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PARTICLE SIMULATIONS OF THE LOW-a PIERCE DIODE

a)
T.L. Crystal and S. Kuhn

ERL, University of California, Berkeley, CA 94720

The evolution of small initial perturbations of the uni

form equilibrium of the "classical" Pierce diode [j. Pierce,
J. Appl. Phys. J_5, 721 (1944)] is studied using particle
simulations. These simulations have been performed with the

new bounded-plasma code PDW1 and cover the parameter range

0 < a < 3 *, where a = o L/v . In the linear regime, three

stages (initial-transit, adjustment, and dominant-eigenmode)
are distinguished; oscillation frequencies, growth/damping
rates, and potential profiles of the dominant eigenmode as

well as oscillation frequencies of the next-to-dominant

eigenmode are recovered and shown to agree quantitatively

with recent analytical results. In the linearly unstable

cases, the system evolves nonlinearly to a final state which
may be either a new, nonuniform d.c. equilibrium, or a state

of large-amplitude oscillations. In particular, for a= 1.5tt

the character of the final state is found to depend on the

details of the initial conditions.

a) Permanent address: Institute for Theoretical Physics,

University of Innsbruck, A-6020 Innsbruck, Austria.
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I. INTRODUCTION AND SUMMARY

The "classical" Pierce diode is_a special 1-d configura

tion with boundaries defined by two equipotential (short-cir

cuited) planar electrodes separated some distance L, enclo

sing a spatially uniform ion background of rigid (m. -*• «)

ions, and having a cold electron beam injected at some

velocity vQ from the left hand electrode. Electrons hitting

either electrode are absorbed; the uniform beam injection

provides a constant injected current density J = -en v .
' o o o

The classical Pierce diode has proven to be fundamentally

useful as an archetypical bounded-plasma system, capable of

exhibiting important boundary-dominated physics, e.g. forma

tion of virtual cathodes (steady and oscillating), strong

double-layers, and sheaths; as such, it has been heavily stu

died both analytically " and more recently with simula-
4 6

tions ' . Similar "Pierce type" configurations have been used

to model many devices including collective effects accelera-

7 8 9
tors , mertial confinement fusion drivers , Q-machines , and

high-power microwave sources . Thus the classical Pierce

diode is of both fundamental and applied interest and, in

fact, represents a "gauge" case against which more or less

modified configurations are conveniently compared. A complete

analytical theory of the linear Pierce instability has been

given recently providing detailed predictions of the time

evolution of any small amplitude (linear) perturbation, in

terms of the system eigenfrequencies and eigenmode profiles.
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In the present paper we are concerned with particle simu

lations of the perturbed uniform classical Pierce diode. In

the linear regime, which is our main concern here, quantitative

comparisons with the analytical and numerical results given

in Ref. 5 show that there is detailed agreement between

theory and simulations. For the unstable cases, the transi

tion from the linear into the nonlinear regime is observed;

it is found that the final (i.e., time-asymptotic) state may

be either d.c. or oscillatory, and may depend on the initial

conditions.

The particular d.c. equilibrium (3/3t = 0) considered by

Pierce for his classical diode model postulated a uniform

system, i.e., one in which n (x) =n.(x) =n and
e i o

tf(x) = const. The assumption of infinite ion mass physically

prevents the ion-electron "two-stream" interaction in the

plasma. In the infinite-plasma approximation, the equilibrium

medium's dispersion relation is simply (Ref. 11, p. 137)
2 2EE ! -wp/(o)-kvo) = 0; this medium's stability is shown

analytically in that for all real k, the frequencies oj re

turned by the dispersion relation are also real. Using a

fluid formalism for the plasma and imposing both the particle

boundary conditions (i.e., the electron injection and absorp

tion) and the external circuit requirements (i.e., the short-

circuit: ?f(x=0) = ^(x=L) on the uniform "classical" diode,

Pierce obtained the transcendental characteristic equation

or "dispersion relation" for the perturbation eigenfrequen-

cies:
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["expdL ^£p )-<J
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The assumed variation e"la)t implies that when the dominant

eigenfrequency recovered (i.e., the one with the uppermost

imaginary part) has Im id < 0, then the classical Pierce diode

is stable to linear perturbations; conversely, a dominant

eigenfrequency with Im oj > 0 indicates linear instability.

For any axially bounded plasma system,

the linear dynamics depend on (i) the plasma equi

librium parameters, (ii) the particle boundary conditions,

and (iii) the external circuit (fields) requirements5. How

ever, because of its simplicity, the "classical" Pierce

diode's linear stability can conveniently be parametrized

with the single quantity

a = upL/vo C2)

where L/vQ is the electron transit time in the unperturbed

state. In one customary physical interpretation of ct, the

values for L and vQ are imagined to be fixed so that any

variation in a implies variation in the injected electron

current at the cathode.
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(1)
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The Pierce diode characteristic relation (1)is transcen

dental and thus yields infinitely many complex eigenfrequen

cies, each having a corresponding eigenmode profile for the

internal electrostatic field E(x) or potential /(x). The

imaginary parts of this set of eigenfrequencies are bounded

from above i.e., there is always an uppermost or "dominant"

eigenfrequency ^ corresponding to a rate of maximum growth

or least damping; the eigenfrequency with the next lower imagi

nary part will be called the "next-to-dominant". In his first

analysis , Pierce could examine only the transition to insta-

bilit as a increased through the first threshold at a = ir (so

that the imaginary part of the dominant eigenfrequency passed

from negative to positive). Frey and Birdsall2 calculated the

imaginary part of the eigenfrequencies. Recently, more de

tailed linear analyses of the Pierce diode have numerically

evaluated the set of top eigenfrequencies3"5 and the corres

ponding eigenmode profiles5 of E(x) and 0(x). The top few
complex eigenfrequencies returned from the above characteris

tic equation are shown plotted against a in Fig. 1. It is

these top few eigenfrequencies that should normally dominate

the Pierce diode small amplitude perturbation behavior. From

Fig. 1 it is clear that as a function of a, the system's per

turbation behavior is in fact divided into discrete regimes

delimited by integer-ir increments.
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Figure 1. Complex dominant eigenfrequencies (solid curves) of

the Pierce diode linear characteristic equation (1) as a fun

ction of the single free parameter oC »^pVv .Frequencies are
normalized as indicated, to the transit frequency.
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Figure 2. Calculated theoretical profiles of the dominant lin

ear eigenmode for the case CL» 0.5ir. (a) Electric field E(x),

(b) potential 0(x).
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In one recent paper, the Pierce diode linear response to

an arbitrary, small, initial perturbation is predicted to

have well defined characteristics, divided into several

stages. Looking first at the internal behavior, the electro

static fields should experince three stages of linear re

sponse. During the first, or "initial transit" stage,

0 < t < L/vQ, the perturbed field profile should show a ge

nerally complex pattern that exhibits oscillations at both

the plasma frequency and the eigenfrequencies, and

exits the system along with the original electrons. What is

left behind is a pure collection of eigenmodes; the respec

tive amplitudes of these depend directly on the details of

the initial perturbation. The second, or "adjustment" stage

is some period beyond time t =L/vQ during which these independent

eigenmodes grow and decay competitively at their respective

eigenfrequencies. In many cases of interest, there is a third,

or "dominant eigenmode" stage in the linear response, in

which all eigenmodes except the dominant are negligible.

While all three of these stages are in fact linear, the

"dominant eigenmode" stage is what is usually referred to

loosely as "the linear stage" of the system's perturbation

response. The initial transient (first and second) stages

are a quite complex process, perhaps deserving more exact

study than we provide here; our primary interest in this

paper is in the dominant eigenmode (linear) and final (non-
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linear) stages. The external perturbation response of the

Pierce diode is the perturbed external current, J .(t) - J .

In contrast to the internal response, the external current

should be only a superposition of eigenfrequency oscilla

tions (i.e., it should exhibit no plasma frequency oscilla

tions even during the "initial transit" stage).

Only the first three ct regimes ( •£ = 0 to oc , x to 2% ,

2r to 3% ) are considered in this paper, and results for

these will be reported in separate sections below. Within

these first three oC regimes, all four possible types of domi

nant linear eigenfrequencies coA = ^r + i^j, are evidenced:

Within the first regime 0 < oc < en: , there is pure damping and

the diode is stable: co^r = 0, fa < 0. Within the second regime

# < oC < 2% , the diode is unstabe showing "pure growth":

^tr = °» fa > °* Tne third regime has two subdivisions. For

most of this regime 20t < oc < 3x -€ where 6- « % , oscilla

tions with growth are found: CA^fOj fa >0. In the remainder of the

third regime 2% -e < *o < z%, 9 damped oscillations are found:

^tr * 0> Xi < °5 simulations of this regime and higher

cc-regimes will be left for the future. Above oc = 3tfC,

the pattern of the second and third regimes basically

repeats; as oc is increased, the dominant growth rates ^j/^f*

decrease, and while it may not be obvious from Fig. 1, the

Pierce diode in the limit L •*> co is again stable, having
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The simulations that are presented in this paper were done

using the new particle code PDW1.6 This PIC code was de

veloped to handle general 1-d,(1 ,2,3)-v electrostatic axial-

ly bounded plasma problems, i.e., is not specialized to just

the Pierce diode. For reference, all runs discussed in this

report were standardized to involve sone 2000 simulation

particles (the precise number varies during each run). Fields

are calculated on a grid of 128 points using a finite-diffe

rence Poisson scheme (i.e., not using Fourier-transformed

fields and thus without any smooting in k-space). During the

simulations, the imposed boundary conditions ensure first that

electrons are injected at a constant rate from the cathode

(x = 0), and second, that any of these electrons reaching

either electrode are absorbed, contributing either to the

surface charge or to the external circuit current, according

to the requirements of the external short circuit. All runs

were initialized by prescribing electron spatial distribu

tions which differ only slightly from the uniform classical

equilibrium. When this equilibrium is stable, our simulations

recover the predicted linear behavior, the perturbations de

caying back to the uniform equilibrium. When it is unstable,

these simulations proceed beyond the linear regime to recover

the subsequent nonlinear behavior as well.
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II. FIRST REGIME: 0 < cc < 0C

Analysis:

In the first cC-regime, the Pierce diode characteristic equation (1)

returns a dominant linear eigenfrequency that is negative

imaginary, CO., = ijf^ with ^ < 0, and the diode in this

oc-regime is said to be stable. The lower eigenmodes are

oscillatory (Reco^ 0) but they are all decaying (Im£>< 0)

even faster than the dominant5.

For a representative value in this regime of oc = 0.5 oc ,

the dominant eigenfrequency has been calculated from (1) and

is Co^ /0.p = -1.227i. The corresponding perturbation eigen

mode profiles have also been calculated theoretically and

are shown in Fig. 2. Here and for all subsequent theoretical

eigenmode profiles shown, E(x) is normalized such that
x

E(x=0) = 1 and ^(x) = - 5 E(s)ds. For convencience, x will
o

always be plotted in units normalized to L, i.e., L -» 1. Note

first that I^fmax is located off center at x = 0.62, i.e.,

closer to the anode than to the electron injection plane; also, the

end values of E(x) differ in sign and magnitude. This, of

course, means that the total charge of the plasma region is

nonzero, and that the surface charges on the two end plates

are different. For future reference, the next-to-dominant

eigenfrequency is fully complex with theoretical value

a>j/«V» 5.412 - 2.546i.
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Simulations:

The initialzation used for the first simulation runs is shown

in Fig. 3. Electron phase space (a scatter-plot of the elec

tron velocities versus position in the diode) is shown in

Fig. 3(a) with velocity normalized to v i.e., v —^ 1. The
o ' o

normalization choices L = 1 and v = J imply that time is

effectively measured in electron transit periods; as de

scribed earlier, by varying oC (in different runs) we are in

fact varying the injected electron beam density and thus

current: JQ = -en0v0 = -<=r^m/e) (v£/Le) «** Further simplifica

tion is possible by specifying physical units e/m = 1 and

£ = 1 such that op =oo and J = -06*:
O r O

The initial perturbation in charge density q(x;t=0) is

given a sinusoidal shape as shown in Fig. 3(b), achieved by

spacing the loaded electrons near the ends of the diode more

closely together than those in the center. By choice, the

total number of simulation electrons in the initialization is

such as to ensure overall neutrality for the plasma region.

The plasma system's total active charge (i.e., excluding

charges on the walls) is defined as

L

Qac8?veS J?&•*>* -«o[E(x-L,t)-E(x-0,t}j . (3)
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(b)

(d)

Figure 3. Initial conditions used in Pierce diode simulations

for the case cC=* 0.5T. (a) Electron phase space v versus x,

(b) Charge density ^(x) » e<n0-ne(x)), (c) resulting electric

field E (x), and (d) potential profile $ (x) > 0, indicating "po

sitive initialization".

X

(a)

I 0 x

(b)

x

(c)

Figure 4. Case: «• - 0.5», positive initialization. Potential

profiles tf(x) at times t » 0.5, 1, and 4. Note that the ordi

nate on each plot is scaled according to the respective maximum

values of jj.
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Figure 3. Initial conditions used in Pierce diode simulations

for the case <*=> 0.5T. (a) Electron phase space v versus x,

(b) Charge density ^(x) • e(nQ-ne(x)), (c) resulting electric

field E(x), and (d) potential profile rf(x)>0, indicating "po

sitive initialization''.

Figure 4. Cases «. • 0.5*, positive initialization. Potential

profiles 4(x) at times t » 0.5, 1, and 4. Note that the ordi

nate on each plot is scaled according to the respective maximum

values of 4.
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Overall neutrality of the diode region is equivalent to

having E(x=0) = E(x=L), as has been^chosen for the initiali

zation here, shown in Fig. 3(b) and (c).

The corresponding initial potential profile /(x) shown in

Fig. 3(d) is everywhere positive. For all runs in this paper,

the initial perturbation potential energy in the system is less than

0.11 of the total particle kinetic energy. Values indicated

for the plotted simulation potentials are normalized to

^o = mvo/e' i-e-> differ from the normalization used for the

earlier plots of theoretical potential eigenmodes in Fig. 2.

It would also have been easy to space the initial elec

trons closer together towards the diode center, in which case

the resulting initialization profiles o(x), E(x), and ^(x)

would all have had just the opposite signs from those shown

in Fig. 3. For ease of reference, these two overall neutral

initializations with sinusoidal potential profiles of

opposite signs will hereafter be called "positive" or "nega

tive"; keep in mind however that both are in fact overall

neutral. A non-neutral initialzation scheme would have served

as well as this neutral one.

Snapshots of the potential profile at three times are

shown in Fig. 4. Note that the sign of the potential profile

reverses within the first electron transit time: as the initia

lized electrons exit the diode, the associated oscillating

profile ^(x,t) leaves with them, Fig. 4(a), followed by the



-14-

newly injected electrons which fill the diode form the left

and uncover the expected set of linear eigenmodes. The

initial ^i(x) profile does not really evolve into the dominant

linear eigenmode, rather a complex pattern associated with

the initial perturbation transits the system, in agreement

with the earlier description of the expected first stage of

the system's response.

Once the initial electrons and associated potential pro

file have completely transited the diode, the potential

profile remaining, Fig. 4(b), clearly differs from the

dominant eigenmode shape, Fig. 2(b). In this "adjustment"

stage, the lower eigenmodes present are still significant,

but as these decay (relative to the dominant) the profile

evolves into the dominant shape alone.

The dominant eigenmode stage is exemplified by the

potential profile of Fig. 4(c), showing no significant

contamination when compared with Fig. 2(b). (The agreement in

sign between the calculated profile in Fig. 2 and the simu

lation profiles in Fig. 4 results simply from the choice of

"positive" initialization for the simulation; when the diode

is initialized "negatively", the recovered simulation po

tential profiles have signs opposite to that shown here.) In
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this stable oC-regime, the dominant eigenmode stage is the

final stage of the Pierce diode's perturbation response: the

potential profile is seen to retain this dominant eigenmode

shape while its amplitude gets progressively smaller. The re

covered electric field profiles E(x) (not shown) evolve cor

respondingly into the correct eigenmode shape, and from the

boundary values (see Fig. 2(a)) it is clear that in this

stage the diode has a net negative overall active charge:

Q .. __(t) approaches zero from the negative side,
acr 1 ve

As a global measure of the system's evolution it proves

convenient to define an "internal electrostatic energy" at

any instant as

Wi(t) = 1 [ §(*,t¥(x,t)dx. (4)

The temporal behavior of W.(t) plotted in Fig. 5(a) is taken

from the simulation for cC = 0.5oc. While at first (t £3.5)

there are apparently some transients correlated with the

"initial-transit" and "adjustment" stages, ultimately

W^(t) shows simple exponential decay. We also define an

instaneous rate of change

fif(t) = oT ln Wi(t) (5)
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Figure 5. Case:«.= O.Sir, positive initialization, (a) Internal

electrostatic energy plot, lnif^t), (b) the difference between

the simulation energy rate of change, <Tw(t), and the expected

decay rate for the dominant-eigenmode change, 2tf\ (not evalu

ated for t <1 to avoid "initial transit" stage), and (c) hist

ory plot of of InW^t) for the diode initialized with negative

potential ?J(x).
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J (t)-J
ext c

•
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(b)

Figure 6. Case: * » 1.5TT, positive initialization, (a) Per

turbation external current, Jext<t)-J0' for *<4, (b) External

current minus the dominant-eigenmode contribution, J ^(t) - JQ

- aiexp(^t), from which the next-to-dominant eigenfrequency

is directly recovered.
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Figure 6. Case: OC * i.sT# positive initialization, (a) Per

turbation external current, Jext(t)-J0, for t<4, (b) External

current minus the dominant-eigenmode contribution, J (t) - J
ext c

- a1exp(jj*1t), from which the next-to-dominant eigenfrequency
is directly recovered.
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which will prove convenient in comparing simulation results

with the oscillation frequencies, growth and damping rates

predicted theoretically for the eigenmodes.

In the present case of oC = 0.5 *X , where the dominant

eigenmode is purely decaying, we expect that in the dominant-

eigenmode stage jfw becomes constant and equal to Zfa. The diffe

rence ^fw(t) - 2^, is plotted in Fig. 5(b). From this figure,

note first that the simulation decay ratef rw(t), does even

tually approach the expected linear value 2^ as the simula

tion diode progresses towards its final "dominant eigenmode"

stage; then note that before the final stage is reached ,

^w^1-) oscillates around its final

value, 2^v,. Having in this sense subtracted out the dominant

eigenfrequency from W.(t), then the remaining quite regular

oscillation frequency can be obtained by simply measuring the

distance between zero crossings. The oscillation frequency

recovered this way shows o/o - 5.4, in good agreement with

the real part of the theoretical next-to-dominant eigenfre

quency given earlier. The reasonable inference is thus that

this observed oscillation in the internal electrostatic

energy (in the period 1 < t £3.5) corresponds to the second

linear stage discussed above, when the diode system should

contain a collection of eigenmodes, all other eigenmodes

decaying even faster than the dominant one.
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Inside the diode there are particle and displacement cur

rents, both of which can vary with location in the diode; but

in a 1-d system, their total must at every instant equal the

external (conduction) current. Thus as a last Pierce diode

simulation diagnostic, it is convenient and helpful to

monitor the external current history J +(t). It can be shown

that whenever Qactive = 0, then Jext(t) = JQ. As a conse

quence, the initialization in Fig. 3 implies that

J 4.(t=0) = J .
extv ' o

The subsequent perturbation current J (t) - J for
v? Jv t O

cC= 0.5uc is shown in Fig. 6(a). In this stable oC-regime, this

external current perturbation is always a linear sum of

eigenmodes. As already mentioned, this external diagnostic is

also predicted to contain no plasma frequency oscillations,

unlike the internal response. In being linear, it also

differs from the above internal total electrostatic energy

diagnostic tf"w(t), which involves the logarithm of a quadratic

quantitiy. Thus in the dominant eigenmode stage (t Z 3.5 in

this case) the external current perturbation should be

readily resolvable, not only in frequency, GXj , but also in

amplitude, a^ . For this measurement, we have used the simple

single-frequency, four-point alogrithm given in Ref. 12.

It is then possible, as shown in Fig. 6(b) for t < 2, to

subtract off completely the dominant eigenmode a^e"1^1 ,
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from the external perturbation, leaving all the lower eigen

modes. In this case after the next-to-dominant takes over,

1 2the simple four-point measure can again be applied to the

curve shown in Fig. 6(b), this time yielding a^ and cc^; in

the present case, we find co^/co = 5.56 - 2.53i, in good

agreement with the theoretical predictio-n given earlier.

In principle, this scheme of subtracting successive eigen

modes to uncover the next-lower ones could be iterated down

to the accuracy of the simulation.

Another simulation was run, this time with a negative ini

tial potential profile- (electrons initialized slightly

towards the center of the diode). The observed simulation

"initial-transit" and "adjustment" stages are very similar to

those detailed above for the case of positive initial poten

tial profile. And again, in the dominant-eigenmode stage the

observed potential and electric field profiles attain their

corresponding eigenmode shapes (Fig. 2) but now with signs

opposite to those shown above (which involved positive ini

tial potential perturbation); this result is consistent with

the linear nature of our problem, in that the eigenmode pro-
\C&>

files are determined only Vwithin an arbitrary constant

factor. The final decay rate of W.(t) is found to have the

same value as before, 2Jfy . As a consequence of the sign re

versals on the field profiles, QactiveCO in the final stage

is also reversed and now falls asymptotically to zero from

the positive side.



-20-

To conclude, when operating the Pierce diode in the first

regime, 0 < oc < x, the final state found in our simulations

of the system is in fact the neutral, classical Pierce equi

librium. This equilibrium is stable. Several features of predict

ed linear behavior, including the initial transients, and

the dominant and next-to-dominant eigenfrequencies have been

recovered. The simulation results have been found to depend

on the sign of the initialization exactly as expected.
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III. SECOND REGIME: x < oC < 2oc

Analysis:

In the second oC-regime, the Pierce characteristic relation

(1) again returns a dominant eigenfrequency that is purely
imaginary, but now it lies in the upper half-plane, indica

ting an instability that is sometimes characterized as

"purely growing"; all other eigenmodes are decaying. The diode in

ternal linear response to any initial perturbation should

again pass first through an initial transit stage (til)

during which the original electrons exit the diode. Next

there should be an adjustment stage during which the diode is

filled with a pure collection of eigenmodes, of which all but the

dominant one are decaying. The dominant eigenmode will quick

ly emerge from the others, aiuffor some period of time should

show linear growth at a rate that corresponds to the dominant

eigenfrequency (positive imaginary). Of course in an unstable

system the final stage cannot be the initial configuration

as happened in the stable oc = 0.5oc case: the perturbation

will grow beyond the realm of linear validity, resulting

ultimately in a system configuration which differs

significantly from the original uniform equilibrium around

which our linear analysis was based.
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Using the representative value cC = 1.5ac , the dominant

eigenfrequency calculated from the characteristic equation

(1) is CO4/CJ = +0.1625i; for future reference, the

next-to-dominant eigenfrequency is fully complex with value

Ojg/co = 2.5180 - 0.6869i. The corresponding theoretical domi

nant-eigenmode profiles are shown in Fig. 7 and are seen to

differ significantly from the ones calculated earlier for

C£ = 0.5x (Fig. 2). For example, the potential profile now

has its extremum closer to the electron injection plane than

to the anode, at x = 0.37.

Simulations:

Again a small initial perturbation is imposed upon the

uniform classical Pierce equilibrium by bunching the elec

trons slightly at each end to ensure that the initial poten

tial profile is everywhere positive (i.e., the initial condi

tions are again as shown in Fig. 3).

Snapshots of the simulation potential profiles and the

corresponding phase-space plots are shown in Figs. 8(a) and

(b), respectively. Already at t = 1.5, i.e., soon after the

initial-transit stage, the potential profile is seen to have

adjusted into a shape very close to the calculated eigen-

modefs (shown in Fig. 7(b)). Unlike the oc = O.Soc case, the

sign of the potential 0(x) now happens to be the same as the

initial condition's. The amplitude of this profile is seen to
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Figure 7. Case: OC. = i.5i. Calculated theoretical dominant

eigenmode profiles E(x) and 0(x).

Figure 8. Case: ft* 1.5TT, positive initialization, (a) Snap

shots of potential profile at t- 1.5, 6.75, and 10, showing
linear ("dominant-eigenmode") and nonlinear ("intermediate"

and "final saturation") stages, (b) the corresponding electron
phase space plots.
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be increasing with time. After some period of growth, the

0(x) profile distorts nonlinearly away from the eigenmode

shape, attaining a nearly parabolic form with 6 at
Miiax

x = 0.5. At the same time, the growth stage evolves into a

"saturated" condition and the diode attains a final state

which is in fact a new stable equilibrium.

To quantify this growth and saturation, the time behavior

of the internal electrostatic energy W.(t) is plotted in Fig.

9(a). Note first the obvious transients connected with the

early initial transit (0 < t < 1) and adjustment stages

(1 < t <, 2.5). Following these transients, the dominant-

eigenmode stage is apparent during which W.(t) shows an al

most constant growth rate (2.5 < t & 4). In the final (satu

rated) stage, this electrostatic energy growth ceases:

fi/t) -> 0.

The plot of ^(t) - 2<ft (Fig. 9(b)) shows regular oscilla

tions during the adjustment stage, from the peak-times of

which the real part of the next-to-dominant eigenfrequency

can be fairly well resolved: for this value of oc = 1.5x, the

simulation indicates that Re(co^)/^ ^2.6. The transient os

cillations are seen to decay as the diode next enters its

dominant-eigenmode stage in which }fc.M approaches the expec

ted value, 2^, » 0.325 go = +1.53. What is brought out by

Fig. 9(b) (but is not obvious from Fig. 9(a) alone) is that
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Figure 9. Case: OC:* 1.5it, positive initialization. History

plots showing (a) the internal electrostatic energy, lnW^(t),

and (b) the difference between the simulation energy rate of

change, £u(t), and the predicted growth rate in the dominant

eigenmode stage, 2jpj» and (c) the external current, Jext^^IJol

Figure 10. Case: cC= 1.5v, negative initialization. Early beha

vior of the Pierce diode. Snapshots show diode evolving from

linear into nonlinear stages at t • 3, 6, and 7. (a) Potential

profiles j$(x), and (b) the corresponding electron phase spaces.
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the nonlinear transition from this dominant-eigenmode stage

to the later "saturated" stage is gradual, starting very soon

after the adjustment stage transients: the diode exhibits

approximately linear behavior for only a limitingly short

period of time (t ^ 4).

The next-to-dominant eigenfrequency is also visible in the

external current perturbation J +(t)/ |J_| for the period

0 < t < 2 of Fig. 9(c) . Indeed the

dominant can be subtracted out and when the observed external

oscillations become single-frequency, the simple four-point

1 2diagnostic measures the next-to-dominant eigenfrequency to

be cJj/cj = 2.5 - 0.55i. When the next-to-dominant has dis

appeared, there follows a period of dominant eigenmode

growth, during which Jext(t) continuously deforms away from

the injection value JQ. Note that J t(t) first becomes

larger (more negative) by nearly a factor of two and in fact

shows truly linear behavior only briefly (2 < t < 4); as the

diode goes nonlinear (i.e., at the same time that W^t) is sa

turating and J°w(t) is going to zero), then it evolves to a

new equilibrium in which no electrons are reflected, such

that again Jext(t) - J , the same value as in the original

equilibrium.

In the final "saturated" state, the total energy inside

the diode (kinetic and electrostatic) is roughly twice what
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it was in the initial state (purely kinetic), and is now di

vided approximately as W. <a Wv. .. /3. The potential pro-
1 K1I1S LlC

file 0(x) is everywhere positive but has a symmetric, nearly

parabolic shape, quite different from the dominant eigenmode.

Electron phase space indicates that the electrons remain

fluid,i.e., that at each x their velocity is single valued.

It also shows that the injected electrons are accelerated in

the first half of the diode, decelerated in the second half,

and finally leave the diode at their original (injection) ve

locity vQ. This behavior is consistent with the inference

(from the end values of the electric field profile) that

^active has a Positive value in this final state.

Using the same characteristic second regime value of

& - 1.5oc , the diode simulation was re-run, however this

time with the original electrons bunched slightly towards the

center; the resulting initial perturbation potential profile

^(x) is everywhere negative. Snapshots from early on in the

resulting simulation (t <, 3) again show the initial transit

and adjustment (linear) stages. When these stages finish, the

potential profile Fig. 10(a) is seen to approximate closely

the theoretical prediction for the dominant eigenmode, Fig.

7(b); the potential profile extremum is again at x = 0.37,

however in this negatively initialized run the sign of the

recovered profile is now reversed compared with the previous,

positively initialized case. As in the earlier case, the
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dominant and next-to-dominant eigenfrequencies are most

readily recovered from the external current diagnostic. Also

as before, the dominant eigenmode stage is seen isolated for

only a brief period (2 < t £4.5) in the electrostatic energy

history Fig. 11(a) and in the related energy growth rate dia

gnostic, Fig. 11(b).

Following these linear stages, the perturbation enters a

nonlinear stage (5 <, t <, 7) in which the potential profiles

Fig. 10(b) and (c) now differ from that recovered in the

previous positively initialized run (Fig. 8). Also different

in this run, the external current in the nonlinear stage is

now decreasing in amplitude.

The diode continues to evolve nonlinearly, but this time

it achieves a final state (t j> 7) that is periodic oscillato

ry (dynamic) instead of being d.c. as before.

These oscillations are especially visible in the external

current Jext(t>7), Fig. 11(c), from which we find that they

have a period very close to the plasma period of the original

equilibrium medium.

In this final state, the potential profile, Fig. 12(a),

has evolved from its early linear eigenmode profile into a

more complicated shape involving an oscillating "virtual cathode"

(a negative potential minimum ^m4n near the injection plane,

which oscillates in position and magnitude) between x = 0.08

and x = 0.22. This virtual cathode differs substantially

from the nearly parabolic shape recovered as the final state in the pre-
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Figure 11. Case: oC = 1.5r, negative initialization. History

plots showing (a) the internal electrostatic energy, InW.(t),

and (b) the difference between the simulation energy rate of

change, Y"w(t), and the predicted growth rate in the dominant

eigenmode stage, 2^ (not evaluated for t<1 to avoid "initial

transit" stage), and (c) external current Jext^/|JoI *

Figure 12. Case: CC = 1.5*, negative initialization. Final state

nonlinear behavior of the Pierce diode. Snapshots show diode at t

8.S, 9, and 9.5. (a) Potential profiles e*(x), and (b) the cor

responding electron phase spaces; samples are spread through

one oscillation period.
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vious case of positive initialization. The net space charge

profile j(x) also has a well defined extremum at the posi

tion of the virtual cathode, with corresponding oscillations

in position.

The electron phase space in this nonlinear final stage is

dynamic, clearly never reaching a time independent (steady)

state. Severe distortions occur in the beam, especially near

the cathode where newly injected electrons quickly feel the

strongly depressed potential minimum and are decelerated,

thereby building up the diode total charge. In this oscilla

tory final state, the net charge contained between the

plates, Qactive(t)» is always negative (the diode is electron

rich) and oscillates with the same period as J .(t). When
w J\> t

^min falls below -0.5 (the electron injection energy), then

new electrons are reflected back to the injection plane where

they are absorbed; at such times, the electron velocities are

clearly not single valued and the ensemble can thus no longer

be collectively described as a simple "fluid". When such

complete reflection occurs, charges are leaving the diode at

both ends and Qactive quickly relaxes from its built up value,

allowing free entry to the injected electrons once again.

This periodic reflection of electrons to the cathode and the

following rapid change in Qactive accounts for the large,

relaxation type (nosinusoidal) oscillations seen in both

W^t) and Jext(t), Fig. 11(a) and (c). The significant
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decrease in the average value of Jext(t) (some 251 smaller
than JQ in the final state) is a measure of the net return of

injected electrons back to the cathode.

To conclude, our particle simulations again recover pre

dicted linear behavior of the Pierce diode operating in the

unstable, purely growing, second cc-regime. Both the dominant

(purely growing, positive imaginary) and the next-to-dominant

(damped oscillating, complex with negative imaginary part)

eigenfrequencies are recovered. The linear character of the

diode is consistent with that found for the first (stable)

cc-regime: When the sign of the initialization is reversed,

the eigenfrequencies of the diode are found to be unchanged,

while the eigenmode profiles recovered have the same shape

but are changed in sign. The final (nonlinear) state of the

diode, hovever, depends critically on the initial condition

sign: With a positive initial potential profile, the linear

growth saturates to a new time independent equilibrium

(steady state) having a positive, nearly parabolic potential

profile; in reaching this new equilibirium, the external

current first increases by nearly a factor of two before

relaxing back to its constant (electron injection) value,

Jext(t~*co^ = Jo* With a negative initial potential profile,

the linear growth leads to a final state having large

amplitude, relaxation oscillations, both internally and ex

ternally; the potential profile shows an oscillating virtual
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cathode; the corresponding electron phase space shows

electrons being returned periodically to the cathode; the

external current exhibits the large oscillations along with a

decrease in its time average of roughly 251 below its d.c.

injection value.



-32-

cathode; the corresponding electron phase space shows

electrons being returned periodically to the cathode; the

external current exhibits the large oscillations along with a

decrease in its time average of roughly 25% below its d.c.

injection value.



-33-

IV. THIRD REGIME: 2 OC < cc < 3X

Analysis:

In the third eC-regime, the Pierce characteristic relation

(1) finally returns oscillatory instabilities in that the

dominant eigenfrequency is now fully complex, having both a

non-zero real part and a positive imaginary part. Once again,

the linear response is expected to have initial-transit and

adjustment stages before we can clearly see the dominant

eigenmode. After a period of dominant-eigenmode growth, the

diode should again evolve nonlinearly into its final state.

For a representative value oc = 2.5 x , the complex

dominant eigenfrequency is calculated from the

characteristic equation (1) to be Cja/o - 0.1819 + 0.0750i;

the next-to-dominant eigenfrequency is CJ^/6) = 1.9203-0.3748t.

Because the dominant eigenfrequency is fully complex, the

corresponding eigenmode spatial profile is now also complex

i.e., there are two component profiles (corresponding to the

real and imaginary parts) for each of /(x) and E(x). For

example, the theoretical dominant eigenmode potential profile

has a form (to within a phase constant)

/>(x,t) =Ke[^r(x)+i0i(x)Je"iCo"tJ
(6)

=[0r(x)cosCJ^rt+^i(x)sin^rt]er'ft.
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The calculated real and imaginary component profiles are as

shown in Fig. 13 for both the electric field £(x) and the

potential ^(x).

Simulations:

A particle simulation for the case oc =~2.5x is initialized

with perturbed §(x) such that ^(x) is everywhere positive

(simlar to Fig. 3).

Because in this oC-regime the top two eigenfrequencies are

both fully complex, subtracting out the dominant during the

early linear stages to uncover the next-to-dominant .is no

longer as straightforward as it was in the lower cC-regimes.

For t & 1.1 the internal electrostatic energy history Fig.

14(a) is too thoroughly contaminated with transients to

reasonably extract even Re co^. The external perturbation cur

rent Fig. 14(b) shows weaker transients than does the inter-

1 2
nal energy, but the simple frequency diagnostic can still

only resolve that 1.6 £ Re Coz /CO & 2.2, in reasonable (but

not conclusive) agreement with the real part of the expected

next-to-dominant given above.

In the dominant eigenmode stage (1.5 ;$, t £, 6), the

internal energy W.(t) exhibits constant, oscillatory growth

in which the dominant eigenfrequency can readily be

discerned; from this diagnostic it is measured to be

t-^ /O = 0.184 + 0.075i. Corresponding oscillations are seen
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Figure 13. Case: G-3 2.Sir. Calculated linear dominant eigenmode

profiles, (a) "Real" and "imaginary" potential profiles, and

(b) corresponding electric field components.
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Figure 14. Case: «C= 2.Sir, negative initialization. History plots

showing (a) system internal electrostatic energy, lnW.(t), and

(b) external circuit current, Jfixt(t)/|J0|.

Figure 15. Case: CC = 2.SIT, positive initialization. Dominant

eigenmode stage oscillations in the potential profile, shown at

quarter-period intervals. The shapes agree with the theoretical

eigenmode predictions (Fig. 13) while their amplitudes are grow

ing exponentially (Fig. 14(a)).
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Figure 14. Case: cC« 2-.Sir, negative initialization. History plots

showing (a) system Internal electrostatic energy, InW.tt), and

(b) external circuit current, Jexfe(t)/|JQ|.

Figure 15. Case: OC * 2.Sir, positive initialization. Dominant

eigenmode stage oscillations in the potential profile, shown at

quarter-period Intervals. The shapes agree with the theoretical

eigenmode predictions (Fig. 13) while their amplitudes are grow

ing exponentially (Fig. 14(a)).
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in Qactive^^ during which the total charge in fact changes

sign. As additional verification that the dominant eigenmode

is recovered, snapshots of ^(x) were made for t > 1.1; as

shown in Fig. 15, at quarter periods of CJ the simulation

potential profiles are seen to agree very closely with the

predicted real and imaginary profiles of Fig. 13(a). The same

linear profile results (however with opposite sign) were also

recovered in a companion run which had a negative initial po

tential profile.

Beyond the linear response, t £ 7, a nonlinear final state

develops which shows "noisy" oscillations, both internally in

W. (t) and externally in the current. The time average of

J (t) has now been reduced roughly 301 indicating substantial

reflection of the injected electrons back to the cathode. By

the end of our simulation run, the electron phase space Fig.

16 has achieved a correspondingly noisy final condition.

Although we did not run the simulation beyond t = 12, it is

reasonable to expect that subsequent evolution of the system

affects only the detailed structure of the electron phase

space, without significant modification of the

electrostatics.

Qualitatively very similar linear and final states are

also recovered for negatively initialized runs.
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Figure 16. Case: cC» 2.5w, positive initialization. Nonlinear

diode behavior from shortly after dominant eigenmode stage, t =

7.1, to effective final state at t»12. Electron phase space, po

tential profiles, and spatial charge density showing virtual ca

thode.
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Figure 16. Case: cC» 2.5tt, positive initialization. Nonlinear

diode behavior from shortly after dominant eigenmode stage, t »

7.1, to effective final state at t»12. Electron phase space, po

tential profiles, and spatial charge density showing virtual ca

thode.
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V. DISCUSSION AND CONCLUSIONS

Particle simulations of the uniform classical Pierce diode in

the low-cC regimes 0 < °c < 3x have successfully recovered

predicted linear behavior (i.e., frequencies and mode pro

files) of the top eigenmodes. These simulations confirm the

system's different stability characteristics, depending

simply on the single free parameter oc = CO L/v . Considering a

fixed length system and an electron injection scheme that

operates at a constant velocity, this parameter oc is then

interpretable as injected current density. For small enough

injection current ( oc < oc ), the diode is stable.

When the current injection is large enough to make the

system unstable, our simulations follow an initial perturba

tion in the diode as the linear response stages evolve into

nonlinear. Eventually a final state is reached. The character

of this final state can depend critically on the initial con

ditions: in the second Gd-regime ( oo = 1.5 to ), depending

simply on the sign of the initial perturbation potential,

the diode either reaches a new non-classical, time inde

pendent equilibrium (positive initialization) or it develops

large amplitude, periodic, relaxation type oscillations

(negative initialization).
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