Figure 4.1: Software Layers in the UNIX File System.

The UNIX System Call Layer dispatches a read or write request to the File System, which in turn calls a
Block 1/O routine. This calls a specific device driver to handle the scheduling the I/O request. Figure 4.2:
Software Layers in the UNIX File System Extended for NFS

The VFS interface allows requests to be mapped transparently among local file systems and remote file sys-
tems. Figure 4.3: Path of an NFS Client to Server Request

A request to access aremote file is handled by the clientUs VFS, which maps the request through the NFS
layer into RPC calls to the server over the network. At the server end, the requests are presented to the
VFES, thistime to be mapped into calls on the serverUs local UNIX file system. File
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1. Introduction

The traditional mainframe-centered model of computing can be characterized by small numbers of large-
scale mainframe computers, with shared storage devices attached via 1/O channel hard- ware. Today, we
are experiencing a mgjor paradigm shift away from centralized mainframes to a distributed model of com-
putation based on workstations and file servers connected via high per- formance networks.

What makes this new paradigm possible is the rapid development and acceptance of the cli- ent-server
model of computation. The client/server model is a message -based protocol in which clients make requests



of service providers, which are called servers. Perhaps the most successful application of this concept isthe
widespread use of file servers in networks of computer worksta- tions and personal computers. Even a
high-end workstation has rather limited capabilities for data storage. A distinguished machine on the net-
work, customized either by hardware, software, or both, provides a file service. It accepts network mes-
sages from client machines containing open/ close/read/write file requests and processes these, transmitting
the requested data back and forth across the network.

Thisisin contrast to the pure distributed storage model, in which the files are dispersed among the storage
on workstations rather than centralized in a server. The advantages of a distrib- uted organization are that
resources are placed near where they are needed, leading to better per- formance, and that the environment
can be more autonomous because individual machines continue to perform useful work even in the face of
network failures. While this has been the more popular approach over the last few years, there has emerged
a growing awareness of the advantages of the centralized view. That is, every user sees the same file sys-
tem, independent of the machine they are currently using. The view of storage is pervasive and transparent.
Further, it is much easier to administer a centralized system, to provide software updates and archival back-
ups. The resulting organization combines distributed processing power with a centralized view of storage.

Admittedly, centralized storage also has its weaknesses. A server or network failure renders the client
workstations unusable and the network represents the critical performance bottleneck. A highly tuned
remote file system on a 10 megabit (Mbit) per second Ethernet can provide perhaps 500K bytes per second
to remote client applications. Sixty 8K byte 1/Os per second would fully utilize this bandwidth. Obtaining
the right balance of workstations to servers depends on their rel- ative processing power, the amount of
memory dedicated to file caches on workstations and serv- ers, the available network bandwidth, and the
I/O bandwidth of the server. It isinteresting to note that todayUs servers are not 1/0O limited: the Ethernet
bandwidth can be fully utilized by the 1/O bandwidth of only two magnetic disks!

Meanwhile, other technology developments in processors, networks, and storage systems are affecting the
relationship between clients to servers. It iswell known that processor perfor- mance, as measured in MIPS
ratings, is increasing at an astonishing rate, doubling on the order of once every eighteen months to two
years. The newest generation of RISC processors have perfor- mance in the 50 to 60 MIPS range. For
example, a recent workstation announced by Hewlett- Packard Corporation, the HP 9000/730, has been
rated at 72 SPECMarks (1 SPECMark is roughly the processing power of a single Digital Equipment Cor-
poration VAX 11/780 on a partic- ular benchmark set). Powerful shared memory multiprocessor systems,
now available from com- panies such as Silicon Graphics and Solborne, provide well over 100 MIPS per-
formance. One of AmdahlUs famous laws equated one MIPS of processing power with one megabit of 1/0
per sec- ond. Obviously such processing rates far exceed anything that can be delivered by existing server,
network, or storage architectures.

Unlike processor power, network technology evolves at a slower rate, but when it advances, it does so in
order of magnitude steps. In the last decade we have advanced from 3 Mbit/second Ethernet to 10
Mbit/second Ethernet. We are now on the verge of a new generation of network technology, based on fiber
optic interconnect, called FDDI. This technology promises 100 Mbits per second, and at least initidly, it
will move the server bottleneck from the network to the server CPU or its storage system. With more
powerful processors available on the horizon, the perfor- mance challenge is very likely to be in the storage
system, where a typical magnetic disk can ser- vice thirty 8K byte I/Os per second and can sustain a data
rate in the range of 1 to 3 MBytes per second. And even faster networks and interconnects, in the gigabit
range, are now commercially available and will become more widespread as their costs begin to drop
[UltraNet 90].

To keep up with the advances in processors and networks, storage systems are also experi- encing rapid
improvements. Magnetic disks have been doubling in storage capacity once every three years. As disk form
factors shrink from 14S to 3.5S and below, the disks can be made to spin faster, thusincreasing the sequen-
tia transfer rate. Unfortunately, the random 1/O rate is improving only very slowly, due to mechanically-



limited positioning delays. Since 1/0 and data rates are pri- marily disk actuator limited, a new storage sys-
tem approach called disk arrays addresses this problem by replacing a small number of large format disks
by a very large number of small format disks. Disk arrays maintain the high capacity of the storage system,
while enormously increasing the systemUs disk actuators and thus the aggregate 1/0 and data rate.

The confluence of developmentsin processors, networks, and storage offers the possibility of extending the
client-server model so effectively used in workstation environments to higher performance environments,
which integrate supercomputer, near supercomputers, workstations, and storage services on a very high
performance network. The technology is rapidly reaching the point where it is possible to think in terms of
diskless supercomputers in much the same way as we think about diskless workstations. Thus, the network
is emerging as the future RbackplaneS of high performance systems. The challenge is to develop the new
hardware and software architec- tures that will be suitable for this world of network-based storage.

The emphasis of this paper is on the integration of storage and network services, and the challenges of
managing the complex storage hierarchy of the future: file caches, on-line disk stor- age, near-line data
libraries, and off-line archives. We specifically ignore existing mainframe 1/O architectures, as these are
well described elsewhere (for example, in [Hennessy 90]. The rest of this paper is organized as follows. In
the next three sections, we will review the recent advances in interconnect, storage devices, and distributed
software, to better understand the underlying changes in network, storage, and software technologies. Sec-
tion 5 contains detailed case studies of commercially available high performance networks, storage servers,
and file servers, as well as a prototype high performance network-attached 1/0 controller being devel oped
at the University of California, Berkeley. Our summary, conclusions, and suggestions for future research
are found in Section 6.

2. Interconnect Trends
2.1. Networks, Channels, and Backplanes

Interconnect is a generic term for the RgluesS that interfaces the components of a computer system. Inter-
connect consist of high speed hardware interfaces and the associated logical protocols. The former consists
of physical wires or control registers. The latter may be interpreted by either hard- ware or software. From
the viewpoint of the storage system, interconnect can be classified as high speed networks, processor-to-
storage channels, or system backplanes that provide ports to a mem- ory system through direct memory
access techniques.

Networks, channels, and backplanes differ in terms of the interconnection distances they can support, the
bandwidth and latencies they can achieve, and the fundamental assumptions about the inherent unreliability
of data transmission. While no statement we can make is universally true, in general, backplanes can be
characterized by parallel wide data paths, centralized arbitra- tion, and are oriented towards read/write
Rmemory mappedS operations. That is, access to control registers is treated identically to memory word
access. Networks, on the other hand, provide serial data, distributed arbitration, and support more
message-oriented protocols. The latter require a more complex handshake, usually involving the exchange
of high-level request and acknowledg- ment messages. Channels fall between the two extremes, consisting
of wide datapaths of medium distance and often incorporating simplified versions of network-like proto-
cols.

These considerations are summarized in Table 2.1. Networks typically span more than 1 km, sustain 10
Mbit/second (Ethernet) to 100 Mbit/second (FDDI) and beyond, experience latencies measured in several
ms, and the network medium itself is considered to be inherently unreliable. Networks include extensive
data integrity features within their protocols, including CRC check- sums at the packet and message levels,
and the explicit acknowledgment of received packets.

Channels span small 10Us of meters, transmit at anywhere from 4.5 MBytes/s (IBM channel interfaces) to



100 MBytes/second (HiPPI channels), incur latencies of under 100 5s per transfer, and have medium relia-
bility. Byte parity at the individual transfer word is usually supported, although packet-level checksumming
might also be supported.

Backplanes are about 1 m in length, transfer from 40 (VME) to over 100 (FutureBus) MBytes/second,
incur sub 5s latencies, and the interconnect is considered to be highly reliable. Backplanes typically support
byte parity, although some backplanes (unfortunately) dispense with parity altogether.

In the remainder of this section, we will look at each of the three kinds of interconnect, net- work, channel,
and backplane, in more detail.

2.2. Communications Networks and Network Controllers

An excellent overview of networking technology can be found in [Cerf 91]. For a futuristic view, see
[Tesla 91] and [Negraponte 91]. The decade of the 1980Us has seen a slow maturation of net- work tech-
nology, but the 1990Us promise much more rapid developments. 10 Mbit/second Ether- nets are pervasive
today, with many environments advancing to the next generation of 100 Mbit/ second networks based on
the FDDI (Fiber Distributed Data Interface) standard [Joshi 86]. FDDI provides higher bandwidth, longer
distances, and reduced error rates, due largely to the introduc- tion of fiber optics for data transmission.
Unfortunately cost, especialy for replacing the existing copper wire network with fiber, coupled with
disappointing transmission latencies, have slowed the acceptance of these higher speed networks. The
latency problems have more to do with FDDIUs protocols, which are based on a token passing arbitration
scheme, than anything intrinsic in fiber optic technology.

A network system is decomposed into multiple protocol layers, from the application inter- face down to the
method of physical communication of bits on the network. Figure 2.1 summa- rizes the popular seven layer
ISO protocol model. The physical and link levels are closely tied to the underlying transport medium, and
deal with the physical attachment to the network and the method of acquiring access to it. The network,
transport, and session levels focus on the detailed formats of communications packets and the methods for
transmitting them from one program to another. The presentation and applications layers define the formats
of the data embedded within the packets and the application-specific semantics of that data.

A number of performance measurements of network transmission services al point out that the significant
overhead is not protocol interpretation (approximately 10% of instructions are spent in interpreting the net-
work headers). The culprits are memory system overheads due to data movement and operating system
overheads related to context switches and data copying [Clark 89, Heatly 89, Kanakia 90, Watson 87]. We
will see this again and again in the sections to follow.

The network controller is the collection of hardware and firmware that implements the inter- face between
the network and the host processor. It is typicaly implemented on a small printed circuit board, and con-
tains its own processor, memory mapped control registers, interface to the network, and small memory to
hold messages being transmitted and received. The on-board pro- cessor, usually in conjunction with VLSI
components within the network interface, implements the physical and link level protocols of the network.

The interaction between the network controller and the hostUs memory is depicted in Figure 2.2. Lists of
blocks containing packets to be sent and packets that have been received are main- tained in the host pro-
cessorUs memory. The locations of buffers for these blocks are made known to the network controller, and
it will copy packets to and from the request/receive block areas using direct memory access (DMA) tech-
nigues. This means that the copy of data across the peripheral busis under the control of the network con-
troller, and does not require the intervention of the host processor. The controller will interrupt the host
whenever a message has been received or sent.

While this presents a particularly clean interface between the network controller and the operating system,



it points out some of the intrinsic memory system latencies that reduce network performance. Consider a
message that will be transmitted to the network. First the contents of the message are created within a user
application. A call to the operating system results in a process switch and a data copy from the userUs
address space to the operating systemUs area. A protocol- specific network header is then appended to the
data to form a packaged network message. This must be copied one more time, to place the message into a
request block that can be accessed by the network controller. The final copy is the DMA operation that
moves the message within the request block to memory within the network controller.

Data integrity is the aspect of system reliability concerned with the transmission of correct data and the
explicit flagging of incorrect data. An overriding consideration of network protocols is their concern with
reliable transmission. Because of the distances involved and the complexity of the transmission path, net-
work transmission is inherently lossy. The solution is to append checksum protection bits to all network
packets and to include explicit acknowledgment as part of the network protocols. For example, if the
checksum computed at the receiving end does not match the transmitted checksum, the receiver sends a
negative acknowledgment to the sender.

2.3. Channel Architectures

Channels provide the logical and physical pathways between 1/0O controllers and storage devices. They are
medium distance interconnect that carry signalsin parallel, usually with some parity technique to provide
data integrity. In this section, we will describe two alternative channel orga- nizations that characterize the
low end and high end respectively: SCSI (Small Computer System Interface) and HiPPI (High Perfor-
mance Parallel Interface).

2.3.1. Small Computer System Interface

SCSl is the channel interface most frequently encountered in small formfactor (5.25S diameter and
smaller) disk drives, as well as a wide variety of peripherals such as tape drives, optical disk readers, and
image scanners. SCSI treats peripheral devices in a largely device-independent fash- ion. For example, a
disk drive is viewed as a linear byte stream; its detailed structure in terms of sectors, tracks, and cylinders
isnot visible through the SCSI interface.

A SCSI channel can support up to 8 devices sharing a common bus with an 8-bit wide data- path. In SCSI
terminology, the I/O controller counts as one of these devices, and is called the host bus adapter (HBA).
Burst transfers at 4 to 5 MBytes/second are widely available today. In SCSI terminology, a device that
requests service from another device is called the master or the initia- tor. The device that is providing the
service is called the dave or the target.

SCSI provides a high-level message-based protocol for communications among initiators and targets.
While this makes it possible to mix widely different kinds on devices on the same channel, it does lead to
relatively high overheads. The protocol has been designed to alow initia- tors to manage multiple simul-
taneous operations. Targets are intelligent in the sense that they explicitly notify the initiator when they are
ready to transmit data or when they need to throttle atransfer.

It is worthwhile to examine the SCSI protocol in some detail, to clearly distinguish what it does from the
kinds of messages exchanged on a computer network. The SCSI protocol proceeds in a series of phases,
which we summarize below:

Bus Free: No device currently has the bus allocated

Arbitration: Initiators arbitrate for access to the bus. A deviceUs physical address determinesiits priority.

Selection: Theinitiator informs the target that it will participate in an 1/0O operation.



Reselection: The target informs the initiator that an outstanding operation is to be resumed. For example,
an operation could have been previously suspended because the 1/0 device had to obtain more data.

Command: Command bytes are written to the target by the initiator. The target begins executing the opera-
tion.

Data Transfer: The protocol supports two forms of the data transfer phase, Data In and Data Out. The
former refers to the movement of data from the target to theinitiator. In the latter, data moves from the ini-
tiator to the target.

Message: The message phase also comes in two forms, Message In and Message Out. Message In consists
of severa aternatives. Identify identifies the reselected target. Save Data Pointer saves the place in the
current data transfer if the target is about to disconnect. Restore Data Pointer restores this pointer. Discon-
nect notifies the initiator that the target is about to give up the data bus. Command Complete occurs when
the target tells the initiator that the oper- ation has completed. Message Out has just one form: Identify.
Thisisused to identify the requesting initiator and its intended target.

Status: Just before command completion, the target sends a status message to the initiator.

To better understand the sequencing among the phases, see Figure 2.3. Thisillustrates the phase transitions
for a typical SCSI read operation. The sequencing of an 1/O operation actually begins when the hostUs
operating system establishes data and status blocks within its memory. Next, it issues an I/O command to
the HBA, passing it pointers to command, status, and data blocks, as well as the SCSI address of the target
device. These are staged from host memory to device-specific queues within the HBAUs memory using
direct memory access techniques.

Now the I/O operation can begin in ernest. The HBA arbitrates for and wins control of the SCSI bus. It
then indicates the target device it wishes to communicate with during the selection phase. The target
responds by identifying itself during a following message out phase. Now the actual command, such as
Rread a sequence of bytes,Sistransmitted to the device.

We assume that the target device is adisk. If the disk must first seek before it can obtain the requested data,
it will disconnect from the bus. It sends a disconnect message to the initiator, which in turn gives up the
bus. Note that the HBA can communicate with other devices on the SCSI channel, initiating additional 1/0
operations. Now the device will seek to the appropriate track and will begin to fill its internal buffer with
data. At this point, it needs to reestablish com- munications with the HBA. The device now arbitrates for
and wins control of the bus. It next enters the reselection phase, and identifies itself to the initiator to rees-
tablish communications.

The data transfer phase can now begin. Data is transferred one byte at a time using a simple
request/acknowledgment protocol between the target and the initiator. This continues until the need for a
disconnect arises again, such as when the targetUs buffer is emptied, or perhaps the command has com-
pleted. If it is the first case, the data pointer must first be saved within the HBA, so we can restart the
transfer at a later time. Once the data transfer pointer has been saved, the tar- get sequences through a
disconnect, as described above.

When the disk is once again ready to transfer, it rearbitrates for the bus and identifies the ini- tiator with
which to reconnect. This is followed by a restore data pointer message to restablish the current position
within the data transfer. The data transfer phase can now continue where it left off.

The command completion phase is entered once the data transfer is finished. The target device sends a
status message to the initiator, describing any errors that may have been encoun- tered during the opera-
tion. The final command completion message compl etes the I/O operation.



The SCSI protocol specification is currently undergoing a major revision for higher perfor- mance. In the
so-called RSCSI-1,S the basic clock rate on the channel is 10 Mhz. In the new SCSI- 2, Rfast SCSIS
increases the clock rate to 20 Mhz, doubling the channelUs bandwidth from 5 MByte/second to 10
MByte/second. Recently announced high performance disk drives, such as those from Fujitsu, support fast
SCSI. The revised specification also supports an alternative method of doubling the channel bandwidth,
called Rwide SCSI.S This provides a 16-bit data path on the channel rather than SCSI-1Us 8-bit width. By
combining wide and fast SCSI-2, the channel bandwidth quadruples to 20 MByte/second. Some manufac-
turers of high performance disk con- trollers have begun to use SCSI-2 to interface their controllers to a
computer host.

2.3.2. High Performance Parallel Interface

The High Performance Parallel Interface, HiPPI, was originaly developed at the Los Alamos National
Laboratory in the mid-1980s as a high speed unidirectional (simplex) point-to-point interface between
supercomputers [Ohrenstein 90]. Thus, two-way communications requires two HiPPl channels, one for
commands and write data (the write channel) and one for status and read data (the read channel). Data is
transmitted at a nominal rate of 800 Mbits/second (32-bit wide datapath) or 1600 Mbit/second (64-bit wide
datapath) in each direction.

The physical interface of the HiPPI channel was standardized in the late 1980s. Its data transfer protocol
was designed to be extremely simple and fast. The source of the transfer must first assert arequest signal to
gain access to the channel. A connection signal grants the channel to the source. However, the source can-
not send until the destination asserts ready. This provides a simple flow control mechanism.

The minimum unit of data transfer isthe burst. A burst consists of 1 to 256 words (the width is determined
by the physical width of the channel; for a 32-bit channel, a burst is 1024 bytes), sent as a continuous
stream of words, one per clock period. A burst is in progress as long as the channelUs burst signal is
asserted. When the burst signal goes unasserted, a CRC (cyclic redun- dancy check) word computed over
the transmitted data words is sent down the channel. Because of the way the protocol is defined, when the
destination asserts ready, it means that it must be able to accept a complete burst.

Unfortunately, the Upper Level Protocol (ULP) for performing operations over the channel is still under
discussion within the standardization committees. To illustrate the concepts involved in using HiPPI as an
interface to storage devices, we restrict our description to the proposal to layer the 1PI-3 Device Generic
Command Set on top of HiPPI, put forward by Maximum Strate- gies and IBM Corporation [Maximum
Strategies 90].

A logical unit of data, sent from a source to a destination, is called a packet. A packet is a sequence of
bursts. A special channel signal delineates the start of a new packet. Packets consist of a header, a ULP
(Upper Layer Protocol) data set, and fill. The ULP data consists of a com- mand/response field and
read/write data field.

Packets fall into three types: command, response, or data-only. A command packet can con- tain a header
burst with an IPI-3 device command, such as read or write, followed by multiple data bursts if the com-
mand is awrite. A response packet is similar. It contains an IPI-3 response within a header burst, followed
by data bursts if the response is a read transfer notification. Data- only packets contain header bursts
without command or response fields.

Consider a read operation over a HiPPI channel using the IPI-3 protocol. On the write-chan- nel, the dave
peripheral device receives a header burst containing a valid read command from the master host processor.
This causes the slave to initiate its read operation. When data is available, the slave must gain access to the
read-channel. When the master is ready to receive, the slave will transmit its response packet. If the
response packet contains a transfer notification status, this indi- cates that the slave is ready to transmit a



stream of data. The master will pulse aready signal to receive subsequent data bursts.
2.4. Backplane Architecture

Backplanes are designed to interconnect processors, memory, and periphera controllers (such as network
and disk controllers). They are relatively wide, but short distance. The short distances make it possible to
use fast, centralized arbitration techniques and to perform data transfers at a higher clock rate. Backplane
protocols make use of addresses and read/write operations, rather than the more message-oriented proto-
cols to be found on networks and channels.

Table 2.2 gives some of the metrics of three popular backplane busses, VME, FutureBus, and Multibus I1
(this table is adapted from [Hennessy 90]). For the purposes of comparison, we include the same metrics
for the SCSI-I channel specification. The table includes the width of the interconnect (including control and
data signals), whether the address and data lines are multi- plexed, the data width, whether the transfer size
isasingle or multiple word, the number of bus masters supported, whether split transactions are supported
(these are network-like request and acknowledgment messages), the clocking scheme, the interconnectUs
bandwidth under a variety of assumptions (single vs. multiple word transfers, 0 ns access time memories
vs. 150 ns access time), the maximum number of controllers or devices per bus, the maximum bus length,
and the relevant ANS| or |IEEE standard that defines the interconnect.

The most dramatic differences are in the interconnect width and the maximum bus width. In general, chan-
nel interconnects are narrow and long distance while backplanes are wide but short distance.

However, some of the distinctions are being to blur. The SCSI channel has many of the attributes of a bus,
FutureBus has certain aspects that make it behave more like a channel than a bus, and nobody could
describe a 64-bit HiPPI channel as being narrow! For example, letUs con- sider FutureBus in a little more
detail. The bus supports distributed arbitration, asynchronous sig- naling (that is, no global clocks), single
source/muliple destination RbroadcastS messages, and request/acknowledge split bus transactions [Borrill
84]. The latter are very much like SCSI dis- connect/reconnect phases. A host issues a read request mes-
sage to amemory or 1/O controller, and then detaches from the bus. Later on, the memory sends a response
message to the host, contain- ing the requested data.

3. Storage Trends
3.1. The Storage Hierarchy and Storage Technology
3.1.1. Concept of Storage Hierarchy

The storage hierarchy istraditionally modeled as a pyramid, with a small amount of expensive, fast storage
at the pinnacle and larger capacity, lower cost, and lower performance storage as we move towards the
base. In general, there are order of magnitude differences in capacity, access time, and cost among the
layers of the hierarchy. For example, main memory is measured in megabytes, costing approximately
$50/MByte, and can be accessed in small numbers of micro- seconds. Secondary storage, usually imple-
mented by magnetic disk, is measured in gigabytes, costs below $5/MByte, and is accessed in tens of mil-
liseconds. The operating system can create the illusion of a large fast memory by judiciously staging data
among the levels. However, the organization of the storage hierarchy must adapt as magnetic and optical
recording methods con- tinue to improve and as new storage devices become available.

Figure 3.1 depicts the storage hierarchy of a typical minicomputer of 1980. (It should be noted that large
mainframe and supercomputer storage hierarchies were more complex than what is depicted here.) A small
file cache (or buffer), allocated by the operating system from the machineUs semiconductor memory, pro-
vides the fastest but most expensive access. The job of the cache isto hold data likely to be accessed in the
near future, because it is near data recently accessed (spatial locality) or because it has recently been



accessed itself (tempora locality). Prefetching is a strategy that accesses larger chunks of file data than
requested by an application, in the hope that it will soon access spatially local data.

Either a buffer or a cache can be used to decouple application accesses in small units from the larger units
needed to efficiently utilize secondary storage devices. It is not efficient to amor- tize the millisecond
latency cost to access secondary storage for a small number of bytes. Accesses in the range of 512 to 8192
bytes are more appropriate. The primary distinction between application memory and a cache is the lat-
terUs ability to keep resident certain data. For example, frequently accessed file directories can be held in
an cache, thus avoiding slow accesses to the lower levels of the hierarchy.

Secondary storage is provided by magnetic disk. Data is recorded on concentric tracks on stacked platters,
which have been coated with magnetic materials. The same track position across the platters is called a
cylinder. A mechanical actuator positions the read -write heads to the desired recording track, while a
motor rotates the platters containing the data under the heads.

Tertiary storage, provided primarily for archive/back-up, is implemented by magnetic tape. A spool of
magnetic tape is drawn across the read-write mechanism in a sequential fashion. A good rule of thumb for
a unit of tertiary storage media, such as a tape spoal, is that it should have as much capacity as the secon-
dary storage devices it is meant to back up. As disk devices continue to improve in capacity, tertiary
storage media are driven to keep pace.

In 1980, a typical machine of this class would have one to two megabytes of semiconductor memory, of
which only a few thousand bytes might be allocated for input/output buffers or file system caches. The
secondary storage level might include a few hundred megabytes of magnetic disk. The tape storage level is
limited only by the amount of shelf space in the machine room.

3.1.2. Evolution of the Storage Hierarchy

Figure 3.2 shows the storage hierarchy distributed across a workstation/server environment of today. Most
of the semi-conductor memory in the server can be dedicated to the cache function because a server does
not host conventional user applications. The file system Rmeta-data,S that is, the data structures describing
how logical files are mapped onto physical disk blocks, can be held in fast semiconductor memory. This
represents much of the active portion of the file system. Thus, disk latency can be avoided while servicing
user requests.

The critical challenge for workstation/server environments is the added latency of network communica
tions. These are comparable to those of magnetic disk, and are measured in small tens of milliseconds. The
figure shows one possible solution, which places small high performance disks in the workstation, with
larger potentially slower disks at the server.

If most accesses can be serviced by the local disks, the network latencies can be avoided atogether,
improving client performance and responsiveness. However, there are several choices for how to partition
the file system between the clients and the servers. Each of these partitionings represents a different trade-
off between system cost, the number of clients per server, and the ease of managing the clientsU files.

A swapful client allocates the virtual memory swap space and temporary filesto its local disk. The operat-
ing systemUs files and user files remain on the server. This reduces some of the network traffic to the
server, leaving the issues of system management relatively uncomplicated. For example, in this
configuration, the local disk does not need to be backed up. However, to exe- cute an operating system
command still requires an access to the remote server.

A dataless client adds the operating systemUs files to the clientUs local disk. This further reduces the
clientUs demand on the server, thus making it possible for a single server and network to support more



clients. While it is till not necessary to back up the local disk, the system is more difficult to administer.
For example, system updates must now be distributed to al of the worksta- tions.

A diskfull client places all but some frequently shared files on the client. This yields the low- est demands
on the server, but represents the biggest problems for system management. Now the personal files on the
local disk need to be backed up, leading to significant network traffic during backup operations.

An alternative approach leverages the lower cost semiconductor memory to make feasible large file caches
(approximately 25% of the available memory within the workstation) in the cli- ent workstation. These
RclientS caches provide an effective way to circumvent network latencies, if the network protocols allow
file writes to be decoupled from communications with the server (see the discussion of NFS protocols in
the next section). The approach, called diskless clients, has been used with great success in the Sprite Net-
work Operating System [Nelson 88], where they report an ability to support 5-10 times as many clients per
server as more conventional client/ server organizations.

Figure 3.3 depicts one possible scenario for the storage hierarchy of 1995. Three major tech- nical innova-
tions shape the organization: disk arrays, near-line storage subsystems based on opti- cal disk or automated
tape libraries, and network distribution. We concentrate on disk arrays and near-line storage system tech-
nology in the remainder of this subsection. Network distribution is covered in Section 4.

Disk Arrays

Because of the rapidly decreasing formfactor of magnetic disks, it is becoming attractive to replace a small
number of large disk drives with very many small drives. The resulting secondary storage system can have
much higher capacity since small format drives traditionally obtain the highest areal densities. And since
the performance of both large and small disk drives is limited by mechanical delays, it is no surprise that
performance can be dramatically improved if the data to be accessed is spread across many disk actuators.
Disk arrays provide a method of organizing many disk drives to appear logically as a very reliable single
drive of high capacity and high per- formance [Katz 89].

Disk array organizations are organized into a multilevel taxonomy. Here, we concentrate on the two most
prevalent RAID organizations. RAID Level 3 and RAID Level 5. Each of these spreads data across N data
disks and an N+1st redundancy disk. The group of N+1 disks is called a stripe set. In a RAID Level 3
organization, data is interleaved in large blocks (for example, a track or cylinder) across all of the disks
within a stripe set. The redundancy disk contains a parity bit computed bit-wise across the rows of bits on
the associated data disks. If a disk should fail, its contents can be reconstructed simply by examining the
surviving N disks and restoring the sense of the parity computed across the bit rows. Suppose that the
redundancy disk contained odd parity before the failure. If, after a disk failure, the examination of a bit row
yields even parity, then the failed disk must have had a 1 in that bit row. Similarly, if the row has odd par-
ity, then the missing bit must have been a 0. RAID Level 3 organizations are read and written in full stripe
units, simul- taneously accessing all disks in the stripe. The organization is most suitable for high
bandwidth applications such as image processing and scientific computing.

If RAID Level 3 isorganized for high bandwidth, then RAID Level 5 is organized for high 1/O rate. The
basic organization is the same: a stripe set of N data disks and one redundancy disk. However, data is
accessed in smaller units, thus making it possible to support multiple simulta- heous accesses. Consider a
data write operation to a single disk sector. This requires the parity redundancy to be updated as well. We
accomplish this by first determining the bit changes to the data sector and then invert exactly these bitsin
the associated parity sector. Thus alogica single sector write may involve four physical disk accesses: read
old data, read old parity, write new data, and write new parity. Since placing all parity sectors on a single
disk drive would limit the array to a single write operation at a time, the parity sectors are actually inter-
leaved across al disks of the stripe. A RAID Level 5 can perform N+1 simultaneous reads and simul-
taneous writes (in the best case).



Near-Line Storage

A comparable revolution has taken place in tertiary storage: the arrival of near-line storage sys- tems.
These provide relatively rapid access to enormous amounts of data, frequently stored on removable, easy to
handle optical disk or magnetic tape media. This is accomplished by storing the high capacity media on
shelves that can be accessed by robotic media Rpickers.S When a file needs to be accessed, specia file
management software identifies where it can be found within the tape or optical disk library. The picker
exchanges the currently loaded media with the one contain- ing the file to be accessed. This is accom-
plished within a small number of seconds, without any intervention by human operators. By carefully
exploiting caching techniques, in particular, using the secondary storage devices as a cache for the near-
line store, the very large storage capacity of atertiary storage system can appear to have access times com-
parable to magnetic disks at a frac- tion of the cost. We describe the underlying storage technologies next.

Optical Disk Technology for Near-line Storage

Optically recorded disks have long been thought to be ideal for filling the near line level of the storage
hierarchy [Ranade 90]. They combine improved storage capacity (2 GBytes per platter surface originally to
over 6 GBytes per side today) with access times that are approximately a fac- tor of ten slower than con-
ventional magnetic disks (several hundred milliseconds). The first gen- eration of optical diskswere written
once, but could be read many times, leading to the term RWORMS to describe the technology. The disk is
written by a laser beam. When it is turned on, it records data in the form of pits or bubbles in a writing
layer within the disk. The datais read back by detecting the variations of reflectivity of the disk surface.

The write once nature of optical storage actually makes it better suited for an archival medium than near-
line storage, since it is impossible to accidently overwrite data once it has been written. A problem has
been its relatively slow transfer rate, 100K P 200K bytes per second. Newer generations of optical drives
now exceed one megabyte per second transfers.

Magneto-optical technologies, based on a combination of optical and magnetic recording techniques, have
recently led to the availability of erasable optical drives. The disk is made of a material that becomes more
sensitive to magnetic fields at high temperatures. A laser beam is used to selectively heat up the disk sur-
face, and once heated, a small magnetic field is used to record on the surface. Optical techniques are used
for reading the disk, by detecting how the laser beam is deflected by different magnetizations of the disk
surface. Read transfer rates arecomparable to that of conventional magnetic disks. Access times are till
dower than a magnetic disk due to the more massive read/write mechanism holding the laser optics, which
takes longer to position than the equivalent low mass magnetic read/write head assembly. The write
transfer rate is worse in optical disk systems because (1) the disk surface must first be erased before new
data can be recorded, and (2) the written data must be reread to verify that it was written correctly to the
disk surface. Thus, a write operation could require three disk revolutions before it completes. ( [Kryder 89]
details the trends and technology challenges for future optical disk technologies).

Nevertheless, as the formfactor and price of optical drives continue to decrease, optical disk libraries are
becoming more pervasive. SonyUs recent announcement of a consumer-oriented recordable music compact
disk could lead to dramatic reductions in the cost of optical disk tech- nology. As an example of an inex-
pensive optical disk system, letUs examine the Hewlett-Packard Series 6300 Model 20GB/A Optical Disk
Library System {Hewlett-Packard 89]. Based on 5.25S rewritable optical disk technology, the system pro-
vides two optical drives, 32 read/write optical disk cartridges (approximately 600 Mbytes per cartridge),
and arobotic disk changer that can move cartridges to and from the drives, all in a desk side unit the size of
a three drawer filing cab- inet. The optical cartridges can be exchanged in 7 seconds, and require a 4
second load time and 2.4 second spin-up time. The unload and spin-down times are 2.8 and 0.8 seconds
respectively. An average seek time requires 95 ms. The drives can sustain 680 KBytes/second transfers on
reads and 340 KBytes/second transfers on writes.



The Kodak Optical Disk System 6800 Automated Disk Library is characteristic of the high end [Kodak
90]. The system can be configured with 50 to 150 optical disk platters, and 1 to 3 opti- cal disk drives.ltis
capable of storing from 340 GBytes to 1020 GBytes (3.4 GBytes for each side of a 14S platter). The aver-
age disk change time is 6.5 seconds. The optical disk surface is orga- nized into five bands of varying capa-
city, with a certain number of tracking windows per band. The drives can sustain 1 MByte/second
transfers, with 100 ms access times for data anywhere within the current band to 700 ms for data anywhere
on the surface.

Magnetic Tape Technology for Near-line Storage

The sequential nature of the access to magnetic tape has traditionally dictated that it be used as the medium
for archive. However, the success of automated tape libraries from Storage Technology Corporation has
demonstrated that tape can be used to implement a near -line storage system. The most pervasive magnetic
tape technology available today is based on the IBM 3480 half-inch tape cartridge, storing 200 MBytes and
providing transfer rates of 3 MBytes per second. A second gen- eration technology recently introduced
doubles the tape capacity and transfer rate.

However, there has been an enormous increase in tape capacity, driven primarily by helical scan recording
methods. In a conventional tape recording system, the tape is pulled across sta- tionary read/write recording
heads. Recorded data tracks run in parallel aong the length of the tape. On the other hand, helical scan
methods slowly move the tape past a rapidly rotating head assembly to achieve a very high tape to head
speed. The tape is wrapped at an angle around a rotor assembly, yielding densely packed recording tracks
running diagonally across the tape. The tech- nology is based on the same tape transport mechanisms
developed for video cassette recorders in the VHS and 8mm tape formats and the newer digital audio tape
(DAT) systems.

Each of these systems provide a very high storage capacity in a small easy -to-handle car- tridge. The small
formfactor make these tapes particularly attractive as the basis for automated data libraries. Tape systems
from Exabyte, based on the 8mm video tape format, can store 2.3 GBytes and transfer at approximately
250 KBytes per second. A second generation system now available doubles both the capacity and the
transfer rate. A tape library system based on a 19S rack can hold up to four tape readers and over one hun-
dred 8 mm cartridges, thus providing a stor- age capacity of 250 P 500 GBs [Exabyte 90].

DAT tape provides smaller capacity and bandwidth than 8mm, but enjoys certain other advantages [Tan
89]. Low cost tape readers in the 3.5S formfactor, the size of a personal computer floppy disk drive, are
readily available. This makes possible the construction of tape libraries with a higher ratio of tape readers
to tape media, increasing the aggregate bandwidth to the near-line storage system. In addition, the DAT
tape formats support subindex fields which can be searched at speed two hundred times greater than the
normal read/write speed. A given file can be found on a DAT tape in an average search time of only 20
seconds, compared to over ten minutes for the 8mm format.

VHS-based tape systems can transfer up to 4 MBytes/second and can hold up to 15 GBytes per cartridge.
Tape robotics in use for the broadcast industry have been adapted to provide a near- line storage function.

Helical scan techniques are not limited to consumer applications, but have also been applied for certain
instrument recording applications, such as satellite telemetry, which require high capacity and high
bandwidth. These tape systems are called DD1 and DD2. A single tape car- tridge can hold up to 150
GBytes, and can transfer at a rate of up to 40 MBytes/second. However, such systems are very expensive,
and a good rule of thumb is that the tape recorder will cost $100,000 for each 10 M Bytes/second of record-
ing bandwidth it can support.

Optical Tape Technology for Near-Line Storage



A recording technology that appears to be very promising is optical tape [Feder 91]. The record- ing
medium is called digital paper, amateria constructed from an optically sensitive layer that has been coated
onto a substrate similar to magnetic tape. The basic recording technique is similar to write once optical disk
storage: a laser beam writes pits in the digital paper to indicate the pres- ence (or absence) of a bit. Since
the pits have lower reflectivity than the unwritten tape, a reflected laser beam can be used to detect their
presence. One 12 inch by 2400 foot reel can hold 1 TB of data, can be read or written at the rate of 3
MBytes per second, and can be accessed in aremark- able average time of 28 seconds.

Two companies are developing tape readers for digital paper: CREO Corporation and Laser- Tape Cor-
poration. CREO makes use of a 12 inch tape reels and a unique laser scanner array to read and write multi-
ple tracks 32-bits at atime [Spencer 88]. The systemis rather expensive, sall- ing for over $200,000. L aser-
Tape places digital paper in a conventional 3480 tape cartridge (50 GBytes capacity and 3 MBytes per
second transfer rate), and replaces a 3480 tape unitUs magnetic read/write heads with an inertialess laser-
beam scanner. The scanner operates by using a high fre- quency radio signal of known frequency to vibrate
acrystal, which is then transferred to alaser beam to steer it to the desired read/write location. A 3480 tape
reader can be RretrofittedS for approximately $20,000. Existing tape library robotics for the 3480 cartridge
formfactor can be adapted to L aserTape without changes.

Summary

Table 3.1 summarizes the relevant metrics of the alternative storage technologies, with a special emphasis
on helical scan tapes. The metrics displayed are the capacity, bits per inch (BPI), tracks per inch (TPI),
areal density (BPI*TPI in millions of bits per square inch), data transfer rate (Kbytes per second sustained
transfers), and average positioning times. The latter is especially important for evaluating near-line storage
media. An access time measured in a small number of seconds begins to make tape technology attractive
for near-line storage applications, since the robotic access times tend to dominate the time it takes to pick,
load, and access data on near-line storage media.

3.2. Storage Controller Architecture
3.2.1. 1/0 DataFlow

Figure 3.4 shows the various interfaces across which a typical 1/0 request must flow. The actua flow of
data starts at the 1/0 device. In the following discussion, we will assume that the device is an intelligent
magnetic disk for something like a SCSI interface and that we are considering a read operation. The
mechanical portion of the disk drive is called the head/disk assembly, or HDA. The control and interface to
the outside world is provided by an embedded controller.

Data moves across a bit-serial interface from the disk signal processing electronics to track buffers associ-
ated with the embedded controller. The amount of memory associated with the track buffers varies from 32
KBytes to 256 KBytes. Since the typical track on todayUs small formfactor disksisin the range of 32 K P
64 KBytes, atypical embedded controller can buffer more than one track.

The interface between the embedded controller and the host is provided by an 1/0O controller. We called
such a controller a host bus adapter, or HBA, in Section 2.3.1. It couples the host peripheral bus to the disk
channel interface. Data is staged into buffers within the HBA, from which they are copied out via direct
memory access techniques to the hostUs memory. The typical size of 1/0O controller buffers isin the range
of 1to 4 MBytes.

The hostUs memory is coupled to the processor via a high speed cache memory. The connec- tion to the
1/O controllersis through a slower speed peripheral bus. Direct memory access opera- tions copy data from
the controllerUs buffers to operating system buffers in main memory. Before the data can be used by the
application, it may need to be copied once again, to stage it into a por- tion of the memory address space



that is accessible to the application. Note that the same memory and operating system overheads that limit
network performance also affect 1/0 performance. This is critically important in file and storage servers,
where both the 1/0O and network traffic must be routed through the memory system bottleneck.

If the host is actually afile server, the size of the operating systemUs buffers may be quite large, perhaps as
large as 128 MBytes. In addition, the data flow must be extended to include transfers across the network
interconnect into the applicationUs address space on the client. A detailed examination of the operating
system management of the 1/0O path will be left until Section 4.

3.2.2. Interna Organization of 1/0 Controller

Figure 3.5 shows the internal organization of a typical high performance host bus adapter 1/0 con- troller.
Interestingly enough, it is not very different in its interna architecture from the network controller of Fig-
ure 2.2. Usually implemented on a single printed circuit board, the controller con- tains a microprocessor, a
modest amount of memory dedicated to buffers and run-time data struc- tures, a ROM to hold the con-
troller firmware, a DMA/peripheral businterface, and an 1/O channel interface.

The system interface is also similar to the network controller described previously. Request blocks contain-
ing 1/0 commands and data are organized into as a linked list in the host memory. The host writes to a
memory-mapped command register within the 1/O controller to initiate an operation. Using DMA tech-
niques, the controller fetches the request blocks into its own memory. The on-board microprocessor
unpackages the 1/0 commands and write data, and sends these over the 1/O channel interface. Status and
read data are repackaged into response blocks that are copied back to reserved buffers in the host memory.
The host can choose whether the I/O controller will interrupt the host whenever an operation has been com-
pleted.

The controller of Figure 3.5 is notable because of its support for direct memory access. Some lower perfor-
mance controllers require that commands and data be written a word (or half word) at a time to memory-
mapped controller registers over the peripheral bus. Since a typical command block can be 16 to 32 bytes
in length, smply downloading a command may take tens of microseconds, requiring a good deal of host
processor intervention.

In implementing a high performance file service on a network, a critical relationship exists between the net-
work and 1/O controller architectures. The network interface and the 1/0O controller must be coupled by a
high performance interconnect and memory system. This key observation provides the motivation for
several of the systems reviewed in Section 5, especially the prototype being developed at U. C. Berkeley
described in Section 5.6.

4. Software Trends
4.1. Network File Systems

One of the most important software devel opments over the past decade has been the rapid devel- opment of
the concept of remote file services. In alocation transparent manner, these systems provide a client with the
ability to access remote files without the need to resort to special naming conventions or special methods
for access.

It is important to distinguish between the related concepts of block server and file server. A block server
(sometimes called a Rnetwork diskS) provides the client with a physical device inter- face over a network.
The block server supports read and write requests to disk blocks, albeit to a disk attached to a remote
machine. A file server supports a higher level interface, providing the complete file abstraction to the client.
The interface supports file creation, logical reads and writes, file deletion, etc. In afile server, file system
related functions are centralized and per- formed by the server. In a block server, these functions must be



handled by the clients, and if the disks are to be shared across machines, this requires distributed coordina-
tion among them.

The most ubiquitous file system model is based on that of UNIX, and so we begin our dis- cussion with its
structure. A file is uniquely named within an hierarchical name space based on directories. As far as the
user is concerned, a file is nothing more than an uninterpreted stream of bytes. The file system provides
operations for positioning within the file for the purposes of read- ing and writing bytes. Internaly, the file
system keeps track of the mapping between the fileUs log- ical byte stream and their physical placement
within disk blocks through a data structure called an inode. The inode is Rmetadata,S that is, data about
data, and contains information such as the device containing the file, alist of the physical disk blocks con-
taining the fileUs data, and pointers to additional disk blocks (called indirect blocks) should the file be large
enough to exceed the mapping space of a single inode.

>From the operating system perspective, tracing an 1/0 request from the application to disk proceeds as
follows. The application program must make a system call, such as read or write, to request service from
the operating system. Thisis handled by the UNIX System Call Layer, which in turn calls the file system to
handle the request in detail. Within the file system are block 1/O routines which handle read or write
requests. These call a particular disk driver to schedule the actua disk transfers. The software layers are
shown in Figure 4.1.

The figure shows the software architecture for afile system on the same machine as the cli- ent application.
The major innovation of SUNUs Network File System, or NFS, is its ability to map remote file systems
into the directory structure of the clientUs machine. That is, it is transparent to the user whether the refer-
enced file is available locally or is being accessed over the network. This is accomplished through the new
abstraction of avirtual file system, or VFS [Sandberg 85]. The VFS interface allows file system requests to
be dispatched to the local file system, or sent to a remote server across the network. The generic software
layers are shown in Figure 4.2. and the path through the software taken between the client and the server is
shown in Figure 4.3.

The access to the remote machine isimplemented via a synchronous remote procedure call (RPC) mechan-
ism. This is a communications abstraction that behaves much like a conventional procedure call, except
that the procedure being invoked may be on a remote RserverS machine. Since the RPC is synchronous,
the client must wait or block until the server has completed the call and returned the requested data or
status.

The NFS protocol is a collection of procedure calls and parameters built on top of such a RPC mechanism.
One of the key design decisions of NFS is to make this protocol stateless. This means that each procedure
call is completely self-describing; the server keeps track of no past requests. This choice was made to
drastically reduce the complexity of recovery. In the event of a server crash, the client simply retries its
request until it is successfully serviced. Asfar asthe cli- ent is concerned, there is no difference between a
crashed server and one that is merely slow. The server need not perform any recovery processing. Contrast
this with a Rstateful S protocol in which both servers and clients must be able to detect and recover from
crashes.

However, the stateless protocol has significant implications for file system performance. In order to be
stateless, the server must commit any modified user data and file system metadata to stable storage before
returning results. This implies that file writes cause the affected data blocks, inodes, and indirect blocks to
be written from in-memory caches to disk. In addition, housekeep- ing operations such as file creation, file
removal, and modificationsto file attributes must all be performed synchronously to disk.

Some controversy surrounds the real source of bottlenecks in NFS performance. Network protocol over-
heads and server processing are possible culprits. However, it has now become clear that the real problem
is the stateless nature of the NFS protocol, and its associated forced disk writes. By making file system



operations synchronous with disk, the performance of the file sys- tem is (overly) coupled to the perfor-
mance of the disk system [Rosenblum 91].

4.2. File Server Architecture

In this subsection, we examine the flow of a network-based /O request as it arrives at the network inter-
face, through the file serverUs hardware and software, to the storage devices and back again to the net-
work. Our goal is to bring together the discussions of network interface, 1/0 controller, and network file
system processing of an 1/O request, initiated by a client on the network.

Figure 4.4 shows the hardware/software architecture of a conventional workstation-based file server. A
data read request arrives at the Ethernet controller. The network messages are copied from the network
controller to the serverUs primary memory. Control passes through the software levels of the network
driver and protocol interpretation to process the request. At the file system level, to avoid unnecessary disk
accesses, the serverUs primary memory is interrogated to deter- mineif the requested data has already been
cached from disk.

If the request cannot be satisfied from the file cache, the file system will issue a request to the disk con-
troller. The retrieved data is then staged by the disk controller from the 1/0O device to the primary memory
along the backplane bus. Usually it must be copied (at least) one more time, into templates for the response
network messages. The software path returns through the file sys- tem, protocol processing, and network
drivers. The network response messages are transmitted from the memory out through the network inter-
face.

There are two key problems with this architecture. First, there is the long instruction path associated with
processing a network-based 1/0 request. Second, as we have already seen, the memory system and the
backplane bus form a serious performance bottleneck. Data must flow from disk to memory to network,
passing through the memory and along the backplane several times. In general, the architecture has not
been specialized for fast processing between the net- work and disk interfaces. We will examine some
approaches that address this limitation in Section 5.

4.3. Mass Storage System Reference Model

Supercomputer users have long had to deal with the problem that high performance machines do not come
with scalable 1/0 systems. As aresult, each of the major supercomputer centers has been forced to develop
its own mass storage system, a network-based storage organization in which files are staged from the
back-end storage server, usually from a near -line subsystem, to the front- end supercomputer.

The Mass Storage System (M SS) Reference Model was developed by the managers of these supercomputer
centers, to promote more interoperability among mass storage systems and influ- ence vendors to build
such systems to a RstandardS [Miller 88]. The purpose of the reference model is to provide a framework
within which standard interfaces can be defined. They begin with the underlying premise that the storage
system will be distributed over heterogeneous machines potentially running different operating systems.
The model firmly endorses the client/ server model of computation.

The MSS Reference Model defines six elements of the mass storage system: Name Server, Bitfile Client,
Bitfile Server, Storage Server, Physical Volume Repository, and Bitfile Mover (see Figure 4.5). Bit files are
the modelUs terminology for uninterpreted bit data streams. There are dif- ferent ways to assign these ele-
ments to underlying hardware. For example, the Name Server and Bitfile Server may run a single Mass
Storage control processor, or they may run on independent communicating machines.

An applicationUs request for 1/0 service begins with a conversation with the Name Server. The name ser-
vice maps a user readable file name into an internally recognized and unique bitfile ID. The clientUs



requests for data are now sent to the Bitfile Server, identifying the desired files through their IDs. The
Bitfile Server maps these into requests to the Storage Server, handling the logical aspects of file storage and
retrieval, such as directories and descriptor tables. The Storage Server handles the physical aspects of file
storage, and manages the physical data volumes. It may request the Physical Data Repository to mount
volumes if they are currently off-line. Storage servers may be specialized for the kinds of volumes they
need to manage. For example, one stor- age server may be specialized for tape handling while another
manages disk. The Bitfile Mover is responsible for moving data between the Storage Server and the client,
usually over a network. It provides the components and protocols for high-speed data transfer.

The MSS Reference Model has been incorporated into at least one commercial product: the Unitree File
Management System sold by General Atomics, Inc. Thisis a UNIX-based hierarchi- cal storage manage-
ment system, based on software originally developed at the Lawrence Liver- more National Laboratory.

5. Case Studies

In this section, we look at a variety of commercial architectures and research prototypes for high perfor-
mance networks, file servers, and storage servers. Within these systems, we will see a com- mon concern
for providing high bandwidth between network interfaces and 1/0 device control- lers.

5.1. Ultranet
5.1.1. Genera Organization

The UltraNetwork is a hub-based multihop network capable of achieving up to 1 Ghit/second transmission
rates. Its most frequent application is as a local area network for interconnecting workstations, storage
servers, and supercomputers.

Figure 5.1 depicts a typical Ultranet configuration. The hubs provide the basis of the high speed intercon-
nect, by providing special hardware and software for routing incoming network packets to output connec-
tions. Hubs are physically connected by serial links, which consist of two unidirectional connections, one
for each direction. If optical fiber is chosen for the links, data can be transmitted at rates of up to 250
Mbit/second and distances to 4 Km. The Gbit transmission rate is achieve by interleaving transmissions
across four serial links. The point-to-point links are ter- minated by link adapters within the hubs, specia
hardware that routes the transmissions among input and output serial links. These are described in more
detail below.

Computer are connected to the network in two different ways: through host adapters and hub-resident
adapters. A host-based adapter is similar to the network controller described in Fig- ure 2.2, and resides
within the host computerUs backplane. This kind of interface is appropriate for machines with industry
standard backplanes, such as workstations and mini-supercomputers. In these kinds of clients, processors
and 1/0 controllers, including the network interface, are treated as equals with respect to memory access.
The adapter contains an on -board microprocessor and can perform its own direct memory accesses, just
like any other peripheral controller.

A different approach is needed for mainframe and supercomputers, since these classes of machines connect
to peripherals through special channel interfaces rather than standard back- planes. 1/0 devices are not
peers, but are treated as slaves by the processor. The hub-resident adapters place the network interface to
the Ultranet within the hub itself. These provide a standard channel interface to the computer, such as
HiPPI or the IBM Block Multiplexer interface.

5.1.2. UltraNet Hub Organization

The heart of the Ultranet hub is a 64-bit wide (plus 8 parity bits), high bandwidth backplane called the



UltraBus. Its maximum bandwidth is 125 MBytes/second. The serial links from other hubs and host-based
adapters are interfaced to the UltraBus through link multiplexers, which in turn, are controlled by the link
adapters. The link adapters route the serial data to the parallel interface of the UltraBus. Physicaly, itisa
bus, but logically, the interconnect is treated more like a local area network. Packets are written to the bus
by the source link adapter and are intercepted by the destination link adapter. If the output link is controlled
by the same link adapter as the input link, the transfer can be accomplished without access to the UltraBus.
Figure 5.2 illustrates the internal organization of the hub.

The link adapter contains a protocol processor and two modules that interface to the link multiplexers on
the one hand and the UltraBus on the other. The protocol processor is responsible for handling the network
traffic. The datapath that couples the personality modules on either side of the protocol processor consists
of two unidirectional 64-bit wide busses with speed matching FIFOs at the interface boundaries. The
busses operate independently and achieve peak transfers of 100 MByte/second.

The protocol processor consists of three components: the Data Acknowledgment and Com- mand Block
Processor (DACP), the Control Processor (CP), and the Transfer Engine (TE). The DACP performs fast
processing of protocol headers and request blocks. The CP is responsible for managing the network, such
as setting up and deleting connections between network nodes. The TE rapidly moves data through the pro-
tocol processor.

Figure 5.3 depicts the protocol architecture supported by the UltraNet. The combination of the UltraNet
firmware and software implements the industry standard TCP/IP protocols on top of the UltraNet, as well
as UltraNet specific protocols. The lower levels of the network protocol, namely the transport, network,
data link, and physical link, are implemented with the assistance of the UltraNet protocol processor and
host or hub-resident adapter hardware.

5.2. Digital Equipment CorporationUs VAXCluster and HSC-70
5.2.1. VaxCluster Concept

Digital Equipment CorporationUs VAXCluster concept represents one approach for providing net- worked
storage service to client computers { Kronenberg 86, Kronenberg 87]. The VAXCluster is a collection of
hardware and software services that closely couple together VAX computers and Hierarchical Storage
Controllers (HSCs). A VAXCluster lies somewhere between a Rlong dis- tanceS peripheral bus and a com-
munications network: a high speed physical link couples together the processors, but message-oriented pro-
tocols are used to regquest and receive services. The VAXCluster concept is characterized by (1) a complete
communications architecture, (2) a mes- sage-oriented computer interconnect, (3) hardware support for the
connection to the interconnect, and (4) message-oriented storage controllers.

The hardware organization of a VAXCluster is shown in Figure 5.4. Its elements include VAX processors,
HSC storage controllers, and the Computer Interconnect (Cl). The latter is a high speed interconnect (dual
path connections, 70 Mbits/second each), similar in operation to an Ethernet, a- though the detailed
methods for media access are somewhat different. Physically, the Cl is orga- nized as a star network, but
appears to processors as though it were a simple broadcast bus like the Ethernet. Up to sixteen nodes can
be interconnected by a single star coupler, with each link being no more than 45 meters in length. A pro-
cessor is connected to the Cl viaa ClI port, a collection of hardware and software that provides the physical
connection to the Cl on one side and a high level queue-based interface to client software on the other side.

The communications protocols layered onto the Cl and Cl ports support three methods of transmission:
datagrams, messages, and blocks. Datagrams are short transmissions meant to be used for status and infor-
mation requests, and are not guaranteed to be delivered. Messages are sim- ilar to datagrams except that
delivery is guaranteed. Read/write requests and other device control transmissions to storage controllers are
handled via messages. The hardware in the Cl ports provide special support for block transfers: an ability



to copy sequential large blocks of data from the vir- tual address space of a process on one processor to the
virtual address space of another process on another Cl node. Block transfers are exploited to move data
back and forth between client nodes and the storage controllers.

An interesting aspect of the VAXCluster architecture is its support for a Mass Storage Control Protocol
(MSCP), through which clients request storage services from storage controllers attached to the Cl. A
message-based approach has several advantages in the distributed environment em- bodied by the cluster
concept. First, data sharing is simplified, since storage controllers can extract requests from message
gueues and service them in any order they choose. Second, the protocols enforce a high degree of device
independence, thus making it easier to incorporate new devices into the storage system without a substan-
tial rewrite of existing software. Finaly, the decoupling of a request from its servicing allows the storage
controllers to apply sophisticated methods for opti- mizing 1/0 performance, including rearranging
requests, breaking large requests into fragments that can be processed independently, and so on.

5.2.2. HSC-70 Internal Organization

The internal organization of an HSC is shown in Figure 5.5. The HSC was originally designed in the late
1970Us, and has been in service for a decade. Its internal architecture was determined by the technology
limits of that time. Nevertheless, there are a number of notable aspects about its organization. An HSC is
actually a heterogeneous multiprocessor, with individual processors ded- icated to specific functions. The
three major subsystems are: (1) the host interface, (2) the 1/0 control processor, and (3) the I/O device con-
trollers. They communicate via shared control and data memories accessed via a control and data bus
respectively.

The Host Interface, called a K.Cl, is responsible for managing the transfer of messages over the Cl Bus.
The hardware is based on an AMD bit-dlice processor. The device controllers, called K.SDIsfor disk inter-
faces and K.STIsfor tape interfaces, use the same bit -dlice processor. They implement device-specific read
and write operations, as well as format, status, and seek operations (for disk) over DigitalUs proprietary
device interfaces. Up to four devices can be controlled by a single K.X device controller, and up to eight
K.X controllers can be attached to an HSC, for atotal of twenty-four devices. All policy decisions are han-
dlied by the I/O control processor, which is based on a microprocessor implementation of the PDP-11 [Lary
89].

The shared memory subsystem of the HSC plays a critical role in its ability to sustain /O traf- fic. Private
memories deliver instructions and data to the various processors, keeping them off the shared memory
busses. Data structures used for interprocessor communications are located in the control memory. The
control memory and bus support interlocked operation, making it possible to implement an atomic two-
cycle read-modify-write. Data moving between 1/O devices and the Computer Interconnect must be staged
through the data memory. The sizes of both memories are rather modest by todayUs standards: 256K bytes
in each.

The performance bottlenecks within the HSC come from two primary sources: bus conten- tion and proces-
sor contention [Bates 89]. We examine bus contention first. Internal bus contention affects the maximum
data rate that the controller can support. The controllerUs transfer bandwidth (MBytes/second) is limited
by its memory architecture and the implementation of the Cl interface, both on the controller and on a pro-
cessor with which it communicates. Because data must traverse the memory bus twice, the effective inter-
nal bandwidth to I/O devicesis limited to 6.6 MBytes per second. For example, on a device read, data must
be staged from the device controller to the data memory over the memory bus, and then transferred once
again over the bus to the CI interface. The HSCUs software includes mechanisms for accounting for the
amount of internal bandwidth that has been allocated to outstanding 1/0 requests. It will throttle 1/0 activity
by delaying some requests if it detects saturation.

While this may appear to be a limitation, a more serious restriction is imposed by the HSCUs Cl interface



itself. In general, it is designed to sustain on the order of 2 MBytes/second. For some low-end members of
the VAX family, even this may exceed the bandwidth of the hostUs CI inter- face. To avoid overrunning a
host, and thus limit Cl bandwidth wasted on retransmissions, the Cl interface will only transmit a single
buffer to agiven client aslong as there are buffers waiting to be sent to it.

Next we turn to processor contention. This is due to some extent to the design of the SDI disk interfaces.
Each disk has a dedicated control bus, but a single data bus is shared among the devices attached to a con-
troller. Thus, high data bandwidth can be sustained by spreading disks among as many controllers as possi-
ble. For example, two disks on a single K.SDI will transfer fewer bytes per second than a configuration
with one disk on each of two disk controllers.

5.2.3. Typical I/0O Operation Sequencing

To understand the flow of data and processing through the HSC, we shall examine the processing steps of a
typical disk read operation. The steps that we outline next are described at a high-level. Considerably more
detail, including the detailed data structures used, can be found in [Lary 89].

The first step is the arrival of the MSCP command over the Cl bus. The message is placed in aK.Cl recep-
tion buffer, where it is checked for well-formedness and validity. If it passes these checks, it is copied to a
specia data structure in the control memory, and pointers to this data struc- ture are placed on a queue of
work for the 1/0O policy processor.

The next step involves the execution of MSCP server software on the policy processor. The software is
structured as a process that wakes up whenever there are pending requests in the work queue. The software
examines the queue of commands, choosing the next one to execute based on the currently executing com-
mands. It constructs a data structure that maps the MSCP command into physical disk operations, such as
the disk seek command and a sequence of sector transfer re- quests. The original M SCP command message
is modified to become a response message. The last phase is to place a pointer to the disk request data
structure on a K.SDI work queue, to be found in the control memory.

The next thing that happens is the disk portion of the transfer. The K.SDI firmware reads the request on its
work queue, extracts the seek command, and issues it to the appropriate drive. When the drive is ready to
transfer, it indicates its status to the K.SDI. At this point the disk controller alocates buffers in the data
memory, and stages the data as it comes in from disk to these buffers. When the list of sector transfers is
complete, a completion message is placed on the work queue for the K.CI.

We are now ready to transfer the data from the controllerUs data memory to the host. The K.CI software
wakes up when new work appears in its queue. It then generates the necessary Cl message packets to
transfer data from data memory out over the Cl to the originally requesting host proces- sor. As a data
buffer is emptied, it is returned to a list of free buffers maintained in the control mem- ory. When the last
buffer of the transmission has been sent, the K.Cl now transmits the MSCP completion message that was
built by the 1/0O policy processor from the original request message.

The steps outlined above have assumed that processing continues without error. There are a number of
error recovery routines that may be invoked at various points in the process described above. For example,
if the transfer request within a K.SDI fails, the software is structured to route the request to error handling
software to make the decision whether to retry or abort the request.

5.3. Seagate ARRAYMASTER (9058 Controller)

5.3.1. Genera Organization

The Seagate ARRAYMASTER is an example of an 1/0O controller design targeted for high band- width



environments. To this end, it supports multiple (4) IPI-2 interfaces to disks, which can burst at 10
MBytes/second each, and multiple (2-4) 1PI-3 interfaces to the host, each of which can burst transfer at 25
MBytes/second. (The IPI interface is similar in concept to the SCSI protocols described in Section 2.3, but
provide higher performance though they are more expensive to implement.) A single controller can handle
up to 32 disk drives, organized into eight stripe units (called drive clusters by Seagate) of four disks each.

The controller supports three alternative disk organizations. a high transfer rate/high avail- ability mode
with duplexed controllers, a simplex version of this organization, and a high transac- tion rate/high capacity
organization. These are summarized in Figure 5.6. The first organization, for high transfer rate and very
high system availability is distinguished by duplexed controllers, dual ported and spindle synchronized disk
drives, and a3 + 1 RAID Level 3 parity scheme.

Enhanced system availability is achieved by the duplexed controllers and dual ported drives: if a single
controller fails, then a path till exists from the host to a device through a functional controller. Seagate
claims 99.999% availability with a Mean Time to Data Loss (MTTDL) that exceeds 1 million hours with
this configuration. This is probably a conservative estimate. A lost drive can be reconstructed within four
minutes, assuming 1 GByte Seagate Sabre disk drives. The organization can sustain 36 MByte/seconds,
assuming a sustained transfer bandwidth of 6 MByte/ second per drive.

The second organization is characterized by single ported drives, organized into the RAID Level 3 scheme,
and a single controller. System availability is not as good as the previous organi- zation: afailure within the
controller renders the disk subsystem unavailable. However, media availability is just as good because of
the parity encoding scheme. This organization can sustain 18 MBytes/second and also claims a 1 million
hour MTTDL.

The last organization represents a tradeoff between performance, availability, and capacity. It gains capa-
city by dispensing with the parity drives, supporting a maximum of 32 GBytes versus 24 GBytes in the
other two organizations, assuming 1 GByte drives. However, there is also no protection against data lossin
the case of a disk crash. Data is no longer interleaved, thus sacrific- ing data bandwidth for a higher 1/0
rate. In the previous organizations, up to 8 I/Os can be in progress at the same time, one for each drive
cluster. In this organization, 32 1/Os can simulta- neously be in progress. The controller supports 500 ran-
dom 1/Os per second, approximately 16 1/ Os per second per disk drive (this represents a disk utilization of
50%).

The controller designerUs have placed considerable emphasis on providing support for very high data
integrity within the controller and disk system. All internal data paths are protected by parity, datais writ-
ten to disk with an enhanced ECC coding scheme (a 96 bit Reed-Solomon code that can correct up to 17 bit
errors and even some 32 hit errors), and a large number of retries are attempted in the event of an I/O
failure ( three attempts at nhormal offset, all with ECC; three attempts at late and early data
strobes with nominal carriage offset, all with ECC; three attempts at +/- carriage offset with nominal data
strobes, all with ECC).

5.3.2. Controller Internal Organization

Figure 5.7 shows the internal organization of the ArrayMaster controller. An I/O request can be traced as
follows. The host issues the appropriate command to one of the IPI-3 interfaces. Thisis staged to a com-
mand buffer within the controller. The central control microprocessor examines the command and deter-
mines how to implement it in detail.

Suppose that the command is a data write and that the array is organized into a RAID Level 3 scheme. The
control processor maps this logical write request into a stream of physical writes to the disks within adrive
cluster. As the data streams across the host interface, it passes through the parity calculation datapath,
where the horizontal parity is computed. DMA controllers move data and parity from this datapath to



buffers associated with individual disk interfaces. 1/0 processors local to the IPI-2 disk interfaces manage
the details of staging data from the buffers to particular disk drives. Read operations are performed in much
the same manner, but in reverse.

Note that reconstruction operations can be performed without host intervention. Assume that the failed disk
has been replaced by a new one. Under the control of the central microproces- sor, data is read from the
surviving members of the drive cluster. The data is streamed through the parity calculation datapath, with
the result being directed to the disk interface associated with the failed disk. The reconstituted data is then
written to its replacement.

5.4. Maximum Strategies HiPPI-2 Array Controller

Maximum Strategies offers a family of storage products oriented towards scientific visualization and data
storage applications for high performance computing environments. The products offer a tradeoff between
performance and capacity, spanning from high MBytes/seconds but low MBytes (based on parallel transfer
disks) to high performance/high capacity (based on arrays of disk arrays). In the following discussion, we
concentrate on their HiPPI-based storage server.

Figure 5.8 shows the basic configuration of the Strategy-2 Array Controller. It supports one or two 100
MByte/second host HiPPI interfaces or a single 200 MByte/second interface.The con- troller supports a
RAID Level 3 organization calculated over eight data disks and one parity disk. Optionally, hot spares can
be configured into the array. This allows reconstruction to take place immediately, without needing to wait
for a replacement disk. It also helps the system achieve an even higher level of availability. Since recon-
struction is fast, the system becomes unavailable only when two disks have crashed within a short period.

The controller can be configured in a number of different ways, representing alternative tradeoffs between
performance and capacity. The low capacity/high performance configuration stripes its data across four
paralle transfer disks. This yields 3.2 GBytes of capacity and can reach a 60 MByte/second data transfer
rate. It provides no special support for high availability, such as RAID parity.

A second organization stripes across 8 + 1 parallel transfer disks implementing a RAID Level 3 organiza-
tion. This organization provides 6.4 GBytes and achieves a 120 MByte/second transfer rate. Both
configurations are called the Strategy HiPPI-SM Storage Server.

These organizations provide relatively little capacity for the level of performance provided. In addition,
parallel transfer disks are quite expensive per MByte and have a poor reputation for reliability. An aterna-
tive configuration uses multiple ranks of 8 + 1 + 1 commodity disk drives. Maximum StrategiesU HiPPI-S2
Storage Server is shown in Figure 5.9. Backend controllers (called S2sin Maximum StrategiesU terminol-
ogy) manage strings of eight disks each. Maximum Strategies makes use of older technology ESDI drives
(5.25S formfactor, 1.2 GByte capacity each), which can share a common control path but require dedicated
datapaths. A maximum con- figuration can support ten of these: eight data strings, one parity string, and an
optional hot spare string. The backends are connected to the frontend HiPPI interfaces through a 250
MByte/second data backplane and a conventional VME backplane used for control. Note the separation of
con- trol and datapath. The high bandwidth data transfer path is over HiPPI; the control path uses a lower
latency (and lower bandwidth) VME interconnect. Parity calculations are handled in the frontend. This
organization can provide a 300 GByte capacity and a 144 MByte/second transfer rate.

Maximum Strategies also provides a storage server based on a VME-based host interface. The S2R Storage
Server supports up to 40 x 5.25S ESDI drives, organized into an 8 + 1 + 1 RAID Level 3 scheme that is
four stripe units deep. This organization yields 38.4 GBytes of capacity and an 18 MByte/second transfer
rate.

The highest capacity/highest performance system combines the S2R -based arrays with the HiPPI-attached



controller of Figure 5.8. The result is an Rarray of disk arrays.S The architecture cals for replacing the S2
controllers with S2R disk controllers. Each S2R array contains 37 disks, organized into four stripe units of
8 data disks and 1 parity disk, plus one spare for the entire sub- array. Up to 10 subarrays can be controlled
by a single HiPPI controller, yielding a system config- ured from a total of 370 disk drives, a 345 GByte
data capacity, and a 144 MByte/second transfer rate.

5.5. AUSPEX NS5000 File Server
5.5.1. General Overview

AUSPEX has developed a special hardware and software architecture specifically for providing very high
performance NFS file service. The system provides a file system function integrated with an ability to
bridge multiple local area networks. They claim to have achieved a performance level of 1000 NFS 8
KByte read 1/O operations per second, compared with approximately 100 P 400 I/O operations per second
for more conventional server architectures [Nelson 90].

They call their approach functional multiprocessing. Rather than building a server around a single proces-
sor that must simultaneously run the UNIX operating system and manage the net- work and disk interfaces,
their architecture incorporates dedicated processors to separately man- age these functions. By running spe-
cialized software within the network, file, and storage processors, much of the normal overhead associated
with the operating system can be eliminated.

A functional block diagram of the NS5000 appears in Figure 5.10. The system backbone is an enhanced
VME bus that has been tweaked to achieve a high aggregate bandwidth (55 MBytes/ second). A conven-
tional UNIX host processor (a SUN-3 or SUN Sparcstation board), the various special purpose processors,
and up to 96 MBytes of semiconductor memory (the primary mem- ory) can be installed into the back-
plane. We examine each of the special processors in the next subsection.

5.5.2. Dedicated Processors

A dedicated network processor board contains the hardware and software needed to manage two indepen-
dent Ethernet interfaces. Up to four of these can be incorporated into the server to inte- grate a reasonably
large number of independent networks. The board executes all of the necessary protocol processing to
implement the NFS standard. Because the network boards implement their own packet routing functions, it
is possible to pass packets from one network to another without intervention by the host. Some cached net-
work packet headers are buffered in the primary mem- ory.

The file processor board runs dedicated file system software factored out of the standard UNIX operating
system. The board incorporates a large cache memory, partitioned between user data and file system meta-
data, such as directories and inodes. This makes it possible for the file system code to access critical file
system information without going to disks.

The storage processor manages ten SCSI channels. Disks are organized into four racks of five 5.25S disks
each (20 disks per server). It is also possible to organize these into a RAID-style disk array, although the
currently released software does not support the RAID organization at this time. Most of the primary
memory is used as a very large disk cache. Because of the way the system is organized, most of the
memory system and backplane bandwidth is dedicated to sup- porting data transfers between the network
and disk interfaces.

The host processor is either a standard SUN-3 68020-based processor board or a Sparcsta- tion host proces-
sor board. These run the standard Sun MicrosystemsU UNIX, as well as the utili- ties and diagnostics asso-
ciated with the rest of the system.



5.5.3. Software Organization

A significant portion of AuspexUs improved performance comes from the way in which the net- work and
file processing software are layered onto the multiprocessor organization described above. The basic
software architecture, its mapping onto the processors, and their interactions are shown in Figure 5.11.

Consider an NFS read operation. Initialy, it arrives at an Ethernet processors, where the net- work details
are handled. The actual data read request is forwarded to afile processor, where it is transformed into phy-
sical read requests, assuming that the request cannot be satisfied by cached data. The read request is passed
to the storage processor, which turns it into the detailed opera- tions to be executed by the disk drives.
Retrieved data is transferred from the storage processor to primary memory, from which the Ethernet pro-
cessor can construct data packets to be sent to the client. Note the minimal intervention from the host pro-
cessor and software.

5.6. Berkeley RAID-II Disk Array File Server

Our research group at the University of California, Berkeley isimplementing a high performance /O con-
troller architecture that connects a disk array to an UltraNet network via a HiPPl channel. We call it
RAID-II to distinguish it from our first prototype, RAID-I, which was constructed from off-the-shelf con-
trollers [Chervenak 90]. Given the observations about the critical performance bottlenecks in file server
architectures throughout this paper, our controller has been specifically designed to provide considerable
bandwidth between the network, disk, and memory interfaces.

A block diagram for the controller is shown in Figure 5.12. The controller makes use of a two board set
from Thinking Machines Corporation (TMC) to provide the HiPPI channel inter- face to the UltraNet inter-
faces. The disk interfaces are provided by a VME -based multiple SCSI string board from Array Technolo-
gies Corp. (ATC).The major new element of the controller, designed by our group, is the X-Bus board, a
crossbar that connects the HiPPI boards, multiple VME busses, and an interleaved, multiported semicon-
ductor memory. The X -bus board provides the high bandwidth datapath between the network and the
disks. The datapath is controlled by an external file server through a memory-mapped control register inter-
face.

The X-bus board is organized as follows. The board implements an 8 by 8 32-bit wide cross- bar bus. All
crossbar transfers involve the on-board memory as either the source of the destination of the transfer. The
ports are designed to burst transfer at 50 MByte/second, and sustain transfers of 40 MByte/second. The
crossbar is designed to provide an aggregate bandwidth of 320 MByte/ second.

The controller memory is alocated eight of the crossbar ports. Data is interleaved across the eight banksin
32 word interleave units. Although the crossbar is designed to move large blocks from memory to or from
the network and disk interfaces, it is still possible to access a single word when necessary. For example, the
external file server can access the on -board memory through the X-bus boardUs VME control interface.

Two of the remaining eight ports are dedicated as interfaces to the Thinking Machine 1/O processor bus.
The TMC HiPPI board set also interfaces to this bus. Since these X-bus ports are dedicated by their direc-
tion, the controller islimited to a sustained transfer rate to the network of 40 MByte/second.

Four more ports are used to couple to single board multi-string disk controllers via the industry standard
VME bus, one disk controller per VME bus. Because of the physical packaging of the array, 15 disks can
be attached to each of these, in three stripe units of five disks each. Thus, 60 disk drives can be connected
to each X-bus board, and a two X-Bus board configuration con- sists of 120 disk drives.

Of the remaining two ports, one is dedicated for special hardware to compute the horizontal parity for the
disk array. The last port links the X-Bus board to the external file server. It provides access to the on-board



memory as well as the boardUs control registers (through the boardUs con- trol bus). This makes it possi-
ble for file server software, running off of the controller, to access network headers and file meta-data in
the controller cache.

It may seem strange that there is no processor within the X-Bus board. Actually, the config- uration of Fig-
ure 5.12 contains no less than seven microprocessors: one in each of the HiPPI interface boards, one in
each of the ATC boards, and one in the file server (we are also investigat- ing multiprocessor file server
organizations). The processors within the HiPPI boards are being used to handle some of the network pro-
cessing normally performed within the server. The proces- sors within the disk interfaces handle the low
level details of managing the SCSI interfaces. The file server CPU must do most of the conventional file
system processing. Since it is executing file server code, the file server needs access only to the file system
meta -data, not user data. This makes its possible to locate the file server cache within the X-Bus board,
close to the network and disk interfaces.

Since a single X-bus board is limited to 40 MByte/second, we are examining system organi- zations that
interleave data transfers across multiple X-bus boards (as well as multiple file servers, each with its own
HiPPI interface). Multiple X-bus boards can share a common HiPPI interface through the IOP Bus. Two
X-bus boards should be able to sustain 80 MByte/second, more fully utilizing the available bandwidth of
the HiPPI interface.

The controller architecture described in this subsection should perform well for large data transfers that
require high bandwidth. But it will not do so well for small transfers where latency dominates performance
more than transfer bandwidth.Thus we are investigating organizations in which the file server remains
attached to a more conventional network, such as FDDI. Requests for small files will be serviced over the
lowest latency network available to the server. Only very large files will be transferred through the X-Bus
board and the UltraNet.

6. Summary and Research Directions

In this paper, we have made the case for generalizing the workstation -server storage architecture to the
mainframe and high performance computing environment. The concept of network-based storage is very
compelling. It has been said that the difference between a workstation and a main- frame is the I/O system.
The distinction will become blurred in the new system architectures made possible by high bandwidth, low
latency networks coupled to the correct use of caching and buff- ering throughout the path from service
requestor to service provider.

Neverthelessny research challenges remain before this vision of ubiquitous network- based
storage can be achieved. First, new methods are needed to effectively manage the complete and complex
storage hierarchy as described in this paper. How should data be staged from tertiary to secondary storage?
What are the effective prefetching strategies? How is data to be extracted from such large storage systems?

Second, it is time to apply a system-level perspective to storage system design. Throughout the 1/0O path,
from host to embedded disk controller, we find buffer memories and processing capabilities. The current
partitioning of functions may not be correct for future high performance systems. For example, some
searching and filtering capabilities could be migrated from applica- tions into the devices. The memory in
the 1/O path could be better organized as caches rather than speed matching buffers, given enough local
intelligence about 1/O patterns. A better approach for error handling is also possible given a system per-
spective. For example, in response to a device read error, a disk array controller could choose between
retrying the read or exploiting horizontal parity techniques to reconstitute the data on the fly.

Third, new architectures are needed to break the bottlenecks, both hardware and software, be- tween the
network, memory, and I/O interfaces. The RAID-II controller tackles this at the hard- ware level, by pro-
viding a high bandwidth interconnection among these components. At the software level, new methods



need to be developed to reduce the amount of copying and memory remapping currently required for con-
trolling these interfaces.

Fourth, todayUs high bandwidth networks, such as FDDI and UltraNet, exhibit latencies that are somewhat
worse than conventional Ethernets. Unfortunately, latency becomes a dominating factor as the overheads of
data transfer scales down in higher bandwidth networks. New methods need to be developed to reduce this
latency. One strategy is to increase the packet sizes, to better amortize the start-up latencies. A second stra-
tegy, demonstrated by the Autonet project at Digital Equipment CorporationUs System Research Labora-
tory, is to construct a high bandwidth network using point-to-point connections and an active switching
network [Schroeder 90].

Finally, the whole issue of distributed and multiprocessor file/storage servers and their role in high perfor-
mance storage systems must be addressed. The technical issues include the methods for how to partition
the file server software functions among the processors of a multiprocessor or a distributed collection of
processors. The AUSPEX controller architecture is one approach to the former. The IEEE Mass Storage
System Reference offers one model for the latter.
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Figure 3.1: Typical Storage Hierarchy, Circa 1980

The microsecond access is provided by the file cache, a small nhumber of bytes stored in semiconductor
memory. Medium capacity, denominated in several hundred megabytes with tens of millisecond access, is
provided by disk. Tape provides unlimited capacity, but access is restricted to tens of seconds to min- utes.
Locd

Magnetic Disk File
Cache Figure 3.2: Typical Storage Hierarchy, Circa 1990

The file cache has become substantially larger, and may be partially duplicated at the client in addition to
the server. Secondary storage is split between local and remote disk. Tape continues to provide the third
level of storage. Server RRemoteS Magnetic Disk Figure 4.5: Elements of the Mass Storage System Refer-
ence Model

The figure shows the interactions among the elements of the MSS Reference Model. Command flows are
shown in light lines while data flows are in heavy lines. The reference model clearly distinguishes among
the software functions of name service, mapping of logical files onto physical devices, management of the
physica media, and the transfer of files between the storage system and clients. The figure has been
adapted from [Miller 88]. Figure 2.2: Network Controller/Processor Memory Interaction

The figure describes the interaction between the Network Controller and the memory of the network node.
The controller contains an on-board microprocessor, various memory-mapped control registers through
which service requests can be made and status checked, a physical interface to the network media, and a
buffer memory to hold request and receive blocks. These contain network messages to be transmitted or
which have been received respec- tively. A list of pending reguests and messages aready received reside in
the host processorUs memory. Direct memory operations (DMA), under the control of the node processor,
copy these blocks to and from this memory. Figure 3.3: Typical Storage Hierarchy, Circa 1995

Conventiona disks have been replaced by disk arrays, a method of obtaining much higher 1/0 bandwidth

by striping data across multiple disks. A new level of storage, Rnear lineS, emerges between disk and tape.
It provides very high capacity, but at access times measured in seconds. Application Address Space

OS Buffers (>10 MByte)



HBA Buffers (1 M - 4 MBytes)

Track Buffers (32K - 256K Bytes)

I/O Device Figure 2.3: SCSI Phase Transitions on a Read

The basic phase sequencing for a read (from disk) operation is shown. First the initiator sets up the read
command and sends it to the I/O device. The target device disconnects from the SCSI bus to perform a seek
and to begin to fill its internal buffer. It then transfers the data to the initiator. This may be interspersed
with additional disconnects, as the transfer gets ahead of the internal buffering. A command complete mes-
sage terminates the operation. This figure is adapted from [Chervenak90]. Bus Width (signals)
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Multiple
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Async
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7
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ANSI X3.131 Table 2.2: Comparisons Among Popular Backplane and Channel

Technology
(MB)

CapacityBPI

Conventional Tape
Reel-to-Reel (1/2S) 140
Cartridge (1/4S) 150 12000

IBM 3480 (1/2S) 200 22860

Helical Scan Tape
VHS (1/2S) 15000 ?

Video (8mm) 4600 43200

TPI

6250

104

38.1

?

1638

BPI*TPIData
(million)(KBytes/s)

18

1.25

0.87

70.56

011

92

3000

4000

492

Transfer

549

minutes

seconds

minutes

minutes

Access

minutes

Interconnects

Time



DAT (4mm) 1300

Optica Tape

CREO (35mm) 1TB

Magnetic Disk
Seagate Elite (5.255)
IBM 3390 (10.55)

Floppy Disk (3.5S)

Optical Disk
CD ROM (3.5S) 540
Sony MO (5.25S)640

Kodak (14S) 3200

61000 1870 114.07 183

933600024 224 3000

1200 33528 1880 63.01

3800 27940 2235 6244

2 17434 135 2.35

27600 15875 438.15 183

24130 18796 45354 87.5

21000 14111 296.33 1000

20 seconds

28 seconds

3000 18 ms

4250 20 ms

92 1 second

1 second

100 ms

100Us ms

TABLE 3.1: Relevant Metrics for Alternative Storage Technologies Host

Memory Processor

Cache Host

Processor Figure 5.4: VAXCluster Block Diagram

A VAXCluster consists of client processors (VAX), server storage controllers (HSC), a high speed
intercon- nect (Cl), adapters (Cl port), and coupling hardware (Star Coupler). A message-oriented protocol
is layered onto the interconnect hardware to implement client/server access to storage services. Figure 5.5:
HSC Internal Architecture

The Host Interface is managed by a dedicated bit slice processor called the K.Cl. Devices are attached to
K.SDI (disk) and K.STI (tape) device controllers. High level control is performed by the P.1O, a PDP-11
microprocessor programmed to coordinate the activities of the device controllers and the host interface.

Network

>1000 m

10 - 100 Mb/s



high (>ms)

low

Extensive CRC Channel

10-100m

40 - 1000 Mb/s

medium

medium

Byte Parity Backplane

1m

320 - 1000+ Mbl/s

low (<5s)

high

Byte Parity

Distance

Bandwidth



Latency

Reliability Table 2.1: Comparison of Network, Channel, and Backplane Attributes

The comparison is based upon the interconnection distance, transmission bandwidth, transmission latency,
inher- ent reliability, and typical techniques for improving data integrity. 1/0 Controller

Embedded Controller

Head/Disk Assembly Host Processor Memory-to-Memory Copy

DMA over Peripheral Bus

Xfer over Disk Channel

Xfer over Serial Interface Figure 3.4: 1/0O Data Flow

In response to a read operation, data moves from the device, to the embedded controller, to the I/O con-
troller, to operating system buffers, and finally to the application across a variety of different interfaces.
Peripheral Bus Interface/DMA 1/0 Channel Interface Buffer

Memory ROM 5Proc Figure 3.5: Internal Organization of an I/O Controller

The 1/O controller couples a peripheral bus to the 1/0O channel via a buffer memory. Hardware in the peri-
pheral interface implements direct memory access between this buffer memory and the hostUs memory.
The 1/0O channel interface implements the handshaking protocols with the 1/0O devices. The microprocessor
is the Rtraffic cop,S coordinating the actions of the two interfaces. Figure 5.9: High Capacity Strategy
Array

High capacity is achieved by using large numbers of commodity disk drives. These are coupled to the
HiPPI frontends through a high bandwidth data bus and a VME-based control bus. ArrayMaster

9058 ArrayMaster
9058 High Bandwidth/High Availability Duplexed Controllers ArrayMaster
9058 High Bandwidth/High Availability Simplex Controller ArrayMaster

9058 High I/0 Rate/High Capacity Simplex Controller Figure 5.6: Alternative Disk Organizations for the
ArrayMaster 9058



The ArrayMaster can be configured in three alternative organizations. duplexed controller parity array for
extremely high system availability, simplex parity array for high media availability, and a non-redundant
organiza- tion for maximum 1/O rate and capacity. Figure 5.7: Internal Organization of ArrayMaster 9058
Array Controller

The ArrayMasterUs internal structure consists of the disk interfaces, host interfaces, parity calculation
logic, and a Rtraffic copS microprocessor to determine the 1/0O strategy. 1/O processors associated with
each of the interfaces handle the low level details of the interface protocols. Data movement is controlled
by direct memory access engines associated with the disk interfaces. Figure 5.8: Strategy HiPPI Controller
Block Diagram

The Strategy controller couples multiple HiPPI interfacesto an 8 + 1 + 1 RAID Level 3 disk organization.
Figure 5.10: NS5000 Block Diagram

The server incorporates four different kinds of processors, dedicated to network, file, storage, and general
pur- pose processing. The server can integrate up to eight independent Ethernets through the incorporation
of mul- tiple network processors. The storage processor supports ten SCSI channels, making it possible to
attach up to twenty disksto the server. Figure 5.11: Auspex NS5000 Software Architecture

The main data flow is represented by the heavy black line, with data being transmitted from the disks to the
pri- mary memory to the network interface. The primary control flow is shown by a heavy gray line. File
system requests are passed between LFS (Local File System) client software on the Ethernet processor to
server software on the File Processor. These are mapped onto detailed reguests to the Storage Processor by
the File System Server. Limited control interactions involve the Virtual File System interfaces on the Host,
and are denoted by dashed lines. Figure 5.12: RAID-I1 Organization

A high bandwidth crossbar interconnection ties the network interface (HiPPI) to the disk controllers (Array
Tech) via a multiported memory system. Hardware to perform the parity calculation is associated with the
memory system. Figure 4.4: Conventional File Server Architecture

An NSF 1/O request arrives at the Ethernet interface of the server. The request is passed through to the net-
work driver, the protocol processing software, and the file system. The request may be satisfied by data
cached in the primary memory; if not, the data must be accessed from disk. At this point, the process is
reversed to send the requested data back over the network. This figure is adapted from [Nelson 90]. Figure
5.1: UltraNet Configuration

The network interconnection topology is formed by hubs connected by optical serial links. The maximum
link speed is 250 Mb/s; higher transmission bandwidth is obtained by interleaving across multiple links.
Host-based adapters plug into computer backplanes while adapters for channels such as HiPPI reside
within the hub. Figure 5.2: Internal Organization of the UltraNet Hub

The serial links, one for each direction, connect to the link multiplexers. Each link mux can handle up to
four serial link pairs. The link adapter interfaces the link multiplexers to the wide, fast UltraNet bus. The
Link adapter has enough intelligence to do its own routing of network traffic among the link multiplexers it
manages. With awell configured hub, little traffic should need access to the UltraBus. Figure 5.3: UltraNet
Protocol Architecture

Access to the UltraNet is through the standard UNIX Socket interface. It is possible to use standard TCP/IP
proto- cols on top of the UltraNet or UltraNet-specific protocols. The lower levels of the network are
implemented with the assistance of the protocol engines and adapters throughout the UltraNet system. Fig-
ure 2.1: Seven Layer SO Protocol Model

The figure shows the seven layers of the 1SO protocol model. The physical layer describes the actual trans-



mission medium, be it coax cable, fiber optics, or a parallel backplane. The link layer describes how sta-
tions gain access to the medium. This layer deals with the protocols for arbitrating for and obtaining grant
permis- sion to the media. The network layer defines the format of data packets to be transmitted over the
media, including destination and sender information as well as any checksums. The transport layer is
responsible for the reliable delivery of packets. The session layer establishes communications between the
sending pro- gram and the receiving program. The presentation layer determines the detailed formats of the
data embed- ded within packets. The application layer has the responsibility of understanding how this data
should be interpreted within an applications context.



