in Section 2006.

Openings for doors and windows shall have reinforced concrete lintels designed as specified in Chapter 26, or fire-protected steel lintels as specified in Chapter 27.

Stone Walls

Sec. 2919. Stone used in masonry wall construction shall be at least equal in strength to the minimum specified for plain concrete in Section 2407.
Sec. 2920. The maximum allowable compressive stresses in rubble stonework due to combined live, dead and other loads shall not exceed those specified in Sections 2411 and 2412.

Sec. 2921. Rubble stone walls shall be four inches (4") thicker than is required for solid brick or concrete walls of the same respective heights, but in no part less than sixteen inches (16").

The minimum thickness for walls or piers of ashlar masonry properly bonded shall be the same as required for solid brick walls and piers under similar conditions.

The lateral support for stone walls shall conform to the same requirements specified for solid masonry walls in Section 2901.

Sec. 2922. Bond stones extending through the wall and uniformly distributed shall be provided to the extent of not less than 20 per cent of the area, and there shall be at least one bond stone for every five stretchers.

Sec. 2923. Chases and recesses in stone walls shall not exceed in extent those permitted for solid masonry walls under the same conditions.

Veneered Walls

Sec. 2924. Materials used in the veneering of masonry and reinforced concrete walls shall conform in all respects to the requirements for such materials in Chapter 24 of this Code. Stone, cellular architectural terra cotta, slab terra cotta, tile, cast stone, ashlar or other approved masonry materials used for veneering shall be of the thicknesses set forth as follows:

<table>
<thead>
<tr>
<th>Material</th>
<th>Minimum Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone</td>
<td>3 in.</td>
</tr>
<tr>
<td>Cellular architectural terra cotta</td>
<td>3 in.</td>
</tr>
<tr>
<td>Slab terra cotta</td>
<td>1 1/4 in.</td>
</tr>
<tr>
<td>Flat tile</td>
<td>Not more than 1 in.</td>
</tr>
<tr>
<td>Brick (clay, concrete or sand-lime)</td>
<td>2 in.</td>
</tr>
<tr>
<td>Hollow tile</td>
<td>2 in.</td>
</tr>
<tr>
<td>Cast stone</td>
<td>2 in.</td>
</tr>
<tr>
<td>Other approved masonry</td>
<td>3 in.</td>
</tr>
</tbody>
</table>

In stone ashlar, each stone shall have a reasonably uniform thickness, but all stones need not necessarily be of the same thickness.

Sec. 2925. The maximum allowable compressive stresses on the backing of veneered walls, due to combined live and dead loads, shall not exceed those permitted for masonry of the type which forms such backing. In no case shall the veneering be considered a part of the wall in computing the strength of bearing walls, nor shall it be considered a part of the required thickness of the wall.

Sec. 2926. When walls are veneered with brick, hollow tile, cellular architectural terra cotta, slab terra cotta, stone and/or cast stone, the veneering shall be tied into the backing either by a header for every three hundred square inches (300 sq. ins.) of wall surface or by substantial, non-corrosive metal wall ties spaced not farther apart than one foot (1') vertically and two
feet (2') horizontally. Headers shall project at least three and three-quarters inches (3$rac{3}{4}$") into the backing and anchors shall be of substantial pattern. Tile veneering not more than one inch (1") in thickness with individual units not exceeding twenty inches (20") in any one dimension and having not more than two hundred square inches (200 sq. ins.) of superficial area and having corrugations or scorings on the back side thereof, need not be anchored in accordance with the above requirements but shall be cemented solidly to the backing with cement mortar so as to provide a continuous integral support to the backing.

Height of Veneered Walls

Sec. 2927. Veneer on masonry or reinforced concrete walls other than panel walls shall not exceed forty feet (40') in height above foundations or other definite and secure supports. Where slab terra cotta is anchored by means of substantial, non-corrosive metal ties, spaced as required in Section 2926, and grouted or cemented solidly with cement mortar to provide a continuous integral support to the masonry backing and where flat tile is anchored in accordance with the provisions of Section 2926 for tile veneer, this height limit does not apply.

Faced Walls

Quality of Material

Sec. 2928. Material used in the backing and facing of faced walls shall conform in all respects to the requirements prescribed for such materials in Part VI.

Materials used for facing shall be not less than three and three-fourths inches (3$rac{3}{4}$") thick, and in no case less in thickness than one-eighth the height of the unit, excepting that spandrel and other recessed panels, when approved, may be higher than eight times their thickness, provided they are of the minimum thickness required in this paragraph.

Working Stresses

Sec. 2929. The maximum allowable compressive stresses on faced walls due to combined live, dead and other loads shall not exceed those permitted for masonry of the type which forms the backing. Where bonded to the backing as provided in Section 2931, the full cross section of the facing may be considered in computing bearing strength.

Thickness

Sec. 2930. Faced walls shall be not less in thickness than is required for masonry walls of the type which forms the backing. Where bonded to the backing as provided in Section 2931 the facing may be considered a part of the wall thickness.

Bond

Sec. 2931. Solid unit masonry facing, or cellular architectural terra cotta facing, with all voids filled solidly with masonry or concrete grout shall be bonded to walls of solid masonry or of hollow clay tile, or of concrete block or tile with at least one header course in every six courses, or there shall be at least one full length header in every seventy-two square inches (72 sq. ins.) of wall surface.

Stone ashlar facing, or cellular architectural terra cotta facing with all voids filled solidly with masonry or concrete grout shall have at least 15 per cent of the superficial area not less
than three and three-fourths inches (3¾") thicker than the remainder of the facing to form bond units, which shall be uniformly distributed throughout the wall.

Special Wall Requirements

Sec. 2982. No eight inch (8") wall shall be broken into subsequent to building for the insertion of structural members. A separation of not less than four inches (4") of solid masonry shall be provided in all walls between combustible members which may enter such walls from opposite sides.

Sec. 2983. When combustible or unprotected steel building members frame into the hollow part of hollow masonry walls of thicknesses not greater than twelve inches (12") they shall not project more than four inches (4") into the walls and shall be so spaced that the distance between embedded ends is not less than four inches (4"). The space above, below and between such members shall be filled solidly with burnt clay materials, mortar, concrete or equivalent fire-resistive materials, to a depth of not less than four inches (4") on all sides of the members.

All open cells in tile blocks occurring at wall ends shall be filled solid with concrete or cement mortar for at least a depth of six inches (6"), or closure tile set in the opposite direction shall be used.

Sec. 2984. Party walls which carry any loads other than their own weight shall conform to the requirements for load-bearing walls.

When a party wall is unperforated and extends above the roof, and is of four-hour fire-resistive construction as specified in Section 4302, the portions of the building on each side thereof may be considered as separate buildings.

Sec. 2985. On all buildings, except on Group H and I occupancies three stories or less in height, all exterior or party walls shall project above the roof as parapets; provided, that where such wall fronts on a street and where the roof construction is entirely of combustible materials, such parapet wall may be omitted; and provided, further, that for buildings twenty feet (20') or less in height or where the adjoining roof slopes more than 20 degrees from the horizontal, such parapet walls may be omitted. All required parapet walls shall be not less than thirty inches (30") above the roof immediately adjacent thereto and when exceeding six times their thickness in height shall be laterally supported.

All parapet walls shall have a coping of incombustible material. On Group H and I occupancies not more than three stories high, exterior and party walls shall extend above combustible roofs to a height not less than twenty-four inches (24") above the roof where the pitch of the roof does not exceed three inches (3") in twelve inches (12`). Where the pitch of the roof exceeds three inches (3") in twelve inches (12") such walls may terminate at the upper side of the roof boards.
TABLE No. V.—MINIMUM THICKNESS AND MAXIMUM HEIGHT—NON-BEARING PARTITIONS

<table>
<thead>
<tr>
<th>Thickness Exclusive of Plaster (Inches)</th>
<th>Maximum Unsupported Height (Feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8*</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
</tr>
</tbody>
</table>

*Height or length.

Partitions

Sec. 2936. All interior bearing walls, which do not extend through more than one story shall be considered as bearing partitions.

Solid masonry bearing partitions shall be not less than eight inches (8") thick and those of hollow clay tile, concrete block or tile or hollow walls of brick shall be not less in thickness than one-eighteenth of the height between floors or floor beams but never less than eight inches (8").

Non-bearing Partitions

Sec. 2937. Brick non-bearing partitions shall be not less than three and three fourths inches (3¾") thick for a height not exceeding twelve feet (12') between floors or floor beams or roofs. Non-bearing partitions of hollow clay tile, concrete block or tile, plain concrete, hollow walls of brick or of gypsum block or other similar materials shall be built solidly against the floor and ceiling construction below and above and shall not exceed the unsupported heights shown in Table No. V of this Chapter.

Solid or hollow non-bearing partitions of reinforced plaster shall have a thickness of not less than one-sixtieth of the unsupported height, but never less than one and one-half inches (1½") for solid partitions nor have a shell thickness of less than three-fourths inch (¾") for hollow partitions. Such partitions shall have vertical steel or iron channels with a depth of not less than one-half the thickness of the partition, made of not less than No. 24 U. S. Gauge metal and spaced not more than twenty-four inches (24") on center.

Solid or hollow non-bearing partitions of reinforced gunite shall have a thickness of not less than one-seventieth of the unsupported height but never less than one and one-half inches (1½") for solid partitions nor have a shell thickness of less than three-fourths inch (¾") for hollow partitions. Vertical channels shall be installed in gunite partitions as specified for plaster partitions above.

Foundation Walls

Sec. 2938. Solid masonry foundation walls and those of concrete block or coursed stone shall be not less in thickness than...
the wall immediately above and in no case less than twelve inches (12") thick unless otherwise specified in Chapter 28, except that when the space enclosed within the foundation is not excavated they may be eight inches (8") if included within the allowable height of eight inch (8") walls and if the walls supported by such foundation are not more than eight inches (8") in thickness. When built of concrete cast in place, foundation walls shall be at least as thick as the walls supported, but in no case less than eight inches (8"). When built of rubble stone, they shall be at least sixteen inches (16") thick. Rough or random rubble without bonding or level beds shall not be used as foundations for walls exceeding thirty-five feet (35') in height nor shall coursed bonded rubble walls be used as foundations for walls exceeding seventy-five feet (75') in height.

Foundations for walls of hollow clay tile, concrete block or tile and hollow walls of brick, shall be of the same thickness, respectively, as required in the paragraph above, and shall be built of brick, stone, concrete (plain or reinforced), hollow clay tile, concrete block or tile, or as a hollow wall of brick. Tile foundation walls shall be not less than twelve inches (12") thick.

When the stresses due to earth pressure and superimposed building load exceed the maximum working stress permitted in this Code for the materials used, and the additional stresses are not otherwise provided for, the wall thickness shall be increased to bring the stresses within the required limits.

All foundation walls shall extend below the level of frost action, and shall not be constructed of gypsum.

Materials for foundation walls shall be equal in quality in all respects to those required for exterior bearing walls, except that mortar used for exterior foundation walls below grade shall be cement mortar.

Foundations built of masonry units, whether hollow or solid, shall be sealed below any woodwork with a cement wash or equally effective seal.

Panel and Enclosure Walls

Sec. 2939. Panel and enclosure walls in skeleton framed buildings shall be not less than eight inches (8") thick if of solid brick, hollow clay tile, concrete block or tile, plain concrete or hollow walls of brick, nor less than one-twentieth the distance between supporting or enclosing members. Panel and enclosure walls of reinforced concrete shall be not less than five inches (5") thick nor less than one-thirtieth the distance between the supporting or enclosing members, and sufficiently reinforced to resist the wind pressure specified in Section 2307 from either direction. Panel and enclosure walls of reinforced gunite shall be not less than four inches (4") thick and shall be reinforced as required for reinforced concrete walls.

Enclosure walls shall be securely fastened to the adjoining framing members.

When panel or enclosure walls are built monolithic with columns or bearing walls they may be reinforced to carry their own weight.
Miscellaneous Requirements

Sec. 2940. All walls shall be securely anchored and bonded at points where they intersect and where they abut or adjoin the frame of a skeleton framed building.

When walls are not built at the same time the perpendicular joint shall be regularly toothed with not less than four inch (4") offsets and the joint shall be provided with anchors not less than two inches by three-eighths inch (2"x3/8") metal with ends bent up not less than two inches (2") or with cross pins to form anchorage. Such anchors shall be not less than three feet (3') long extending eighteen inches (18") in from each side of the joint and spaced not more than three feet (3') apart in the direction of the height of the wall.

Reinforcing in concrete walls shall be extended not less than twenty-four inches (24") around all corners and wall intersections.

Sec. 2941. An existing masonry wall may be used in the renewal or extension of the building providing it meets the requirements of this Code, and is structurally sound or can be made so by reasonable repairs. Existing walls which are structurally sound but which are of insufficient thickness when increased in height shall be strengthened by an addition of the same material not less than eight inches (8") in thickness laid up in portland cement mortar, or the wall may be built out with gunite to the thickness required for a new wall of that height. Foundations and lateral supports shall be provided as required for newly constructed walls under similar conditions. All additions or linings shall be thoroughly bonded into existing masonry by toothings to assure combined action of wall and lining. Such toothings shall be distributed uniformly throughout the wall and shall aggregate in vertical cross-sectional area not less than 15 per cent of the total vertical area of the wall or lining.
CHAPTER 30—ENCLOSURE OF VERTICAL OPENINGS

Sec. 3001. Vertical openings are required to be enclosed in certain buildings depending upon the occupancy of the building, height of building or the Type of Construction. The vertical openings required to be enclosed are specified under Occupancy in Part III, and for stairways and ramps are specifically included in Chapter 33.

Sec. 3002. When stairways and/or ramps are required to be enclosed such enclosures shall extend from the lowest point to the highest point required and shall also include a complete passageway not less in width at any point than the required width of such stairway or ramp and such enclosure. All doors opening into such enclosures shall be of metal or shall be metal-clad doors as specified in Section 4304, and all windows shall be of wire glass and metal frames and sash; except that when such openings face directly on a street or court and are not within ten feet (10') of an adjacent lot line such protection may be omitted. All such doors shall be self-closing and be kept normally closed.

Walls and partitions enclosing stairways, ramps or elevators shall be of not less than two-hour fire-resistive construction as specified in Section 4302; except as specifically provided in Sections 1907, 2007 and 2207, where one-hour fire-resistive construction is specified. Enclosing walls of elevator shafts may consist of wire glass set in metal frames on the entrance side only. Elevator shafts extending through more than two stories shall be equipped with an approved means of adequate ventilation to and through the main roof of the building.

Sec. 3003. All shafts, ducts, chutes and other vertical openings not covered in Section 3002 shall have enclosing walls conforming to the requirements specified under Type of Construction of the building in which they are located when they exceed nine square feet (9 sq. ft.) in area, and all other shafts shall be lined with sheet metal having lock jointed or riveted seams and joints. Combustible material of partitions and floors through which the ducts pass shall be kept at least three inches (3") from the metal lining or be protected by not less than three-eighths inch (3/8") of plaster or one-fourth inch (1/4") of asbestos or plasterboard. Openings between any ducts and the floorconstruction through which they pass shall be filled with mortar or other incombustible material supported by wire baskets that prevent the passage of fire. All doors opening into such vertical shafts shall be of metal or shall be covered on the shaft side by not less than one-fourth inch (1/4") of asbestos and lot less than 26 gauge metal returned around all edges and well fastened to the door. Windows in such shafts shall be wire glass and metal frames and sash or such frame and sash may be of wood entirely clad with metal of not less than 26 gauge.
CHAPTER 31—FLOOR CONSTRUCTION

Sec. 3101. Floor construction shall be of materials and construction as specified under Occupancy in Part III and under Types of Construction in Part V.

All floors shall be so framed and tied into the framework and supporting walls as to form an integral part of the whole building. Fire-resistive standards of floor construction are specified in Section 4303.

The type of floor construction used shall provide means to keep the beams and girders from spreading by installing ties or bridging.

Sec. 3102. Concrete slab floors shall be not less than two and one-half inches (2 1/2") thick. Topping when poured monolithic with the slab may be included as a structural part of the slab. Sleepers for the nailing of a wood floor shall not decrease the required structural depth of the slab unless placed in the direction of span and then shall not be placed more than one-half inch (1/2") into the slab. Concrete joists shall be solidly bridged for lateral support as follows: One row of concrete bridging shall be placed in clear spans of fifteen feet (15') to twenty-four feet (24'); two rows of bridging shall be placed in all clear spans of twenty-four feet (24') or more. Bridging shall be reinforced continuously top and bottom with not less than one-half inch (1/2") round rod or the equivalent area in other shapes. Such bridging shall be the full depth and width of the joists.

Sec. 3103. Steel joisted floors shall consist of steel joists as specified in Section 2714. When used in Type I or Type II buildings they shall have a reinforced concrete or gypsum slab not less than two and one-half inches (2 1/2") thick placed on and secured to the top thereof, and a fire-resistive ceiling as specified in Section 4303 on the under side thereof, fully covering and protecting the joists; provided that when such joists are used in places where unprotected wood joists are permitted the steel joists need not be protected with fire-resistive materials as specified above. Fire-resistive ceilings as specified in Section 4303 shall, except in the case of one-hour fire-resistive construction, be designed and constructed to support a load of not less than 10 pounds per square foot in addition to its own weight.

The reinforced concrete or gypsum slab placed on and secured to the top of the steel joists shall be sufficiently reinforced to support all dead, live and/or other loads between joists. Joists shall be securely cross bridged at intervals not to exceed eight feet (8') along the joist length. The lateral unsupported length of the top chord of any steel joist shall not exceed 40 times the width of the compression flange.

Sec. 3104. Mill constructed floors shall be not less than three inches (3") nominal splined or tongued and grooved plank covered with one inch (1") nominal flooring laid crosswise or
diagonal. Top flooring shall not extend closer than one-half inch (\(\frac{1}{2}\)"") to walls to allow for swelling in case the floor becomes wet. Such one-half inch space shall be covered by a molding fastened to the wall and so arranged that it will not obstruct the swelling or shrinking movements of the floor. Corbeling of masonry walls under floor planks may be used in place of such molding.

If laminated floors are used, at least two laminations at the wall shall be omitted until after glazing and roofing has been completed.

See Section 2523 for detailed requirements.

TABLE No. I ALLOWABLE SPANS FOR FLOOR JOISTS

<table>
<thead>
<tr>
<th>Size of Joists (Inches)</th>
<th>Spacing of Joists, Center to Center (Inches)</th>
<th>Maximum Allowable Span</th>
<th>(Feet and Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Without Plastered Ceiling Below</td>
</tr>
<tr>
<td>2 x 6</td>
<td>12, 16, 24</td>
<td>10-0</td>
<td>12-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-1</td>
<td>10-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-0</td>
<td>8-7</td>
</tr>
<tr>
<td>2 x 8</td>
<td>12, 16, 24</td>
<td>13-0</td>
<td>15-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-1</td>
<td>13-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-8</td>
<td>11-5</td>
</tr>
<tr>
<td>2 x 10</td>
<td>12, 16, 24</td>
<td>16-8</td>
<td>19-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-3</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-5</td>
<td>14-5</td>
</tr>
<tr>
<td>2 x 12</td>
<td>12, 16, 24</td>
<td>20-1</td>
<td>23-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-5</td>
<td>20-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-2</td>
<td>17-5</td>
</tr>
<tr>
<td>2 x 14</td>
<td>12, 16, 24</td>
<td>23-5</td>
<td>27-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-5</td>
<td>24-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-11</td>
<td>20-3</td>
</tr>
<tr>
<td>3 x 6</td>
<td>12, 16, 24</td>
<td>11-8</td>
<td>15-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-8</td>
<td>13-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-4</td>
<td>10-10</td>
</tr>
<tr>
<td>3 x 8</td>
<td>12, 16, 24</td>
<td>15-4</td>
<td>19-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-0</td>
<td>17-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-4</td>
<td>14-4</td>
</tr>
<tr>
<td>3 x 10</td>
<td>12, 16, 24</td>
<td>19-3</td>
<td>24-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17-8</td>
<td>21-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-7</td>
<td>18-0</td>
</tr>
<tr>
<td>3 x 12</td>
<td>12, 16, 24</td>
<td>23-1</td>
<td>29-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-3</td>
<td>25-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-9</td>
<td>21-8</td>
</tr>
<tr>
<td>3 x 14</td>
<td>12, 16, 24</td>
<td>26-11</td>
<td>30-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-10</td>
<td>30-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22-1</td>
<td>25-2</td>
</tr>
</tbody>
</table>
Sec. 3105. Wood joisted floors shall be framed and constructed and anchored to supporting wood stud or masonry walls as specified in Chapter 25. Wood joisted floors need not be fire-protected on the under side except where specifically required under Occupancy in Part III, Location in Part IV, or Type of Construction in Part V.

Girders supporting first floor joists in residence buildings shall be not less than four inches by four inches (4" x 4") for spans of five feet (5') or less, or not less than four inches by six inches (4" x 6") (placed on edge) for spans not more than seven feet (7').

Table No. I of this Chapter gives the maximum allowable spans for floor joists for Douglas fir (Oregon pine) using a Number One Dimension grade, surfaced four sides to American Lumber Standard sizes and based on live load of 40 pounds per square foot uniformly distributed.

Joists of other grades, other woods and other sizes may be used, in which case they shall not be stressed to exceed the maximum allowable fiber stress as specified in Chapter 25.

Floor joists shall have a clearance of not less than eighteen inches (18") between the bottom of the joists and the surface of the ground underneath. (See Appendix, Section 2529).

Joists under bearing partitions shall be installed as specified in Chapter 25. All joists, beams and girders shall be framed away at least two inches (2") from all flues and chimneys and at least four inches (4") from the back of any fireplace. All wood floor joists having a span of more than eight feet (8') shall have bridging as specified in Chapter 25.

Solid blocking not less than two inches (2") in thickness and the full depth of the joists shall be provided in the following places; over all girders except when not celled on the under side of joists, bearing walls, bearing partitions and around all stairways or other vertical openings. Such solid blocking shall serve as the required bridging specified in Chapter 25.
CHAPTER 32—ROOF CONSTRUCTION AND COVERING

Sec. 3201. Roof covering shall be as required under Occupancy in Part III, Location in Part IV or Types of Construction in Part V. All roofs shall be so framed and tied into framework and supporting walls as to form an integral part of the whole building.

Sec. 3202. The general requirements for construction of floors as specified in Chapter 31 shall apply to roofs except that in Type II buildings the roof sheathing shall be not less than two and one-half inches (2\(\frac{1}{2}\)"") nominal in thickness and except that concrete or gypsum roof slabs shall be not less than two inches (2") in thickness.

Roof trusses shall have all joints well fitted and shall have all tension members well tightened before any load is placed on the truss. Diagonal and sway bracing shall be used to brace all roof trusses. The allowable working stresses of materials in trusses shall be as specified in Chapters 25 and 27. The minimum net section of the members after framing shall be used in determining the strength of the truss at any point.

Sec. 3203. The design of the roof construction shall be in accordance with engineering regulations for the materials used.

Table No. I gives the maximum allowable spans for ceiling joists and roof rafters of Douglas fir (Oregon pine) using a

TABLE NO. I—MAXIMUM ALLOWABLE SPANS FOR CEILING JOISTS AND ROOF RAFTERS.

<table>
<thead>
<tr>
<th>Size of Joists (Inches)</th>
<th>Spacing of Joists, Center to Center (Inches)</th>
<th>Maximum Allowable Span (Feet and Inches)</th>
<th>Rafters</th>
<th>For Ceiling Joists</th>
<th>For Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 4</td>
<td>12</td>
<td>11-0</td>
<td>11-8</td>
<td>10-0</td>
<td>10-1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>10-0</td>
<td>10-1</td>
<td>8-11</td>
<td>8-4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7-10</td>
<td>7-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 6</td>
<td>12</td>
<td>16-7</td>
<td>17-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15-4</td>
<td>15-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13-8</td>
<td>12-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>12-0</td>
<td>10-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 8</td>
<td>12</td>
<td>21-8</td>
<td>23-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>20-2</td>
<td>20-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>18-0</td>
<td>16-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>15-10</td>
<td>14-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 x 10</td>
<td>12</td>
<td>26-10</td>
<td>28-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>25-0</td>
<td>25-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>22-6</td>
<td>21-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>19-6</td>
<td>18-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Number One Dimension grade, surfaced four sides to American Lumber Standards sizes.

Joists or rafters of other grades, other woods and other sizes may be used, in which case they shall not be stressed to exceed the maximum allowable fiber stress as specified in Chapter 25.

The allowable span of roof rafters shall be measured from plate to ridge, except that where rafters are braced to ceiling joists and a complete truss is formed, the span shall be considered as the distance between intersecting points of trussing.

Roof framing and trussing shall be thoroughly and effectively angle braced. Roof joists when supported on a ribbon board shall be well nailed to the stud.

Roof Coverings

Sec. 3204. Roof covering shall be required over all combustible roof construction and shall be of one of the classes specified in Section 4305 as they are specified under Occupancy in Part III, Location in Part IV and Types of Construction in Part V. [See also Sec. 104 (d)].

Attics: Access and Areas

Sec. 3205. All buildings shall have access provided to the attic space by means of a stairway or permanent ladder or a scuttle. The openings provided through the ceiling for such access into the attic space shall be not less than two feet by three feet (2'x3') and shall be located in the hallway or corridor of all Type III and V buildings three stories or more in height.

Type III or V buildings, one or two stories in height shall have scuttle holes into the attic space which are not less than eighteen inches (18") square.

In wood frame roof construction where ceilings occur the attic spaces or spaces between ceilings and the under side of roofs shall be divided into horizontal areas of not more than twenty-five hundred square feet (2500 sq. ft.) with tight one-inch (1") partitions of matched wood or of approved incombustible materials. All openings through these partitions shall be protected by self-closing doors of the same thickness and materials as the partition.

In buildings with no ceilings and having rooms with floor areas of over thirty thousand square feet (30,000 sq. ft.), tight draft stops shall be installed to prevent a free current of air under the roof. These draft stops in trussed roofs shall extend from the roof down to the bottom chord of the truss and shall divide the under roof or attic into sections not to exceed twenty thousand square feet (20,000 sq. ft.) in area.

Roof Drainage

Sec. 3206. Roofs of all buildings shall be sloped so that they will drain to gutters and downspouts which shall be connected with conductors to carry the water down from the roof under-neath the sidewalk to and through the curb. Overflows shall be installed at each low point of the roof to which the water drains.
CHAPTER 33—STAIRS, RAMPS AND SMOKEPROOF TOWERS

Sec. 3301. All exits as required for buildings in this Code shall comply with the requirements specified in this Chapter for a stairway, ramp or smokeproof tower. Wherever stairways are mentioned, ramps may be substituted when constructed as specified in Section 3310. A smokeproof tower constructed as specified in Section 3315 shall be considered as a required stairway as specified in Section 3309. Such smokeproof towers may be substituted for stairways wherever the latter are required in this Code.

All stairways shall be constructed of materials permitted for floors as specified under Types of Construction in Part V for that type of building in which such stairways are located, except as specified in Sections 3315 and 3316. All stairways of wood construction shall be protected on the under side by not less than one-hour fire-resistive construction as specified in Chapter 43. Metal stairways entirely enclosed as specified in this Chapter shall not be required to be fire-protected as required for floors in Part V of this Code. The provisions of this Chapter shall not apply to Group I occupancies except as specifically stated in Sections 3302, 3307 and 3314.

Sec. 3302. All stairways and all platforms, landings and balconies forming a part of such stairway shall be designed to sustain an assumed live load of not less than 100 pounds per square foot.

There shall be no variation in the width of treads in any flight and the variation in heights of risers in any flight shall not exceed three-sixteenths inch (3/16”). All treads shall have a nosing of not less than one inch (1”).

The surface material of stair treads and landings shall be such as not to involve danger of slipping.

An arrangement of treads known as winders shall be permitted in Group I occupancies or for monumental stairways which are not serving as a required means of exit but in no case shall any tread have a width at any point less than eight inches (8”) exclusive of nosing.

Stairways and intermediate landings shall continue with no decrease in width along the direction of exit travel, except that when three or more stairways are required, one-half the required number of stairways may be combined at the second floor level with such combined width extending to the first floor level.

Sec. 3303. One-half of the required number of stairways shall be continued their full width to and through the roof by means of a penthouse in all buildings three stories or more in height; provided, that not more than one stairway shall be required to continue to and through the roof when the roof has a slope of more than six inches (6”) for each twelve inches (12”) of horizontal projection. In two-story buildings scuttles not less than two feet by three feet (2’ x 3’) shall be provided to and through the roof. Stairways leading to roofs of buildings shall have signs conspicuously placed with letters not less than four
inches (4") high indicating such access at the ground floor level.

All stairways shall lead to the street directly or by means of a yard, court or fire-resistive passageway having a width at least equal to the aggregate widths of all the exits discharging into it; provided, that not to exceed one-half of the required number of stairs may terminate at the second floor level provided they lead directly to a street or alley front of the building and are provided with a balcony on the exterior of the building not less than three feet (3') wide and five feet (5') long. Such balcony shall be constructed of incombustible materials and when the floor of such balcony is located more than twelve feet (12') above the sidewalk directly below, such balcony shall be equipped with an approved counterbalanced stairway or ladder.

Where stairways discharge through the fire-resistive passageways such passageways shall be not less than seven feet (7') in clear height and with a width at least equal to the stairway or stairways served by such passageways. All openings into such passageways shall be protected by one-hour fire-resistant doors as specified in Section 4304.

All exits shall be so arranged as to make clear the direction of egress to the exterior of the building and shall be so located that they are readily accessible and visible. When not visible to all occupants, adequate signs shall be provided to indicate their location. For buildings with sleeping rooms, schools and places of detention, exits shall be so arranged that it is possible to go in either direction at any point in a corridor to an exit.

Stairways shall abut on not more than one side of an elevator enclosure.

No portion of any building shall be more than one hundred fifty feet (150') (along the line of travel) from the nearest exit, and no corridor exit door shall be more than one hundred feet (100') (measured along the line of travel) from the nearest exit. In Group D and H occupancies all doors providing egress from public hallways and all doors providing egress from the building shall open in the direction of exit travel, except sliding doors as provided in Section 3304.

Doors

Sec. 3304. Doors shall not open immediately on a flight of stairs but on a landing at least equal to the width of the door.

Doors giving access to stairways shall swing with the direction of exit travel but where swinging doors are not practicable sliding doors approved by the Building Inspector may be permitted. Vertical sliding doors and rolling shutters shall not be used. There shall be no obstructions on stairways or landings nor to the full swing of doors. Swinging doors in their swing shall not reduce the effective width of stairways or landings to less than thirty inches (30") nor when open interfere with the full use of the stairs.

All doors in exit enclosures or providing access to exterior stairways shall be self-closing and be kept normally closed and shall be of not less than one-hour fire-resistive construction as specified in Section 4304, except that doors facing a street and at street level may be of unprotected wood. All doors shall be tight-fitting and constructed and installed in a workmanlike manner.
All doors used in connection with exits shall be so arranged as to be opened readily from the side from which egress is made or from both sides when the building is occupied. Locks if provided shall not require a key to operate from the inside.

Sec. 3305. All stairways shall have walls or well secured railings or guards on each side and handrails shall be placed on at least one side of every stairway and stairways exceeding forty-four inches (44") in width shall have handrails placed on each side. Stairways over seven feet (7') wide shall be provided with one or more continuous intermediate handrails substantially supported and the number and position of intermediate handrails shall be such that there is not more than sixty-six inches (66") between adjacent handrails. Handrails and railings shall be placed thirty inches (30") above the nosing of treads and ends of handrails shall be returned to the wall.

Sec. 3306. Every stairway or other means of exit into corridors and passageways appurtenant thereto shall be provided with an adequate system of lighting, either natural or artificial. Lights in the exit signs shall be kept burning at all times that the building served by such stairways or exits is being used or occupied.

Sec. 3307. Stairways and landings, returns and passageways serving such stairways shall be not less than forty-four inches (44") wide; except, that for dwellings and when serving mezzanines or not more than one family or one apartment in buildings not exceeding two stories in height the required width may be reduced to not less than three feet (3'). All such widths shall be clear of all obstructions; except that handrails attached to walls may project within the required width not more than three and one-half inches (3 1/2") at each side when the stairway is forty-four inches (44") or more in width and on one side when the stairway width is less than forty-four inches (44"). If newels project above tops of rails a minimum clear width of not less than that specified in this paragraph shall be provided between the face of the newel and the face of the wall or newel opposite.

The rise of stairway shall be not more than seven and one-half inches (7 1/2") and the tread exclusive of the nosing not less than ten inches (10") (maximum pitch 37 degrees), and there shall be not more than 17 risers in any one run between landings; provided, that stairways in dwellings and stairways serving mezzanine floors may have a rise of not more than eight inches (8") and a tread exclusive of the nosing of not less than nine inches (9").

In Groups A, B, and C occupancies the walls at the outer corners of landings shall be curved on a radius of at least two feet (2'), or a 45 degree splay not less than twenty inches (20") wide shall be provided to eliminate right angle corners.

Every required stairway including stairways in Group I occupancies shall have a head room clearance of not less than six feet six inches (6' 6") measured vertically from the nearest nosing to the nearest soffit.
Sec. 3308. All required stairways and ramps in buildings three stories or more in height, including landings and parts of floors between stairways which lie in the path of travel shall be enclosed as specified under Occupancy in Part III, under Types of Construction in Part V, and in Chapter 30; except that monumental stairways leading only from the street floor level to the second floor or basement and which do not constitute required means of exit in public buildings or stores shall be exempted from the enclosure requirements.

Exit enclosures shall not be used for storage in any manner whatsoever and shall not contain any material or equipment liable to cause fire, explosion or panic.

At the top of every stairway enclosure a ventilating skylight with a horizontal area of not less than eight square feet (8 sq. ft.) shall be installed as specified in Section 3402, or in lieu of such skylight an equivalent window opening glazed with plain glass may be provided in the penthouse walls. Fixed openings not less than five hundred square inches (500 sq. in.) in area shall be provided at the top of each stairway enclosure for ventilation.

Sec. 3309. The number of stairways provided for each use or occupancy shall be as required in Table No. I of this Chapter for three-story buildings. For two-story buildings the allowable areas may be increased 50 per cent. For buildings four stories or more in height the allowable areas shall be decreased two per cent per floor for each floor above the third floor to and including the eighth floor and shall be decreased one per cent for each additional floor above the eighth floor; provided, that in no case shall there be less than two stairways serving each floor for each building three stories or more in height. Where the entire building is sprinklered in accordance with the provisions of Chapter 38 the allowable areas in Table No. I may be increased 33 1/3 per cent.

TABLE No. I BASIC AREAS FOR COMPUTINGREQUIRED NUMBER OF STAIRWAYS

<table>
<thead>
<tr>
<th>No. of Stairways Required</th>
<th>Maximum Areas for Types I and II Buildings (Sq. Ft.)</th>
<th>Maximum Areas for Types III, IV and V Buildings (Sq. Ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Up to 3,000</td>
<td>Up to 4,000</td>
</tr>
<tr>
<td>2</td>
<td>Up to 8,000</td>
<td>Up to 9,000</td>
</tr>
<tr>
<td>3</td>
<td>Up to 18,000</td>
<td>Up to 20,000</td>
</tr>
<tr>
<td>4</td>
<td>Up to 28,000</td>
<td>Up to 30,000</td>
</tr>
<tr>
<td>5</td>
<td>Up to 40,000</td>
<td>Up to 40,000</td>
</tr>
<tr>
<td>6</td>
<td>Up to 54,000</td>
<td>Up to 50,000</td>
</tr>
<tr>
<td>7</td>
<td>Up to 70,000</td>
<td>Up to 60,000</td>
</tr>
<tr>
<td>8</td>
<td>Up to 88,000</td>
<td>Up to 70,000</td>
</tr>
<tr>
<td>9</td>
<td>Up to 108,000</td>
<td>Up to 80,000</td>
</tr>
<tr>
<td>10</td>
<td>Up to 90,000</td>
<td>Up to 90,000</td>
</tr>
</tbody>
</table>

226
The number of required stairways for Group A, B and C occupancies is specified in Chapters 6, 7 and 8, respectively.

Exceptions: 1. Group D occupancies shall be provided with not less than one smokeproof tower constructed as specified in Section 3315 when such building exceeds two stories in height.

2. Group E—In automobile storage garages, where a system of ramps continuous from the ground floor to the top floor is used to transport automobiles from floor to floor, the number of stairways required shall be not less than one-half that shown in Table No. I.

3. Where one horizontal exit is provided, the allowable areas tabulated may be increased 15 per cent and where more than one such exit is provided, such areas may be increased not to exceed 25 per cent.

Sec. 3310. Wherever stairways are required by this Code, ramps with a slope not greater than one foot (1') in eight feet (8') may be substituted.

Ramps shall comply with all the requirements for stairways as to construction, width, enclosures, landing, lighting and ventilation.

Ramps shall be surfaced with an approved non-slip material. Handrails shall not be required where the slope of the ramp is less than one foot (1') in ten feet (10').

Sec. 3311. A horizontal exit shall consist of one or more protected openings through or around an exterior wall or occupancy separation or of one or more bridges connecting two buildings or parts of buildings entirely separated by occupancy separations.

Openings used in connection with horizontal exits shall be protected by one-hour fire-resistant doors as specified in Section 4304. If swinging doors are used there shall be adjacent openings with doors swinging in opposite directions, with signs on each side of the wall indicating the exit door which swings with the travel from that side.

Such doors shall be kept continuously unlocked whenever the building is occupied and be normally closed or be self-closing and equipped with fusible links.

Sec. 3312. Signs having white letters not less than five inches (5") high on a green field indicating location of exits shall be provided not only at the exit but at other points in the building wherever necessary to clearly indicate the direction of egress. Lights shall be kept burning during all times that the building is used or occupied.

Sec. 3313. Safe and continuous passageways, aisles, or corridors leading to exits and so arranged as to provide convenient access to exits for every occupant shall be maintained at all times on all floors and in all buildings. The minimum clear width of any passageway, aisle or corridor shall be three feet (3') at the narrowest point and doors swinging into such passageway shall not restrict the effective width at any point during their swing to less than the minimum width herein specified.
Sec. 3314. Stairways in Group I occupancies, stairways serving only one apartment not above the second floor level, or stairways leading to mezzanine floors not exceeding one thousand square feet (1,000 sq. ft.) in area are exempted from the width, rise, tread and enclosure provisions in this Chapter but in no case shall such stairways have a rise of more than eight inches (8") and a tread exclusive of the nosing of less than nine inches (9").

Sec. 3315. (a) Where Required. A smokeproof tower consisting of a stairway with exterior access, entirely closed by masonry walls of not less than four-hour fire-resistive construction and floors and ceilings of not less than two-hour fire-resistive construction as specified in Chapter 43 and constructed as specified in this Section shall be required in every building of Group D, E, F, G and H occupancies five stories or more in height. Smokeproof towers shall be installed in Group A, B and C occupancies as specified in Chapters 6, 7 and 8, respectively.

(b) Construction. The stairways, landings, platforms and balconies of smokeproof towers shall be constructed as required for stairways, except that they shall be of incombustible materials throughout, except for handrails which may be of wood. The enclosure shall extend from the street level to a penthouse on the roof of the building and shall be roofed over with incombustible materials. Light and ventilation shall be provided at the top of every such enclosure as required for stairways.

Balustrades on the vestibules and balconies shall be not less than three feet six inches (3' 6") in height. Exit lights shall be provided as required in Section 3312.

(c) Access and Egress. Access to the smokeproof tower shall be provided from each story by means of vestibules open to the outside on an exterior wall or by means of balconies overhanging an exterior wall but not subject to severe fire exposure. Every such vestibule, balcony or landing shall have an unobstructed length not less than the combined required width of exit doors opening upon such balcony or landing and shall be directly open to a street, alley or yard or to an enclosed court open at the top and not less than fifteen feet (15') in width and six hundred square feet (600 sq. ft.) in area.

Access from the building to vestibules or balconies and to the enclosure shall be through doorways not less than thirty inches (30") wide nor less than seventy-five inches (75") in clear height. These openings shall be provided with self-closing fire doors of not less than one-hour fire-resistive construction as specified in Section 4302, swinging in the direction of exit travel; provided that clear wire glass not exceeding seven hundred and twenty square inches (720 sq. in.) in area shall be provided in all such doors giving access to the enclosure from the balcony or vestibule. Where locks or latches are provided they shall be of an approved pressure-release type and shall be so designed as to provide access from the building at every floor and roof level.

Stairways of smokeproof towers shall provide continuous uniform egress from the roof and all stories to street grade. Egress shall be provided at the ground floor level either directly or through a passageway not less than forty-four inches (44") in clear width and eight feet (8') in clear height to a street, yard
or alley not less than ten feet (10') in width. The walls of such passageway shall be of not less than four-hour fire-resistive construction and the ceiling and floor of not less than two-hour fire-resistive construction as specified in Chapter 43. The walls, of any such passageway shall be unpierced throughout their entire length.

(d) Location. Every smokeproof tower required by this Code shall be located so as to furnish the best means of egress for the occupants of the building and access shall be provided thereto by means of a public room, public hall or passageway not less than thirty-six inches (36") in clear width and in no case shall access thereto be through another apartment, guest room, office or private room of any nature.

Sec. 3316. Outside stairways of the return platform or straight-run type may be used as a required means of exit for buildings not exceeding five stories or fifty-five feet (55') in height but in no case shall such stairways constitute more than 50 per cent of the required exit capacity. All outside stairways shall be located so as to lead directly to a street or alley or to a yard directly connected with a street or alley.

The stairways, landings, platforms and balconies shall be constructed as specified for stairways in this Chapter, except that they shall be of incombustible materials throughout; provided that stairways serving only the second floor may be constructed of combustible material. Structural metal shall be not less than one-quarter inch (¼") thick and shall be so framed as to permit ready access for inspection and painting. All windows and other openings adjacent to such stairways shall be provided with fixed metal covered sash and frames and wire glass or be provided with shutters or doors of one-hour fire-resistive construction as specified in Chapter 43.

No part of any such outside stairway shall be within ten feet (10') of a lot line which does not form the boundary of a street or alley.
CHAPTER 34—DOORS, WINDOWS
AND SKYLIGHTS

Sec. 3401. Fire doors where required shall be as specified in Section 4304. All such doors shall be self-closing and if not kept normally closed shall be arranged to close automatically with the fusing of an approved fusible link.

Windows required to have metal frames shall be constructed either of steel or wrought iron rolled shapes or of hollow galvanized sheet iron, as specified in Section 4304.

When wire glass is required, it shall mean glass the thickness of which at the thinnest point shall be not less than one-fourth inch (¼") and in which a wire netting is embedded. Wire glass shall be set with putty and metal stops.

Sec. 3402. All skylights constructed with metal frames shall be substantially built with interlocking seams. Frames of skylights shall be designed to carry loads required for roofs as specified in Section 2305. All skylights, the glass of which is set at an angle of less than 45 degrees from the horizontal, if located above the first story, shall be set at least one foot (1') above the roof. The curbs on which the skylight rests shall be constructed as required for inner court walls or for masonry.

When wire glass is required for skylights the size shall not exceed seven hundred and twenty square inches (720 sq. in.) in area or forty-eight inches (48") in any dimension in any one panel. All glass in skylights shall be wire glass, except that skylights over vertical shafts extending through two or more stories shall be glazed with plain glass as specified in this Section; provided, that wire glass may be used if ventilation equal to not less than one-eighth the cross sectional area of the shaft but never less than four feet (4') is provided at the top of such shaft.

Any glass not wired glass shall be protected above and below with a screen constructed of wire not smaller than No. 12 B. and S. gauge with a mesh not larger than one inch (1"). The screen shall be substantially supported below the glass.

Skylights installed for the use of photographers may be constructed of metal frames and plate glass without wire netting.

Ordinary glass may be used in the roofs and skylights for greenhouses, provided the height of the greenhouse at the ridge does not exceed twenty feet (20') above the grade. The use of wood in the frames of skylights will be permitted in greenhouses outside of Fire Zones No. 1 and 2, if the height of the skylight does not exceed twenty feet (20') above the grade, but in other cases metal frames and metal sash bars shall be used.

Glass used for the transmission of light, if placed in floors or sidewalks, shall be supported by metal or reinforced concrete frames, and such glass shall be not less than one-half inch (½") in thickness. Any such glass over sixteen square inches (16 sq. in.) in area, shall have wire mesh embedded in the same or shall be provided with a wire screen underneath as specified for skylights in this Section. All portions of the floor lights or sidewalk lights shall be of the same strength as is required by this Code for floor or sidewalk construction, except in cases where the floor is surrounded by a railing not less than three feet six inches (3' 6") in height, in which case the construction shall be calculated for not less than skylight loads.
CHAPTER 35—BAYS AND BALCONIES

Sec. 3501. Construction of walls and floors in bay and oriel windows shall conform to the construction allowed for exterior walls and floors of the type of construction of the building to which they are attached. The roof covering of a bay or oriel window shall conform to the requirements for roofing of the main roof of the building.

All exterior balconies attached to or supported by masonry walls shall have brackets or beams constructed of wire, steel, concrete or other incombustible material. All railings for balconies or porches shall be not less than three feet and six inches (3'6'') in height above the floor of such balcony or porch. Balconies shall be designed to support in addition to their own weight a live load of not less than 100 pounds per square foot. Railings of balconies shall be designed to support a horizontal thrust of not less than 20 pounds per lineal foot of railing uniformly distributed along its length.
CHAPTER 36—PENTHOUSES AND ROOF STRUCTURES

Sec. 3601. No penthouse or other projection above the roof shall exceed twenty-eight feet (28') in height above the roof when used as an enclosure for tanks or for elevators which run to the roof and in all other cases shall not extend more than twelve feet (12') in height above the roof. The aggregate area of all penthouses and other roof structures shall not exceed 20 per cent of the area of the roof. No penthouse, bulkhead or any other similar projection above the roof shall be used for manufacturing, business, habitation, offices or storage, except that they shall be permitted to be used for the making of blue prints, photographic prints, for scientific observation, for summer houses or for private dwellings.

Roof structures of Type I buildings shall be constructed with walls, floors and roof as required for the main portion of the building.

Walls of roof structures parallel to and within four feet (4') of the exterior walls of Type II or III buildings shall be constructed the same as the exterior wall of the story immediately below. Such wall shall project two feet (2') above the roof and two feet (2') beyond the sides of such roof structure, except that the side projection shall not be required when the adjoining side walls are of masonry. Walls other than those occurring within four feet (4') of an exterior wall on Type II or III buildings shall be of not less than one-hour fire-resistive construction. The restrictions of this paragraph shall not prohibit the placing of wood flagpoles or similar structures on the roof of any building.

Sec. 3602. Towers or spires when enclosed shall have exterior walls as required for the building to which they are attached. Towers not enclosed and which extend more than seventy-five feet (75') above grade shall have their framework constructed of iron, steel or reinforced concrete. No tower or spire shall occupy more than one-fourth of the street frontage of any building to which it is attached and in no case shall the base area exceed sixteen hundred square feet (1,600 sq. ft.) unless it conforms entirely to the type of construction requirements of the building to which it is attached and is limited in height as a main part of the building. If the area of the tower or spire exceeds one hundred square feet (100 sq. ft.) at any horizontal cross section its supporting frame shall extend directly to the ground. The roof covering of spires shall be as required for the main roof of the rest of the structure.

Skeleton towers used as wireless masts and placed on the roof of any building shall be constructed entirely of incombustible materials when more than twenty-five feet (25') in height and shall be directly supported on an incombustible framework to the ground. They shall be designed to withstand a wind load from any direction as specified in Section 2307 in addition to any other loads.
CHAPTER 37—CHIMNEYS AND HEATING APPARATUS

Sec. 3701. Chimneys shall be constructed in conformance with "A Standard Ordinance for Chimney Construction" recommended by the National Board of Fire Underwriters, Third Edition, revised 1927, except as specified in this Chapter.

The walls of all chimneys whether used for appliances using coal, coke, wood, gas or oil shall be built of brick, concrete, stone, hollow tile of clay or concrete or of concrete blocks; provided that a metal smokestack as specified in Section 3702 may be used.

Flue linings shall be made of fire clay or of other suitable refractory clays adapted to withstand reasonably high temperatures and flue gases and shall have a softening point not lower than 1994 degrees Fahrenheit. Flue linings shall be not less than five-eighths inch (5/8") in thickness and shall be built in as the outer walls of the chimney are constructed. All joints and spaces between the masonry and lining shall be thoroughly slushed and grouted full as each course of masonry is laid. Cracked, broken or otherwise defective linings shall not be used. Flue linings shall start from a point not less than eight inches (8") below the center line of smoke pipe intakes or in the case of fireplaces from the apex of the smoke chamber and shall be continuous to a point not less than four inches (4") above the enclosing walls. Flue lining may be omitted in brick chimneys for Group I occupancies provided the walls of the chimneys are not less than eight inches (8") thick and that the inner course shall be of fire brick with a fire resistance equal to that required for flue linings.

The walls of brick chimneys shall be not less than three and three-quarters inches (3 3/4") thick and shall be lined except as provided above. All brick work shall be laid with full mortar joints, and shall be struck smooth where exposed to the weather. No mortar lining shall be permitted.

Concrete chimneys cast in place shall be suitably reinforced vertically and horizontally. The walls shall be not less than three and three-fourths inches (3 3/4") thick and shall have a flue lining as specified in this Section; provided, that flue linings may be omitted in reinforced concrete chimneys for Group I occupancies when the walls of such chimneys are not less than six inches (6") thick.

Hollow blocks or hollow tile of clay or concrete shall not be used for the walls of an independent chimney but may be used for chimneys built in connection with exterior or party walls of hollow units for buildings not exceeding three stories in height. The outer eight inches (8") of such a wall may serve as the outside wall of the chimney.

Chimneys shall extend at least three feet (3') above flat roofs and not less than two feet (2') above the ridge of gable and hip roofs or the high point of mansards irrespective of the distance of the chimney from such obstruction to draft.

1See "Specification Documents".
Chimneys shall be built upon solid masonry or reinforced concrete foundations properly proportioned to carry the weight imposed without settlement or cracking. The chimney shall carry no load except its own weight and such load shall be transmitted to the foundation in such manner as to prevent the shearing or falling off of any part of the chimney. The footing for an exterior chimney shall start below the frost line.

Flues shall be built as nearly vertical as possible and in no case at an angle greater than 30 degrees from the vertical.

When any single flue has an effective area exceeding two hundred square inches (200 sq. in.) the wall shall be not less than eight inches (8") thick and shall have flue lining as specified in this Section, except that when flues become too large for fire clay flue lining, such flues shall be lined with fire brick for a distance of at least twenty-five feet (25') from the point of intake.

There shall be but one connection to a flue irrespective of whether the fuel used be coal, coke, wood, or oil. Ordinary and low pressure heating devices burning solid fuels shall have a minimum effective flue area of not less than the following, and such area shall be provided by a flue having its short dimension not less than two-thirds the long dimension.

- Small special stoves and heaters..........................28 sq. in.
- Stoves, ranges and room heaters..........................40 sq. in.
- Fireplaces (at least 1/12 the fireplace opening)...50 sq. in.
- Warm air furnaces, steam and hot water boilers...70 sq. in.

All flues to which large ranges, heating furnaces, boilers, automatic gas water heaters or fireplaces are to be connected shall be subjected to a smoke test before acceptance but the test shall not be made until the mortar has thoroughly seasoned. Such test shall be made by the mason contractor in the presence of the Building Inspector.

Smokestacks

Sec. 3702. Steel or iron smokestacks may be used in place of brick chimneys specified in Section 3701, in which case the thickness of the metal shall be not less than one-fourth inch (1/4"). Such stacks when used for manufacturing, for high pressure boilers, furnaces or other similar heating or manufacturing appliances shall be lined with fire brick for a distance of not less than twenty-five feet (25') from the place where the smoke pipe enters and shall be protected on the outside up to and through the roof of the building with eight inches (8") of masonry or a metal shield which provides an eight inch (8") ventilated air space between such shield and the steel or iron stack; provided, that a metal smokestack when located inside of a vent shaft having masonry enclosing walls not less than eight inches (8") thick and having an air space between the walls and the stack on all sides may have such masonry or metal shield protection omitted. All stacks shall be properly guyed when the height of the stack exceeds 15 times its least diameter.

Smokestacks constructed of not less than No. 10 U. S. Gauge steel, with either welded or riveted joints, may be mounted directly upon industrial, heating and/or power boilers which are designed to support the stack load. A clearance of
not less than six inches (6") shall be maintained at all times around such smokestack and any flammable material within twelve inches (12") of such smokestack shall be protected by one-fourth inch (¼") of asbestos covered by sheet metal.

Sec. 3703. Gas furnaces, gas water heaters and other gas appliances which are required to be vented, may in lieu of the chimney required in Section 3701, be provided with a vent of unglazed fire clay or concrete tile pipe not less than one-half inch (½") in thickness and having a sleeve or flange not more than twenty-four inches (24") apart and at every joint in such vent pipe. Such sleeves or flanges shall project at least three-fourths inch (¾") beyond the outer surface of the joint and shall securely join the sections of such vent and all joints shall be well cemented. The sleeves or flanges shall be securely attached to the portions of the building or structure adjoining such vents and act as a spacer to provide an air space around such vent, or such vent may be entirely enclosed in a galvanized iron pipe with such sleeves or flanges separating the outer pipe at least one-half inch (½") from the clay or concrete vent. The area of any flue or vent shall be not less than the area of the largest vent connection inlet plus 50 per cent of the areas of all other additional inlets, provided that no gas flue or vent shall have an area of less than twelve square inches (12 sq. in.), and shall be not less than two inches (2") in any internal dimension. No vent connection inlet shall be located at the bottom or within one foot (1’) of the bottom of any gas vent, and any two inlets must be offset or staggered so that it will be impossible for any horizontal plane to pass through any part of both inlets.

A single galvanized or copper bearing metal vent connection exposed to view in a room throughout its entire length may be used to connect the appliance to the vent. Such metal vent connection shall be not less in diameter than the connection on the appliance and shall be maintained not less than six inches (6") distant from any combustible portion of the building or the combustible material shall be protected by not less than one-hour fire-resistive construction as specified in Chapter 43. Every portion of a vent connection shall have a rise of not less than one inch (1”) to the foot from the appliance to the chimney and the length of such connection shall be no greater than the height of the vent from the point at which the vent connection enters to the top of the vent.

Every vent shall extend in as nearly a vertical position as possible and be continuous from the gas appliance to the outside of the building and extend at least two feet (2’) above any portion of the roof within fifteen feet (15’) of said vent.

No vent connection connected to any gas appliance having pilot provision for automatic or remote control, shall be connected to any chimney flue which is used as a smoke flue for any stove, boiler, heater or other apparatus designed to burn wood, coal, oil or other fuel other than gas unless such pilot provision is so designed that the supply of gas to the main burners in connection therewith will be automatically shut off when combustion of gas is not taking place at the pilot.

235
Sec. 3704. Patent chimneys may be used, except for oil burners, when complying with the requirements of this Code.

All patent chimneys shall be constructed with a flue lining enclosed in a metal outer casing which is so arranged as to provide not less than a one inch (1") air space between the flue lining and the casing. The flue lining shall be made of fire clay or suitable refractory clays adapted to withstand reasonably high temperatures and flue gases, shall have a softening point not lower than 1994 degrees Fahrenheit and shall be not less than one inch (1") in thickness. Such chimneys shall be built up from the floor level on which they are used and in no case shall a stove pipe enter the bottom of a patent chimney.

When such chimneys are erected on the outside of a building they shall be supported by a substantial iron bracket attached to the studs or framework of the building with throughbolts. When erected on the inside of a building such patent chimneys shall be provided with a smokeproof clean-out of approved design at or near the floor. The floor on which they are placed shall be protected by not less than eight inches (8") of masonry or terra cotta set on a one-fourth inch (¼") metal plate. Partitions enclosing patent chimneys shall have an opening opposite the clean-out on the chimney for the purpose of cleaning the flue.

When such chimneys are used with fireplaces, they shall be supported by a metal plate embedded in mortar at the throat of the fireplace. The metal plate shall provide a means of keeping the one inch (1") air space between the flue lining and the casing.

All patent chimneys shall be built plumb and without bends. All joints in such chimneys shall be made with cement mortar and the bands covering the joints shall be of not less than 24 U. S. Gauge galvanized iron. All patent chimneys shall be braced every six feet (6') in their height by not less than 16 gauge wire secured to the chimney by locks or collars and extending in at least three directions.

Not more than two inlets for smoke pipes will be permitted in any patent chimney. When only one inlet is provided the flue shall be not less than six inches (6") in diameter and shall be not less than eight inches (8") in diameter where two inlets are provided.

All galvanized iron used for the casing of patent chimneys shall be of 24 U. S. Gauge riveted together with rivets not more than three inches (3") apart or seamed and with such seams secured with rivets at the top and bottom of each section. There shall be not less than one inch (1") clearance between the chimney and the casing at all points and such casing shall be ventilated by not less than six one inch (1") holes punched near the top of the chimney above the roof so as to permit the escape of hot air.

Sec. 3705. All smoke pipes shall be as short and straight as possible. Smoke pipes for furnaces, boilers or apparatus burning solid or liquid fuel shall be constructed of black iron of not less than 24 U. S. Gauge or masonry and shall fit tightly into the chimney. Galvanized iron shall not be used.
Smoke pipes shall enter the side of chimneys through a fire clay or metal thimble or a flue-ring of masonry. The top of smoke pipe intakes shall be set not less than eighteen inches (18") below sheet metal ceilings, wood lath and plaster or exposed wood framing. Neither the intake pipe nor the thimble shall project into the flue. No wood-work shall be placed within six inches (6") of the thimble. When a smoke pipe enters a chimney breast through a studded-off chimney partition the thimble shall be kept six inches (6") clear of all woodwork.

Sec. 3706. All fireplace walls shall be not less than eight inches (8") thick and if built of stone or hollow units shall be not less than twelve inches (12") thick. The faces of all such minimum thickness walls exposed to fire shall be lined with fire brick, soap stone, cast iron or other suitable fire-resistive material. When lined with four inches (4") of fire brick such lining may be included in the required minimum thickness. All fireplaces shall be connected to a regulation chimney as specified in Section 3701, or to a patent chimney as specified in Section 3704.

All fireplaces and chimney breasts shall have trimmer arches or other approved fire-resistive construction supporting hearths. The arches and hearths shall be not less than twenty inches (20") wide measured from the face of the chimney breast and not less than twelve inches (12") wider than the fireplace opening on each side. The arches shall be of brick, stone or hollow tile not less than four inches (4") thick. A flat stone or reinforced concrete slab may be used to carry the hearth instead of an arch if it be properly supported and a suitable fill provided between it and the hearth. Hearths shall be of brick, stone, tile or concrete. Wood centering under a trimmer arch shall be removed after the masonry has thoroughly set.

False fireplaces for gas or electrical heaters shall not be constructed in imitation of fireplaces unless complying with all the requirements for fireplaces. Gas and electrical space heaters may be installed in recesses not more than six inches (6") in depth, provided the entire recess is constructed of incombustible material. Such recesses shall be labeled by means of a metal plate bearing the words “For Gas and Electrical Appliances Only”.

No heater burning solid or liquid fuel shall be placed in a fireplace which does not comply with the requirements of this Section. No such heaters shall be connected to a gas vent flue. No wood shall be placed within eight inches (8") of the jambs or within twelve inches (12") of the top or arch of any fireplace opening.

Sec. 3707. Warm air furnaces designed to burn solid or liquid fuel shall be encased in a double metal shield with an air space between and shall be protected with at least three inches (3") of sand on top and shall rest on masonry or concrete floors. No wood partitions shall be built within seven feet (7') of the front or four feet (4') of the sides of the outer shield of such furnaces, but the distance to the partitions at the side may be reduced to two feet (2') if they are covered with sheet metal or metal lath and plaster. The distance from the top shield of such furnace to any ceiling or framing of wood above shall be not
less than twenty-four inches (24") unless such wood ceiling or framing is protected with not less than one-hour fire-resistive construction as specified in Section 4302.

Every furnace designed to burn solid or liquid fuel shall set upon a masonry floor or be placed on a bed of not less than four inches (4") of masonry and every portion thereof including the smoke pipe shall be at least two feet (2') from any combustible material or such combustible material shall be protected by a covering of No. 24 U. S. Gauge galvanized iron, furred with metal furring not less than one and one-half inches (1 1/2") from such combustible construction or shall be entirely covered by one-hour fire-resistive construction. Any such furnace set in masonry shall be completely and tightly covered with at least four inches (4") of brick, concrete, tile, sand or a combination of such materials. Every such furnace shall be connected to a regulation chimney as specified in Section 3701.

Every gas furnace other than single pipe floor furnaces shall be set in a furnace room upon a masonry floor or shall be set upon not less than two inches (2") of masonry on asbestos board not less than one-half inch (1/2") in thickness covered with No. 20 U. S. Gauge galvanized iron or steel. The top of such furnace shall be not less than nine inches (9") from protected combustible material nor less than eighteen inches (18") from unprotected combustible material. Gas furnaces shall not be installed in any location inaccessible for inspection and repair. An opening or door not less than thirty by thirty-six inches (30"x36") shall be provided for access to the room or space in which any gas furnace is installed. Every such furnace shall be vented into a regulation chimney as specified in Section 3701 or as provided in Section 3703.

An air supply for combustion shall be provided for every warm air furnace. Such supply shall be from outside the building into the furnace space through one or more openings. Such openings shall have a net area of not less than four hundred square inches (400 sq. in.). No obstruction of any kind shall be placed over such openings except wire netting with openings not less than one-half inch (1/2") square. Air used for conveying heat and for ventilation may be taken from outside the building, from inside the building or from both sources. Where such air is taken from inside the building or from both inside and outside the building it shall be conducted to the furnace by means of ducts of incombustible material.

The furnace room or rooms shall be located in the basement or cellar of any building having a gravity system and the least horizontal dimension of such room shall be six feet (6'). The floor of the furnace room shall be not less than seven feet (7') in the clear below the bottom of the lowest joists of any floor under which lateral heat pipes from the furnace or furnaces are taken and such floor shall be constructed of incombustible materials.

Low Pressure Steam Heating Plants

Sec. 3708. Steam hot water heating plants, for not more than 15 pounds pressure, and hot water heaters using solid or liquid fuel, shall rest upon masonry or reinforced concrete floors and shall be protected on the outside by asbestos. The clearance of wooden partitions, ceilings, and other combustible materials shall be the same as given for warm air furnaces.
Sec. 3709. Large boilers for power or steam purposes or for generating high pressure steam shall be so located that no wood or other combustible material shall be less than five feet (5') from the top or sides or ten feet (10') from the front of such apparatus and all combustible material less than ten feet (10') from the top or sides or less than twenty feet (20') from the front shall be protected with at least four inches (4") of concrete, brick or other similar incombustible material and shall be well ventilated to prevent the temperature rising above 125 degrees Fahrenheit. Steel, cast iron or concrete columns adjacent to such boilers shall not be in direct contact with furnace settings but there shall be an open and unobstructed space at least four inches (4") wide for ventilation.

Sec. 3710. All stoves used for heating, cooking or laundry purposes using solid or liquid fuel shall have all combustible partitions in back of and extending not less than twelve inches (12") beyond each side of such stove protected by not less than one-hour fire-resistive construction as specified in Chapter 43. Such stoves shall be securely supported at least twelve inches (12") above any wood floors by metal supports and there shall be a metal and asbestos pad at least three-eighths inch (\(\frac{3}{8}\"\)) thick below such stove extending at least six inches (6") beyond each side and at least twelve inches (12") in front of such stove. Such stoves shall not be placed nearer than six inches (6") to any combustible partition. All such stoves shall be connected by a smoke pipe to a chimney meeting the requirements specified in Section 3701.

Sec. 3711. Gas ranges, domestic hot water heaters and hot plates shall be supported at least six inches (6") above any wood floor or other combustible material and where burners are not provided with a shield below, the wood or other combustible material shall be protected with a double metal shield with a one inch (1") air space between or with a one-half inch (\(\frac{1}{2}\"\)) pad of metal and asbestos. Combustible partitions or walls within six inches (6") of any such appliance shall be protected by one-fourth inch (\(\frac{1}{4}\"\)) of asbestos covered with a 26 gauge metal covering or shall have not less than a one-hour fire-resistive protection as specified in Chapter 43. Wood ceilings or other combustible materials shall be at least three feet (3') above such installations. The oven of ranges and all water heaters shall be connected to a vent pipe meeting the requirements of Section 3703 or to a regulation chimney as specified in Section 3701.

Sec. 3712. Gas ranges for restaurants, bakeries or hotels shall be supported at least six inches (6") above any wood floor and if less than twelve inches (12") above the floor, the wood shall be protected by a metal shield or such ranges may rest on a steel and masonry support. Such ranges shall not be placed nearer to any wood partitions or other combustible material than six inches (6") and if nearer than twelve inches (12") such partitions shall be protected with a metal or asbestos shield. The distance from any such range to any wood ceiling or other combustible material above shall not be less than twelve inches (12") and if less than three feet (3') the ceiling or combustible material above shall be protected with a double metal shield.
with one inch (1") air space between or with one inch (1") of metal lath and portland cement plaster or one inch (1") of asbestos. Hood and ventilating flues from such ranges may be of sheet metal or masonry and if of sheet metal shall be protected from all wood or other combustible materials by four inches (4") of concrete, gypsum or terra cotta tile or an eight inch (8") air space and a metal shield. Such ventilating flues shall not be carried through wood floors or up combustible partitions unless protected by at least four inches (4") of masonry or concrete.

Sec. 3713. Stoves, furnaces and other heating or power apparatus in which oil burners are installed shall be constructed and erected as required for similar apparatus using solid fuel.

Oil burners apparatus using commercial fuel oil, furnace oil, diesel oil or other flammable liquids shall be constructed and installed in compliance with the regulations of the National Board of Fire Underwriters for the "Construction and Installation of Oil Burning Equipment and for the Storage and Use of Oil Fuels in Connection Therewith" recommended by the National Fire Protection Association, Edition of 1934.¹

Sec. 3714. Other sources of heat and flame not specifically mentioned herein shall be constructed and so protected as to prevent heating any wood or other combustible material used in the construction of floors, ceilings, partitions or other parts of a building to a temperature of over 125 degrees Fahrenheit, when in full operation, and shall be so constructed as not to be liable to undue corrosion or deterioration and not subject to accidental overturn or other disarrangement conducive to dangerous conditions.

Sec. 3715. For gravity systems no leader heat pipes shall be over twenty feet (20') in length measured horizontally, except where a booster fan is installed when such length shall not exceed forty feet (40'). All such pipes under first floor joists shall have a uniform rise of at least one inch (1") per lineal foot of horizontal run. Warm air pipes and appurtenances serving first floor rooms shall have a minimum cross sectional area in square inches of not less than the cubic foot capacity of the room or rooms in which registers are located, divided by 40; provided, that no leader pipe shall have a net area less than fifty square inches (50 sq. in.). Risers and appurtenances serving floors above the first floor shall have a net area of not less than two-thirds that required to serve the first floor.

Registers shall be located in or near the wall of the room nearest the furnace. No register shall be located in outside walls except in cases of absolute necessity. Where double registers are supplied by one leader pipe each register shall have a capacity of not less than two-thirds the area of the leader pipe. When necessary to install appurtenances in an outside wall at least the weather side shall be covered with air-cell asbestos paper.

Ninety degree bends in round pipe shall be made by not less than four piece elbows. Sixty degree bends shall be made

¹See "Specification Documents".
by means of not less than three piece elbows. All warm air pipes and fittings, cold air or recirculating pipes, ducts, boxes and fittings shall be made of bright tin or galvanized iron. All such appurtenances except leader heat pipes under the first floor shall be covered with two thicknesses of asbestos paper weighing at least eight pounds to one hundred square feet (100 sq. ft.) or with air-cell asbestos insulation, or shall be double walled with a one-fourth inch (¼") space between the inner and outer walls. Horizontal warm air pipes shall be kept at least three inches (3") from any combustible material or shall be protected with an asbestos shield and a one inch (1") air space. Air-cell asbestos paper not less than one-fourth inch (¼") in thickness shall be securely cemented around all leader pipes.

All riser pipes shall be braced or held in place by means of metal strips securely fastened to the pipe and shall in no case be held in place by nailing diagonally through the corners of such pipe. No joint shall depend wholly upon solder to make it tight. All leader pipes shall be securely fastened in place by means of wires or metal strips.

In the installation of Y runs or branch runs the cross sectional area of the warm air pipe at the furnace shall equal in square inches the cubic contents of all the rooms served by such warm air pipe divided by 40. Sizes of branch runs shall be determined in the same manner on the basis of the room or rooms served. Branches from trunk lines shall be taken off in a generally horizontal plane at an angle not less than 45 degrees from the line of the pipe. Fifteen degree Y branches may be permitted in forced draft systems. Riser pipes shall not be taken off the top of the first floor register boxes.

Where warm air pipes and appurtenances are to be installed in a building the joists and studs shall be so arranged as to provide not less than 14 inches (14") clear space in continuous horizontal runs and/or vertical risers from the furnace to the register served.

Sec. 3716. All incinerators which are built as an integral part of the building shall have the enclosing walls of the fire boxes or combustion chamber of solid masonry or reinforced concrete not less than eight inches (8") in thickness where the horizontal area does not exceed fifteen square feet (15 sq. ft.) and not less than twelve inches (12") in thickness where the combustion chamber is of greater area. The inner four inches (4") of such combustion chamber walls shall be of fire brick laid in fire clay or cement mortar, except that the walls surrounding the ash chamber below the fire grate need not be so lined. The inner walls of any combustion chamber shall not be offset in excess of one inch (1") for every three inches (3") of rise in the height of the wall unless supported by reinforced concrete or structural steel.

Chimneys for every incinerator shall be as specified in Section 3701.
CHAPTER 38—FIRE EXTINGUISHING APPARATUS

Sec. 3801. Standard automatic sprinklers shall be installed as specified in this Chapter in the following places:

1. In the cellar of every building.

2. In buildings of Groups A, B and C occupancy: under the gridiron, under the stage floor, under all fly and tie galleries, in all dressing rooms, storerooms, property rooms, carpenter shops, paint shops, passageways and all places back of the proscenium wall. A line of sprinklers shall be installed on the stage side of, and immediately back of the proscenium curtain and not more than five feet (5') above the proscenium arch.

3. In all Group E occupancies occupied wholly or in part as a planing mill, box factory, wood working establishment where lumber is made into a finished product and in which more than two power operated wood working machines exclusive of saws are used.

4. In all Group E occupancies occupied wholly or in part as a mattress factory used to manufacture, assemble or renovate mattresses or stuffed furniture using cotton, silk floss, mohair or other like material for packing or stuffing.

5. In all Group E occupancies used as film exchanges.

6. In Group B and C occupancies in any enclosed occupied space below or over a stairway, except where the entire construction is as required for Type I buildings, and in all portions of basements or cellars used for storage or maintenance work rooms.

Exception: The above provisions shall not apply in the following places:

Automatic sprinklers shall not be required in the cellars of dwellings and/or apartment houses having four or less apartments, nor in the cellars of Group C, D, E, F, G, and H occupancies when the ceiling of such cellar or basement is three feet (3') or more above grade, nor when such cellars or basements have an area of fifteen hundred square feet (1500 sq. ft.) or less.

Sec. 3802. Every automatic sprinkler system required by this Code shall comply in all respects with the "Regulations for the Installation of Sprinkler Equipment" of the National Board of Fire Underwriters, Edition of 1936, where not contrary to the specific requirements in this Chapter.

Exceptions: A single water supply equal to the primary supply required by such regulations may be accepted as complying with the requirements of this Code. In no case where a connection to a city water main constitutes the source of supply shall such connection be less than four inches (4") in diameter.

Sprinklers required in paragraph 6, Section 3801, may be supplied from the domestic water system and need not comply with the provisions of this section except as to pipe sizes and spacing of heads, provided that where the domestic water supply has a pressure less than 15 pounds per square inch, an approved

See "Specification Documents".
automatic chemical extinguisher may be used in lieu of the sprinklers.

The alarm valve required for a standard automatic sprinkler system shall not be required in the cellars of Group C, D, E, F, G, and H occupancies where the area of such cellar is less than three thousand square feet (3000 sq. ft.)

Sec. 3803. Every building three or more stories in height shall be equipped with one or more dry standpipes.

Sec. 3804 (a) Construction. Dry standpipes shall be of wrought iron or galvanized steel and together with fittings and connections shall be of sufficient strength to withstand 300 pounds of water pressure to the square inch when ready for service, without leaking at the joints, valves or fittings.

Tests shall be conducted by the owner or contractor in the presence of a representative of the Fire Department whenever deemed necessary and ordered by the Building Inspector. The tests shall be applied at the top and bottom connections of such standpipes and the owner or contractor shall be responsible for any damage caused by breakage or faulty installation while such tests are being conducted. After such standpipes have been tested, the owner or contractor shall remove all water therefrom.

(b) Size. Dry standpipes shall be of such a size as to be capable of delivering 250 gallons per minute from each of any three outlets simultaneously under the pressure created by one fire engine or pumper, based on the existing city equipment available. No part of a dry standpipe system other than hose connections shall be less than three inches (3") in diameter.

(c) Number Required. Every building three or more stories in height where the area of any floor above the second floor is ten thousand square feet (10,000 sq. ft.) or less shall be equipped with not less than one dry standpipe and an additional standpipe shall be installed for each additional ten thousand square feet (10,000 sq. ft.) or fraction thereof.

(d) Location. Standpipes shall be located within stairway enclosures or as near such stairways as possible or shall be on the outside of, embedded within, or immediately inside of an exterior wall and within one foot (1') of an opening in a stairway enclosure or the balcony or vestibule of a smokeproof tower or an outside exit stairway.

(e) Siamese Connections. All four inch (4") dry standpipes shall be equipped with a two-way Siamese fire department connection. All five inch (5") dry standpipes shall be equipped with a three-way Siamese fire department connection and all six inch (6") dry standpipes shall be equipped with a four-way Siamese fire department connection. All Siamese inlet connections shall be located on a street front of the building and not less than one foot (1') nor more than four feet (4') above the grade and shall be equipped with clapper-checks and substantial plugs. All Siamese inlet connections shall be recessed in the wall or otherwise substantially protected.
(f) **Outlets.** All dry standpipes shall extend from the ground floor to and over the roof and shall be equipped with a two and one-half inch (2½") outlet not more than four feet (4') above the floor level at each story. All dry standpipes shall be equipped with a two-way two and one-half inch (2½") outlet above the roof. All outlets shall be equipped with gate-valves with substantial chains.

(g) **Threads.** All hose in connection with such standpipe installations shall be uniform with that used by the local fire department.

(h) **Signs.** An iron or bronze sign with raised letters at least one inch (1") high shall be rigidly attached to the building adjacent to all Siamese connections and such sign shall read: "CONNECTION TO DRY STANDPIPE."

Wet Standpipes; Where Required

Sec. 3805. Every Group A, B and C occupancy of any height and every Group D, E, F, G and H occupancy three or more stories in height shall be equipped with one or more interior wet standpipes extending from the cellar or basement into the topmost story.

Detailed Requirements

Sec. 3806 (a) Construction. Interior wet standpipes shall be constructed as required for dry standpipes.

(b) **Size.** Interior wet standpipes shall have an internal diameter sufficient to deliver 50 gallons of water per minute under 30 pounds per square inch pressure at the hose connection, based on the available water supply. Buildings of Groups A and B occupancies shall have wet standpipe systems capable of delivering the required quantity and pressure from any two outlets simultaneously, for all other occupancies only one outlet need be figured to be open at one time. In no case shall the internal diameter of a wet standpipe be less than two inches (2").

Any approved formula which determines pipe sizes on a pressure drop basis may be used to determine pipe sizes for wet standpipe systems. The Building Inspector may require delivery and pressure tests on completed wet standpipe systems before approving such systems.

(c) **Number Required.** Wet standpipes shall be so located that any portion of the building can be reached therefrom with a hose not exceeding seventy-five feet (75') in length.

(d) **Location.** In Groups A, B, and C occupancies, outlets shall be located as follows:

On each side of the stage, on each side of the rear of the auditorium and on each side of the rear of the balconies. Where seating capacities are less than 500 the number of locations noted above may be reduced upon the approval of the Building Inspector. In Group D, E, F, G, and H occupancies the location of all interior wet standpipes shall be approved by the Building Inspector.

(e) **Siamese Connections.** All interior wet standpipes shall be equipped with a Siamese fire department inlet connection located on the street front of the building and such connection shall have two inlets for buildings five stories or less in height, three 244
inlets for buildings six to ten stories inclusive in height, and four inlets for buildings more than ten stories in height.

(f) **Outlets.** All interior wet standpipes shall be equipped with a one and one-half inch (1½") straightway composition gate-valve in each story including the basement or cellar of the building and located not less than one foot (1') nor more than five feet (5') above the floor.

(g) **Threads.** All hose threads in connection with the installation of such standpipes, including valves and reducing fittings, shall be uniform with that used by the local fire department.

(h) **Signs.** An iron or bronze sign with raised letters at least one inch (1") high shall be rigidly attached to the building adjacent to all Siamese connections and shall read: "CONNECTION TO WET STANDPIPE."

(i) **Water Supplies.** All interior wet standpipes shall be connected to a street water main of not less than four inches (4") in diameter or when the water pressure is insufficient to maintain 30 pounds pressure at the highest hose outlet such standpipe shall be connected to a pressure tank, gravity tank or fire pump. Such supply shall be sufficient to furnish at least 30 pounds pressure at the topmost standpipe outlet.

When more than one interior wet standpipe is required in the building, such standpipes shall be connected at their bases or at their tops by pipes of equal size.

(j) **Pressure and Gravity Tanks.** Tanks shall have a capacity sufficient to furnish at least 250 gallons per minute for a period of not less than 10 minutes. Such tanks shall be located so as to provide not less than 25 pounds pressure at the topmost hose outlet for its entire supply. Discharge pipes from pressure tanks shall extend two inches (2") into and above the bottom of such tanks. All tanks shall be equipped with a manhole, ladder and platform, drain pipe, water and pressure gauges. Every pressure tank shall be tested in place after installation and proved tight at a hydrostatic pressure 50 per cent in excess of the working pressure required. Where such tanks are used for domestic purposes the supply pipe for such purposes shall be located at or above the center line of such tanks. Incombustible supports shall be provided for all such supply tanks and not less than a three foot (3') clearance shall be maintained over the top and under the bottom of all pressure tanks.

(k) **Fire Pumps.** Fire pumps shall have a capacity of not less than 250 gallons per minute with a pressure of not less than 25 pounds at the topmost hose outlet. The source of supply for such pumps shall be a street water main of not less than four inch (4") diameter or a well or cistern containing a one-hour supply. Such pumps shall be supplied with an adequate source of power and shall be automatic in operation.

(l) **Hose and Hose Reels.** Each hose outlet of all interior wet standpipes shall be supplied with a hose not less than one and one-half inches (1½") in diameter. Such hose shall be equipped with a suitable brass or bronze nozzle and shall be not over seventy-five feet (75') in length. An approved standard form of
wall hose reel or rack shall be provided for the hose and shall be located so as to make the hose readily accessible at all times and shall be recessed in the walls or protected by suitable cabinets.

Sec. 3807. Basement pipe inlets shall be installed in the first floor of every store, warehouse or factory where there are cellars or basements under same, except where in such cellars or basements there is installed an automatic sprinkler system as specified by this Code, or where the cellars or basements are used for banking purposes, safe deposit vaults or similar uses.

All basement pipe inlets shall be of cast iron, steel, brass or bronze with lids of cast brass or bronze and shall consist of a sleeve not less than eight inches (8") in diameter through the floor extending to and flush with the ceiling below and with a top flange, recessed with an inside shoulder, to receive the lid and flush with the finish floor surface. The lid shall be a solid casting and have a ring lift recessed in the top thereof, so as to be flush. The lid shall have the words “Fire Department Only, Do Not Cover Up,” cast in the top thereof. The lid shall be installed in such a manner as to permit its removal readily from the inlet.

The location of such basement pipe inlets shall be approved by the Building Inspector and shall be kept readily accessible at all times to the Fire Department.

Sec. 3808. All fire extinguishing apparatus, including automatic sprinklers, wet and dry standpipes, automatic chemical extinguishers, basement pipe inlets and the appurtenances thereto shall meet the approval of the chief of the Fire Department as to installation and location and shall be subject to such periodic tests as he may require.

Sec. 3809. Where it is desired to require flame-protection of all stage scenery provisions will be found in the Appendix.
CHAPTER 39—STAGES AND PLATFORMS

Sec. 3901. There shall be one or more ventilators constructed of metal or other incombustible material near the center and above the highest part of any permanent stage raised above the stage roof and having a total ventilation area equal to at least five per cent of the floor area within the stage walls. The entire equipment shall conform to the following requirements or their equivalent:

1. Doors shall open by force of gravity sufficient to overcome the effects of neglect, rust, dirt, frost, snow or expansion by heat or warping of the framework.

2. Glass, if used in ventilators, must be protected against falling on the stage. A wire screen, if used under the glass, must be so placed that if clogged it cannot reduce the required ventilating area or interfere with the operating mechanism or obstruct the distribution of water from the automatic sprinklers.

3. The doors and other covers shall be arranged to open instantly after the outbreak of fire, by the use of approved automatic fusible links which will fuse and separate at not more than 160 degrees Fahrenheit. A manual control must also be provided by a cord running down to the stage at a point on each side of the stage designated by the Building Inspector.

4. The fusible link and the cord must hold the doors closed against a force of at least 30 pounds excess counter weight tending to open the door. The fusible links shall be placed in the ventilator above the roof line and in at least two other points in each controlling cord and so located as not to be affected by the sprinkler heads above. Each stage ventilator shall be operated to an open and closed position at least once before each performance.

Sec. 3902. Gridirons, fly galleries and pin-rails shall be constructed of incombustible materials and fire-protection of steel and iron may be omitted. Gridirons and fly galleries shall be designed to support not less than 75 pounds per square foot.

The main counter-weight sheave beam shall be designed to support a horizontal and vertical uniformly distributed live load equal to not less than five pounds per square foot over the area of the gridiron directly back of the proscenium opening.

Sec. 3903. In buildings of Groups A and B occupancy, Division 1, the dressing room sections, workshops, and storerooms shall be located on the stage side of the proscenium wall and shall be separated from each other and from the stage by a “Special Occupancy Separation” as provided in Section 503.

In buildings of Group C occupancy the dressing room sections, workshops and storerooms shall be located as required for Groups A and B occupancy and shall be separated from the rest of the building and from each other by an “Ordinary Occupancy Separation.”

Sec. 3904. In buildings of Groups A and B occupancy, a stage as defined in Section 401 shall be completely separated from the auditorium by a proscenium wall of masonry of not
Sections 3904-3908

less than four-hour fire-resistive construction as provided in Section 4302. The proscenium wall shall extend not less than four feet (4') above the roof over the auditorium.

In buildings of Group C occupancy, a stage as defined in Section 401, shall be completely separated from the auditorium by a proscenium wall of masonry or by incombustible studs protected on the stage side by two inches (2") of portland cement stucco on metal lath and on the auditorium side by three-quarters inch (3/4") of plaster on metal lath.

Proscenium walls may have, in addition to the main proscenium opening, one opening at the orchestra pit level and not more than two openings at the stage floor level, each of which shall be not more than twenty-five square feet (25 sq. ft.) in area.

Openings in the proscenium wall shall be protected on each side by one-hour fire-resistive doors as specified in Section 4304, except that in buildings of Group C occupancy only one fire-door will be required for each opening. The proscenium opening, which shall be the main opening for viewing performances, shall be provided with a self-closing fire-resistive curtain as provided in Chapter 41.

Stage Floors

Sec. 3905. For buildings of Group A and B occupancy, and when the space under the stage is usable in Group C occupancy all parts of stage floors shall be of Type I construction except the part of the stage extending back from and the full width of the proscenium opening, which may be constructed of steel or heavy timbers covered with a wood floor not less than one and five-eighths inches (1 5/8") thick. No part of the combustible construction except the floor finish shall be carried through the proscenium opening. All parts of the stage floor shall be designed to support not less than 125 pounds per square foot.

Openings through stage floors shall be equipped with tight-fitting trap doors of wood not less than two inches (2") thick.

Platforms

Sec. 3906. Walls and ceilings of a platform in an assembly room shall be fire-protected on the inside with not less than the equivalent of metal lath and plaster.

Any usable space under a raised platform of an assembly room shall be of one-hour fire-resistive construction throughout.

Stage Exits

Sec. 3907. Not less than one exit two feet and six inches (2' 6") wide shall be provided from each side of the stage opening directly or by means of a passageway not less than three feet (3') in width to a street or exit court. An exit stair not less than two feet six inches (2' 6") wide shall be provided for egress from each fly gallery. Each tier of dressing rooms shall be provided with at least two means of egress each not less than two feet six inches (2' 6") wide and all such stairs shall be constructed as specified in Chapter 33. The stairs required in this sub-section need not be enclosed.

Miscellaneous

Sec. 3908. A protecting hood shall be provided over the full length of the stage switchboard.
CHAPTER 40—MOTION PICTURE MACHINE BOOTHs

Sec. 4001. Every motion picture machine using flammable films, together with all electrical devices, rheostats, sewing machines and all films present in any Group A, B or C occupancy, shall be enclosed in a booth large enough to permit the operator to walk freely on either side or in back of the machine and shall be not less than seven feet (7') high and have a floor area of not less than fifty square feet (50 sq. ft.) to each motion picture machine in such booth.

The floor of such booth shall be constructed of masonry or reinforced concrete or shall be covered with not less than two inches (2") of masonry. The walls and ceiling shall be of not less than one-hour fire-resistive construction as specified in Chapter 43.

The entrance to booth shall be equipped with a tight-fitting self-closing fire door of Types 4, 5 or 6 as specified in Section 4304. Such door shall open outwardly and shall not be equipped with any latch.

Machine and observation ports in machine booth walls shall be of three kinds; projection ports, observation ports, and combination observation and spot light ports. These ports shall be limited in size and number as follows: There shall be not more than one projection port for each machine head, including stereopticon machines. The area of each projection port shall be not more than one hundred twenty square inches (120 sq. in.). There shall be not more than one observation port for each projection port and their area shall not exceed one hundred fifty square inches (150 sq. in.) each. There shall be not more than three combination observation and spotlight ports and they shall not exceed thirty inches (30") by twenty-four inches (24"). Where the openings in the front wall of the projection booths are larger than the ports specified, they may be reduced to the required size by bolting No. 10 gauge steel plate over the opening on the booth side of the wall, in such a manner that they cannot be readily removed or moved on the slides. These steel plates shall have the openings of the required size cut in them. There shall be not less than one foot (1') of wall space between openings for combination ports. In no case shall the openings which are to be reduced in size by the steel plate be larger than thirty-six inches (36") square. Each port opening in the projection booth wall shall be completely covered with a single pane of plate glass. Each such opening together with any fresh air inlets, shall be provided with a shutter of not less than No. 10 gauge sheet metal large enough to overlap at least one inch (1") on all sides of such opening and arranged to slide without binding. These shutters shall be held normally open by means of small chains fastened to a 160 degree Fahrenheit fusible link, the whole so arranged that the shutters may be easily released and closed either by hand or automatically when released by the fusible link and shall be so designed as to effect a weight of not less than eight pounds on each fusible link. Pieces of film shall not be used in place of fusible links. The shutters shall be so hung that the operation of closing shall be
smooth and without noise. The closing of all shutters shall be effected in five seconds.

Every booth shall be equipped with a ventilating inlet not less than thirty square inches (30 sq. in.) in area placed near the floor on each of three sides and protected by wire netting. At the top of every booth there shall be at least a ten inch (10") diameter vent for each motion picture machine. Such vent shall be constructed of sheet metal not less than No. 24 U. S. gauge and shall connect into a masonry flue or go directly through the roof and twelve inches (12") above, and shall be provided with an exhaust fan which will produce a complete change of air in the booth every 10 minutes. No wood or other combustible material shall be allowed to come within four inches (4") of the vent. There shall be not more than one elbow or change in direction of this metal vent in any attic space. No such vent shall pass through any occupied room unless encased in not less than four inches (4") of solid masonry.

All shelves, furniture and fixtures within the booth shall be constructed of metal or other incombustible material. Every motion picture machine shall be securely fastened to the floor to prevent overturning.

All films not in actual use shall be stored in metal cabinets or boxes constructed of galvanized iron or steel with metal partitions and shelves. Each such compartment shall have a capacity not in excess of 10 reels of film, and shall have tight self-closing doors of iron or steel. No solder shall be used in the construction of such metal boxes or cabinets.
CHAPTER 41—PROSCENIUM CURTAINS

Sec. 4101. Proscenium curtains when required shall be made of incombustible materials constructed and mounted so as to intercept hot gases, flames and smoke, and to prevent glow from a severe fire on the stage showing on the auditorium side within a period of five minutes. The curtain shall be raised and lowered each evening at the close of the performance. The closing of the curtain from the full open position shall be effected in less than thirty seconds, but the last five feet (5') of travel shall require not less than five seconds.

Sec. 4102. A proscenium curtain for stage openings over sixty feet (60') in width shall comply with the regulations contained in "Appendix P" of the building code recommended by the National Board of Fire Underwriters, Fifth Edition, revised reprint, 1934, or with the regulations contained in "Theatre and Motion Picture Schedule of the Board of Fire Underwriters of the Pacific, reprint of September 10, 1930." A proscenium curtain for stage openings sixty feet (60') or less in width, shall be constructed and installed as specified in this chapter. The curtain shall be made of one thickness of asbestos cloth weighing not less than three and one-quarter pounds per square yard.

The asbestos cloth used in the construction of the curtain shall have incorporated into the yarn before weaving, either monel metal, nickle, brass or other metal or alloy having not less strength than these metals at temperatures up to 1700 degrees Fahrenheit and no less resistance to corrosion at ordinary temperatures. Asbestos cloth made of long fiber blue crocidolite asbestos may be used in place of crysotile asbestos cloth of the same weight. The wires used to reinforce the yarn shall be either single or double but the tensile strength of each wire shall be sufficient to support a load of not less than three pounds at ordinary temperatures, and the strength of two strands of yarn and one wire twisted together shall be sufficient to support a load of six pounds. The strength of the cloth in tension when tested by the strip method shall be not less than 160 pounds per inch of width of warp and 52 pounds per inch of filling.

The asbestos fiber of yarns may contain cotton or other combustible fiber not to exceed 20 per cent of the weight of the asbestos. The total carbon content of the cloth shall not exceed 10 per cent of the total weight of the fiber. When required by the Building Inspector, a sample of the cloth of sufficient size for testing shall be submitted.

In addition to any decoration, the curtain shall be painted on both sides with a mineral paint having a silicate of soda binder, which will completely fill the cloth. Filler paint shall have not less than four parts of casein in each 10 parts of silicate of soda. This paint shall be well brushed into the cloth so that no light or smoke can come through.

Sec. 4103. The curtain shall be made of continuous vertical strips of asbestos cloth. The widths of cloth shall overlap the seams not less than one inch (1"") and shall be sewed with a double row of stitching of asbestos thread.

The curtain shall be wide enough to extend into steel smoke grooves on each side of the proscenium opening at least eight
inches (8") and shall overlap the top and sides of the proscenium opening at least twelve inches (12").

Six-inch (6") pockets shall be sewed in the top and the bottom of the curtain to hold the pipe battens; the sides shall be hemmed at least six inches deep. A two-inch pipe batten shall be placed at the top and a one and one-half inch (1½") batten at the bottom. For stage openings over forty feet (40') in width the bottom batten shall be not less than two and one-half inches (2½") in diameter. The battens shall be reinforced at the joints with twelve-inch (12") sections of pipe housed and riveted.

The curtain shall be held to the steel guides in the smoke pockets with substantial roller grips riveted or bolted to the side hem, not more than eighteen inches (18") on center. Each roller grip shall be fastened to the curtain with not less than three bolts or rivets.

Sixteen gauge galvanized metal shall be bent and placed vertically along each side hem of the curtain material, so that both faces of the hem are covered not less than six inches (6"). This metal edging shall be fastened to the side hem with rivets spaced not more than six inches (6") on center.

The top of the curtain shall have a smoke stop fitted to make it as smoke-tight as practicable. The bottom of the curtain shall have a yielding pad of incombustible material not less than three inches (3") thick to form a seal against the floor.

Sec. 4104. Smoke grooves which protect the sides of the curtain shall be of structural steel shapes and plates not less than one-quarter inch (¼") thick. These grooves shall be not less than fourteen inches (14") deep and six inches (6") wide and shall be set back from the face of the arch at least six inches (6"). Grooves shall extend from the stage floor to a point three feet (3') above the top of the raised curtain, and shall be securely bolted to the proscenium wall. Details of the grooves shall be submitted to the Building Inspector and Fire Chief for approval.

Steel tracks shall be built into the smoke grooves upon which shall travel the roller curtain guides. This track must be so installed that it is held rigidly in place and so that roller guides will operate smoothly. Safe support and smooth operation are required with a wind load of one pound per square foot over the entire area of the curtain.

Support for the curtain shall be by means of one-quarter-inch (¼") flexible steel cables for curtains forty feet (40') or less in width, and three-eighths-inch (¾") flexible steel cables for curtains over forty feet (40') in width. These cables shall be spaced not more than twelve feet (12') on centers, and the end overhang shall be not more than fifteen inches (15"). Supporting cables shall be tied to the top batten with a clove-hitch and the end secured with two iron rope clips. A substitute method of attachment will be allowed if approved by the Building Inspector.

The supporting cables shall pass through sheaves in the gridiron and over to the counter-weight guides and shall fasten to the counter-weight by means of three-eighth-inch (¾") turn-
buckles with clove-hitches and cable clips. Turnbuckles shall be locked to prevent backing out. Weight of the curtain shall be evenly divided on the cables.

There shall be safety stay chains of straight welded link fastened to the top curtain batten of sufficient strength to support safely the weight of the curtain. There shall be one more stay chain than the number of supporting cables and, except for the stay chains at the ends of the curtain, shall be centered between the supporting cables. Stay chains shall be securely attached to the top batten of the curtain and thence to the gridiron, if of steel construction, or shall be bolted through the proscenium wall with three-fourths-inch (3/4") bolts. Safety chains shall be so adjusted that they support the curtain when it is lowered and the bottom batten is resting on the pad supported by the floor.

All cables shall be carried over head and loft blocks fitted with ball or roller bearings of ample capacity to accommodate the weight at the speeds required. Grooves in the blocks shall be machined properly to cradle and protect the cable. All blocks supporting the proscenium curtain shall be supported on the proscenium wall by means of steel brackets of suitable size safely to carry the weight, or shall be mounted on structural steel beams.

Blocks shall be installed so that the head-block is sufficiently higher than the loft blocks to prevent cables from fouling loft block housings.

Diameters of the blocks shall be a minimum of twelve inches (12") for three-line sets and sixteen inches (16") for all other sets. Blocks larger than these diameters may be furnished.

The mechanism and devices for controlling the curtain shall be of simple design and shall be positive in operation. Opening of the curtain shall be by hydraulic or electric power. For curtains where the overbalance on the curtain side does not exceed 150 pounds, manual operation may be used. In this case, manual operation will be allowable only if a method is provided which allows the curtain and counterbalance to be approximately equal under normal conditions, but which adds the required over-weight on the curtain side automatically in case of an emergency.

Emergency release shall be by gravity obtained by over-balancing the curtain. The emergency control line shall be of cotton sash cord, fitted with not less than four fusible links, one on each side of the stage and two overhead in the gridiron, which when the links are fused or the sash cord burned will allow the curtain to lower itself automatically. This control line shall extend up both sides of the proscenium arch and across the gridiron, and shall be so arranged that when released it will also automatically open the stage ventilators.

On each side of the proscenium arch, at a location in plain view shall be located an easily read sign, bearing the inscription: “In case of fire, cut line to lower fire curtain,” with an indicator pointing to the location of a knife for that purpose. The knives shall be attached to the wall by a chain sufficiently long to reach the release line.
For electric operation there shall be installed push buttons plainly marked: "Fire Curtain—stop: Fire Curtain—down." One set of control buttons shall be installed on each side of the proscenium opening. For hydraulic or manual operation the endless line shall be marked plainly with an arrow pointing the direction for closing.

For manual operation the operating hand line shall be not less than three-fourths inch (3/4") diameter manila rope secured to the top and bottom of the counterweight arbor, and shall pass under a floor block, adjustable for tension, of not less than twelve-inch (12") diameter.

The top and bottom counterweight sections of the arbor shall be of cast iron, sufficiently heavy to accommodate safely the loads. The top and bottom sections shall be connected with rods not less than three-fourths-inch (3/4") diameter, with one tie-plate for every four feet (4') of rod. There shall be smooth grooves on the ends of the top and bottom weights which engage the steel guides. Intermediate weights shall be of cast iron, grooved to drop into place on top of the lower carrying weight. The turnbuckles connecting the supporting cables to the top weight shall be attached to eye-bolts passing through the top weight.

Counterweight guide tracks shall be structural "T's" or angles, properly tied together and securely anchored to the proscenium wall. All joints where the counterweight travels shall be ground smooth and a liberal coating of grease shall be applied to the tracks. These guides shall extend from the gridiron a length equivalent to the length of the arbor, plus the travel of the curtain, plus five feet (5'). The specified length shall be considered as the minimum. A structural steel stop shall be provided at the bottom of the arbor.

For proscenium curtains in which the overbalance is in excess of 150 pounds, an approved adjustable checking device shall be installed to check the speed of fall during the last five feet (5') of travel and an alarm shall be installed at the center of the top of the proscenium arch, which will sound when the curtain is descending through the emergency release.

Tests

Sec. 4105. The complete installation of every proscenium curtain shall be subjected to operating tests and any theater in which such proscenium curtain is placed shall not be opened to public performances until after the proscenium curtain has been accepted and approved by the Building Inspector.

New Designs

Sec. 4106. Curtains of other designs and materials, when not obviously of greater fire resistance than specified in this Chapter, shall before acceptance be subjected to the standard fire test specified in Chapter 42, as applicable to non-bearing partitions, except that such tests shall be continued only for a period of five minutes unless failure shall have occurred previously. The unexposed face of the curtain shall not glow within a period of five minutes nor shall there be any passage of smoke or flame through the curtain.
PART VIII

FIRE-RESISTIVE STANDARDS FOR FIRE PROTECTION

CHAPTER 42—GENERAL

Sec. 4201. Building materials, systems, units and forms of construction as regulated by this Code shall be classified as “four-hour fire-resistant construction,” “three-hour fire-resistant construction,” “two-hour fire-resistant construction” and “one-hour fire-resistant construction,” for fire-resistant purposes and protection. Materials, systems, units and forms of construction, in order to be classed as four-hour, three-hour, two-hour or one-hour fire-resistant construction shall meet the respective requirements for such rating as specified in the Standard Specifications for Fire Tests of Building Construction and Materials, A. S. T. M. Designation C19-83, of the American Society for Testing Materials.

Any materials, systems, units or forms of construction which meet the requirements of the aforesaid Standard Specifications shall be accepted as fire-resistant construction of the degree specified, if and when they shall be shown by an authoritative test conducted in accordance with all of the provisions of such aforesaid specifications, to possess such fire resistance.

Sec. 4202. The following materials, combinations of materials, systems and units shall be classed as fire-resistant materials:

- Brick
- Concrete brick, block or tile
- Gypsum block or tile
- Gypsum (plain or reinforced)
- Gypsum plaster board (or lath) and plaster.
- Hollow clay tile
- Metal
- Metal and asbestos
- Metal lath and plaster
- Portland cement concrete (plain or reinforced)
- Sand-lime brick

Sec. 4203. All fire-resistant construction of burned clay, concrete or gypsum units or other similar units shall be solidly bedded and laid in gypsum mortar, lime-cement mortar or cement mortar; provided, that gypsum units shall be laid in gypsum mortar only. All such units shall be thoroughly bonded together by broken joints in alternate courses or by sufficient metal ties or bonds.

All concrete, gunite, gypsum or similar protection for steel or iron structural members which is cast, poured or similarly applied shall be reinforced at the edges of such members in a sufficient manner to prevent cracking and disintegrating of such protection. All such applied fire protection materials shall be reinforced by metal rods, wire or mesh to
provide against cracking and disintegrating of the protecting material.

All plaster fire protection shall consist of gypsum mortar, Portland cement mortar or other equally fire-resistive material. Gypsum plaster only shall be used for plastering on gypsum units. Wherever plaster is used for fire protection purposes it shall be reinforced with a metal mesh or lath; provided, that where such plastering is placed on masonry or reinforced concrete such reinforcing may be omitted when the plastering is not more than one (1) inch thick. Gunite applied to masonry need not be reinforced and when properly bonded shall be considered a part of the required thickness.
CHAPTER 43
FIRE-RESISTIVE STANDARDS

Sec. 4301. The thickness of fire-resistive materials for fire protection of structural parts shall be as shown in the following table for the respective degrees of fire protection shown. The figures shown shall be the net thickness of the protecting materials and shall not include any hollow space or spaces between the fire protecting materials and the member protected. The thickness of plaster protection shall be measured from the face of the plaster to the plane of the back surface of the metal or wire lath where such lath is used and shall include two-thirds (2/3) of the thickness of the gypsum plaster board (or lath) where such board (or lath) is used.
Structural Parts to Be Protected

<table>
<thead>
<tr>
<th>Insulating Material Used</th>
<th>Minimum thickness of material in inches for the following fire-resistant periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hr.</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>2</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>3</td>
</tr>
<tr>
<td>Gunite</td>
<td>2</td>
</tr>
<tr>
<td>Brick of clay, shale, concrete or sand-lime</td>
<td>3¾</td>
</tr>
<tr>
<td>Clay tile, clay tile and concrete or concrete block (see note 2)</td>
<td>4 or 4</td>
</tr>
<tr>
<td>Solid gypsum blocks</td>
<td>2 pl.</td>
</tr>
<tr>
<td>Hollow gypsum blocks</td>
<td>3 pl.</td>
</tr>
<tr>
<td>Poured gypsum</td>
<td>2</td>
</tr>
<tr>
<td>Metal lath and gypsum or Portland cement plaster</td>
<td>.....</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>2</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>3</td>
</tr>
<tr>
<td>Gunite</td>
<td>2</td>
</tr>
<tr>
<td>Brick of clay, shale, concrete or sand-lime</td>
<td>3¾</td>
</tr>
<tr>
<td>Clay tile, clay tile and concrete or concrete block</td>
<td>3 or 2</td>
</tr>
<tr>
<td>Solid gypsum block</td>
<td>2 pl.</td>
</tr>
<tr>
<td>Hollow gypsum block</td>
<td>3 pl.</td>
</tr>
<tr>
<td>Poured gypsum</td>
<td>2</td>
</tr>
<tr>
<td>Metal lath and gypsum or Portland cement plaster</td>
<td>.....</td>
</tr>
</tbody>
</table>

Webs of Steel Beams and Girders

<table>
<thead>
<tr>
<th>Insulating Material Used</th>
<th>Minimum thickness of material in inches for the following fire-resistant periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hr.</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>1½</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>2</td>
</tr>
<tr>
<td>Gunite</td>
<td>1¼</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>1½</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>1¾</td>
</tr>
<tr>
<td>Gunite</td>
<td>1</td>
</tr>
</tbody>
</table>

Reinforcing Steel in Reinforced Concrete Columns, Beams, Girders & Trusses

<table>
<thead>
<tr>
<th>Insulating Material Used</th>
<th>Minimum thickness of material in inches for the following fire-resistant periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hr.</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>1½</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>2</td>
</tr>
<tr>
<td>Gunite</td>
<td>1¼</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>1½</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>1¾</td>
</tr>
<tr>
<td>Gunite</td>
<td>1</td>
</tr>
</tbody>
</table>

Ceiling Protection for Roof Members including Roof Trusses and Secondary Trusses

<table>
<thead>
<tr>
<th>Insulating Material Used</th>
<th>Minimum thickness of material in inches for the following fire-resistant periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hr.</td>
</tr>
<tr>
<td>Metal or Wire Lath and Gypsum or Cement plaster, Concrete, Burned Clay Products or Gypsum</td>
<td>2</td>
</tr>
</tbody>
</table>

Reinforcing and Tie Rods in Floor and Roof Slabs

<table>
<thead>
<tr>
<th>Insulating Material Used</th>
<th>Minimum thickness of material in inches for the following fire-resistant periods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hr.</td>
</tr>
<tr>
<td>Grade A concrete</td>
<td>Thickness includes</td>
</tr>
<tr>
<td>Grade B concrete</td>
<td>gun</td>
</tr>
<tr>
<td>Gypsum</td>
<td>gun</td>
</tr>
</tbody>
</table>

NOTE:
1. pl. in above table shall be not less than ½ in. gypsum or cement plaster.
2. Re-entrant parts of protected members shall be filled solid for 4 and 3 hour protections.
3. Two 7/8 in. layers with 3/4 in. air space between.

218
NOTE:

Grade A concrete shall mean concrete with a coarse aggregate of lime-stone, pumice, calcareous pebbles, trap rock, blast furnace slag, burnt clay, burnt shale or other coarse aggregates containing not more than sixty-five (65) per cent of siliceous material, such as granite, sandstone, chert pebbles, flint, cinders or quartz.

Grade B concrete shall mean concrete with a coarse aggregate other than that allowed in Grade A concrete.

For flat ceilings where the ceiling protection for beams, girders or slabs is suspended to form a free air space of not less than one (1) inch between the member and the protection, the protection thicknesses may be one-half (½) inch less than that required in the above table for flat ceiling protection, but no thickness shall be less than three-fourths (¾) of an inch.

Soffit tile protecting beam and girder flanges shall be tied to the flange with steel or iron ties.

If the structural part is of iron or steel the thickness given in the foregoing table shall be measured outside of the extreme edges of the structural shapes, except that projecting edges of lugs and brackets shall be given a minimum protection of one (1) inch thickness. For reinforced concrete members, the thickness given in the foregoing table shall be outside of the reinforcement. For purposes of design the protection shall not be considered as carrying load except as permitted for tied columns in Section 2621.

Plaster protections of over one (1) inch in thickness shall have an additional layer of metal lath, wire or metal mesh embedded not more than three-fourths (¾) of an inch from the surface and securely tied into the supporting members.

Wire of not less than number ten (No. 10) B. and S. gauge wound or tied around members at not more than a six (6) inch pitch, or wire or expanded metal mesh shall be placed and well embedded in all concrete poured gypsum and gunite protections.

Wire mesh or other forms of metal ties in concrete protections shall be held away from the structural members and embedded in the protection not less than three-fourths (¾) of an inch from its outer surface at points of minimum thickness. Hollow tile or gypsum block protections shall have iron or steel ties embedded in each horizontal joint, or have outside iron or steel ties over each unit, the diameter of wire to be 0.18 inch, or of equivalent area in ties of other forms. Wire mesh, where used for tying protections, shall weigh not less than one and one-half (1½) pounds per square yard. Where metal lath or wire mesh is used as a plaster base or tie it shall weigh not less than two and two-tenths (2.2) pounds per square yard, and two and one-half (2½) or more meshes per inch or equivalent. Gypsum plaster board not less than three-eighths (3/8) of an inch thick and having not more than fifteen (15) per cent combustible material combined with the gypsum may be substituted for metal lath for resistance periods of not more than two (2) hours, provided the plaster is reinforced with metal or wire mesh weighing not less than one and one-half (1½) pounds per square yard, standing away from the board and secured to the support-
ing members, and two-thirds (2/3) of the thickness of the plaster board may be considered as plaster.

Concrete aggregates whose mineral composition is unknown or undetermined shall for the application of these regulations be classed as Grade B aggregates.

Sec. 4302. Fire-resistant bearing and non-bearing walls and partitions shall be of not less than the thicknesses and construction specified in this Section, to be classed for the respective degrees of protection indicated.

The structural requirements of the following masonry and reinforced concrete walls are specified in Chapters 24 and 29 for the specific location or use of the walls and all walls shall comply with those structural requirements as well as the fire-resistant limitations as specified in this Section.

The following tabulated thicknesses are minimum and shall not be broken into; provided that where combustible floor or partition members project into solid masonry or reinforced concrete walls or partitions the required effective thickness of wall shall be measured from two (2) inches back along the member from the end in the wall, to the opposite face of the wall. Where such members project into hollow walls and the space between the members and the with not less than four (4) inches above and below them is filled solid with fire-resistant incombustible materials for the full thickness of the wall, or where such hollow walls are constructed of hollow units laid with cells horizontal (side construction) the required thickness shall be measured as specified for solid masonry walls in this paragraph. Where the hollow spaces are not thus filled or where hollow units are laid with cells vertical (end construction) the required effective thickness of wall shall be measured from the end of member in wall to the opposite face of wall.

Plaster, in order that it may be considered as adding to the fire resistance of walls and partitions shall be gypsum or Portland cement plaster applied to an average thickness of not less than one-half (½) of an inch on each side. Plaster over one (1) inch in thickness, as measured to the plaster base, shall have an additional layer of metal lath, wire or metal mesh embedded not more than three-fourths (¾) of an inch from the surface and securely tied into the supporting members.

Required fire-resistant plastering or stucco on the outside of exterior masonry walls may be omitted from inaccessible portions of the wall provided the inside plastering opposite the inaccessible portions is doubled in thickness.

Gypsum plaster board (or lath) not less than three-eighths (¾) of an inch in thickness and having not more than fifteen (15) per cent of combustible material combined with the gypsum may be substituted for metal lath for resistance periods of not more than two (2) hours, provided the plaster is reinforced with metal or wire mesh weighing not less than one and one-half (1½) pounds per square yard, standing away from the board (or lath) and secured to the supporting studs or joists. Two-thirds (2/3) of the thickness of the plaster board (or lath) may be considered as plaster.

Gypsum plaster board (or lath) conforming to the speci-
fications contained in the preceding paragraph may be sub-
stituted for metal lath and the reinforcement of the plaster
omitted, provided, that the joints of the plaster board (or lath)
are covered with strips of metal fabric not less than three (3)
and the plaster board (or lath) is plastered
inches in width; and the plaster board (or lath) is plastered
with not less than one-half (½) inch of fibered gypsum plaster
containing not more than thirty-three and one-third (33 1/3)
per cent by weight of silica.

Metal or wire lath shall weigh not less than two and two-
tenths (2.2) pounds per square yard. Metal or wire mesh where
used as ties in concrete shall weigh not less than one and one-

221
Sec. 4302
Rated Fire Resistance Periods for Various Walls and Partitions

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CONSTRUCTION</th>
<th>Minimum Finished Thickness face to face (including plaster where mentioned) in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick of Clay, Shale, Sand-Lime or Concrete, and Plain Concrete</td>
<td>4-hr.</td>
<td>3-hr.</td>
</tr>
<tr>
<td>Solid unplastered</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Solid plastered</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Hollow (rowlock) unplastered</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Hollow (rowlock) plastered</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Hollow Clay Tile Wall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End or side construction. One cell in wall thickness. Plastered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End or side construction. Two cells in 8-in. or less thickness. Unplastered</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>End or side construction. Two cells in 8-in. or less thickness. Plasterd</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Hollow Clay Tile A. S. T. M. Load-Bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End or side construction. Two cells in wall thickness. Unplastered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End or side construction. Two cells in wall thickness. Plasterd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End or side construction. Three cells in 8-in. or less thickness. Unplastered</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>End or side construction. Three cells in 8-in. or less thickness. Plastered one side</td>
<td>8½</td>
<td></td>
</tr>
<tr>
<td>End or side construction. Three cells in 8-in. or less thickness. Plastered</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Combination of Brick and A. S. T. M. Load-Bearing Tile</td>
<td>4-in. brick and 4-in. tile plastered one side (tile side)</td>
<td></td>
</tr>
<tr>
<td>Special Hollow Concrete Block or Tile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One cell in 8-in. or less thickness. Unplastered</td>
<td>12†</td>
<td>8</td>
</tr>
<tr>
<td>One cell in 8-in. or less thickness. Plastered</td>
<td>9†</td>
<td></td>
</tr>
<tr>
<td>Hollow Concrete Block or Tile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One cell in 8-in. or less thickness. Unplastered</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>One cell in 8-in. or less thickness. Plastered</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Solid Concrete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcement not less than 0.2% in each direction</td>
<td>6</td>
<td>5*</td>
</tr>
<tr>
<td>Solid Gunit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforcement not less than 0.2% in each direction</td>
<td>5*</td>
<td>4*</td>
</tr>
<tr>
<td>or 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unplastered</td>
<td>6*</td>
<td>5*</td>
</tr>
<tr>
<td>Plastered</td>
<td>5*</td>
<td>4*</td>
</tr>
<tr>
<td>Hollow Gypsum Blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer shell 2-in. thick for 10-in. wall and 1 1/2 in. thick for 8-in. wall</td>
<td>10*</td>
<td>8*</td>
</tr>
<tr>
<td>Solid Gypsum or Portland Cement Plaster</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incombustible studing with metal or wire lath</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollow Partition with Gypsum or Portland Cement Plaster or Gunit on Each Side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incombustible studing with metal or wire lath, 3/4 in. plaster on each side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incombustible studing with metal or wire lath, 1 in. plaster on each side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood studs with metal or wire lath. Fire-stopped</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Indicates that such walls and partitions shall be used for non-bearing purposes only.
†This thickness to be given a four-hour rating only after an A. S. T. M. certified fire test.
half (1½) pounds per square yard. Where used as ties for plaster it shall weigh not less than two and two-tenths (2.2) pounds per square yard and have not less than two and one-half (2½) meshes per inch, or equivalent.

Wood studs for bearing partitions or walls shall be not less than the two inch by four inch (2"x4") nominal size and be spaced not more than sixteen (16) inches apart.

Note: The term “plastered” in following table shall mean walls plastered with not less than one-half (½) inch of gypsum or Portland cement plaster on each side of wall.

Sec. 4303. Fire-resistive floor construction shall be accepted for the following respective degrees of fire-resistive protection when constructed as specified in this Section. For the structural details of any floor construction, the particular details specified under Part VI of this Code shall govern.

Four-hour, three-hour and two-hour fire-resistive floors as specified in this Section shall be constructed entirely of incombustible materials.

(a) Four-hour fire-resistive floor construction shall consist of reinforced concrete, gypsum and/or solid masonry slabs or arches not less than four (4) inches in thickness or shall consist of hollow masonry slabs or arches not less than four (4) inches in thickness with a top covering of not less than two (2) inches of solid masonry, or shall consist of steel joists protected with fire-resistive materials of the kind and thickness shown in the table in this Section. Except in the case of steel joisted construction, all reinforcing, tie rods and supporting structural members in such floors shall be protected with not less than four-hour fire-resistive construction as specified in Section 4301.

(b) Three-hour fire-resistive floor construction shall consist of reinforced concrete, gypsum and/or solid masonry slabs or arches not less than three (3) inches in thickness or shall consist of hollow masonry slabs or arches not less than four (4) inches in thickness with a top covering of solid masonry not less than one and one-half (1½) inches in thickness, or shall consist of steel joists protected with fire-resistive materials of the kind and thickness shown in the table in this Section. Except in the case of steel joisted construction, all reinforcing, tie rods and supporting structural members in such floor construction shall be protected with not less than three-hour fire-resistive construction as specified in Section 4301.

(c) Two-hour fire-resistive floor construction shall consist of reinforced concrete, gypsum and/or solid masonry slabs or arches not less than two and one-half (2½) inches in thickness or shall consist of hollow masonry slabs or arches not less than three (3) inches in thickness with a top covering of not less than one (1) inch of solid masonry, or shall consist of steel joists protected with fire-resistive materials of the kind and thickness shown in the table in this Section. Except in the case of steel joisted construction, all reinforcing, tie rods and supporting structural members in such floor construction shall be protected with not less than two-hour fire-resistive construction as specified in Section 4301.

(d) One-hour fire-resistive floor construction shall consist
of reinforced concrete, gypsum and/or solid masonry slabs or arches not less than two and one-half (2½) inches in thickness or shall consist of hollow masonry slabs or arches not less than three (3) inches in thickness with all joints in such hollow unit construction thoroughly filled with cement or gypsum mortar or shall consist of steel joists protected with fire-resistive materials of the kinds and thickness shown in the table in this Section. Except in the case of steel joisted construction, all reinforcing, tie rods and supporting structural members shall be protected with not less than one-hour fire-resistive construction as specified in Section 4301; or

Wood joisted construction with a double wood floor on top (the sub floor not less than three-fourths (¾) of an inch thick, and the total thickness of the two layers not less than one and one-fourth (1¼) inches thick) and with a fire-resistive ceiling, as shown in the table in this Section, securely fastened to or suspended from the under side of such joists. Except the metal lath and plaster ceiling shall not be required below the lowest floor joist over unusable space.

All flat ceilings where the ceiling protection for beams, girders or slabs is suspended to form a free air space between the member and the protection, the protection thicknesses may be one-half (½) inch less than that required in the following table for flat ceiling protection, but no thickness shall be less than three-fourths (¾) of an inch minimum protection of metal and wood joists based on time periods for various insulating materials.

In any reinforced concrete floor construction which includes a metal lath and cement or gypsum plastered ceiling on the under side, not less than three-fourths (¾) of an inch thick, the required slab thickness may be reduced one-half (½) inch but in no case shall be less than two and one-half (2½) inches thick.

Minimum Protection for Metal and Wood Joists

Based on Time Periods for Various Insulating Materials

<table>
<thead>
<tr>
<th>Joists to be Protected</th>
<th>Insulating Material Used</th>
<th>Minimum thickness of material in inches for the following fire-resistive periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling protection of Steel Joists, where incombustible slab not less than 2½ in. thick is placed above</td>
<td>Metal or wire lath and gypsum or Portland cement plaster, concrete, burned clay products or gypsum</td>
<td>4-hr. ¾-hr. 2-hr. 1-hr.</td>
</tr>
<tr>
<td>Ceiling Protection of Wood Joists with double floor on top</td>
<td>Gunite</td>
<td>1½ 1 ¾ ¾</td>
</tr>
</tbody>
</table>

Sec. 4304. (a) Fire-resistant Doors. One-hour fire-resistive doors shall be constructed as specified for one of the following types, 1, 2 or 3, or any door which will successfully pass
the one-hour fire test specified in Section 4201, and all such doors to receive the one-hour rating, shall be hung in place as specified in this Section:

1. Tin-clad wood-core doors with the core made of three (3) plies of wood one (1) inch nominal in thickness and covered with sheet metal, the door to be constructed in accordance with the "Underwriters' Standard for Tin-Clad Fire Doors and Shutters," Edition of March, 1926, and July, 1927; reprinted, 1928.

2. Sheet metal doors constructed of two (2) sheets of not less than twenty-six (26) U. S. Gauge corrugated sheet metal, one sheet on each side of a structural steel frame, corrugations vertical on one side and horizontal on the other and having not less than one-sixteenth (1/16) of an inch of asbestos placed in between the two metal sheets;

3. Sheet metal doors constructed of two (2) sheets of metal of not less than twenty-six (26) U. S. Gauge fastened to a structural steel frame in such manner as to leave a one (1) inch space in the panels, which space shall be filled with asbestos and with a one-eighth (1/8) inch asbestos covering on the stiles and structural steel frame.

Fire-resistive doors used for openings in stairway enclosures, smokeproof towers, corridors and passageways, moving picture booths, room partitions, exterior walls facing streets or more than twenty-five (25) feet from adjacent property lines and for "Ordinary Fire Separations" as specified in Section 503, shall be constructed as specified for one of the following types, 1, 2, 3, 4, 5 or 6 or any door which will provide equivalent protection against fire when hung in place as specified in this Section:

4. Tin-clad wood-core doors made of two (2) plies of wood one (1) inch nominal in thickness and covered with sheet metal, the door to be constructed in accordance with the "Underwriters' Standard for Tin-Clad Fire Doors and Shutters," Edition of March, 1926, and July, 1927; reprinted, 1928.

5. Sheet metal doors as specified in paragraph 3 above, but with one-fourth (¼) of an inch of asbestos placed between the metal sheets in the panels and with no asbestos required on the stiles and structural frame;

6. Metal-clad doors which shall be wood panel doors with frame not less than one and three-fourths (1¾) inches in thickness and with wood panels not less than three-fourths (¾) of an inch in thickness, the whole door covered with not less than number twenty-six (No. 26) gauge metal. The panels of such doors shall fit into the frame not less than three-fourths (¾) of an inch and all joints of metal shall be lapped and nailed tightly to the wood frame.

Metal shall in all cases be fastened to the wood or metal frame by nailing, bolting or riveting and no solder shall be used on any door except for filling of joints.

Glass panels of one-quarter (¼) inch wire glass shall be permitted in any of the above doors except when such doors are used on openings in fire walls, fire division walls, all openings for the stage portion of any Group A building or for openings in "Special Fire Separations" as specified in Section 503.
Such glass panels shall be not more than seven hundred and twenty (720) square inches in area, nor exceed fifty-four (54) inches in height or forty-eight (48) inches in width. Grooves not less than three-fourths (¾) of an inch in depth and three-eighths (⅜) of an inch wide, providing, not less than five-eighths (5/8) of an inch of bearing for the glass shall be required.

Fire doors bearing the label of the Underwriters' Laboratories, Incorporated, shall be accepted as meeting the requirements of any of the above doors.

Hardware for sheet metal and tin-clad fire doors referred to in paragraphs No. 1, 2, 3 and 4, shall be made of good quality malleable iron not less than one-fourth (¼) of an inch thick or of flat rolled structural steel not less than three-eighths (⅜) of an inch thick; provided, that tubular steel track made of at least one-eighth (⅛) inch steel may be used. Sliding tracks shall be supported so that a wall fastening is directly opposite each door hanger when door is in a closed position. Hangers supporting doors shall be fastened to the door with not less than three (3) one-half (½) inch bolts extending through the door. Latches for fire doors shall be not less than two and one-half inches by three-eighths inch (2 ½” x ⅜”), and latch bars shall be not less than one and one-half inches by one-fourth inch (1 ¼” x ⅛”).

Hardware for swinging hollow metal and metal-clad doors as referred to in paragraphs No. 5 and 6 shall be made as follows:

Hinges. For doors not exceeding eight (8) feet in height the hinges shall be of steel or bronze. If made of steel they may be either full, half surfaced, or butt hinges four and one-half inches by four and one-half inches (4 ½” x 4 ½”) and not less than one-eighth (⅛) inch in thickness. If made of bronze they shall be butt hinges four and one-half by four and one-half inches (4 ½” x 4 ½”) and not less than three-sixteenths (3/16) of an inch in thickness. When bronze hinges are used a steel stud and socket shall be provided at each hinge. The studs shall be attached to the rear jamb and shall engage a socket at least three-fourths (¾) inch deep in the rear edge of the door.

Locks. Doors shall be provided with a mortise or unit lock which has a latch bolt with a throw of not less than three-fourths (¾) of an inch.

When mounted in pairs the normally standing door shall have a push bolt at the top and at the bottom which has a throw of not less than three-fourths (¾) of an inch.

Special locking devices shall be provided as required in Part III under occupancy, also as provided in Sections 3304, 3311 and 3315.

Astragals. Swinging fire doors mounted in pairs shall be provided with at least one astragal attached to one door and overlapping the opposite door at least three-fourths (¾) of an inch. The above provision need not apply when the doors meet on a mullion.

Fire doors required by this Code shall be installed in the
manner prescribed in the "Regulations of the National Board of Fire Underwriters for the Protection of Openings in Walls and Partitions Against Fire," recommended by the National Fire Protection Association, Edition of 1927.

All fire doors shall be so hung that when closed they will fit tightly into place against the wall or frame so as to prove an effective stop for fire and smoke. Space around fire doors necessary for their operation shall at all times be kept unobstructed and, when deemed necessary by the Building Inspector, a screen or railing protection shall be installed to insure no storing or placing of material against any fire door which would prevent its operation in case of emergency.

(b) Fire-resistive Shutters. One-hour fire-resistive shutters shall be constructed as specified for any one of the types of fire-resistive doors specified in part (a) of this Section.

(c) One-hour Fire-resistive Windows. One-hour fire-resistive windows shall have frames and sash of solid metal bars or hollow metal forms fabricated by pressing, welding or crimping together but not by the use of solder or other fusible alloy. All glass used in fire-resistive windows shall be wire glass and shall be not less than one-fourth (¼) of an inch in thickness and no one light shall exceed seven hundred and twenty (720) square inches in area. Grooves three-fourths (¾) of an inch in depth shall be provided and glass so arranged as to have not less than five-eighths (5/8) of an inch of bearing in hollow metal frames and with grooves not less than one-half (½) inch and with glass provided with not less than three-eighths (¾) of an inch of bearing in windows of solid metal section. Continuous glazing angles shall be provided on the inside. Fire-resistive windows with hollow metal frames shall be limited to a maximum size of sixty (60) square feet with a six (6) foot maximum width and a ten (10) foot maximum height for double hung and counterbalanced windows and to a maximum size of seventy (70) square feet with a seven (7) foot maximum width and ten (10) foot maximum height for stationary windows. Solid metal section windows shall be limited to a maximum size of eighty-four (84) square feet in area with a maximum dimension in either direction of twelve (12) feet. Multiple section windows of these above sizes may be used when hollow metal or solid section mullions are provided. Hollow metal mullions shall be limited to a maximum length of twelve (12) feet and shall be used for non-bearing purposes only. Solid section mullions when used in lengths exceeding twelve (12) feet shall be fireproofed as required in Section 4301 in accordance with the fire-resistant construction of the building in which they are placed. Where fire-resistive windows are required by this Code, wood sash and plain glass may be substituted when protected as specified in Parts (a) and (b) of this Section.

Fire-resistive windows bearing the label of the Underwriters' Laboratories, Incorporated, shall be accepted as one-hour fire-resistant windows.

Sec. 4305. Roof coverings for all buildings shall be either "Fire Retardant" or "Ordinary" roofings as specifically required either by Location in Part IV, by Type of Construction in

Roof Coverings

227
Part V or as specified in Sections 1109 and 1209. The roof covering shall be securely fastened to the supporting roof construction.

(a) Fire Retardant Roofings. “Fire Retardant” roofings shall be any roof covering which meets any one of the following requirements, or shall be any roofing meeting the requirements of Class A or B specifications of the Underwriters' Laboratories, Incorporated. Roofings bearing the label, and laid in the manner provided by the Underwriters' Laboratories, Inc., for Class A and B may be accepted as meeting the requirements of this section for fire retardant roofs.

Roof coverings built of roll roofing, roofing felt, felt membrane, or asphalt shingles, shall conform to the following requirements as to physical properties of materials, weights, number of layers and method of laying. The following requirements shall not be construed to prohibit the use of more layers, substitution of materials with heavier dry felt base content of similar quality and of not less than equal finished weight of material so substituted.

1. Not less than two layers No. 32 (30 lb. asphalt roofing) or No. 41 (40 lb. asbestos roofing). For top layer see note below.
2. Not less than four layers No. 15 (14 lb. asphalt felt). For top layer see note below.
3. Not less than three layers of a combination of No. 32 (30 lb. asphalt roofing) or No. 41 (40 lb. asbestos roofing) and No. 15 (14 lb. asphalt felt) or No. 14 (14 lb. asbestos felt). For top layer see note below.
4. Not less than three layers of No. 18 (18 lb. asbestos felt membrane) or No. 20 (20 lb. asphalt membrane). For top layer see note below.
5. Not less than one layer of No. 30 (26 lb. asphalt felt) roofing felt and two layers of No. 15 (14 lb. asphalt felt) or No. 14 (14 lb. asbestos felt) or No. 18 (18 lb. asbestos felt membrane) or No. 20 (20 lb. asphalt membrane). For top layer see note below.

Note: The above composition fire retardant roofings, shall be thoroughly mopped between layers with a bituminous compound so that no one layer touches unmopped the layer next above, and every such roof covering shall have for its top layer a layer of No. 82 or any mineral surfaced roofing bearing the Class C label of the Underwriters' Laboratories, Inc., or No. 41 roll roofing, or two layers of No. 14 roofing felt, or two layers No. 18 felt membrane (any such top layer or layers so used shall be deemed to be a part of and counted as a substitute for one or more layers so substituted); or such roof covering shall be entirely covered with a flowing coat of bituminous compound and completely covered with gravel, crushed rock, crushed brick, other crushed earthenware or similar mineral surfacing material, a sufficient quantity being embedded in the bituminous compound in accordance with good standard practice.

Composition fire retardant roof covering except asphalt shingles, designed to be laid over a wood deck shall be laid over a layer of unsaturated building paper weighing not less than
five (5) pounds to each one hundred (100) square feet of such paper.

Bituminous compound for mopping plys together shall be air refined asphalt or coal tar pitch but shall not be any type of emulsion, cold cut back liquid cement, oil or grease.

6. Hydraulic compressed rigid shingles not less than one-eighth (\(\frac{1}{8}\)) inch thick, composed of Portland cement and asbestos fibers, laid over a layer of saturated felt weighing not less than fourteen (14) pounds to the one hundred (100) square feet; or hydraulic compressed rigid sheets not less than seven thirty-seconds (7/32) inch thick, composed of Portland cement and asbestos fibers. The aforesaid felt may be omitted when the compressed shingles are placed over an existing roof covering.

7. Asphalt saturated mineral surfaced prepared composition shingles laid so there shall be not less than two (2) thicknesses at all places. The combined weight of such shingles shall not be less than one hundred and ninety (190) pounds to the one hundred (100) square feet of completed roof area.

8. Concrete Slab or Concrete Tile. Concrete slab roofs shall be constructed as specified in Chapter 26 and need not be covered with any additional roof covering.

9. Metal Roof Covering. Metal roof covering may be of a corrugated, standing seam or flat type of not less than number twenty-six (No. 26) U. S. Gauge metal. All flat metal roof coverings shall be laid on solid sheathing. Corrugated or standing seam metal roof covering shall be designed to support the required live load between supporting members.

10. Slate. Each slate shingle shall be securely fastened to the supporting roof construction with copper nails or with copper nails and copper wire, with nails of such length as to provide not less than three-fourths (\(\frac{3}{4}\)) of an inch of penetration into the nailing strips or sheathing.

11. Clay Tile. Clay roof tile shall not absorb more than fifteen (15) per cent of the dry weight of the tile during a forty-eight (48) hour immersion test.

Roofing tile other than flat pan tile with or without flanges, or flat shingle tile, or flat decorative tile, shall satisfy the following strength requirement: When supported on the turned down edges at points six (6) inches each side of the center of the tile, giving four (4) points of support and a span of twelve (12) inches, and loaded with a concentration at the center, the average breaking load per tile for five (5) representative tile tested shall be not less than four hundred (400) pounds and the breaking load for any individual tile tested shall be not less than three hundred and fifty (350) pounds.

All clay roof tile without any projection lug shall be nailed and/or wired in place.

Copper nails and copper wire shall be used wherever nailing and wiring of tile is required in this sub-section; provided,
that when roofs do not exceed a one-third (1/3) pitch galva-
nized iron nails may be used. Wire shall be not smaller than
number fourteen (No. 14) B. and S. gauge. Nails shall in all
cases penetrate not less than three-fourths (3/4) of an inch after
passing through the tile or other fastening device.

(b) Ordinary Roofings. “Ordinary” roof coverings shall
be any roof covering which meets the requirements specified for
the following roof coverings, 12 to 18, inclusive, or shall be any
roofing meeting the Class C Specifications of the Underwriters’
Laboratories, Incorporated.

12. One layer of No. 41 roll roofing, or one layer of No.
45, No. 52, or No. 82 roll roofing.

13. Such roof covering may be asphalt shingles laid in one
or more layers.

14. Such roof covering may be a combination of one or
more layers of No. 15 or No. 14 roofing felt and a layer of No.
32 roll roofing.

15. Two or more layers of No. 14 roofing felt or No. 18
felt membrane.

16. One layer No. 30 roofing felt and one layer No. 14 or
No. 18.

17. Such roof covering may consist of not less than two
layers of No. 15 roofing felt or No. 20 felt membrane, which
shall have a covering of gravel as required for fire retardant
roof covering.

18. Wood shingles used as roof covering shall be of clear
vertical grain all-heart wood and shall be not less than five (5)
shingles to two (2) inches in thickness at the butt (U. S. Gov-
ernment Standard) and shall be laid with the following expo-
sures as compared to total length of shingle:

<table>
<thead>
<tr>
<th>Total Length of Shingle</th>
<th>Permissible Exposed Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 in.</td>
<td>5 in.</td>
</tr>
<tr>
<td>18 in.</td>
<td>5 1/2 in.</td>
</tr>
<tr>
<td>24 in.</td>
<td>7 1/2 in.</td>
</tr>
</tbody>
</table>

All wood shingles shall be nailed firmly with copper, zinc, zinc-
coated or commercially pure iron nails of at least twelve and
one-half (12½) gauge and not less than one and one-fourth
(1 ¼) inches long. Each shingle shall be nailed with at least
two (2) nails driven substantially into the supporting roof con-
struction.

Wood shingles bearing the certification label of the Red Cen-
dar Shingle Bureau, certifying compliance with Commercial
Standard CS 31-31 of the United States Department of Com-
merce Bureau of Standards, may be accepted as meeting the re-
quirements of this Code.

(c) Physical Properties of Composition Roofing. Physical
properties of roll roofing, roofing felt, or felt membrane shall
conform to the following requirements:

Felt is the dry or de-saturated product produced by “Felting”
vegetable or animal fibres or other suitable materials; or “Fel-
ting” not less than eighty-five (85) per cent by weight of as-
bestos fibres.
Felt shall be smooth and when split or torn on the bias shall appear free from lumps of underbeaten stock or fragments of metal, leather or rubber.

Roofing felt is felt saturated with a bituminous compound.

Roll roofing is felt saturated with a bituminous saturant, then coated on both sides with a bituminous coating and then surfaced on both sides with powdered talc, mica or other suitable mineral matter; provided, that such roll roofing need not be coated nor surfaced if felt is produced from asbestos and two or more layers are used in combination.

Felt membrane is felt saturated with bituminous saturant, then coated on one or both sides with a bituminous coating.

Saturant and coating shall be principally of bitumin with a flash point of not less than four hundred (400) degrees Fahrenheit by the Pensky-Martin closed-cup method.

Weight of roll roofings, roofing felts and felt membranes dry or de-saturated felt, and percentage of saturation, shall conform to not less than the specific minimum requirements given in the following table:

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Name or Designation</th>
<th>Wt. per 108 sq. ft.</th>
<th>Felt Weight per 108 Sq. Ft.</th>
<th>Saturation Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 32</td>
<td>Roll Roofing</td>
<td>30</td>
<td>6.5 (V)</td>
<td>130</td>
</tr>
<tr>
<td>No. 41</td>
<td>Roll Roofing</td>
<td>40</td>
<td>13.0 (A)</td>
<td>50</td>
</tr>
<tr>
<td>No. 43</td>
<td>Roll Roofing</td>
<td>41</td>
<td>6.4 (A)</td>
<td>40</td>
</tr>
<tr>
<td>No. 42</td>
<td>Roll Roofing</td>
<td>40</td>
<td>10.0 (V)</td>
<td>140</td>
</tr>
<tr>
<td>No. 82</td>
<td>Roll Roofing</td>
<td>80</td>
<td>10.0 (V)**</td>
<td>140</td>
</tr>
<tr>
<td>No. 82</td>
<td>Shingles</td>
<td>80</td>
<td>10.0 (V)***</td>
<td>140</td>
</tr>
<tr>
<td>No. 15</td>
<td>Roofing Felt</td>
<td>14</td>
<td>5.6 (V)</td>
<td>140</td>
</tr>
<tr>
<td>No. 14</td>
<td>Roofing Felt</td>
<td>14</td>
<td>9.5 (A)</td>
<td>40</td>
</tr>
<tr>
<td>No. 18</td>
<td>Felt Membrane</td>
<td>18</td>
<td>8.5 (A)</td>
<td>50</td>
</tr>
<tr>
<td>No. 20</td>
<td>Felt Membrane</td>
<td>20</td>
<td>5.0 (V)</td>
<td>120</td>
</tr>
<tr>
<td>No. 30</td>
<td>Roofing Felt</td>
<td>26</td>
<td>10.0 (V)</td>
<td>140</td>
</tr>
</tbody>
</table>

Notes: "(V)" designates felt that is produced by felting vegetable and animal fibres.

"(A)" designates the felt that is produced by felting asbestos fibres.

* No. 43 roll roofing is produced with two or more layers of felt, each weighing 6.4 pounds, cemented together in the process of manufacture.

** No. 82 roll roofing is a mineral surfaced product.

*** Asbestos shingles are mineral surfaced and cut from not lighter than No. 82 roll roofing.

Pliability at seventy-seven (77) degrees Fahrenheit; four strips out of five of No. 32 and No. 42 roll roofing shall not crack on a ten (10) millimeter mandrel; four strips out of five of No. 15 roofing felt shall not crack when bent one hundred (100) degrees over a one-sixteenth (1/16) inch mandrel; four strips out of five of No. 14 roofing felt or No. 18 felt membrane shall not crack when bent one hundred and eighty (180) de-
degrees over a one (1) inch mandrel. Asphalt shingles shall not be subject to any requirements for pliability.

Heating of roll roofing to one hundred and seventy-six (176) degrees Fahrenheit, for two (2) hours shall not show a loss of volatile matter exceeding one and eight-tenths (1.8) per cent and there shall be no flowing, sagging, blistering or absorption of the surface coatings. Mineral surfacing shall not slide more than one-sixteenth (1/16) inch when roofing is suspended vertically. Roofing felt and felt membranes when heated to two hundred and twenty-one (221) degrees Fahrenheit for five (5) hours shall not lose more than four (4) per cent of the weight thereof.

Finished roll roofing, roofing felt or felt membranes shall be free from visible external defects such as holes, breaks, cracks, tears, deeply ribbed surfaces, sagged or untrue edges. Mineral surfacing shall be sufficiently free from fine dust to permit adhesion of the larger particles uniformly distributed and embedded in the coating so that when rubbed vigorously the coating will remain completely covered.

Test Methods, used to determine the physical properties of roll roofing, roofing felt, or felt membrane shall be those methods set forth in the “Standard Methods of Testing Felted and Woven Fabrics Saturated With Bituminous Substances For Use In Waterproofing and Roofing,” A. S. T. M. Designation D 146-27, of the American Society for Testing Materials. Such tests shall be confined to specific requirements given in this section for physical properties of such materials.
PART IX

REGULATIONS FOR USE OR OCCUPANCY OF STREETS AND PROJECTIONS OVER PUBLIC PROPERTY

CHAPTER 44.—TEMPORARY USE OF STREETS DURING CONSTRUCTION

Sec. 4401. No building material or materials shall be placed upon the streets or sidewalks except as provided in this Chapter.

Building materials required for use immediately or in connection with the construction of a building may be placed upon the street or sidewalk in front of the building in course of construction or alteration. The maximum width of such occupied space shall not exceed one-third (1/3) the width of the street, measured between curbs, and in no case shall the space within five (5) feet of the nearest rail of any railway tracks be occupied for building materials. The sidewalk space may be occupied for building construction purposes provided the owner or his agent constructs a temporary sidewalk not less than five (5) feet in width in the outer portion of the permissible occupied space, and such temporary sidewalk shall be protected on the building side by a tight fence not less than eight (8) feet in height.

In Fire Zone No. 1 and when the proposed building exceeds a height of two (2) stories in any part of the city, the owner or his agent shall construct, before any building is commenced, a temporary covered walk-way not less than five (5) feet wide, of sufficient strength to protect the public from falling materials during construction and such covered walk-way shall remain in place until the completion of all of the exterior portions of the building. When the area occupied by the sidewalk or temporary walk-way is to be excavated, such walk shall be made of boards not less than two (2) inches thick, designed to support a load of not less than one hundred and fifty (150) pounds per square foot, provided with suitable ramps at each end, and with handrails on each side. The roof over such walk-way shall be the full width of the walk-way and of not less than two (2) layers of one (1) inch boards with joints broken, and shall be placed not less than ten (10) feet above the temporary walkway. Whenever such roof is used for storing of materials a railing and foot board shall be so installed as to prevent the materials from spilling into the street.

Building materials may be placed in front of the property adjoining a building site under the same conditions as provided for the occupation of the street immediately in front of the building site, provided the written consent and waiver of claim for damages against the City of

is obtained from the owner or owners of such adjoining property, and filed in the office of the Building Inspector.

No building material, fence, shed or any obstruction of
any kind shall be placed so as to obstruct free approach to any fire hydrant, lamp post, manhole, fire alarm box, or catch basin, or so as to interfere with the passage of water in the gutter.

Mortar or concrete may be prepared in the space permitted for storage of building materials, but shall be done in a mechanical mixer or in a tight box or on a tight mixing board in such a manner that dripping or splashing is prevented. Pavements shall be well cleaned of all building materials at the completion of the construction of a building.

The covered walk-way shall be kept well lighted continuously between sunset and sunrise and the outer edge of the occupied space of the street or sidewalk shall have placed thereon red lights which shall be kept burning continuously between sunset and sunrise.

The street side of any barricade or fence and handrails and sidewalks shall be kept reasonably smooth and in good repair while construction work is in progress or while such barricades, fences or walk-ways are placed on or over public property.
CHAPTER 45
PERMANENT OCCUPANCY OF PUBLIC PROPERTY

Sec. 4501. No portion of any building whatsoever nor any accessory thereto other than signs shall project over the public street or sidewalk except as specified in this Section.

(a) Unroofed porches, balconies or oriel windows may extend not more than three (3) feet over public streets or sidewalks, but shall in no case be less than ten (10) feet in the clear above the sidewalk or street level immediately below.

(b) Movable awnings of combustible materials supported throughout on metal frames may extend over the sidewalk portion of a public street a distance equal to two-thirds (2/3) the width of the sidewalk space; provided, that every such awning frame shall be not less than seven feet and six inches (7'-6") above the sidewalk immediately below and that any fringe attached to such awning shall be not less than seven (7) feet from the sidewalk level immediately below.

(c) Cornices constructed of fire-resistive materials if more than ten (10) feet above the sidewalk may project over a public street not more than four (4) feet.

(d) A fixed awning or marquee projecting over the sidewalk shall conform to the following regulations:

1. Such awning or marquee shall be supported entirely from the building.

2. All combustible materials used in the construction of any fixed awning or marquee shall be protected by not less than one-hour fire-resistive construction as specified in Chapter 43.

3. Such awning or marquee shall be at least eight (8) feet in the clear between the lowest point of any projection and the sidewalk immediately below and shall not occupy more than two-thirds (2/3) the width of the sidewalk, measured from the building, except that when such awning or marquee is twelve (12) feet in the clear above the sidewalk immediately below, it may extend the full width of the sidewalk for a distance of not more than fifteen (15) feet along the direction of the length of the street.

4. Every awning or marquee shall be so located as not to interfere with the operation of any exterior standpipes, stairways or exits from the building and such location shall meet with the approval of the Building Inspector.

5. The roof of any such awning or marquee shall be sloped to down-sprouts which shall conduct any drainage under the sidewalk to the curb.

(e) Water tables, belt courses, sills, bases, columns, pilasters, capitals or other decorative features shall not project more than six (6) inches beyond any lot line.

(f) No part of any show window, store, front or show case except the sill, as provided in paragraph (e) of this Section, shall project beyond the property line. Doors in Fire Zones
Sec. 4501

No. 1 and 2 shall not project more than one (1) foot beyond the property line bordering a street and shall not project into any alley. Doors in buildings outside of Fire Zones No. 1 and 2 which swing over the street property line shall be maintained normally closed.

(g) The space below the sidewalk level may be used for any purpose not inconsistent with any other requirements of this or other Ordinances, but the occupation of this space may be revoked by the City of ...at any time, and the owner of the building occupying such space shall be required to pay all costs attendant therewith.

(h) No projection whatsoever shall be allowed in alleys except a curb or buffer block extending not more than nine (9) inches from the face of the building and not more than nine (9) inches above the adjacent alley grade.
PART X
LEGISLATIVE
CHAPTER 46—LEGISLATIVE

Sec. 4601. If any section, sub-section, sentence, clause or phrase of this Ordinance is, for any reason held to be unconstitutional, such decision shall not affect the validity of the remaining portions of this Ordinance. The

hereby declares that it would have passed this Ordinance, and each section, sub-section, clause or phrase thereof, irrespective of the fact that any one or more sections, sub-sections, sentences, clauses and phrases be declared unconstitutional.

Sec. 4602. The specifications, suggested ordinances and regulations which are mentioned by title and date of publication in various parts of this Ordinance are hereby declared to be a part of such Ordinance when not in conflict with a specific statement contained in the body of this Ordinance to the contrary.
(See Appendix for list of above mentioned documents.)

Sec. 4603. Ordinance No...............................and all ordinances amendatory thereto, and all ordinances or parts of ordinances in conflict with this Ordinance are hereby repealed.

Sec. 4604. This ordinance shall be, and is hereby declared to be in full force and effect, from and after.......................days from its date of final passage and approval.

PART XI
SPECIAL ORDINANCES
CHAPTER 47—PLASTERING

Sec. 4701 to 4721, inclusive. Complete plastering provisions.
(See Appendix Chapter 47.)
CHAPTER 48

FILM STORAGE

Film Storage
Sects. 4801 and 4802. Where it is desired to regulate for film storage complete provisions covering handling and storage of photographic and X-Ray nitrocellulose films may be found in Appendix Chapter 48.

CHAPTER 49

MECHANICAL REFRIGERATION

Refrigeration
Sects. 4901 to 4903. Where it is desired to regulate the type and installation of mechanical refrigeration complete provisions may be found in Appendix Chapter 49.
APPENDIX

This Appendix contains suggestions and explanatory matter with reference to various details in the body of the Code but is not to be considered as a legal part of the Code. This date is given to assist in proper operation and use of the Uniform Building Code.

The Conference plans to expand this Appendix in the future with many suggestions of what is good practice in building construction.

Refer to Sec. 101. The blank spaces in this section should be filled in by the individual city in adopting the Code with the proper names and titles. There are a number of other places in the Code where similar blank spaces occur which must also be filled in at the time of adopting the Code.

Refer to Sec. 201. At the end of this section it will be noted that the signature of the architect, engineer or designer responsible for the preparation of plans submitted for permit is required. Some states require all structural designs to be certificated by a licensed engineer and the proper change should be made at this point so that the Code, when adopted, will not conflict with the state law.

Refer to Sec. 202. It is advisable and recommended that the Building Inspector keep in permanent file the plans for all large buildings, buildings involving complicated designs and buildings designed for future extensions or additions.

Refer to Sec. 203. Fees should ordinarily be paid to the Building Inspector when the form of government so permits in order that the building public may be most efficiently served.

Refer to Sec. 204. The form of general inspection as suggested in the first part of Section 204 has been found to operate very satisfactorily in many cities. A form of permit card posted on each job should be used to show by whom each successive inspection was made and to record the date of that inspection. General information such as permit number, names of owner and contractor and the location of the job should be included on such inspection card.

Special engineering supervision as provided in this Code is a necessary factor for greatest economy in building construc-
tion. It provides the safety necessary to the public where higher working stresses are allowed the various building mater-
ials. There is no building department sufficiently manned to properly inspect even the most important buildings and the in-
spection service required in Section 204 is more than paid for by granting increased working stresses in building materials.

Refer to Secs. 302, 303, 304. In order that the Code will not present a closed door to developments in building materials or methods of construction a means is provided in these three sections to permit their use when they are found safe and sufficient for their proposed use.

The Board of Examiners and Appeals serves not only as
a board of judgment on new materials and devices but also arbitrates any decision of the Building Inspector in matters affecting interpretations of the Code. It will be noted that no power is vested in the Board for amending the Code but that amendments must be made by the proper legislative authorities.

Through the provisions of these three sections the Code is given flexibility in operation, which has been found to be necessary in the operation of such a legal document.

The blank space in Section 304 should be filled in with the name of the person or body who is to appoint the Board of Examiners and Appeals.

Refer to Sec. 1502. The following suggestions are given as a guide for the detailed design and construction of reviewing stands.

Every reviewing stand shall be constructed with four inch by six inch (4"x6") girders running parallel to the front of such stand, spaced not more than six (6) feet apart, and supported at distances not exceeding six (6) feet apart by posts of not less than four inches by six inches (4"x6"). These posts shall be braced diagonally with one inch by six inch (1"x6") bracing, forming a continuous herringbone bracing, the full length of such stand for each vertical six (6) feet of such posts. The girders at the top of the posts shall be braced with braces not less than four inches by four inches (4"x4") at right angles to the joists above the girders. Every post or brace shall be thoroughly secured to a foot plate, which shall be of sound wood not less than two inches by six inches (2"x6") in cross section laid solidly on the ground at right angles to the front of the stand and forming the base for each line of posts. There shall be joists resting on the girders of not less than two inches by eight inches (2"x8") cross section. Such joists shall be spaced not exceeding forty (40) inches apart and two inch (2") plank shall be used for the seats and steps. Braces shall be provided whenever necessary to make a solid, substantial structure, which shall be safe under any possible emergency. All timbers forming the framing shall be thoroughly spiked together. There shall be a level stringer of two inches by six inches (2"x6") cross section at the bottom of each line of posts, parallel to the stand; also a horizontal piece of two inches by six inches (2"x6") cross section the full length of the stand and at right angles to same for every row of posts, and every six (6) feet of vertical height thereof. All timbers used in the construction of reviewing stands shall be sound (no secondhand or broken lumber permitted). Wherever the stand, or a portion thereof, extends over an excavation, the posts shall be extended to the bottom of said excavation and shall be braced with horizontal braces as hereinbefore provided.

Refer to Sec. 1601. It is impossible to include the districting requirements for each city so that provision is made in this section to incorporate by reference a separate ordinance outlining the limits of the various fire zones.

The following principles may be utilized in outlining the fire zones.

Fire Zone No. 1 should contain the general retail business portion of the city and the more highly congested areas.
Fire Zone No. 2 should include the area lying immediately beyond and adjacent to Fire Zone No. 1 and extensions of the retail district along main thoroughfares. By designating the areas along principal crosstown thoroughfares, barriers will be set up for proper protection of the city in the event of a general conflagration.

Fire Zone No. 3 should comprise the general residential areas and all of the territory not included in Fire Zones No. 1 and 2.

Refer to Sec. 1802. In the event that a zoning ordinance or other special ordinance provides height limits, it will be necessary to note in the ordinance of adoption that such regulations shall not be repealed in adopting this Code. Another means of providing against any possible conflict is to revise Section 1802 so as to include the maximum height limit.

Refer to Secs. 1804, 1904 and 2004. Where cities desire to permit the use of hollow wall units or hollow walls the word "solid" should be omitted.

Refer to Sec. 2204.

Minimum Foundation Requirements Shall Be as Set Forth in the Following Table:

TABLE

<table>
<thead>
<tr>
<th>Number of Stories</th>
<th>Thickness of Foundation Wall in Inches</th>
<th>Width of Footing in Inches</th>
<th>Thickness of Footing in Inches</th>
<th>Depth of Foundation Below Natural Surface of Ground and Finish Grade in Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>16</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>18</td>
<td>6</td>
<td>30</td>
</tr>
</tbody>
</table>

Refer to Sec. 2301.

WEIGHTS OF BUILDING MATERIALS

<table>
<thead>
<tr>
<th>Material Description</th>
<th>Lbs. Per Cu. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brick, Pressed</td>
<td>150</td>
</tr>
<tr>
<td>Brick, Common</td>
<td>125</td>
</tr>
<tr>
<td>Brick, Common, laid 3/8" joints</td>
<td>120</td>
</tr>
<tr>
<td>Brick, Soft, laid 3/8" joints</td>
<td>100</td>
</tr>
<tr>
<td>Cinders, dry, bituminous, in bulk</td>
<td>45</td>
</tr>
<tr>
<td>Concrete—</td>
<td></td>
</tr>
<tr>
<td>Cinder, structural</td>
<td>110</td>
</tr>
<tr>
<td>Stone or gravel</td>
<td>144</td>
</tr>
<tr>
<td>Concrete Building Tile, 60% solid</td>
<td>87</td>
</tr>
<tr>
<td>Concrete Building Tile, 55% solid</td>
<td>79</td>
</tr>
<tr>
<td>Slag (blast furnace)</td>
<td>130</td>
</tr>
<tr>
<td>Cast Iron</td>
<td>450</td>
</tr>
<tr>
<td>Earth—</td>
<td></td>
</tr>
<tr>
<td>Common loam, dry and loose</td>
<td>76</td>
</tr>
</tbody>
</table>

241
<table>
<thead>
<tr>
<th>Material</th>
<th>Lbs. Per Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay and gravel, dry and loose</td>
<td>100</td>
</tr>
<tr>
<td>Common earth, dry and packed</td>
<td>100</td>
</tr>
<tr>
<td>Wet mud</td>
<td>120</td>
</tr>
<tr>
<td>Glass</td>
<td>157</td>
</tr>
<tr>
<td>Granite</td>
<td>170</td>
</tr>
<tr>
<td>Gravel, dry</td>
<td>120</td>
</tr>
<tr>
<td>Granite Masonry, dressed</td>
<td>165</td>
</tr>
<tr>
<td>Grant Masonry, rubble</td>
<td>155</td>
</tr>
<tr>
<td>Limestone Masonry, dressed</td>
<td>162</td>
</tr>
<tr>
<td>Marble Masonry, dressed</td>
<td>170</td>
</tr>
<tr>
<td>Mortar, hard, cement</td>
<td>135</td>
</tr>
<tr>
<td>Mortar, hard, lime</td>
<td>105</td>
</tr>
</tbody>
</table>

Partitions—

<table>
<thead>
<tr>
<th>Material</th>
<th>Lbs. Per Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2" x 4" studs, wood lath, 5/8" plaster, both sides</td>
<td>16</td>
</tr>
<tr>
<td>2" x 4" studs, plaster board, 5/8" plaster, both sides</td>
<td>16</td>
</tr>
<tr>
<td>Channel studs, metal lath, cement plaster, solid 2" thick</td>
<td>20</td>
</tr>
<tr>
<td>Plaster on hollow clay tile (one side)</td>
<td>5</td>
</tr>
<tr>
<td>2" Hollow Clay Tile</td>
<td>13</td>
</tr>
<tr>
<td>3" Hollow Clay Tile</td>
<td>16</td>
</tr>
<tr>
<td>4" Hollow Clay Tile</td>
<td>18</td>
</tr>
<tr>
<td>5" Hollow Clay Tile</td>
<td>20</td>
</tr>
<tr>
<td>6" Hollow Clay Tile</td>
<td>25</td>
</tr>
<tr>
<td>8" Hollow Clay Tile</td>
<td>30</td>
</tr>
<tr>
<td>12" Hollow Clay Tile</td>
<td>45</td>
</tr>
<tr>
<td>Plaster on plaster block partitions (one side)</td>
<td>5</td>
</tr>
<tr>
<td>2" Plaster Blocks</td>
<td>7</td>
</tr>
<tr>
<td>2½" Plaster Blocks</td>
<td>8.5</td>
</tr>
<tr>
<td>3" Plaster Blocks</td>
<td>9.5</td>
</tr>
<tr>
<td>3½" Plaster Blocks</td>
<td>10.5</td>
</tr>
<tr>
<td>4" Plaster Blocks</td>
<td>12</td>
</tr>
<tr>
<td>5" Plaster Blocks</td>
<td>15</td>
</tr>
<tr>
<td>6" Plaster Blocks</td>
<td>18</td>
</tr>
<tr>
<td>8" Plaster Blocks</td>
<td>22</td>
</tr>
</tbody>
</table>

Ceilings—

<table>
<thead>
<tr>
<th>Material</th>
<th>Lbs. Per Sq. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood, lath and plaster</td>
<td>8</td>
</tr>
<tr>
<td>Metal lath and plaster suspended</td>
<td>10</td>
</tr>
</tbody>
</table>

Roofings—

<table>
<thead>
<tr>
<th>Material</th>
<th>Lbs. Per Cu. Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood shingles</td>
<td>3</td>
</tr>
<tr>
<td>Slate 3/16"</td>
<td>7</td>
</tr>
<tr>
<td>Slate ¼"</td>
<td>10</td>
</tr>
<tr>
<td>Tile and clay shingles</td>
<td>11 to 14</td>
</tr>
<tr>
<td>Roman tile, clay</td>
<td>12</td>
</tr>
<tr>
<td>Spanish tile, clay</td>
<td>19</td>
</tr>
<tr>
<td>Ludowici tile, Spanish</td>
<td>10</td>
</tr>
<tr>
<td>Tile roof laid in mortar, add</td>
<td>10</td>
</tr>
<tr>
<td>Copper (if no weight is specified)</td>
<td>1½</td>
</tr>
<tr>
<td>Tin</td>
<td>1</td>
</tr>
<tr>
<td>Corrugated iron</td>
<td>2</td>
</tr>
<tr>
<td>Tar and gravel</td>
<td>6</td>
</tr>
<tr>
<td>Prepared composition</td>
<td>1</td>
</tr>
<tr>
<td>Sand, dry</td>
<td>100</td>
</tr>
</tbody>
</table>
Sand, wet ... 120
Lbs. Per
Sq. Ft.

Skylights, metal covered, wire glass 5
Lbs. Per
Cu. Ft.

Steel .. 490
Terra Cotta, filled with brickwork .. 120
Terra Cotta, Dennison interlock tile, laid 65

Timber—
 Fir, dry ... 32
 Fir, wet .. 44
 Oak ... 46

Water, fresh at 60 degrees Fahrenheit 62 ½

Refer to Sec. 2302. The live loads specified herein are intended to include a sufficient allowance to cover the effect of impact. In the case of special occupancies involving unusual impacts provision should be made by increasing the loads herein specified.

The view has been expressed that buildings designed for low live loads will be too flexible and that vibration due to dynamic loads, particularly in theater balconies and similar places, may seriously alarm the occupants. Several cases are reported of buildings which have required alterations for this reason. There is no evidence, however, that vibration indicates dangerous conditions. A well-built structure may be flexible; and the absence of vibration does not necessarily prove that a building is safe. Two structures may be equal in strength, but may differ in stiffness, particularly if one is of cantilever type.

When it is desirable for any reason to avoid vibration or undue deflection, care should be taken to that end by designing for greater live loads or by using more braces. Safety considerations, however, on which code requirements are based, do not justify live load assumptions greater than those given herein.

Refer to Sec. 2311. The following provisions are suggested for inclusion in the Code by cities located within an area subject to earthquake shocks. The design of buildings for earthquake shocks is a moot question but the following provisions will provide adequate additional strength when applied in the design of buildings or structures.

Sec. 2311 (a) LATERAL BRACING.

Every building or structure and every portion thereof, except Type V buildings of Group I occupancy which are less than twenty-five (25) feet in height, and minor accessory buildings, shall be designed and constructed to resist stresses produced by lateral forces as provided in this Section. Stresses shall be calculated as the effect of a force applied horizontally at each floor or roof level above the foundation, such force shall be proportioned to the total dead plus one-half (½) the vertical design live load, except for warehouses, in which case such force shall be proportioned to the total dead plus the total vertical
live load. The force shall be assumed to come from any horizontal direction.

All bracing systems both horizontal and vertical shall transmit all forces to the resisting members and shall be of sufficient extent and detail to resist the horizontal forces provided for in this section and shall be located symmetrically about the center of mass of the building or the building shall be designed for the resulting rotational forces about the vertical axis.

Junctures between distinct parts of buildings, such as wings which extend more than twenty (20) feet from the main portion of the building, shall be designed at the juncture with other parts of the building for rotational forces, or the juncture may be made by means of sliding fragile joint having a minimum width of not less than eight (8) inches. The details of such joints shall be made satisfactory to the Building Inspector.

Horizontal Force Formula:

In determining the horizontal force to be resisted, the following formula shall be used:

\[F = CW \]

where “F” equals the horizontal force in pounds.

“W” equals the total dead load plus one-half (½) the total vertical designed live load, at and above the point or elevation under consideration, except for warehouses, in which case “W” shall equal the total dead load plus the total vertical designed live load at and above the point or elevation under consideration. Machinery or other fixed concentrated loads shall be considered as part of the dead load.

“C” equals a numerical constant as shown in the following table:

<table>
<thead>
<tr>
<th>Part or Portion</th>
<th>Value of “C”**</th>
<th>Direction of Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>The building as a whole**</td>
<td>.02 on soil, over 2000 lbs.</td>
<td>Any horizontal direction</td>
</tr>
<tr>
<td></td>
<td>.04 on soil, up to 2000 lbs.</td>
<td></td>
</tr>
<tr>
<td>Bearing walls, curtain walls, enclosure walls, fire division walls, panel walls</td>
<td>.05</td>
<td>Normal to surface of wall</td>
</tr>
<tr>
<td>Cantilever parapet and other cantilever walls, except retaining walls</td>
<td>.25</td>
<td>Normal to surface of wall</td>
</tr>
<tr>
<td>Exterior and interior ornamentations and appendages.</td>
<td>.25</td>
<td>Any direction horizontally</td>
</tr>
<tr>
<td>Towers, tanks, towers and tanks plus contents, chimneys, smoke stacks, and penthouses.</td>
<td>.05</td>
<td>Any direction horizontally</td>
</tr>
</tbody>
</table>

*See map on page 245 for zones. The values given “C” are minimum and should be adopted in locations not subjected to frequent seismic disturbances as shown in Zone 1. For locations in Zone 2, “C” should be doubled. For locations in Zone 3, “C” should be multiplied by four.

**Where a 20-lb. per square foot wind load would produce higher stresses, this load should be used in lieu of the factor shown.

244
Map of the 11 Western States
showing
Zones of Approximately Equal Seismic Probability
Foundation ties:

In the design of buildings of Types I, II and III, where the foundations rest on piles or on soil having a safe bearing value of less than two thousand (2,000) pounds per square foot, the foundations shall be completely inter-connected in two (2) directions approximately at right angles to each other. Each such inter-connecting member shall be capable of transmitting by both tension and compression at least ten (10) per cent of the total vertical load carried by the heavier only of the footings or foundations connected. The minimum gross size of each such member if of reinforced concrete shall be twelve inches by twelve inches (12"x12") and shall be reinforced with not less than the minimum reinforcement specified in Section 2621. If the inter-connecting members are of structural steel, they shall be designed as provided in Section 2702, and encased in concrete. A reinforced concrete slab may be used in lieu of inter-connecting tie members, providing the slab thickness is not less than one forty-eighth (1/48) of the clear distance between the connected foundations; also providing the thickness is not less than six (6) inches.

The inter-connecting slabs shall be reinforced with not less than eleven-hundredths (.11) square inch of steel per foot of slab in a longitudinal direction and the same amount of steel in a transverse direction. The bottom of such slab shall not be more than twelve (12) inches above the tops of at least eighty (80) per cent of the piers or foundations. The footings and foundations shall be tied to the slab in such a manner as to be restrained in all horizontal directions.

Plans and Design Data:

With each set of plans filed, a brief statement of the following items shall be included:

(a) A summation of the dead and live load of the building, floor by floor, which was used in figuring the shears for which the building is designed.

(b) A brief description of the bracing system used, the manner in which the designer expects such system to act, and a clear statement of any assumptions used. Assumption as to location of all points of counter-flexure in members must be stated.

(c) Sample calculation of a typical bent or equivalent.

Stresses

Stresses in materials shall not exceed by more than thirty-three and one-third (33 1/3) per cent the allowable working stresses permitted in this Code, except that rivets may be stressed the same in tension as is allowed in shear. Tension and/or shear in brick work shall not exceed twenty (20) pounds per square inch where cement mortar is used or fifteen (15) pounds per square inch where lime-cement mortar is used. The allowable shear in reinforced concrete walls, six (6) inches or more in thickness, shall not exceed five one-hundredths (.05) of the ultimate compressive strength of the concrete.
GENERAL

(a) Bonding and Tying:
Cornices and ornamental details shall be bonded in the structure so as to form an integral part of it. This applies to the interior as well as to the exterior of the building.

(b) Overturning Moment:
In no case shall the overturning moment of any building and/or structure due to the forces provided for in this Section exceed fifty (50) per cent of the moment of stability of such building and/or structure.

(c) Additions:
Every addition to an existing building and/or structure shall be designed and constructed to resist and withstand the forces provided for in this Section, and in any case where an existing building and/or structure is increased in height all portions thereof affected by such increased height shall be reconstructed to resist and withstand the forces provided for in this Section.

(d) Alterations:
No existing building and/or structure shall be altered and/or reconstructed in such a manner that the resistance to the forces provided for in this Section will be less than that before such alteration and/or reconstruction was made; provided, however, that this provision shall not apply to non-bearing partitions, and shall not apply to other minor alterations which are made in a manner satisfactory to the Building Department.

(e) Lime mortars shall not be used in any unit masonry construction forming a part of a building.

(f) Veneer ties provided in Section 2936 shall be of sufficient strength to support the full weight of the veneer in tension.

Intention or Interpretation of Lateral Force Provisions:
These lateral force requirements are intended to make buildings earthquake-resistive. The provisions of this Section apply to the buildings as a unit and also to all parts thereof, including the structural frame or walls, floor and roof systems, and other structural features.

The provisions incorporated in this Section are general and, in specific cases, may be interpreted and/or added to as to detail by rulings of the Building Inspector in order that the intent shall be fulfilled.

Refer to Sec. 2410. If provisions covering the subject of Reinforced Brick Construction, the following should be included:
The formulas and assumptions used in the design of reinforced brick shall be the same as required for reinforced concrete in Chapter 26.
The unit working stresses used in the design of reinforced brick shall not exceed the following values:
Compression
Extreme fibre stress in bending 500 lbs. per sq. in.
Direct compression on piers 300 lbs. per sq. in.
Shear (Staggered mortar joints through plane of shear.)
No web reinforcement 30 lbs. per sq. in.
With adequate web reinforcement 60 lbs. per sq. in.
Shear (Continuous mortar joints through plane of shear)
No web reinforcement 20 lbs. per sq. in.
With adequate web reinforcement 60 lbs. per sq. in.
Bond (deformed bars)
Thickness of mortar between brick and steel not less than one-half diameter of bar100 lbs. per sq. in.
Thickness of mortar between brick and steel less than one-half diameter of bar 70 lbs. per sq. in.
Modulus of Elasticity 1,500,000 lbs. per sq. in

The allowable working stresses provided in this Section for reinforced brick construction shall be allowed only when workmanship and materials meet the following requirements:

Brick shall have an average compressive strength of twenty-five hundred (2500) pounds per square inch, with an allowable individual minimum of two thousand (2000) pounds per square inch, when tested as provided in Sections 2402, 2403 and 2404.

Mortar shall be composed of not less than one (1) part Portland cement to four and one-half (4½) parts of sand by volume, with an allowable addition of not more than one-half (½) part of lime putty or hydrated lime. All bed, end and wall joints shall be completely filled with mortar and all reinforcing steel shall be entirely embedded in the mortar.

All reinforced brick work shall be laid with full header courses not more than every fourth (4th) course in height or there shall be at least one (1) full header in every forty-eight (48) square inches of wall surface, except that in brick work laid with all interior joints grouted, such header courses need not be placed closer than every sixth (6th) course or its equivalent.

Reinforcing steel shall be braced and held in place firmly enough to prevent the breaking of bond while brick is being laid.

All clay brick shall be thoroughly wet not more than one (1) hour before laying and shall be damp at the time of laying.

Refer to Sec. 2502—2nd Paragraph. It is the intention of the writers of this Code to limit the actual size of any member to the dressed size specified in American Lumber Standards for lumber sawed rough to corresponding nominal dimensions. Care must be used in interpreting American Lumber Standards, however, as the condition of seasoning of the lumber at the time it is measured will have some effect on the results.

For example, a piece of 2x12 Douglas fir when sawn green from the tree will measure 2"x12". If surfaced immediately to A. L. S. dressed sizes of 1½x11½ and then allowed to season until the moisture content is in equilibrium with the air, shrinkage will take place; in extreme cases this may amount to 4 percent of either dimension and the piece may be 1/16" less than
the dressed size in thickness and/or ½" less than the dressed size in width.

If, however, the dressed piece when measured is still green, or if it has been allowed to season before dressing, it should measure the full dressed size shown in American Lumber Standards.

In either event it is safe to use the net section of the A. L. S. dressed size for figuring load carrying capacity of the piece since the allowable unit stresses in Chapter 25 are based on the strength of unseasoned (or green) lumber. Seasoning causes shrinkage and consequent reduction of net cross section, but it also results in increasing the strength of the lumber and such increase usually more than offsets any loss in net section of member.

Refer to Section 2503:

Unit working stresses must be established for all structural materials in order that safe as well as economical sizes of members may be determined for all conditions where such members are required to support loads.

The strength of lumber and timber (unlike that of any other structural material) can be closely estimated by visual inspection. However, there are numerous factors which affect the strength or load-bearing capacity of an individual piece of lumber and any intelligent estimate of strength or determination of safe working stresses must take them into consideration.

FACTORS INFLUENCING THE STRENGTH OF, AND WORKING STRESSES FOR, LUMBER AND TIMBER:

1. Species of wood—i. e. Douglas fir, redwood, larch, hemlock.

2. Physical Characteristics:
 (a) Size of piece
 (b) Density
 (c) Rate of growth
 (d) Knots
 (e) Shakes and Checks
 (f) Slope of grain
 (g) Minor defects.

3. Use conditions:
 (a) Purpose of use—i. e. joist, stringer, post.
 (b) Exposure in service—i. e. always dry, usually dry, usually wet.
 (c) Character of Loading—i. e. moving or impact loads, intermittent (short-time) loads, static (long-time) loads.

1. Species of Wood—

The strength of clear wood in different species of trees (i. e. Douglas fir, redwood, larch, hemlock, etc.) differs considerably. Some species are inherently stronger than others. However, a piece of the inherently stronger species of wood, if it contains certain defects, may have less strength than a piece of the weaker species without such defects. In order to obtain a basis for
estimating the strength of any particular species of wood, the United States Forest Products Laboratory has made several hundred thousands of tests of the ultimate strength of small, clear specimens (2” x 2” x 30” in size) of many species of wood and has published the results in U. S. Department of Agriculture Bulletin No. 556.

Since most load-bearing members are larger than 2” x 2” in section and need not be clear and since there are other considerations to be taken into account which tend to make it unwise to depend on the ultimate strength of a piece of lumber, a factor similar to the familiar “factor of safety” has been applied to the results of the above mentioned tests and the following Table (from Bulletin 314 of the American Railway Engineering Association except for Inland Empire Douglas fir) shows the comparison between the various species with this factor included. (See Character of Loading.)

In assigning working stresses to any piece of lumber, therefore, it is first necessary to know the species of the wood, and the strength of clear wood of that species.

BASIC WORKING STRESSES FOR CLEAR WOOD OF STRUCTURAL SIZES

(Values shown are in pounds per square inch)

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>For Continuously Dry Locations</th>
<th>Maximum Horizontal Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extreme Fiber in Bending</td>
<td>Compression Perpendicular to Grain, L/D 10 or less</td>
</tr>
<tr>
<td>Cedar, Western Red</td>
<td>1200</td>
<td>200</td>
</tr>
<tr>
<td>Cedar, Port Orford</td>
<td>1466</td>
<td>250</td>
</tr>
<tr>
<td>Douglas Fir, Coast Region</td>
<td>2000</td>
<td>325</td>
</tr>
<tr>
<td>Douglas Fir, Inland Empire</td>
<td>1893</td>
<td>315</td>
</tr>
<tr>
<td>Douglas Fir, Rocky Mountain Region</td>
<td>1466</td>
<td>275</td>
</tr>
<tr>
<td>Fir, Golden, Noble, Silver, White</td>
<td>1466</td>
<td>300</td>
</tr>
<tr>
<td>Hemlock, West Coast</td>
<td>1733</td>
<td>300</td>
</tr>
<tr>
<td>Larch, Western</td>
<td>1800</td>
<td>325</td>
</tr>
<tr>
<td>Pine, Idaho White, Lodgepole, Sugar, Ponderosa, California White and Western Yellow</td>
<td>1200</td>
<td>250</td>
</tr>
<tr>
<td>Redwood</td>
<td>1600</td>
<td>250</td>
</tr>
<tr>
<td>Spruce, Sitka</td>
<td>1466</td>
<td>250</td>
</tr>
<tr>
<td>Spruce, Engelmann</td>
<td>1000</td>
<td>175</td>
</tr>
</tbody>
</table>

The Basic Working Stresses for Clear Wood of Structural Sizes in the above Table, and Allowable Stresses in Tables I and
II of Section 2503 are based on the strength of "green" or unseasoned wood.

The reasons for this are that while seasoning of lumber has been found by the Forest Products Laboratory to bring about an increase in strength (in some cases to twice that of green lumber) due to the stiffening and strengthening of the wood fibers there occurs at the same time some decrease in strength due to checking and splitting. These changes are approximately equal in members over 4 inches thick. (For discussion of members 4 inches thick or less, see Physical Characteristics—Size of Piece, below).

2. Physical Characteristics—

(a) Size of Piece.

In dimension sizes, four inches and less in thickness, the development of defects during seasoning does not decrease the strength as much as seasoning increases the strength; and hence for these sizes used in dry locations, higher working stresses in extreme fiber in bending can be permitted with the same sized defects as in pieces of larger size; or greater defects can be permitted with the same working stresses.

This factor has been taken into account in the Structural Lumber Grades and the Structural Grade Examples. In assigning working stresses for Yard Lumber and Other Lumber it is automatically provided for by comparing the Grade of lumber to be used with the Grade Examples for "Common" Structural Material in the American Lumber Standards. Consequently this factor needs no other consideration in assigning working stresses.

(b) Effect of Density.

The strength of wood varies with the density or specific gravity of the wood. In three species of wood, Douglas fir, Western larch and Southern pine, the characteristics of growth are such that it is possible to determine fairly accurately by visual inspection the relative density of the wood. This is done by estimating on one end of the piece of wood, the proportion represented by the summerwood (darker portion of annual ring). The exact method of determining the proportion of summerwood is given in the American Lumber Standards.

Where this proportion exceeds 33 1/3 per cent and the rate of growth is six or more rings per inch, the piece may be used at a working stress 1/6 greater than otherwise, for extreme fiber in bending, compression parallel and perpendicular to grain, and for shear.

(c) Effect of Rate of Growth.

Many thousands of government experiments have shown that, in most species, lumber cut from trees of medium or slow rate of growth is stronger than lumber cut from trees of the same species but which had either a rapid growth, or an extremely slow rate of growth.

This factor is taken into account in the Grade Examples of American Lumber Standards covering the higher Grades of
“Structural material” but not in the Grade Examples for “Common” Structural.

Therefore, in assigning working stresses to “Yard Lumber” the Building Inspector need not take this rate of growth factor into account; although if the material conforms to the close grain rule of the lumber association under whose rules it is graded, 1/15 greater stress values may be assigned such lumber for extreme fiber in bending and for compression parallel and perpendicular to grain.

(d) Effect of Knots.

In dimension sizes the knot is likely to run directly through the piece (the ends of the knot showing on the wide faces of the piece) and the strength of the piece when used on edge, as affected by a knot on a wide face, is measured by the square of the effective depth of the piece, assuming the knot in its worst position, i.e., near the edge of the piece. The reduction in strength due to the knot is approximately twice the ratio of the size of the knot to the width of the face.

The sizes of knots permitted in the Grade Example for “Common” Structural Material for Joist and Plank are based on the above principle and the recommended Basic Working Stresses shown in Table II assume that knots of the size permitted may occur at any point on the wide face near the edge of the piece.

Therefore, a Grade of “Yard Lumber” which limits the sizes of knots to those permitted in “Common” Structural material should be allowed 100 per cent of the stresses shown in Table II insofar as the effect of knots is concerned.

Suppose, however, it was desired to use a Grade of “Yard Lumber” where the knots near the edge were larger than those permitted for “Common” Structural Material. For illustration, assume a 2”x12” joist with a 4” knot near the edge of the wide face.

For “Common” Structural Material the reduction in strength (from the strength of clear lumber) due to a knot is approximately twice the ratio of the size of the knot permitted (3 inches in a 12 inch joist) to the width of the face (12 inch) or; reduction in strength—2 times 3/12—50 per cent. Stated in other words this means the piece is 100 per cent the strength of clear lumber minus 50 per cent or 50 per cent of the strength of clear lumber. In the case of the joist with a 4 inch knot the reduction in strength would be 2 times 4/12 or 66 2/3 per cent. This means the piece is 100 per cent minus 66 2/3 per cent or 33 1/3 per cent of the strength of clear lumber. Therefore, the ratio of the strength of lumber used to strength of “Common” Structural material would be 33 1/3 divided by 50 or 67 per cent. This figure must be taken into consideration in determining the unit working stresses to be assigned to the particular piece or Grade of lumber to be used.

As noted above, this method of determining relative strength is approximate and applies to dimension sizes (2 inches and under 5 inches thick) only. The method gives an error on the safe side in determining the relative strength of a piece with a larger knot than is permitted in the Grade to which it is compared.
The relative effect of knots should be compared only in pieces of the same widths since large knots have a greater proportional effect than smaller knots.

For timbers (5 inches thick and thicker in least dimension) it is recommended that no Grade of lumber be permitted in which the knots exceed those shown in the Grade Example for “Common” Structural material in the American Lumber Standards.

(e) Effect of Shakes and Checks.

A “shake” is a lengthwise separation of the wood, which occurs usually between and parallel to the rings of annual growth.

A “check” is a lengthwise separation of the wood, which occurs usually across the rings of annual growth.

Shakes and checks usually increase in size and effect as the lumber becomes drier. They chiefly influence the strength of a member in horizontal shear.

Lumber which is thoroughly dry will show the maximum shakes or checks which will develop. It is impracticable to limit the use of lumber in buildings to fully seasoned material; consequently arbitrary limits in the size of shakes or checks for both green and seasoned lumber have been established in the various “Structural” Grades. These vary, according to species of wood, from “none” to the maximum permitted under American Lumber Standards.

When “Yard Lumber” or “Other Lumber” is used it is necessary to determine by inspection the extent of shakes or checks. If it is found that they exceed the following limits the lumber should be rejected for load-bearing purposes.

MAXIMUM LIMITS FOR SHAKES OR CHECKS AS SET FORTH IN GRADE EXAMPLES FOR “COMMON” STRUCTURAL MATERIAL IN AMERICAN LUMBER STANDARDS

<table>
<thead>
<tr>
<th>Use for Which Intended</th>
<th>Maximum Limits for Shakes or Checks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Green</td>
</tr>
<tr>
<td>Joist and Plank</td>
<td>4/10 width of end</td>
</tr>
<tr>
<td>Beams and Stringers</td>
<td>4/10 width of end</td>
</tr>
<tr>
<td>Posts and Timbers</td>
<td>1/2 width of end</td>
</tr>
</tbody>
</table>

(f) Effect of Slope of Grain.

The following definition is quoted from American Lumber Standards—“Cross-grained wood is that in which the cells or fibers do not run parallel with the axis, or sides of a piece.”

The slope of grain of a piece of wood can be determined by observing the direction of surface checks, resin ducts, pores of the wood, etc. Slope of grain is expressed as—1 in. in a length of 10 in.—or sometimes as 1 in 10. It may be measured by using one edge of the piece of lumber as a base-line and determining the number of inches along this base-line from the point where any fiber leaves the base-line to the point where the fiber is 1-in. from the base-line. Slope of grain provisions are not customarily included in Grading Rules for Yard Lumber. It is
essential to know the Slope of Grain of any piece of lumber before working stresses can be intelligently assigned.

The effect of a slope of grain of 1 in 8, is to make a joist or beam about 1/2 as strong as it would be if the fibers were parallel with the sides of the piece. The strength of the joists or beam will decrease rapidly from this point as the slope of grain increases. No attempt will be made, here, to evaluate numerically the effect of a slope of grain greater than 1 in 10 which is the maximum slope of grain permitted for "Common" Structural Material in American Lumber Standards.

It is believed sufficient to recommend that no horizontal load-bearing member should be used if the slope of grain exceeds 1 in 8, and that a member having a slope of 1 in 8 be assigned working stresses not exceeding 80 per cent of the stresses shown in Table II.

(g) Effect of Minor Defects.

A "defect" is defined in the American Lumber Standards as "any irregularity occurring in or on wood that may lower some of its strength, durability or utility values." Defects are listed in American Lumber Standards. The use of the word "defect" is somewhat misleading when applied to a Grade of lumber since the basis on which Grades are prepared is the presence of "defects" and what might be a "defect" in "clear" lumber would not necessarily be a defect, as the term is ordinarily used, in "Common" lumber.

The principal "defects" and their effect on the strength of lumber have been described in the preceding paragraphs. Other defects are of minor importance insofar as the strength of the lumber is concerned, with the exception of "decay."

The presence of decay in lumber will often reduce the Grade of the lumber and, when the decay is not apparent to the layman, it may seem as though the lumber had been improperly down-graded.

It is difficult to describe decay so that it can be detected with assurance by anyone not entirely familiar with the subject. It is recommended that Building Inspectors require identified lumber of a Grade which does not permit decay, if the lumber is to be used for load-bearing purposes.

No lumber of any kind should be used in permanent buildings if the lumber is known to contain typical decay.

3. Use Conditions—

(a) Purpose of Use.

The purpose for which a piece of lumber is used (i.e., in bending as a beam, joist, or plank, or in compression as a post or column) does not affect the strength of the piece. But there is a relation between the "Purpose of Use" and the influence of defects on the strength of the piece. The influence of knots, slope of grain, etc., on the strength of a beam, joist, or stringer is different than on a post or column. It will be recalled from "(d) Effect of Knots," that in addition to this "Purpose of Use" factor the size of the piece also has a relation to the influence of knots on its strength. It is for this reason that sizes or limitations of defects are varied in each Grade of Structural Lumber.
in accordance with the "Purpose of Use" for which it is intended. The varying effects which knots have on members used for any of these purposes has been considered in establishing the working stresses permitted in Table I, and the Building Inspector need only be sure that the working stress assigned is selected from the proper column of Table I when "Structural Lumber" is used. (For beams, joists and plank, the working stresses should be taken from the columns headed, "Bending," "Horizontal Shear," and "Modulus of Elasticity." The stresses for posts and timbers should be taken from the column headed "Compression Parallel to Grain.")

In assigning safe working stresses to Grades of "Yard Lumber" or "Other Lumber" in conformance with Section 2503, the same principle (limitation of defects in accordance with the purpose for which the member is used) must be applied. This is accomplished by comparing the "Yard Lumber" Grade or the "Other Lumber" quality in question with the proper joist and plank, beam and stringer, or post and column specification in the Grade Example for "Common" Structural material, and selecting from Table II the stress under the corresponding column as the basis of establishing the proportionate allowable stress under the procedure of Section 2503 (b) and (c).

(b) Exposure in Service.

During use, construction material is subject to varying conditions of moisture, from the dry locations of a heated building to the continually wet condition of some pier and dock timbers. These conditions must be taken into account in recommending working stresses.

Since the uses to which lumber is put in buildings customarily provide "Continuously Dry" conditions of exposure, this factor need not be further discussed here except to recommend that in the case of open sheds, open docks, etc., the allowable working stresses be reduced by the Building Inspector in accordance with the recommendations of the Forest Products Laboratory.

(c) Character of Loading.

In determining working stresses, the Forest Products Laboratory has considered both elastic limit and ultimate strength. Elastic limit, however, is more variable and less definite than ultimate strength, and the latter is taken as the more dependable basis for the determination of safe working stresses.

The factor of safety at a given working stress varies materially with the duration of the stress. At the recommended working stresses, the average timber in buildings has a factor of safety of 6 on impact loadings*, 4 under five-minute loads and 2 1/4 under long-time loading, with a minimum factor of safety of 2 on 75 per cent of the pieces under long-time loading, while about one piece in 100 (of a character the carpenter probably would not use) of a very light weight and with maximum defects for the grade, would be expected to break at 1 1/2 times the recommended stress under the full permitted loading of approximately 10 years duration.

*If impact stresses are neglected when less than 100 per cent of the live load producing them, the factor of safety for such loads would be reduced from 6 to a minimum of 3.
Working stress values recommended by the Forest Products Laboratory may be used without allowance for impact up to impact of 100 per cent of loads figured. The ability of timbers to support loads is dependent on the duration of the stress. Tests have demonstrated that the load required to break timbers in several years is about 9/16 of that required to break them in ordinary laboratory tests. When the time is shortened still further, as in impact loading, the load required to break a timber is correspondingly increased. Approximately, this increase is 10 per cent when the time is reduced to 1/10 of the previous time.

This ability of wood to support short-time or intermittent loads to an extent practically twice the amount of long-time or steady loads, offers many opportunities for more efficient use of lumber. In oil derricks, for instance, the rated capacity of a given sized derrick when used in the customary manner, i.e., stressed by intermittent loads, is placed at 50 per cent greater than the designed capacity of the derrick for long-time loads.

Since actual conditions of loading cannot be known when tables of unit working stresses are prepared, the customary assumption is that the loading will be long-time or permanent and all estimates of the strength of lumber for the purpose of assigning working stresses should be, and the stresses allowed by this Code are, on this basis. Where actual conditions of loading are known the working stresses may safely be increased 50 per cent for five-minute loads and 100 per cent for instantaneous or impact loads.

How Grades of Lumber and Timber Are Determined—

Softwood lumber under the American Lumber Standards is classified in three main groups:

(a) Yard Lumber—for general building purposes.
(b) Structural Material—for strictly structural purposes.
(c) Factory and Shop Lumber—for cutting up and remanufacture.

The Building Inspector is concerned only with Yard Lumber and Structural Material.

“Yard Lumber” is further classified according to the sizes, shapes, and qualities required for ordinary construction and general purpose uses. Appearance, as well as strength, governs such classification.

“Structural Material,” on the other hand, is classified almost solely on the basis of strength and stiffness.

The classification of lumber according to its qualities, i.e., strength, stiffness, appearance, etc., is termed “grading” and the rules drawn up governing the limitations of defects or physical characteristics for each specific “grade” of lumber are termed “Grading Rules.”

Structural Lumber Grades—

As stated above, the factors determining the grades of Structural Lumber are:

(b) Density.
(c) Rate of Growth.
(d) Size and Location of Knots.
(e) Shakes and Checks.
(f) Slope of Grain.
(g) Minor Defects.
In order to afford a means for selecting lumber for strength, and for assured minimum strength, "structural" grading rules have been developed giving Grades which take into account the strength influencing factors herein discussed, and lumber is now graded at many sawmills into "structural" Grades. The use of lumber of a "structural" Grade permits the assignment of demonstrably safe working stresses and a ready evaluation of the effect of several of the factors referred to above; especially the effect of defects. All these factors have been fully and carefully considered in establishing the working stresses in Tables I and II of Section 2503 and no further consideration of this subject is required of the Building Inspector when "Structural Lumber" is used.

In addition to this many manufacturers now "grade-mark" Structural Lumber so that there can be no doubt as to the quality of the material. Such grade-marks, to be of value, should be accompanied by an Association trade-mark which indicates that the lumber so marked is graded under the supervision of a Lumber Association.

When lumber is graded according to published structural grading rules and is grade-marked for identification the use of the working stresses set forth in Table I, Section 2503, will afford not only assured minimum strength but also the maximum economy that can be obtained if assured minimum strength is desired. While the stresses recommended herein for the lowest structural Grades are somewhat less than many Building Codes have permitted in the past, it is felt that the former methods of assigning allowable stresses to lumber, with little or no attention to the "Grade" of the lumber, were unsound and should be replaced by fundamentally sound methods. The establishing of "Structural" Grades has made it possible to do this and the approval by the U. S. Forest Products Laboratory of working stresses based on such Grades is believed to be sufficient warrant for their use unless or until further information justifies a revision.

Yard Lumber:

"Yard Lumber" as defined in American Lumber Standards means "Lumber that is manufactured and classified into those sizes, shapes, and qualities required for ordinary construction and general purpose uses." This includes most of the lumber carried in retail lumber yard stocks and quite generally used for framing purposes in buildings.

"Yard Lumber" differs from "Structural Lumber" in that it is graded for appearance and general utility as well as strength whereas Structural Lumber is graded primarily for strength. The Building Inspector may approve Yard Lumber and it may be used for load-bearing purposes with entire safety when the factors affecting its strength are known and properly evaluated. The grading of lumber is not an "exact" science and therefore a certain amount of judgment on the part of the Building Inspector will be necessary in assigning working stresses to "Yard Lumber."

The Building Inspector should use the Grade Example for "Common" Structural Material in American Lumber Standards as the basis of comparison for determining the strength of Yard
Lumber. This permits the assignment of allowable working stresses to Yard Lumber on the same basis as the U. S. Forest Products Laboratory uses for "Structural Material." (See Table II.)

From a practical standpoint the Building Inspector must have at least a general knowledge of or be able to recognize the qualities and Grades of the lumber customarily offered for sale in his city or he must inspect the lumber used, either before or after it is put into the structure, if he desires adequately and intelligently to perform the duties of his office. Grade-marked "Yard Lumber" while it does not afford the safeguards or ease of inspection afforded by "Structural Lumber" can be safely assigned unit working stresses equal to or somewhat less than the Basic Working Stresses in Table II by estimating the effect of the defects in the lumber and comparing them with the defects permitted in the lumber graded in accordance with the Grade Example for "Common" Structural Material. All defects must be considered separately and the worst conditions must govern the working stresses assigned. The method for assigning working stresses to "Yard Lumber" has been explained under the discussion of the factors influencing the strength of Lumber.*

Other Lumber:

This grouping is intended to include all lumber which is not manufactured in accordance with standards of regional lumber manufacturers' associations or those recognized by the U. S. Department of Commerce or other responsible agencies. Such lumber may be cut from the same kind of trees as those from which recognized standard lumber is cut and it may be just as strong as standard lumber. Provision has been made in Section 2503 and Section 2504 for the use of such non-standard lumber, but it should only be permitted after careful visual inspection by the Building Inspector and comparison with the known qualities and strength value of standard lumber.

Grading Rules:

Most of the lumber and timber used in the Western states is graded at the sawmill in accordance with Standard Grading and Dressing Rules of one of the following Associations:

West Coast Lumbermen's Association.
California Redwood Association.
Western Pine Association.

These Grading Rules are based on the provisions of American Lumber Standards as set forth in Simplified Practice Recommendations R16-29 of the U. S. Department of Commerce. They provide a means of knowing to what extent the above mentioned defects are limited within each specified Grade of lumber. They do not, however, assure the user of the lumber that the Grade of lumber specified will be the Grade of lumber used. To provide this assurance the various groups of lumber manufacturers comprising the regional Lumber Manufacturers' Associations have adopted a policy of grade-marking each piece of "Yard Lumber" as well as "Structural Lumber." In some cases the practice of grade-marking may not be practicable and specific
shipments of lumber may be inspected by an Association Inspector and a Certificate of Grade issued by the Association.*

When lumber is either grade-marked or covered by an Association Certificate of Grade the Building Inspector can readily determine the advisability of permitting its use for any specific purpose and can consistently assign working stresses therefor as explained herein. When the lumber is not identified its use should be permitted only after carefully inspecting each piece and estimating the effect of the defects therein.

General Notes:

Working values for horizontal shear are maximum values. The maximum unit horizontal shear at any point in a beam is 3/2 of the average unit shear obtained by dividing the total shear at that point by the area of the cross section. To get the total safe shearing stress at any cross section, the area of the cross section should be multiplied by 2/3 the maximum allowable horizontal shear. To obtain the required area to carry any given shear, the total shear should be divided by 2/3 the maximum allowable unit shear.

Recognition of all loads in designing for loads concentrated near a support, or for moving loads, gives a calculated shearing stress higher than is actually developed.

(a) For concentrated loading, in calculating the shear at one end of a beam, the loads between that end and the nearer quarter point, or between that end and a point distant three times the depth of the beam from it, whichever would be the lesser distance from the support, may be considered as acting at that point.

(b) For moving loads, as on highway bridges or railway stringers, in computing the shear at one end it is safe to ignore the wheel loads between that end and the nearer quarter point, or between that end and a point three times the depth of the beam or stringer from it, whichever would be the lesser distance from the support, when the balance of the span is assumed to be loaded so as to give a maximum shear stress.

Straight grained wood has greater resistance to tension than to any other kind of stress. It has been found, however, practically impossible to design joints that will develop anywhere near the full tensile strength.

Stresses for Species Not Given in this Code:

Where the Building Code is adopted by cities where species of lumber other than those for which working stresses are given herein are used, care should be exercised to provide for such other species and to show the allowable unit stresses for them. Such information can be secured by communicating with the National Lumber Manufacturers' Association, Transportation Building, Washington, D. C.

Refer to Sec. 2504. In former editions of this Building Code tables were incorporated showing the safe loads in pounds per square inch of cross section area of square and rectangular

*For a complete discussion of the subject of "Structural Grades of Lumber and Method of Their Derivation" see Bulletin 314 of the American Railway Engineering Association—pages 1206 to 1224.
timber columns. The values given in these tables were determined by solving the Forest Products Laboratory formula given in Section 2504.

The tables given in former editions of this Code were incomplete insofar as certain species of lumber were concerned and rather than extend those tables in this edition they have been omitted. Such tables for all species can be obtained upon request from the National Lumber Manufacturers’ Association, Transportation Building, Washington, D. C.

Refer to Sec. 2511. The following provisions are recommended for inclusion in the Code in territories subject to termite attack. These recommendations have been made by the Termite Investigations Committee of California after several years of study and a comprehensive test program.

ORDINANCE ON CONSTRUCTION PRACTICES

(a) Before any new building is erected all stumps and roots shall be removed from the soil to a depth of at least twelve (12) inches below the surface of the ground in the area to be occupied by the building.

(b) The exterior walls of, and all wood posts supporting girders in, wood frame buildings over four hundred (400) square feet in area shall be placed on masonry or concrete foundation walls or piers.

(c) All masonry for foundation purposes shall be laid in Portland Cement mortar. Portland Cement mortar shall be composed of one part of cement and three parts of sand by volume with an allowable addition of lime putty or hydrated lime of not more than fifteen (15) per cent by volume of the cement content.

(d) The top of every masonry or concrete foundation wall or pier which supports and is in contact with wood construction of any kind shall be not less than six (6) inches above the final grade level or finished surface of any ground adjacent thereto (except as provided in the case of slabs). Masonry or concrete foundation walls shall in all cases extend at least as high as the top of any adjacent concrete or masonry slab which is supported by either natural ground or an earth fill.

(e) Floor joist shall have a clearance of not less than eighteen (18) inches between the bottom of the joists and the surface of the ground underneath. The ground underneath floor joists shall be leveled or smoothed off so as to maintain a reasonably even surface under the entire area covered by the floor joists.

(f) All wood sills, including mudsills and sole plates, which are placed directly on the ground or on masonry or concrete foundations, shall be of the grade and kind of lumber specified in paragraph (i).

(g) Wood sleepers or similar floor supports when placed directly on masonry or concrete which is in contact with the ground shall be of the grade and kind of lumber specified in paragraph (i).

(h) All wood members used to permanently support a load of any kind, in buildings over four hundred (400) square feet
in area, shall be of the grade and kind of lumber specified in paragraph (i) when any part of such member is placed within six (6) inches of any earth, either natural ground or earth fill.

(i) Lumber permitted in the above locations shall have physical properties equal to those of No. 1 common all-heart grade of either Port Orford cedar, Western red cedar or cypress; the Heart Common grade of redwood; or the No. 1 Common grade of any lumber which is pressure-treated by an empty cell process with a final retention of not less than eight (8) pounds of No. 1 grade of coal tar creosote per cubic foot of wood; grade of creosote and method of treatment to be in accordance with Specifications of the American Wood Preservers’ Association. Such treated lumber shall show a penetration of creosote of not less than one-quarter (¼) inch at any point.

(j) Wood posts or columns shall not extend through or be placed directly on concrete floors. They shall be supported on concrete footings extending at least two (2) inches above the finished floor or may be placed on a corrosion-resisting metal plate at least one-sixteenth (1/16) of an inch thick and not smaller than the base of the post or column. Such plate may be flush with the concrete floor.

(k) Where timbers extend into a masonry wall at a point below the level of the ground outside of the wall, metal wall boxes shall be provided or the end and all surfaces of the timber within one (1) foot of the end shall be painted with at least two (2) coats of hot coal tar creosote or other approved wood preservatives.

(l) Openings through foundation walls or exterior walls shall be provided for cross ventilation of the space below the first floor in every building in which the first floor is of wood frame construction. There shall be one opening at least two (2) square feet in net area within five (5) feet of every corner of the exterior walls of the building and there shall be two (2) square feet of opening for each twenty-five (25) lineal feet or major fraction thereof of exterior wall, provided, however, that such openings need not be placed in the front wall of the building.

(m) All wood forms which have been used in placing concrete, if within the ground or less than eighteen (18) inches above the ground, shall be removed before a building is occupied or used for any purpose.

(n) Loose or casual wood shall not be stored in direct contact with the ground under any building.

Refer to Sec. 2601. The requirements in Chapter 26 are based upon the recommendations of the “Joint Committee.” The water-cement ratio method of proportioning concrete as outlined in Section 2606 is based upon a wide range of tests and experiences and has been found to be the best method of proportioning concrete. It should be noted, however, that the actual strength of the concrete is the ultimate measure to be used in design.

Refer to Sec. 2701. The requirements for steel construction incorporated in Chapter 27 follow the recommended practice of the American Institute of Steel Construction.

The inspection and tests noted in Section 2701 should not
necessarily be required where the mill tests of the steel may be readily obtained.

Refer to Sec. 4602. The following list includes all of the documents included in the Uniform Building Code in the order in which they occur. The S. D. reference at the end of each document name refers to the book Specification Documents:

1. Suggested Ordinance Regulating the Use, Handling, Storage and Sale of Flammable Liquids and the Products Thereof, adopted by the National Fire Protection Association, May, 1926; reprint of 1929. (S. D. page 373.)

6. Standard Specifications for Tests of Concrete Block or Tile, Serial Designation P-1A-29 of the American Concrete Institute. (S. D. page 130.)

7. Underwriters’ Laboratories’ Standard for Hollow Concrete Building Units, February 21, 1929. (S. D. page 136.)

14. Tentative Standard Specifications and Tests for

27. Regulations for the Construction and Installation of Oil Burning Equipments and for the Storage and Use of Oil Fuels in Connection Therewith, Recommended by the National Fire Protection Association, Edition of 1934. (S. D. page 486.)

28. Regulations for the Installation of Sprinkler Equip-
ments, Recommended by the National Fire Protection Association, Edition of 1931. (S. D. page 402.)

33. Specifications for Class C roof coverings of the Underwriters' Laboratories, Inc. (S. D. page 469.)

Refer to Chapter 47. The following provisions are recommended for inclusion in the Code where complete plastering provisions are desired.

CHAPTER 47—PLASTERING—INTERIOR AND EXTERIOR

Sec. 4701. It shall be unlawful for any person to do or cause to be done any lathing or plastering, or any alteration of lathing or plastering in or upon any building or structure unless such lathing or plastering is done in the manner and of the materials hereafter specified in this Section, and in addition thereto, whenever plastering is required for fire protection it shall also comply with the provisions of Chapters 42 and 43.

The Building Inspector, upon notification from the permit holder or his agent, shall make the following inspections of lathing and plastering and shall either approve that portion of the construction as completed or shall notify the permit holder or his agent wherein the same fails to comply with the law:

1. After all lathing, interior and exterior, is in place and all plastering materials are on the job.

2. Seven (7) to ten (10) days after exterior walls have received second coat of stucco. The exact time of the
second inspection shall be at the discretion of the Building Inspector.

3. Final inspection of finished interior and exterior plastering.

Tests. The Building Inspector or his deputy is hereby authorized to make or cause to be made tests of plastering materials or lathing, and may require a complete analysis of samples of completed plastering or stucco. In case of dispute as to the thickness of the plastering, authority is given the Building Inspector or his deputy to make holes in the wall for the purpose of determining the thickness of the plaster. Such holes are not to be made unless it is necessary and are to be made only in the presence of the plastering contractor or the permit holder.

Sec. 4702. Wood lath shall be equal to No. 1 grade Douglas fir, spruce, cedar, redwood, pine or western hemlock, and shall be reasonably clear, evenly manufactured and free from detrimental defects. A few wormholes, small pitch pockets, well set or firm knots not more than three-fourths (¾) inch in diameter and not bunched, and wane not more than one-third the thickness, width or length and not in combination with any other defect shall be permitted in wood lath. Wood lath shall measure not less than five-sixteenths (5/16) inch nor more than three-eighths (3/8) inch in thickness, not less than one and three-eighths (1⅝) inches nor more than one and five-eighths (1⅝) inches in width, and not more than one-fourth (¼) inch less than four (4) feet in length. Each lath shall be nailed with 3d fine blued nails to a stud, joist or other support at each end thereof and at points not more than sixteen (16) inches apart along the length of such lath. Nails shall be driven full length. For lime plaster laths shall be spaced not less than three-eighths (3/8) inch and not more than one-half (½) inch apart, and for gypsum plaster not less than one-quarter (¼) inch and not more than three-eighths (3/8) inch apart. Joints at the ends of laths shall be broken at least every eighth lath and not less than six (6) laths shall constitute a break. Studs, joists, or other supports for lathing shall be spaced at not to exceed sixteen (16) inches on center. No vertical or diagonal lathing or crooked or warped lath shall be used.

Approximately eight (8) hours before being nailed in place such lath shall be thoroughly soaked and kept damp until plaster is applied thereto.

It shall be unlawful to apply any interior wood lath until all exterior framing has been covered. All coves, bull noses and interior angles shall receive a strip of metal reinforcement before any plastering is applied. A strip of metal reinforcement shall also be used where masonry and wood join.

Sec. 4703. Wherever plaster lath is used it shall be composed of gypsum, wood and manila fibre, or of other similar materials; provided, that not less than eighty-five per cent (85%) by weight of such composition shall be of incombustible material.

Such plaster lath shall be not less than five-sixteenths (5/16)
inch in thickness and shall be spaced one-quarter (¼) inch apart horizontally and vertically and each joint broken. Such lath shall be not less than three-eighths (¾) of an inch thick when used as required in Section 4302.

On wood joists, furring strips, studding or other wood supports the plaster lath shall be securely fastened by means of nails of sufficient length to extend at least three-fourths (¾) inch into the joists, furring strips, studding or other supports. Such nails shall be spaced or driven not more than six (6) inches apart in one direction and sixteen (16) inches apart in the opposite direction. Where the furring strips, studs or other supports are of metal the plaster lath shall be securely fastened to the same with galvanized iron wire of not less than sixteen (16) W. & M. gauge or with twenty (20) U. S. gauge metal clips spaced the same as required for nails. All wire nails used for fastening plaster lath shall be at least number thirteen (13) W. & M. gauge with flat heads not less than three-eighths (¾) inch in diameter.

It shall be unlawful to apply any interior plaster lath until all exterior framing has been covered. All coves, bull noses and interior angles shall receive a strip of metal reinforcement before any plastering is applied. A strip of metal reinforcement shall also be used where masonry and plaster lath join.

Fibre Board Lath

Sec. 4704. Any fibre board lath or other similar board lath which is equivalent to plaster board lath in strength, durability and bond may be used as a base for backing for plastering provided the type of such board lath shall have first been approved by the Building Inspector and all such board lath shall conform strictly to the type so approved.

Such approved board lath may be used wherever wood lath is permitted but shall not be used in substitution for plaster board lath or metal lath wherever such plaster board lath or metal lath are specifically required.

When fibre board lath is used it shall be applied in conformity with the provisions of Section 4703 for plaster board lath.

Metal Lath

Sec. 4705. 1. Interior Metal Lath. Interior metal lath shall be either ingot iron, rust-resisting alloy, galvanized or coated with an approved preservative material. Metal lath used on walls and ceilings shall be of a weight not less than that shown in the following table:

<table>
<thead>
<tr>
<th>Spacing of Supports</th>
<th>For Walls</th>
<th>For Ceilings</th>
</tr>
</thead>
<tbody>
<tr>
<td>12"</td>
<td>2.5</td>
<td>2.75</td>
</tr>
<tr>
<td>16"</td>
<td>2.75</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Metal lath shall be lapped at least one (1) inch and shall be tied at joints in at least one place between supports. The tie wire used to attach and tie metal lath shall be not less than eighteen (18) W. & M. gauge. Metal lath shall be secured to
wood studs with not less than 4d wire nails driven to at least seven-eighths (\(\frac{7}{8}\)) inch penetration and the remaining portion of the nail bent up to engage at least one strand of fabric and must be bent in such a manner as to not break the strands.

Metal lath when applied to metal supports shall be fastened thereto with not smaller than eighteen (18) W. & M. gauge galvanized annealed wire or by metal clips of equivalent strength.

2. Exterior Metal Lath. Exterior metal lath shall weigh not less than three and four-tenths (3.4) pounds per square yard, and shall be galvanized, rust-resisting alloy, ingot iron or double coated with an approved preservative material. Such dip shall be alkali-resisting and shall be lime and acid proof. Metal lath shall be lapped not less than one (1) inch at each joint and shall be kept not less than one-quarter (\(\frac{1}{4}\)) inch away from all backing and supports by galvanized or blued furring nails, galvanized metal furring clips or other equivalent means of furring; provided, that when self-furring metal lath is used such furring nails, clips or other equivalent means of furring shall not be required. All metal shall be held in place by means of galvanized or blued nails not smaller than 4d in size or by means of galvanized staples not less than one (1) inch in length made of not smaller than fourteen (14) W. & M. gauge wire, or by any other approved method of equivalent strength.

Nails for holding metal lath in place shall be driven to approximately three-fourths (\(\frac{3}{4}\)) penetration and bent over one or more strands or its equivalent of such metal lath. Staples, furring nails, furring clips, or other methods of fastening metal lath shall develop a strength equivalent to the nails hereinbefore specified in this Section. No fastening of any kind for metal lath shall be cracked, broken or otherwise defective.

Metal lath shall be nailed or stapled to wood studs, joists or other supports or tied to metal supports at points not to exceed six (6) inches on center along such studs, joists or other supports.

Sec. 4706. Each suspended ceiling and each portion thereof shall be constructed and supported as hereinafter in this Section provided.

The main runners or other supports for any suspended ceiling shall consist of steel channels, steel angles or steel tees, not smaller than one (1) inch in vertical depth when in place and weighing not less than four hundred forty-two (442) pounds per one thousand (1000) linear feet, or other structural members of equivalent strength.

Such main runners or other supports shall be spaced at not more than four (4) feet on centers and shall be supported by galvanized steel wire hangers not smaller than eight (8) W. & M. gauge spaced at not more than four (4) feet on center. Such wire hangers shall be securely fastened to the structural framing, masonry or concrete with approved metal clips or approved bolts and nuts, or such wire hangers shall be embedded in such
structural framing, masonry or concrete. Such wire hangers shall be secured to such main runners or other supports by wrapping each such wire hanger a full turn around the main runner or other support and twisting such wire hanger together over the top edge of the main runner or other support so as to develop the full strength of the wire.

The under side of such main runners or other supports shall be cross furred with steel channels which shall be not less than three-fourths (¾) inch in vertical depth when in place and shall weigh not less than two hundred seventy-six (276) pounds per one thousand (1000) linear feet, and which shall be spaced at not more than twelve (12) inches on center. Each such three-quarter (¾) inch channel shall be fastened to each main runner or other support directly above same by means of not smaller than sixteen (16) W. & M. gauge galvanized annealed wire wrapped around both members with a double turn and twisted securely together. Each main runner and cross furring channel shall be straight and true and shall be maintained in that condition until the finished ceiling has been applied. Any metal lath applied to such three-quarter (¾) inch channels shall be of the quality and weight and shall be applied in the manner specified in Section 4703 for metal lath applied to metal supports.

Nothing contained in this Section shall be deemed or construed to prohibit the use of any other material or method of construction for any suspended ceiling in the event that such other material or method of construction is the equivalent of the material or method of construction hereinabove specified; and in the further event that such other material or method of construction shall have been first approved by the Building Inspector.

Each suspended ceiling, and each portion thereof, shall be constructed so as to be capable of sustaining a live load of not less than ten (10) pounds per square foot, in addition to all dead loads, without any deflection, settlement or distortion which will materially affect the strength, durability or safety thereof.

Whenever in the opinion of the Building Inspector any suspended ceiling or any portion thereof is not capable of sustaining such live and dead loads as hereinabove in this Section required the Building Inspector may require the owner, contractor, sub-contractor or other person constructing or causing to be constructed the suspended ceiling or any portion thereof to test or cause to be tested such suspended ceiling, or any portion thereof, with a load test of not less than twenty (20) pounds per square foot, and it shall be unlawful for any such owner, contractor, sub-contractor or other person to fail, refuse or neglect to make such load test within the time specified.

The load test hereinabove provided for may also be required on any altered or reconstructed portion of any existing suspended ceiling.

Sec. 4707. All sand used for making plaster for any building or structure shall be clean, sharp, abrasive sand and shall
not contain more than three per cent (3%) by weight of deleterious matter such as clay, loam and/or silt. In the test for organic matter the sodium hydroxide solution shall not be darker in color than the color indicated in the Standard Method of Test for Organic Impurities in Sands for Concrete, A. S. T. M. Designation C40-27 of the American Society for Testing Materials.

All the sand shall pass a No. 4 sieve and not more than eighty per cent (80%) and not less than sixty per cent (60%) shall pass a No. 20 mesh sieve, and not more than thirty-five per cent (35%) and not less than fifteen per cent (15%) shall pass a No. 40 mesh sieve. All remaining on the No. 4 sieve shall be considered gravel.

The sand shall be of such quality that when mixed in the proportion of one part Portland cement to two parts of sand the mortar shall develop a tensile strength of not less than two hundred ten (210) pounds per square inch at the age of ten (10) days.

Quicklime shall be well slaked, run through a No. 16 screen, stored and protected in an approved manner for the time recommended in the manufacturers’ specifications.

Sec. 4709. Any metal reinforcing material, woven wire netting, expanded metal fabric or welded wire fabric used for exterior stucco or for any interior or exterior plaster reinforcing shall be galvanized or coated with an approved preservative material, which coating shall be alkali resisting and shall be lime and acid proof. Plaster reinforcing shall be furred and fastened in place in the same manner as required herein for metal lath and shall have a mesh not exceeding two (2) inches in width and four (4) inches in length and each such mesh shall have an area of not more than six (6) square inches. Such metal reinforcing material, woven wire netting, expanded metal fabric or welded wire fabric shall weigh not less than one and five-tenths (1.5) pounds per square yard. When woven wire netting is used it shall be not less than sixteen (16) W. & M. gauge wire; provided, however, that a wire netting composed of eighteen (18) W. & M. gauge wire woven with a one (1) inch mesh and weighing not less than one and six-tenths (1.6) pounds per square yard may be used. All plaster reinforcing covered by this Section shall be lapped not less than two (2) inches.

Sec. 4710. Keene’s cement shall have a tensile strength of not less than four hundred fifty (450) pounds per square inch, seven days in the air and shall conform to the Standard Speci-

Sec. 4711. All Portland cement used for making plaster shall conform to the Standard Specifications and Tests for Portland Cement, A. S. T. M. Designation C9-30 of the American Society for Testing Materials. The Building Inspector may require tests of cement used, when, in his judgment, the cement does not comply with this ordinance.

Sec. 4712. In all cases where plastering or stucco is applied to the exterior of a wood frame building such wood frame shall be covered with a substantial waterproof paper as hereinafter described in this Section.

Wherever in this Section waterproof building paper is required, a substantial waterproof building paper which successfully passes the fifty (50) pound Mullen test shall be used.

Wherever such paper is used it shall be applied so as to readily shed water and care must be exercised in the application of such paper. All corners and returns shall be carefully shingled with such paper and there shall be no holes or breaks in the paper. Horizontal joints shall be lapped not less than two (2) inches and vertical joints not less than six (6) inches beyond the stud on the weather side, except sheet lath, which shall be lapped not less than four (4) inches, and such paper shall be nailed to the backing with wire nails of not less than eleven (11) W. & M. gauge having a flat head of not less than three-eighths (3⁄8) inch in diameter. Such paper shall be nailed to the structural backing at points spaced at not more than twelve (12) inches on center vertically and sixteen (16) inches on center horizontally.

Provided, that any reinforced waterproof paper which is reinforced with metal in the process of manufacture, such reinforcement being in accordance with requirements of Section 4709 for plaster reinforcing, shall be lapped not less than two (2) inches horizontally and four (4) inches vertically.

Where sheathing or similar backing is not used an eighteen (18) W. & M. gauge or larger wire stretched taut horizontally across the stud frame at not more than six (6) inches on center vertically shall be securely fastened in place before the paper is applied; provided, that where such paper is fastened to the metal reinforcing in such a manner as to not affect the waterproofing qualities of such paper the wire need not be installed. Where the building is sheathed with wood, fibre board or plaster board sheathing the waterproof paper shall be applied on the outside of such wood, fibre board or plaster board sheathing.

All exterior openings exposed to the weather shall be thoroughly and effectively flashed with metal flashing in such a manner as to make them waterproof. All copings and parapet walls shall be thoroughly flashed with metal in a manner approved by the Building Inspector. Wherever metal flashing is required it shall consist of not less than sixteen (16) ounce copper or twenty-six (26) gauge galvanized iron or lead coated
or asphaltum dipped metal not less than twenty-six (26) gauge, such coating or dipping to be rust-resisting.

Sec. 4713. Except when applied to tile, masonry or concrete, all exterior hand plastering or stucco shall be three (3) coat work and shall be reinforced with metal lath or metal plaster reinforcing as specified in Sections 4705 and 4709.

First Coat. The first coat shall consist of one part of Portland cement to not more than three and one-half parts of sand by volume, to which may be added slaked or hydrated lime or approved brands of diatomaceous silica in an amount not to exceed ten per cent (10%) by volume of cement; provided, that when approved waterproofing materials or compounds are used no hydrated or slaked lime shall be used.

The first coat shall be well forced through all spaces or openings in the metal reinforcing so as to form a good mechanical key and to solidly fill any space between such plaster reinforcing and backing. The first coat shall be thoroughly scored, combed or scratched in two directions at approximately right angles to each other in such a manner as to cause furrows or channels in such first coat, in order to provide a good mechanical bond to receive the second coat of plaster or stucco.

The first coat of plaster shall be kept moist during the first twenty-four (24) hours after it has been applied so that at the end of the period of wetting the plaster will show a thoroughly set and hard condition. The first coat shall have been applied for at least seven (7) days before second coat is applied thereto.

Every first coat of exterior plaster or stucco shall have a minimum thickness of not less than three-eighths (3/8) inch measured from the face of the backing. When plaster is applied to tile, masonry or concrete such tile, masonry or concrete shall be thoroughly washed and cleaned before any plaster is applied thereto.

Second Coat. The second coat of exterior plaster or stucco shall consist of one part of Portland cement to not more than three and one-half parts of sand by volume, to which may be added approved waterproofing or fattening compounds as provided for the first coat.

The second coat of plaster shall be applied and rodded and shall be water floated. The second coat shall have a minimum thickness of not less than three-eighths (3/8) inch measured from the face of the first coat of plaster. This coat must be kept wet as prescribed for the first coat.

The second coat shall stand for at least ten (10) days before the third coat is applied.

Third Coat. The third or finish coat of exterior plaster or stucco shall be composed of any material or materials approved by the Building Inspector and shall have a minimum thickness of not less than one-eighth (1/8) inch measured from the face of the second coat.

The total thickness of the three coats of stucco shall be not
less than seven-eighths (\%\%) inch in any place measured from the backing; provided, that on three (3) story buildings where sheathing is required, such sheathing may be omitted, provided the stucco is not less than one and one-fourth (1\%\%) inches in thickness and provided the reinforcement used shall be expanded metal weighing not less than four and five-tenths (4.5) pounds per square yard or welded wire fabric weighing not less than four and three-tenths (4.3) pounds per square yard.

Where corner beads are used on the exterior such corner beads shall be designed as exterior corner beads, shall be the full thickness of the required plaster and shall have metal lath attached thereto forming a cornerite.

Rooded Wall. A wall shall be said to be rooded when a five (5) foot straight edge placed upon the surface of the plaster in any position shall not show more than one-fourth (¼) inch variation in the surface of the plaster at any point along the five (5) foot length of the straight edge. This permissible variation shall not be deemed to affect the thickness of the plaster as required but such plaster shall be the full required thickness at any point.

Sec. 4714. Pneumatically placed stucco shall be deemed to be a mixture of Portland cement and sand mixed dry, conveyed by air through a pipe or flexible tube hydrated at the nozzle at the end of such conveyor and deposited by the air pressure in its place of final repose.

Rebound as applied to pneumatically placed stucco shall be defined as material ejected from the nozzle against a surface from which it rebounds and falls.

Sand used for pneumatically applied stucco shall comply with the requirements for sand for reinforced concrete construction as provided in Section 4707, provided, that the grading may vary from that required for concrete.

Rebound gathered up and screened may be used as sand in the mixture but shall not constitute more than twenty-five per cent (25\%) of the total sand contained in any one batch.

Pneumatically applied stucco shall contain not less than one sack of cement to each five (5) cubic feet of sand or gravel used.

Hydrated lime or other approved materials in an amount not to exceed ten per cent (10\%) of the volume of the cement may be added to the mixture.

Pneumatically applied stucco shall be applied in not less than two (2) coats to a total minimum thickness of seven-eighths (\%\%) inch.

Not less than seven (7) days shall elapse between the application of the first and second coats, during which time the first coat shall be sprayed with water and properly cured.

The second coat shall be rooded as provided for the second coat of hand applied stucco. No third coat will be required over the second coat of pneumatically applied stucco.

On buildings where sheathing is required, such sheathing
may be omitted provided the frame is covered with not less than one (1) inch of pneumatically applied stucco reinforced by expanded metal weighing not less than four and five-tenths (4.5) pounds per square yard, or welded wire fabric weighing not less than four and three-tenths (4.3) pounds per square yard. Such pneumatically applied stucco shall be applied in the manner hereinabove specified.

Sec. 4715. Number of Coats Required. Plastering with lime mortar shall be three-coat work when applied over metal lath, plaster lath or fibre board, and may be two-coat work when applied over wood lath.

Plastering with gypsum or hardwall plaster shall be three-coat work when applied over metal lath, and not less than two-coat work when applied over wood lath, plaster lath or fibre board.

Plastering with cement mortar shall be three-coat work when applied over metal lath, expanded metal or wire mesh.

Cement plaster shall not be applied over gypsum lath, wood lath or fibre board unless such gypsum lath, wood lath or fibre board shall be first covered with a waterproofing paper and metal reinforcing as required for exterior plastering.

In no case will a brush coat be accepted as a third or finish coat where three-coat work is required.

All plaster staff work shall have lugs of pure fibre and plaster of Paris, and shall be securely installed and fastened into place in a manner approved by the Building Inspector.

Sec. 4716. First Coat. Lime mortar for first coat of interior plastering shall be mixed one part lime to not more than two and one-half parts of sand by volume. Each cubic yard of lime mortar shall contain not less than two hundred (200) pounds of Keene's cement. To each cubic yard of lime mortar used for first or scratch coat there shall be added not less than four (4) pounds of Manila fibre, or loose hair, the same to be distributed thoroughly throughout the mortar.

The first coat of mortar applied over metal or plaster lath or fibre board shall be well scored so as to form a good mechanical key. The first coat over metal or plaster lath or fibre board shall be thoroughly set and dry before second coat is applied. The first coat shall completely embed and cover all of the lath.

Second Coat. The second coat of lime mortar shall be mixed one part of lime to not more than three parts of sand by volume and shall contain not less than one hundred fifty (150) pounds of Keene's cement in each cubic yard of mortar. To this shall be added not less than four (4) pounds of Manila fibre, or loose hair. The second coat of lime mortar shall be rodded to a straight surface.

The minimum thickness of the two coats of lime mortar shall be not less than three-fourths (¾) inch including the lath. The second coat of lime mortar shall be thoroughly set and dry before the third or finish coat is applied.
Third or Finish Coat. The third or finish coat may consist of one of the following:

1. A white coat mixed one part gypsum plaster or plaster of Paris to not more than one part of lime putty. Such white coat shall thoroughly cover all brown mortar surfaces and shall be troweled smoothly with a steel trowel, and must be free from blemishes.

2. A sand finish consisting of one part gypsum plaster to not more than three parts of sand. Such sand finish shall thoroughly cover all brown mortar surfaces and may be left in any texture desired.

3. Any approved brand of interior stucco which shall cover all brown mortar surfaces.

Portland cement shall not be permitted for the third or finish coat over lime or gypsum brown mortar, nor shall any Portland cement be used over lime or gypsum mortar surfaces.

Lime mortar when applied over wood lath shall be mixed and applied as required for the brown coat and finish coat of lime mortar over metal lath, plaster lath or fibre board, except that the brown coat shall be mixed one part lime to not more than two and one-half parts of sand. It shall contain not less than two hundred (200) pounds of Keene’s cement in each cubic yard of mortar. To the brown coat shall be added at least four (4) pounds of manila fibre or loose hair.

Sec. 4717. Hardwall or gypsum plaster applied over wood lath, plaster lath or fibre board shall be not less than three-eighths (3/8) inch measured from the outer face of the lath.

The first or brown coat shall be mixed of one part of gypsum or hardwall plaster of an approved brand to not more than two parts of sand by volume. The first or brown coat shall have a minimum thickness of not less than one-fourth (¼) inch measured from the outer face of the lath or board.

The first or brown coat shall be thoroughly set and shall be free from dry sets, sweat-outs, buckles or other harmful defects before the second or finish coat is applied.

The second or finish coat shall consist of one of the following:

1. Any approved brand of interior stucco, which may be applied over a brown mortar surface that is still green.

2. A white coat consisting of one part gypsum plaster to not more than an equal amount of lime putty thoroughly gauged together which shall be applied in the same manner as specified for white or putty coat over lime mortar.

3. A sand finish consisting of one part of gypsum plaster mixed with not more than two parts of sand. This may be applied over a brown mortar base while it is still green.

The second or finish coat of plaster applied over wood or plaster lath or fibre board shall be of sufficient thickness to bring the total minimum thickness of plaster measured from...
the outer face of the lath to not less than three-eighths (\(\frac{3}{8}\)) inch.

In no case shall a white coat or putty coat be applied over any other than a thoroughly dry brown mortar base.

Sec. 4718. Interior hardwall or gypsum plaster over metal lath must be at least three-coat work with a minimum thickness of not less than three-fourths (\(\frac{3}{4}\)) inch, lath included, measured from the outer face of metal lath supports.

The first or scratch coat shall consist of one part of an approved brand of gypsum plaster to not more than two parts of sand by volume, and shall be thoroughly mixed in a manner so as not to damage the setting qualities of the plaster. This coat shall be scored so as to provide a good key for the second or brown coat.

The first or scratch coat shall be thoroughly set and dry before the brown coat is applied.

The second coat or brown coat of gypsum plaster shall be mixed one part of approved gypsum plaster to not more than two and one-half parts of sand by volume and shall be brought to a straight surface.

The third or finish coat shall be mixed and applied in the same manner as specified for the third coat over lime mortar, with the same time as required between second and third coats of lime mortar.

Sec. 4719. Interior hardwall or gypsum plaster over gypsum block, brick, clay tile or concrete, if thicker than a wash or brush coat, shall be not less than two-coat work.

Such two-coat plaster work shall have a minimum thickness of three-eighths (\(\frac{3}{8}\)) inch over unit masonry or one-fourth (\(\frac{1}{4}\)) inch over monolithic concrete, except where plaster is used for fire-resistant purposes, in which case the minimum thickness shall be one-half (\(\frac{1}{2}\)) inch.

For application on brick, gypsum block or clay tile, gypsum plaster shall be mixed in the proportion of one part of gypsum plaster to not more than two and one-half parts of sand by volume.

When applied to concrete where moisture would affect the plaster, gypsum plaster shall be applied over a waterproofing coat of approved plaster bond, or bond plaster.

The finished coat shall not be applied until the first coat is thoroughly set and nearly dry, except when a putty coat finish is used, in which case the base shall be absolutely dry.

Concrete surfaces which are to be plastered shall be rough. If the required degree of roughness is not procured by using rough forms, the surface shall be hacked. Before plastering, all concrete surfaces shall be cleaned and all dust and loose particles removed. Grease, oil or efflorescence if present, shall be washed off with a solution of one part of commercial muriatic acid to four parts of water and the surface then washed again with clean water.

275
Sec. 4720. Except where otherwise specified for fire retardant walls and ceilings, interior cement plaster shall be applied over plaster reinforcing as required for exterior plastering.

All interior cement plaster shall be three-coat work. The first two coats shall be mixed and applied with the same materials and in the same manner as required for the first two coats of exterior work.

The third or finish coat of interior cement plastering may be of the same materials, mixed and applied in the same manner as required for the third coat of gypsum plaster over metal lath or as required for the third coat of exterior stucco.

Sec. 4721. All staff shall be thoroughly soaked before sticking. All lugs shall be of pure fibre and plaster of Paris. Excelsior shall not be used for lugs. In all cases where staff is heavy, auxiliary fastenings shall be used and such fastenings shall be not less than the equivalent of fourteen (14) gauge copper wire, shall in all cases be of sufficient strength to securely fasten the staff to the support, and shall be rust-resisting.

Refer to Chapter 48. The following provisions are recommended for inclusion in the Code where provisions covering the handling and storage of photographic and X-ray nitrocellulose films are desired:

CLASSES OF FILM EXCEPTED

Sec. 4801. The provisions in this Chapter do not apply to:

(a) Film for amateur photographic use in original packages of “roll” and “film pack films” in quantities of less than fifty (50) cubic feet.

(b) Safety film (cellulose acetate base).

(c) Dental X-ray film.

(d) Establishments manufacturing photographic films and storage incident thereto.

(e) Films stored or being used in standard motion picture booths (see Chapter 40).

Safety photographic and X-ray film (cellulose acetate base) may be identified by the marking on the edge of the film. This marking shows plainly before and after developing. Where film is not so marked it shall be inspected to determine whether it is of the safety acetate or nitrate type.

GENERAL REGULATIONS

Sec. 4802. All regulations for the storage and handling of photographic and X-ray nitrocellulose films shall conform to the regulations of the National Board of Fire Underwriters for the Storage and Handling of Photographic and X-ray Nitrocellulose Films as recommended by the National Fire Protection Association, Edition of July 15, 1931.

Exceptions: Where definite fire-resistive materials are specified, materials of equal fire resistance as specified in this Code may be used.

Refer to Chapter 49: Where it is desired to regulate the
installation or alteration of refrigeration systems, the following provisions are recommended for inclusion in the Code:

GENERAL

Sec. 4901. It shall be unlawful for any person, firm or corporation to install or alter or cause to be installed or altered, any system of refrigeration, unless such system is an approved type and is installed in accordance with the provisions of the Safety Code for Mechanical Refrigeration, as published by the American Society of Refrigerating Engineers, which is hereby declared a part of this Chapter.

DEFINITIONS

Sec. 4902. “Approved”. When this term is used to apply to systems, appliances and for materials in this Chapter, it shall mean that such systems, appliances and/or materials have either been listed as standard by the Underwriters' Laboratories, Incorporated, or have been approved by the Building Inspector.

SCOPE

Sec. 4903. Regulations of this Chapter shall apply to all refrigeration systems hereafter installed and to alterations of and additions to such existing systems.

Suggestions for Inspectors.

1. Remember always that you represent the City. A city is made up of all the people living therein and your actions should be governed accordingly.

2. Be particular at the beginning of a job. An erroneous method is more easily corrected the first time it is practiced than after it has been in use. The reputation of being slack or “easy,” though it may be attained in a few days, is hard to overcome.

3. Be friendly with everyone on the job, but familiar with no one. Familiarity dulls the edge of the Inspector's authority.

4. Give orders to foremen, superintendents or contractor only. That rule does not apply to things of minor importance, such as the correction of form alignment, dirt in the bottom of forms for concrete, or other routine every-day occurrences. In such things it is proper for the Inspector to call the defect to the attention of the workmen responsible for that particular part of the job.

5. Do not waste workmen's time by talking to them.

6. Don't argue. Refer disputed questions to the Chief Inspector, and, until you have an answer from him, use your own judgment. Be sure that your judgment is so cool, fair and impartial and your knowledge of the work so thorough, that you command respect and obedience.

7. Do not try to magnify your own importance by telling outsiders of the errors you have corrected or the “crooked work” you have uncovered. The quality of the completed product will measure your ability.

8. Realize the importance of your work. The lives of many people are dependent in a large measure on the faithful performance of your duty. Consider your duties seriously and others will do likewise.
INDEX

NOTE: 1. The following abbreviations are used in this index:
 - A. S. T. M.—American Society for Testing Materials
 - A. S. A.—American Standards Association
 - A. W. S. American Welding Society
 - A. C. I.—American Concrete Institute
 - J. C.—Joint Committee on Reinforced Concrete
 - N. B. F. U.—National Board of Fire Underwriters
 - N. F. P. A.—National Fire Protection Association
 - Und. Lab.—Underwriters' Laboratories, Inc.

2. For index by Parts, Chapters and Sections in numerical order see pages (a) to (k) in front of book.

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>A—occupancies ... 601</td>
</tr>
</tbody>
</table>

ABBREVIATIONS

In concrete design ...	2612
In masonry construction	2410
In steel design ...	2702, 2703, 2704
In wood construction	2504

ACCESSORY BUILDINGS

| ACT—HOUSING |
| For Group H buildings | 1303, 1305 |
| For Group I buildings | 1403, 1405 |

ADDITIONS

| To buildings .. | 104 |
| To existing masonry walls | 2941 |

ADJOINING BUILDINGS

| Foundation—to be protected when | 2801 |
| LOCATION ON PROPERTY |

ADMINISTRATION BUILDINGS (PUBLIC)

Seating more than 3500	601
Seating from 500 to 3500	701
Seating less than 500	801

ADMINISTRATIVE (see Part I for complete details)

Appeals—required when	101
Approval required—by Building Inspector, when	302
Board of Examiners and Appeals	304
Bond—for registered inspector	204
Building classified by Building Inspector, when	501
Building Inspector acts as secretary	304
Building Inspector—definition of	401
Certificates required	205, 206
Condemnation—proceedings for	301
Inspection of buildings	204
Inspector approves plans when	205
Powers and duties of Building Inspector	301
Records kept by Building Inspector	203
Registered Inspector—duties of	204

ADOPTION OF ORDINANCE—WHEN

| 4604 |

AGGREGATES

For concrete ...	2604 (b)
For fire-resistive purposes—classed how	4301
Moisture content of	2608
Proportions in concrete	2607

AIR

| Supply for buildings (see VENTILATION) |

AIR INTAKES

For furnaces ...	3707
For motion picture machine booths	4001
For private garages	1505

AIR SPACE

Around timber in masonry	2506
In wood construction—to be divided	2516
Limited in concrete blocks	2406
Under flooring—to be divided	1816

AISLES

| As access to stairway | 3318 |
ALARVAL VALVE—AUTOMATIC SPRINKLERS

ALLEY
Definition of .. 401

ALLOWABLE WORKING STRESSES (see WORKING STRESSES ALLOWABLE)

ALTERATION
Definition of .. 401
Limited how .. 104
When in Fire Zone No. 1 ... 1602
When in Fire Zone No. 2 ... 1603

ALTERNATE MATERIALS AND CONSTRUCTION
Board of Examiners and Appeals 304
Deposit required .. 303
May be approved by Building Inspector, when 302
May be used, when .. 304

AMERICAN CONCRETE INSTITUTE—Specifications
For hollow concrete block or tile 2406

AMERICAN LUMBER STANDARDS
For wood ... 2501

AMERICAN SOCIETY FOR TESTING MATERIALS—Specifications
Brick ... 2402
Brick, concrete .. 2404
Brick, sand lime ... 2403
Cast iron ... 2701
Cast steel ... 2701
Cement, Portland ... 2409, 2604
Fire test standard ... 4201
Gypsum ... 2407
Gypsum block or tile .. 2407
Hollow clay tile .. 2408
Hydrated lime ... 2409
Quicklime .. 2409
Reinforcing steel for concrete .. 2604
Structural Steel ... 2701

AMERICAN STANDARDS ASSOCIATION
Proscenium curtain-operating mechanism 4104

AMERICAN WELDING SOCIETY
Welding Requirements .. 2710

AMUSEMENT PARK STRUCTURES (see GROUP J)
Construction—special ... 1509
Light and ventilation ... 1505
Special loads ... 1502

ANCHORAGE
Definition of—for reinforced concrete 2603
For masonry construction ... 2901, 2940
For wood construction (see WOOD)

ANCHORS
For beams and girders .. 2506
For facing—attachment of ... 2931
For fire-resistant materials ... 4301
For joists ... 2506
For masonry construction ... 2901, 2940
For masonry veneer to wood frame 2205 (d)
For panel and enclosure walls 2939
For reinforcing in concrete .. 2618
For roof framing ... 2508
For seats—required .. 604 (f), 702 (a)
For steel joists .. 2714 (d)
For stud walls and partitions .. 2507
For trusses ... 2509
For veneer—attachment of .. 2936
For walls ... 2940
For wood columns .. 2505

APARTMENT
Definition of .. 401

APARTMENT HOUSE
Classed as ... 1301
Definition of .. 401

APPEAL
Board acts, how .. 304
From decision of Building Inspector, when .. 302
Method of making .. 303

APPENDAGES
General regulations .. 4501

APPENDED DOCUMENTS ... 4602

APPLICATION
For permit—details required ... 201
Of Code to buildings and/or structures 912
Required for demolishing ... 104 (a)
To additional stories .. 104 (a)
To additions ... 104 (c)
To alterations or repairs ... 104 (a)
To change use or occupancy 104 (b)
To existing buildings ... 104
To increased floor area ... 104 (c)
To major alterations and repairs 104 (a)
To minor alterations and repairs 104 (d)
To roofing repairs or removal 104 (d)
To structural alterations or repairs’ 104 (d)

APPROVAL
After final inspection .. 206
For new materials ... 302, 304
For storage of materials in street 4401
Of chimneys ... 3701
Of plans for permit .. 202
Of prosenium curtain after test 4105
Of Registered Inspector ... 204
Of welding operator .. 2710

APPROVED
Definition of ... 401

ARCHES
In fireplace construction ... 3706
In floor construction .. 1810
In solid masonry .. 3906
Over prosenium opening .. 3904

ARCHITECT
Name required on plans .. 201

ARC WELDS (see WELD)
For steel joints .. 2714
General requirements .. 2710

AREA
Allowable (see OCCUPANCY, FIRE ZONES and TYPE OF BUILDING)
Definition of ... 401

ARMORIES
Seating more than 3500 .. 601
Seating from 500 to 3500 ... 701
Seating less than 500 .. 801

ARTIFICIAL STONE
Requirements for .. 2924

ASBESTOS
As roofing material ... 4305
For fire doors ... 4304
For heating equipment ... 3710, 3711, 3712
For prosenium curtains ... 4102
For warm air ducts ... 3715

ASHLAR—STONE FACING .. 2931

ASPHALT
Paper on exterior walls .. 2205
In roof coverings .. 4305

ASSEMBLAGE—PLACES OF (see AUDITORIUMS)

ASSUMPTIONS
For live loads used in design ... 2304, 2305
For reinforced concrete design 2611

ASYLUMS (see GROUP D) .. 901

ATTIC
Access to—required .. 3205
Story—definition of .. 401
Subdivision required in frame buildings .. 2208, 2510 (h)

AUDITORIUMS
Seating more than 3500 .. 601
Seating from 500 to 3500 ... 701
Seating less than 500 .. 801

AUTOMATIC SPRINKLERS
Design and installation .. 3802
Where required .. 3801
AWNINGS
Fixed—regulations for ... 4501 (d)
Movable—regulations for .. 4501 (b)
B—occupanoes .. 701

BALCONY
Exits from Group A buildings .. 604 (d)
Exits from Group B buildings .. 704
Exterior—construction of ... 3601
For smokeproof towers ... 3315
May project, how ... 4501 (a)

BALUSTRADES
Must resist horizontal thrust .. 3501
On balconies for smokeproof towers 3315
Required for stairways—when ... 3305
When measuring stair clear width ... 3307

BARRIENCES—Construction .. 1892 (f), 4401

BARS
For concrete reinforcing (see REINFORCED CONCRETE)
Prohibited over openings ... 604 (1)

BASEMENT
Definition of .. 401
Protection of ceiling when .. 2010
Sprinkling of—when required ... 3801
Walls and floors—design of .. 2310

BASEMENT PIPE INLETS
Design and installation ... 3807
Where required ... 3807

BAY WINDOW
Construction of ... 3501
Definition of .. 401
May project—how ... 4501 (a)

BEAMS
As Tees in reinforced concrete ... 2614 (d)
Design conditions—reinforced concrete (see REINFORCED CONCRETE)
Ends cut on bevel .. 2506 (d)
Fireproofing of .. 4301
Of reinforced concrete ... 2614
Of wood in heavy timber construction 1908, 1910, 2506

BEARING PARTITIONS
Masonry .. 2936
Wood frame .. 2507

BEARING PLATES
For steel joists .. 2714 (d)
For wood beams and girders .. 2506
For wood columns .. 2505

BEARING WALL
Definition of .. 401
Of hollow masonry—construction .. 2909
Of reinforced concrete—construction 2916
Of solid masonry—construction .. 2903
Of stone—construction .. 2921

BELT COURSES—May project .. 4501 (e)

BENDING MOMENTS—for Reinforced Concrete

BLOCKS—CONCRETE (see CONCRETE BLOCKS)

BOARD OF EXAMINERS AND APPEALS
Appointed how .. 304
Consists of ... 304
Hear appeal, when ... 308

BOILER
General requirements ... 3709
Room for (see BOILER ROOM—CONSTRUCTION)
Smoke pipes for ... 3705
Smokestacks for ... 3702

BOILER ROOM—CONSTRUCTION
For Group A buildings ... 608
For Group B buildings ... 708
For Group C buildings ... 808
For Group D buildings ... 908
For Group E buildings ... 1008
For Group F buildings ... 1108

BOLTS
May be used, when ... 2709
On doors ... 604 (i), 904, 3304

282
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shall make inspections, when</td>
<td>204</td>
</tr>
<tr>
<td>Shall require reports</td>
<td>204</td>
</tr>
<tr>
<td>Special permit issued when</td>
<td>1602 (f)</td>
</tr>
<tr>
<td>BUILDING INSPECTOR AUTHORIZATION REQUIRED</td>
<td></td>
</tr>
<tr>
<td>Before changing plans</td>
<td>202</td>
</tr>
<tr>
<td>For changes of use or occupancy</td>
<td>104 (b)</td>
</tr>
<tr>
<td>For removal of existing safeguards</td>
<td>105</td>
</tr>
<tr>
<td>For structural alterations</td>
<td>202</td>
</tr>
<tr>
<td>BUILDINGS</td>
<td></td>
</tr>
<tr>
<td>Change of use, when</td>
<td>207</td>
</tr>
<tr>
<td>Classified by type of construction</td>
<td>1702</td>
</tr>
<tr>
<td>Classified by use or occupancy</td>
<td>501, 503</td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>Regulated by fire zones</td>
<td>1602 to 1603 incl.</td>
</tr>
<tr>
<td>Require registered inspector, when</td>
<td>204</td>
</tr>
<tr>
<td>To be condemned</td>
<td>301</td>
</tr>
<tr>
<td>To be occupied, when</td>
<td>206</td>
</tr>
<tr>
<td>To conform to Code, when</td>
<td>104</td>
</tr>
<tr>
<td>BUILDING MATERIALS</td>
<td></td>
</tr>
<tr>
<td>May be stored—how</td>
<td>4401</td>
</tr>
<tr>
<td>BUILT UP TIMBERS</td>
<td>2506 (b)</td>
</tr>
<tr>
<td>BUTTRESSED WALLS</td>
<td>2903 (d)</td>
</tr>
<tr>
<td>C—occupancies</td>
<td></td>
</tr>
<tr>
<td>CEDAR</td>
<td></td>
</tr>
<tr>
<td>Mudsills</td>
<td>2204, 2205</td>
</tr>
<tr>
<td>Piling</td>
<td>2803</td>
</tr>
<tr>
<td>Working stresses</td>
<td>2508, 2504</td>
</tr>
<tr>
<td>CEILINGS</td>
<td></td>
</tr>
<tr>
<td>Fire-resistive required—for furnaces</td>
<td>3707</td>
</tr>
<tr>
<td>Fire-resistive required—in Type III buildings</td>
<td>2010</td>
</tr>
<tr>
<td>For fire protection purposes</td>
<td>4301</td>
</tr>
<tr>
<td>Minimum height of (see STORY)</td>
<td></td>
</tr>
<tr>
<td>CELLAR</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>Protection of ceiling, when</td>
<td>2010</td>
</tr>
<tr>
<td>Sprinkling of—when required</td>
<td>3801</td>
</tr>
<tr>
<td>CELL BLOCKS—JAILS</td>
<td></td>
</tr>
<tr>
<td>Construction of</td>
<td>909</td>
</tr>
<tr>
<td>CEMENT—PORTLAND (see PORTLAND CEMENT)</td>
<td></td>
</tr>
<tr>
<td>CERTIFICATE</td>
<td></td>
</tr>
<tr>
<td>Of Compliance—issued by Building Inspector</td>
<td>205</td>
</tr>
<tr>
<td>Of Occupancy—for change of use</td>
<td>207</td>
</tr>
<tr>
<td>Of Occupancy—issued to owner</td>
<td>206</td>
</tr>
<tr>
<td>Of Registration—for Registered Inspector</td>
<td>204</td>
</tr>
<tr>
<td>CERTIFICATE OF COMPLIANCE</td>
<td></td>
</tr>
<tr>
<td>Required when</td>
<td>205</td>
</tr>
<tr>
<td>CERTIFICATE OF OCCUPANCY</td>
<td></td>
</tr>
<tr>
<td>Issued by</td>
<td>206</td>
</tr>
<tr>
<td>Required when</td>
<td>206</td>
</tr>
<tr>
<td>CHANGE OF OCCUPANCY</td>
<td></td>
</tr>
<tr>
<td>Certificate required for</td>
<td>207</td>
</tr>
<tr>
<td>CHASES (see RECESSES)</td>
<td></td>
</tr>
<tr>
<td>CHIMNEYS</td>
<td></td>
</tr>
<tr>
<td>Firestopping around</td>
<td>2207, 2510 (g)</td>
</tr>
<tr>
<td>General requirements</td>
<td>3701</td>
</tr>
<tr>
<td>Patent type</td>
<td>3704</td>
</tr>
<tr>
<td>Wood frame—spaced from</td>
<td>2207</td>
</tr>
<tr>
<td>CHURCHES</td>
<td></td>
</tr>
<tr>
<td>Seating more than 3500</td>
<td>601</td>
</tr>
<tr>
<td>Seating 500 to 3500</td>
<td>701</td>
</tr>
<tr>
<td>Seating 500 or less</td>
<td>801</td>
</tr>
<tr>
<td>CITY</td>
<td></td>
</tr>
<tr>
<td>Adopted this Code, when</td>
<td>4604</td>
</tr>
<tr>
<td>Clerk—files appended documents</td>
<td>4602</td>
</tr>
<tr>
<td>Council orders repairs, when</td>
<td>301</td>
</tr>
<tr>
<td>Grants permission for storage in streets</td>
<td>4401</td>
</tr>
<tr>
<td>Levies penalties, when</td>
<td>305</td>
</tr>
<tr>
<td>Permits use of space under sidewalks</td>
<td>4501 (g)</td>
</tr>
</tbody>
</table>

284
Requires bond of registered inspector ... 204
Requires permit, when ... 201
CLASSIFICATION
Of fire-resistive construction (see Chapters 42 and 43) 501, 503
Of occupancies .. 1701, 1702
CLASSIFICATION OF BUILDINGS
By fire zones .. 1602-1603 incl.
By occupancy .. 503
By type of construction ... 1702
CLAY ROOF TILE .. 4305
CLAY TILE—HOLLOW
Bearing walls of (see HOLLOW MASONRY) 2934
For fire division walls ... 2934
For fire-resistive construction ... 4301, 4302
For fire walls ... 2933
For panel walls .. 2939
For partitions—bearing ... 2930
For partitions—non bearing .. 2937
CLEAN-OUT
For concrete forms ... 2610 (a)
For patent chimneys .. 3704
CLEARANCE
Around reinforcing in concrete ... 2610 (d)
Around smoke pipe ... 3705
Around smoke stack ... 3708
Around stoves and heaters ... 3710, 3711
Around timber in masonry ... 3706
Around warm air furnaces ... 3707
For swelling of wood floor .. 1910
Of wood framing ... 2207
Under first floor joists ... 2207
CLUBS
Seating more than 3500 .. 601
Seating 500 to 3500 ... 701
Seating 500 or less .. 801
COLD STORAGE (see GROUP G)
COLUMNS
Capital—defined ... 2608
Composite—design .. 2621 (f)
Fireproofing of .. 4930
Heavy timber ... 1908
Masonry .. 2905, 2912
Mill construction ... 1908
Project beyond property line—when .. 4601 (e)
Reinforced concrete—definition of .. 2608
Structural steel—allowable stresses .. 2702
Wood—allowable stresses .. 2504
Wood—framing details .. 1908, 2205
COMBINED STRESSES
Concrete ... 2621
Masonry .. 2411
Steel ... 2702
Wood ... 2603
COMBUSTIBLE GOODS—Sales and Storage (see GROUP F)
COMBUSTIBLE MATERIALS
Prohibited in Fire Zone No. 1 .. 1602 (l)
Regulated in Type I buildings .. 1616
Regulated in Type II buildings ... 1616
Regulated in Type III buildings ... 2116
Regulated in Type IV buildings ... 2116
Regulated in Type V buildings .. 2116
COMMUNICATING OPENINGS
Through fire separations E ... 508
COMPLIANCE—CERTIFICATE OF ... 205
COMPOSITION ROOFINGS .. 4305
COMPUTATIONS—may be required .. 201
CONCENTRATED LOADS
Required to be distributed on masonry .. 3411
Special requirements for ... 2203
CONCRETE

285
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocks of (see CONCRETE BLOCKS)</td>
<td>2404</td>
</tr>
<tr>
<td>Brick—quality and design</td>
<td>2404</td>
</tr>
<tr>
<td>Definition of</td>
<td>2408</td>
</tr>
<tr>
<td>Design of—when reinforced</td>
<td>2402</td>
</tr>
<tr>
<td>Fire-resistant classification (see Chapter 43)</td>
<td>4301, 4302</td>
</tr>
<tr>
<td>For roofs—slab or tile</td>
<td>4305</td>
</tr>
<tr>
<td>Piles</td>
<td>2503 (c)</td>
</tr>
<tr>
<td>Plain—quality and design</td>
<td>2415</td>
</tr>
<tr>
<td>Reinforced—definition of</td>
<td>2408</td>
</tr>
<tr>
<td>Reinforced—design of (see Chapter 26)</td>
<td>2402</td>
</tr>
<tr>
<td>Tests—for reinforced concrete</td>
<td>2405, 2413</td>
</tr>
<tr>
<td>Transporting and placing</td>
<td>2409</td>
</tr>
<tr>
<td>Walls—plain</td>
<td>2401-2406, incl.</td>
</tr>
<tr>
<td>Walls—reinforced</td>
<td>2914</td>
</tr>
<tr>
<td>Working stresses of</td>
<td>2410, 2413</td>
</tr>
<tr>
<td>Working stresses—masonry units</td>
<td>2410</td>
</tr>
<tr>
<td>CONCRETE BLOCKS</td>
<td></td>
</tr>
<tr>
<td>For fire division walls</td>
<td>2934</td>
</tr>
<tr>
<td>For fire-resistive construction</td>
<td>4302</td>
</tr>
<tr>
<td>For fire walls</td>
<td>2938</td>
</tr>
<tr>
<td>For masonry walls (see HOLLOW MASONRY)</td>
<td>2939</td>
</tr>
<tr>
<td>For panel walls</td>
<td>2936</td>
</tr>
<tr>
<td>For partitions—non-bearing</td>
<td>2937</td>
</tr>
<tr>
<td>Quality and design of</td>
<td>2404, 2406</td>
</tr>
<tr>
<td>CONDEMNATION</td>
<td></td>
</tr>
<tr>
<td>By Building Inspector, when</td>
<td>301</td>
</tr>
<tr>
<td>Work ordered by City, when</td>
<td>301</td>
</tr>
<tr>
<td>CONNECTIONS</td>
<td></td>
</tr>
<tr>
<td>Between fresh and hardened concrete</td>
<td>2609 (h)</td>
</tr>
<tr>
<td>Between wood and masonry</td>
<td>2606</td>
</tr>
<tr>
<td>For structural steel</td>
<td>2708</td>
</tr>
<tr>
<td>For additions to masonry walls</td>
<td>2941</td>
</tr>
<tr>
<td>In wood framing</td>
<td>2501, 2505</td>
</tr>
<tr>
<td>CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Fire Zone No. 1</td>
<td>1603</td>
</tr>
<tr>
<td>Fire Zone No. 2</td>
<td>1603</td>
</tr>
<tr>
<td>Fire Zone No. 3</td>
<td>1604</td>
</tr>
<tr>
<td>For Group A buildings</td>
<td>602, 609</td>
</tr>
<tr>
<td>For Group B buildings</td>
<td>702, 709</td>
</tr>
<tr>
<td>For Group C buildings</td>
<td>802, 809</td>
</tr>
<tr>
<td>For Group D buildings</td>
<td>902, 909</td>
</tr>
<tr>
<td>For Group E buildings</td>
<td>1002, 1009</td>
</tr>
<tr>
<td>For Group F buildings</td>
<td>1102, 1109</td>
</tr>
<tr>
<td>For Group G buildings</td>
<td>1202, 1209</td>
</tr>
<tr>
<td>For Group H buildings</td>
<td>1302, 1309</td>
</tr>
<tr>
<td>For Group I buildings</td>
<td>1402, 1409</td>
</tr>
<tr>
<td>For Group J buildings</td>
<td>1502, 1509</td>
</tr>
<tr>
<td>For types of (see TYPES OF CONSTRUCTION)</td>
<td>4401</td>
</tr>
<tr>
<td>Lights required</td>
<td>4401</td>
</tr>
<tr>
<td>Temporary buildings and structures</td>
<td>4401</td>
</tr>
<tr>
<td>Temporary use of streets allowed during</td>
<td>4401</td>
</tr>
<tr>
<td>CONSTRUCTION JOINTS—IN CONCRETE</td>
<td>2610 (g)</td>
</tr>
<tr>
<td>CONSTRUCTION MATERIAL</td>
<td></td>
</tr>
<tr>
<td>Allowed in streets, when</td>
<td>4401</td>
</tr>
<tr>
<td>Laid to be provided for, when</td>
<td>2718</td>
</tr>
<tr>
<td>CONTENTS BY PARTS, CHAPTERS AND SECTIONS (see pages a to j inclusive)</td>
<td></td>
</tr>
<tr>
<td>CONVENTS</td>
<td>1301</td>
</tr>
<tr>
<td>CORBELING</td>
<td></td>
</tr>
<tr>
<td>Of hollow masonry</td>
<td>2907</td>
</tr>
<tr>
<td>Of incinerator walls</td>
<td>3716</td>
</tr>
<tr>
<td>Of reinforced concrete</td>
<td>2914</td>
</tr>
<tr>
<td>Of solid masonry</td>
<td>2901</td>
</tr>
<tr>
<td>CORNICES (see TYPE OF BUILDING)</td>
<td>4501</td>
</tr>
<tr>
<td>COST OF BUILDINGS—for permits</td>
<td>201, 202</td>
</tr>
<tr>
<td>COVERINGS</td>
<td></td>
</tr>
<tr>
<td>For exteriors of frame buildings</td>
<td>2505</td>
</tr>
<tr>
<td>For fire protection</td>
<td>4301</td>
</tr>
<tr>
<td>For patent chimneys</td>
<td>3704</td>
</tr>
<tr>
<td>For roofs</td>
<td>4305</td>
</tr>
<tr>
<td>For warm air ducts</td>
<td>3716</td>
</tr>
<tr>
<td>For wood doors—when</td>
<td>4304</td>
</tr>
</tbody>
</table>

286
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSS AISLES IN BALCONIES</td>
<td>604</td>
</tr>
<tr>
<td>Of Group A buildings</td>
<td>604</td>
</tr>
<tr>
<td>Of Group B buildings</td>
<td>784</td>
</tr>
<tr>
<td>CURB</td>
<td></td>
</tr>
<tr>
<td>Allowed in alley—when</td>
<td>4501</td>
</tr>
<tr>
<td>For skylights—constructed how</td>
<td>3402</td>
</tr>
<tr>
<td>CURTAIN</td>
<td></td>
</tr>
<tr>
<td>For proscenium opening (see PROSCENIUM CURTAIN)</td>
<td>401</td>
</tr>
<tr>
<td>Wall—masonry—definition of</td>
<td></td>
</tr>
<tr>
<td>CURTAIN WALL</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>Hollow masonry—construction of</td>
<td>2909</td>
</tr>
<tr>
<td>Reinforced concrete—construction of</td>
<td>2916</td>
</tr>
<tr>
<td>Solid masonry—construction of</td>
<td>2908</td>
</tr>
<tr>
<td>D—Occupancies</td>
<td></td>
</tr>
<tr>
<td>DANCE HALLS</td>
<td></td>
</tr>
<tr>
<td>Seating more than 3500</td>
<td>601</td>
</tr>
<tr>
<td>Seating from 500 to 3500</td>
<td>701</td>
</tr>
<tr>
<td>Seating less than 500</td>
<td>801</td>
</tr>
<tr>
<td>DANGEROUS BUSINESS (see GROUP E)</td>
<td></td>
</tr>
<tr>
<td>DEAD LOAD</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>2301</td>
<td></td>
</tr>
<tr>
<td>DECORATIVE FEATURES—may project how</td>
<td></td>
</tr>
<tr>
<td>4501 (e)</td>
<td></td>
</tr>
<tr>
<td>DETAILED REGULATIONS</td>
<td></td>
</tr>
<tr>
<td>Bays and balconies</td>
<td>3501</td>
</tr>
<tr>
<td>Chimneys and heating apparatus</td>
<td>3701</td>
</tr>
<tr>
<td>Doors, windows and skylights</td>
<td>3401</td>
</tr>
<tr>
<td>Fire extinguishing apparatus</td>
<td>3801</td>
</tr>
<tr>
<td>Floor construction</td>
<td>3101</td>
</tr>
<tr>
<td>Enclosure of vertical openings</td>
<td>3001</td>
</tr>
<tr>
<td>Excavations, footings and foundations</td>
<td>2801</td>
</tr>
<tr>
<td>Motion picture machine booths</td>
<td>4001</td>
</tr>
<tr>
<td>Penthouses and roof structures</td>
<td>3801</td>
</tr>
<tr>
<td>Proscenium curtains</td>
<td>4101</td>
</tr>
<tr>
<td>Roof construction and covering</td>
<td>4106</td>
</tr>
<tr>
<td>Stage ventilators</td>
<td>3001</td>
</tr>
<tr>
<td>Stairs, ramps and smokeproof towers</td>
<td>3301</td>
</tr>
<tr>
<td>Walls and partitions</td>
<td>2901</td>
</tr>
<tr>
<td>DEFINITIONS</td>
<td></td>
</tr>
<tr>
<td>Of certain words</td>
<td>401</td>
</tr>
<tr>
<td>2603</td>
<td></td>
</tr>
<tr>
<td>Of fire-resistant construction</td>
<td>4201</td>
</tr>
<tr>
<td>Of Group A buildings</td>
<td>601</td>
</tr>
<tr>
<td>Of Group B buildings</td>
<td>701</td>
</tr>
<tr>
<td>Of Group O buildings</td>
<td>801</td>
</tr>
<tr>
<td>Of Group D buildings</td>
<td>901</td>
</tr>
<tr>
<td>Of Group E buildings</td>
<td>1001</td>
</tr>
<tr>
<td>Of Group F buildings</td>
<td>1101</td>
</tr>
<tr>
<td>Of Group G buildings</td>
<td>1201</td>
</tr>
<tr>
<td>Of Group H buildings</td>
<td>1301</td>
</tr>
<tr>
<td>Of Group I buildings</td>
<td>1401</td>
</tr>
<tr>
<td>Of Group J buildings</td>
<td>1501</td>
</tr>
<tr>
<td>Of terms in concrete regulations</td>
<td>2603</td>
</tr>
<tr>
<td>Of Type I buildings</td>
<td>1801</td>
</tr>
<tr>
<td>Of Type II buildings</td>
<td>1901</td>
</tr>
<tr>
<td>Of Type III buildings</td>
<td>2001</td>
</tr>
<tr>
<td>Of Type IV buildings</td>
<td>2101</td>
</tr>
<tr>
<td>Of Type V buildings</td>
<td>2201</td>
</tr>
<tr>
<td>DEMOLISH—BUILDING</td>
<td></td>
</tr>
<tr>
<td>Required when</td>
<td>301</td>
</tr>
<tr>
<td>DEPTH OF FOUNDATIONS</td>
<td></td>
</tr>
<tr>
<td>Affects excavations</td>
<td>2801</td>
</tr>
<tr>
<td>Governed by frost line</td>
<td>2938</td>
</tr>
<tr>
<td>Governed by soil conditions</td>
<td>2802</td>
</tr>
<tr>
<td>DESIGN</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>2302</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>Live loads for (see Chapter 23)</td>
<td></td>
</tr>
<tr>
<td>Must be approved by Building Inspector</td>
<td>202</td>
</tr>
<tr>
<td>Of footings and foundations (see Chapter 28)</td>
<td>2306</td>
</tr>
<tr>
<td>Of masonry materials</td>
<td>2401</td>
</tr>
<tr>
<td>Of proscenium curtains</td>
<td>4101</td>
</tr>
<tr>
<td>Of reinforced concrete</td>
<td>2902</td>
</tr>
</tbody>
</table>
Of structural steel .. 2701
Of walls .. 2901-2941, incl.
Of wood .. 2501

DIVISION

Of attic space ... 2510 (b)
Of floor area (as maximum area & occupancy) 503
Of buildings for fire protection 503

DOCUMENTS—Subject and Reference

Appended as part of Code 4602
Brick tests—A. S. T. M.—C67-31 2402, 2403, 2404
Brick—A. S. T. M.—C62-30 2402
Brick, concrete—A. S. T. M.—C56-31T 2404
Brick, sand-lime—A. S. T. M.—66-30 2403
Cast Iron—A. S. T. M.—A48-32T 2701
Cast steel—A. S. T. M.—A27-24 2701
Chimneys—N. B. F. U. Standard Ordinance for Chimney Construction 1927 .. 3701
Clay tile—A. S. T. M.—C34-33T 2408
Cold-drawn steel wire—A. S. T. M.—A82-27 2604
Concrete block or tile—A. S. T. M.—C30-31T 2406
Concrete cylinder tests—A. S. T. M.—C31-27 2605
Concrete, testing of—A. S. T. M.—C39-27 2615
Fire Tests—A. S. T. M.—C19-33 4201
Gypsum—A. S. T. M.—C22-25 and C23-30 2407
Gypsum tile—A. S. T. M.—C52-33 2407
Hydraulic cement—A. S. T. M.—C6-34 2409
Inflammables liquids—S. F. P. O. Edition 1930 1008
Oil burners—N. B. F. U.—regulations for oil burning equipment, 1928 3713
On file with City Clerk .. 4603
Portland cement—A. S. T. M.—C9-30 2409
Quicklime—A. S. T. M.—C5-26 2409
Rail steel reinforcing—A. S. T. M.—A16-14 2604 (d)
Sands, organic impurities in—A. S. T. M.—C40-27 . 2604 (b)
Structural, intermediate or hard-grade reinforcing—A. S. T. M.— A15-14 2604 (d)
Structural steel—A. S. T. M.—A9-33 2701
Welding—A. W. S.—Bulletin No. 2, December, 1921 2710
Wood—A. L. S.—R16-29—July 1, 1929 2501

DOORS

Construction—For one-hour rating 4304
Fire-resistive—classification of 4304
Fire-resistive—design of 4304
Fire-resistive—shall be hung now 4304
Fire-resistive—when required (see under OCCUPANCY, FIRE ZONES and TYPE OF BUILDING) 4304
For enclosure walls of vertical openings 3002, 3003
For fire separations .. 503
For Group A buildings 604 (i)
For Group B buildings 705-706
For Group D buildings 904
For horizontal exits 3311
For motion picture machine booths 4001
For smokeproof towers 3315
For stage ventilators 3001
General requirements 3401
May not project over public property, when 4501 (f)
Pocketed in wood partitions 2510 (e)

DORMITORIES .. 1301

DOWNSPOUT

For marquises .. 4501 (d)
For roofs—general ... 3206

DRAINAGE FILL .. 1811

DRAWINGS

Required for permit 201
Shall include what ... 201
DRESSING ROOMS
Exits from ...604 (a)
Fire protection of ..607
Location of ..502

DRIFTING
Not permitted, when ..2716 (b)

DRAIN CLEANING PLANTS
Classified as ..1001
Inflammable liquids regulated1008
Open flame prohibited1808
Steam fire extinguishing apparatus1008
Ventilation of ..1008

DRY STANDPIPES (see STANDPIPES)

DUCTS
For warm air furnaces ..3715
For ventilation of motion picture booths4001

DUTIES
Of Board of Examiners and Appeals304
Of Building Inspector (see BUILDING INSPECTOR)301

DWELLING
Definition of ..401
Hollow masonry walls for2909
In Group I Occupancy1401
Solid masonry walls for2903 (c)
When constructed on roof1409

E—OCCUPANCIES ..1001

EARTH PRESSURE
Calculations for ...2310

EARTHQUAKES—Provisions for2311

ECCENTRIC LOADS
In masonry construction2411
Steel ..2703

EFFECTIVE
Date of ordinance ...4004

EGRESS (see STAIRS)

ELECTRIC WELDING (see WELD)

ELEVATOR SHAFTS (see VERTICAL OPENINGS)

EMERGENCY
Controls for prosenium curtain4104
Exits for—Group A buildings604
Exits for—Group B buildings704
Exits for—Group C buildings804
For stage ventilators ...3801
Release for picture booth openings4001
Signs for exits ...604, 3312

ENCLOSURE OF VERTICAL OPENINGS (see OCCUPANCY and TYPE
OF BUILDING)
For elevators ..8008
For stairs and ramps ...8008, 3312
Miscellaneous openings8008
When required ..8001
When smokeproof tower8315
When through special fire separation508 (b)

ENCLOSURE WALLS
Construction of ...2939
Definition of ..401

ENGINEER—STRUCTURAL
Name required on plans201

ENGINEERING REGULATIONS—quality and design of the materials of
collection
Live and dead loads ...2301-2311, incl.
Masonry (quality and design)2401-2411, incl.
Reinforced concrete (quality and design)2601-2622, incl.
Steel and iron (quality and design)2701-2718, incl.
Wood (quality and design)2501-2511, incl.

ENGINEERING SUPERVISION
Required when ..204

ERECTION
Of concrete forms ...2610
Of masonry walls ...2940
Of new buildings ...201
Of structural steel ...2718
Of wireless masts ...3002
Of wood construction ..2505-2610, incl.
EXCAVATIONS
General details for .. 2803
Water to be removed from, when 2609 (c)

EXHAUST VENTILATION
For automobile storage .. 1005
For dry cleaning establishments 1008
For motion picture machine booths 4001

EXISTING BUILDING
Application of Code to ... 104
Definition of .. 401

EXISTING WALLS
Extensions of ... 2941

EXIT LIGHTS
For Group A buildings ... 604 (l)
For Group B buildings ... 704
General requirements ... 3306, 3312

EXITs, ETC.
General requirements ... 3301
Group A buildings .. 504
Group B buildings .. 704
Group C buildings .. 804
Group D buildings .. 904
Group E buildings .. 1004
Group F buildings ... 1104
Group G building ... 1204
Group H buildings ... 1304
Group J buildings ... 1404
Group K buildings ... 1504

EXCHANGE
Provision for .. 2803
Rollers for .. 2702 (h)

EXPLANATION OF TERMS
General ... 401
Of reinforced concrete ... 2803

EXPLOSIVES—STORAGE ... 1001

EXTERIOR OPENINGS—PROTECTION REQUIRED WHEN
Because of location in Fire Zone 1602, 1603
Because of location on property (see OCCUPANCY GROUP)
Because of Type of Construction (see TYPE OF BUILDING)

EXTERNAL WALLS—Requirements for
Construction of (see LOCATION ON PROPERTY or TYPE OF BUILDING)
Construction when in Fire Zone No. 2 1603
Construction of openings (see Particular OCCUPANCY GROUP, TYPE OF CONSTRUCTION or FIRE ZONE)

F— occupancies ... 1101

FACED WALLS (see WALLS)

FACTORIES
Moderately hazardous (see GROUP F) 1101
Non-hazardous (see GROUP G) 1201

FAMILY
Definition of .. 401

FEES
Additional fee required—when 305
Doubled—when ... 203
For building permits .. 203
Record required of .. 203

FENCES
Classed as .. 1501
For construction purposes 1602, 4401

FILLED GROUND ... 2802

FILL UNDER FLOOR ... 1810

FILM EXCHANGES
Classed as .. 1001, 4801
Sprinklers required for .. 3801

FILMS—INFLAMMABLE
Storage and use of .. 4001

FINAL INSPECTION
Certificate of Compliance required when 205
Made when .. 206
Required when ... 204

FINES—FOR VIOLATIONS ... 305

FIRE
Classification of materials for resistance to (see Chapter 43)
Extinguishing apparatus (see FIRE EXTINGUISHING APPARATUS) 503
Separations required—for certain occupancies 401
Standards 401
Walls—hollow masonry 2933
Walls—solid masonry 2932

FIRE CLAY
For flue lining 3701
For incinerator combustion chamber 3716
For patent chimneys 3704

FIRE CUT
Required for timbers 2506

FIRE DAMAGE
Causes condemnation—when 104, 301
Repairs allowed—When 104 (a)

FIRE DEPARTMENT
Access to basement pipe inlets 3807

FIRE DIVISION WALL
Construction of 2934
Definition of 401

FIRE EXTINGUISHING APPARATUS
Automatic sprinklers—requirements for 3802
Automatic sprinklers—where required 3801
Basement pipe inlets—where required 3807

Dry standpipes—requirements 3804
Dry standpipes—where required 3803
For Group A buildings 607
For Group B buildings 707
For Group C buildings 807
For Group D buildings 907
For Group E buildings 1007
For Group F buildings 1107
For Group G buildings 1207
For Group H buildings 1307
For Group I buildings 1407
For Group J buildings 1507
Wet standpipes—requirements 3805
Wet standpipes—where required 3805

FIRE LIMITS 1601

FIREPLACES—CONSTRUCTION OF 3706

FIREPROOFING (see TYPE OF BUILDING)
Requirements—detailed 4301

FIREPROOF PASSAGeways
For Group A buildings 604
For Group B buildings 704
For smokeproof towers 3315

FIRE PUMPS
For wet standpipe supply 3806

FIRE-RESISTIVE
Construction 4203
Construction defined 4201
Doors, windows and shutters 4304
Floor construction 4303
Inspection of plaster protection—when 204
Materials 4202
Materials, tests for 4201
Protection of structural parts 4301
Roof coverings 4305
Standards—specifications for 4201
Walls 4302

FIRE-RESISTIVE BUILDINGS (see TYPE I BUILDINGS) 1801-1816, incl.

FIRE-RESISTIVE STANDARDS
For doors and shutters 4304
For floor construction 4308
For protection of structural parts 4301
For roof coverings 4305
For walls and partitions 4304
For windows 4304

FIRE-RESISTIVE STANDARDS FOR FIRE PROTECTION
General requirements 4201-4203, incl.
Standards—detailed 4301-4306, incl.

FIRE SEPARATIONS
Required when 503
FIRE STATIONS .. 1101
FIRESTOPPING
Between wood sleepers ... 1810
For wood frame construction 2510
In Type III buildings .. 2051, 2061
In Type V buildings .. 2205, 2208
FIRE WALL
Construction—hollow masonry 2933
Construction—solid masonry 2932
Definition of .. 401
May apply as fire separation when 503
FIRE ZONES
Definition of .. 1601
Doors may not project—when 4501 (f)
Requirements for Fire Zone No. 1 1602
Requirements for Fire Zone No. 2 1603
Requirements for Fire Zone No. 3 1604
FLAG POLES ... 3601
FLAME—OPEN
Prohibited when ... 1008
FLASHING
Waterproof paper and metal 4712
FLAT SLAB—General requirements 2620
FLOOR AREA
Definition of .. 401
Limited (see OCCUPANCY and FIRE ZONES)
FLOOR CONSTRUCTION
Concrete ... 3102
Fire protection—of certain floors 4301
Fire-resistive—classification of 4303, 4304
For fire-resistive construction 4303
General (see TYPE OF BUILDING) 3101
Mill construction ... 3104
Motion picture machine booths 4001
Stages ... 609, 609
Steel joist .. 3103
Under warm air furnaces 3707
Wood joist ... 3106
FLOOR FILL—Required when 1810
FLOOR LEVELS
Determine sprinkler requirements—when 3801
For Group A buildings 602, 603, 604
For Group B buildings 702, 703, 704
For Group E buildings .. 1004
FLOOR LOADS
Assumed live .. 2304
Definitions of .. 2301
Reductions allowed .. 2306
Required to be posted .. 2308
Special considerations .. 2308
FLOOR OPENINGS
Enclosures of—when required (see VERTICAL OPENINGS—ENCLOSURE OF)
In stages—construction of 606
FLOOR PROTECTION
For wood joisted floor ... 4301
Over heating plants ... 3707, 3708
Over ranges ... 3711, 3712
Required in Type III buildings 2010
Under stoves .. 3710
FLUES
Area required .. 3701
Lining for chimneys .. 3701
Lining for smokestacks .. 3702
FOOTINGS
Concrete—design of .. 2632
Design of—general .. 2308, 2802
FORMS—for concrete construction 2610
May be removed—when ... 2610 (b)
FOUNDATION
Concrete—design of .. 2632
Construction allowed (see TYPE OF BUILDING) 401
Definition of .. 2308, 2802
Excavations for ... 2801
Footings—isolated ... 2306, 2309
For retaining wall ... 2310
Inspection required for Type V buildings 204
Liability of adjoining property 2301
May be omitted— when 2204
May project beyond property line— when 4501 (c)
Openings in walls for ventilation 2204
Owner's liability for .. 2301
Piling for ... 2308
Soil bearing allowed .. 2302
Stepped— when .. 2204
Thickness of walls for Type V buildings 2204
Walls of ... 2388
FRAME BUILDINGS (see TYPE V BUILDINGS) 2201
FRAME INSPECTION
Required when .. 204
FRAMING
Around chimneys .. 2207
Of wood construction (see WOOD)
FRAMEWORK—OF BUILDING (see TYPE OF BUILDING)
FRONT OF LOT
Definition of .. 401
FRONTAGE CONSENT REQUIRED
For storage of building materials 4401
FROST
Depth of foundations for 2938
Protection of concrete from 2609 (g)
FURNACES—WARM AIR
Ducts and appurtenances for 3875
General requirements .. 3707
Intake required for ... 3707
FURRING
Not allowed near chimney 2507 (b)
Of stucco reinforcement 2205 (c)
Requirements in wood frame construction 2510 (b)
FUSIBLE LINKS
For automatic sprinkler systems 3802
For doors—automobile ramp enclosures 1006
For fire doors .. 3401
For horizontal exits, when 3311
For motion picture machine booths 4001
For proscenium curtains 4104
For stage ventilators 3901
For vents supplying air back stage 605
G—occupancies ... 1201
GALVANIZED IRON
Casing for patent chimneys 3704
Used for roof .. 4305
Used as siding ... 2105, 2205 (e)
GARAGE
Classified how .. 1001
Construction limited 1009
Definition of ... 401
Detailed requirements (see GROUP E)
Private—classified as 1501
Private—definition of 401
Private—limited how 1509
GAS
Furnaces .. 3707
Heaters ... 3711
Hot plates ... 3711
Ranges—domestic ... 3711
Ranges—large ... 3712
Shutoffs required (see GAS SERVICE—SHUT OFF)
Vents—general requirements 3703
GAS CUTTING
How performed ... 2716 (f)
GASOLINE SERVICE STATIONS (see GROUP E)
Construction .. 1009
GAS SERVICE—SHUT-OFF REQUIRED
For Group A buildings .. 608
For Group B buildings 708
For Group D buildings 908
GIRDERS
Concrete (construction joints) 2610
Fireproofing of ... 4301
Loads reduced when ... 2306
Steel ... 2704
Wood .. 2207, 2500

GRADE
Definition of ... 401

GRADES OF
Brick ... 2402, 2403, 2404
Hollow clay or concrete building units ... 2406, 2408

GRADIENTS—allowed
For automobile storage .. 1004
For ramps ... 3310
In Group A buildings ... 602, 604
In Group B buildings ... 704

GRAND STANDS .. 1501, 1502

GRAVITY TANKS
For oil burning equipment ... 3713
For wet standpipe supply ... 3808

GREENHOUSE
Roof to be constructed—how ... 3402

GRIDRONS
Construction of ... 609

GROUP A OCCUPANCY
Area ... 602
Boxes ... 604 (h)
Chimney and heating apparatus ... 602
Construction ... 602
Defined ... 601
Doors and gates ... 604 (l)
Enclosure of vertical openings ... 606
Existing buildings—classified when 609
Exit courts ... 604 (b)
Exit lights .. 604 (j)
Fire extinguishing apparatus .. 607
Height ... 602
Light and ventilation ... 605
Location on property ... 603
Mixed occupancies—separations for 610
Moving picture machine booths 4003
Obstructions .. 604 (l)
Occupancies included ... 601
Protection of exterior openings ... 603
Running tracks—construction permitted 609
Seats ... 604 (k)
Smokeproof tower .. 604 (k)
Special hazards ... 608
Stairs and exits ... 604
Stage ... 609

GROUP B OCCUPANCY
Area ... 702
Boxes ... 704
Chimneys and heating apparatus 702
Construction ... 702
Defined ... 701
Doors and gates ... 703
Enclosure of vertical openings ... 706
Exit lights .. 703
Fire extinguishing apparatus .. 707
Height ... 702
Inflammable liquids prohibited ... 708
Light and ventilation ... 705
Location on property ... 703
Main entrance ... 703, 704, 706
Mixed occupancies—separation from 710
Motion picture machine booths 4001
Occupancies included ... 701
Protection of exterior openings ... 703
Running tracks—construction .. 709
Seating capacity may be increased, when 702 (k)
Seats ... 704

294
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special construction requirements</td>
<td>702 (b), 709</td>
<td></td>
</tr>
<tr>
<td>Special hazards</td>
<td>708</td>
<td></td>
</tr>
<tr>
<td>Stairs and exits</td>
<td>704</td>
<td></td>
</tr>
<tr>
<td>When located on second floor</td>
<td>706</td>
<td></td>
</tr>
</tbody>
</table>

GROUP C OCCUPANCY

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>802</td>
<td></td>
</tr>
<tr>
<td>Chimneys and heating apparatus</td>
<td>808</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>802</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>Enclosure of vertical openings</td>
<td>806</td>
<td></td>
</tr>
<tr>
<td>Fire extinguishing apparatus</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>802</td>
<td></td>
</tr>
<tr>
<td>Light and ventilation</td>
<td>805</td>
<td></td>
</tr>
<tr>
<td>Location on property</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>Main exit located where</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>Mixed occupancies—separation from</td>
<td>810</td>
<td></td>
</tr>
<tr>
<td>Motion picture machine booths</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Occupancies included</td>
<td>801</td>
<td></td>
</tr>
<tr>
<td>Protection of exterior openings</td>
<td>803</td>
<td></td>
</tr>
<tr>
<td>Running tracks—construction of</td>
<td>809</td>
<td></td>
</tr>
<tr>
<td>Special construction</td>
<td>802 (b), 809</td>
<td></td>
</tr>
<tr>
<td>Special hazards</td>
<td>808</td>
<td></td>
</tr>
</tbody>
</table>

GROUP D OCCUPANCY

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>Chimneys and heating apparatus</td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>Enclosure of vertical openings</td>
<td>906</td>
<td></td>
</tr>
<tr>
<td>Fire extinguishing apparatus</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>902</td>
<td></td>
</tr>
<tr>
<td>Inflammable liquids—storage regulated</td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>Jails—special construction</td>
<td>909</td>
<td></td>
</tr>
<tr>
<td>Light and ventilation</td>
<td>905</td>
<td></td>
</tr>
<tr>
<td>Location on property</td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>Mixed occupancies—separation from</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>Motion picture machine booths</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>Occupancies included</td>
<td>901</td>
<td></td>
</tr>
<tr>
<td>Protection of exterior openings</td>
<td>903</td>
<td></td>
</tr>
<tr>
<td>Ramps required, when</td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>Self-releasing latches or panic bolts, when</td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>Special construction</td>
<td>902 (b), 909</td>
<td></td>
</tr>
<tr>
<td>Special hazards</td>
<td>908</td>
<td></td>
</tr>
<tr>
<td>Stairs and exits</td>
<td>904</td>
<td></td>
</tr>
</tbody>
</table>

GROUP E OCCUPANCY

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>Automobile ramps</td>
<td>1004</td>
<td></td>
</tr>
<tr>
<td>Chimneys and heating apparatus</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>Dry cleaning—special construction</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>Enclosure of vertical openings</td>
<td>1006</td>
<td></td>
</tr>
<tr>
<td>Exceptions and deviations</td>
<td>1009</td>
<td></td>
</tr>
<tr>
<td>Fire extinguishing apparatus</td>
<td>1007</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>Inflammable liquids—regulated</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>Light, ventilation and sanitation</td>
<td>1005</td>
<td></td>
</tr>
<tr>
<td>Location on property</td>
<td>1003</td>
<td></td>
</tr>
<tr>
<td>Mixed occupancies—separation from</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>Occupancies included</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>Prohibited in Fire Zone No. 1</td>
<td>1602 (1)</td>
<td></td>
</tr>
<tr>
<td>Prohibited in Fire Zone No. 3</td>
<td>1603</td>
<td></td>
</tr>
<tr>
<td>Protection of exterior openings</td>
<td>1603</td>
<td></td>
</tr>
<tr>
<td>Special hazards</td>
<td>1008</td>
<td></td>
</tr>
<tr>
<td>Stairs and exits</td>
<td>1004</td>
<td></td>
</tr>
</tbody>
</table>

GROUP F OCCUPANCY

<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>1102</td>
<td></td>
</tr>
<tr>
<td>Chimneys and heating apparatus</td>
<td>1108</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>1102</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>1101</td>
<td></td>
</tr>
<tr>
<td>Enclosure of vertical openings</td>
<td>1106</td>
<td></td>
</tr>
<tr>
<td>Fire extinguishing apparatus</td>
<td>1107</td>
<td></td>
</tr>
</tbody>
</table>
Light and ventilation .. 1505
Location on property 1503
Mixed occupancies—separation from 1510
Occupancies included 1501
Protection of exterior openings 1503
Seats .. 1504 (b)
Special construction—amusement structures 1509
Special hazards .. 1508
Stairs and exits ... 1504

GUEST
Definition of ... 401

GUEST ROOM
Definition of ... 401

GUNITE (also see Pneumatically Placed Shicco)
As exterior covering for frame construction 2205
Definition of ... 2603
Enclosure and panel walls 2939
Fire-resistive standards 4301, 4302
Increasing thickness of existing walls 2941
Partitions—non-bearing 2937
Tests of ... 2913

GUTTERS—to be kept free of obstructions—when 4401

GYMNASIUMS—Special Construction
For Group A buildings 609
For Group B buildings 709
For Group C buildings 809

GYPSUM
Blocks for fire-resistive construction 4302
Fire-resistive classification 4301, 4302
Partitions—non-bearing 2937
Plaster for fire-resistive purposes 4301, 4302
Plaster lath ... 4301
Quality and design ... 4307
Slabs .. 3108
Working stresses ... 3110

H—occupancies ... 1001

HANGERS REQUIRED
For joists ... 2506 (i)

HAZARDOUS OCCUPANCIES
Highly hazardous (see GROUP E) 1001
Moderately hazardous (see GROUP F) 1101
Non-hazardous (see GROUP G) 1201

HEADER—in frame construction
Joists—support required 2506 (i)
Over opening in stud partitions 2507 (d)

HEATERS
General requirements 3714
Using gas for fuel .. 3711
Using solid or liquid fuel 3708

HEATING PLANTS—LOW PRESSURE STEAM 3708

HEAVY TIMBER CONSTRUCTION (see TYPE II BUILDINGS) 1901-1916, incl.

HEIGHT
Additional for roof structures 3601
Adjoining building affects vents 3703
Affects other required 3803
Definition of .. 401
For awnings .. 4501 (b)
For Group A Occupancy 602
For Group B Occupancy 702
For Group C Occupancy 802
For Group D Occupancy 902
For Group E Occupancy 1002
For Group F Occupancy 1102
For Group G Occupancy 1202
For Group H Occupancy 1302
For Group I Occupancy 1402
For Group J Occupancy 1502
For rainwater above sidewalk 4501 (d)
For permanent projections over property line 4501

For Type I Buildings (Fire-resistive) 1802
For Type II Buildings (Heavy Timber) 1902
For Type III Buildings (Ordinary Masonry) 2002
For Type IV Buildings (Metal Frame) 2102
For Type V Buildings (Wood Frame) 2202

297
Masonry Walls (see WALLS)
- Of masonry walls .. 2927
- Of veneer .. 2927
- Towers or spires ... 3609

Hollow Clay Tile
- Fire-resistant classification 4301, 4302
- Quality and design .. 2408
- Walls (see WALLS) ... 2410
- Working stresses .. 2410

Hollow Concrete Block or Tile
- Quality and design ... 2408
- Walls (see WALLS) ... 2410
- Working stresses .. 2410

Hollow Masonry Walls (see WALLS)

Horizontal Exits
- General requirements ... 3311
- Signs for .. 3312
- Substitute for stairways when 3309

Hose
- As equipment for wet standpipe 3806
- Used in fire tests ... 4201

Hose Connections
- To dry standpipes ... 3804
- To wet standpipes .. 3806

Hospitals

Hotel
- Classified how .. 1301
- Definition of .. 401
- Detailed requirements (see GROUP H) 3711

Hot Plates—Using Gas

Houses of Correction
- (see ACT—HOUSING) ... 901

Housing Act
- (see ACT—HOUSING) ... 901
- I— Occupancies .. 1401
- Ice Plants .. 1201

Illuminated Signs—At Exits
- General .. 3312
- Of Group A buildings .. 604 (J)
- Of Group B buildings ... 705

Incinerators
- Chimneys for ... 3701
- Construction of .. 3716

Inclines (see gradients)

Inflammable Liquids—Regulated
- In Group A buildings .. 608
- In Group B buildings ... 708
- In Group C buildings ... 808
- In Group D buildings ... 908
- In Group E buildings ... 1008
- In Group F buildings ... 1108
- In Group G buildings ... 1208
- In Group H buildings ... 1308
- In Group I buildings ... 1408
- In Group J buildings ... 1508
- Storage for heating purposes .. 3713

Inner Court Walls (see Type of Building)

Inspection
- Final—required when .. 204
- For change of occupancy ... 207
- Of concrete units by Underwriters’ Laboratories 2406
- Of fire doors by Underwriters’ Laboratories 4304
- Of plans .. 202
- By registered inspector ... 204
- Of roofing by Underwriters’ Laboratories 4305
- Of windows by Underwriters’ Laboratories 4304
- Required when .. 204

Insulation Material
- Regulations for .. 2016, 2211

Interior Trim
- For Type I buildings ... 1816
- For Type II buildings .. 1916

Interior Wall
- Definition of ... 401

298
INTERPRETATION OF CODE
By Board of Appeals .. 304
By Building Inspector 302
IRON
Cast—allowable working stresses 2702
Cast columns—painted, when 2717 (d)
Cast—specifications for 2701
Galvanized — for exterior walls 2106, 2205
Galvanized — for roofs 1109, 1209, 4305
J—occupancies ... 1501
JAILS .. 901
JOIST HANGERS .. 2506 (i)
JOISTS
Concrete ... 3102
Fireproofing of .. 4301, 4303
Steel .. 2714, 3103
Steel—tests required when 2714 (g)
Wood .. 2207, 2506
KEENE'S CEMENT
Specifications for ... 4710
LADDERS
As access to roof space 3205
LAIANCE
Definition of ... 2603
LAMINATED FLOORS ... 1910
LANDING OF STAIRS ... 3307, 3308
LATERAL BRACING .. 2311
LATH
Fibre board .. 4704
Gypsum .. 4301, 4302, 4703
Metal (see METAL LATH)
Wood (see COMBUSTIBLE MATERIALS)

LEGISLATIVE .. 4601-4604, incl.

LIBRARIES
Seating more than 2500 601
Seating from 500 to 2500 701
Seating less than 500 801

LIFE OF PERMIT ... 305
LIGHT—Requirements for
During construction .. 4401
For exit signs .. 3812
For Group A buildings 605
For Group B buildings 705
For Group C buildings 805
For Group D buildings 905
For Group E buildings 1005
For Group F buildings 1105
For Group G buildings 1205
For Group H buildings 1305
For Group I buildings 1405
For Group J buildings 1505
For stairways and exits 3305

LIME
Proportions for mortar 2409
Specifications for ... 2409
LINING
Of chimneys ... 3701
Of existing walls .. 2941
Of patent chimneys .. 3704
Of smokestacks ... 3702
LINTEL
Definition of .. 401
Fireproofing omitted when 1809 (a-2), 1909 (a-2)
Special construction 2906, 2913, 2918
LIQUIDS (see INFLAMMABLE LIQUIDS)
LIVE LOADS
Concentrations of ... 2308
For roofs .. 401, 2301
Reductions allowed .. 2306
Required to be posted .. 2308
Special considerations .. 2308
Units—for certain occupancies 2304

LOADING PLATFORMS
May be of wood — when .. 1814, 1914, 2014

LOADS (see LIVE AND DEAD LOADS)
During construction .. 2718
For retaining wall design .. 2310
Piles—bearing power of .. 2803
Soil—bearing capacity of ... 2802

LOBBIES IN THEATRES
Obstructions .. 604 (1)
Size required ... 604 (a)

LOCATION IN FIRE ZONES—Requirements for
Fire Zone No. 1 ... 1602
Fire Zone No. 2 ... 1603
Fire Zone No. 3 ... 1604

LOCATION ON PROPERTY—Requirements for
General requirements ... 504
Group A buildings .. 603
Group B buildings .. 703
Group C buildings .. 803
Group D buildings .. 903
Group E buildings .. 1003
Group F buildings ... 1103
Group G buildings .. 1203
Group H buildings .. 1303
Group I buildings ... 1403
Group J buildings ... 1503

LODGES
Seating more than 3500 ... 601
Seating from 500 to 3500 .. 701
Seating less than 500 ... 801

LODGING HOUSE ... 1801

LONG COLUMNS
Reinforced concrete ... 2621 (h)

LOT LINES (see LOCATION ON PROPERTY)

LUMBER (see WOOD) ... 2501

MAINTENANCE
Of buildings or structures ... 105
Of present safety devices ... 105
Requires authority from Building Inspector 105

MARQUISSES (see TYPE OF BUILDING) 4501 (d)

MASONRY
Definition of ... 401, 2401
Materials classified ... 2401
Quality and design (see Chapter 24)
Tests required .. 1401
Walls and partitions (see WALLS)

MASONRY VENEER
For masonry walls ... 2204
Over wood frame ... 2205 (d)

MATTRESS FACTORIES .. 1001

MEASUREMENT OF HEIGHTS
Of buildings (see definition of HEIGHT) 401

*MECHANICAL VENTILATION (see VENTILATION)

METAL
As lath (see METAL LATH) ... 4305
As roof covering .. 4305
Exterior wall covering ... 2105, 2205
For enclosing patent chimneys 3704
Frames with wire glass .. 4304
Gas vents of ... 3708
Required for doors .. 4304
Smokestacks of .. 3702

METAL FRAME BUILDINGS (see TYPE IV BUILDINGS) 2101-2116, incl.

METAL LATH
For fire-resistive construction 4301, 4302, 4508
For floor construction .. 3108
For partitions .. 2937, 4302
For stucco reinforcing .. 2205

METHODS OF CALCULATIONS .. 2302

MEZZANINE OR MEZZANINE FLOOR
Construction for Type I buildings 1816
Construction for Type II buildings 1016
Definition of .. 401

MILL CONSTRUCTION (see TYPE II BUILDINGS)
MINIMUM REQUIREMENTS
For classification of type of construction 1702
For fire protection of structural parts 4301, 4302, 4303
Purpose of Code ... 102

MINOR ALTERATIONS IN ZONE 1 1602-e

MIX
For masonry mortars .. 2409
For reinforced concrete .. 3609 (a)

MIXED OCCUPANCIES
Separations required .. 503

MONASTERIES .. 1801

MORTAR
For masonry construction .. 2409
For reinforced concrete .. 2808
May be mixed in street—how ... 4401

MOTION PICTURE MACHINE BOOTHs
Construction and design ... 4001
For Group A buildings .. 608
For Group B buildings .. 708
For Group C buildings .. 908
For Group D buildings .. 908
Sprinkler requirements ... 3601

MOVING—OF BUILDINGS
When in Fire Zone No. 1 .. 1602
When in Fire Zone No. 2 .. 1603
When in Fire Zone No. 3 .. 1604
Permit required for ... 202

GENERAL ... 4601, 4611

MOVING PICTURE THEATRES
No stage ... 701
Seating 1,000 or more or with more than 5 ft. stage 601

MUDSILL
Required when .. 2204, 2205

MUSEUMS
Seating more than 3500 ... 601
Seating 500 to 3500 .. 701
Seating less than 500 ... 801

NATIONAL BOARD OF FIRE UNDERWRITERS
Ordinance for chimney construction 3701
Installation of automatic sprinklers 3802
Oil burner equipment .. 3713
Protection of openings ... 4304

NATIONAL FIRE PROTECTION ASSOCIATION
Oil burner equipment .. 3713
Protection of openings, against fire 4304
Use, handling, storage and sale of inflammable liquids 1008

NEW METHODS ... 204

NIGHT LIGHTS—for stairs and exits 3506

NON-BEARING WALL
Definition of .. 401
Hollow masonry—construction 2909
Reinforced concrete—construction 2916
Solid masonry—construction 2903
Stone—construction .. 2921

NOTICES
For inspections by Building Inspector 204
Of appeals .. 303
Of approval required ... 204
Of condemnation ... 303
Of registered inspector .. 204
Of violations .. 306

NURSERIES .. 901

301
OBSTRUCTIONS—PROHIBITED
As locks on doors .. 3304
At fire doors .. 4304
At horizontal exits 3311
In Group A buildings 604 (1)
In Group D buildings 904
In gutter—when 4401
In stage ventilators 3901
In stairway enclosures 8308

OCCUPANCY
Certificate of .. 206
Change in use .. 502
Classified by Building Inspector, when 501
Classified how ... 501
Definition of ... 401
Existing buildings classified how 502
Group A .. 501
Group E .. 701
Group D .. 901
Group G .. 1001
Group K .. 1201
Group H .. 1301
Group I .. 1401
Group J .. 1501
Mixed .. 503
Permanent—of public property 4501
Separations required 503
Temporary—allowed for construction purposes 4401
When not specifically mentioned in Code 501

OFFICE BUILDINGS 1101

OIL
Burners—general requirements 3713
Protection against saturating wood floors 1009
Storage of ... 1001, 1008

OLD PEOPLE'S HOMES 1301

OPENINGS
Exterior—to be protected when (see LOCATION ON PROPERTY and FIRE ZONES)
Vertical—to be protected when (see VERTICAL OPENINGS—ENCLOSURE OF)

ORDINANCE
Adopted when .. 4604
Repealed by this ordinance 4603

ORDINARY MASONRY BUILDINGS (see TYPE III BUILDINGS) 2001-2016, incl.

ORIEL WINDOW
Construction of 3501
Definition of ... 401

ORPHANAGES .. 901

OVERCROWDING PROHIBITED
In Group A buildings 604 (1)
Where moveable seats are used 2308

OVERLOADS OF FLOORS—not permitted 2308

OVERTURNING MOMENT
For wind calculations 2307

OWNER
Employs registered inspector—when 204
May occupy sidewalk space—when 4401
Occupies building—when 206
Permits storage of materials in street—when 4401
Required to post signs 2308
Required to repair buildings—when 301
Responsibility of, when adjoining 2801

PAINTING
Of cast iron, when 2717
Of structural steel 2717

PAINT SHOPS .. 1001

PAINT STORAGE 1001

PANEL WALL
Construction of 2939
<p>| PERSON | Definition of | 401 |
| PETROLEUM STORAGE | | 1001 | |
| PHOTOGRAPHY | Roof structures allowed for | 3601 |
| | Special skylight construction for | 3402 |
| PIERs | Hollow masonry | 2912 |
| | Reinforced concrete | 2917 |
| | Solid masonry | 2905 |
| PILES | General requirements | 2803 |
| PINS | Allowable stresses | 2702 |
| | General requirements | 2713 |
| PLAIN CONCRETE | Definition of | 2406 |
| | Quality and design | 2405 |
| | Walls (see WALLS) | | |
| | Working stresses | 2410 |
| PLANTING MILLS | | 1001 |
| PLANS | Approved by Building Inspector | 202 |
| | Required for permit when | 201 |
| | Show water-cement ratio, when | 2606 |
| PLASTER AND PLASTERING | As stucco (exterior) | 2205, 4713, 4714 |
| | Cement, when not to be used | 4715 |
| | Fire-resistive, classification of | 4301, 4302 |
| | Inspection of | 204 |
| | Materials for fire-resistive construction | 4206 |
| | Over fibre board (interior) | 4710 |
| | Over masonry (interior) | 4719 |
| | Over metal lath (interior) | 4715, 4718 |
| | Over wood lath (interior) | 4715 |
| | Over plaster lath (interior) | 4715 |
| | Pneumatically placed (exterior or interior) | 4714 |
| | Reinforcing for | 4709 |
| | Sand | 4707 |
| | Stucco | 4721 |
| | With cement (interior) | 4720 |
| | With hardwall gypsum (interior) | 4717 |
| | With lime mortar (interior) | 4716 |
| PLASTERBOARD—GYPSUM | For fire resistance—ceilings | 4301 |
| | For fire resistance—partitions | 4302 |
| PLATE | In bearing partitions | 2507 (a) |
| | Sill (see MUDSILL) | | |
| PLATE GIRDERs | | 2704 |
| PLUMBING | Structural steel | 2718 |
| PNEUMATICALLY PLACED STUCCO | Definition and method of placing | 4714 |
| POLICE STATIONS | | 1101 |
| PORCHES (see TYPE OF BUILDING) | May project—when | 4501 (a) |
| PORTLAND CEMENT | Definition of | 2503 |
| | In masonry mortar | 2409 |
| | Specifications for | 2604 (a) |
| | Storage of | 2604 (e) |
| POWER PLANTS | | 1201 |
| PRESSURE TANKS | For wet standpipe supply | 3806 |
| PRINTING PLANTS | | 1101 |
| PRISONS | | 901 |
| PRIVATE GARAGE (see GARAGE) | | |
| PROJECTIONS FROM BUILDING (see TYPE OF BUILDING) | Awnings | 4501 (b) |
| | Bays and balconies | 3501 |
| | Below sidewalk | 4601 (e) |
| | Cornices, marquises etc. | 4601 (c) |
| | In alleys—when | 4501 (b) |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPERTY ROOMS, GROUP A BUILDINGS</td>
<td>(see STORE ROOMS)</td>
<td>4601</td>
</tr>
<tr>
<td>PROSCENIUM</td>
<td></td>
<td>4101, 4102</td>
</tr>
<tr>
<td>Curtain—construction of</td>
<td></td>
<td>4101, 4102</td>
</tr>
<tr>
<td>Curtain required</td>
<td></td>
<td>4102 (b), 702 (b)</td>
</tr>
<tr>
<td>Curtain—tests</td>
<td></td>
<td>4106</td>
</tr>
<tr>
<td>Sprinkling of opening required</td>
<td></td>
<td>4106, 3801</td>
</tr>
<tr>
<td>Wall</td>
<td></td>
<td>4106, 702 (b), 702 (b)</td>
</tr>
<tr>
<td>Wall openings allowed</td>
<td></td>
<td>4106, 702 (b), 702 (b)</td>
</tr>
<tr>
<td>PROSCENIUM CURTAIN</td>
<td></td>
<td>4102</td>
</tr>
<tr>
<td>Asbestos cloth—type of</td>
<td></td>
<td>4102</td>
</tr>
<tr>
<td>Automatic controls for</td>
<td></td>
<td>4104</td>
</tr>
<tr>
<td>Coverings for</td>
<td></td>
<td>4102</td>
</tr>
<tr>
<td>Design of</td>
<td></td>
<td>4103</td>
</tr>
<tr>
<td>Frame of</td>
<td></td>
<td>4103</td>
</tr>
<tr>
<td>General requirements</td>
<td></td>
<td>4101</td>
</tr>
<tr>
<td>Metal—type of</td>
<td></td>
<td>4102</td>
</tr>
<tr>
<td>New designs of</td>
<td></td>
<td>4106</td>
</tr>
<tr>
<td>Operation of</td>
<td></td>
<td>4104</td>
</tr>
<tr>
<td>Operation—required when</td>
<td></td>
<td>4101</td>
</tr>
<tr>
<td>Required where (see GROUP A and GROUP B)</td>
<td></td>
<td>4105</td>
</tr>
<tr>
<td>Tests of</td>
<td></td>
<td>4105</td>
</tr>
<tr>
<td>PUBLIC GARAGES</td>
<td></td>
<td>401</td>
</tr>
<tr>
<td>Definition of</td>
<td></td>
<td>401</td>
</tr>
<tr>
<td>In Group E Occupancy</td>
<td></td>
<td>1001</td>
</tr>
<tr>
<td>Ramps for</td>
<td></td>
<td>1004</td>
</tr>
<tr>
<td>Special construction</td>
<td></td>
<td>1009</td>
</tr>
<tr>
<td>Separations required</td>
<td></td>
<td>306, 1506</td>
</tr>
<tr>
<td>Ventilation required</td>
<td></td>
<td>1605</td>
</tr>
<tr>
<td>PUMPING PLANTS</td>
<td></td>
<td>1201</td>
</tr>
<tr>
<td>PUMPS</td>
<td></td>
<td>3713</td>
</tr>
<tr>
<td>For oil burning equipment</td>
<td></td>
<td>3713</td>
</tr>
<tr>
<td>For part of oil storage equipment</td>
<td></td>
<td>1008</td>
</tr>
<tr>
<td>For wet standpipe supply</td>
<td></td>
<td>3806</td>
</tr>
<tr>
<td>PURPOSE</td>
<td>Of Code</td>
<td>102</td>
</tr>
<tr>
<td>QUALITY AND DESIGN OF THE MATERIALS OF CONSTRUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masonry</td>
<td></td>
<td>2401-2413, incl.</td>
</tr>
<tr>
<td>Reinforced concrete</td>
<td></td>
<td>2401-2623, incl.</td>
</tr>
<tr>
<td>Steel and iron</td>
<td></td>
<td>2701-2718, incl.</td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td>2501-2511, incl.</td>
</tr>
<tr>
<td>RAFTERS—WOOD</td>
<td></td>
<td>2506 (c), 2506</td>
</tr>
<tr>
<td>RAILWAY STATIONS—Passenger</td>
<td></td>
<td>801, 701, 801</td>
</tr>
<tr>
<td>RAMPS</td>
<td></td>
<td>1006</td>
</tr>
<tr>
<td>Automobile—enclosure for</td>
<td></td>
<td>1006</td>
</tr>
<tr>
<td>Construction of</td>
<td></td>
<td>3310</td>
</tr>
<tr>
<td>For automobile storage</td>
<td></td>
<td>1004</td>
</tr>
<tr>
<td>For hospitals and sanitariums</td>
<td></td>
<td>904</td>
</tr>
<tr>
<td>For temporary walk-way</td>
<td></td>
<td>4401</td>
</tr>
<tr>
<td>Substituted for stairways, when</td>
<td></td>
<td>3310</td>
</tr>
<tr>
<td>RANGE HOODS</td>
<td></td>
<td>3712</td>
</tr>
<tr>
<td>RANGES—GAS</td>
<td></td>
<td>3712</td>
</tr>
<tr>
<td>Domestic</td>
<td></td>
<td>3711</td>
</tr>
<tr>
<td>For restaurants and hotels</td>
<td></td>
<td>3712</td>
</tr>
<tr>
<td>RECESSES</td>
<td>In fire walls</td>
<td>2932</td>
</tr>
<tr>
<td>In hollow masonry</td>
<td></td>
<td>2913</td>
</tr>
<tr>
<td>In reinforced concrete</td>
<td></td>
<td>2918</td>
</tr>
<tr>
<td>In solid masonry</td>
<td></td>
<td>2906</td>
</tr>
<tr>
<td>In stone</td>
<td></td>
<td>2923</td>
</tr>
<tr>
<td>Not allowed—when</td>
<td></td>
<td>4302</td>
</tr>
<tr>
<td>REDUCTION OF LIVE LOADS</td>
<td></td>
<td>2306</td>
</tr>
<tr>
<td>REDWOOD</td>
<td></td>
<td>2201-2205, 2205</td>
</tr>
<tr>
<td>Mudsills</td>
<td></td>
<td>2204, 2205</td>
</tr>
<tr>
<td>Piles</td>
<td></td>
<td>2803</td>
</tr>
<tr>
<td>Working stresses</td>
<td></td>
<td>2503, 2504</td>
</tr>
<tr>
<td>REFORMATORIES</td>
<td></td>
<td>901</td>
</tr>
<tr>
<td>REGISTERED INSPECTOR</td>
<td>Defined</td>
<td>204</td>
</tr>
<tr>
<td>Duties of</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>Required when</td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>Shall inspect concrete forms</td>
<td></td>
<td>2609 (b)</td>
</tr>
<tr>
<td>Termination of duties, when</td>
<td></td>
<td>205</td>
</tr>
<tr>
<td>REGISTERS</td>
<td>Equipped with fusible links—when</td>
<td>606</td>
</tr>
<tr>
<td>For warm air ducts</td>
<td></td>
<td>3715</td>
</tr>
</tbody>
</table>
REGISTRATION—CERTIFICATE OF
Fees for .. 204
Issued by Building Inspector .. 204
REGULATIONS FOR USE OR OCCUPANCY OF STREETS AND PROJECTIONS OVER PUBLIC PROPERTY (see Part IX)
Permanent occupancy .. 4501
Temporary occupancy .. 4401
REINFORCED CONCRETE
Anchorage of reinforcement .. 2619
Assumptions for design .. 2611
Bond and anchorage .. 2619
Bonding—of concrete ... 2609
Columns—composite ... 2621 (f)
Columns—design of .. 2621
Columns—long ... 2621 (h)
Computations—flexural ... 2614
Concrete—quality of ... 2608
Consistency—of mix ... 2607
Construction joints .. 2610
Curing ... 2609
Definitions—of certain words .. 2603
Depositing in cold weather .. 2609
Design—assumptions for .. 2611
Design—formulas for fully restrained conditions .. 2616
Design—formulas for general conditions .. 2615
Design—general .. 2602
Design—non-uniform conditions .. 2617
Diagonal tension ... 2618
Fireproofing of (see TYPE OF BUILDING) .. 4301
Flat slab—design and construction .. 2620
Footings—design of ... 2622
Forms—cleaning of ... 2609
Forms—construction of .. 2610
Materials—specifications of .. 2604
Materials—tests of .. 2606
Mixing—of concrete .. 2609
Notation—for formulas used .. 2612
Placing—of concrete ... 2609
Proportions—control of .. 2608
Proportions of mix .. 2606, 2607
Quality of materials ... 2601, 2604
Reinforcement—allowable stresses .. 2613
Reinforcement—placing of ... 2610
Shear and diagonal tension .. 2618
Stresses—maximum allowable ... 2613
Tests of materials ... 2605
Walls of (see WALLS) ... 2605
Web reinforcement—design of ... 2618
REINFORCEMENT
Effective area of ... 2408
For columns—reinforced concrete .. 2614
For flat slab—reinforced concrete .. 2620
For slabs—reinforced concrete .. 2614 (d)
For stucco ... 2205 (c)
For T-beams—reinforced concrete ... 2614 (d)
For web (diagonal tension)—concrete .. 2618
Negative—definition of .. 2605
Of fire protection ... 4203, 4301
Placing—in reinforced concrete .. 2610
Positive—definition of .. 2603
Protection of .. 2610 (f)
Ratio—definition of .. 2603
Specifications for ... 2604 (d)
Splices of ... 2610 (e)
Stresses—allowable working ... 2613
REPAIR
Applied to change of use .. 104, 301, 502
Definition of .. 401
Of existing buildings .. 2601
REPEALED—ORDINANCES .. 2605
REPORTS—Required
Of Board of Examiners and Appeals .. 304
Of fees collected by Building Inspector ... 203
Of registered inspector .. 304
Of tests of concrete ... 2605
Of tests of structural steel .. 2701
RESISTING MOMENT—DEAD LOAD
For wind calculations ... 2307
RESTAURANTS ... 1101
RETAIL STORES .. 1101

RETAINING WALL
Definition of .. 401
Design of ... 2310
Used as foundation walls for Type V buildings 2204

REQUIREMENTS BASED ON LOCATION IN FIRE ZONES (see Part IV)
Fire zones defined .. 1601
For Fire Zone No. 1 .. 1602
For Fire Zone No. 2 .. 1603
For Fire Zone No. 3 .. 1604

REQUIREMENTS BASED ON OCCUPANCY
Classification of all buildings 501-503, incl.
For Group A buildings (large assemblage) 601-603, incl.
For Group B buildings (medium assemblage) 701-703, incl.
For Group C buildings (small assemblage) 801-803, incl.
For Group D buildings (hospitals and detention) 901-903, incl.
For Group E buildings (highly hazardous) 1001-1003, incl.
For Group F buildings (moderately hazardous) ... 1101-1103, incl.
For Group G buildings (non-hazardous) 1201-1203, incl.
For Group H buildings (residential) 1301-1303, incl.
For Group I buildings (dwellings) 1401-1403, incl.
For Group J buildings (accessory) 1501-1503, incl.

REQUIREMENTS BASED ON TYPES OF CONSTRUCTION
Classification of buildings 1701, 1702
Type I buildings (fire-resistive) 1801-1802, incl.
Type II buildings (heavy timber construction) 1901-1902, incl.
Type III buildings (ordinary masonry) 2001-2002, incl.
Type IV buildings (metal frame) 2101-2102, incl.
Type V buildings (wood frame) 2201-2202, incl.

VIEWING STANDS
Permitted in Fire Zone No. 1, when 1602 (f)

RIBBON—In Frame Construction 2506 (h)
RISE OF STAIR .. 3302, 3307

RISERS
For dry standpipes .. 3804
For stairways ... 3807
For warm air furnaces .. 3718
For wet standpipes ... 3806

RIVETS
Construction details .. 2711
General .. 2709
Holes—to be deducted when 2707
In connections ... 2708
In erection work .. 2718
To be driven how .. 2771 (g)
Working stresses for .. 2702

ROLLING SHUTTERS—Prohibited Where 3304

ROOF CONSTRUCTION (see TYPE OF BUILDING) 3201
Access to roof .. 3202
Access to roof space ... 3205
Construction and design 3202, 3203
Covering of ... 3204, 3205
Divided how ... 3210 (b)
Of marquise .. 4901 (d)

ROOFING (see TYPE OF BUILDING)
Classified—all types ... 4305
Exceptions .. 1109, 1209
Fire-retardant—details for 4305 (a)
Ordinary—details for .. 4305 (b)

ROOF STRUCTURES
Building requirements (see PENTHOUSE) 3601
General requirements ... 3601
Includes what ... 3602
Sky lights ... 3403

RUBBLE MASONRY .. 2919-2923, incl.
RUNNING TRACKS (see GYMNASIUMS)

RUN OF STAIRS
Number of risers limited ... 3307
Variation i in rise and tread not permitted 3302

SALES ROOMS
For combustible goods .. 1101
For incombustible goods .. 1201

SAND
For concrete—specifications 2604
For mortar ... 2409

SAND-LIME BRICK—(see BRICK—SAND-LIME) 901

SANITARIUMS .. 801

SCHOOLS .. 801

SCOPE
Of Code .. 103

SCUTTLE
Access to roof space ... 3205
Access to roof—when required 3303

SEATING CAPACITY
Definition of .. 401
Of Group A buildings .. 601
Of Group B buildings .. 701, 2
Of Group C buildings .. 801
Required to be posted, when .. 2308

SEATS
For Group A buildings ... 604 (g)
For Group B buildings ... 702
For Group C buildings ... 1504 (b)
Number of—to be posted when 2308

SELF-CLOSING DOOR
For artic partitions .. 2510 (h)
For automobile ramp enclosures 2106
For fire doors .. 2401
For horizontal exits .. 311
For motion picture machine booths 4001
For ramp enclosures .. 3104
For smokeproof towers .. 3105
For stairway enclosures .. 3104

SERVICE STATIONS—GASOLINE (see GASOLINE SERVICE STATIONS)

SHALL
Definition of .. 401

SHAFT
Construction—general ... 3003
Construction of enclosing walls 3003
Definition of .. 401
Required to be enclosed—when (see TYPE OF BUILDING) 3001
Special requirements (see occupancy GROUPS and TYPES OF BUILDING)

SHEAR
In reinforced concrete—allowable stresses 2613
In reinforced concrete—design of 2618
In structural steel .. 2702
In wood .. 2503

SHEATHING ... 2205

SHINGLES OR SHAKES
As roof covering .. 4305
As siding .. 2205 (b)

SHOW WINDOWS
In Type I buildings .. 1816
In Type II buildings ... 1916
Part may project over property line 4501 (f)

SHUTTERS
For fire-resistive construction 4304 (b)
For motion picture machine booths 4001
Required for stage vent ducts 606
Rolling—prohibited where .. 3304

SIAMESE CONNECTIONS
For dry standpipes ... 3804
<table>
<thead>
<tr>
<th>For wet standpipes</th>
<th>3806</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDEWALKS</td>
<td></td>
</tr>
<tr>
<td>Glass lights in</td>
<td>3402</td>
</tr>
<tr>
<td>Live load for design of</td>
<td>2304</td>
</tr>
<tr>
<td>Railing required around—when</td>
<td>3403</td>
</tr>
<tr>
<td>Required to be protected when</td>
<td>4401</td>
</tr>
<tr>
<td>Space under—may be occupied when</td>
<td>4601 (g)</td>
</tr>
<tr>
<td>SIGNS</td>
<td></td>
</tr>
<tr>
<td>For basement pipe inlets</td>
<td>3807</td>
</tr>
<tr>
<td>For dry standpipes</td>
<td>3804</td>
</tr>
<tr>
<td>For exit—Group A</td>
<td>604 (d)</td>
</tr>
<tr>
<td>For exit—Group B</td>
<td>704</td>
</tr>
<tr>
<td>For gas shut-off—Group A</td>
<td>608</td>
</tr>
<tr>
<td>For gas shut-off—Group B</td>
<td>708</td>
</tr>
<tr>
<td>For gas shut-off—Group D</td>
<td>908</td>
</tr>
<tr>
<td>For live load—required</td>
<td>2308</td>
</tr>
<tr>
<td>For seating capacity—required</td>
<td>2308</td>
</tr>
<tr>
<td>For stairs</td>
<td>3312</td>
</tr>
<tr>
<td>For wet standpipes</td>
<td>3806</td>
</tr>
<tr>
<td>For skylights</td>
<td>3402</td>
</tr>
<tr>
<td>SLAB</td>
<td></td>
</tr>
<tr>
<td>Design—reinforced concrete (see REINFORCED CONCRETE)</td>
<td>2410 (d)</td>
</tr>
<tr>
<td>Gypsum</td>
<td>3105 (d)</td>
</tr>
<tr>
<td>Minimum thickness—for fire-resistive purposes</td>
<td>4503</td>
</tr>
<tr>
<td>Minimum thickness—for roofs</td>
<td>3103</td>
</tr>
<tr>
<td>Minimum thickness—for roofs</td>
<td>3202</td>
</tr>
<tr>
<td>Reinforced concrete</td>
<td>2614, 2620</td>
</tr>
<tr>
<td>SLATE</td>
<td></td>
</tr>
<tr>
<td>For roof covering</td>
<td>4305</td>
</tr>
<tr>
<td>In foundations</td>
<td>3511 (e)</td>
</tr>
<tr>
<td>SLEEPERS—WOOD</td>
<td></td>
</tr>
<tr>
<td>To be divided—how</td>
<td>1810</td>
</tr>
<tr>
<td>SMOKE</td>
<td></td>
</tr>
<tr>
<td>Curtain to be tight for</td>
<td>4108</td>
</tr>
<tr>
<td>Pipes for</td>
<td>3705</td>
</tr>
<tr>
<td>Stacks for</td>
<td>3702</td>
</tr>
<tr>
<td>Test for chimney</td>
<td>3701</td>
</tr>
<tr>
<td>SMOKE PIPES</td>
<td>3705</td>
</tr>
<tr>
<td>SMOKEPROOF TOWER—REQUIRED</td>
<td></td>
</tr>
<tr>
<td>Construction and design</td>
<td>3215</td>
</tr>
<tr>
<td>For Group A buildings</td>
<td>604 (k)</td>
</tr>
<tr>
<td>For Group B buildings</td>
<td>704</td>
</tr>
<tr>
<td>For Group C buildings</td>
<td>804</td>
</tr>
<tr>
<td>For Group D buildings</td>
<td>904</td>
</tr>
<tr>
<td>For Group E buildings</td>
<td>1004</td>
</tr>
<tr>
<td>For Group F buildings</td>
<td>1104</td>
</tr>
<tr>
<td>For Group G buildings</td>
<td>1204</td>
</tr>
<tr>
<td>For Group H buildings</td>
<td>1304</td>
</tr>
<tr>
<td>Where and when</td>
<td>3216</td>
</tr>
<tr>
<td>SMOKE VENTS—OVER STAGE</td>
<td>3901</td>
</tr>
<tr>
<td>SOIL</td>
<td></td>
</tr>
<tr>
<td>Bearing allowable</td>
<td>2802</td>
</tr>
<tr>
<td>Retaining walls for</td>
<td>2310, 2888</td>
</tr>
<tr>
<td>Tests required</td>
<td>2802</td>
</tr>
<tr>
<td>SOLID MASONRY (see MASONRY)</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>401, 2401</td>
</tr>
<tr>
<td>SOLID MASONRY WALLS (see WALLS)</td>
<td></td>
</tr>
<tr>
<td>SPECIAL PERMIT</td>
<td></td>
</tr>
<tr>
<td>For occupancy</td>
<td>206</td>
</tr>
<tr>
<td>For temporary buildings</td>
<td>1602</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td></td>
</tr>
<tr>
<td>For brick</td>
<td>2402</td>
</tr>
<tr>
<td>For cast iron</td>
<td>2701</td>
</tr>
<tr>
<td>For cast steel</td>
<td>2701</td>
</tr>
<tr>
<td>For concrete block or tile</td>
<td>2406</td>
</tr>
<tr>
<td>For concrete brick</td>
<td>2404</td>
</tr>
<tr>
<td>For fire tests</td>
<td>4201</td>
</tr>
<tr>
<td>For gypsum</td>
<td>2407</td>
</tr>
<tr>
<td>For hollow clay tile</td>
<td>2408</td>
</tr>
<tr>
<td>For lime</td>
<td>2409</td>
</tr>
<tr>
<td>For reinforcing steel</td>
<td>3804 (d)</td>
</tr>
<tr>
<td>For Portland cement</td>
<td>2604</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>For sand-lime brick</td>
<td>2403</td>
</tr>
<tr>
<td>For structural steel</td>
<td>2701</td>
</tr>
<tr>
<td>For tests of concrete cylinders</td>
<td>2605, 2613</td>
</tr>
<tr>
<td>May be required for permit</td>
<td>201</td>
</tr>
</tbody>
</table>

SPIRES (see TOWERS)

SPILICES

Reinforcing steel ... 2610 (e)
Structural steel ... 2706

SPRINKLERS—AUTOMATIC (see AUTOMATIC SPRINKLERS)

STAIRS

Access and arrangement 3303, 3313
Access to roof.. 3303
Application to building—general (see occupancy GROUP and TYPE OF BUILDING)........... 3302
Design—general.. 3302
Doors—leading to .. 3304
Enclosures for ... 3308
Exceptions.. 3314
Firestopping (wood frame construction) 2610 (d)
Horizontal exits—affect number required 3309
In smokeproof tower ... 3315
Intermediate landings 3302, 3307
Lighting ... 3306
Locks—if provided... 3304
May terminate at second floor—when 3303
Maximum separation.. 3303
Number required (see also GROUP A, B or C) 3309
Number required—may be reduced when 3303, 3308
Obstructions prohibited 3304, 3308
Outside of building ... 3316
Passageways required 3303, 3313
Railings .. 3305
Ramps—may be substituted 3310
Requirements—detailed.. 3307
Requirements—general .. 3301, 3302
Rise and tread... 3302, 3307
Signs required... 3303, 3311
Ventilation of enclosure 3308
Width—minimum .. 3307
Winders—permitted when 3302

STADIUMS ... 1501

STAGE

Construction—Group A .. 602
Exits from 604 (e)
Floor openings in ... 606
Limited—Group B ... 601
Special construction .. 602
Sprinklers required .. 607, 3801
Standpipes required .. 607
Ventilation of .. 607

STAMPED PLANS TO BE KEPT ON BUILDINGS 202

STANDPIPES

Dry standpipes—design and construction 3804
Dry standpipes—where required 3803
Wet standpipes—design and construction 3806
Wet standpipes—where required 3805

STEAM HEATING PLANTS—Low Pressure 3708

STEEL—STRUCTURAL

Beams and girders ... 2704
Bolts ... 2709
Cast—allowable stresses for 2702
Cast—properly annealed 2716 (e)
Combined stresses ... 2702 (f)
Connections in ... 2708
Construction details ... 2711
Design .. 2701
Eccentric loads .. 2703

310
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erection of</td>
<td>2718</td>
</tr>
<tr>
<td>Expansion</td>
<td>2715</td>
</tr>
<tr>
<td>Fireproofing of (see TYPE OF BUILDING)</td>
<td>4301</td>
</tr>
<tr>
<td>Gas Cutting</td>
<td>2716 (1)</td>
</tr>
<tr>
<td>Joists—design of</td>
<td>2714</td>
</tr>
<tr>
<td>Lattice—design of</td>
<td>2712</td>
</tr>
<tr>
<td>Net sections—in computations</td>
<td>2707</td>
</tr>
<tr>
<td>Quality</td>
<td>2701</td>
</tr>
<tr>
<td>Painting of</td>
<td>2717</td>
</tr>
<tr>
<td>Pins</td>
<td>2718</td>
</tr>
<tr>
<td>Plumbing of frame</td>
<td>2718</td>
</tr>
<tr>
<td>Rivets</td>
<td>2700, 2716 (g)</td>
</tr>
<tr>
<td>Splices—compression</td>
<td>2706</td>
</tr>
<tr>
<td>Tension members—net section</td>
<td>2707</td>
</tr>
<tr>
<td>Tests of</td>
<td>2701</td>
</tr>
<tr>
<td>Thickness of—minimum</td>
<td>2705</td>
</tr>
<tr>
<td>To be painted, when</td>
<td>2717</td>
</tr>
<tr>
<td>Trusses—design of</td>
<td>2711</td>
</tr>
<tr>
<td>Welded connections</td>
<td>2710</td>
</tr>
<tr>
<td>Working stresses—allowable</td>
<td>2703, 2710</td>
</tr>
<tr>
<td>Workmanship</td>
<td>2716</td>
</tr>
<tr>
<td>STIFFENERS</td>
<td>2704 (e)</td>
</tr>
<tr>
<td>STIRRUPS REQUIRED</td>
<td>2506 (i)</td>
</tr>
<tr>
<td>STONE</td>
<td></td>
</tr>
<tr>
<td>Facing of</td>
<td>2938</td>
</tr>
<tr>
<td>Quality and design</td>
<td>2410 (f)</td>
</tr>
<tr>
<td>Veneer of</td>
<td>2924</td>
</tr>
<tr>
<td>Wains of (see WALLS)</td>
<td></td>
</tr>
<tr>
<td>STORAGE</td>
<td></td>
</tr>
<tr>
<td>Combustible goods</td>
<td>1101</td>
</tr>
<tr>
<td>Incombustible goods</td>
<td>1201</td>
</tr>
<tr>
<td>STORAGE OF INFLAMMABLES</td>
<td>1001, 1008</td>
</tr>
<tr>
<td>STORAGE OF MATERIALS IN STREETS</td>
<td>4401</td>
</tr>
<tr>
<td>STORES—RETAIL AND WHOLESALE</td>
<td>1101</td>
</tr>
<tr>
<td>STORESROOMS—GROUP A BUILDINGS</td>
<td></td>
</tr>
<tr>
<td>Fire protection of</td>
<td>607</td>
</tr>
<tr>
<td>Inflammable liquids—storage regulated</td>
<td>608</td>
</tr>
<tr>
<td>Location of</td>
<td>602 (a)</td>
</tr>
<tr>
<td>STORY</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>STOVES</td>
<td></td>
</tr>
<tr>
<td>Chimneys for</td>
<td>3701, 3704</td>
</tr>
<tr>
<td>General requirements</td>
<td>3710</td>
</tr>
<tr>
<td>STREET</td>
<td></td>
</tr>
<tr>
<td>Definition of</td>
<td>401</td>
</tr>
<tr>
<td>May be used for storage, when</td>
<td>4401</td>
</tr>
<tr>
<td>STRENGTH OF MATERIALS (see QUALITY AND DESIGN OF THE MATERIALS OF CONSTRUCTION)</td>
<td></td>
</tr>
<tr>
<td>STRESSES—OF MATERIALS OF CONSTRUCTION (see WORKING STRESSES—ALLOWABLE)</td>
<td></td>
</tr>
<tr>
<td>Increase allowed—masonry</td>
<td>2411</td>
</tr>
<tr>
<td>Increase allowed—steel and iron</td>
<td>2702</td>
</tr>
<tr>
<td>Increase allowed—wood</td>
<td>2503</td>
</tr>
<tr>
<td>STRUCTURAL FRAMEWORK (see TYPE OF BUILDING)</td>
<td></td>
</tr>
<tr>
<td>STUCCO</td>
<td></td>
</tr>
<tr>
<td>General requirements</td>
<td>2205 (c)</td>
</tr>
<tr>
<td>Inspection of</td>
<td>204</td>
</tr>
<tr>
<td>STUD FRAME CONSTRUCTION</td>
<td>2507</td>
</tr>
<tr>
<td>STUDS—Minimum Size</td>
<td>2507</td>
</tr>
<tr>
<td>SUSPENDED CEILINGS</td>
<td></td>
</tr>
<tr>
<td>For fire protection</td>
<td>4301</td>
</tr>
<tr>
<td>Method of hanging</td>
<td>4706</td>
</tr>
<tr>
<td>Required to support load</td>
<td>4301, 4706</td>
</tr>
</tbody>
</table>

311
TANKS
For oil burning equipment .. 3713
For storage of inflammable liquids 1008
For wet standpipe supply 3806
Roof structures for .. 3601

T—BEAMS IN REINFORCED CONCRETE 2614

TEMPORARY BUILDINGS
Permitted during construction 1602, 4401
Permitted, when .. 1602 (f), 1603 (f)

TEMPORARY PARTITIONS
For Type I buildings .. 1806
For Type II buildings .. 2006

TENANT'S RESPONSIBILITY .. 2308

TERMITES .. 2511

TESTS
For brick .. 2402, 2403, 2404
For cast iron .. 2701
For cast steel .. 2701
For chimneys .. 3701
For concrete ... 2605, 2613
For concrete aggregates .. 2604 (b)
For dry standpipes .. 3804
For fire-resistant ratings of materials 4201
For metal reinforcement .. 2604 (d)
For new materials and devices 302, 303
For pile—safe bearing .. 2803 (d)
For Portland cement .. 2604 (a)
For prosenium curtains .. 4101, 4105
For sprinkler systems .. 3802
For stage ventilators .. 3901
For structural steel ... 2701
For wet standpipes ... 3806
For wood .. 2503
Of masonry materials .. 2401
Of steel joists, when ... 2714 (g)

THEATRES
Major ... 601
Moving picture ... 601, 701

THIMBLES IN CHIMNEYS ... 3705

TIE RODS
Fireproofing of ... 4301
In floor construction—fireproofing required 4303
Proportioned—how ... 2711
Required when—Type I buildings 1810

TILE
Of clay (see CLAY TILE) .. 4301
Of concrete (see CONCRETE BLOCKS) 3802
Of gypsum (see GYPSUM) 3901

TIMBER (see WOOD)

TITLE
Of Code .. 101
Reference—"this Code" ... 101

TOILETS REQUIRED
For Group E buildings .. 1005
For Group F buildings .. 1105
For Group G buildings .. 1205
For Group H buildings .. 1305

TOWERS (see TYPE OF BUILDING)
General requirements ... 3602
Wind pressure ... 2307

TREADS OF STAIRS .. 3302, 3307

TRIM
For Type I buildings .. 1816 (g)
For Type II buildings .. 1916 (g)

TRIMMER ARCHES—FOR FIREPLACES 3706

TRUSSES
Fireproofing of ... 4301
Steel frame ... 2711 (a)
Wood framing .. 2509

TYPES OF CONSTRUCTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classified how</td>
<td>1701</td>
</tr>
<tr>
<td>Classification of buildings</td>
<td>1702</td>
</tr>
</tbody>
</table>

TYPE I or TYPE I BUILDINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area allowable</td>
<td>1803</td>
</tr>
<tr>
<td>Bays and balconies</td>
<td>1814</td>
</tr>
<tr>
<td>Combustible materials regulated</td>
<td>1816</td>
</tr>
<tr>
<td>Cornices</td>
<td>1814</td>
</tr>
<tr>
<td>Definition of</td>
<td>1801</td>
</tr>
<tr>
<td>Design—general</td>
<td>1808</td>
</tr>
<tr>
<td>Doors and windows</td>
<td>3401</td>
</tr>
<tr>
<td>Drainage fill</td>
<td>1811</td>
</tr>
<tr>
<td>Enclosure of vertical openings</td>
<td>1807</td>
</tr>
<tr>
<td>Exterior openings—protection required</td>
<td>1813</td>
</tr>
<tr>
<td>Fireproofing—floor construction</td>
<td>1810</td>
</tr>
<tr>
<td>Fireproofing—may be omitted, when</td>
<td>1209, 1809</td>
</tr>
<tr>
<td>Fireproofing—of structural frame</td>
<td>1809</td>
</tr>
<tr>
<td>Floor construction</td>
<td>1810</td>
</tr>
<tr>
<td>Foundations</td>
<td>1804</td>
</tr>
<tr>
<td>Height allowable</td>
<td>1803</td>
</tr>
<tr>
<td>Marquises</td>
<td>1814</td>
</tr>
<tr>
<td>Mezzanine floors</td>
<td>1816</td>
</tr>
<tr>
<td>Parapet wall—required when</td>
<td>1807</td>
</tr>
<tr>
<td>Partitions, interior</td>
<td>1806</td>
</tr>
<tr>
<td>Partitions, temporary</td>
<td>1806</td>
</tr>
<tr>
<td>Penthouses</td>
<td>1815, 3801</td>
</tr>
<tr>
<td>Projections from buildings</td>
<td>1814</td>
</tr>
<tr>
<td>Roof construction</td>
<td>1809, 1811, 1816</td>
</tr>
<tr>
<td>Roof structures</td>
<td>1815, 3801</td>
</tr>
<tr>
<td>Shafts—construction of</td>
<td>1807</td>
</tr>
<tr>
<td>Show windows</td>
<td>1816</td>
</tr>
<tr>
<td>Skylights</td>
<td>1815, 3402</td>
</tr>
<tr>
<td>Stairs</td>
<td>1812</td>
</tr>
<tr>
<td>Structural framework</td>
<td>1808</td>
</tr>
<tr>
<td>Structural members, fireproofing of</td>
<td>1809</td>
</tr>
<tr>
<td>Trim</td>
<td>1818</td>
</tr>
<tr>
<td>Vertical openings—enclosure of</td>
<td>1807</td>
</tr>
<tr>
<td>Walls—exterior and inner court</td>
<td>1805</td>
</tr>
<tr>
<td>Windows and doors</td>
<td>1813, 3801</td>
</tr>
<tr>
<td>Wood platforms—permitted when</td>
<td>1814</td>
</tr>
</tbody>
</table>

TYPE II OR TYPE II BUILDINGS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area allowable</td>
<td>1903</td>
</tr>
<tr>
<td>Bays and balconies</td>
<td>1914, 3801</td>
</tr>
<tr>
<td>Combustible materials—regulated</td>
<td>1914, 1916</td>
</tr>
<tr>
<td>Cornices</td>
<td>1914, 4501</td>
</tr>
<tr>
<td>Definition of</td>
<td>1901</td>
</tr>
<tr>
<td>Doors and windows</td>
<td>1913, 3401</td>
</tr>
<tr>
<td>Exterior openings—protection of</td>
<td>1913</td>
</tr>
<tr>
<td>Fireproofing—may be omitted when</td>
<td>1909</td>
</tr>
<tr>
<td>Floor construction</td>
<td>1910</td>
</tr>
<tr>
<td>Foundations</td>
<td>1904</td>
</tr>
<tr>
<td>Height allowable</td>
<td>1902</td>
</tr>
<tr>
<td>Marquises</td>
<td>1914, 4501</td>
</tr>
<tr>
<td>Mezzanine floors</td>
<td>1918</td>
</tr>
<tr>
<td>Parapet walls</td>
<td>1905, 1907</td>
</tr>
<tr>
<td>Penthouses</td>
<td>1915, 3801</td>
</tr>
<tr>
<td>Partitions</td>
<td>1906</td>
</tr>
<tr>
<td>Projections from building</td>
<td>1914</td>
</tr>
<tr>
<td>Roof construction</td>
<td>1909, 1911</td>
</tr>
<tr>
<td>Show windows</td>
<td>1916</td>
</tr>
<tr>
<td>Skylights</td>
<td>1915, 3402</td>
</tr>
<tr>
<td>Stair construction</td>
<td>1912</td>
</tr>
<tr>
<td>Structural framework</td>
<td>1908</td>
</tr>
<tr>
<td>Structural members, fireproofing of</td>
<td>1909</td>
</tr>
<tr>
<td>Towers and spires</td>
<td>1902, 3803</td>
</tr>
<tr>
<td>Trim</td>
<td>1916</td>
</tr>
<tr>
<td>Vertical openings—enclosure of</td>
<td>1907</td>
</tr>
<tr>
<td>Walls—exterior and inner court</td>
<td>1912</td>
</tr>
<tr>
<td>Walls—parapet</td>
<td>1905, 1907</td>
</tr>
<tr>
<td>Windows and doors</td>
<td>1913, 3401</td>
</tr>
</tbody>
</table>

313
TYPE III OR TYPE III BUILDINGS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area allowable</td>
<td>2003</td>
</tr>
<tr>
<td>Attic space—divided how</td>
<td>2011</td>
</tr>
<tr>
<td>Basement—special construction</td>
<td>2010</td>
</tr>
<tr>
<td>Bays and balconies</td>
<td>2014, 2015</td>
</tr>
<tr>
<td>Combustible materials regulated</td>
<td>2014, 2016</td>
</tr>
<tr>
<td>Cornices</td>
<td>2014, 4501</td>
</tr>
<tr>
<td>Definition of</td>
<td>2001</td>
</tr>
<tr>
<td>Doors and windows</td>
<td>2013, 2401</td>
</tr>
<tr>
<td>Fireproofing—may be omitted when</td>
<td>2009</td>
</tr>
<tr>
<td>Fireproofing structural members</td>
<td>2009</td>
</tr>
<tr>
<td>Floor construction</td>
<td>2010</td>
</tr>
<tr>
<td>Foundations</td>
<td>2004</td>
</tr>
<tr>
<td>Height allowable</td>
<td>5002</td>
</tr>
<tr>
<td>Insulating materials—placed how</td>
<td>2016</td>
</tr>
<tr>
<td>Marquises</td>
<td>2014, 4501</td>
</tr>
<tr>
<td>Parapet walls</td>
<td>2007</td>
</tr>
<tr>
<td>Partitions</td>
<td>2006</td>
</tr>
<tr>
<td>Partitions—temporary</td>
<td>2006</td>
</tr>
<tr>
<td>Penthouses</td>
<td>2015, 3601</td>
</tr>
<tr>
<td>Projections from buildings</td>
<td>2014</td>
</tr>
<tr>
<td>Roof construction</td>
<td>2111</td>
</tr>
<tr>
<td>Skylights</td>
<td>2015, 3402</td>
</tr>
<tr>
<td>Stair construction</td>
<td>2012</td>
</tr>
<tr>
<td>Structural framework</td>
<td>2008</td>
</tr>
<tr>
<td>Towers and spires</td>
<td>2002, 3602</td>
</tr>
<tr>
<td>Vertical openings, enclosure of</td>
<td>2007</td>
</tr>
<tr>
<td>Walls—exterior and inner court</td>
<td>2005</td>
</tr>
<tr>
<td>Walls—parapet</td>
<td>2007</td>
</tr>
<tr>
<td>When 4 stories or more in height</td>
<td>2000, 2010</td>
</tr>
<tr>
<td>Windows and doors</td>
<td>2018, 3401</td>
</tr>
</tbody>
</table>

TYPE IV OR TYPE IV BUILDINGS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area allowable</td>
<td>2103</td>
</tr>
<tr>
<td>Combustible materials—regulated</td>
<td>2114, 3501, 4501</td>
</tr>
<tr>
<td>Definition of</td>
<td>2107</td>
</tr>
<tr>
<td>Doors and windows</td>
<td>2113, 3401</td>
</tr>
<tr>
<td>Fireproofing structural members</td>
<td>2109</td>
</tr>
<tr>
<td>Floor construction</td>
<td>2110</td>
</tr>
<tr>
<td>Foundations</td>
<td>2104</td>
</tr>
<tr>
<td>Height allowable</td>
<td>2102</td>
</tr>
<tr>
<td>Partitions</td>
<td>2106</td>
</tr>
<tr>
<td>Penthouses</td>
<td>2115, 3601</td>
</tr>
<tr>
<td>Projections from the building</td>
<td>2114, 3501, 4501</td>
</tr>
<tr>
<td>Roof construction</td>
<td>2111</td>
</tr>
<tr>
<td>Skylights</td>
<td>2116, 3402</td>
</tr>
<tr>
<td>Stair construction</td>
<td>2112</td>
</tr>
<tr>
<td>Structural framework</td>
<td>2108</td>
</tr>
<tr>
<td>Towers and spires</td>
<td>2102, 3602</td>
</tr>
<tr>
<td>Vertical openings—enclosure of</td>
<td>2107</td>
</tr>
<tr>
<td>Walls—exterior</td>
<td>2105</td>
</tr>
<tr>
<td>Windows and doors</td>
<td>2113, 3401</td>
</tr>
</tbody>
</table>

TYPE V OR TYPE V BUILDINGS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area allowable</td>
<td>2203</td>
</tr>
<tr>
<td>Attic spaces—divided how</td>
<td>2208</td>
</tr>
<tr>
<td>Ceiling construction</td>
<td>2208</td>
</tr>
<tr>
<td>Definition of</td>
<td>2201</td>
</tr>
<tr>
<td>Design—general requirements</td>
<td>2211</td>
</tr>
<tr>
<td>Floor construction</td>
<td>2207</td>
</tr>
<tr>
<td>Foundations</td>
<td>2204</td>
</tr>
<tr>
<td>Foundations—ventilating openings</td>
<td>2204, 2205</td>
</tr>
<tr>
<td>Foundation walls</td>
<td>2204</td>
</tr>
<tr>
<td>Height allowable</td>
<td>2203</td>
</tr>
<tr>
<td>Insulating materials—regulated</td>
<td>2211</td>
</tr>
<tr>
<td>Partitions—interior</td>
<td>2206</td>
</tr>
<tr>
<td>Roof construction</td>
<td>2208</td>
</tr>
<tr>
<td>Roof covering</td>
<td>2209</td>
</tr>
<tr>
<td>Towers and spires</td>
<td>2202, 3602</td>
</tr>
<tr>
<td>Ventilation under first floor</td>
<td>2204, 2205</td>
</tr>
<tr>
<td>Vertical openings—enclosure of</td>
<td>2210</td>
</tr>
<tr>
<td>Wall coverings (siding, stucco, veneer, etc.)</td>
<td>2205</td>
</tr>
<tr>
<td>Walls—exterior</td>
<td>2205</td>
</tr>
</tbody>
</table>
UNDERPINNING
Required, when .. 2801

UNDERTAKING PARLORS 1101

UNDERWRITERS’ LABORATORIES, INC.—Inspection service
On doors .. 4304
On hollow concrete building units 2406
On roofings .. 4305
On windows .. 4304

UNIT STRESSES (see WORKING STRESSES)

UNLAWFUL TO OCCUPY—When 206, 301

VACATE
Required, when .. 301

VALIDITY—OF THIS ORDINANCE 4601

VALUE
Definition of .. 401

VENEER
Definition of .. 401
Walls of (see WALLS)

VENTILATION
As air supply for warm air furnace 3707
For Group A buildings 4005
For Group B buildings 705
For Group C buildings 805
For Group D buildings 905
For Group E buildings 1005
For Group F buildings 1105
For Group G buildings 1205
For Group H buildings 1305
For Group I buildings 1405
For Group J buildings 1505
For stairway enclosures 3308
In dry cleaning establishments 1008
In motion picture machine booths 4001
In private garages 1005
Over stage .. 3001
Under first floor of Type V buildings 2204, 2205

VENTS
For dry cleaning plants 1008
For gas .. 3703
For motion picture machine booths 4001
For private garages 1005
For public garages 1005
Intake for warm air furnaces 3707

VENT SHAFTS (see VERTICAL OPENINGS)

VERTICAL OPENINGS—ENCLOSURE OF
For ducts and chutes 3003
For Group A buildings 806
For Group B buildings 706
For Group C buildings 806
For Group D buildings 906
For Group E buildings 1006
For Group F buildings 1106
For Group G buildings 1206
For Group H buildings 1306
For Group I buildings 1406
For Group J buildings 1506
For Type I buildings 1807
For Type II buildings 1907
For Type III buildings 2007
For Type IV buildings 2107
For Type V buildings 2207
General requirements 3002

VIOLATIONS AND PENALTIES
Provided in this Code 305

315
WATER-CLOSET

- For Group E buildings: 1005
- For Group F buildings: 1105
- For Group G buildings: 1205
- For Group H buildings: 1305

WATER PRESSURE

- In wet standpipes: 3805
- Walls to resist: design of: 2310

WEATHER—AFFECTS CONCRETE CONSTRUCTION—How

- 2609 (g)

WEATHERBOARDING

- 2205

WEIGHTS OF BUILDING MATERIALS

(See Appendix—Refer to Section 2301)

WELD

- Connection—stresses allowed: 2710
- Electric spot: 2710 (e)
- Electrode wire for: 2710 (c)
- For steel joists: 2714
- In erection—allowed when: 2718 (d)
- Samples required by Building Inspector: 2710 (d)

WET STANDPIPES (see STANDPIPES)

WIDTH

- Of corridors: 3513
- Of entrance doors: 304
- Of passageways from courtyards—Group A buildings: 304 (b)
- Of passageways from smokeproof towers: 3815
- Of stair landings: 3807
- Of stairs: 3807
- Of stair treads: 3802, 3807
- Of street allowed for storage: 4401

WIND

- For roof design: 2305
- In erection—to be provided for: 2718 (b)
- Pressure for vertical surfaces: 2207
- Steel—increased stresses for: 2702
- Wood—increased stresses for: 2603

WINDOWS

- General requirements: 8401
- Fire-resistive—design of: 4304 (c)
- For Group A buildings: 605
- For Group B buildings: 705
- For Group C buildings: 805
- For Group D buildings: 905
- For Group E buildings: 1005
- For Group F buildings: 1105
- For Group G buildings: 1205
- For Group H buildings: 1305
- For Group I buildings: 1405
- For Group J buildings: 1503
- In Fire Zone No. 1: 1602 (g)
- In Type I buildings: 1613
- In Type II buildings: 1613
- In Type III buildings: 2013
- In Type IV buildings: 2113

WIND PRESSURE

- Design requirements: 2507
- Steel stresses may be increased for: 2702
- Wood stresses may be increased for: 2503

WIRE

- For proscenium curtain reinforcing: 4102
- For stucco reinforcing: 2205
- For tying rood materials: 4305
- Ties for fire-resistive materials: 4301

WIRE GLASS

- In fire-resistive doors: 4304 (a)
- In fire-resistive windows: 4304 (c)
- In skylights: 3402

Required by location (see LOCATION ON PROPERTY, FIRE ZONES, DOORS AND WINDOWS)

WIRE LATH (see METAL LATH)

317
WIRE MESH REQUIRED
 For skylights—when .. 3402
 For stage ventilators—when .. 3901
 Over gypsum plaster lath—when 4301, 4802

WIRELESS
 Masts for—design .. 3602

WHOLESALE STORES .. 1101

WOOD
 Allowable stresses tabulated—columns 2504
 Allowable stresses tabulated—flexure 2503
 Beams and joists—may be cut, when 2506 (m)
 Built up members ... 2506 (b)
 Columns—allowable unit stresses 2504
 Firestrokes—required ... 2510
 General requirements .. 2501
 Horizontal members—framing details 2506
 Plaster lath ... 4702
 Partitions—framing details ... 2507
 Piles of ... 2803 (b)
 Requir—sizes—determination of ... 2502
 Roof framing ... 2502 (d), 4302
 Separation required between members 2506 (d)
 Shingles—for exterior walls ... 2205
 Shingles—for roofs .. 4205
 Siding ... 2205
 Stud partitions—may be cut, how 2507 (f)
 Stud walls—framing details ... 2507
 Trusses ... 2609
 Unit stresses—allowable .. 2503,
 Unit stresses—may be increased, when 2503
 Use—conditions defined .. 2503
 Vertical members—framing details 2505
 Walls of .. 1905, 2205
 Weatherboarding ... 2205

WOOD FRAME BUILDINGS (see TYPE V BUILDINGS) 2201-2211 incl.

WOODWORKING FACTORIES .. 1001

WORDS—Special Meaning of
 For reinforced concrete ... 2603
 General ... 401

WORKING STRESSES—ALLOWABLE
 Cast iron .. 2702
 Cloth—asbestos curtain .. 4102
 Masonry construction ... 2410
 May be increased—masonry construction 2411
 Piles ... 2803
 Reinforced concrete .. 2813
 Soil .. 2802
 Steel ... 2702, 2710
 Wood ... 2503, 2504

WORKMANSHIP
 Inspection of ... 204, 2716
 Structural steel ... 2716

WORKSHOPS
 Moderately hazardous .. 1101
 Non-hazardous .. 1201

YARD
 Definition of ... 401

318
PUBLICATIONS OF THE
PACIFIC COAST BUILDING OFFICIALS' CONFERENCE

Uniform Building Code:

Single copies or up to 24..............................$1.00 ea.
25 to 49 copies... .95 ea.
50 to 99 copies... .90 ea.
100 to 499 copies....................................... .85 ea.
500 copies or more.................................... .80 ea.
Leather-bound copies with sewed backs (for
greater durability and ease of handling)........ 2.50 ea.
Charge for engraving name in gold on
cover of leather-bound copy.......................... .50 ea.

For codes desired to be sent by air mail enclose $1.00 extra
per copy ordered. Regular parcels post charges are prepaid.
Arrangements may be made with the publishers for the
printing of such minor changes as would include filling in the
blank spaces in the regular form of the code. A flat price of
$20.00 per order is made for this service.
Code orders may be placed through Conference Headquar-
ters, 124 West Fourth St., Los Angeles, California, or sent direct
to the official publishers, the Sun Printing & Publishing House,
430 Court St., San Bernardino, California.

Extracts from Uniform Building Code:

1. Chapter 22 and Sections 2506 to 2510, inclusive, appli-
cable to Wood Frame Buildings.
2. Appendix Reference to Chapter 47, Sections 4701 to
4721, inclusive, applicable to Plastering.
Price 10c each in quantities of less than 100; 5c each for
100 or more.

Sold only by Conference Headquarters.

Specification Documents:

The Appended Documents of the Uniform Building Code
are now available in book form under one cover. 528 pages with
full cuts, diagrams and tables. Sixty-two documents, classified
and arranged by subject matter, with table of contents and in-
dex in standard terminology. Sold only through Conference
Headquarters. Cloth Bound, Price $5.00. Fabricoid leather bind-
ing $7.50.

Building Standards Monthly:

Official monthly publication of the Conference published at
Conference Headquarters. Subscription price $1.50 per year.

“Building Department” Forms:

Set of 23 forms covering building, electrical, plumbing and
sewer permits. Obtainable direct from Sun Printing & Publishing
House.
Price for single sets $3.00. Quantity prices for individual
forms obtainable by writing official publishers.

Prospectus:

Nineteen-page pamphlet on the history and purposes of the
Uniform Building Code and the Pacific Coast Building Officials'
Conference.

Obtainable without charge through Conference headquarters.