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Bradley E. Paden and Shankar S. Sastry*
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1. Introduction.

It is well known [1| that differential motions of amanipulator's gripper may be related
through the Jacobian of the forward kinematic solution to differential motions of the joints. An
interesting subject of study has been those conngurations of six degree^f-freedom manipulators
where the Jacobian is singular. Understanding these singular con8gurations is important for the
following reasons.

(1) At singularities, bounded gripper velocities may produce unbounded joint velocities.

(2) Points on the boundary' of the manipulator's reachable space correspond to singular
configurations.

(3) Atechnique commonly used [2] to plan bounded error, straight line paths in Cartesian space
generates more knot points near singularities. This is due to the fact that the distance
between knot points in joint v«, determines bounds on error in Cartesian space |3|.
Schemes presented in |2| and |3| reduce distances between knot points in Cartesian moe to
improve tolerances - this is effective everywhere except near singularities where small dis
tances in Cartesian space do not necessarily correspond to small distances in joint space.

(4) Points in the manipu.ator's workspace which are reachable only when the manipulator is in
asingular conffguration may become unreachable under perturbation of link parameters.
Since the position and orientation of amanipulator's gripper are given by acontinuously
differentiable function of the joint variables and the .ink parameters, the implicit function
theorem guarantees solutions to the inverse kinematic problem under perturbation of link

jRewrch jopported by the Semiconductor Rejewch Corporation
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parameters only where the Jacobian is nonsingular.

Manipulator singularities have received considerable attention. Whitney [1] presents the Jacobian

in a cross product form similar to the one we use here. In [4] singularities of robot wrists are

analyzed and working regions away from these singularities are defined. Screw calculus has been

used in [5] to describe singularities and Luh [6] has used screw calculus to analyze redundant

manipulators; in particular, he presents a method for avoiding singularities by taking advantage

of redundancy. Since singularities occur at boundary points, they can been used to define the

reachable workspace [7]. Finally, Litvin and Castelli have found singular configurations for a

Cincinnati Milacron manipulator and the Unimation Puma manipulator in [8]. Additional related

work appears in [9] and [10].

Our work focuses on the geometric interpretation of singularities for manipulators with six

degrees-of-freedom. Several properties of a manipulator's configuration are independent of the

coordinate system used to express them and depend only on the angles and distances between

links and joints. The singularity of the Jacobian is such a property and this fact will be exploited

to describe singularities geometrically.

The layout of this paper is as follows: In section 2 we outline the notation used for kinemat

ics. Section 3 contains a derivation of the cross product form of the Jacobian, and section 4 gives

some examples of configurations where the Jacobian is singular. Section 5 describes the decoupling

of singularities which occurs in manipulators with three consecutive revolute joints with intersect

ing axes. Our conclusions are summarized in section 6.

2. Kinematic Preliminaries.

Consider the standard approach to manipulator kinematics using homogeneous transforma

tions [9]. In this approach a coordinate system (o ]tC3) consisting of a point2 or origin ~y and a

coordinate frame C} is attached to link ;, / >0, with the motion of the jth joint8 being on or

Our notation*! conventions are the following: Objects which are described relative to a fixed world coordinate
system (typically the base of the manipulator ) aremarked - coordinate frames and vectors areunderbarred and
points have a tilde. Coordinate frames and matrices are represented by uppercase characters whereas points and
vectors are represented by Jowercase characters. Axes are represented by a point on the axis and a unit vector
in the axis direction. Also, z = [l00]r,y= [010|r,z = (00l]r .



about the axis (o ,,CL}z). The coordinate system p*>+ll£J+1) may be expressed in terms of

(o jyCj) by a homogeneous transformation as follows.

o'flrGf Pi
(2.1)

where Q} is a 3X3 orthogonal matrix with determinant equal to one, and p} is a column vector.

For convenience we decompose (2.1) into the recursions

•£;+i ° ;+i 'fi 7/ Q, pi
000 1 000 1 000 1

C,+,= C,Q}

0 1+1— ° J + £}Vy

Now Qj and p} are functions of the joint variable Q}, so define

s^l#.

Then for the case when joint j is revolute

Here

*(«)«

0 -a3 a2

a3 0 -aj

-a2 <«i 0

so that e9s^ is a rotation4 about the unit vector a by theta. Also S(a)b = a X b

For the case when joint j is prismatic

Qi = *>

p} = a; + 0;*.

Note that our numbering begins with 0 rather that 1 for joints and columns of the Jacobian.
See[ll| for a discussion of matrix exponentialsapplied to manipulators.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)



Thus, the recursions (2.2) become:

For the case when joint j is revolute

C}+l=C}e$>Sii)R: (2.7a)

o ;+l= o , + C}e ' <xr

For the case when joint j is prismatic

C]+l = C,R, (2.7b)

T;+l=T; + Cj(a} + djz).

Example. Figure 1. depicts the Stanford Manipulator with all revolute joints set to their zero

positions. The extension of the prismatic joint6 is nonzero, however, and equal to d2. Our nota

tion for these schematic diagrams is the following: Revolute joints are represented by cylinders -

line segments drawn to the side of a cylinder represent rigid connections and line segments drawn

to an end represent connections with one revolute degree of freedom about the axis of the line

segment. Prismatic joints are represented by rectangular blocks - line segments drawn to one of

the larger faces represent rigid connections and line segments drawn to one of the smaller faces

represent connections with one translational degree of freedom along the axis of the line segment.

The base of a manipulator is marked by a series of short line segments. We abbreviate the joint

axis directions by z; = C_} z .

From the figure, (2.2), and (2.3), we have

Ro= e 2 a0 = 0 (2.8)

R\ = ez al = dxz

/?2 = / a2 = 0

F Here we represent theextension of joint 2 by d% rather than 02-



-~s{i)
/?8== e 2

*,-.**>

*s = /

as=s 0

Ot4 as 0

a8== 0.

From (2.7) we have

(2.9)

The advantage, of using the exponential form for rotations is that the angle and axis of rotation
are explicit and that differentiation is trivial. We will exploit these to derive the cross product
form of the Jacobian.

3. The Manipulator Jacobian.

The position and orientation of the gripper, for asix degree-of-freedom manipulator, is
determined by the coordinate system (?.,£.) attached to the last link. The Jacobian of the mani-
pulator is given by

6Ve
de0

<^8
69x ee6

dC6

d&0
d£9 dC9 (3.1)

I «not amatrix, but the singularity of / is dedned naturally in terms of the linear depend

of its "columns". Since £, is an orthogonal matrix for all joint values the derivatives i£i are
de,

products of skew symmetric matrices and £.. The Jacobian may be represented by replacing
these products by avector of the off diagonal terms of the skew symmetric matrices. This will be
done after the following proposition.

ence



Figure 1. Stanford Manipulator.
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Propose. Por arigid link manipulator with nrevolute or pr.matic joints the following
differential relationships hold.

For 0 < j < i < n

do1,

lr==0 0.2)
dC,

For 0 < » < j < n and joint i revolute

•ar-*xfr,-r1r (33)

ddt ~~ & x £> •*

For 0 < i < j < n aL,d joint i prismatic

d~o }

~*~* (3.4)

Proof:

We iHustrate the computation for the case when joint ii, revolute and 0<,' <j<n. By
induction:

Set j = i+ i , then by (2.7a) we obtain

(3.5)
^ =£*(V'*<\

* Recall £ ==.£*,

.Uvir'S£«£:;rz?^7£*""^is*—* — -— - «•«- *-~ „
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=*[£S(J)£,1l£e',5(\.

Now by (2.7a) and the fact that C, is orthogonal with determinant equal to one we have

fL^^sizixr^-Tt). (3.6)

= z, X (o't+i-o ,).

and

i§- =£*(:)/*>*, (3.7)

=-A X C,+l.

So the result holds for j = t+ 1 . For the induction step, assume that the formula is valid

for n > ; > t > 0. We need to show that the result holds for j+ 1 with joint j prismatic or

revolute.

Case 1 Joint j revolute.

ttj+i _ &o , dC} $jS(i)
d$, d9t d$t 6 aj

= 1, X (o, -~f) + & X C}

888 h X (o} -~,) + *, X (oJ+l-Tj)

= ii X (o*}+i -?t).

d£j+l __ d&) J,S(i)n

= i,X<7,e^(\

(3.8)

e ' a}

(3.9)



-9-

— 2, X C.+l.

Case 2 Joint j prismatic.

= z. xPr^.l+U C}{cc} + *^)

1, X(o, -?,)+ L X(o'j+i-Tj)

= h XfT;+l-r,).

°^.J+1

d$,
= HIT*>

= £ X £>*j

•= & X •£;+!•

(3.10)

(3.11)

So we have, with joint i revolute and 0<i<j <„ ,that the result holds. The cases i > j,
and joint i prismatic are procedural.

Let the .'th column, i <= {0,1 5), of the Jacobian Jbe denoted I .Then from the propo-
sition and the definition of J we have:

For joint i revolute

L =
£ Xfo-r,)

& X Ct

For joint i prismatic

1. =

(3.12)
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Now the map 2,—•z, X C6 is linear and invertible so the linear dependence of the columcs

of J may be determined by testing the singularity of the modified Jacobian / defined as follows:

For joint i revolute

J, =
z> X (?t-~,)

z*

For joint i prismatic

A

(3.13)

This corresponds to the form of the Jacobian presented in [l] .

Example. The features of the Stanford manipulator (Figure 1.) which determine the form of the

its Jacobian are

(a) Joint 2 is prismatic.

(b) O3=04=06=0a.

The modified Jacobian8 is therefore

/ =
ioXp'(-7o)£,Xp'8-'?I)i2 0 0 0

0 Is 1< 1&±\
(3.14)

4. Singular Configurations.

This section contains some examples of manipulator configurations where the Jacobian in

singular. These examples have particularly simple geometric descriptions, but it is important to

remember that, in general, singular configurations have no simple description. The fact that com

mon manipulators are simple geometrically may be the reason for their easily described singulari

ties.

The modified Jacobian will be referred to as simply the Jacobian for the rest of the paper as this is standard.
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Example 1. Two Collinear Revolute Joints Axes.

Without loss of generality7, take the joints to be 0 and 1. Then

(a) Their axes, (T0,z0) and (o^), have parallel directions: &> = ±&l

(b) The vector (o'q -Tj is parallel to Zq and zx :&x (T0 -Tj for i 6 {0,1}, and

fko X PV~o) liXfTc-rj
^1

6R
6X0

By the elementary row operation8 row 1 x- row 1 + (T8 -~0) x row 2we have9

/~
0 £i X (o'o-'o'l)

Sj) *i

By (b) it follows that

If0 -

(4.1)

(4.2)

(4.3)

It is now clear by (a) that / is singular. The Stanford manipulator (Figure 1.) exhibits this singu

larity when joints 3 and 5 line up. When two revolute joints are collinear there are a continuum

of solutions since the links between the two revolute joints may be rotated without affecting the

position of the gripper.

Example 2. Three Parallel, Coplanar Revolute Joint Axes.

Without loss of generality take the three joints to be 0, 1, and 2, with axes

(o i,It), *'€ {0,1,2}. The condition that the joints are parajlel is then

(a) £=±4,= ij e {0,1,2}

and the condition that the three joints are coplanar is

(b) There exists a plane containing the axes with unit normal n such that nTz, = 0 and

iT(?> -~,)=0 ij 6 {0,1,2}.

Elementary column operations allow us toobtain the form of (4.1) regardless of the ofthe joint nombering.
By rowl we mean the first row of vectors and similarly for row 2.
A~B means that there exists nonsingnlar C,D such that A = CBD.
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Since joints 0,1, and 2 are revolute the Jacobian has the form

_ ko X(o*t-~o) li X (0%-~i) 12 X (o'n-Tz)
10 ll 12

By the elementary row operation row 1 •*- row 1 + (1T8 - T0) X row 2, we obtain

0 li X (o'o - Tx) z2 X (o'o - ^2)

lo £1 I2

By (a) there exists elementary column operations to yield

J ~~
0 li X (o0-TJ z.2 X (o'o-'o'z)

iZq 0 0

(4.4]

(4.5)

(4.6)

By (b) columns3 1 and 2 of (4,6) are in the range of [n,0|r and are therefore linearly dependent.

Thus, J is singular. The elbow manipulator in Figure 2. has this singularity when the elbow is

fully extended as shown. In this configuration the manipulator is at the boundary of its reachable

space.

Figure 2. Elbow Manipulator.
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Example 3. Four Intersecting Revolute Joint Axes.

When four axes, say (o't,zi), i 6 {0,1,2,3}, intersect at a pointT, the pointV satisfies

(a) i, X tV,-7) = 0, i €{0,1,2,3}.

Now

to X (o'e-~o) li X (Tfl-'3-1) £2 X (ot-?2) la X f^e-^a)

-
•So £1 *2

By the elementary row operation row 1 «— row 1 •+• (o'o- 0*) X row 2 and (a) yield

[0 0 0
~~ jlo li Is

0

Is

(4.7)

(4.8)

which is clearly singular since the first four columns are contained in a 3 dimensional subspace of

R°. The Intelledex 605 robot, diagramed in Figure 3 has three intersecting axes at its shoulder.

This type of singularity occurs when the final joint axis intersects the shoulder adding a fourth

axis as shown.

Figure 3. Intelledex 605 Robot.
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Example 4. Four Parallel Revolute Joint Axes.

If the joint axes (T,,z,), i € {0,1,2,3}, are parallel then

(a) L=±l3, *€ {0,1,2,3}.

to X (oi-Vo) zx X (0*8-TO 12 X (oq-Tz) la X (Ft-?*)

lo li 12 la

By the elementary row operation row 1 «— row 1 + (o0 - IFq) X row 2, we have

0 iiX (0*0-~i) ±2 X (o"0 -^2) la X fo'o-'o's)

fjQ li I2 Is

Using (a) and elementary column operations we obtain

0 iiX (^0-^1) I2 X (0Q-T2) la X (o'o-'o'a)
z« 0 0 0

(4.9)

(4.10)

(4.11)

Now columns3 1,2, and 3, in (4.11), are in the null space of

follows that J is singular.

zj 000

0 I
which has dimension 2. It

Example 5. Four Coplanar Revolute Joint Axes.

Let n be the unit normal to the plane containing the four joint axes. These axes (o',,zi),

i E {0,1,2,3}, then satisfy

(a) Each axis direction is orthogonal to n ; nrjr, = 0, t 6 {0,1,2,3}.

(b) The vector from T, to7, is orthogonal to n ; n7^, -T;) = 0, t € {0,1,2,3}.

Now

/ =
£0 X (oV~o) li X (oV~i) z2 X (ot-Tt) IiX (^fl-^a)

lo li 12 la

By the elementary row operation row 1 +- row 1 + (o9 - T0) X row 2, we obtain

0 IiX («'o-~i) I2 X (oq-'o'z) z^X C^o-^a)
J ~

lo li 12 la

Then elementary column operations yield

(4.12)

(4.13)
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• ii x f^o-^j 12 x (r0-rj ia x pvrs)
So li-lololi l2-lo2ol2 la-lolola

/ =

Columns 1.2, and 3, are in the range of the rank 2 matrix

are therefore linearly dependent.

PV~a) 1
lolola J

n 0

0 » X io

(4.14)

by (a) and (b) above and

The Stanford manipulator reaches this configuration when joints 0,1,3, and 4, are coplanar
as shown in Figure 1.

Example 8. Six revolute Joint Axes Intersecting a Line.

This configuration occurs in a six degree-of-freedom manipulator with all revolute joints
joints when the manipulator is at full reach. For this reason, this configuration is useful for
describing the reachable space of amanipulator. Let the line which the six revolute axes inter
sect be represented by the axis (7,1) . Each axis (o^), i € {0,1,...,5}, has apoint in common
with the axis (7,|) so there exists 7lf fl , i€{0,l,...,5}, such that

(a) 7, + 7,*, == 7 + pt j .

For a manipulator with all revolute joints, the columns of J are

£ xfo-7,)

From (a) we have

* 6 {0,1 5}.

Tt = 7 + /U-7,1,

Using (4.15), (4.16), and the fact that the cross product of avector with itself is zero yields

/ ~ [* Xfo-^-AD'
L &

Applying the elementary row operation row 1- row 1+ fo -7) X row 2, we obtain

j ^ \ -0,1* X1
[ !• J' (4-18)

It follows that / is singular since [F,0r| is in the left nullspace of /. The elbow manipulator in
Figure 2. is at full reach and exhibits this singularity. This singularity occurs at other

(4.15)

(4.16)

(4.17)
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configurations besides those of maximum reach as well.

Example 7. Prismatic Joint Axis Normal to a Plane Containing Two Parallel Revolute

Axes.

Label the two revolute joints 0 and 1, and the prismatic joint 2. The revolute axes are

therefore (70,i0) and (o'^z^) , and the prismatic joint axis is (72,i2) • The condition that (70,i0)

and (7t,ii) are in a plane orthogonal to the prismatic joint axis is

(a) i/i, =0*6 {0,1}

l2T(o'o-~l) = 0.

The condition that the two revolute axes are parallel is

(b) !o = ±!i.

From (3.13)

o- To) li X (7a - 7X) i2

li 0

to X (7,

~" [ lo

By the elementary operation row 1 •*- row 1 + (7e - 70) X row 2 we have

o li X (To-7!) Ij
J ~ . .

lo li 0

(4.19)

(4.20)

Using the fact that the revolute axes are parallel, (b), together with an elementary column opera

tion yields

li X (70-7!) 12

0 0

\o li
(4.21)

Now by (a), both zx and (oQ - 7j) are orthogonal to i2 so zx X (70-7t) is in the range ofi2 .

It follows that columns 1 and 2 of (4.21) are linearly dependent and that / is singular. A

schematic diagram of the Rhino robot is shown in Figure 4. It reaches this singular configuration

when joints 1 and 5 are parallel and in a plane perpendicular to the sliding motion of joint 0.



17

Figure 4. Rhino Robot.

5. Decoupled Singularities.

In this section we demonstrate the decoupling of singularities which occurs in manipulat
having three consecutive revolute joints with intersecting axes. For these manipulators, singul
configurations are easily recognized. We may assign coordinate systems to amanipulator in this
class such that three link coordinate systems share acommon origin at the intersection of the of
the three axes. For concreteness we discuss six degree-of-freedom manipulators with revolute
joints only. By renumbering the joints, the origins to coordinate systems 3,4, and 5may be chosen
to coincide with the intersection of the three axes. The Jacobian is then

j _ fc,xpv7o) nxpvr,) !2xr7e-72) i.xpyr,) nxpv?,) *xpvr,)
L *> !l 12 *,

ors

ar

(5.i;

Note that the last three joints share the same origin labeled 7S . By the elementary row opera-
tion row 1 «- row 1+ (7d - 7a) X row 2 , we have

toXfoPV«\») !iX(73-7,) 12X^,-72) 0 0 0
£i 12 IS li Is (5.2)



Therefore J is singular if and only if either

(a) la,l4, and z& are coplanar.

or
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(b) io X (73 -70),ii X (73 -7^, and i2 X (73 -^2) ue coplanar.

For the elbow manipulator in Figure 2 we may choose7S to coincide with the intersection of the

three wrist axes, and the joint numbering in (5.1) is the natural numbering from base to gripper.

Looking at the first and last three joints separately we may determine the singularities of this

manipulator by inspection using (a) and (b) above. First, 13,14, and15 are coplanar if and only if

joints 3 and 5 are collinear. This is the only singularity contributed by the wrist. Second, the

three vectors in (b) are coplanar in the following two cases.

(i) The elbow is fully extended, or is 180 degrees from full extension, so that z.xX (oz-Tx)

and i2 X (73 - 72) are linearly dependent.

(ii) 73 is directly above the base on the axis (70,i0) so that Zq X (73 -70) = 0.

These singularities may be interpreted in terms of the examples as well as (a) and (b) above.

6. Conclusion.

By using the manipulator Jacobian in cross product form, we have described several singular

configurations geometrically. The descriptions are manipulator independent and therefore apply to

any six degree-of-freedom manipulator which can attain the singular configurations. These simple

descriptions allow the evaluation of singular configurations without explicitly computing the

determinant of the Jacobian. We have also shown that for manipulators with three consecutive

intersecting joint axes the evaluation of singularities is particularly simple. In future work we will

study branching, or bifurcation, in the solutions of the inverse kinematic solutions. From the

inverse function theorem, it follows that branching can only occur at singular configurations.

Various bifurcations such as the fold consisting of two solution branches annihilating each other,

the pitchfork consisting of three solution branches merging to one, could occur. The study of

exactly which bifurcation occurs at a singularity requires second and higher order derivatives of

the forward kinematic solution - a substantial task which we will undertake in future work.
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