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1. Summary

A powerful software environment for research can be created by combining database
management systems and commercial software for analysis and display of data.
This provides a richer programming environment and more sophisticated graphical
possibilities than are offered by present database systems. It provides a data storage
and retrieval system that adheres to a standard syntax, SQL, and which is more
robust than file-based approaches.

Only recently has it become possible to combine these two kinds of software, but
increasingly database and scientific application software has the open architecture
that is conducive to the data sharing that makes such combinations possible. New
database systems also accommodate the complex types of data of interest to scientists.

We have a way to link appropriate database software and scientific application
software which is called the Generic Database Interface (GDI). In essence, it consists
of a core set of functions, complemented by product-specific interface code which is
unique to each database product and each application product. The GDI provides
the mechanism for both submitting a SQL query to any supported database and also
handling the data that are exchanged in satisfaction of the query. We illustrate the
strength of this approach by applying it to tasks involving selection and display of
ocean temperature data using the Montage database management system and the
S-PLUS statistics application. The examples illustrate a few of the novel capabilities
of this approach; they do not comprise a complete data processing application.

This work is part of the Sequoia 2000 project of the University of California and is an
example of an end-to-end scenario involving vector datal. The oceanographic data
and the Montage schema are described in Sections 2 and 3. The schema is essentially
a relational mapping of a file structure well known in the community. Section 4
summarizes some of the advanced features of Montage which are showcased in the
scenario examples and Section 5 summarizes pertinent features of S-PLUS and the
Generic Database Interface. The Montage queries and excerpts of the S-PLUS scripts
are given in Section 6 and Section 7 explains the software architecture.

There are three appendices. Appendix A has details about the scenario, presented
around a dataflow model. Appendix B lists the database schema along with its
entity-relationship model. The S-PLUS figures are collected in Appendix C.

1 This scenario has a narrower scope than other Sequoia 2000 scenarios because we have not
incorporated project activities in networks, file systems or hierarchical storage.



2. Ocean temperature data

The data, approximately 4000 temperature profiles and 50 temperature/salinity
profiles, were provided to NOAA's National Oceanographic Data Center by
Canada's Marine Environment Data Service (MEDS). The data span 4 months of
time (April through July 1993) and are just a part of the data being assembled and
distributed as part of the Global Temperature-Salinity Pilot Project (GTSPP). The
GTSPP is an international cooperation to acquire all possible data from real-time
and delayed sources, assess their quality, and rapidly distribute them. As a first step
toward modernizing the practice of managing ocean data, the GTSPP is expected to
grow into the major provider of reliable, continuously updated, and quality-
controlled hydrographic data.

MEDS is coordinating the design and implementation of a GTSPP-standard format
for data exchange. The format is an extensible, hierarchical way to structure ASCII
files. It is designed to accommodate temperature, salinity, and other oceanographic
variables. The format accommodates not only essential ancillary information, such
as position, time, and instrument type, but also optional measurements, such as sea
surface weather conditions (if they are available), and, most importantly, data
quality. The processing history (such as screening, editing or quality assignment) is
captured as well as the data center performing the work. As a result, while a typical
record for one "station" (one bathythermograph drop, for example), may contain 20
depth/temperature pairs, the accompanying descriptive information may double
the data volume.

The GTSPP format is more complex, more bulky, and more variable than other
formats in use. It was chosen as the basis of our schema because it has the variety
and completeness needed for modern oceanographic research. The procedures used
to load the GTSPP data into the database, hydrodb, are described in Appendix A.

3. Database schema

It was assumed, as a practical requirement, that the database schema should preserve
all the attribute names and the essential structure of the GTSPP format. New
attributes could be added, but no attributes nor tables should be eliminated. This is
to make it easy for users to switch from file-based approaches to the database
approach to data management. It also simplifies creation of GTSPP-structured data
sets from the database for distribution.

The schema, described in Appendix B, is relatively simple and has only eight tables.
These are formally described in the Montage data definition language in the first
part of the appendix. The second part shows the tables and attributes arranged in an
entity-relationship picture of the schema. The picture graphically shows how the
key ix_master is used to join the principal tables, master and profiles. Ix-master
must be unique over the database, and a table ui_seq is used to hold the next
available value. Table months is used to relate month names to calendar position:



the names are needed by m_time. The work so far has not utilized the subsidiary
tables of the GTSPP format so the practicality of this part of the schema is untested.

Attributes were introduced to take advantage of special features of Montage that rely
on the abstract data types pertaining to time, arrays and (Cartesian) location. For
example, latitudes and longitudes have been combined into a single attribute,
Location, of Montage data type Pnt (point). Montage types arrayof() are used to hold
the depth, temperature and data quality vectors. The examples show how useful
this storage method is. An attribute, m_time, of Montage type abstime was
introduced to support queries involving time intervals.

4. Database management system

Montage is an object-relational database management system, derived from
Postgres, the research system currently utilized in the Sequoia project. Hydrodb is
implemented on Montage because we wanted SQL to be the query language. We
also wanted professional support to be available, for it is our intention to develop
this prototype into a production database. Most of the examples, with appropriate
changes in syntax, will run under Postgres.

The query examples were devised for their relevance to the temperature data set and
to illustrate aspects of Montage that distinguish it from most other database
management systems. These special features are discussed in the subsequent
paragraphs. The query examples execute quickly on the small database. A attributes
have been indexed, but this is the only optimization performed. Optimization will
become more important as the database grows.

a. Spatial queries

Spatial queries involve geometrical things such as points, polygons, lines, etc.,
which are familiar in geographic information systems but new to database
management systems. Montage supports abstract data types and functions
appropriate for plane geometry through its “spatial blade”. The underlying
Cartesian geometry limits the usefulness of the spatial blade for spherical problems.
But it is advantageous to use the spatial types, even if the geometry is inexact,
because the spatial attributes can be indexed and the SQL is compact. For example,
qguery 6.1.1(a) tests whether a location is within a latitude-longitude box. Query
6.1.1(b) tests whether a location is within a given distance (in the Cartesian
approximation) of a fixed point.

b. Array data

Profile data are stored in the table profiles as single objects with the Montage type
arrayof(). There are four arrays, the array of depths (Depth_Press), the array of
temperatures (Prof _Parm), and two arrays with quality values. To have the array
data available as distinct objects within the database is a more useful approach than



either of the conventional alternatives2. Several examples illustrate how subscripts
can be used in a SQL statement to select specific values from an array.

Arrays of integer or real numbers can have no more than 2,000 elements; for
doubles the limit is 1000 elements. Conveniently, the GTSPP format accommodates
large arrays by splitting them into 1,500-element partitions. The format has pointers
that link the partitions, and a similar method could be used in the database. This
has not been implemented for there are only 10 values in the average profile, and
no profile in the present data has more than 100 elements.

c. New functions

The architecture of Montage allows new C functions to be added to the command
language through a simple procedure called "registering"3. These are linked
dynamically and can be invoked as part of any query. In this way it is possible to
implement an algorithm that would be clumsy or impossible to express in SQL. For
example, mathematics functions usefully enhance SQL. The Unix Trig(3M) library
has been registered in hydrodb and is used in one of the examples.

Two interpolation functions were written for hydrodb. They return the
temperature of the water between measurement points of a profile. Interpl()
performs linear interpolation, interp2() performs parabolic interpolation.

Velocity(), quite a different type of function, combines two array attributes, the
temperature and salinity, to form a new (non-database) quantity, the predicted
sound speed profile. The function implements one of the standard
equations-of-state for seawater. In a similar fashion, other equations for the sound
speed, or equations for in situ density, could be provided.

A different way to embed equation-of-state functions in the database would have
been to define auxiliary tables and calculate the velocity profile for all data in one
batch calculation. What is wrong with this approach? Maybe nothing. Space is
saved using the function approach, but this is not a great advantage for hydrodb
which, at its largest, will be only a few gigabytes in size. There is a small
disadvantage in speed to the function approach (but we have not timed it), but the
oceanographic algorithms are simple enough the effect is probably small.

One reason to use functions is so that data administrators editing data and
oceanographers utilizing data can work simultaneously. Using the function to
calculate derived properties on demand gives assurance that the most current data

2 One alternative is to save the measurement values as separate database records. The other is to save
the data as files, and store pointers to the files in the database.

3 SQL functions can also be registered. Other database management systems support SQL functions but
it is rare to have supportable C functions.



are utilized4. Another reason for having DBMS functions handle the evaluation of
derived data is to ensure consistent algorithms are employed by all users and,
incidentally, to shrink slightly the amount of software they need to maintain.
Furthermore, we can imagine the equation-of-state algorithms, themselves,
becoming objects in the database. This would simplify the maintenance of the
functions and facilitate incorporation of new algorithms in the future.

d. Virtual attributes

Virtual attributes are attributes of the schema defined by registered C or SQL
functions. Values of virtual attributes are calculated dynamically at query time. We
have added Location (type Pnt) and m_time (type abstime) as virtual attributes.
They are defined by SQL functions acting on GTSPP variables Latitude and
Longitude (for Location) and the four pertaining to date and time. These are
introduced as virtual attributes because we want the associated GTSPP variables to
have primacy in the database, yet we want them to be cast automatically into the
more powerful Montage representations.

e. Time

Time is always difficult to handle because its human representation obeys
complicated rules of arithmetic. An important use of hydrodb will be to calculate
smoothed temperature-depth data through application of four-dimensional space-
time filters. To do this efficiently requires an attribute which is continuous in time
over the range of the data and on which mathematical operations can be performed.
Time represented in calendar and clock notation, as it is defined by the GTSPP
format, won't do. Montage supports a continuous time variable through the
abstract data type abstime. In hydrodb the variable m_time is formed (as a virtual
attribute) from the time elements of the GTSPP format. Hydrodb uses GMT.

5. S-PLUS and the Generic Database Interface

S-PLUS is a well-known statistics and graphics application. It is representative of a
growing class of scientific software with the following attributes:

- A rich variety of scientific functions

- Easy methods for plotting data, usually under the X system
- A scripting language

- An interface-builder

- The ability to make dynamic links to foreign functions

4 Transaction management, triggers, and stored procedures are other ways to handle concurrent access
and data integrity.



While powerful tools for analysis and display of data, these applications are poor
tools for storage and selection of data, particularly complex data sets or data sets with
copious ancillary parameters.

Our Generic Database Interface (GDI) is software that bridges the gap between
database software and software used for analysis and display of technical data. From
the user's point of view, the GDI is a small number of functions which are called
from the scientific application, S-PLUS in this case, or from C or Fortran programs.
Some functions perform administrative operations (such as connecting to a
database) in a standard manner. More important are the functions that submit
gueries to databases and the structures through which the data of the queries are
exchanged. Objects of great complexity can be passed back and forth with ease.

By linking high-level application programs such as S-PLUS to a database such as
Montage it is possible to build complete data processing programs in the scripting
language of the application. The need to master SQL in addition to a scripting
language will be an inconvenience to some and for them higher-level interfaces can
easily be created by a number of mechanisms. We believe these interface builders
augment but do not supplant the low-level approaches exemplified in this report.

6. Query examples

The following queries illustrate the features discussed previously. Familiarity with
relational databases and SQL is assumed. These examples show some of the
approaches that would be used to construct a complete data processing system with
these techniques. All the examples are concerned with selecting and displaying data.

6.1 Queries through the Montage monitor

The following examples illustrate the selection of data according to location, profile
depth and profile temperature at a specified depth.

6.1.1 Selection of data from a geographic region

The queries of this section illustrate selection of data based on location. The first
two examples use the Contains() function of the spatial blade. The results are not
exactly as intended because the Earth’s curvature has been neglected. The third
example uses spherical trigonometry.

a. Select data by location with respect to a latitude-longitude limits

The following query prints the latitude and longitude® of profiles taken within a
specified rectangular region. The "where" clause of the query tests whether the

5 Hydrodb follows the GTSPP convention that western longitudes are positive. The sign is reversed in
the queries so map plots make geographic sense.



database attribute Location (the latitude and longitude taken as a pair) is within the
desired region. The function Pnt casts a latitude and a longitude into an object of
type point. Two of these define the boundaries of a box. The box should not span
the date line, since Longitude is discontinuous there. The same problem, however,
occurs if the region of interest is defined in the usual way by separately testing the
latitude and longitude against upper and lower bounds.

select

Latitude as Lat, -Longitude as Lon, ix_master, Data_Avail
from

master
where

Contains(Box(Pnt(10,-175), Pnt(20,-165)), Location);

b. Select data with respect to distance from a given point

The following query prints the latitude and longitude of profiles taken within 6
degrees of 15N 170W. Again, the Pnt function casts a latitude and a longitude into a
an object of Montage type Pnt, taken as the center of a circle. The underlying
mathematics assumes a Cartesian geometry. On the earth this circle is warped into
an ellipse because of the distortion of longitudinal distance with latitude.

select

Latitude as Lat, -Longitude as Lon, ix_master, Data_Avail
from

master
where

Contains(Circ(Pnt(15, 170),6),Location);

c. Select data with respect to distance from a given point using spherical
trigonometry.

The following query shows the correct way to select all measurement locations
within 6 degrees of a reference point. As can be seen, the trigonometric functions
are as easy to use as any other. The cosine rule could easily be turned into a
registered function.

select
Latitude as Lat, -Longitude as Lon,
acos(cos((90-Latitude)/57.2958)*cos((90-15)/57.2958)
+ sin((90-Latitude)/57.2958)*sin((90-15)/57.2958)
*cos((-Longitude+170)/57.2958))*57.2958 as dist_in_deg
from
master
where
(acos(cos((90-Latitude)/57.2958)*cos((90-15)/57.2958)
+ sin((90-Latitude)/57.2958)*sin((90-15)/57.2958)
*cos((-Longitude+170)/57.2958))*57.2958 ) < 6.;



6.1.2 Select data according to location and depth extent.

This query prints the latitudes and longitudes of all profiles which extend deeper
than 850 meters and which were taken within a specified latitude-longitude box. It
illustrates how arrays are manipulated. It also illustrates the "join" between tables
master and profiles through the key ix_master.

select
tl.Latitude as Lat, -t1.Longitude as Lon, t1.ix_master,
t2.Depth_Press[t2.No_Depths] as depth

from
master t1, profiles t2

where
t2.Depth_Press[t2.No_Depths] > 850 and
tl.ix_master = t2.ix_master;

6.1.3 Select data according to location and temperature value.

This query uses an interpolation function to find locations where the temperature at
100 meters is warmer than 20°C.

select
tl.Latitude as Lat, -t1.Longitude as Lon,
interp1(100, t2.Prof _Parm, t2.Depth_Press) as Temp
from
master t1, profiles t2
where
t1.ix_master = t2.ix_master and
Contains(Circ(Pnt(15,-170),6), t1.Location) and
interp1(100, t2.Prof Parm, t2.Depth_Press) > 20 ;

6.2 Queries from S-PLUS

These examples illustrate selection and display of data from within the S-PLUS
application. Certain initialization steps have been omitted.

The first example is discussed in its entirety. In subsequent examples the SQL
gueries are always given, but the rest of the S-PLUS script is only summarized. The
figures produced by the examples are included in Appendix C.

6.2.1 Plot profile locations

This script maps the locations at which profiles are available. The first block builds a
normal SQL query by pasting text into a string, g621. Variables are re-named for
convenient citation within the argument lists of S-PLUS functions.

cat("Querying the database...\n")

621 <- "select Latitude as lat, -Longitude as lon from master "

621 <- paste(g621, " where Contains(Box(Pnt(-60,-180), Pnt(60,180)),
Location)")



In the second block the query is submitted using the GDI function sdi.submit() and
the result is returned in the S-PLUS structure m621.

m621 <- sdi.submit(q621, -1)

The final block makes the plot. Region() is a function in S-PLUS we wrote to plot
the map. Notice how the coordinates are referenced in the structure m621.

title <- paste ("Q621: Profile Locations")
region(m621$lat, m621$lon, -60, 70, 60, 270, title=title, nopoly=1)

6.2.2 Plot a histogram of the latitudes and longitudes of the data available for June.

This script draws histograms of the latitude distribution and longitude distribution
of June 1993 measurement locations. In the first part, a string, q622, is formed with
the desired SQL query.

622 <- "select Latitude as lat, -Longitude as lon from master "
0622 <- paste(g622, "where Obs_Month::int=6 and Obs_Year::int=1993")

The query is submitted to Montage as before and the result returned in the structure
m622. The following block plots the histogram of latitudes using the S-PLUS
function hist().

titlel <- "Q622: Latitude - Distribution for June"
title2 <- "Latitude (degrees)"
hist(m622%lat, main=title1, xlab=title2, ylab="Site Count")

6.2.3 Plot subsurface temperature profiles

This script obtains the locations of all available profile measurements and these are
then plotted on an S-PLUS map. The user then draws a polygon on the map by
choosing its vertices. The vertices are incorporated into a second SQL query which
selects profile data for all locations falling within the polygon. Finally, temperature
is plotted as a function of depth for the chosen locations.

The first query, string q623a, selects the location of every profile in the database.
This is only feasible for the relatively small amount of data in the prototype.

g623a <- "select Latitude as lat, -Longitude as lon from master"

The query is submitted and the set of latitude-longitude pairs returned in the
structure m623. The locations are plotted on the map by the function region(),
previously described. Region(), as used here, returns the coordinates of the picked
vertices in the S-PLUS variable poly.

poly <- region(mé623a$lat, m623a$lon, -60, 70, 60, 270, title=tl)
npoly <- length(poly$x)



The next block forms a SQL query that selects the data from all locations within the
polygon. The start of the "where" clause of this query, shown below, illustrates how
the first polygon vertex is specified to the Montage MakePoly() function.

0623b <- paste(q623b, " where a.ix_master = b.ix_master ")
g623b <- paste(q623b, " and Contains(MakePoly(")
g623b <- paste(q623b,™ (", round(poly$y[1],2), ",", round(poly$x[1],2),

Additional vertices are specified by adding more text to the string q623b until the
polygon is closed. This query is submitted and the result passed back in the S-PLUS
structure m623b. Profiles are plotted, one to a panel, by an S-PLUS function written
for this purpose, plot.dt().

tl <- "Q623b: Selected Profile Data"
plot.dt(m623b, t1)

6.2.4 Plot a histogram of the temperature at 100 meters for June.

This script uses one of the interpolation functions to calculate the sub-surface
temperature beneath a specified region of ocean. A histogram is plotted of the
temperature values.

The parabolic interpolation function, interp2(), is incorporated in the "select” clause.
The "where" clause limits the time interval to the 6th month and the location to a
specified latitude-longitude box. More delicate control over time windows would
be accomplished with the database attribute m_time.

0624 <- "select interp2(100, b.Depth_Press, b.Prof_Parm) as temp "

0624 <- paste(q624, " from master a, profiles b )

0624 <- paste(q624, " where a.ix_master = b.ix_master and
a.0Obs_Month::int=6 ")

0624 <- paste(gq624, " and Contains(Box(Pnt(-10,140), Pnt(10,160)),
a.Location)")

The query is submitted and results returned in m624. Then the histogram is drawn
using a built-in S-PLUS function.

m624 <- sdi.submit(q624, -1)
hist(m624$temp, main=title1, xlab="Temperature (Celsius)",
ylab="Site Count")

6.2.5 Plot the isotherms at a 100 meter depth

This script illustrates the use of temporary database tables, and entails two separate
gueries. Two queries are needed because one class of data, data recorded on buoys,
needs to be treated differently from the other class, data recorded from ships. The
buoys drift slightly, and their data must be smoothed so they do not bias the
contours. Data smoothing is applied as an integral part of the SQL "select". First the
locations and subsurface temperatures of buoy data are averaged and saved into a

10



temporary table. Then the locations and subsurface temperatures of
single-measurement stations are appended to the temporary table. The entire table
is returned to S-PLUS and the temperatures then gridded and contoured using
standard S-PLUS functions. The SQL part of the program is shown without the
S-PLUS context to make it more readable.

An SQL query-string is formed that finds and averages buoy data in the region of
interest. The buoys are known to have 5-digit Cruise_ID values beginning in 51 and
52. In the "select" clause, the built-in Montage function, avg() calculates the mean
buoy location. Avg() also works when its argument is a set of temperatures
returned by our registered function interp2(). The second line of the “where” clause
ensures that the profile extends at least as deep as the target depth. The 'group by’
clause ensures that all data from a given buoy are treated together.

create table temp_tbl as
select Cruise_ID, count(Cruise_ID),
avg(a.Latitude) as lat, avg(-a.Longitude) as lon,
avg(interp2(100, b.Depth_Press, b.Prof_Parm)) as temp
from master a, profiles b
where a.ix_master = b.ix_master
and b.Depth_Press[b.No_Depths] >= 100
and a.Obs_Month="06"'
and Contains(Box(Pnt(-10,140),Pnt(10,160)),a.Location)
and (a.Cruise_ID like '51 ' or a.Cruise_ID like '52___ ")
group by a.Cruise_ID

The query is submitted. This leaves a temporary table, temp_tbl, in the database
holding the first part of the data. The variable m1 has information pertaining to the
success of the query, but no data are returned.

m1l <- sdi.submit(q1, -1, 1)
A second query, with no averaging, is formed and submitted.

insert into temp_tbl
select Cruise_ID, '1',
a.Latitude as lat, -a.Longitude as lon,
interp2(100, b.Depth_Press, b.Prof _Parm) as temp
from master a, profiles b
where a.ix_master = b.ix_master
and b.Depth_Press[b.No_Depths] >= 100
and a.Obs_Month="06"'
and Contains(Box(Pnt(-10,140),Pnt(10,160)),a.Location)
and a.Cruise_ID not like '51__ '
and a.Cruise_ID not like '52__ '

The results of both queries have been accumulated in table temp_tbl. The third
guery returns the contents of temp_tbl, in the structure m625.

625 <- "select temp, lat, lon from temp_tbl "
m625 <- sdi.submit(q625, -1, 1)

11



The S-PLUS functions interp() and contour() grid the data and draw the plot.

fit <- interp(m625%lon, m625%lat, m625%temp)
contour(fit, main="Q625: June Temperature at 100 meters",
xlab="Longitude (degrees)",ylab="Latitude (degrees)")

7. Polyglot programming

The software of this report illustrates a phenomenon of growing significance: in
many respects the most productive technique for writing software for data analysis
and display is to use a combination of languages. The traditional approach, adopt
one language, usually C, and buy or develop function libraries for one's scientific
domain, is becoming obsolete with the burgeoning of powerful software
"environments”. Members of the Sequoia community have themselves developed
some of these environments, and the environments have been a significant part of
the software architecture from the start.

There are a number of features usually shared by these environments: a rich
collection of functions, a high-level language, an openness to C and Fortran, and,
often, a toolkit for building graphical interfaces. Postgres, IDL, AVS, Tcl/Tk are
familiar to the Sequoia project. Besides Montage and S-PLUS, essentially all
database systems fit this model as well as Matlab, Mathematica, etc.

These systems have taken hold because, for many users, the environments have
attained a better equilibrium than traditional languages between the extremes of
flexibility and functionality. The power comes at a price, however. The
proliferation of the languages, the incompatibility of the data interfaces, and the
large amount of legacy software makes it hard, both for the computer scientists and
the earth scientists, to judge the best software to adopt. Furthermore, the technology
is rapidly changing, and one fears that the best choice now may be obsolete in the
future.

Figure 1 shows some relationships between traditional languages and these
"environments". In this picture SQL Database Management Systems (DBMSs) have
been separated from Applications and in each of these those for which there is a
generic database interface (GDI) are separated from the rest. Arcs link the four kinds
of software, pointing from the caller (client) to the called (server) module. For
example, vendors of database systems commonly provide two levels of support for
C and Fortran programs, embedded SQL or a proprietary function library. This is
represented by the arcs from the languages to the DBMS circle. Less frequently
(there are examples in this paper) DBMSs permit SQL programs to execute a C or
Fortran function. This capability is represented by arcs at the bottom of the page
pointing in the opposite direction.

The top half of the page shows the analogous relationships between the
"applications”, as we have defined them here, and programs written in C and
Fortran. As with database systems, not every application supports bi-directional
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interfaces to both programming languages. It is notable in the diagram that
applications and databases are disconnected, other than through the generic database
interface. We are not aware of any commercial software that bridges this gap in
either direction.

»f Applications

plication
Call Interface

Applicatio
Call Interfe

Linked G D| Linked
Function ' Functia

E-SQL or
Call Interface

SQL

NRNMQ

The data loader (written in C) was by far the hardest software of this scenario. The
registered functions (written also in C) each have about 200 lines of source code.
The schema and all the database programs (written in SQL) total approximately 350
lines. There are 400 lines of S-PLUS scripts, 200 for the plotting program and 200 for
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all the scenario examples. Thus, with less than 1,500 lines of software a
sophisticated scientific database with rudimentary graphical interface has been
obtained. Appropriate use of several languages was the key to this economy.

8. Conclusions

Obviously, the science content of the query examples is not deep, but our purpose
has been to explain database and software technology, not oceanography. The
database approach has brought a substantial amount of hydrographic data into a
state of easy accessibility in just a few months. The incorporation of S-PLUS has let
us interrogate the database from a scripting language as well as display and analyze
the returned sets.

The careful thought others put into defining the GTSPP format was a help in the
beginning, but we don't yet understand all its features. A committee is continuing
to refine the format, but future changes will be easy to incorporate because database
management systems allow columns of tables to be added or deleted without the
necessity of reloading all the data.

Montage is superior to other database systems with which we are familiar. It would
be convenient to have support for spatial queries on a sphere. We were able to
devise powerful SQL queries and S-PLUS scripts with a small fraction of the effort
we would expect to spend on a C or Fortran program. An example was the matter of
smoothing, in time, and contouring data that had been acquired both from moored
and moving platforms. It was surprising to realize that many of the problems we
experienced constructing queries reflected science issues, not software issues.

If all available hydrographic data were to be absorbed, this database could become
three orders of magnitude larger. Furthermore, data collection continues, and if
these future data are incorporated as well, each year would add 30 megabytes, three-
times the amount of data presently installed. These larger data sets will raise issues
that were not important with the test data: efficient indexing, expansion of the size
of some tables, utility of virtual attributes.
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Appendix A. Scenario description

For didactic purposes, the scenario is presented as the orderly sequence of processes
and flows diagrammed in the dataflow model, Figure A-1. Reading the diagram
from left to right, the external inputs of the scenario are the hierarchical file holding
data (measurements pertaining to 4,000 profiles) and a collection of E-mail and other
documentation that describes the structure of the file and the allowed values of its
fields. The file structure was mapped to a relational schema in the Montage data
definition language. Some attributes were dropped from tables where they were
redundant. Some new attributes were defined in order to take advantage of
Montage abstract data types (Location, m_time). Two new tables were created
(months and ui_seq), but these were associated with details of data management,
not oceanography. We expect more attributes and tables will be added in the future,
both to make querying easy and to support future versions of the GTSPP format.

A parser, process 1, translated the single, hierarchical, GTSPP file into multiple flat-
files, one for each table in the schema. Coding the parser was an iterative process,
for the file did not exactly match the advertised structure, and as we gained
experience a number of quality checks were built-in.

Given the files holding the Montage schema and the data for the tables, it is easy to
insert the schema into the database (process 2) and then copy the data from the files
to the database (process 3). Table A-1 shows some time and size measurements for
this part of the scenario. The elapsed times are acceptable, but faster performance
would help. Assuming a linear increase in time with data size, if the entire
hydrographic data collection is 1,000 times larger than this experimental data set, it
will take a week to load the database.

The 3-fold expansion in data volume is notable, and should be investigated further.
An inconsistency among tables is notable. Some increase in size is to be expected as
efficiently-packed character data are expanded into standard types. The space taken
by indices and system catalogs is small, but as the database expands more indices will
be added. We think that the scale-up will be less than linear.

It is much slower to load the data by performing database inserts directly into
Montage from the data parser. For example, our first method performed a database
insert for each sequential record in the file. The time build the database was 6 hours
(but this was on a 4-time slower SPARCstation 2). It was somewhat more efficient to
read all related records of a single hierarchical cluster and then do the database
inserts, but this only reduced the time by 30% to 4 hours.

Although it requires more free space on the file system, the two step procedure, in

which step one is to create a file for each table, and step two to load the files one by
one, is the only reasonable approach for large data sets.
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Figure Al

Data Flow model of the scenario
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Table A-1. Metrics associated with creating hydrodb.

Description Time Size Discussion
(seconds) | (megabytes)

Size of original 2.44

GTSPP data-file

Time to parse into 30 SPARCstation 10/41

flat files

Cumulative size of 3.39 profiles 1.1

the flat files. history_group 1.0
master 0.6
surface_codes_g. 0.6

Time to load using 570 writing records directly into the

moncopy database using SQL "inserts" is
nearly an order of magnitude
slower.

Size of database 6.66 profiles 1.2

(including a few hlst(iry_group (2)8

hundred kilobytes for mai er d 2'0

indices) surface_codes_g. .

Size with all system 7.6 The system overhead will not

catalogs etc. change significantly as more data
are added. Indices may become
more important as they are used
more intensively.

The Montage server, process 4, represents the database manager, and the database
tables are represented by data store D3. User-defined functions we have added and
which are dynamically linked, are represented by process 5, montage extensions.
Functions interpl(), interp2(), and velocity() were written in the C language. SQL
functions were written as well to define two virtual data types (m-time and
Location) in the schema.

Processes 6 and 7, at the bottom of the figure, represent the software through which
the user accesses the database. Section 6.1 has examples of queries submitted to the
msqgl client program. Section 6.2 has examples of queries submitted through
S-PLUS.
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Appendix B. Database schema

This appendix gives the schema of hydrodb in the Montage data definition
language. There are 8 tables, 6 inherited from the GTSPP format, and two we have

added. There are approximately 50 attributes.

create table master of new type master_t (

MKey integer,
iXx_master integer,
-- Added "ix_master" unique primary key for master
One_deg_sq integer,
Cruise_ID char(b),
Obs_Year char(4),
Obs_Month char(4),
Obs_Day char(4),
Obs_Time char(4),
m_time abstime virtual,
-- note: m_time is virtual column (cf: function m_time below)
Data_Type char(2),
lumsgno integer,
Stream_Source char(1),
Uflag char(),
MEDS_Sta integer,
Location Pnt virtual,

-- note: Location is of data type Pnt (requires Spatial Blade)
-- Location is a virtual column (c.f. function m_time above)

Latitude double precision,
Longitude double precision,
Q _Pos smallint,
Q_Date_Time smallint,
Q_Record smallint,
Up_Date integer,
Bul_Time real,
Bul_Header char(06),
Source_ID char(04),
Stream_Ident char(04),
QC_Version char(04),
Data_Avalil char(01),
No_Prof smallint,
Nparms smallint,

Nsurfc smallint,
Num_Hists smallint

);

create table profiles (
ix_master integer,

-- ix_master is foreign key for table profiles.
Profile_Type char(4),
Profile_Seg smallint,
No_Depths smallint,
D_P_Code char(01),
Depres_Q arrayof(int),
Prof Q Parm arrayof(int),
Depth_Press arrayof(real),
Prof_Parm arrayof(real)

-- note : use of array datatypes.

);
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-- Added MKey to profile_info,surface_par_group,suface_codes_group
-- and history_group. This preserves the GTSPP relationship with master

create table profile_info (

MKey integer,
No_Seg smallint,
Prof_Type char(04),
Dup_flag char(01),
Digit_Code smallint,
Standard smallint,
Deep_Depth char(05)

)i

create table surface_par_group (
MKey integer,
Pcode char(04),
Parm double precision,
Q_Parm boolean

);

create table surface_codes_group (

MKey integer,
SRFC_Code char(04),
SRFC_Parm char(10),
SRFC_Q _Parm char(01)

)i

create table history_group (
MKey integer,
Ident_Code char(02),
PRC_Code char(04),
NODC_Version char(04),
PRC_Date char(08),
Act_Code char(02),
Act_Parm char(04),
Aux_ID real,
Previous_Val real

);
-- Create and load supporting tables.
create table ui_seq (

next ui_seq integer
);
insert into ui_seq values (3000);
create table months (

Obs_Month char(4),

month char(3)

);
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Figure B1

ER model of the schema
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Appendix C. S-PLUS figures
Figure C1. g621.ps

Figure C2. q622.1at.ps

Figure D3 g623a.ps

Figure C4. q623b.ps

Figure C5. 624.ps

Figure C6. 625.ps

21



Q621: Profile Locations
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Q623a: Profile Locations
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14 16 18 20 22 24 26 28

Temperature (Celsius)



Latitude (degrees)

-10

Q625: June Temperature at 100 meters

N

-155

-150
Longitude (degrees)

-145

-140



