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Abstract

The rigid mode ballooning equation, derived by Kaiser et al., is modified to
calculate the MHD growth rate in the Multiple Mirror Experiment (MMX). Numer-
ical results are compared with the experimental data of the rigid (m =1) mode
instability. In the model the pressure is taken to be isotropic and constant along
the axis, except in the diverging field regions at the ends of the machine where
the pressure falls to maintain beta constant, consistent with experimental
observations. The calculated results generally predict somewhat higher critical

betas for the rigid mode than those observed.
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I. Introduction

In the Berkeley 10 meter Multiple Mirror Experiment (MMX) geometry, the
symmetry breaking quadrupole field is weak compared to the main axisym-
metric field, and the radius of curvature of the main field is large compared with
characteristic radial lengths [1]. We therefore assume a paraxial approximation

[2] throughout the analysis.

In the MHD approximation, the high azimuthal modes are most unstable.
However, FLR corrections show that short wavelength modes are stabilized down
to mode numbers so small as to violate eikonal approximation [3,4,5,68]. For a
rigid perturbation, i.e., a pertﬁrbation in which the MHD displacement £ varies
only as a function of distance along the magnetic axis, there are no FLR effects
since ions and electrons with their different orbits still feel the same force. This

is the principal mode observed experimentally in the MMX experiment [1].

Using Newcomb's ideal MHD energy principle of the plasma in the paraxial
approximation [2], we add the inertia term to the rigid mode ballooning equa-

tion [3]. A computer code, used originally to investigate high mode number bal-

looning instability on tandem mirrors (Kaiser's code) [7], was modified to

accommodate multiple mirror configurations and rigid mode features. The
finite beta equilibrium used in the calculation includes the long-thin
modification of the mod-B surfaces but assumes no changes on the equilibrium
ellipticity from that of the vacuum fleld. The pressure is taken to be isotropic,
with a Gaussian radial profile, and constant along the axis except in the diverg-
ing fleld regions at the ends of the machine where the pressure falls to maintain
beta constant, in rough agreement with experimental observations [1]. The

temperature is assumed constant along the axis.

In Section II, we derive the rigid mode ballooning mode equation by using

the standard definitions of the flux coordinates [2,3,8,9] to describe a quadru-
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pole imposed mirror geometry, and by using Newcomb’'s MHD principle in the
long-thin geometry. In Section Ill, we describe the experimental configurations
and observations in the MMX [1]. In Section IV, we describe the code
modification from the high mode number ballooning code to the rigid mode bal-
looning code, calculate averaged quantities for the rigid mode ballooning code,
and compare the predicted result to the observed experimental data. In Section

V, we discuss our results.

. Theory

We use the standard definitions of flux coordinates (¥,9,l) to describe a
quadrupole imposed mirror geometry. The flux coordinates are chosen such

that
B =Vyxvs ’ (1)

where, ¥ is a coordinate describing the axial magnetic flux, ¥ is an angle-like
coordinate with period 27 on each ¥ surface, and ! is distance measured along a

field line on which ¥ and ¥ are constant.

For long-thin geometry, the field-line is nearly parallel to the axis of the
machine and the transformation to cartesian coordinates (z,y,2) is based on

the familiar paraxial approximation [2,3,7,9]

z = V2¢ o(z)cos,
y = V2¢ 7(z)sin®,
z =1, (®)

where 0 and T satisfy

_0=zy) _ 1
0T ) = B (3)

Note that the functional rotation between (z,y) and (¥,9) can also be written as
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%Z-= Bys, %Z—= Bz,

2 - -my, g—";-= Bz, (4)

where, the subscripts denote partial derivatives with respect to the indicated

variables. By choosing contravariant basis vectors as (V¢,79,2), ie.,

Vy = [%%'- %’] = B(y‘ﬂa—z'd)

= ﬂ(‘—r cos¥,0sin),
oT

89 98| _
[az rF.y_] - B("'y*,x-*)

1
vVevyor

&)

(8)

(—Tsind,ocos V),

the covariant basis vectors become

T = =B 2B xW = (z4.Yy)

_ 1 . ()
= Fw-(o cos¥,2sinv),

¥ = B2EXW = (z4,Y5)

(8)
= V2y(~osind, rcosv).

The covariant metric tensor is given as

EFOQ
E[FGO] (9)
001

where



E = @.u = B~39.V,
F =T = =B~ %yy.-v, (10)
G =07 = B~3Vy-Wy.

The covariant components of the curvature vector are given by

K= (Tz2,Yzz) = KyVY + K63V (11)
where

Ky = KU = TyTzz + Yylzz»
(12)
Kg =BV = TyZzz + YoYzz»

The quantities &y and &y are the normal and the geodesic curvatures, respec-
tively. |

For a finite beta plasma, we assume no change in equilibrium ellipticity
from that of the vacuum geometry described by (2). W. A. Newcomb [2]. derived

the ideal MHD energy principle of the plasma in the long-thin approximation

6H = 6T+6W =0, (13)

6T = Lfp(Bx7 + 27X, Y, + Gv7) 2480, (14)

oW = é—f[cg(z«:x,2 +2FX, Y, + GY?)
(15)

28X (X v ) + (4 Y-x7,)] SVPE

where H is the energy integral, T is the kinetic energy, and ¥ is the effective

potential energy of the linearized equation of motion, respectively. Here

P= é—(P 1+P), @ = B?*+P L—P),% is the parallel current per unit flux, and p

is the mass density inside the plasma. Also, X and Y are the contravariant com-

ponents of the small displacement £ defined as

(03]
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X = VY-,
(18)
Y = V9-F.

Note that the parallel curent % is zero for a low-beta plasma in the geometry (2)

. _ _ Oz, Y.

i=6Yxb = By + %
= B(ZyTytYzyYo—Tz9Ty—YzoYy) (17)
= 0.

For a rigid perturbation
&= (ou,mv)

with u(2z) and v (2) arbitrary, X and Y become

X = V29(u cos¥ + v sind),

o - (18)
Y= @-(—u sin®¥ + v cos ).

By putting (10), (12) and (18) into (14) and (15), we have 6T and 6 W inside the

plasma as

8T = myp [ L<p> (Puf + 7P), (19)

6W = myg f %{ <@> (d*uf + ™) + <P> (ufoo” + v3171")]  (20)

where
= [TPay
(@=J, 70
= [Pdy
(Py= [, P
¥
= [?3Yy
(oY= J, el

The 1st and 2nd terms of (20) are the line-bending and driving energy, r:espec—

"
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tively. For a rigid perturbation, the vacuum contribution to the line-bending
energy is important. Kaiser et al. [3] derived the vacuum contribution to the
line-bending energy, under the assumption that a perfectly conducting wall

existsat ¥ =¥y, as

6W, = myp [dzn(us + v2) (21)
where

_ RWw/¥p)+[4(¥w/ ¥ )2+ BA(P—T*P]/ 2 + B(o+T1)?
2(¥y/Vg) + [4(Wy/ ¥5)? + B¥(0?~1R)2]V 2-B (a+7)?

Now, the Lagrangian L= 07 -6 W is

L= oPryp [ o) p)

@2y,

B

uf + v2

"1T¢Bf dz[[ﬁ%iozm

+2 g%2(00'"z.l.2+'r'r’"u2)

and the Buler-Lagrange equation gives the rigid mode ballooning equation as
d r d'u 2 - P ) - R
El[ggl"z*"” e %z-ozu Zggzaau-o (22)

Ol. Experiment

Ballooning instabilities in the MMX have been experimentally studied by_

Price et al. [1]. The standard stabilized multiple-mirror magnetic field consists
of a one meter guide fleld section and a series of mirror cells, as indicated in
Fig. 1. The axial field consists of a uniform solenoid and nine sharp mirrors
whose 75 cm spacing determines the cell length. Two sets of currents, a weak
and a strong quadrupole, are also present on each cell, and reverse polarities

between cells. The weak quadrupole bars extend over the midplane regions and



provide weakly good curvature through most of the cell length. The shorter
strong quadrupoles are located near each mirror throat and provide strong good
curvature necessary to counter the effect of the mirror coils. The quadrupole

currents can be optimized to give the best average minimum-B operation [11].

Four fleld configurations, modified from the standard fleld, with varying cur-
vature derive and connection lengths, are employed to experimentally investi-
gate critical betas (8;) for ballooning. In configuration (i) the linked quadrupole
current of the mult.iple mirror fleld is varied to weaken and reverse the good
curvature in the midplane region of each cell. This conflguration is the standard

MMX confliguration if the quadnipole currents are optimized.

In configuration (ii) the vacuum curvature is modifled to create a weakly
unstable region in two adjacent cells by removing the quadrupole and mirror
current between midplanes M5 and Mg,, leaving only the solenoid fleld, while
maintaining favorable curvature in the cells bounding this region. Weak bad cur-
vature occurs in the transitions between the solencid and the bounding good
curvature regions, similar to a tandem mirror configuration. A sketch of the
flux surfaces is given in Fig. 2. The mode amplitude is large at M2, the mid-
plane in the center of the bad curvature region and much smaller at M5, a mid-
plane with good curvature. The observed critical beta for configuration (ii), with
mirror ratio 3 and with reduced quadrupoles (80% of the optimized values), is
16%. The plasma motion has both radial and azimuthal components indicating
that the corresponding real and imaginary parts of the frequency are compar-
able. This implies non-ideal MHD effects are comparable to ideal MHD effects.

In configuration (iii) the weak quadrupole fields are pulsed off between mid-
planes M3 and Mg4. The drive is larger because of the two unstabilized mag-
netic mirrors within the central region of configuration (iii). A sketch of flux
surfaces is given in Fig. 3. Observed critical betas for this configuration are 10%
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for mirror ratio 3 with reduced quadrupole current {80%), and 5% for mirror
ratio 4 with full quadrupole current. Observed plasma motion is similar to that of
configuration (ii), except that the unstable motion is principally radial, indicat-

ing that the imaginary part of the frequency dominates the real part.

In configuration (iv) the weak quadrupole fields are pulsed off between mir-
ror throats 7'y and T3. Unlike case (ii) and (iii), the amount of unfavorable cur-
vature is strongly dependent on the azimuthal direction, with the strongly
unstable direction being vertical. A sketch of flux surfaces is shown in Fig. 4.
The observed critical beta is 10% for rnir;or ratio 4 and full quadrupole current.

The observed plasma motion is in the unstable direction.

IV. Computation

We modify the existing high-mode-number ballooning code (Kaiser's code)
to a rigid mode ballooning code. Kaiser's code [7] solves the eigenvalue equation
in the (¥,9,2) coordinate system which has the form

o [1vs512 @ av],loe? |vS|?
o0z B B® 9z| |B® B

8(PL+P)) S» -
+ a’W B (S.,’ICﬁ,—S.wICﬂ) V=0

(23)

where VS = SuVy + S3V¥ is the wave vector, and V is the eigenfunction which

is related to the perturbed electrostatic potential ¢ by Vo = BV J_[%] The

eigenfrequency @ is obtained by multiplying (23) by V and integrating along a
field line

f

tdz | ° _aPL+P
S ivs i gay - AEL P Sﬂ(sw-sm)Vj

2" B Cd dd

1

dz 2
= -E—IB2 VS |21
Comparing (22) with (23), we obtain a rigid mode ballooning code by replacing

%) (24)
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V—)u,wglz 57 <Q>0'2+77 L,-LIVSI2 g-"1202 I, and

3(P_|_ + PH) S.g p
v B

—{(Sory—Syks)»—R g——zo '=D

—{ —]+(D+wzl)u =0 (25)

The averaged quantities {p ), { P), and { @ ) are calculated under the assump-
tions that the pressure profile is isotropic and Gaussian, and that the density

depends only on ¥

<P> fWBP—’BL Pof B "!"/f’pd,‘p

(26)
_ Pgyp /% ]
- 1 —e B P
(7]
(pd= M”—{l oo/ ¥] 27)
= (Y2 gedy _ (Y2 gz opydY
(= [, B*5E= [, (Bi-2P) &
(28)

= Bj—2P, i—;-{l —e -#,B/V]

We consider configuration ii) with mirror ratio 4, and describe the code out-
put with Fig. 5: figure 5Sa gives the field-line 2.5 cm off the axis at My, ; Fig. 5b
gives mod-B along the field-line; Fig. 5c gives the eccentricity of the flux surface;
Fig. 5d gives the line-bending coefficient L: Fig. 5e gives the driving coefficient
D; Fig. 5f gives the inertia coefficient I; Fig. 5g and h give the eigenfunction and
its derivative, respectively; Fig. 5i and j give the stability function (line-bending
plus driving energy) and its integrated value with respect to z, respectively; Fig.
5k and 1 give, separately, the line-bending and driving energy, respectively.

Here, we see that the system's stability is determined by the balance between
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the line-bending and driving energy, tiat is represented by the sign of the

integral of the stability function (+ for stability).

If we consider stability only for the mirror confined regions, the eigenvalues
with 8 = 0.01% are —8.007x10® for the configuration ii) with mirror ratio 3 and
reduced quadrupole current, —1.908%10? for the configuration iii) with mirror
ratio 4 and full quadrupole current, and —4.436x10° for the configuration iii)
with mirror ratio 3 and reduced quadrupole current. These results imply that
the mirror confined region is flute unstable whereas the experimental data show
that. the system is flute stable. We observe that the long solenoid regions out-
" side the mirror confined region enhance stability by providing large inertia and
line-bending energy, and the diverging field regions near the end of the machine
enhance stability by providing very strong good driving curvature regions. So,
we consider the bllooning stability over the entire machine. We assume that the
temperature is constant and the density varies with the field intensity in such a
manner that the value of § is maintained constant in the diverging end-field
regions, and that the pressure is maintained constant at all intermediate axial

locations, in rough agreement with experimental observations.
With the good curvature in the end regions included, all experimental

configuration satisfy the flute stability criterion; ¢ f %—DO. Since the plasma

pressure is assumed to fall off with B? at the ends, neither fixed nor floating
boundary condition calculations are sensitive to the exact locations of the initial
and final points of the integration. The calculations yield values of 8, within a
few percent of each other (with the fixed exceeding the floating end values).

The results for each of the four configurations studied experimentally are

given as follows.

Configuration (i): With the multiple-mirror fields that are theoretically

stable to flutes at low 8, the rigid mode ballooning code predicts stability for all

-11-



f's up to and beyond the validity of the code. With smaller weak quadrupole
current the ballooning code predicts instability at essentially the same value of
the stabilizing current as predicted by the flute unstable result found from the
code MAFCO [12], for all values of 8. There is no significant mode amplitude
ratio between stable and unstable regions at any £, indicating that finite 8 bal-
looning effects are not important for i:his configuration. These results are in

agreement with the experimental observations.

Configuration ii); the calculated transition to instability is found to be high,
giving 8, = 55% for the rigid mode (8; = 22% for the high-m mode). The exper-
imentally observed critical beta is §215%. Figure Ba-d are code output with
f. = 55%. Figure 6Ba is a plot of the eigenfunction with floating boundary condi-
tions. Figure 6b and c are the line-bending energy and the driving energy,
respectively. Figure 6d is the stability function. From Fig. 6b, we observe the
relatively strong contribution of the solenoid regions to the line-bending energy.
From Fig. 8c, we observe that relatively strong bad curvature regions are con-
centrated near Tg and T4, and strong good curvature regions near the end of
the machine, M 15, and near the transition to the solenoid after T's. From Fig. 8a
we osbserve that the mode amplitude is maximum near Mg3,, which is near the

center of bad curvature between the two bounding good curvature regions.

Configuration iii): The calculated transition to instability occurs at
B. = 10% for the rigid mode (8, = 4% for high-m mode) for mirror ratio 3 and
807% reduced quadrupole current. For the same configuration with mirror ratio
4 and full quadrupole currents, ballooning occurs at 8, = 23% for rigid mode
(Bc = 7% for high-m mode). These values are contrasted with experimentally
observed critical betas of §= 10% and B = 5% respectively. Figure 7a-d are
code output with 8 = 8%. Here we observe that relatively strong bad curvature

regions are nearly uniformly distributed from the transition to the solenoid



before Ty to Ts, and there are very strong bad curvature regions near To.
Strong good curvature regions are M5, near T, the transition to the solenoid
after Ts5, and the diverging field regions at the ends of the machine. We also
observe that the mode amplitude has a broad maximum near the main bad cur-

vature regions (Tg).

Configuration (iv): For this configuration, the symmetry between the 0° and
80° field lines is broken, making the analysis of this configuration quite compli-
cated. Specifically the 90° field line is flute unstable. The 0° field line possesses
very little bad curvature and is flute stable. For the rigid mode, this
configuration is unstable. The high mode calculation along the 0° line predicts
Bc. = 267%. Experimentally no ballooning activity was observed for minor ratio 3;
for mirror ratio 4 ballooning is observed for $=107%; and for mirror ratio 5 bal-

looning occurs at §=7.5%.

The measured values of 8 and the theorstical values of f§; for each

configuration are summarized in Table 1.

Figure 8 is a plot of the eigenvalue versus beta for configuration (iii) with
mirror ratio 4 and full quadrupole. The eigenvalue saturates at approximately
+3.0x10%ec™?, + for higher betas and - for lower betas. This plot shows that
the growth rate of the ballooning instability changes quite abruptly near the

critical beta.

The effect of the pressure profile on the eigenvalue is summarized in Table
2. Here, we take a magnetic fleld configuration which has mirror ratio 4, no
weak quadrupole between M and Mgy, optimized quadrupoles for the other
parts of mirror regions, and solenoid regions with diverging end-field at the ends
of the machine. As a reference profile, we take a uniform pressure profile
except at the diverging end-field regions where pressure is proportional to ﬁz.

- For the profiles 2-5, pressure is either increased or decreased uniformly over

-13-



the solenoid regioné that have neutral driving effect on the average. For the
profiles 6-9, pressure is either increased or decreased uniformly over the
regions 50 cm to 280 em (M) and 420 cm (Ma3,) to 870 cm, that have good driv-
ing effect on the average. For profiles 10-11 the relative pressure at the begin-

ning of the diverging field region is either increased or decreased.

We observe that the critical betas are slightly reduced (Ag, <2%) for all the
profiles except the profiles 4 and 8. These results can be explained qualitatively
by observing Eq. (25). We multiply Eq. (25) by » and integrate along the field

Letfef o4
P2 1192 | (24)

f_: dzJu?

line to obtain

The difference in eigenvalues between the reference and the pressure weighted

profile becomes

AE; | A(EL+Ep)
E1+AE[J Er+AE;

2

wq 2

~of = of

where wlz and 022 are the eigenvalues for the reference and the pressure

] 2
weighted profiles, respectively, B} = f _ldzL %] is the line-bending energy,

t !
Ep Ef_ldz Du® is the driving energy, and E; Ef-ldz Iu? is the inertial
energy. Since we are studying the pressure weighting effects near marginal sta-

bility, we set wf = 0, and we have

2 A(EL +Ep)

@2 = E+VE; (29)

Since 0" = 0 on the average for the solenoid region, AEp = O for profiles 2-5 (for
profiles 8-9, the pressure also changes in good curvature regions but the mode

amplitude changes in the opposite direction due to the change in inertia, so

[ g
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partially cancelling the effect). From the definition of L as given for Eq. (25) we

see that L is independent of pressure if the pressure is isotropic, as assumed

. . d
here. Therefore if we neglect the variartions in the eigenfunction, such that E:_

does not change, then AE;, = 0. We see, then, from (29) that w2 is zero, imply-
ing no change in the ; of the mirror confined region. Actually, there is a small

change in the eigenfunction with pressure wieghting. So, we expect some

d'u.‘z
d.z‘ )

change in 8, due to A Changing the pressure in the good curvature

diverging field region has a marked effect on ballooning stability, as expected.

V. Digcussion

We have some differences between the theoretically calculated values and
the experimental observations of the critical betas 8;. The calculated values of
B for the rigid mode are higher than the experimental values, except for the
configuration (iv) for which the system is flute unstable in theory. Higher
predicted 8, may be accounted for by the effects not included in analysis, e.g.,
resistive effects and the breakdown of the paraxial approximation in the diverg-
ing fleld region. Resistivity can partially decouple the driving bad curvature and
anchoring good curvature regions. Instabilities can then exist at values of f
below the ideal MHD critical # since the plasma can slip across the field without
bending the lines, thereby reducing the restoring forces. The additional decou-
pling of the driving regions from the large inertia on the long connecting regions
is expected to result in increased growth rate. An estimate of the effect of resis-
tivity for the experimental parameters indicates that this effect is significant
[1]. In the dierging end-field region, our calculated curvature from the paraxial

approximation is probably over-emphasized, giving higher critical betas.

The reversal of the calculated critical betas in configuration (iii), for the

mirror ratio 3 reduced quadrupole case and the mirror ratio 4 full quadrupole

-15-



case, and the fact that the configuration (iv) is experimentally flute stable are

anomalies that have not been explained.

Detailed axial variations of pressure that may exist in the experiment have
not been included in the computed values of §; presented in Table 1. However,
parametric numerical studies of pressure variations in various sections of the
device demonstrate that §; is not sensitive to axial pressure variations in the
solenoid but is sensitive to pressure variations in the diverging field regions.
These studies indicate that the small deviations of the actual profile from the
assumed flat profile can only make commensurately small changes in the

predicted values of §..

In conclusion, the rigid mode ballooning calculation predicts higher critical
beta than that observed. Resistive corrections and non-rigid low-m corrections
to the rigid mode ballooning egquation are expected to improve the agreement

between the theory and experiment.
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TABLE I. Summary of Configurations, Experimental and Theoretical Bc (percent)

Experiment Theory
Configuration Description m=1 m=®
(1) Standard fields - stable - -
(> 25)
(ii) No quadrupole from M12-M34 ‘
T2 and T3 off; reduced quad. 15 55 22
(1ii) Pulsed off WQ from M12"M34
(a) M = 3; reduced quads ' 10 10 4
(b) M = 4; full quads 5 23 7
(iv) Pulsed off WQ from Tl-T3
(a) M = 4; full quads 10 unstable unstable (8=90°)

26 (6=0°)
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TABLE 2

aver?ge
pressure profile |B(%)| eigenvalue on fhe pressure
weighting region
7
l st _wir_ sol 16 4.464 %10 0
650 100 soo sod] 17 3.915x107
16 I.131 %107
2 17 -5.619 X107 0
16 3.049 X107 0
3 7 | -6.688x107
10 4.955 %107
4 il -1.177 xlo: 0
16 -3.293 %10
16 6.038x10° o
S 17 -1021x10°
) sol sol 14 6.368 X|07
6 '-H qond good N 15 -3.619%10° +
- eeskoakg T T
- I5 5.502% 107
T — LT\ | 6 ~7.686X107 +
3 7 2.246x107
81, | 8 | -6.770x107 +
! - 14 2.093%x107
9 9.2(.! ____ g — q | s -1.924x10°® +
| T
- 5 5.371x10
0 sz a2 | 10 | -2.310xI0° +
; 27 7.728x10°®
' []
” Co 8;? 30 | -2.757xI0® +
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Figure Captions

1. Fig. 1. The experimental configuration.

2. The flux surfaces between mirror throats I'g and T5 The mirror and
quadrupole currents between M ;5 and M3, are removed.

3. The flux surfaces between mirror throats Ty and 75 The weak quadru-
pole currents between M ;5 and M3, are pulsed off.

4. The flux surfaces between mirror throats Tg and T5. The weak quadru-
pole currents between T'; and T5 are turned off.

5. DBallooning code output; explanation in text.

6. Ballooning code output; explanation in text.

7. Ballooning code output; explanation in text.

8. A typical variation of the eigenvalue with respect to f.

9. Ballooning code output; explanation in text.
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