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ABSTRACT

This paper presents general results relating the internal
exponential. stability of nonlinear time varying systems to their

external input/output stability. Provided that the undriven sys
tem is exponentially stable, we give explicit bounds on the size of
the input under which the driven system is stable. Moreover, the

deviation from equilibrium of the driven system is at most propor
tional to the (LJ) size of the input, and the Z„ gain depends
inversely on the rate of exponential convergence. These results
are used to study the robustness properties of a model reference

adaptive control scheme to various kinds of disturbances: input
disturbances, plant parameter variation, output disturbances, and
unmodelled dynamics. In most adaptive algorithms, the exponen
tial convergence follows from a persistent excitation condition, so

that this condition appears central to the robustness problem in
adaptive control. The paper concludes with some remarks on the

interpretation of these results for practical applications.
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1. Introduction

In recent years, there has been a very substantial interest in the robust
ness properties of adaptive control algorithms. Simulation work by Rohrs
(1982), and Rohrs et al (1982), showed that, under certain conditions, current
adaptive control algorithms lacked robustness margins relevant to several prac
tical applications. They concluded that these algorithms needed to be modified
before their implementation could be considered. While some modifications to

adaptive control algorithms have been proposed by various authors (Peterson &
Narendra (1982), Kreisseimeier & Narendra (1982), Sastry (1984), Ioannou &
Kokotovic (1984)), it has been argued by others that the robustness of adaptive
algorithms depends primarily on the persistency of excitation of the controlled
system, and, consequently, on the choice of the exogeneous reference input
applied to the system. Astrom (1983) related the lack of persistency of excita
tion to improper identification, and to the drift of the parameters of the control
system in the presence of disturbances. Other authors (Kosut et ai (1983),
Anderson & Johnstone (1983), Chen & Cook (1984)) related the persistency of
excitation condition to the uniform asymptotic stability , or to the exponential
stability of the adaptive system. It is recognised widely that exponentially
Btable systems are, in general, robust to disturbances, and, for most adaptive
algorithms, exponential stability has been proven, provided that persistency of
excitation conditions are satisfied (Morgan & Narendra (1977), Anderson (1977)
Anderson 8c Johnson (1982)).

In this paper, we make precise the relationship between the exponential
stability of nonlinear time varying systems, and their input/output stability.
The input is considered here to be a disturbance, so that the result is a robust

ness result. In §2, we take a general approach to study perturbation of

•Research supported by NASA under grant NGL 2-243. The authors would like to thank Profs
B. Anderson and K. Astrom for several useful discussions and suggestions. The authors are
also grateful to Prof. Vidyasagar for referring them to his paper.
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*

nonlinear time varying ordinary differential equations by disturbances. We gen
eralize results that were partially known in the literature to obtain quantitative
relationships between the size of the disturbances, and the size of the conse

quent deviation of the system from its equilibrium point. Such results are valu
able tools for the study of robustness margins of a large class of continuous time
nonlinear control systems, in particular adaptive control systems. This is illus
trated in §3 for a well-known adaptive control algorithm. We show that input dis
turbances, time variation of plant parameters, and output disturbances of the
plant can be brought to the general framework of §2. Explicit bounds on the dis
turbances are obtained such that the stability of the system is preserved in the
presence of these disturbances. Moreover, a bound on the gain from the distur

bances to the deviations from equilibrium is obtained, and the relationship
between the gain and the system parameters is studied. Unmodelled dynamics
can be studied in the same framework, and some bounds are also obtained for

this case. We conclude in §4 with some general conclusions on the robustness of
adaptive systems.

S3. Mathematical Prpliminaripg

2.1. Notations and General Assumptions

We consider the differential equations: t

x=f(x,ttu) (2.1)

and:

x=f(x,t,0) (2.2)

where xeff", teO. and ue/?m. In the sequel, we will refer to (2.1) as the per
turbed system, and to (2.2) as the unperturbed system. We assume the
existence of some closed balls Bh and Bc (in Rn and Rm respectively), in which
the following assumptions hold:

(Al) x=0 is a stable equilibrium point of the unperturbed system, i.e.
/ (<U,0)=0 for all raO. and there exists /i*>0 such that, for allx^Bhu t^%ond
t>tQt x(t)^Bn along the solutions of (2.2) starting at x0.

(A2) the function / has continuous and bounded first order partial deriva
tives in x and u, and is piecewise continuous in t, for all x€.Bh, tz»0, uzBc. We
define:

Mx,t).^J^L (2.3)
and:
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where:

IWL:=max £l4jl (2.5)
* U«» J

Assumption (A2) implies that / satisfies a Lipschitz condition, i.e. that
there exists L^>0 such that, for all x,x'zBh, u,u'€Bet t^O:

||/(*.^u)-/(*\*,u')ll*Jk ||*-*'||+||u-i*'||) (2.6)
This also implies the existence, and uniqueness, of the solutions of (2.1) and
(2.2), as long as they remain in Bh, Be. For x0eBh.t and *02s0, the solution of
(2.2) exists for all t&t0t and we will denote it^(*,x0,*0).

We denote by ||x(£)|| the euclidean norm of the vector x at time t, while:

||x(.)||:=su?|b:(OII (2.7).

2.2. Theorem 1 (Converse Theorem of Lyapunov)

Consider the system (2.2). with assumptions (Al) and (A2). Then, the follow
ing statements are equivalent:

(a)*=0 is an exponentially stable equilibrium point of the unperturbed sys
tem. i.e. there exist a, M>0t such that, for all Xo^fc*. ttf>0 , t?>t0:

\\x(t)\\^M\\xD\\e-^-^ (2.8)
along the solutions of (2.2).

(b) there exists a function v(x,t), and some constants ai. ot2, a3,04 >0, such
that, for all x€Bh-, t^Q:

aJMP^fr.O^aglMI8 (2.9)

^^-^-aalkll8 (2.10)
dv(x,t)

dXi ***\\*\\- (2.11)

where i=l,...,n.

Comments

Theorem 1 can be found in Krasovskii (1963), and Hahn (1967). It is known
as one of the converse theorems. The proof of the theorem is constructive: it
provides an explicit Lyapunov function v(x,t). The proof presented here is simi
lar to the proof in Hahn (1967), with the difference that we derive explicit values
of the constants involved in (2.9)-(2.1l) to obtain some interpretation of the
results of the theorem in §2.3.
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The derivative in (2.10) is a total derivative, or derivative taken along the
trajectories of (2.2), i.e.:

*^=8^+28^/i(lii,o) (2.12)

Proof of Theorem 1

(a) implies (b)

(i) Define:

t+T

v(z,t)=fMT,x,t)fdr (2.13)
t

where T>0 wUl be defined in (ii). From the exponential stability:

||p(r,*,r)||<;jtf|M|e~a(T"0 (2.14)

The Lipschitz condition implies:

\\f(x.tt0)\\*Ii*M (2.15)

so that:

^(T.x.Ol^llxlle'^^^0 (2.16)
Inequality (2.9) follows with:

al:=[l^-ZnLhoT}/2nLhc (2.17)
a8:=Jtf2(l-e-2a7,]/2a (2.18)

(ii) Differentiating (2.13) with respect to t, we obtain:

^{§^-= lb(*+7\*.OH2 -\\p(ttx.t)f+J^l\p(rtx,tw)dr (2.19)
Note that -51-is a total derivative with respect to the initial time t, and by

definition of the solution p:

p(T,*(*+A*),*+A«)=p(Ti«(0.*) (2.20)

so that the term in the integral is identically zero over [t,t + T], The second
term in the right-hand side of (2.19) is simply ||x||2, while the first is related to
II* II8 by the assumption ofexponential stability. It follows that:

**%') *-[l-SP*-**T]\\z\f (2.21)
Inequality (2.10) follows provided that::

T>±4nM (2.22)
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and:

a<i:=l-M2e-z*T

(iii) Differentiating (2.13) with respect to xit we have

dxi

From the exponential stability:

. \Pj(T%x.t)\^M\\x\\e'^r-^

while, under the assumptions,

d fapy(T,a:,OJ_ a
dr dXi " d^

^-= qi^r,,)^^LdT

•£?>j(T-X.t)

=a|"(''>(p(T.*.f),T.o))

CJ An..*»1 dxk |p(T^,t).T.O
dpk{r,x,t)

dxi

(except possibly at points of discontinuity of / (.,r,0))

Denoting:

dpi(T,xtt)'
fy(T.*.*) =

dxi

equation (2.26) becomes the following differential equation:

•£f{Q(T,X,t)) =A(p(T,Xtt)tT).Q(T,X,t)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

ThiB equation defines Q(r,xtt), when integrated from T=t to T=t + T. with initial
conditions:

Q(t,xtt) =I (2.29)

In fact, Q{r,xtt) is the transition matrix associated with the time varying matrix
A(p(T,x,t)tr). It follows that (Vidyasagar (1978)):

||^(T.x,OIU^e^(T-° (2.30)
and:

\&^\*zJ*Jli\\*\\e(''*-'XT-')dT (2.31)
which is (2.11), defining:

tX4 =2M (e(**-a)r-l) / (kh^a) (2.32)
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Provided that x€.Bh; the trajectories in the steps of the proof remain in Bht
so that all assumptions are valid. Note that one can simply define:

h'=h/M (2.33)

(b) implies t(a)

This direction is straightforward, using (2.9) and (2.10):

a2}n
#:= (2.34)

a:=Hr (2-35)
In this case, we can also define:

a,1*
h' = h

l«ej
(2.36)

2.3. Theorem 2 (Small S^nal I/O Stability)

Consider the perturbed and unperturbed systems (2.1) and (2.2), with
assumptions (Al) and (A2). Then:

(a) x=0 is an exponentially stable equilibrium point of the unperturbed sys
tem

implies:

(b) the perturbed system is small-signal Instable , Le. there exist ynt c„>0,
such that ||u(.)||2Sc implies:

||*(0ll*7-l|u(.)ll (2.37)

for all tSsO, along the solutions of (2.1) starting at ar<j=0;

(c) moreover, there exists /i0>0 such that, for all x0EBhQ, ||it(.)||̂ c„ implies
that x(t) converges to a Bs ball of radius <S=7»||i*(.)||. More precisely, for all e>0.
there exists 7^0 such that:

\\x(t)\\*(l+e)6 (2.38)

for all t^Tt along the solutions of (2.1) starting at x0.

Comments

Part (b) of theorem 2 is a direct extension of theorem 1 of Vidyasagar 8c
VannelU (1982) (see also Hill 8c Moylan (1980)) to the non autonomous case. Part
(c) is new and applies to non zero initial conditions.

Theorem 2 relates internal exponential stability to external input/output
stability (the output is here identified with the state). Although lack of
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exponential stability does not imply input/output instability, it is known that
simple stability, and even (non uniform) asymptotic stability are not sufficient
conditions to guarantee I/O stability (see e.g. Kalman &Bertram (1960) Ex.5 p
379). As a matter of fact, the proofof theorem 2 relies strongly on the assump
tion of exponential stability of the original system. In conclusion, one would be
tempted to consider, for all practical purposes, the exponential stability, or at
least the uniform asymptotic stability, a necessary condition for input-output
stability.

Proof of Theorem 2

The differential equation (2.2) satisfies the conditions of theorem 1, so that
there exists a (Lyapunov) function v(x,t) satisfying the inequalities (2.9)-(2.11).
Ifwe consider the same function to study the differential equation (2.1), the ine
qualities (2.9) and (2.11) still hold, while (2.10) is modified, since the derivative
is now to be taken along the trajectories of (2.1), instead of (2.2). The two
derivatives are, however, related through equation (2.12). and:

dv(x.t)
dt

(ei)
=Ss^£SsgLM*.'Mt))
= dvjx.t)

dt (8.2)
%!iaVfc') (fi(*.^(0)-/i(*.*,0)) (2.39)

Using the results of theorem 1, and the Lipschitz condition:

dvjx.t)
dt

(21)
^-aalklP +^llxHV^Z^IIizOH

Assume a bounded input u(.), and define:

«2

<*i

<5':=

*:=7-IK)ll

S7 «=^-V£4JW.)ll
The inequality (2.40) can now be written:

du(x.t)
dt

*-a*||*||(||*|H«5')
(2.1)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

This inequality is the basis of the proof:

(a) implies (b)

Consider the situation when x0tz.Be (this is true in particular if ar0=0). We show
that this implies that x<zB6 for all t>0 (note that 6'^6).
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Suppose it was not true. Then, by continuity of the solutions, there would exist
7q. TxiT&T^O). such that: ||*(r0)||=<5', MTJpd, and for all td[To.T{l: \\x(t)\\
fe<5\ Consequently, inequality (2.44) shows that, in [7q,^i]. dv/dt^O. However,
this contradicts the fact that•i/(x(7o)f7,0)^agd,'8=ald* and V(a:(7,1)i7,i)>aIo'8.
(a) implies (c)

Assume now that ||*oll><5'- "We showthe result in two steps.

(i) for all e>0, there exists 7^0 such that \\x(T)\\=6'(l+s).

Suppose it was not true. Then, for all f^O. ||ar(OI|><5'(l+e) and
du/dt <~as6'(l+£)6'£, which is a strictly negative constant. However, this con
tradicts the fact v(x0,0)<Za2\\xo\\zt andi/(x(0,£)><xl6'2(l+s)z for all t>0.

(ii) for all t^T, \\x(t)\\^6(l+e). This follows directly from (i), using an argument
identical to the one used to prove (b).

Finally, recall that the assumptions require that x(t)eBh>tu(t)eBB. It is
easily seen, from the results, that this is guaranteed, provided that xQ€Bh and
||m(.)||^c„. where:

h

(2.45)h0 = h'

and:

«i

<*2

cm:=min(c ,h'/ym) (2.46)

Note that although the first part of the proof is, in itself, a result for non zero
initial conditions, the size of the ball B6> involved decreases with the amplitude
of the input, while the size of B^ is independent of it (and, actually h^6\ when

IK>ll*u>.

Additional Comments

a) If assumptions (Al) and (A2) are valid globally, then the results are valid
globally too. The system remains stable, and has finite I/O gain, independent of
the size of the input •*. In the example of §3, and for a wide category of nonlinear
systems (bilinear systems for example), the Lipschitz condition is not verified
globally. Yet,, given any balls Bh,BGt the system satisfies a Lipschitz condition
with constant L^ depending on the size of the balls (actually increasing with it).
The balls Bh,Bc are consequently arbitrary, but the values of y„ (the £«, gain)
and cm (the stability bound) will vary with them. In general, it can be expected
that, for all h, c €R+, cw will remain bounded, so that, despite the freedom left in
the choice of h and c, the I/O stability will only be local.

This conclusion is not true if the system is only globally uniformly asymptotically stable
(see e.g. Desoer et al (1865)).
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b) Explicit values of y*, and c„ can be obtained from parameters of the
differential equation, using equations (2.41) and (2.46). Needless to say, the
dependence of y» and cm on these parameters is rather complex. However, it
can be verified that, with other parameters remaining identical, the /,„ gain is
decreased, and the stability margin is increased, when the rate of exponential
convergence a is increased, or the "overshoot" Mis decreased.

a Robustness of Adaptive Algorithms

3.1. Exponential Convergence

For the purpose of illustration, we consider a simple, continuous time,
model reference adaptive control algorithm, as found in Narendra and Valavani

(1978).

The plant is described by:

xp=Apxp + bpup (3.1)

Vp'^p (3.2)

where xptbpthpcRntApeRnXntup,yp^R.

(Bl) Assume that the transfer function:

»i(s) =^V-^)"16p=^Tip(s)/Gt(s) (3.3)

has relative degree 1, and is minimum phase. Assume that dp(s) and np(s) are
monic polynomials of degrees n and n-1 respectively, and that the sign of kp is
known.

The state of the plant is obtained from the observers:
»

titOsAuCO +faip (3.4)

v<2) =Ai/2) +6yp (3.5)

where t/W. v&\ beRn'1. Aei?n"lxn"1, A is exponentially stable, and A,o is a con
trollable pair. The controller is a state feedback controller:

i/p =cor +cTv^ +d0yp+dTv^:=v^Tw (3.6)

with c0,d0€/?, c.d e/?*"1. V.weR2". The control objective is to find a control law

such that yp approaches the output ym of a model reference system, whose

transfer function:

Wm(s)=:kmnm(s)/dm(s) (3.7)
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is strictly positive real, with monic polynomials ^(s) and dm(s) having the

same degrees as the corresponding plant polynomials, and with km having the

same sign as kp.

From assumption (Bl), it can be shown (Narendra &Valavani (1978)) that

there exist unique Cq,c*td£,d* such that the closed-loop system described by
equations (3.1)-(3.6) has a transfer function equal to Wm(s). For the purpose of
the analysis the model is described by the same equations ((3.l)-(3.6)) with xm,
%- Vm» v£}',v$\ Cq, c*. do. <**. &*, Mm replacing the corresponding plant vari
ables. This is represented in Fig. 1, where the upper block represents the

model, and the lower block the plant, together with the controller. Note that

Fig. 1 includes disturbances dx(t),dz{t) which will be considered in §2, but are
assumed zero at present. In practice, the model is simply realized by the

transfer function Wm(s), but the representation of Fig. 1 is convenient for the
subsequent analysis.

(B2) Assume that the reference input r is bounded, and piecewise continu
ous.

Consequently, all signals in the model reference block are bounded, and the

plant variables can be alternatively described by their differences with the

model reference variables, by defining the errors:

e := J?f;

p:=tf-tf*

Simple algebraic manipulations lead to:

e =4.8 +bc{<pTvj)

where:

Ac'.=

^hTa«i:=ifr-Vm=Ve

Ap+bpdShJ bpc* bpd*
bd^hj A+6c#r bd*T
bhf 0 A

oe:= b
0

(3.8)

(3.9)

(3.10)

(3.11)

(3.1-2)

(3.13)
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*/:=(*/. 0.0) (3.14)

and e,bc.hczR^AczR^-™n-2,<peRZn. From the definition of c^.c \dS.d':

hRsf-Ao)-lb9 =̂ -Wm(s) (3.15)

The realization Aq^Ji^ is not completely observable. Actually 2n-2 modes are.
the modes corresponding to the observer. They are the modes of A and of

A+oc (these are located at the zeroes of n^s)). The 2n-2 modes are con-
troilable, exponentially stable, but not observable. In other words, ^.b^h,. is a

non minimal, yet stabilizable and detectable representation of a strictly positive

real transfer function. The positive real lemma,. (Anderson 8c Vongpanitlerd

(1973)) implies that there exist symmetric positive definite matrices
/',$€j?an-2*8n-2 such that:

AfP+PAc^-Q (3.16)

Pbc^fio (3.17)

From these considerations, the update law is chosen as:

^s-ejiu (3.18)

so that the system is described by (3.10), together with:

$ =-hJew (3.19)

Choosing a Lyapunov function candidate:

V=eTPe+<pT<p (3.20)

results in:

7=-ef£a (3.21)

This implies that e,<p are bounded functions of time, and, moreover, that

limc(f)=0. One can show (Morgan & Narendra (1977), Anderson (1977)), that

et<p converge to 0 exponentially fast, provided that w is persistently exciting, i.e.

that there exist positive constants tf.fcjM) such that, for all s^Q:

fvj{T)w(r)Tdr^klI (3.22)
a

For (e,<p) in a ball Bht this was shown by Boyd & Sastry (1984) to be guaranteed

provided that the same condition holds for vjm, or, equivalently, provided that

the support of the spectrum of r has at least Zn points (i.e. r is sufficiently
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rich).

Important Remarks:

(i) The persistency of excitation condition is not only important in guaran
teeing exponential stability, but also in guaranteeing the parameter conver

gence to the nominal values, and the existence of a unique equilibrium point

(a,$p)=0 to the differential equation (3.10),(3.19).

(ii) The description of the system (3.10),(3.19) is misleading, since the
right-hand side contains the signal w, which depends on the state e. Actually.

this makes the system appear to be linear time varying, although it is truly
described by nonlinear differential equations. This can lead to some "circular"

arguments when studying the robustness of the algorithm (as pointed out in

Narendra 8c Annaswamy (1984)). To avoid this, we replace w by:

where:

w = We+v^

0 0 0

K:=
0/0

hjQ 0
0 0/

(3.23)

(3.24)

with jye/?&»x3»»-2 (a constant matrix). The system description becomes:

^{t)^Ace{t)^betpT{t)We{t)^bti9T(t)wm{t) (3.25)

*(0 =-ATe (t)We(t)-hJe(t)v^(t) (3.26)

where we indicated expiicitely the time dependence. This can be written:

x=f(x,t) (3.27)

where:

*:=(£]e*Sn-8 (3.88)
It is a nonlinear ordinary differential equation (actually, it is bilinear). The time
variation of the coefficients in (3.25)-(3.26) is explicit since it is obtained only
from iifa.(0 an exogeneous, bounded function of time, obtained from the model.
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3.2. Robustness to Disturbances

In this section we consider three types of disturbances, and show that, in
each case, the newdifferentialequationdescribing the system can be written as:

±=f(x,t)+Pl(t) +P2(t)x(t) (3.29)

wherepl(Oe/?8n-2, and P2(tJc/?0*"2*6*-2.

a) Input Disturbances d:(t)

Let Up(t) be replacedbyup(t)+dl(t) (cfFig.l). Equation (3.29) follows with:

Pi(0 =
b0di(t)

0 •P2(0 = o (3.30)

b) Plant ParameterVariation tf*(t)

Let tf* be time dependent, with #* bounded, so that y>(t)=i}(t)-i)*(t). Equation
(3.29) follows with:

Pi(0 = 0
-*\t) ./'2(0 = o (3.31)

c) Output Disturbances dg(t)

Output disturbances d2(t)t as in Fig. 1, have two effects:

- first, on the input of the plant: Up becomes Up +gT^d2, where q is a constant
vector defined by:

g7^ (0.0.1.0) (3.32)

with ge/?x/?n-1xi?xi?n~1=/?2n.

- second, on the parameter update: hje becomes fije+d2 and We becomes
We +qd2. Some manipulations lead again to (3.29) with:

Pi(0 =
bGqT#4dz{t)

-qdi(t)-v>m(t)d2(t)

0 bcqT]
/pa(0-[_r_g^r 0 jd2(t)

(3.33)

(3.34)

For xzBh, an(i wm(t) bounded (and piecewise continuous), equation (3.29)

(together with the expressions for Pi(t),P2(t)) is a particular form of equation
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(2.1) in §2. Moreover, assumptions (Al) and (A2) are verified, so that, under per

sistent excitation conditions, theorem 2 is applicable.

From this, we draw the following conclusions:

a) specific bounds on ||dx(.)||( ||tf*(.)||. or ||da(.)|| can be obtained such that, within
these bounds, and provided the initial error is sufficiently small, the stability of

the adaptive system will be preserved Note, however, that for different distur

bances acting together, the analysis should be slightly modified, since their

effect is not additive;

b) the deviations from equilibrium are locally at mostproportional to the distur
bances (in terms of /.» norms), and their bounds can be made arbitrarily small
by reducing the bounds on the disturbances;

c) the Lm gain from the disturbances to the deviations from equilibrium can be
reduced by increasing the rate of exponential convergence of the unperturbed
system. .

Although equation (3.29) is specific to our example, most adaptive systems
will be described by equations which are included in the general framework of
§2, and satisfy assumptions (Al) and (A2).

Design Guidelines

The determination of the constants M and a from design parameters is,
unfortunately, very difficult. Kreisselmeier and Joos (1982) presented a scheme
similar to the one presented here, and obtained specific rates of convergence
(around the equilibrium point). It appears, in their work, that the rate of con
vergence is proportional to the constant kxin the persistent excitation condition
(3.22), describing the level of persistent excitation ( the rate is, however,
bounded by the slowest time constant of the model reference ). Consequently,
the robustness can be increased directly by this means.

In the presence of output disturbances, the dependence has to be analyzed
more carefully, since the "constant" L^. will vary with ||iwm(.)||, and the total

effect will be different. In other words, arbitrarily fast adaptive control algo
rithms are not necessarily arbitrarily robust. We expect this to be true espe
cially when the rate of convergence is increased through an internal adaptation
parameter, for example by replacing the adaptation law (3.18) by:

b^-ye^ (3.35)
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with y>0. Although the rate of convergence a may be increased to some extent
by increasing 7, the parameter 4c will be directly multiplied by y, resulting in
possibly smaller robustness margins.

It appears then, that increasing the level ofpersistentexcitation ofthe sys
tem, is the best way to increase the stability margins or the adaptive system.

Rohrs et al (1982) example (in §4.2) of instability of an adaptive scheme
with output disturbances on a non persistently excited system, is an example of
instability when the persistent excitation condition of the nominal system is not
satisfied.

3.3. Robustness with Respect to Unmodelled Dynamics

The approach we adopt here is similar to that used by Doyle 8c Stein (1981)

to study the robustness of non adaptive control systems. We assume that there

exists a nominal plant Wp(s)t satisfying the assumptions (Bl) in §3.1, and such
that:

Vp(s) = Wp(s)up(s) (3.36)

The actual output is modelled as the output of the nominal plant, plus some

additive uncertainty represented by a bounded operator Ha:

yP(t) =Vp(t) + Ha(Up)(t) (3.37)

The operator Ha(up) represents the difference between the real plant, and the
idealized plant Wp(s). In the terminology of Doyle 8c Stein (1981), we refer to it
as an unstructured uncertainty, and it constitutes all the uncertainty, since it is

the purpose of the adaptive scheme to reduce to zero the structured or

parametric uncertainty.

From the results of §3.2, it follows that there exists c^O such that, for any

output disturbance d2(t) satisfying HdgQH^Ci the system will remain stable. In

particular, all internal signals will remain bounded, and there exists c2>0 such

that ||iZp(.)||̂ Cg. Define:

i^^^m^N^") <3-38>
The perturbed system will remain stable provided:

ll^allc8^c1/c2 (3.39)

Condition (3.39) is very general, since it includes possible nonlinearities,
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unmodelled dynamics.etc. provided that they can be modelled as additive,

bounded-input bounded-output operators.

If the operator Ha(up) is linear time-invariant, the condition is a condition
on the Lm gain of Ha. One can use:

ll*ll.8=/l4.(T)|e*T (3.40)
0

where h^jr) is the impulse response of Ha (assuming zero initial conditions for
the unmodelled dynamics).

Design Guidelines

Although (3.39) provides a specific condition to guarantee the stability of
the adaptive system in the presence of unmodelled dynamics, it does not pro
vide much insight into the frequency domain constraints on Ha(jv)> when the
unmodelled dynamics are considered linear time invariant. In that case, a

necessary condition for the transfer function Ha(Ju) to satisfy is:

\H*{jo)\^cx/c2 (3.41)

for all u>0. However, this condition is not sufficient.

As a precautionary step, however, it is useful to consider the robustness

margins of the adaptive system after convergence of the parameters. Then, the
adaptive control system becomes a linear time invariant controller, whose
robustness margins can be studied with standard methods. Consider, for simpli
city, the case of a stable plant Wp(s). For the example used here, it can be
shown (Sastry (1984)) that, using a multiplicative representation of the uncer
tainty (defining Z^O'w) by 4*0'«)&i,0,w)=A»(;«)). the converged system is
guaranteed to remain stable provided that:

dmCM
I4»0«)l< *m(Jo)-dp(ja) (3.42)

for ail q>0.

For the sake of performance enhancement, the zeroes of ^(s) are often
located farther left of the complex plane, than those of dp(s). The zeroes of
drn(s)-dp(s) are located between these sets of zeroes (they are on the root-
locus joining the zeroes of^(s) to those of c^(s)). The transfer function on the
right-hand side of (3.42) is consequently usually as represented on Fig. 2. The
robustness margins are seriously degraded in the frequency range between the
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dynamics of the model, and those of the plant. Actually, condition (3.42) is a
constraint 'on the class of allowable models, and puts a limit on the bandwith of
the reference model chosen.

The importance of the proper choice of the reference model should not be over
looked. In many methods, which are not considered model reference methods, a
reference model is still implicitly defined. For example, some discrete time
algorithms have the objective to track a reference model whose transfer func

tion is a pure time delay z"d. This may lead to high frequency closed-loop
dynamics, and, from our previous discussion, we deduce that such designs will
prone to be non robust.

Finally, it should be remembered that, under normal conditions, the output

error is small, so that the input of the plant is roughly equal to:

u{ja)~ yff r(jo) (3-43)
In the range of frequencies. where Ha(Jo) is significant, Wm(j'&>)/ Wp(Ju) is
roughly constant (cf previous discussion), so that, in these frequencies:

u(jo)~~?-r{j<S) (3.44).
Kp

Clearly then, to minimize the output disturbance due to the unmodelled dynam

ics, the spectrum of the reference input should be constrained to the bandwith

of the model and of the plant. Rohrs et al (1982) example (in §4.1) with

sinusoidal reference inputs having a strong component in the frequency range of

Ha(jo), and a weak component in the frequency range of Wm(jeS), Wp(ja). is an
example of instability When this condition is violated.

In conclusion, some robustness properties are guaranteed, provided the

system is persistently excited, at a sufficient level, and provided this condition is

satisfied in the range of frequencies of the model and of the nominal plant.

4. Conclusions

We showed, on a simple example, that adaptive algorithms have some

robustness margins, provided that they are exponentially stable. These robust

ness margins can be increased by increasing the rate of exponential conver

gence. This can usually be done by increasing the level of persistent excitation

of the system through the reference input. We pointed out, however, that in the

presence of unmodelled dynamics at higher frequencies, this should be achieved
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with a reference input whose spectrum is concentrated in the bandwith where

these dynamics are small.

Although the results presented here give only sufficient conditions for

robustness, there is sufficient evidence in the literature to be suspicious of any

scheme that is not exponentially convergent, or of implementations that are not

persistently excited. For example, the schemes presented by Morse (1980), and

by Narendra et al (1980), for relative degree greater than 2, and unknown high
frequency gain kp can never be exponentially stable (cf Dasgupta et al (1983),
Sastry (1984)). In fact, one should be suspicious ofschemes that do not possess
a unique equilibrium point (at least locally), a condition which is implied by
exponential stability. In such cases, a typical mechanism of instability is the
drift, along the equilibrium surface, from a locally stable equilibrium point to a
locally unstable point, due to possibly very small disturbances. At this point,
either a "burst" phenomenon occurs (cf Anderson (1983)). bringing the system
back to a locally stable point, or instability results (Riedle 8c Kokotovic (1984)).

In practice, parameter convergence is an important condition for robust
ness. For this reason, persistent excitation should be maintained for as long as
the controller parameters need to converge.or as long as the plant parameters
vary. After convergence, one can simply turn-off the adaptation law when the
excitation is insufficient (cf Astrom (1983)). Adeadzone (Peterson 8c Narendra
(1982), Sastry (1984)) is a simple way to indirectly achieve this. However, per
sistent excitation must be maintained when the parameters of the plant vary
significantly. Other modifications of the update law, as proposed by Ioannou 8c
Kokotovic in (1984), we feel do not really solve this problem, since they aim at
limiting the drift of the parameters, which is an effect of the instability, and not
the cause of it.

In conclusion, the design of robust adaptive control algorithms includes not
only the choice of an efficient algorithm, but also the careful consideration of

the reference input, and an adequate choice (explicit or implicit) of the refer
ence model.
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