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ABSTRACT

This paper considers the concurrency control problem for database
management systems. Its purpose is to propose a new locking protocol that
allows for maximum concurrency in the sense that it reaches all serial
equivalent executions. In addition to this, the protocol permits early detec
tion of deadlocks. The main features of this protocol are the introduction
of a third type of locking action (in addition to "lock" and "unlock"), and
of a graph that summarizes the "must precede constraints" associated with
an execution.
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1. INTRODUCTION

It is widely accepted that the appropriate criterion for concurrency control is serial

izability. i.e.. equivalence to some serial execution [1-5]. Of the various ways to achieve

serializability that have been proposed, none surpasses the two-phase locking protocol [2]

in the degree of concurrency that it affords. Yet. not all serializable executions can be

achieved by two-phase locking. The purpose of this paper is to propose a new locking pro

tocol that succeeds in achieving all serializable executions. In addition, this algorithm also

provides for early detection of deadlocks.

This paper is organized as follows. In sections 2 to 5. we define the terminology,

review two-phase locking and introduce a new locking action ("declare") and a new type

of graph that detects violations of serializability along with deadlocks ("must-precede

graph"). In sections 6 through 8, we present the "Declare-before-unlock Protocol" and

study its properties. We treat extension to "read" and "write" locks in section 9, and

deadlock resolution in appendices A and B. Appendix C contains some examples.

2. PRELIMINARIES

We begin with a simple model of concurrency control. Suppose that a Jt> ,c .... denote

atomic units of data that we call objects. A transaciion consists of a finite sequence of

actions, each action touching a single object. We denote a transaction T, by

Ti^T-So^Ti^)- ' TyCo,,.)

where T;(oy) means T, acts on Oj . For now, we do not distinguish between actions of

different types, e.g.. reading and writing. Nor do we assume that the objects for the same

transaction are distinct.

An execution (of a set of transactions) is an interleaved sequence of all the actions

from these transactions. For example, let T \ and T2 be two transactions:

Tx = t,(c )t,U> ) T2 = r2(b )t2(c ).

Then,



E =T1(a)r2(6)T2(c)T1(i)

is an execution of T\ and 7Y An execution is said to be serial if there is no interleaving.

Two executions E\ and E2 (of the same transactions) are said to be equivalent if for every

object o. the subsequence of £1 touching o is the same as the corresponding subsequence

from E2 [2]. Equivalence is illustrated by the last example as follows. The execution

E =T2(b)r2(c)Tl(a)T1(b)

is serial, and E' is equivalent to E since for both executions the subsequences touching the

individual objects are

a : Txia ) b : T2(b }ri(b ) c : t2(c ).

An execution is said to be serializable if it is equivalent to some serial execution. It is

clear that for our example, any execution of 7^ and T2 is serializable. since all executions

that contain the subsequence t,{b )Tj (b) will be equivalent to the serial execution T-,Tj,

where i &j ,i ./ = 1.2.

We say that transaction Tt precedes Tj in E and denote the condition by Tt p Tj if

there exist some object b and actions t, (6 ) and Tj {b ) such that t, (b ) comes before Tj (b)

in E. In such a case, (t,{b ),T-{b )) will be called a conflicting pair. It is well known that

an execution E is serializable if and only if "precedes in E" is a partial ordering, i.e. it

satisfies

transitivity : Tj p Tj and Tj p Tk -» T, p Tk

asymmetry : T, p Tj and T} p T, - Tt = Tj

We can depict the situation by a "precedence graph" PG(£) as follows. Let the nodes

of PG(E) represent the transactions. For a given execution E. add a directed arc from T,

to Tj in PG(E) if there is some object b such that Tt acts on b immediately before Tj does

so. The execution E is serializable if and only if PG(E) is cycle free. For future reference,

we restate this result in the form of a theorem.

Theorem 2.1 [2] : An execution is serializable if and only if its conflicting pairs are con

sistently ordered. D



Example 2.1: Consider the following transactions:

7*! = TjU )r,0> ) T2 = T2(b )t2(c ) T3 « T3(a )t3(c ).

The execution

£ = Tiia )t3(c )t!(^ )t2(6 )t3(c )t2(c )

is serializable because its precedence graph PG(£). shown in Figure 2.1. has no cycles.

Indeed, it is equivalent to T{T{T2. D

I B I

Figure 2.1 - PG(£ ) of Example 2.1

3. CONTROL BY LOCKING

Locking provides an effective means for achieving serializableexecutions [3]. In addi

tion to the two basic locking actions "lock" and "unlock." we introduce a third one that we

call "declare." For each object in a transaction, the order of the locking actions will be

declare-lock-unlock, and each upgrading will void the previous state of lock. We call a

transaction with locking actions added an augmented transaction while any interleaving of

augmented transactions will be termed an augmented execution. We represent the locking

actions in an augmented sequence by the symbols d,{b). l,{b ). u,{b ) to denote T, declares,

locks and unlocks object b. respectively. For example, for the execution

E = Tjtfl )r2(a)

an augmented execution is

Ei = di(a)liia )tx{a )u}(a )d2(a )l2(a )r2(a)u2(a ).

We now state two sets of basic Unking constraints which will be referred to fre

quently in the paper.

An augmented transaction T is said to satisfy the basic locking constraints if:

- every object used by T is declared before it is locked.

- every object is locked before it is used.



- every object is unlocked before the end of the transaction.

- each of these locking actions occurs only once for each object.

An augmented execution E is said to satisfy the basic locking constraints if:

- every transaction in E satisfies the basic locking constraints.

- there is never more than one lock on an object (but there can be more than one

transaction holding"declare" on that object).

At this point, we wish to comment further on the new action "declare." A declare

must precede a lock, but not necessarily immediately. Once obtained, a declare is kept

until it is promoted to a lock, unless the transaction aborts. Upon being promoted, it

becomes void. So when we say "all the transactions currently holding a declare on a ." we

mean all the transactions that have declared but not yet locked object a. In contrast to

locks, "declares" do not conflict with each other, neither do they conflict with a lock. This

means that any number of transactions can simultaneously hold "declares" on the same

object, even if it is locked by another transaction.

An augmented execution will be called a locking execution if it satisfies the basic lock

ing constraints. A serializable augmented execution is a locking execution such that the

subsequence obtained by deleting the locking actions is serializable.

A partial (augmented) execution is the truncation of an (augmented) execution. A

partial augmented execution is said to satisfy the basic locking constraints if it agrees with

the truncation of some locking execution.

Lemma 3.1 : Every serializable execution has an augmentation that satisfies the basic lock

ing constraints, i.e. that is a locking execution.

Proof: Starting from the serializable sequence, we give a procedure for its augmentation

and show that the resulting sequence satisfies the basic locking constraints.

Standard augmentation procedure

Let £ be an execution: £ = exe2 • • •e„. We begin by augmenting et in £ with the



addition of locking actions to produceE\. Then, we augment e2 in £] to produce £2. and

so forth. At the beginning of the k-th step, we have ek in the form of rT(a ) where T is a

transaction and a is an object. In £*-i. one of the following situations prevails.

(a) At the time of ek . T holds the lock on a : in this case, we set Ek = Ek _i.

(b) At the time of ek. a is unlocked: in this case, we replace ek • rT(a ) in Ek _j by

dT (a )lT (a )tt {a ) to produce Ek .

(c) At the time of ek . some transaction S &T holds the lock on a. In this case, we

determine the set of all objects acted on by S in the subsequence ek+let+2 • • • en.

Say this set is {£> ji>2>—bm I- Then, we replace ek «= rT{a ) in Ek-\ by

dsib&sibz) ' • ds(bm)us(a)dr(a)lr(a)Tr(a)

to produce Ek. 0

After step n. we remove all redundant "declares" in £„ (retaining only the first

declare on each object for each transaction) to get £„'. Finally, we add all needed unlocks

at the end of E„ to gel £/. the "standard augmentation" of execution £. D

Remark: The purpose of declaring immediately all remaining objects in case (c) will

become apparent in section 6.

Now, we return to the proof of Lemma 3.1. First observe that since the sequence is

serializable. all its conflicting pairs are consistently ordered. Therefore, only one lock per

transaction per object is necessary, since if 7* needs object a after S, then necessarily S

does not need it anymore after T first uses it. So whenever a transaction needs an object

already locked by another transaction, it is always "safe" to unlock it ("safe" meaning the

transaction will not need to lock it again later on).

With this in mind, it is easy to see that the augmentation obtained by the above pro

cedure always satisfies the basic locking constraints. D

Example 3.1 : Here is an example of the construction of the "standard augmented execu

tion" for the following (serializable) execution:



Ei = d2(a )l2{a )r2(a )d2{b )u2(a )d3(a )l3{a )r3(a )

d,(6 )Z,(d )t,(6)u,(* )l2{b )T2(b)u3(a )u2(b). D

4. TWO-PHASE LOCKING.

In this section, we consider only two types of locking actions: lock and unlock. An

augmented execution is said to be two-phased if the lock-unlock subsequence for every

transaction satisfies the condition: "the first unlock occurs after the last lock." The cele

brated two-phase lock theorem [2] can be stated in our framework as follows:

if £ has a two-phased augmentation, then it is serializable.

In practice, this means that if each transaction observes the two-phase locking proto

col: "release no lock until all needed locks have been obtained." then serializability is

guaranteed provided the augmented execution is a locking execution and no deadlock

occurs. However, deadlocks are possible. In particular, if the actions already taken pre

clude serializability. then deadlock must occur. For example, consider two transactions

Ti = t,(g )T!(6 ) T2 = r2(b )t2(g )

and a partial augmented execution

£ =/1(a)T,(a)/2(6)T2(i)

Since the subsequence r^a^^b) precludes serializability, deadlock must occur. Indeed.

we see that the two-phase condition requires that neither T1 nor T2 releases the lock it

holds until it obtains a lock held by the other transaction.



Two-phase locking cannot achieve all serializable executions. That is. a serializableE

may have no augmentation that is both a locking execution and two-phased. For example,

consider the execution of Example 3.1:

£ =T2(a)T3(a)T1(6)T2(3)

which is equivalent to the serial order T{T2T3. In any augmentation of £. u2(a) must

precede T3(a ). which precedes Ti(b ) which in turn must precede l2(b ). Hence. u2(a ) must

precede l2(b ) and the augmented execution cannot be two-phased.

The simplicity of this example suggests that the degree of concurrency achieved by

two-phase locking is significantly less than that required to maintain serializability.

5. GRAPH REPRESENTATION OF CONCURRENT TRANSACTIONS

In this section, we define and compare three different directed graphs for the

representation of a set of concurrent transactions that is being executed on-line according

to some locking protocol. Here, we consider the three locking actions described in section

3. i.e. declare, lock and unlock. We assume the corresponding (possibly partial) execution

satisfies the basic locking constraints.

In these graphs, to each transaction will correspond a node. Arcs will be added

according to the specifications given below.

Precedence graph (PG)

This graph was defined in section 2. In fact, it corresponds to the (consistent or not)

partial ordering of the transactions obtained from their conflicting pairs. In terms of lock

ing actions, this graph can be characterized as follows:

when transaction T locks object a. draw arc S -*T where S is the last lock-owner

of a. (In such a case, we say "T reads a from S.")

Remark: In the following, when an object is not locked, most recent lock-owner will mean

the last transaction that held a lock on that object, if there is any.
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Must-precede graph (MPG)

For this graph, arcs are added in the following way:

(a) when transaction T declares object a. draw arc P -»T where P is the most recent

lock-owner of a;

(b) when transaction T locks object a. draw arc T -»F for each F that is currently

holding a declare on a .

(Recall that a declare becomes void once the transaction obtains a lock on the object.)

In this graph, arcs are labeled by the objects that gave rise to them. There can be many

arcs between two nodes, each arc due to a different object.

If there is an arc from S to T in the MPG. then S is called an immediate predecessor

of T and T an immediate follower of S. If there is a path from S to T in the MPG, then S

is called a predecessor of T and T a follower of S.

Wait-for graph (WFG)

This graph is constructed as follows:

(a) when T requests a lock on a (assuming T has already declared a) and a is

currently locked by S, draw arc S -*T CT is waiting for S");

(b) update graph at each new lock or unlock.

Theorem 5.1 : The precedence graph is a sub-graph of the must-precede graph.

Proof: There is an arc from S to 7* in the PG only if there exists some object c such that

T reads c from S. Necessarily, the augmented sequence must look like:

ls(c)-us(c)-lT(c)

with no other transaction locking c between S and T. Because of the basic locking con

straints. dT(c) occurs before lr(c). If dT{c) occurs after ^(c). then the arc 5 -*7* is

added to the MPG at dT(c ): if dT (c ) occurs before ls (c ). then the arc S -*T is added to

the MPG at ls (c) (recall the way the MPG is constructed). This proves the result. D



Theorem 5.2 : For a serializable augmented execution, the must-precede graph is a sub

graph of the transitive closure of the precedence graph.

Proof: The statement means: S -»r in MPG implies S p T. According to the method of

construction of the MPG. the arc was added only if either one of the following cases

occurred:

(a) T declared object c for which S was the most recent lock-owner. The corresponding

locking actions must be of one of the two following forms:

Z5(c)- dr(c) • -us(c) • -lT(c) or ls(c)'US(c)"-dr(c)-lT{c).

with no lp(c) between us(c) and rff(c) in the second case, for some T ^S.T &T.

Both cases imply S p T. If intermediate transactions lock c between S and T. S p T fol

lows by transitivity of the partial order.

(b) S locked object c for which T is holding a declare. Here, the locking actions are of the

form:

dr(c)- -Isic)- lr(c) - S p T.

Again, if intermediate transactions lock c between S and T. the result follows by transi

tivity. D

Corollary 5.1 : Consider a serializable augmented execution and its associated must-

precede graph. If there is a path from S to T in the must-precede graph, then S p T.

Prmj : Use Theorem 5.2 and transitivity of the partial order p. D

The next result characterizes serializability in terms of the MPG.

Theorem 53 : The must-precede graph of a locking execution is cycle free if and only if

this execution is serializable.

Proof:

(-♦) By Theorem 5.1 the PG is also cycle free and so the partial order p is consistent.

Therefore, the execution is serializable.

(«-) By Theorem 5.2. the MPG is a sub-graph of the transitive closure of the PG and so is
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necessarily cycle free. D

Corollary 5.2 : If there is a cycle in the must-precede graph and the execution is allowed

to continue, then there will be a cycle in the precedence graph.

Proof: Follows from Theorems 2.1. 5.1 and 5.3. D

Theorem 5A : The wait-for graph is a sub-graph of the must-precede graph.

Proof: If we have the arc S -*T in the WFG, i.e. T is waiting for S. then necessarily the

same arc was added before to the MPG. either when:

i) T declared an object which was already locked by S. or

ii) S locked an object for which T was holding a declare at the time. D

Corollary 53 : Cycles in the wait-for graph and in the precedence graph are always anti

cipated by cycles in the must-precede graph.

Proof: (WFG) From Theorem 5.4 and the fact that an arc is always added first to the MPG

because it is only added to the WFG when the lock is actually requested.

(PG) Because, as the proof of Theorem 5.1 shows, an arc is added to the MPG before it is

added to the PG. D

6. A NEW LOCKING PROTOCOL

Two new concepts are critical to an understanding of this new locking protocol.

They are: first, a new locking action that we called "declare." and second, the must-precede

graph introduced in the previous section. We define the "Declare-before-unlock Protocol"

by a set of rules the augmented execution must satisfy.

Declare-before-unlock Protocol

(A) The augmented execution must satisfy the basic locking constraints (listed in sec

tion 3).

(B) "Declares" and "locks" are granted only if the must-precede graph remains cycle

free: specifically:
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1) no declare on an object is granted to a transaction that is a predecessor of the

most recent lock-owner of the object.

2) no lock on an object is granted to a transaction that has a predecessor

currently holding a declare on the object.

(C) A transaction must declare all the objects it needs before it can unlock any

object. D

In order to completely specify the protocol, we need to say what actions are

appropriate when a request for "declare" or "lock" is rejected. This will be analyzed in the

next section. For the moment, we mention that in the case of a rejected "lock." waiting

will almost certainly solve the problem, whereas in the case of a rejected "declare."

deadlock is inevitable and a procedure for resolution must be undertaken.

We note that condition (C) is similar to the two-phase condition. It is far weaker

than two-phase since "declares" conflict with neither "locks" nor each other. They are

merely means for exchanging information among the transactions.

Note also that the Declare-before-unlock Protocol does not specify where the declares

have to be placed, except that a declare on an object must come before the lock (locking

constraint), and that condition (C) has to be satisfied. This affords considerable freedom

in requesting declares.

WTe now prove two main properties of the protocol: (a) correctness - that it generates

only serializable augmented executions (Theorem 6.1), and (b) maximum concurrency-

that it reaches all serializable executions (Theorem 6.2).

Theorem 6.1 : If no deadlock occurs, the Declare-before-unlock Protocol always produces

a serializable augmented execution.

Proof: If an execution is completed and the protocol was observed, then the final MPG

must be cycle free (condition (B)) and the augmented execution is a locking execution

(condition (A)). By Theorem 5.3, this execution is serializable. D
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Lemma 6.1 : Every augmentation of a serializable execution satisfying (A) also satisfies

(B).

Proof: By Lemma 3.1. there exists at least one augmentation that yields a locking execu

tion, i.e. that satisfies the basic locking constraints (the "standard augmentation procedure"

given in the proof of Lemma 3.1 satisfies (A)). Hence, the lemma is not void. But. by

Theorem 5.3. the MPG of any locking execution is cycle free when the given execution is

serializable. Hence. (B) is satisfied. D

Theorem 6.2 : Every serializable execution has an augmentation that satisfies the Declare-

before-unlock Protocol.

Proof: The standard augmentation procedure given in the proof of Lemma 3.1 satisfies (A)

(by Lemma 3.1). (C) (by construction), and (B) by Lemma 6.1. D

Remark: Because of Theorem 6.2 and the fact that not every serializable sequence can be

implemented by two-phase locking (as we saw in section 4). the Declare-before-

unlock Protocol allows for more concurrency than two-phase locking. Here is an

example.

Example 6.1 : In section 4 we showed that the sequence

£ =T2(G)T3(a)T1(t)T2(6)

had no augmentation satisfying the two-phase locking protocol. But it has many different

augmentations satisfying the Declare-before-unlock Protocol, e.g.

d2{a )l2(a )t2(g )d2(b )u2(a )d3(a )l2(a }r3(a )

dx(b )li(b )t,U> fo^b )l2(b )T2(6 fo3{a )u2(b )

the "standard augmentation" that was obtained in Example 3.1. or

d2(a )d 2(b )l2(a )r2{a )u2{a )d 3(a )l3(a )r3(a )

d ^b )Z j(* )t,(* )u ,(* )l2(b )T2(b fo3(a )u2(b )

where for each transaction all the declares precede the first lock. For both cases, the MPG

is 1 -»2 -»3. D

Remark: Roles of the "declare" action and of the "declare-before-unlock" condition.
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The detailed effects of "declare" and of the "declare-before-unlock" {DBU) condition

are considered in [12], where the concurrency control problem is approached as a control

problem for a dynamical system, and where a new state model is proposed for it. This

model is then applied to a detailed analysis of the method of control by locking.

We emphasize here the following points. First, the "declare" locking action is a

means for predicting future conflicting actions. It allows one to construct the MPG which

contains more information than the PG or the WFG. Intuitively, better performance is

possible when the transactions declare early, because then a larger fraction of the cycles in

the MPG are created at "lock" than at "declare." and these "lock cycles" can be resolved by

waiting. In the WrFG and the PG. all cycles indicate impossibility to continue the execu

tion without violating serializability. None of them can be solved by waiting, in contrast

to " lock cycles" in the MPG.

Roughly speaking, the DBU condition is a simple condition that achieves the goal of

early declaration by delaying unlocking until a transaction has finished declaring its

objects. And since "declare" is a non-conflicting locking action, the DBU condition is not

restrictive in terms of achievable serializable executions, in contrast to the two-phase con

dition. O

Remark: Cycle verification in the MPG

Observe that when a cycle is created at "declare" in the MPG, the violation of serial

izability has not yet occured since the PG is still cycle free. It will inevitably occur, but

not before all the transactions involved in the cycle have unlocked at least one object. For

this reason, when the DBU condition is in force, it is not necessary to check for cycles in

the MPG at each "declare" request, but only at the first "unlock" by each transaction. D

In implementing the Declare-before-unlock Protocol, one can safely proceed as long as

no cycle is detected in the MPG. Any completed execution is serializable. As new transac

tions arrive, corresponding nodes are added to the MPG. We now analyse when arcs and

nodes can be deleted from this graph.
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Theorem 63 : Cycles in the must-precede graph are unaffected by deleting from the graph

a node and all arcs connected to it once the corresponding transaction and all its

predecessors have obtained all their locks.

Proof: Consider a transaction T along with its predecessors and followers in the MPG. In

this graph, any predecessor or follower is in a path of the form

Pm- *\-T -£,-••-£m.

Once T and all its predecessors have obtained all their locks, there can be no arc com

ing into the corresponding nodes. This is because an arc can only be drawn into a node

when the corresponding transaction is holding "declare" on the object under consideration.

Hence. T can never be in the path of a cycle. Therefore, the node and the arcs connected to

it can safely be removed from the graph. D

Remarks on Theorem 6.3:

1) Observe that once the condition in the theorem is satisfied, the transaction under con

sideration cannot get any new predecessors.

2) The condition in the theorem may be hard to verify. A stronger but more easily

verifiable condition is the following:

a node and all the arcs connected to it can be deleted from the MPG when the
corresponding transaction and all its predecessors are committed.

In such a case, it is clear that no other transaction can become a predecessor of T and so no

cycle involving T can occur in the future.

7. DEALING WITH REJECTED REQUESTS

A request for either "declare" or "lock" can be rejected because either one may cause a

cycle to be created in the MPG, thus violating serializability. The two situations need to

be handled differently.

First, suppose a request by 7* for "declare" on objecta is denied. This happens if and

only if in the MPG T is a predecessor of the most recent lock-owner of a . say 7" . T must
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precede T according to the MPG. and T must precede T because of the previous locking

action on object a by T. Deadlock is inevitable in the sense that the execution cannot be

continued without violating serializability. Observe that the precedence graph does not yet

have a cycle, and if the same deadlock were to occur with two-phase locking, it would be

detected much later in the WFG. Thus, when a request for "declare" is denied, some pro

cedure for resolving deadlocks must be invoked. This is discussed in appendices A and B.

Observe that this "early detection" of deadlocks, a consequence of Corollary 5.3. is a

highly desirable feature of our locking protocol. In the next section, we shall present a

modified version of our protocol that completely eliminates deadlocks provided it is

known beforehand which objects each transaction will need.

In the remainder of this section, we deal with the case where a request by a transac

tion T to lock an object a is denied. This happens if and only if either one of the follow

ing cases occur:

case 1: a is locked, but no predecessor of 7 is currently holding a declare on it:

case 2: a is unlocked, but one or more predecessors of T in the MPG are holding

declares on it:

case 3: a is locked, and one or more predecessors of T in the MPG are holding

declares on it.

N.B. In cases 2 and 3, it does not matter whether some predecessors have requested or not

the lock because "declare" becomes void only when "lock" is granted.

Defining also:

case 4: a is unlocked and no predecessor of T is holding a declare on it:

the diagram representing the permissible transitions among these 4 states is depicted in

Figure 7.1.
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• 4

Figure 7.1 - Possible transitions when waiting for a lock

When in states 1. 2 or 3. the simplest solution is to have T to wait until there is a

transition to state 4. Then the lock on a can be granted to T without causing a cycle in

the MPG. If we are in state 1 and if no predecessor of T declares a before the lock is

released, then T will get the lock. i.e. we will have a transition 1 -»4. Otherwise, we have

the transitions 1 -♦ 3 -»2.

However, states 2 and 3 could imply potential trouble. For instance, it could happen

that the number of predecessors of T declaring a increases or that some of these predeces

sors are themselves waiting for other objects, and so on, so that we have no guarantee that

the waiting time for T will be finite. We have modeled the system of Figure 7.1 as a

continuous-time Markov chain and found that the system it represents is inherently stable

(i.e. returns to 4 in finite time) when the product: (number of concurrent transactions x

fraction of the database used on average by a transaction) is less than one.

We have also found a suflicient condition that guarantees 7"s waiting time will be

finite. Before we state it. we need to introduce an extra assumption. From now on.

assume a first-come-first-serve policy in granting permissible lock requests is in force, in

complement to the "predecessor-first" policy of the Declare-before-unlock Protocol. More

precisely.

when an object is unlocked and one or more transactions have requested a lock
on it (call this set Rt). then the lock is granted to the transaction in R, that has
no predecessor in R,. and if there is more than one such transaction, to the one
among these that first requested the lock.

Then the following result holds.

Theorem 7.1 : If. at any lime t after transaction T requests "lock" on object a. all the

concurrent transactions that act on a and all their current predecessors have
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requested all locks that they will ever need, then T will eventually obtain "lock" on

a.

Proof: Define the two sets:

Na(t) - {all the concurrent transactions at time t that act on a }.

PNa(t ) - {all the transactions in Na (t ) and all their predecessors in the MPG at time t}.

and observe that:

(1) The condition in the theorem implies that, after time t. no transaction not in PNa(t)

can become a predecessor of a transaction in PNa (t ). This would occur if and only if that

transaction would lock before a transaction in PNa (t ) an object needed by both transac

tions. But by assumption, all the transactions in PNa (r ) have requested all their locks

and we are using a first-come-first-serve policy in granting permissible lock requests.

Also, there is always a transaction in PNa (t) that can be granted a lock when an object

becomes available, namely the one in that set which currently has no uncommitted prede

cessor still using this object.

(2) In particular, (l) implies that the set of transactions that will get a lock on a before T

is bounded above by Na(f) since after t. no new transaction needing a can become a

predecessor of any transaction in Na (t ).

The result follows by noting that (l) implies that PNQU ) is a "closed" set that will

clear up in finite time since no deadlock can occur (all the declares have been obtained: see

section 8) and there is always at least one transaction in that set that can be executed with

no waiting, namely the one at the summit of the sub-graph of the MPG for the transac

tions in PNa(t ). D

Observe that under the Declare-before-unlock Protocol, the "system" (by this we

mean the task of executing transactions) is "stable" in the sense that when transaction ini

tiation is stopped, all transactions will terminate in finite time (if no deadlock occurs).

This means a long denied request for lock on an object can always be cleared by suspend

ing initiation of new transactions. In fact, such an action is stronger than necessary and
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Theorem 7.1 suggests the following procedure:

Let OpNJ,t ) be the set of all objects acted on by the transactions in PNa (t ). At time

t. force all the transactions in PNa (t ) to request locks on all the objects they act on.

At the same time, do not initiate any new transaction that will act on any object in

Opsa (* ) until all the above requests have been made.

Clearly, once all the requests have been made, the sufficient condition of Theorem 7.1

is satisfied and we will eventually have a transition to case4 for object a.

8. A PROTOCOL FOR DEADLOCK AVOIDANCE

The Declare-before-unlock Protocol affords flexibility in placing the locking actions.

As we mentioned in section 6. the occurrenceof deadlocks critically depends on where the

declares are placed in the augmented execution. Consider the following modified version

of the Declare-before-unlock Protocol:

Prior Declaration Protocol

(A) and (B) Same as Declare-before-unlock Protocol.

(C) A transaction must declare all the objects it will act on before its first lock. D

This protocol is just a special case of the Declare-before-unlock Protocol because con

dition (C) implies condition (C) of the latter. It requires information that is not always

available, because the set of objects a transaction acts on might depend on the execution

itself. However, it has the following important properties.

Theorem 8.1 : The Prior Declaration Protocol precludes the occurence of deadlock and

ensures serializability of the resulting augmented execution.

Proof: That the execution is serializable is due to the fact that the Prior Declaration Proto

col is just a special case of the Declare-before-unlock Protocol. To see that deadlocks never

occur, observe that when each transaction is in the "declaring phase" (before its first lock),

only arcs coming into it are drawn in the MPG. Therefore, the declares will always be



19

granted because the arcs hereby added will never cause cycles. Cycles will only occur

when locks are placed, and we saw in the last section that these cycles do not cause

deadlock. D

Theorem 8.2 : Every serializable execution has an augmentation that satisfies the Prior

Declaration Protocol.

Proof: Use the standard augmentation procedure of Lemma 3.1 and move the declare

actions to the left until (C) is satisfied. Clearly, both Lemmas 3.1 and 6.1 are still true,

and thus the result is proved since (A). (B) and (C) are satisfied. D

The authors believe that Theorem 8.1 is a new result, at least in the present context.

It is more general than the following well-known deadlock-free scheme: "each transaction

must request all needed objects at once and cannot proceed until all have been granted"

[5-6], because here the objects need only be declared, not locked, and declares are not

exclusive. However, in general, the idea of "declaring" all needed resources (or an upper

bound on them) in order to prevent deadlock is not new. For instance, this strategy is

used in [7] for the prevention of deadlocks in operating systems.

In some sense, the Prior Declaration Protocol is similar to such concurrency control

methods as transaciion scheduling or timestamping. By declaring all needed objects before

the first lock, a transaction orders itself with respect to some of the other concurrent tran

sactions by identifying those that have to precede it because they have already locked an

object it will be acting on. This imposes a partial ordering at the very beginning of a tran

saction, and no other transaction will then be allowed to precede it (by a lock) if this

causes a deadlock, so that the partial ordering will remain consistent. The advantage of

this protocol is that in general the ordering is not total. In fact, it is the minimum con

sistent partial ordering of the concurrent transactions, thus allowing for maximum con

currency.
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9. READ AND WRITE LOCKS

In this section, we consider two separate "read" and "write" actions on the objects.

We revise the definition of conflicting pair (section 2) by requiring that at least one of the

two actions be a write. In other words, two reads by different transactions on an object do

not constitute a conflicting pair.

There are at least two reasons for distinguishing reads from writes. The first one is

that more concurrency is possible because the class of serializable executions is bigger. In

order to allow for this extra concurrency, it is necessary to have two types of locks: write

or exclusive locks (xl) and read or share locks (si). As usual, si does not conflict with si.

but the three other pairs are conflicting.

The second reason has to do with deadlock, transaction abort and crash recovery. In

these instances, for obvious reasons, one would like to avoid rolling-back committed tran

sactions (cascade roll-back). One way of ensuring this if there is only one type of lock is

for a transaction to keep all its locks until it is committed (see Appendix B). Our protocol

then would have no advantage because its main feature is to allow early unlocking. How

ever, with separate read and write locks, only write locks need be held till commit time.

Thus, our protocol enjoys a real advantage even with support for avoiding cascaded roll

back by permitting early release of read locks.

A read lock has no effect on the MPG only if the other transaction involved also

wants a read lock. But this information is not available when the other transaction has

only declared the object, which is when we need to update the MPG. For this reason, we ,

require that there be two types of "declares." as for the locks:

(i) exclusive declare or xd. to be acquired before a xl: and

(ii) share declare or sd. to be acquired before a si.

In the MPG. arcs will be added for all pairs:

(sl.xd). (sd.xl). (xl.sd). (xd.sl). (xl.xd). (xd.xl).

but no arcs are added for: (sl.sd). (sd.sl) (corresponding to non-conflicting pair
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read/read).

For a share lock to be upgraded to an exclusive lock, it is necessary for the transac

tion to obtain an exclusive declare on the object. However, downgrading of a lock from xl

to si might lead to an undetected violation of serializability if the declares are placed in a

certain manner and if only the last state of lock is considered. Consider the following

example.

Example 9.1: Consider the following partial augmented execution

xd t(b )xl ,(* )xd 2{b )xd 2(c )xl2(c )xd 3(c )xd 3{a )xl3(a )

w3(a )sl3(a )r3(a )u3(a )sd 2(a )sl t(a )r j(a ).

This execution is not serializable because 1 p 3 (from 1 p 2 (object b) and 2 p 3 (object

c )) and 2 p \ (object a). However no cycle is detected in the MPG if at sd j(o) only

sl3(a) is taken into account and not xl3(a ) because by assumption (sd.sl) is not a

conflicting pair. D

This example shows that the strongest state of lock held by the most recent lock-

owner must be considered when arcs are added to the MPG. As in the basic locking con

straints of section 3. a transaction is not allowed to acquire any type of lock on an object

after it unlocks it.

With these new locking constraints and this slight change in the construction of the

MPG, the Declare-before-unlock Protocol is the same as in section 6. In step (C).

"declares" now include both exclusive declares and share declares since both can cause

cycles to appear in the MPG. It is not hard to verify that the results of Theorems 6.1 and

6.2 are still valid in this new context.

10. CONCLUSION

In this paper, we have presented a new locking protocol for concurrency control that

can achieve all serializable executions. Our protocol entails the use of a "must-precede

graph" which is in effect an augmented version of the "wait-for graph" used to detect

deadlock in conventional locking schemes.
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We have shown that by keeping information about "must precede constraints"

instead of just "waiting for constraints." we are able to achieve all serializable executions.

Even though deadlock can still occur, it is detected earlier in the MPG in comparison with

when cycles appear in the PG (when serializability is violated). Also, all cycles in the

WFG are anticipated long before by cycles in the MPG. The "must precede constraints"

are the consequence of a new locking action we introduced, which we called "declare."

If for deadlock resolution or recovery purposes it is required that all exclusive or

write locks done by a transaction be kept until it is committed, then our protocol is still

advantageous with respect to the existing ones by permitting early release of read locks.

Deadlock occurence is directly related to how early the transactions declare. We have

shown that if it is known at the beginning which objects each transaction will act on. then

not only do we still get maximum concurrency, but no deadlock will ever occur. The

"declare-before-unlock" condition is a simple and implementable condition that we pro

pose for achieving the objective of early declaration.

An interesting direction for future work on this subject would be the formulation of

a probabilistic model for "control by locking" in order to study the performance of the

protocols discussed in this paper. For instance, deadlock occurrence and waiting time for

denied lock request are of special interest. Some work has been done along those lines.

References [8-9] contain recent work on the modeling of locking in the special case where

all locks are requested at the beginning and released simultaneously at the end. Finally,

some modeling and simulation results for two-phase locking are available in [10-11].
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APPENDIX A: A PROCEDURE FOR ROLL-BACK

In this appendix, we assume the protocol in use is the Declare-before-unlock Protocol

and we want to analyse how we can get out of a deadlock. For simplicity, we will con

sider only one type Of lock. Extension to share and exclusive locks is discussed at the end.

As mentioned before, a deadlock occurs when dT(b ) is not granted because a follower

of transaction T has locked object b earlier. In fact, more than one follower of T can have

done so: but they are all on the same path:

Figure A.l

A deadlock is detected at dT(b ). with T the current lock-owner of b. S became a

follower of T by

lr(c) • • ds(c) or ds(c)-lr(c)

with no intermediate locks on c.

Observe that T has not unlocked any object yet for it is required to declare all the

objects it needs before it can unlock. This also implies that S is not committed when

deadlock occurs because it is still wailing for object c which is currently locked by T.

One possible way out of the deadlock would be to make S a predecessor of T so that

dT{b) could be granted. Specifically, all the transactions on the path between T and 7"

that are immediate followers of T (this could include T ) would have to become predeces

sors of T. This means many modifications to the MPG and is a "dangerous game." For

example, arcs like 1 above would also have to be reversed. Since a reasonable objective is

to make as few modifications as possible to the MPG, this is not a good policy. Moreover.
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we want to give priority to predecessors which is not what this does.

A better way out of the deadlock would beto force T to lock b before S. In order to

implement this policy, we have to:

(a) roll-back 5 from its current state to the point where it first locked an object

needed but not yet declared by T. (We do this in case there is another object e

locked by S before and which will need to be declared by T later on. provided of

course this information is available. Otherwise, we roll-back until ls(b ).) As we will

see. this implies the roll-back of some followers of S as well, in particular those that

also locked b.

(b) put all other transactions on waiting and have T declare all remaining objects it

has in common with one of its followers (not only b, for precaution). (Some

declares might not be granted in which case we have to roll-back within the roll

back.)

(c) resume execution.

Observations

1- If in rolling-back a transaction we also undo the MPG. then the set of followers of T

can change (e.g. S might not be a follower anymore at that point), and it is not clear what

will happen when the execution is resumed.

2- Immediate followers of S that became so in the period which is being undone because

they locked an object which S unlocked in that period also have to be rolled-back. We

then get a chain-reaction so that the number of transactions to roll-back will not be lim

ited to those immediate followers of 5.

3- Suppose the arc S -*SF was added in the past because, e.g. ls(c ) • •dSF (c ) and reoc

cured later after ls(b ) because of ds(a ) • • • ls(a ) • • •dSF{a ): then if we undo ds(a ) and

Is (a ). and dSF(a ) remains, deadlock can reoccur because lSr(a ) can be accepted if it comes

before ds (a ) and so ds (a ) causes another deadlock.
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This suggests not to undo the declares made by S. In this case. Isf(° ) is rejected and

SF has to wait until 5 unlocks a.

4- On rolling-back a transaction and some of its followers.

declares : leave them for the above reason.

locks and unlocks : 5 cases to distinguish. Suppose we want to roll-back S until time t.

The subsequences below represent all locks and unlocks involving the objects mentioned

that occured after t.

D- • us(c ) •

2)- *us(c ) • •Isf(c)-

3)- •z5(<0 • •

4)- 'ls(a)- us(a) • • •

5)- ls(a)- • us (a ) • 'Isria)

(cases 2 and 5 can be generalized to include more than one follower of S locking c ore).

Remark: We will say "U is an immediate predecessor of V through b* if there exists an

arc from U to V that is due to object b.

Cases 1 and 2 : When undoing us(c). immediate predecessors or followers of S

through object c are not affected since they became predecessors when they locked c

or when S declared c (followers when they declared c or when S locked c). and

these actions remain. In case 2. transaction SF has to be rolled-back to the point

where it locked c. Since dSF(c ) remains (by policy) and l${c) occured before t. then

necessarily SF will continue to be an immediate follower of 5 when the execution

resumes.

Cases 3 and 4 : Undoing these actions does not affect the immediate predecessors of S

through object a since they became so when they locked a or at ds (a). However,

the followers of S can change and SF. originally a follower of S because of dSF(a)

e.g.. can become a predecessor of 5 if l$F(a ) occurs before ls(a ) when the execution

resumes.
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Case 5 : As for cases 3 and 4 but in addition SF has to be rolled-back like in case 2.

5- Another problem we want to investigate is the following. Is it possible to fall in a loop

deadlock/roll-back/deadlock/... and never be able to terminate the execution? This is

where the roll-back policy has critical importance. Considering that deadlock is a matter

of declaring an object too late and that each transaction needs only a finite number of

objects, it means that after a finite number number of roll-backs all the transactions will

have declared all the objects they need and so from then on deadlock will not occur. For

this reason, the policy of never undoing a declare seems a safe one.

Deadlock loops might be caused because the MPG undergoes many changes. Recall

cases 3 and 4 above. If a follower of S becomes a predecessor when the execution is

resumed and if it has not declared all its objects, then another deadlock can occur. This

can be avoided if arcs are not removed from the MPG when actions are undone in order to

force the same ordering of the transactions when the executon resumes.

In summary, the above observations suggest that a good roll-back policy would be to

"force T to lock b before S" and in implementing this as described in (a), (b) and (c)

above, one should l) not undo declares, and 2) not remove.arcs from the MPG.

Two types of lock case

Essentially all the above analysis is true for the case where we have both share and

exclusive locks. In this case, deadlock occurs when either a share declare or an exclusive

declare is denied. The only difference concerns observation 2 and cases 2 and 5 of observa

tion 4. and is precisely why two types of lock are advantageous: as far as S is concerned,

it is not necessary to roll-back followers of S that have locked (either si or xl) objects S

unlocked if S only acquired share locks on these objects. This is because 5 did not alter

the state of these objects.

We have to say "as far as 5 is concerned" because such a follower of S could have to

be rolled-back because of the "chain-reaction" we mentioned above. For instance, consider

the following portion of a MPG:
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Figure A.2

where object a was only "share locked" by S but object c was "exclusively locked" by S

and object d was "exclusively locked" by 5Fj. Then roll-back of S can force roll-back of

SFi if us(c) has to be undone and SF1 acquired any type of lock on c: in turn, roll-back

of SFi can force roll-back of SF2 for the same reasons but with object d this time.

APPENDIX B: SIDE-EFFECTS OF ROLL-BACK

The question we want to answer in this appendix is when the roll-back of a transac

tion has no side-effects, i.e. does not affect other transactions, committed or not. although

the emphasis is on the committed ones. Rolling-back a committed transaction (cascade

roll-back) is very undesirable and should be avoided. We make no assumptions concern

ing the cause of the roll-back (e.g. deadlock or transaction abort). For the sake of general

ity, we consider immediately two types of locks. The one type of lock case is just a special

case of this where share locks are never requested.

Lemma B.1 : The roll-back of a transaciion T has no side-effects if and only if, at the time

the roll-back is started, this transaction has no follower in the must-precede graph

that has locked and acted on an object for which T had requested an exclusive lock.

Proof:

(if part) : from the analysis in Appendix A:

(only if part) : suppose the transaction has such a follower in the MPG. This follower is

directly affected by the roll-back of T because, after T is undone, either it will have read a

non-existent value, or its update of the object will have been lost, or both. Hence, it has

to be rolled-back too and so the roll-back of T has a side-effect. We have proved the con-

trapositive. D
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Clearly, if all transactions keep their exclusive locks until commit time, then the con

dition in Lemma B.1 is satisfied.

APPENDIX C: EXAMPLES

Example CI : Consider the simplest type of deadlock with a cycle involving only two

transactions in the wait-for graph: mT waits for 5" and "5 waits for 7\"

T=TT{c)rT{b) S=ts(*)t5(c).

Suppose the actions arrive in the following order:

rr(c)Ts(b)Tr(b)Ts(c):

(a) with two-phase locking, wegel deadlock:

lT(c )tt(c )ls (b )ts (b ) I deadlock.

(b) with the Prior Declaration Protocol. S's request for a lock on b is rejected because it

would cause a cycle in the MPG. S has to wait until T unlocks b.

dr(c)dr(b)lr(c)Tr(c)ds(b)ds(c) I ls(b) rejected
continuation lT (b )tt (b foT (6 )ls(b) (now granted )

ts (b)ur (c )ls(c )ts (c fos(b fos (c ).

(c) with the Declare-before-unlock Protocol, we can get a deadlock if the declares are

placed later:

dT (c )lT (c )tt (c )ds (b )lK (b )ts (b )ds (c fos (b) I dT (b ) rejected : deadlock. D

Example C.2 : This example illustrates that a cycle involving T can occur when one of its

predecessors has not obtained all its locks. Consider the three transactions

P =TP(b)TP(d) T = TT(b)TT(a) F =TF(a)TF(d)

and the partial augmented execution

dP(b )dr(b )lP(b)tp(b )dp(d fop(b )dF(a )dT(a )lT(b )rr(b )lT(a )

rT(a for(b )uT (a ) (Tdone ) lF(a )tf (a )dF (d )lF(d ).

This last action causes a cycle to appear in the MPG:
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Observe that this cycle can be resolved by having F wait until P is committed before Ii

locks object d. D

Example C3 : Consider the three transactions

T=rr(c)Tr(b) S = Ts(a )rs(b )r5(c) V=rv(a)

and suppose their actions arrive in the following order

t5 (a )tv (a )rr (c )rs (3 )tt (b )ts (c ).

(a) Declare-before-unlock Protocol with declares placed later:

ds(a )ls (a )ts (a )ds(b )ds (c fos(a )dv(a )lv(a )t x, (a )

dr(c)lr(c)Tr(c)ls(b)Ts(bfos(b) I dr(b) rejected '.deadlock.

a

T $ y

(b) two-phase locking. Here we assume the implementation of two-phase locking is such

that the request rv(a) will force S to unlock a. and so to request immediately all

remaining needed locks. Hence. T's request for a lock on c will be denied until 5 is done

with c:

ls (a )t5 (a )ls(b )ls(c fos (a )lv(a )t v(a ) I lT (c ) denied

continuation Ts(b)rs(c) I lT(c ) can be granted

us(c )lr(c )rT(c fos(b )lT(b )rr(b )ur(c )uT(b )uv(a ).

The fact that S acquired its lock on c early (because it had to unlock a) prevented the

deadlock from occuring.

(c) with the Prior Declaration Protocol. 5 *s request for a lock on b is denied and S has to

wait until T is done with b:

d$ (a )ds(b )ds (c )/s(a )ts (a fos (a )dv(a)lv(a )rr(a )

dr(c)dr(b)lr(c)Tr(c) I I, (b) denied



continuation lT (b )tt (b for(b) I ls (b ) can be granted

ls & )ts (b foT (c )ls (c >rs(c fos(c fos (b fov(a )JD .

a

30
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