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Abstract

The rigid mode ballooning equation, derived by Kaiser et al., is modified to

calculate the MHD growth rate in the Multiple Mirror Experiment (MMX). Numer

ical results are compared with the experimental data of the rigid (m = 1) mode

instability. In the model the pressure is taken to be isotropic and constant along

the axis, except in the diverging field regions at the ends of the machine where

the pressure falls to maintain beta constant, consistent with experimental

observations. The calculated results generally predict somewhat higher critical

betas for the rigid mode than those observed.
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I. Introduction

In the Berkeley 10 meter Multiple Mirror Experiment (MMX) geometry, the

symmetry breaking quadrupoie field is weak compared to the main axisym-

metric field, and the radius of curvature of the main field is large compared with

characteristic radial lengths [1]. We therefore assume a paraxial approximation

[2] throughout the analysis.

In the MHD approximation, the high azimuthal modes are most unstable.

However, FLR corrections show that short wavelength modes are stabilized down

to mode numbers so small as to violate eikonal approximation [3,4,5,6]. For a

rigid perturbation, i.e„ a perturbation in which the MHD displacement f varies

only as a function of distance along the magnetic axis, there are no FLR effects

since ions and electrons with their different orbits still feel the same force. This

is the principal mode observed experimentally in the MMX experiment [l].

Using Newcomb's ideal MHD energy principle of the plasma in the paraxial

approximation [2], we add the inertia term to the rigid mode ballooning equa

tion [3]. A computer code, used originally to investigate high mode number bal

looning instability on tandem mirrors (Kaiser's code) [7], was modified to

accommodate multiple mirror configurations and rigid mode features. The

finite beta equilibrium used in the calculation includes the long-thin

modification of the mod-B surfaces but assumes no changes on the equilibrium

ellipticity from that of the vacuum field. The pressure is taken to be isotropic,

with a Gaussian radial profile, and constant along the axis except in the diverg

ing field regions at the ends of the machine where the pressure falls to maintain

beta constant, in rough agreement with experimental observations [l]. The

temperature is assumed constant along the axis.

In Section II, we derive the rigid mode ballooning mode equation by using

the standard definitions of the flux coordinates [2,3,8,9] to describe a quadru-
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pole imposed mirror geometry, and by using Newcomb's MHD principle in the

long-thin geometry. In Section III, we describe the experimental configurations

and observations in the MMX [1]. In Section IV, we describe the code

modification from the high mode number ballooning code to the rigid mode bal

looning code, calculate averaged quantities for the rigid mode ballooning code,

and compare the predicted result to the observed experimental data. In Section

V, we discuss our results.

n. Theory

We use the standard definitions of flux coordinates (tMM") to describe a

quadrupole imposed mirror geometry. The flux coordinates are chosen such

that

F=VfxVtf (1)

where, ^ is a coordinate describing the axial magnetic flux, i? is an angle-like

coordinate with period Ztt on each V surface, and I is distance measured along a

field line on which iff and i? are constant.

For long-thin geometry, the fleld-line is nearly parallel to the axis of the

machine and the transformation to cartesian coordinates (x,y,z) is based on

the familiar paraxial approximation [2,3,7,9]

x = V2^ (t(z)cost?,

y = V2^ T(z)sint?,

2 = i, (2)

where a and r satisfy

a(<M) B' (3}

Note that the functional rotation between (x,y) and (^,1?) can also be written as



^ _ n,, 9* - n.
(4)

where, the subscripts denote partial derivatives with respect to the indicated

variables. By choosing contravariant basis vectors as (V^,v*i?,z), Le.,

- —=32-(TCOStf,Crsill'l?)t
err

w-[fi-'S)-«-«w
1

the covariant basis vectors become

C =-^SxW = (xftyf)

= -7==r(<7cosi?,2sin#),
v2^

= >/2^(-asiiM>,Tcosi?).

The covariant metric tensor is given as

•(—rsintf ,a cos1?),

9 =

where

WaL u^U o \E F 0
tMJ 17*17 0 as F GO

0 0 1 Lo 0 ij

M=j?

(5)

(a)

(?)

(8)

(9)
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F = u'V = -5"2V^-Vi?, (10)

G = V'V = B"2Vf'Vf.

The covariant components of the curvature vector are given by

« = (z«,2/zz) = tcfty + KJW (11)
where

*ty = /e-u = x^lzz + y^ ,

k* ~ lew = a^x^ + y,,i/zz,

The quantities fc^, and *c$ are the normal and the geodesic curvatures, respec

tively.

For a finite beta plasma, we assume no change in equilibrium ellipticity

from that of the vacuum geometry described by (2). W. A. Newcomb [2]. derived

the ideal MHD energy principle of the plasma in the long-thin approximation

6H = 6T+dW = 0, (13)

6T= yp(EX? +ZFXt Yt +GYfi ^g6* , (14)

6W = ±-f[Q(EX* +ZFXZ Yz +GY?)

-sf^x+^r) +(xzy-xyz)] aat

(12)

(15)

where H is the energy integral, T is the kinetic energy, and W is the effective

potential energy of the linearized equation of motion, respectively. Here

P = ^(P±+P\\) fQs 52+P_|_—Pfl/i is the parallel current per unit flux, and p

is the mass density inside the plasma. Also, X and Y are the contravariant com

ponents of the small displacement f defined as



O 6 0

X = v*.&
(16)

Note that the parallel curent i is zero for a low-beta plasma in the geometry (2)

<=s.vxe =-^-+ 5&-
dy ox

= i?(xz^+yz^tf--Xz1,X^-yz1,7/^) (1?)

= 0.

For a rigid perturbation

£ = (oiL,Tv)

with it (z) and v (2) arbitrary, A* and Y become

A" = V2^(u cost? + v sini?),

y = —=r{-it sini? + v cos^).

By putting (10), (12) and (18) into (14) and (15), we have 6T and 6W inside the

plasma as

6T =7nf,gf^-<p> (aW +A2), (19)

6W =™1>bS^§-{ <Q> (o2™? +t2^2) +<P> (uW' +v2tt") j (20)

where

The 1st and 2nd terms of (20) are the line-bending and driving energy, re spec-
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tiveiy. For a rigid perturbation, the vacuum contribution to the line-bending

energy is important. Kaiser et al. [3] derived the vacuum contribution to the

line-bending energy, under the assumption that a perfectly conducting wall

exists at Tf/ = if/w , as

6WV =wlfBfdz7){iL2 +v2)

where

= Z(fW/j,B) +[4(f v/fB^+B^-T2)2]1'2 +B((J+t)2
V 2{1>w/1>b) +M**/**)2 +B2{^-^)2Y/2-B{u^r)2

Now, the Lagrangian L = 6T—6W is

L= a27n//B f ^-{(^U^T^2)^}
B

—TTll/gJdz ^^-a2^?) U2 + ^^T2 +7]
B

+Ẑ Qia&'u2+TT',v2)
B

v9

(21)

and the Euler-Lagrange equation gives the rigid mode ballooning equation as

dud_
dz

1|V+71
dz

+&32^<72u-2 £Qvo"u =0 *(22)

HI. Experiment

Ballooning instabilities in the MMX have been experimentally studied by

Price et al. [l]. The standard stabilized multiple-mirror magnetic field consists

of a one meter guide field section and a series of mirror cells, as indicated in

Fig. 1. The axial field consists of a uniform solenoid and nine sharp mirrors

whose 75 cm spacing determines the cell length. Two sets of currents, a weak

and a strong quadrupole, are also present on each cell, and reverse polarities

between cells. The weak quadrupole bars extend over the midplane regions and
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provide weakly good curvature through most of the cell length. The shorter

strong quadrupoles are located near each mirror throat and provide strong good

curvature necessary to counter the effect of the mirror coils. The quadrupole

currents can be optimized to give the best average minimum-B operation [11].

Four field configurations, modified from the standard field, with varying cur

vature derive and connection lengths, are employed to experimentally investi

gate critical betas (jSc ) for ballooning. In configuration (i) the linked quadrupole

current of the multiple mirror field is varied to weaken and reverse the good

curvature in the midplane region of each cell This configuration is the standard

MMX configuration if the quadrupole currents are optimized.

In configuration (ii) the vacuum curvature is modified to create a weakly

unstable region in two adjacent cells by removing the quadrupole and mirror

current between midplanes M^ and i/34. leaving only the solenoid field, while

maintaining favorable curvature in the cells bounding this region. Weak bad cur

vature occurs in the transitions between the solenoid and the bounding good

curvature regions, similar to a tandem mirror configuration. A sketch of the

flux surfaces is given in Fig. 2. The mode amplitude is large at if23. the mid

plane in the center of the bad curvature region and much smaller at M^, a mid

plane with good curvature. The observed critical beta for configuration (ii), with

mirror ratio 3 and with reduced quadrupoles (80% of the optimized values), is

15%. The plasma motion has both radial and azimuthal components indicating

that the corresponding real and imaginary parts of the frequency are compar

able. This implies non-ideal MHD effects are comparable to ideal MHD effects.

In configuration (iii) the weak quadrupole fields are pulsed off between mid-

planes if12 and M34. The drive is larger because of the two unstabilized mag

netic mirrors within the central region of configuration (iii). A sketch of flux

surfaces is given in Fig. 3. Observed critical betas for this configuration are 10%
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for mirror ratio 3 with reduced quadrupole current (80%), and 5% for mirror

ratio 4 with full quadrupole current. Observed plasma motion is similar to that of

configuration (ii), except that the unstable motion is principally radial, indicat

ing that the imaginary part of the frequency dominates the real part.

In configuration (iv) the weak quadrupole fields are pulsed off between mir

ror throats T\ and 7*3. Unlike case (ii) and (iii), the amount of unfavorable cur

vature is strongly dependent on the azimuthal direction, with the strongly

unstable direction being vertical. A sketch of flux surfaces is shown in Fig. 4.

The observed critical beta is 10% for mirror ratio 4 and full quadrupole current.

The observed plasma motion is in the unstable direction.

IV. Computation

We modify the existing high-mode-number ballooning code (Kaiser's code)

to a rigid mode ballooning code. Kaiser's code [7] solves the eigenvalue equation

in the (^/$,z) coordinate system which has the form

dz

|VS12 Q dV
B B2 dz

po2 1VS12
B2

(23)

7=0

where VS = SyVif/ + S^W is the wave vector, and Vis the eigenfunction which

is related to the perturbed electrostatic potential (p by V±cp = i?Vj_

t \

V

B
. The

eigenfrequency cj is obtained by multiplying (23) by V and integrating along a

field line

'-* B Bz\dz df
CJ3 = T

Comparing (22) with (23), we obtain a rigid mode ballooning code by replacing

(24)
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y-^lZflL -£--> i^-oZ+ri =L,-^-|V5 l2-^2 =/, and
B B2 B f Bz B

AJL^)+(i3+u3/)u =o (25)
dz dz

The averaged quantities (p^ , (P), and ( £^ are calculated under the assump

tions that the pressure profile is isotropic and Gaussian, and that the density

depends only on ^

x ' Jq 1>b 1>bJq *

- P°^p [l c-*b/1>p\
tlj-n L J1>B

i'B

(26)

(27)

(28)

We consider configuration ii) with mirror ratio 4, and describe the code out

put with Fig. 5: figure 5a gives the field-line 2.5 cm off the axis at Mqi ; Fig. 5b

gives mod-B along the field-line; Fig. 5c gives the eccentricity of the flux surface;

Fig. 5d gives the line-bending coefficient L: Fig. 5e gives the driving coefficient

D; Fig. 5f gives the inertia coefficient I; Fig. 5g and h give the eigenfunction and

its derivative, respectively; Fig. 5i and j give the stability function (line-bending

plus driving energy) and its integrated value with respect to z, respectively; Fig.

5k and 1 give, separately, the line-bending and driving energy, respectively.

Here, we see that the system's stability is determined by the balance between
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the line-bending and driving energy, fiat is represented by the sign of the

integral of the stability function (+ for stability).

If we consider stability only for the mirror confined regions, the eigenvalues

with j5 = 0.01% are —6.007X108 for the configuration ii) with mirror ratio 3 and

reduced quadrupole current, —1.908x10s for the configuration iii) with mirror

ratio 4 and full quadrupole current, and —4.436x109 for the configuration iii)

with mirror ratio 3 and reduced quadrupole current. These results imply that

the mirror confined region is flute unstable whereas the experimental data show

that the system is flute stable. We observe that the long solenoid regions out

side the mirror confined region enhance stability by providing large inertia and

line-bending energy, and the diverging field regions near the end of the machine

enhance stability by providing very strong good driving curvature regions. So,

we consider the bllooning stability over the entire machine. We assume that the

temperature is constant and the density varies with the field intensity in such a

manner that the value of jS is maintained constant in the diverging end-field

regions, and that the pressure is maintained constant at all intermediate axial

locations, in rough agreement with experimental observations.

With the good curvature in the end regions included, all experimental

/dl
-=->0. Since the plasma
B

pressure is assumed to fall off with B2 at the ends, neither fixed nor floating

boundary condition calculations are sensitive to the exact locations of the initial

and final points of the integration. The calculations yield values of 0C within a

few percent of each other (with the fixed exceeding the floating end values).

The results for each of the four configurations studied experimentally are

given as follows.

Configuration (i): With the multiple-mirror fields that are theoretically

stable to flutes at low jff, the rigid mode ballooning code predicts stability for all

-11-
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P's up to and beyond the validity of the code. With smaller weak quadrupole

current the ballooning code predicts instability at essentially the same value of

the stabilizing current as predicted by the flute unstable result found from the

code MAFCO [12], for all values of p. There is no significant mode amplitude

ratio between stable and unstable regions at any jS, indicating that finite P bal

looning effects are not important for this configuration. These results are in

agreement with the experimental observations.

Configuration ii); the calculated transition to instability is found to be high,

giving pc = 55% for the rigid mode (pc = 22% for the high-m mode). The exper

imentally observed critical beta is /5^15%. Figure 6a-d are code output with

fic = 55%. Figure 6a is a plot of the eigenfunction with floating boundary condi

tions. Figure 6b and c are the line-bending energy and the driving energy,

respectively. Figure 6d is the stability function. From Fig. 6b, we observe the

relatively strong contribution of the solenoid regions to the line-bending energy.

From Fig. 8c, we observe that relatively strong bad curvature regions are con

centrated near Tq and T4, and strong good curvature regions near the end of

the machine, M12, and near the transition to the solenoid after Tq. From Fig. 6a

we osbserve that the mode amplitude is maximum near .M34. which is near the

center of bad curvature between the two bounding good curvature regions.

Configuration iii): The calculated transition to instability occurs at

Pc = 10% for the rigid mode (pc = 4% for high-m mode) for mirror ratio 3 and

60% reduced quadrupole current. For the same configuration with mirror ratio

4 and full quadrupole currents, ballooning occurs at Pc = 23% for rigid mode

(Pc = 7% for high-m mode). These values are contrasted with experimentally

observed critical betas of jS ^ 10% and jS^5% respectively. Figure 7a-d are

code output with P = 8%. Here we observe that relatively strong bad curvature

regions are nearly uniformly distributed from the transition to the solenoid

-12-
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before T0 to Tq, and there are very strong bad curvature regions near T2.

Strong good curvature regions are M1& near T$, the transition to the solenoid

after 7*5, and the diverging field regions at the ends of the machine. We also

observe that the mode amplitude has a broad maximum near the main bad cur

vature regions (Tz).

Configuration (iv): For this configuration, the symmetry between the 0° and

90° field lines is broken, making the analysis of this configuration quite compli

cated. Specifically the 90° field line is fiute unstable. The 0° field line possesses

very little bad curvature and is flute stable. For the rigid mode, this

configuration is unstable. The high mode calculation along the 0° line predicts

pc = 26%. Experimentally no ballooning activity was observed for minor ratio 3;

for mirror ratio 4 ballooning is observed for jfel0%; and for mirror ratio 5 bal

looning occurs at /S^7.5%.

The measured values of p and the theoretical values of jSc for each

configuration are summarized in Table I.

Figure 8 is a plot of the eigenvalue versus beta for configuration (iii) with

mirror ratio 4 and full quadrupole. The eigenvalue saturates at approximately

±3.0xl09sec~2, + for higher betas and - for lower betas. This plot shows that

the growth rate of the ballooning instability changes quite abruptly near the

critical beta.

The effect of the pressure profile on the eigenvalue is summarized in Table

2. Here, we take a magnetic field configuration which has mirror ratio 4, no

weak quadrupole between Af12 and M^, optimized quadrupoles for the other

parts of mirror regions, and solenoid regions with diverging end-field at the ends

of the machine. As a reference profile, we take a uniform pressure profile

except at the diverging end-field regions where pressure is proportional to P2.

For the profiles 2-5, pressure is either increased or decreased uniformly over

-13-
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the solenoid regions that have neutral driving effect on the average. For the

profiles 6-9, pressure is either increased or decreased uniformly over the

regions 50 cm to 280 cm (M12) and 420 cm (M&) to 870 cm, that have good driv

ing effect on the average. For profiles 10-11 the relative pressure at the begin

ning of the diverging field region is either increased or decreased.

We observe that the critical betas are slightly reduced (A/Sc <2%) for all the

profiles except the profiles 4 and 8. These results can be explained qualitatively

by observing Eq. (25). We multiply Eq. (25) by u and integrate along the field

line to obtain

\2

0>2 =
f-i**

du

dz
-Du2

(24')

f telu'

The difference in eigenvalues between the reference and the pressure weighted

profile becomes

&?f-G>f = o2

2 2
where wf and a§ are the eigenvalues for the reference and the pressure

( LEi | b(EL+ED)
EI+tLEIt Ef+bEj

weighted profiles, respectively, Ei = j.dzl*

EB s J.dz Du.2 is the driving energy, and Ej = J ,dz Iu2 is the inertia!

energy. Since we are studying the pressure weighting effects near marginal sta

bility, we set Q2 = 0, and we have

du

dz
is the line-bending energy,

2_ L{EL+ED)
2 "" E!+VE[ (29)

Since a" = 0 on the average for the solenoid region, hEB = 0 for profiles 2-5 (for

profiles 6-9, the pressure also changes in good curvature regions but the mode

amplitude changes in the opposite direction due to the change in inertia, so

-14-
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partially cancelling the effect). From the definition of L as given for Eq. (25) we

see that L is independent of pressure if the pressure is isotropic, as assumed

diLL
here. Therefore if we neglect the variartions in the eigenfunction, such that ——

does not change, then LEi = 0. We see, then, from (29) that u2 is zero, imply

ing no change in the pc of the mirror confined region. Actually, there is a small

change in the eigenfunction with pressure wieghting. So, we expect some

2

change in Pc due to A
du

dz

diverging field region has a marked effect on ballooning stability, as expected.

Y. Discussion

We have some differences between the theoretically calculated values and

the experimental observations of the critical betas Pc • The calculated values of

Pc for the rigid mode are higher than the experimental values, except for the

configuration (iv) for which the system is flute unstable in theory. Higher

predicted Pc may be accounted for by the effects not included in analysis, e.g.,

resistive effects and the breakdown of the paraxial approximation in the diverg

ing field region. Resistivity can partially decouple the driving bad curvature and

anchoring good curvature regions. Instabilities can then exist at values of p

below the ideal MHD critical P since the plasma can slip across the field without

bending the lines, thereby reducing the restoring forces. The additional decou

pling of the driving regions from the large inertia on the long connecting regions

is expected to result in increased growth rate. An estimate of the effect of resis

tivity for the experimental parameters indicates that this effect is significant

[l]. In the dierging end-field region, our calculated curvature from the paraxial

approximation is probably over-emphasized, giving higher critical betas.

The reversal of the calculated critical betas in configuration (iii), for the

mirror ratio 3 reduced quadrupole case and the mirror ratio 4 full quadrupole

-15-
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case, and the fact that the configuration (iv) is experimentally flute stable are

anomalies that have not been explained.

Detailed axial variations of pressure that may exist in the experiment have

not been included in the computed values of j8c presented in Table 1. However,

parametric numerical studies of pressure variations in various sections of the

device demonstrate that pc is not sensitive to axial pressure variations in the

solenoid but is sensitive to pressure variations in the diverging field regions.

These studies indicate that the small deviations of the actual profile from the

assumed flat profile can only make commensurately small changes in the

predicted values of pc.

In conclusion, the rigid mode ballooning calculation predicts higher critical

beta than that observed. Resistive corrections and non-rigid low-m corrections

to the rigid mode ballooning equation are expected to improve the agreement

between the theory and experiment.
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TABLE I. Summary of Configurations, Experimental and Theoretical g (percent)

Configuration Description

(i) Standard fields

(ii) No quadrupole from M-2 -M-,

T« and T3 off; reduced quad,

(iii) Pulsed off WQ from M -M3,

(a) M = 3; reduced quads

(b) M = 4; full quads

(iv) Pulsed off WQ from T- -T3

(a) M » 4; full quads

Experiment

stable

(> 25)

15

10

5

10

-18-

m = 1

55

10

23

unstable

Theory

m = °°

22

4

7

unstable (0=90°)

26 (9«0°)



pressure profile
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8
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TABLE 2

/3 (%)

16

7

6

7

16

17

10

II

16

16

17

14

15

5

6

7

8

4

5

5

10

27

30

eigenvalue

4.464 x 107

3.91 5 xlO7

I.I 31 xlO7
5.6I9XI07

3.049 XlO7
•6.688 xlO7

4.955 xlO7
-I.I77XI07
-3.293 xlO8

6.038x10'

-1.021 xlO1

6.368 xlO7
-3.619 xlO5

5.502XI07
•7.686XI07

2.246XI07
•6.770XI07

2.093XI07
-I.924XI08

5.371 xlO7
•2.3I0XI08

7.728x10

-2.757x10

average
curvature

on the pressure
weighting region

+

+

+

+

+

+
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Figure Captions

Fig. 1. Fig. 1. The experimental configuration.

Fig. 2. The flux surfaces between mirror throats T0 and Tq. The mirror and

quadrupole currents between Mjg and ^34 are removed.

Fig. 3. The flux surfaces between mirror throats T0 and Tq. The weak quadru

pole currents between M& and M^ are pulsed off.

Fig. 4. The flux surfaces between mirror throats Tq and 7*5. The weak quadru

pole currents between Tj and 7^ are turned off.

Pig. 5. Ballooning code output; explanation in text.

Fig. 6. Ballooning code output; explanation in text.

Fig. 7. Ballooning code output; explanation in text.

Fig. 8. A typical variation of the eigenvalue with respect to p.

Fig. 9. Ballooning code output; explanation in text.
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