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CAPACITY AND MATCHED SIGNAL OF QUANTUM

MECHANICAL CHANNELS: I

Hidetosi Takahasi

I. INTRODUCTION

The capacity C of a discrete communication channel is defined

as the maximum value of the transmission rate R under the variation

of the probabilities of input symbols p, . . . p , subject to a set of

constraints

Pl > 0 p2 > 0 ... p > 0 (1)

m

1 P, =0. (2)
i=l *

In case of discrete memoryless channels, R is calculated by Shannon's

formula

R(P) =Z X Pi Pj: ^g
J i J

P..

t-fp^uH
(3)

ISwhere P.. is the probability that the transmitted symbol S. i

received as a symbol S'.- We do not have to assume that the i

ber of symbols accepted by the receiver is equal to the number of

symbols used by

a square matrix

received as a symbol S'.- We do not have to assume that the num

I

symbols used by the transmitter, i. e. , that the matrix | | P.. | | is
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Shannon has shown that the above maximization problem can

be solved in a closed form, and the p. and the capacity C are given
1 Q

respectively by

Pi =I(p_1I|i«p[l(p-1)jhIphklog phk (4)

and

exp C=1 exp [ I (P-1)^ Iphk log P^J (5)

-1,where (P )., is the (j-h) element of the inverse of the matrix

IIp.I!. J
It was later noted by several authors that (5) is not always

valid since (4) gives in many cases negative values which are of

course unrealizable. In such cases, some of the p's must take

the smallest possible value allowed by (1), namely zero, and the

capacity can be obtained by calculating R for p's satisfying the

condition that either

3R

aPi

or

9R

- X. = 0 and p. > 0, (6a)

- \ < 0 and p. = 0 for i = 1, 2, . . . ,m. (6b)dp. *i

Although it can be shown that (6) has a unique solution for

p.'s when the matrix | |p..| | is a nonsingular square matrix,
actual computation of them is somewhat difficult and there seems

to be no published work which actually solved (6), except in rather

trivial cases.
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In this paper we will give a method to solve (6) numerically

instead of analytically. The method will then be applied to a certain

type of discrete channels which resulted from a quantum theory of
3

communication channels. The matrix P.. for this type of channel

is given by

•« •G) Kj (1 - K)1_j (7)

where K is a parameter. It can be shown that (7) gives the proba

bility that i photons being sent out from the transmitter j photons

actually come into the receiver., where K is the power attenuation

factor of the channel, caused by a linear attenuation due to Ohmic

losses and/or radiation into free space. It is assumed that the

conductors and external space are at the absolute zero temperature

so that no thermal photons enter the channel. It is to be noted that

the formula (7) also results from a simple probabilistic model in

which each photon has a definite probability of anihilation per unit

path traversed. Our result will therefore be applicable to a rather

wide class of communication channels where the number of some

objects being transmitted is used to represent information.

The present work has been done with two objectives. First,

we are interested in the value of the capacity of quantum mechan

ical channels with given power and attenuation, since it is to be a

basic quantity which sets the ultimate limit of the information-

carrying capacity of a given channel no matter what system of

coding was used. Second, these channels serve as an excellent

example of a noisy discrete channel on which we can study the

general characteristics of matched input probabilities for noisy

channels. The result of our numerical calculation actually showed

a quite interesting behavior of such probabilities, which could

hardly be anticipated without numerical calculation.
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The numerical procedure used in the solution of maximization

problem which is actually one of convex programming, is considered as

a valuable by-product of this work, and will be described in detail.

II. METHOD OF SOLUTION OF THE MAXIMIZATION PROBLEM

If we ignore the constraints imposed by the inequalities (1),

the maximum of (3) would be obtained by putting the partial derivatives

of R' = R + \2Lp>, with respect to p., equal to zero, where X. is the

Lagrange multiplier which is to be determined from the condition

I p. =1• (8)

Hence we have.

aR' 8R n =Ip..iog=^i
WW" j «"*SPkpkj

p p.

- 2 Ipk pki y^—+ x=I Pi, dog =-y 1) +x=o
j J*>k pkj J J ^kpkj

=l 'Py lOg Py -l -Py lOg lPk Pkj +X-1=0. (9)

If we solve the system of linear equations

£ P.- X. =Z P., log P.., (10)
j 1J J 7 1J 1J

we have

lQg | pk pkj =xj+ x-1 (11)
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or

X.I pk Pkj =e^"1 e J (12)

where X. is determined by

X.

-W-lei,

-5-

J " <13>

and p, may be obtained by solving (12).

Actual calculations have shown that for larger K values (12)

gives all positive p's, so that this method gives a satisfactory solution

to the problem. It is found, however, that for the values of K smaller

than a critical value K , which depends on m, the maximum number

of transmitted photons (cf. Fig. 2 . ), some of the p's obtained from

(12) become negative, and in that case some of the p's must take

the value 0, the smallest physically realizable value. For these

vanishing p's, the corresponding equations in (10) should be dropped,

so that (10) determines X. only incompletely. This ambiguity is

made use of in solving (12) since there are in (12) less variables than

there are equations; and it would be impossible, without such an

ambiguity, to solve (12).

However, a solution of such mixed equations is found to be

rather difficult since it leads to a transcendental equation.

For this reason, we decided to use a direct step by step

method of searching the maximum of R(x,. . .x ). There are three

known algorithms for such a maximum search, namely

1. Primitive regula falsi method: Successive values of the

variables determined using only the values of R. (zero-order pro

cess)

2. Steepest ascent method: Successive values of variables

are determined using the values of the first derivatives of R. (first-

order process)



3. Quadratic approximation: Successive values of variables

are determined using the values of the second derivatives of R.

(second-order process)

For well-behaved functions, the speed of convergence increases

with the order of the process, while the slower processes are more

adaptable to ill-behaved functions than faster ones.

We actually decided to use method 2 on the following grounds:

1. Our function is sufficiently well-behaved (R is known to

be convex) so that we can exclude the very slow process of method 1.

2. The first derivatives of R are obtained as an intermediate

product in the calculation of R.

3. Method 3 involves a solution of a system of linear equation

in each step, so that it may not be much faster than method 2 even

in well-behaved cases.

4. Method 3 is more difficult to incorporate the constraints

(1) than method 2.

The steepest ascent method of maximizing a function F(x.. . .x )

consists of an iterative process.

(r) (r-1) , _ , (r-l)x /1y1v
x.v ' = x. ' + € F. (xx ') (14)

i i r i ' * '

where F. denotes the partial derivative of F with respect to x..

It is well known that the speed of convergence depends on the proper

choice of "step size" €. If € is too small, the convergence would

be uniform but very slow. If it is too large, x's will be "overcor-

rected" so that convergence becomes oscillatory or, more often, the

process would diverge. The best value of e in general depends on

the second derivatives of F, which is not available to us by assump

tion. We will therefore find some other method whereby we can find

the optimum or near-optimum € value in each step from available data.
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After trying out several other methods, it was decided to use

two successive values of the first derivatives F., which were used

in (14), as a clue to determinesthe step size, based on the contention

that the relation of the gradient at two points will give some pertinent

information as to the curvature of the surface. Actually we calculate

€ successively from the forgoing e by a formula

6 i ir-1, r-1
« (I5)r+1 ab , ->-6 , , r

r-1, r-2 r-1, r-1

where 6 is defined by
rs J

6 =2 F.<r> F<S) (16)
rs . i i v '

l

and or is a positive parameter which is greater than one and which

was chosen empirically so as to get the best result. Values between

1. 2 and 1. 5 were used with satisfactory results. It is important to

note that (15) adjusts the value of € only relatively to its previous

value, so that our scheme is scale-independent, i. e. , if it works

successfully in a certain case, it may also work as well when the

scale of x's is changed by a constant factor.

The formula (16) does not have a precise theoretical founda

tion. The following argument, however, will be convincing enough

to justify the use of the formula.

Let us assume that F can be approximately described as

a quadratic polynomial in x.. . .x so that

F = Fn + 2-a. x. + 1/2 Z.h.. x. x.. (17)
0 i i i i j ij i J

For simplicity, we use a coordinate system whose origin is at the

maximum point of F and the axes are directed to the principal axes

of the quadratic part of (17). We then have,
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Ic. -2F = F - 1/2 ^C £. (18)
max i 1 *i

where C.'s are non-negative in our problem on account of convexity

of the entropy functions, and they are all positive if the matrix | |P.. j
is a nonsingular square matrix. Then we have

2

F(x(r)) =F - 1/2 2lC. £.(r) (19)
x ' max i *i * '

F.(x(r)) =- C. gi(r) (20)

so that, from (14), we have

e (r+l) =g (r) _f g (r) g <r) (21)
*1 'l l'l X l'^l

6 i 1= 1 C} Z.{T~l) (22)r-1, r-1 1 x x

+ 2
6 , , = 2 (1 - €C.) C.2 £.(r_1) . (23)

r-1, r-2 * r 1 *i K '

xr +
/ means that summation is taken over those i's for which

p. > 0. Now, let us make the following assumption on £. and C..

Assume that the values of the subscript i falls in either of the

two groups. For the i in the first group, all C.'s have practically

the same value9 say C, while corresponding £.'s are arbitrary.

For the i in the second group, C.'s are arbitrary, but £.'s in this

group are small compared to the £.'s in the first group. Then we

can write (22) and (23) as
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6 , , =C2 2 e.^"1' (24)
r-1, r-1 *i x '

6r-l.r-2-<1-C>C£'.ei(r"1> <25>

so that we have

6r-l,r-l 1 1
6r-l,r-2-6r-2,r-2 "1-<1-«C)- €

(26)

Hence, if we put a = 1 in (15), we obtain

«' =6 b'-\T^ *=-£• (27)
r-1, r-2 r-2, r-2

so that, for the i's in the first group

£.(r) = (1 -C C) S.^"1* =0 (28)

while for the i's in the second group £.'s are small from the outset.

That is, under the assumption made above , we get at the correct £.

in a single step if we use the rule (15) with a - 1.

Actually, the assumption may not be satisfied, and also the

functional form is not strictly quadratic, so that the process must

be repeated to obtain the maximum. These facts would sometimes

result in an overcorrection, expecially when the ratio in (15) becomes

very large. It is rather easy, however, to prevent such effects from

being catastrophic, since we can program in such a way that, if a

trial fails, that is, if it turns out that

-9-



(x'-1') <(x<r>) (29)

and that there is no improvement, this trial is entirely discarded
(r)and a new set of values of xv ' is tried using a value of € which

is smaller than the previous unsuccessful one by a fixed factor.

Actually € is reduced to 1/4 of the previous value. When this

trial again fails, € is reduced again by the same factor, and

so on.

The correction factor a in the rule (15) was added for the

same purpose of preventing a too drastic change of € . In fact,

a larger value of a will be effective in preventing overcorrection,

while it tends to slow down the convergence in more favorable

cases, that is, in the case that C.'s in (18) are relatively uniform.

In our program a value a - 4/3 was chosen as the standard, but

it can be specified in the data card if desired.

The convergence is fairly rapid in favorable cases, for
-7 -3example, accuracy of 10 in R and 10 in p. is obtained with '

iterations. In very unfavorable cases, it took more than 200 to
-5 -3get an accuracy of 10 in R and 10 in p..

in. CONVERGENCE OF THE PROCESS

Actual mode of convergence of the above iterative process

is of some interest. Convergence is very fast when the curvature

of the F surface is nearly isotropic (i. e. , C.'s in (18) have all

approximately the same values), as is evident from the forgoing

discussion. The worst case occurs when the curvature of F

surface is strongly anisotropic (C.'s are spread out), in which

case the F surface has an appearance of a deep valley in the

case of two dimensions. If we take a small € , small enough to

assure stability against large C. (against sidewise displacement),
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convergence in the directions with small C. (speed of rolling down

the valley) would be too small. If on the other hand, we take a larger

€ so as to get a higher speed, sidewise instability would set in. What

actually occurred in our process with an automatic adjustment of €

according to (15) is a curious oscillatory change of e , which goes

on as follows (Table I).

Let us assume that € is small at first. Then the convergence

is appreciable only in the steep directions and, after several cycles,

these 'steep' variables would become fairly small so that we.are at

the bottom of the valley. This means that the condition assumed in

deriving (15) is now approximately satisfied, and causes a rapid in

crease of € since € is now determined principally by the curvature

in flat directions. This increase of e however, causes instability

in steep directions, while it accelerates the convergence in flat

directions. This instability is not significant at first since "steep"

variables are first very small, but they gradually increase and at

last cause a rather catastrophic instability, running up the 'side'

of the valley. This instability is detected and an automatic reduc

tion of € is made, and the process is repeated, e going up and

down repeatedly.

This oscillatory behavior of € may at first glance seem an

undesirable feature. It will be shown, however, that this is exactly

the way we can get the best convergence feasible with a steepest

ascent process. To show this, let us assume the quadratic relation
(r)

(18), and denote the value of € in each step by €v '. Then, the

effect of n successive steps of iteration would be written as

m+n

77
r =m+l

and we will have to make

m+n^(m+n) = Jl (1 _€(r)Ci) . ^(m)

-11-
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(r)>-Tr>-Y;= j j ,1-^'C,) (31)
r=m+l

small for every i. We have to solve a kind of minimax problem where

Max(y •) is to be minimized. If we regard (31) as a polynomial in C^
i. e. , if we define a function

y(x) =77 [l -€(r)xJ . (32)
(r)

Then, the problem can be replaced by a problem of choosing €

so that y (x) shows a minimax behavior over an interval where

C.'s are distributed. This problem has a well known solution using

a Chebyshev polynomial, and the result is that €* ', e ',...,
€* n' must be equal to orn, a-,, •••>ct , given by

a + b , a -b (2r +1)tt
2——— + m COS n

2 Zna -—7— +—Z— cos —2—— ' ^^

taken in any order. In other words, the best convergence can be

attained by a successive application of the operation (21) with

different values of e, whose distribution is given by (33). Of course

we do not know anything about how well our rule of changing the

value of e approximates this optimum distribution, but it is almost

certain that this process gives better results than any other method

in which e is fixed at a certain value.

IV. CONSTRAINTS

Thus far we have considered that all variables x-. . .x
1 m

are independent. In our actual case we must take account of the

constraints due to the relation
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I p. =1 (34)

p. > 0. (35)

The first constraint can best be taken care of using a Lagrange mul

tiplier, and considering p.'s as if they are independent. We then have

(r+1) (r) , , 9R x. .-,x
Pt =Pi +€ ("§5~ " X) <36)

where K should be determined so that

(r+1) =1 . (37)

In fact, X. will be given by

m

x-sr?.g-- <38>
i=l *i

The second constraint does not cause any serious complication either.

In this case we do not have to use Lagrange multipliers since the

constraint applies on single variables. When any of the variables

p. turns out to be negative, we simply put it equal to zero, while

variables having positive values may be adopted as they are. This

however, is a slight oversimplification, and actually, we have to

take account of the first constraint (34) together. Since the relation

(36) is satisfied only in the case that p. 'is positive, we cannot

use the Lagrange multiplier given by (38). Hence, we instead deter

mine X. so that
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2+ p.<r+1> =1, (39)
i

the summation being extended over all i with p. ' > 0. Since the

value of X. also affects the positiveness of p. ''s this process is

recursive, and must be repeated using new p. and testing the

signs until self-consistency is established.

or

V. TERMINATION

Iteration is terminated if either

6 <5.10"7 (40)
rr — x '

R(r+1) <R(r) with €<1/m+ # (41)

where m is the number of positive-valued p.'s. The first condition

simply means that the gradient is small enough. The latter condition

is added to avoid a situation in which € is indefinitely reduced accord-
(r+1) (r)

ing to the rule9 while R ' < Rv ' is always satisfied due to round-off

errors.

It is easily seen that the p.'s thus obtained actually satisfy con

ditions (6) for maximizing (3) under the given constraints. The exit

condition (40) or (41) establishes that the derivatives of R in the 'free'

variables are approximately zero, while for the remaining variables

8R/8p. + X < 0, since they are those satisfying

Pt(r) +€(^5. +M<0 (42)

and

p.(r) >0. (43)
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VI. RESULTS AND DISCUSSION

Fig. 1 shows the result of the calculation of C for the quantum-

mechanical channel with m = 2-11 and 29- Here the subscript for p.

is supposed to run from 0 to m. Each of these curves shows a fairly

simple monotone dependence on K, having the same general pattern,

with the exception of the case m = 2. The curve first rises almost

linearly but with a slightly decreasing slope, until it reaches an inflec

tion point. After the inflection point, it bends upwards and ends up

at C(l) = log m with a rather high but finite slope. The steepness of

the curve at K = 1 shows that even a slight loss of photons in the

channel causes considerable loss of the information capacity. In the

case m = 2, the curve has no inflection point and is concave upwards

everywhere.

Much more interesting is the behavior of the input probabilities

p. that maximize R(p0 • • • p ), shown in Fig. 2a-2j. From these
figures we can see the following general characteristics of these

quantities as function of K.

1. The probabilities of the lowest and the highest signal levels,

p« and p , are always positive.

2. All probabilities except the above two have a value 0 for

a certain interval or intervals of K. In particular, all of these vanish

for small values of K. None of these vanish, on the other hand, if

K is greater than a critical value K , which depends on m. That

is, the explicit formula (5) for C is valid within* the domain

K <K<1.

For all K values outside this domain, one or more p.'s have

a value 0, which means that some of the m + 1 different levels are

actually not used in the signal, since use of these levels does not

contribute to increase the channel capacity. To express this situation,

we will say that the transmitted (input) signal is degenerate. The

degeneracy of the transmitted signals becomes higher as K is

decreased.
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3. The dependence of each p. on K is rather irregular. It is

not even a smooth curve, but has several breaks, i.e. , discontinuities

of the slope. These breaks are closely related to the degeneracy. More

specifically, they occur at the values of K at which one of the curves

impinges upon the horizontal axis p. = 0. The slope of this particular

curve changes abruptly to zero at this point owing to the constraint

p. > 0, and the discontinuity of slope of this particular p. apparently

induces similar discontinuities of the slopes of all other p.'s.

From all these results, it is clear that the constraints imposed

by the positiveness of p.'s are really important, and that the explicit

formulas (4) and (5), which ignore these constraints, are not valid

except in rather special cases.

In order to get a better overall picture of this seemingly com

plicated situation, maps have been drawn that show the regions of

K - i plane where p.(K) takes a positive value. Figs. 3 and 4 show

such maps for m = 2 ~ 11 and 29. Since i is a discrete variable,

each value of i is represented by a strip of a finite breadth. These

maps, especially those for larger m, will show the general charac

teristics of the degeneracy of matched signals in a most impressive

manner.

The following additional facts are recognized by looking at

these maps.

4. Signal levels with positive probabilities (active levels) are

not distributed at random, but form one or more coherent bands.

That is, several p.'s having consecutive integers as subscripts tend

to have positive values, and p.'s in between these bands vanish.

More precisely, p(K) tends to have more or less continuous depen

dence on i.

5. As K is varied starting from 0, one such band appears

at a certain value of K. It then broadens and splits into two bands,

a new band appears between these two, this latter again broadens

and splits, and so on. This general behavior of the distribution of
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active levels as function of K is somewhat obscured by the discrete

nature of the "variable" i, but it is not hard to conjecture from these

maps the limit for m—frco where Km and i/m remain finite. Fig. 5

shows a possible form of the map in the above limit.

The limit m—^oo with finite Km is of practical importance

because it corresponds to a communication over a channel of very high

attenuation so that the transmitted signals are virtually continuous, but

received signals are so weak that single photons must be counted by

using a photon counter.

It is interesting to interpret the above results in terms of the

"quantization" of the transmitted signals. ("Quantization" in quotation

marks denotes that we mean quantization in the conventional meaning

of the word used in communication systems, rather than in its original

meaning in quantum mechanics. ) The results in Fig. 5 show that when

the received signal is very weak (Km < 3), a communication system

with the greatest transmission rate is one using only two kinds of

symbols: no signal and maximum power signal, i. e. , operating in

the on-off mode. This confirms the adequacy of our current prac

tice of using on-off signals (telegraph, PCM. , etc. ) in low signal-

to-noise ratio situations.

In the adjacent range of values of Km (3 < Km < 8) we have

a system with 3 distinct signals. Strictly speaking, the new signal

level appearing somewhere between the two extreme levels (i = 0

and i = m) is not a single level, but a band consisting of a large

number of consecutive levels. In other words, we have here a

peculiar mixed communication system using both discrete and con

tinuous signals, possibly a new concept in communication systems!

While this seems to be an attractive possibility, it might be quite

misleading. It can be shown, by numerical calculation, that, in general,

the value of the rate function R(p0 • • • P ) is not substantially re
duced when the band of levels in the middle is replaced by a single

level, having a probability equal to the sum of the probabilities of

all levels in the band. From Table I which gives the function

-17-



Table I. Comparison of the information rates for optimum and
approximately optimum probabilities

m = 29

K P

.19'

.20<

.21

.22<

. 23

. 24"

. 25

8 ^9

. 0069 . 2034

. 2104

. 0434 .1783
v— J

.2218

^ . 0645 .1681

. 2327

,.0906 .1506
-y

. 2413

^.1120 .1376
V

. 2497

,1290 .1282,

.257 3

. 0072 .1406 .1160
*

.2639

. 0249 .1343 .1027

10 11 12

0059 •0025
.26'

. 27 06

0660 .0325 .0835 .0196 .0097 .0250 .0497
.27

28

.29

. 30

1400

1522

1522

,.0226 .1435,

.1662

. 0844 . 0829,

..167 3

7286fT

72999

.1465

.0196 .0738 .0540
v

.1476

v. 0231 .1221

.1453

.1388

.1564

13
R

0.77947

0.77923

0.79788

0.79759

0. 81570

0.81536

0. 83311

0.83255

0. 84974

0. 84915

0.86586

0. 86521

0. 88128

0. 88074

0. 89643

0.89567

0. 91126

0.91048

0.90959

0.92586

0. 92553

0. 92292

0.94034

0.93998

0176 0.95490,

0. 95451



R(pn . . . p ) for both the optimum signal and a 3-level or a 4-level

discrete signal, we see the difference is less than 0. 0008, which is

quite insignificant. This fact implies that, for all practical purposes,

these mixed type signals are equivalent to certain "quantized" (discrete)

signals. From Fig. 5 we see that a 3-level quantization gives maxi

mum capacity for 3 < mK < 8, 4-level quantization for 8 < mK < 11. 5 etc,

These results seem to be of special importance from the infor

mation theory point of view. Quantization of signal levels, a well-

established technique which is useful in signal transmissions over

noisy channels, is here obtained by a purely mechanical procedure

of finding a signal distribution that maximizes the theoretical trans

mission rate. Our results, moreover, give the optimum choice of

quantization levels. It is true that these results are valid only for

a very specific form (7) of the channel matrix | | P.. | |, and little
is known about the validity of our conclusions in more general cases.

It is also true that there is no definite relationship between the theo

retical transmission rate for a signal ensemble and its usefulness

in a practical communication systems. Nevertheless, these results,

as well as results of similar calculations on other channels, are

believed to provide a valuable guidance in the design of communica

tion systems.

An important question which we will try to anwer is whether

the "quantization" of optimum signals is a general property of matched

signals of various types of noisy channels, or it is more or less

peculiar to our quantum-mechanical channel given by (7), and, if the

latter is true, to what factor it depends. We will not be able to give

a complete answer to this question, but the following comments will

give us at least a partial answer to it.

As the first comment, we can point out that there exists an

important class of channels, the cyclic channels, for which nothing

like the "quantization" occurs. A cyclic channel is defined as a

channel whose matrix elements P.. depend only on i - j(mod m),
J
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where m is the number of symbols. It is easy to show that, owing

to its high symmetry, the maximum rate is realized by a uniform

distribution p. = 1/m, i = 1, 2, . . .m.

Secondly, we consider another class of channels closely related

to the cyclic channels: convolutional channels, defined by the matrix

elements P.. which only depends on the difference i - j. This class

of channels is important because in the limit m—fcco these channels

become channels with additive noises. Fig. 6 shows the results of

calculation for convolutional channels whose matrix elements are

given by binomial coefficients.

P.. = ( . a . ) 2"a (44)
ij J - i

This form of P.. was chosen because it is in some sense an approxi-
ij

mation for a Gaussian noise, and its limit for a—>co is exactly the

Gaussian function.

Unlike cyclic channels, convolutional channels can have degen

erate input distributions. These data show an oscillatory change of

p. with i, which is damped out as one goes away from the boundary

i = 0. The amplitude of this oscillation is big enough near the boun

dary so that some p.'s become zero. This example suggests that

degeneracy of input distributions may result from the boundedness

of the input signal levels.

There is another factor that can cause degeneracy of input

signals in some channels. The functional form of R(p,spo* • • °P )

is such that it contains p.'s only in the form of linear combinations

q. = 2_. P.. p.. This has the consequence that the vector (p.) max

imizing R is not uniquely determined if the rank m of the matrix

j IP.-1 I is less than m, the number of the independent variables
(i.e., if | | P.. | | is degenerate in case | |p..| | is a square matrix).
It is further shown that we can find the vector (p.) so that only m

of the m components are nonvanishing. Since the vanishing of a

-19-



certain component p. occurs over a certain interval of a parameter,

such as K, it is most probable that some of the p.'s vanish even when

the matrix | JP..| | is approximately degenerate. We know that this is
the case for our P.. when K is small, because the values of P..'s

for a large j are all very small. This will account for the degeneracy

of the input distribution p. when K is small.

Asa conclusion, we may say with a fair certainty that the high

degree of degeneracy of the input distribution as seen in our results

is neither a very specific property of the P.. for our quantum mechan-

ical channel, nor a general property of any channel, but is a cumulative

effect of the boundedness of i and the approximate degeneracy of our

llPyll-
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I. INTRODUCTION

In a previous report (henceforth referred to as Part I), we have

developed a numerical procedure to find the capacity of any noisy discrete

channel, and applied it to calculate the capacity of quantum-mechanical

channels. In this paper, we will use the above method to answer a more

fundamental question concerning the quantum-mechanical communication

channels, namely, to compare the capacities of quantum-mechanical

channels employing two different methods of detection: (1) direct count

ing of photons, and (2) phase-sensitive detection after a linear amplifi

cation by a maser.

The problem at hand is that of comparing two major classes of

systems of electrical communication, one which uses only the amplitude

of waves and one which uses both amplitude and phase. In ordinary cir

cumstances, in which external noise is the main factor that limits the

sensitivity of the receiver, the one which uses both amplitude and phase

has a definite advantage over the other in that it virtually doubles the

degree of freedom of the signal and hence doubles the capacity, provided

both cosine and sine components are utilized. In fact, the system which

uses amplitude only is currently used only where simplicity of the re

ceiving equipment is a primary concern (e.g. , radio broadcast).

The situation is quite different in quantum-mechanical channels,

that is, in a circumstance where external noises are so low that the

existence of a finite energy quantum is the main factor that determines

the capacity. In such cases, the effect of the receiver in the whole

communication system must be interpreted as a quantum-mechanical

observation on the incoming signal, which is supposed to represent

a quantum-mechanical state of the system. Since amplitude and phase,
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or equivalently, cosine and sine components, of a wave are physical

quantities which are canonically conjugate to each other, simultaneous

observation of these two quantities is subject to a restriction imposed

by the uncertainty relations; and the values of these quantities can be

determined only to a limited accuracy.

However, if only the amplitude is to be observed, we can measure

it to any desired accuracy. Actually, the fact that the amplitude, which

is proportional to the square root of the energy or photon number,

allows only a discrete set of values, limits the amount of information

obtained by one observation, but the spacings between these discrete

values change in inverse proportion to the amplitude, and hence, be

come very small when the amplitude is large. This means that the

amount of information obtained by amplitude observation, when the

phase is not observed at all, can be much larger than the amount

of information to be obtained from the amplitude alone when both

amplitude and phase are observed. Actually, the information car

ried by the amplitude alone when amplitude alone was observed is

shown to be about equal to the information carried by both amplitude

and phase when both were observed.

For the purpose of comparing the above two systems, we will

first have to slightly extend our method developed in Part I, so that

we can obtain the channel capacity under an average power limitation.

Actually, in Part I, we have dealt with the capacity of channels under

peak-power limitation although no mention was made of this point

there. The reason for making this modification is more technical

than fundamental. As will be seen later, quantum-mechanical chan

nels using phase-sensitive detection can be treated in a close analogy

to a classical continuous channel with a gaussian noise. Since the

calculation of the capacity of a classical channel with a gaussian

noise is much easier in the average-power-limited case than in the

peak-power-limited case, it was decided to compare the two types

of channels in the average-power-limited case.
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II. COMPUTATIONAL PROCEDURE

The computational procedure used in Part I for maximizing the

the entropy function, R(p,. . - p ), is modified so that it gives the maxi

mum under an additional constraint

2 ^ =i- a)

Analytically, this would be done by introducing an additional Lagrange

multiplier |x , so that we maximize

R* (P) =R(P) +^Pi +H£ i Pi (2)

with suitable values of X and \i . It is also possible to get an explicit

solution of this problem in a manner similar to that given in the begin

ning of Sec. II of Part I if we ignore the constraints imposed by the

inequalities, i. e. ,

Pi
> 0 i = 1, 2, . . .m (3)

(see appendix). In most cases, however, the constraints of (3) make an

analytical approach impractical; we therefore will take a numerical

approach as we did in Part I. The procedure to be used in the power-

limited case is a steepest ascent procedure quite similar to that used

in Part I, with the sole difference that an additional constraint, Eq. (1),

on p. must be satisfied by the new vector in each step of variation.

Since Ap. must be chosen to maximize R(p + Ap) under the

constraints (1) and

I Pi =i. w
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we have to make use of Lagrange multipliers and get Ap. from

APi =6!fr =€<|r- **+» '>• (5>

X. and |i are determined so that R satisfies the constraints (1) and

(4), and, in addition,

Pi =0„ . (6)

for those i's for which

$£ <°• <7)
Actual calculation goes as follows. The new trial vector (p.) is obtained

from the previous vector (p!) in two steps, namely

8R
p" = P- + € iF-*i *i 8p. (8)

and

p.=p!'+ X.+ ji i, (9)

where for convenience, we have written X. for € X. and \i for €|i

in (5). Since.

I Pi - 1 (10)

and

I i p, =I , (11)
+ x
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we have

I p» + XI 1+|i I i =1 '
+ + +

> (12)

I i pi1 +X2 i +H- 2 i2 =I ,
+ +

2i;-+ denotes a summation in i which extends over those i's for

which p. > 0.

Solving (12) in X. and u , we obtain

•I i2 ( I Pi' - 1) " I i ( I i P^ - I)
\ = j

(?') -♦?
.2
l

( 1 Pi " !) 1 i " m+( 1 i Pi " J)
+ +H = z

(?0 -4
.2
l

(13)

where m =2.+ 1. Since the definition of 2.+ depends on the result
of calculation itself, the formula (13) is implicit. However, it can be

evaluated iteratively, by successively applying (13), (8), and (9) to get

a new set of p.'s using the signs of the former p.'s, until self-consis-

tency is established.

In a general average-power-limited photon channel there is a

priori no upper limit of the number of photons transmitted. In fact,

the probability distribution for a lossless channel (K = 1) is given

by

p. = (1 - u) u1 (14)
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where

u =t-^-7- . (15)
I + 1 v '

For the present case where K < 1, we cannot tell a priori how this dis

tribution is changed, but the result of calculation shows that the distribu

tion tends to disperse still more towards higher i. Since actual numerical

calculations can only be done with a finite upper limit of i, care should

be taken to ensure that the limit is sufficiently high to keep the error

reasonably small.

III. RESULTS

Fig. 1 shows the results of calculation of the capacity for several

values of I, plotted as function of K I, the average received power. For

a given K I, the capacity is higher for higher K (and lower I), which

is as expected, since the loss of photons along the channel is the cause

of the fluctuation. As K tends to zero, the capacity tends to a limiting

curve, which gives the capacity of channels with a high attenuation and

a high power of the transmitter, such that the power of the received

signal is in the order of a few photons per degree of freedom. While

this is exactly the case which interests us most, it is difficult to make

the calculation for a large value of I, since it would require a high

upper limit of i (i.e. , a large number of variables). Therefore, we

will make a compromise and will make calculations for the case

K = 0,. 2, which is supposed to be a fair approximation to the limit K—•O.

Fig. 2 gives the transmitter probability distribution for a num

ber of cases. It is interesting to note that we can recognize the for

mation of several bands in the power-limited case too. Since in this

case no sharp boundary of i exists, it must be the result of the

approximate degeneracy of the channel matrix.
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We also note that the highest i (i = m) always has a nonvanishing

probability. Obviously, this is the effect of an artificial cut-off of the i,

and shows that the upper limit used here was still not large enough,

although acceptable. This probability p would be interpreted as an

accumulation, due to an artificial boundary at i = m, of those proba

bilities which would otherwise have been distributed over the i's lying

beyond the boundary.

IV. THEORY OF LINEAR CHANNELS WITH A

PHASE-SENSITIVE DETECTION

Now we will deal with the quantum-mechanical channels which

use the other method of detection, namely, amplification by a maser

followed by a phase-sensitive detection. Such channels are most
2

conveniently dealt with by the quantum theory of linear systems, as

will be outlined below.

The whole communication system in question will be described

schematically as in Fig. 3. The transmitter gives off a signal, which

is to be represented by a quantum-mechanical state vector, to the

channel. The effect of the channel is considered as a linear trans

formation operating on its input-state vectors to give the output-state

vectors. The amplifier is another linear transformation, which results

in state vectors corresponding to the amplified output. The detector

will make a certain observation on the output-state vector.

The only essential assumption we have to make on the nature

of the two boxes "channel" and "amplifier" is that they are linear

systems in the classical sense. Let x, y, and z denote electro

magnetic quantities (voltages, currents, or any other quantities linearly'

related to electromagnetic field variables) related to the channel input

(transmitted signal), the channel output (amplifier input), and the

amplifier output, respectively. Then we can write down the classical

relations between these quantities as

-7-



y = k x (16),

and

z = "K y • (17)

We assume that x, y, and z are normalized in a natural unit

so that the quantum-mechanical zero-point fluctuations of these quantities

are

<Ax2>=<£y2>= <Az2>= 1/2 . (18)

Now it should be noted that relations (16) and (17) are not con

sistent with (18), which means that (16) and (17) cannot be correct quantum

mechanical equations. The situation will be rectified if we introduce

another input variable in (16) and write

y = k x + k' x» (19)

where

k» =Jl - k2 . (20)

If x1 also is similarly normalized, we have

<Ax'2>=l/2 (21)

and (19) is consistent with (18) and (21).

We can interpret x' as a variable which represents the effect

of external disturbances, or of coupling with the environment, on the channel

output. In classical mechanics, we could ignore the term k'x' in (19)

altogether and write it as (16), by just assuming that

x' = 0 . (22)
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That is, we assume that the external environment is in the quiescent state,

which means that all the conductors, insulators, and the surrounding

media are at absolute zero temperature.

However, this assumption is not allowed in quantum mechanics,

since the variable x' is subject to the zero-point fluctuation even at

absolute zero.

In a similar manner, we must modify (17) to

z=-Ky+~K' Y' (23)

where

=̂ 1<2 -1 • (24)

The analogy between (19) and (23) is evident; but we can also recognize

an essential difference between them which comes from the fact that

"K > 1. (23) is not compatible with (18) if we assume

<Ay"2>=l/2. (25)

This means that an amplifier cannot be in a quiescent state even if the

input signal is just zero-point fluctuation. Combining (19) and (23), we

get

z = k1\x + k« Kx1 + Ky' • (26)

One of the important properties of linear systems is that any

linear relation, such as (26), remains valid in quantum mechanics if

if is interpreted as a stochastic equation, provided that the variables
appearing in the right-hand side are dynamically independent (nonin-

teracting) of each other. Then, these variables can be regarded as

stochastic variables having gaussian distributions and (26) can be used

to obtain various moment relations among these variables.

-9-



Let us now make a few more assumptions in order to get a

simple result for our channel.

a. k « 1, that is, the channel attenuation is very high, so that

the zero-point fluctuation or any other noise coming from the transmitter

is negligible, i. e. , the transmitter can be treated classically.

b. H » 1, that is, the amplifier gain is so high that the phase-

sensitive detector can be treated classically and hence the output is

very large.

c. The channel is noiseless, i.e. , x' consists of zero-point

fluctuation only. Hence,

<x'2>=l/2. (27)

d. The amplifier is an ideal maser amplifier, which operates

with molecules having a perfect population inversion, that is, zero

population in the lower energy level. Then it can be shown that

<y'2>=l/2. (28)

Using these assumptions and the certainly valid assumption

that x, x', and y are statistically independent,, we can easily obtain

the formulas

<z2>= kV <x2>+"K2 (i - k2)<x'2>+ (II2 - D<y'2>

=-K2(k2<x2>+l), (29)

<(« -<z>)2>= kV<(x -<x>)2>+K2 (1 - k2)<x,2>

+(H2-D<y,2>

=1{2 . (3°)
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Since we know that the output z has a gaussian distribution, and that

both x and z can be regarded as classical quantities, we can forget

the quantum-mechanical nature of the system and apply Shannon's

theory of gaussian channels, and for the capacity per one degree of

freedom we get

C=log S+N=log<(y<^>)2> =log (k2<x2> 1). (31)

Changing the symbols to the ones used in the foregoing sections, i. e. ,

K =k2 , (32)

I =<x2>, (33)

we get the final result

C = log ( KI + 1) . (34)

It is interesting to see the contribution of each of x' and y'

in the total noise separately. From (30) we find that exactly one half

of the noise comes from <^x' ^> (the channel) and the other half comes
from ^y1 ^>(the amplifier).

V. CONCLUSION AND COMMENTS

The values of C computed from (34) are plotted in Fig. 1

together with the curves for the photon channels in the same scale. The

broken curve is to be compared with the limit for K—*0 of the full

curves. Although this limit is not exactly known, the curve for K = 0. 2

can be a good approximation, and we finally obtain the following conclusion.
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The capacity curves for the two detection schemes cross over

at a point corresponding to the average received power

KI = 0. 7 . (35)

If the received power level is below this crossover, the photon-counting

mode gives higher capacity, but if the received power level is above it,

maser detection followed by a phase-sensitive detector gives higher

capacity.

This result seems rather remarkable, and it would be of

some interest to look for a somewhat more intuitive explanation of

this result.

First, let us consider the low power-level case. It is well

known that in ordinary communication, when the signal-to-noise ratio

is very low and the power limited in average-power basis, a quantized

or on-off system is more advantageous than continuous systems. In

on-off systems, significant improvement in the error rate can often be

obtained by accumulating the available power for a certain time, and

releasing it in a big burst. In other words, a high pulse power with

a low duty ratio is a good measure for combatting noise when the power

is limited only on the average. Our result (Fig. 2) also seems to show

that such low duty ratio gives the highest transmission rate when K I is

small. For this reason the capacity of discrete channels behaves approxi

mately as

C = KIlog[l/(KI)] (36)

in the very low-signal range and has a high slope at small I. In con

tinuous signal schemes, a standard way of reducing noise is to take

a long-time average, which is mathematically equivalent to reducing

the bandwidth by a narrow filter. This evidently leads to a reduction

of the transmission rate in proportion to the bandwidth. In fact, if we

use an approximate form for Shannon's formula which is valid if S « N,

namely

-12-



C = WS/N = S/(N/W), (37)

we find that the capacity is just proportional to the signal power and

independent of the bandwidth if the noise is evenly distributed over the

whole frequency band. That is to say, the continuous system is not

suitable for an efficient use of a given bandwidth if the available power

is too small. At any rate, the logarithmic factor in (36) clearly indicates

that the discrete system is suited to the low power-level situations.

Next consider the high power-level case. Here we will use a

conventional representation of a signal as a plane vector (xc, xg), where

x = x cos a) t + x sin co t. (38)
c s

In the classical theory, any signal can be represented by a vector, or

a single point in the (x , x ) plane. In quantum theory, however, this
c s

representation of x would be altogether meaningless since xc and
x are canonically conjugate variables which cannot be observed simul-

s

taneously. Nevertheless, it is possible to represent a signal, in a

somehwat unrigorous way, by means of a finite domain in the (x , xg)
plane instead of a point. The area of such a domain cannot be smaller

than a certain minimum, which is determined by the uncertainty relation

Ax Ax =1/2. (39)
c s

Now, the transmitted signal in the system using both amplitude

and phase will be represented by a small circle, as shown by A in
Fig. 4(a), because it is natural to define xc and xg with the same degree
of uncertainty while satisfying the uncertainty relation (39).

In the system using amplitude only, the signal will be repre

sented by a very thin circular ring having the same area as A, shown

by B in the same figure.
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If these two different signals are passed through the same

channel, the output signal y would be represented by A and B,

respectively, in Fig. 4(b) (drawn in a different scale).

Now the width of ring B is about the same as the diameter

of the circle A, owing to the zero-point noise which affected both

signals additively. We see that the area of B is now much larger

than the area of A.

In the system using both amplitude and phase, this signal is

further passed through a maser amplifier, and the amplified output

has again a circular shape, having, however, an area twice as large

as that before amplification (measured relative to the signal). In

the system using amplitude only, the amplitude, or energy, is mea

sured directly by means of a counter so that there is no such deteri

oration. The situation may be visualized by Fig. 4c. The effect

of the amplifier is still not enough to affect the situation. Since a

larger area of the signal domain may correspond to a smaller amount

of information, we can see that the system which uses amplitude only

gives less information than the other one, if the signal-power level

is high.

APPENDIX

ANALYTIC SOLUTION OF THE CAPACITY EQUATION IN THE

AVERAGE POWER LIMITED CASE

The maximization problem of (2) can be solved analytically

in a similar manner as in the case without the power condition (1).

Differentiating (2) with respect to p^ we get

™- + X+ p. i =2 P.. log (P../ S pk Pkj) +X+Hi -1=0. (A-l)

Hence,
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C=R=I Pi I Py log (Py/ I pk Pkj)
1 J *•

=-^ (\ +|i i - 1) p. =- X- |i 1+1. (A-2)

Let q. be the solution of the system of linear equations

X P., log q° =^ P.. log P.. , (i =1, 2,. . .m) (A-3)
J 1J J j 1J 1J

and put

qj =q° exp (ar+ |3j) . (A-4)

Then we have

2. Pij log qj =2 P- log Py +A+PK i, (A-5)

where we have used the relations

I Pii =1 (A-6)
j J

Xp j=Ki (A-7)
j J

which come from the conditions of conservation of probability and

conservation of power, respectively.

If we further put

a = X - 1 , (A-8)
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p.= |i/K, (A-9)

(A-l) will be satisfied if

qj =IPyPi . (A-10)

that is, q.'s are the probabilities of received signals.

From the relations

X q. =1 (A-11)
j J

£ j q. =K I (A.-12)

we get the equations

>-1 I (e^/K)J q? =1 (A-13)
J

X_1Sj (e^ q° =KI . (A-14)

Since q?'s are known, these equations can be used to determine the two
parameters \ and [i , and hence C by (A-2). (A-13) and (A-14) are

algebraic equations of a high degree and may be difficult to solve, but still

the method will be practical when it gives reasonable results (i. e. , real

non-negative probabilities).
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