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Abstract

The simplest autonomous electronic circuit which can become chaotic was

proposed recently by Chua. The objective of this paper is to describe a wide

variety of bifurcation and chaotic phenomena observed experimentally from this

circuit.
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1. Introduction

Chaotic phenomena is ubiquitous in nature [1], It has now been widely
observed in numerous physical (e.g., chemical, mechanical, electrical systems),
biological, and economic systems. Research on chaotic systems is now wide

spread and growing rapidly. Yet almost all published results on this subject

are based on computer simulations of discrete equations [e.g., 2,3] or

ordinary differential equations [e.g., 4,5]. Moreover, while some of these

equations represent greatly simplified models of physical systems [e.g., 4],

most are merely contrived equations. Since trajectories of chaotic systems

are extremely sensitive to initial conditions and other parameters, the

trajectories obtained from computer simulation are not correct solutions in

.view of inevitable roundoff and local truncation errors: they are in fact

pseudo-orbits [6]. However, the attractors derived from computer simulation

are generally regarded as a meaningful characterization of the chaotic system.

A clarification of proper interpretation of all these simulation results are

not yet in sight.

Our goal in this paper is to build a simple physical system and actually

measure the chaotic phenomena in the laboratory. The system we built in a

simple electronic circuit conceived by Chua [7], as shown in Fig. 1(a). It

has 5 elements: a linear resistor, a linear inductor, 2 linear capacitors,

and a nonlinear 2-terminal resistor described by the 5-segment vR-iR charac
teristic shown in Fig. 1(b). Since this nonlinear element is not available

as an off-the-shelf component, we have designed the op amp circuit in Fig. 1(c)

whose measured vR-iR characteristic in Fig. 1(d) is virtually identical to
that of Fig. 1(b). The vR-iR characteristic in Fig. 1(b) can be described
exactly by the equation [8]:

iR =vR -| |vR+7.5| -^|vR+2.5| +^|vR-2.5| +£|vR-7.5| Ag(vR)
(1)

Using this analytic expression, Chua's circuit is described by the following

autonomous system of 3 ordinary differential equations:

*C2 =U CI(VC1 "VC2> * 1J

*L =fVC2
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Rather than simulating these equations on the computer, we carried out

a careful experimental study of this circuit in the laboratory. A summary of

the various bifurcation and chaotic phenomena we have so far observed will

be presented in the following sections in the form of actual scope pictures.

We hope that these pictures will be useful in developing a theoretical

explanation of the chaotic phenomena and the structure of the attractor in

Chua's circuit.

2. Chua's Attractor

Consider Chua's circuit in Fig. 1(a) with -the following element values:

R= 1.53 left , L=8 mH , Cx » .005 yF , C£ = .1 uF

The nonlinear resistor is described by the v-i characteristic in Fig. 1(d).

Figures 2(b)-(d) display the same chaotic attractor in (vC2,vcl)-plane,
(iL>vcl)-plane, and (i*L>vc2)-plane, respectively. Figure 2(a) is a blown up
version of Fig. 2(b) inside the limit cycle. The chaotic attractor consists

of two rings joined at the upper and the lower edges by a thin sheet of ribbon

made of trajectories. Note that depending on the initial conditions, all

trajectories are either attracted to the stable limit cycle or to the chaotic

attractor. The-boundary set points, which divide the two attractors, appears

from our measurement to be extremely complicated. It is definitely not a

2-dimensional surface, but one with a fractal [9] dimension. The existence

of the stable limit cycle is quite natural, since the domain of attraction for

the chaotic attractor is bounded, there must exist an entity which separates

the domain of attraction from other initial conditions.

3. Bifurcation Phenomena with Respect to R

Consider the circuit in Fig. 1(a) with the following element values:

Cx = .005 uF , C2 = .05 nF, L= 12.45 mH

Figures 3(a)-(e) display the period-doubling route to chaos in Chua's circuit

as R is varied. The single-looplimit cycle in Fig. 3(a) represents a well-

defined periodic waveform spawned by a Hopf bifurcation process when a pair of
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complex-conjugate eigenvalues associated with an equilibrium point of this
circuit (described by equations (2)) crosses the imaginary axis and enters the
right-half plane. A slight decrease in the value of R leads to the sequence

of Lissajous figures shown in Figs. 3(b)-(e). This doubling of period is clearly

seen by comparing the spectra fo Fig. 3(a) and Fig. 3(b). Note that new

frequency components corresponding to one half of the frequency components in

Fig. 3(a) have appeared in the spectrum of the double-loop limit cycle (Fig.

3(b)).

As we continue to decrease R in small amounts, we observe successive period-

doubling giving rise to 4 and 8-loop limit cycles. Again note the appearance

of new frequency components in the corresponding spectra. A further small

decrease in R leads to the chaotic attractor in Fig. 3(e). Since the range of

R between Figs. 3(a) and 3(e) is very narrow (1.7 kQ to 1.5 kft), as is typical

of the convergence property of the period-doubling bifurcation parameter, we

were unable to observe periodic waveforms with order higher than 8. Our

results, "however, suggest strongly that the chaotic attractor in Fig. 4(e) is

spawned by a period-doubling mechanism.

4. Bigurcation.Phenomena With Respect to C,

Consider the circuit in Fig. 1(a) with the following element values:

R = 1.43flk , C2 = .05 uF, L = 7.2 mH

Figures 4(a)-(d) display the period doubling phenomena in Chua's circuit as C|
is varied. The single-loop limit cycle in Fig. 4(a) represents a well-defined

periodic waveform in (Vc ,VC )-plane. A slight decrease in the value of C-j

leads to the doubling of period as shown in Fig. 4(b). Further decreases in

the value of C, by small amounts result in the Lissajous figures shown in Figs.

4(c)-(d). This period-doubling phenomenon is also observed in the correspond

ing spectra. These pictures are not shown since they are qualitatively similar

to those in Section 3. Since the range of C| between Figs. 4(a)-(d) is very
narrow (6.20 nF to 5.88 nF), we were unable to observe periodic waveforms with

order higher than 4.

5. Bifurcation Phenomena With Respect to L

Consider the circuit in Fig. 1(a) with the following element values:

R = 1.43 kn, C1 = .005 yF, C2 =0.05 uF
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Figures 5(a)-(d) display the period-doubling phenomena in Chua's circuit as L

is varied. The single-loop limit cycle in Fig. 5(a) represents a well-defined

periodic waveform in (V- ,Vr )-plane. A slight increase in the value of L
2 1leads to the sequence of Lissagous figures shown in Figs. 5(b)-(d). Figures

5(b)-(d) show 3 successive period-doublings giving rise to 2, 4, and 8-1oop

limit cycles as we continue to increase L. As in Sections 3 and 4 one expects

that a further increase in L results in the appearance of a chaotic attractor.

However, we discovered a new phenomenon not found in Sections 3 and 4, namely,

the appearance of limit cycles with odd periods. Figures 6(a)-(c) display 5,

3, and 4-1 oop limit cycles along with the steady-state waveform for V- , res

pectively. As we continue to increase L, the limit cycles in Figs.- 6(a)-(f) are

obtained. Note that as L increases, the attractor changes from a single ring-

shaped spiral (Figs. 6(a)-(c)) to two ring-shaped spirals connected by two

outer threads (Figs. 6(d)-(f)).

6. Concluding Remarks

In this paper we have presented a wide variety of bifurcation and chaotic

pehnomena observed experimentally from a simple physical system, namely, Chua's

circuit. In this section we would like to make some comments on the difficul

ties that any interested readers might encounter in building such circuits and

observing these phenomena.

Firstly, since these phenomena are extremely sensitive to parameter changes

one should not expect that a circuit, built with the element values given here,

to reproduce the exact behavior reported in this paper. In other words, some

fine tuning of the circuit parameters might be necessary. For example, in

Section 2 the value of R would most probably be different than the one given

here, if one attempted to obtain chaotic attractors as in Figs. 2(a)-(d). Fur

thermore, since in building the nonlinear resistor we have used the saturation

regions of the op amps in Fig. 1(c), one might have to adjust some of the

resistance values (given in the figure captions) to obtain the desired v-i char

acteristic as in Fig. 1(b).

Secondly, since the range of the values for which these bifurcation and

chaotic phenomena occur (e.g. range of R in Section 3, range of C-, in Section

4, and range of L in Section 5) is very narrow, one must proceed slowly and

patiently to be able to observe these phenomena. It should also be noted that

in order to obtain Figs. 2(c) and 2(d) a small current sensing resistor (5.6 Q)

was connected in series with L in the circuit shown in Fig. 1(a).
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Finally, we mention that any 5-segment odd-symmetric v-i characteristic

with any prescribed set of parameters as in Fig. 1(b) can be easily synthesized
by using two op amps and at most 8 linear resistors. For details see [10].
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Figure Captions -

Fig. 1. (a) Chua's circuit.

(b) V-i characteristic of nonlinear resistor.

(c) op amp circuit realization of the nonlinear resistor.

(d) Measured V-i characteristic obtained with Vcc =15 V,
R] » 3.67 kfl, R2 =1.09 kft, R3 =5.43 kft, R4 =104 ft, Rg =5.36 Kft,
and Rg = 128 ft. op amp: National/8035 741 LN.

Fig. 2. Chaotic attractor measured from Chua's circuit.

(a) Chaotic attractor in (Yc ,VC )-plane. Scale: Vc =2V/div,
Vr =.4 V/div. 2 ] ]

L2
(b) Chaotic attractor in (a) along with stable limit cycle.

Scale: Vr = 5V/div, Vr = IV/div.
Ll c2

(c) Chaotic attractor and stable limit cycle in (i,»Vc )-plane.
Scale: Vr =5V/div, 1. =3.39 mA/div. 1

n L
(d) Chaotic attractor and stable limit cycle in (i,,Vc )-plane.

Scale: VQ =2V/div, iL =3.39 mA/div. 2
Fig. 3. Waveforms (left side) and spectra (right side) exhibiting the period-

doubling route to chaos as R in varied in Chua's circuit.

(a) Single-loop cycle. Scale: Vc =2V/div, Vc =.4V/div.
(b) Double-loop cycle. Scale: Vr] =2V/div, Vr2 =.4V/div.

Ll u2
(c) 4-loop cycle. Scale: Vr = IV/div, Vr = .4V/div.

n . L2
(d) 8-loop cycle. Scale: Vr = IV/div, Vr = .4V/div.b1 l2

(e) Chaotic attractor in (Vr ,Vr )-plane. Scale: Vr = 2V/div,
°2 Ll ul

Vr = .4V/div.
u2

Fig. 4. Period-doubling in Chua's circuit as C-. in varied. Scale: Vr = 2V/div,

Vr = .4V/div.
L2

(a) Single-loop cycle.

(b) Double-loop cycle.

(c) 4-loop cycle.

(d) chaotic attractor in (V« ,VC )-plane.
Fig. 5. Period-doubling in Chua's circuit as L in varied. Scale: Vr = 2V/div,

Ll
Vr = .4V/div.

u2



(a) Single-loop cycle.

(b) Double-loop cycle.

(c) 4-loop cycle.

(d) 8-1oop cycle.

Fig. 6. Limit cycles (left side) and steady-state waveforms for Vr (right
Ll

side) as we continue to increase L. Scale: Vr = 5V/div, Vr = .4V/div,
Ll u2

t = .2 ms/div.

(a) 5-1oop cycle.

(b) 3-loop cycle.

(c) 4-loop cycle.

(d)-(f) double-ring shape cycles.
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