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The first result we wish to establish is a generalization of the

Nyquist criterion.

ASSUMPTIONS

Following Nyquist ' we consider the linear time-invariant

single-loop feedback system shown on Figure 1. It will be referred

to as the closed-loop system. The block labeled k is a constant

gain factor (i. e. , independent of time and frequency); if its input

is n(t) its output is k r|(t) where k is a fixed number. The

block labeled G satisfies the following conditions.

The research herein was jointly supported by National Science
Foundation under Grant GP-241 3 and National Aeronautics and
Space Administration under Grant NsG-354(S-l).

The discussion of stability for the case where the transfer func
tions are not rational is far from trivial. Any reader who
doubts this should consider the function defined for t > 0 by
e* sin (e*) and note that its Laplace transform is analytic for
all finite s. This example shows that the discussion of stability
cannot be settled by "looking at the singularity that is the fur
thest to the right, " which is a legitimate procedure with ration
al transfer functions.



(G.l) Its input-output relation relating the output y, the zero-input

response z and the input £> is

y(t) = z(t) + J g(t - t)£, (T)dT for all t > 0..
J0

(1)

(G. 2) For all initial states, the zero-input response z is bounded

on [ 0, oo) and tends to zero as t-» oo. Let z., = sup|z(t)|.
^ t>0

(G. 3) The unit impulse response g is given by

g(t) = r + "g (t) for t > 0

where the constant r is > 0 and g1 is bounded on [0,oo),

tends to zero as t—»> co, and is an element of L (0, oo). We

shall write G(s) =(r/s) + G^s).

The conclusion is stated in the form of

Theorem I: Suppose the linear time-invariant single-loop-rfeedback

system shown on Figure 1 satisfies assumptions (G.l), (G. 2) and

(G. 3) and that k > 0. If the modified Nyquist diagram of G(s)

does not encircle nor go through the critical point (- 1/k, 0), then

(a) the impulse response of the closed-loop system is bounded,

tends to zero as t—^oo, and is an element of L (0, oo);

(b) for any initial state, the zero-input response of the closed-

loop system is bounded and goes to zero as t—»»oo;

(c) for any initial state and for any bounded input, the response

of the closed-loop system is bounded.

tt. ttt:The modified Nyquist diagram is the map under G of the imagi
nary axis from which the interval [-j€ , je] has been removed
and replaced by the semi-circle e&Q\- (tt/2) < e < (tt/2). Here

. e taken arbitrarily small.



If the Nyquist diagram of G(s) encircles the critical point

(- 1/k, 0) a finite number of times then the impulse response of the

closed-loop system grows exponentially as t—•• co.

It should be stressed that the only assumption that is made

concerning the box G is that it fulfills the conditions (G.l), (G. 2),

and (G. 3). Such conditions are often fulfilled by the impulse re -•*

sponse of systems described by ordinary differential equations,

difference-differential equations, and those whose input-output re

lation is obtained through the solution of partial differential equa

tions. The latter is the case for distributed circuits and for many

control systems.

ANALYSIS

Let u be the bounded input applied to the system and let

UM " 5J*P |u(t)|. The response of the closed-loop system starting

from an arbitrary initial state is given by

y(t) =z(t) +k / g(t-T)[u(r) - y(T)] dr for all t >0. (2)

The outline of the proof is as follows: (a) Using the Gronwall-

Bellman* ' ' inequality we establish that the solution of (2) is of

exponential order, hence that Laplace transform techniques are
(4 5)

applicable, (b) Simple considerations* ' ' establish the uniqueness

of the solution, (c) h, the unit impulse response of the closed-loop

system, is shown to be bounded, to tend to zero and eL (0, oo).

The fact that h € L (0, oo) is obtained by the use of the Principle

of the Argument* ' and from a theorem of Paley and Wiener.

Reference to the integral equation defining h shows easily that h

is bounded and goes to zero. The latter requires that it be shown



that h is uniformly continuous, (d) z , the zero-input response

of the closed-loop system, is bounded and goes to zero, (e) To

obtain the converse, (i. e., if the Nyquist diagram encircles the

critical point then the closed-loop impulse response grows exponen

tially) we must use a theorem of Doetsch. *

CONCLUSION

If we collect that which is known about the Nyquist criterion

we may state that its virtues are the following: (a) It is a test

which utilizes only experimentally available data (results of sinus

oidal steady state measurements), (b) It is a necessary and suffi

cient condition, i. e., it does not lead to conditions that are too re

strictive, as is often the case with Lyapunov techniques, (c) It

covers an extremely wide class of linear time-invariant systems,

(d) It leads to very specific conclusions regarding the impulse re

sponse, zero-input response and the total response of the closed

loop system.

The second result, closely related to the first, is an extension

of the Popov criterion, in the principal case. Aizerman and

Grantmacher have written a detailed monograph on this subject

(12)with an extensive bibliography. ' In the U.S. it has also received

attention. ' The approach used in these presentations is to

make very detailed and specific assumptions concerning the internal

dynamics of the linear part of the system. On the other hand one of

the most important and appealing features of the Popov criterion is

that it shares all the desirable features of the Nyquist criterion;

the essence of the Nyquist criterion is that in its general formu

lation, as given above, it does not make any assumptions concern

ing the internal dynamics but rather makes assumptions only on



its input-output relation. We propose to do the same for the Popov

criterion.

DESCRIPTION OF THE SYSTEM

Figure 2 shows the single-input single-output feedback system

under consideration; N is a time-varying memoryless nonlinearity,

G is a linear time-invariant subsystem. N is assumed to be char

acterized as follows:

(N. 1) If, at time t, its input is "n(t), then its output is

<p(Tl(t), t), where, for each t > 0, <p is a continuous function of

its first argument and there are two positive numbers € and

k such that

0<€< y*|' ^ <k- € for all ££0, for all t >0. (I1)

G is assumed to be characterized as follows: if a is its input and

z is its zero-input response, its output y is given by

y(t) = z(t) + J g(t - t) a (t) dT for all t > 0. (2')
J0 ~"

In addition the following conditions are satisfied:

(G.l) for any initial state, the zero-input response z of G is

(i) bounded on [ 0, oo), (ii) uniformly continuous on [ 0, oo),

2 a
and (iii) both z and z are elements of L (0, oo). Let z.. =

sup |z(t)|.
t>0

(G. 2) g, the unit impulse response of G, is an element of

L^O, oo).

It is very important to note that since g is a special instance of a

zero-input response, (G.l) implies that (i) g is bounded, (ii) g is

2
uniformly continuous and (iii) g and g are elements of L (0, oo).



By Lemma 1 below, (G. 2) and (ii) imply that g(t)-*-0 as t-**oo.

Similarly z(t)—*• 0 as t—»»oo. For future reference, let

1Vi t>0

The main result may be stated in the form of

Theorem II: Consider the single-input single-output nonlinear time-

varying single-loop-feedback system shown on Figure 2 where N is

a time-varying memoryless nonlinearity which satisfies condition

(N. 1) and G be a linear time-invariant subsystem satisfying condi

tions (G. 1) and (G. 2). If there exists a real number q 4 0 and a pos

itive 6 such that

Re |(1 +qjo>)G(jco) +̂ 1>6>0 for all co >0 (Pg )

then, for any initial state, the zero-input response y is bounded on

[ 0, oo) and tends to zero as t —»-oo.

The proof of the theorem is based on three lemmas which are

easy to prove and the proofs are in the appendix.

Lemma 1: Let f map [ 0, oo) into the real line R and be uni

formly continuous. Let g map R into R, be continuous; let g(0) =

0 and let x 4 0 imply g(x) > 0. Under these conditions, if

/
then

oo

g[f(t)] dt < oo (3)
0

lim f(t) = 0. (4)
t—*«oo

2
Lemma 2: Let fr i^, f3 map [ 0, oo) into R and belong L

[ 0, oo). Call F,, F2, and F3 their Fourier transforms. Let Hbe

the Fourier transform of a real-valued function h.



If

Fx (jw) = -H(jco)F3(jco) + F2(jw) for all 00 (5)

and if there is a number crn such that

Re H(ja>) > <rQ > 0 for all oo >0 (6)

then

r oo , f +oo |f2(jo>) 12
J f^tjdt^ J Re HO.) d^C (7)

wjiere

a l f +0° ? l r+0° 7C* (8tt o-q)"1 / |F2(jW)r dco= (40-q)"1 / |f2(t)rdt.
-co -00

(8)

Comment: Let us interpret H(jco) as the impedance of a lin

ear time-invariant network which is passive in view of (6). Let f-

be the current and f? be the internal The venin equivalent voltage

source. (See Figure 3.) The product f,(t)f,(t) is the power deliv

ered at time t by the network to the "external world. " Note that

the "external world" is any circuit (not necessarily linear nor time-

invariant), which to the current f, creates the voltage drop f_. Thus

(7) asserts that, whatever may be the external circuit to which the

network is connected, the energy delivered by the network in the

interval [ 0, oo) is bounded as indicated by the inequality (8). Note

also that the equation is satisfied with the equality sign if the net

work is terminated by a linear time-invariant circuit defined by its

impedance Z(jo>) = H*(jco) = Re H(jco) - jlm H(jo>): indeed the current

is then F,(ja>) = F2(j<o)/2Re H(jco) and the power delivered at the fre-

quency o> is | F2(jo>) | / [ 4Re H(jw)] .

Lemma 3: In the proof of the theorem, q may be assumed to

be positive.



Proof of the theorem: Let M be the linear time-invariant

system whose transfer function is for each real oo given by

(1 + qjco) G(jw) + 1/k. According to Lemma 3 we may assume q > 0

If Mar represents the zero-state response of M to a, we have

*) + <1*1 " V = "Ma- - z - qz .

Let t|t be the function defined by

0 <. t < T

elsewhere.

Let a*-,, zT, zT be similarly defined. Since

.t

'0

Tl(t) =-Z(t) - g(0+Mt) -J g(t - T)fl(T )dr

2
(G.l) and (G. 2) imply that z + qz belongs to L (0, oo), and that

2<*T, r\T + qriT - arT/k are in L (0, T) for all positive T. These

conditions together with Pg imply, by Lemma 2, that

/ (tiT(t) +qriT(t) - aT(t)/k) aT(t) dt <C for all T > 0

2
where the constant C is independent of T because z + qze L (0, oo)

Expressing a in terms of T| we get

k"1 r [k-n(t) - <p(-n(t), t)] ^(T,(t), t) dt +qf ^(Ti(t), t)ri(t) dt <c.
Jo -Jo (9)

Call J, the first term of the left-hand side. Define the function r\

on [-1, 0) to be n(0)(l + t) for -1 < t ^ 0. From (1) we obtain



2 r v 7^•n(O) <J <p(Tj(t), t) rj(t) dt <: | ^(or.

Let us add this integral to both sides of (9), hence

Jj+q-i iKT)2<C+ ^ r,(0)2.

(I1) implies that the integrand of J., is non-negative for all t.

Since q > 0 we get

V € q € q
ti(T) <A/f^ + -p- itfO)2 for all T > 0.

Since the right-hand side is independent of T, r\ is bounded on [0, oo)

Let tu- £ sup •rn(t) . We now observe that t| is uniformly con-
m t>0 '

tinuous on [ 0, oo): from the defining relation of t] we get

Nt +£) " T|(t)|< |z(t+ £) - Z(t)| +/ |g(t+ £" T) - g(t - T)|(a(T)|dT

+] lg(t +i - T)a(T)|dT .

Using (N.l) to bound a, we get

oo

< |z(t +o - z(t)| +ktiM/r |g(f +e> - g(t')|dt« +kT!MgMe,
*/0

(G.l) implies that the first term goes to zero as £ -•> 0 uniformly

in t; g€ L (0, oo) implies that the integral-* 0 as £ -*• 0, and the

same obviously holds for the last term. Therefore T) is uniformly

continuous on [ 0, oo). Thus all assumptions of Lemma 1 apply to J

and hence T)-*- 0 as t -*.oo. This concludes the proof of the theorem.



CONCLUSION

The conclusions that can be drawn in this case concern only

the zero-input .response. On the other hand the class of nonlinear

systems covered by Theorem II is very broad.

APPENDIX

Proof of Lemma 1: Suppose f does not go to zero as t —- oo,

then given any € > 0, there is an infinite sequence t,, t2, . . ., t, ,. .

of points going to infinity such that

If^) | >2e for k= 1, 2, ...

Since f is uniformly continuous, given any € > 0, there is a 6

such that |£|< 6 implies that |f(t + £) - f (t) | < c . Therefore in

each one of the intervals [t, -6, t, + 6 ] , |f(t)|>€. Since there

is an infinite number of them, the integral in (3) of Lemma 1 must

be infinite, which contradicts the hypothesis. Hence f(t)-» 0 as

t -•co.

Proof of Lemma 2: The proof is a straightforward applica-

(12)
tion of the completing the square technique.

Proof of Lemma 3: Suppose the condition (Pg) is satisfied by

the given G for some q, k and 6 . The equation of the system

may be symbolically represented by

G <p(r\, t) = -n

where G denotes the effect of the linear time-invariant system G

upon <p(r|, t), which is the output of N. Let ^(r|, t) * kt| - <p(r), t).

After a few algebraic manipulations we obtain

H <p(r\, t) = -t|



which is of the same form as the preceding relation and where H

is the linear system whose transfer function is -G(s)[ 1 + kG(s)] ,

First from the .definition of <p and (1) it follows that

0< e <?(|» *) <(k - e) for all £4 0and all t >0.

In other words, <p satisfies the same conditions as <p . Second, we

must verify that H satisfies the conditions (G.l) and (G. 2). The

(12)
geometric interpretation of the condition (Pc) which is satisfied

by G implies that the Nyquist diagram of G does not encircle the

critical point (-1/k, 0). It follows from the theory of the Nyquist

criterion given above that h, the impulse response of H(s) = G(s)[l +

k G(s)] " , is bounded on [ 0, oo), belongs to L (0, oo) and -*- 0 as

t^ oo. Since h(t) = g(t) - k(h*g)(t) and h(t) = g(t) - k g(0+)h(t) -

2k (h*g)(t), for any finite T > 0, h is in L (0, T) because each

2
term of the right-hand side of the last equation is in L (0, T) for

every T > 0. To test the conditions (G.l) note that zc, the closed-

loop zero-input response satisfies the equation zc(t) = z(t) - k(h*z)

(t). Thus, immediately z is bounded and is uniformly continuous

on[0, oo). Also z (t) = z(t) - kh(0+) z(t) - k(h*z)(t). From these
2

two equations, it follows that both z and zc are in L (0, oo) since
2

each term of the right-hand side is in L (0, oo). Thus by a process

of relabelling we have transformed the given system characterized

by G and <p into a system characterized by H and <p, such that

H and <p satisfy the conditions (N. 1), (G.l), and (G. 2). Finally,

a direct calculation establishes that, for all co,

Re (1 - qjco) H(jco) +I =^— :—r Re t1 + qJ«)G(j«) +V •
k |l + kG(jw)r



Therefore if the condition (P..) is satisfied by G for some q < 0

and some k, the same condition P_ (with a different but still posi

tive 6) is satisfied by H, for -q and the same k.
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