Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

CHARACTERIZATION AND MODELING OF POSITIVE PHOTORESIST

by

D. J. Kim

Memorandum No. UCB/ERL M84/65
17 August 1984

CHARACTERIZATION AND MODELING OF POSTTIVE PHOTORESIST

Deok Jung Kim
Ph.D. Dissertation
Department of Electrical Engineering and Computer Science

William G. Oldham
Chairman of Committee

Abstract

This thesis meets the problems of photoresist characterization by (1) introduction of a flexible, physically-based, model for the development behavior and (2) construction of a measurement system for precise determination of exposure and development parameters.

The model describes the development of positive photoresist over the full range of exposure. The model includes the depth dependence of development rate and is capable of fitting measured data of all resists examined to date.

Several types of photoresist and developer systems have been characterized under a number of processing conditions using the measurement systems. The effects of the development model parameters on developed resist profiles are illustrated using simulation. Furthermore, a simple design algorithm is introduced to enable the selection of process condition to achieve specific desired linewidth and edge slopes.

To my Father and Mother

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to professor William G. Oldham for his guidance, enthusiasm, and support throughout this research. I would like to thank professor Andrew R. Neureuther for his support and helpful discussion and to professor Eugene E. Haller for his reading this thesis.

Several fellow students gave needed assistance, especially Sharad Nandgaonkar in the SAMPLE group. I am also be grateful to all members of Electron Research Laboratory, particularly Dorothy McDaniels, Donald Rogers, Robert Hamilton, and Kim Chan. The assistance from the people in machine shop was very helpful.

The patience, encouragement, and support from my parents in Korea are fully appreciated. Without their understanding this work could not be completed. Finally, I wish to thank my wife for her every support at home.

[^0]
TABLE OF CONTENTS

Chapter 1 Introduction

1.1 Introductory Remarks
1.2 Resist Materials and Processing
1.3 Photolysis of Positive Photoresist

Chapter 2 Measurement Systems for Resist Characterization
2.1 Introduction
2.2 Exposure System
2.3 Development System

Chapter 3 Development of Positive Photoresist (34)
3.1 Introduction
3.2 Dissolution Rate Equation
3.3 Derivation of Model Parameters
3.4 Resist Development
3.5 Resist Contrast

Chapter 4 Surface Rate Retardation

4.1 Introduction
4.2 Functional Characterization of Surface Rate Retardation
4.3 Surface Rate Control

Chapter 5 Design Algorithm for Resist Features

5.1 Introduction
5.2 Simplified Development Algorithm
5.3 Design Algorithm
5.4 Results

Appendices

A The BASIC Program for Exposure

B The BASIC Program for Development

C Resist Parameter Tables

D Example of Resist Profile Simulation (SAMPLE)

E The FORTRAN Program for the Design Algorithm

CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

The lack of a quantitative characterization of photoresist has inhibited the full potential of high resolution optical lithography. An analytic model and its parameters which completely describe resist behavior are useful in various ways from measuring quantitative differences between different resist processes to simulation of resist profiles under a number of process conditions. This thesis introduces a comprehensive development model and an accurate measurement system for resist characterization. It also presents a large amount of resist data and describes a design algorithm for resist features.

The first chapter is an introduction starting with a brief description of the photoresist materials. The photoresist's composition and its general processing in pattern transfer will be described. It is followed by a discussion of the photochemistry which is involved in resist exposure to U.V. light.

Chapter 2 discusses the details of the experimental technique to obtain the information about the photoresists. It is separated into two parts: exposure and development. Exposure is an optical process which alters the photoresist. Development is a surface dissolution process which removes the photoresist at a rate which depends upon the degree of alteration. The measurement systems will be described. They are entirely computer-controlled by software. Details about the software will also be discussed.

In Chapter 3 an engineering model which describes the resist development behavior is introduced. The model includes the depth dependence of resist development as well as exposure dependence. Several resists are characterized. The model equation is fitted to the development rate data, showing good agreement between the theory and the experiment. Using the model parameters the resist profiles are simulated under a number of different processing conditions. Also the resist contrast is demonstrated for various types of resist and developer systems.

Chapter 4 deals with the rate variation at or near the resist surface, previously observed by several authors. ${ }^{1,2}$ In this chapter the rate variation will be divided into two categories: "surface-induction" and "surfaceretardation". The surface-induction is defined as a simple time delay at the resist surface before significant dissolution occurs, and the surfaceretardation is defined as a continuous slowing down of the development rate near the resist surface. Some photoresists exhibit a strong surface-rate-retardation. The possible physical mechanism for the surfaceretardation will be discussed.

Finally, Chapter 5 introduces an algorithm for design. Normally resist profiles have been easily simulated for a given resist and developer system using SAMPLE. ${ }^{3}$ The design algorithm enables us to obtain a recipe for a desired resist profile by rapidly simulating a variety of resist processing conditions. In this chapter an efficient way of finding the right process for a resist slope given by a user will be described.

1.2 Resist Materials and Processing

Positive photoresist consists mainly of three components: sensitizer, resin, and solvent. The sensitizer is photoactive compound (PAC) and becomes reactive after the absorption of the light energy, typically at U.V. wave length. After the absorption of the light energy the PAC molecule is said to be in the 'excited' state. In this state, no physical change has occurred but the molecule is capable of undergoing reaction which would be unlikely to occur at its normal state. The reaction depends upon the types of resist and its environmental conditions.

The base resin is an organic material which is not sensitive to U.V. exposure. The primary functions of the resin are film making and etch resistance. The solvent keeps the sensitizer and resist system in a liquid form for easy application. In addition to these materials the resist system can incorporate additives, for example, as preservatives or as adhesion promoters.

Typical photoresist processing is illustrated in Fig. 1.2.1. The photoresist is spread on a substrate by means of a spinner. The spinning speed and time are selected in order to produce a uniform resist coating over the entire substrate. After application the resist is still soft because it contains a large amount of solvent. This solvent is mostly evaporated at the prebaking step. The prebake conditions vary from $70^{\circ} \mathrm{C}$ for an hour to $120^{\circ} \mathrm{C}$ for 45 seconds depending upon the resist type and the baking equipment used.

After the prebake the resist is exposed to U.V. light. For an image transfer onto resist a mask is placed between the light source and the resist. The amount of exposure dose directly affects the resist development behavior by destroying the photoactive compound in the resist.

The exposed resist is dissolved in a developer. The resist performance is greatly affected by both the types of developer solutions and development temperature.

There may be additional steps before the development. In some cases the resist surface treatment before or after the exposure alters the resist behavior resulting in a special image profile for certain applications. ${ }^{4,5}$ An additional baking step after exposure and before developmentmay also affect the resist features through diffusion of the PAC. After the development the resist is often baked again at higher temperature for better adhesion.

1.3 Photolysis of Positive Photoresist

This section describes the photochemical reaction of positive-working photoresist. Most commercially available positive photoresists involve the use of naphthoquinone diazide. Further details can be found in the references. ${ }^{6-8}$

After the evaporation of the solvent the resist primarily consists of sensitizer (PAC) and resin. For positive resist the sensitizer is one of the derivatives of compounds variously called diazo oxide or orthoquinone diazide. The sensitizer has a chernical structure as shown in Fig. 1.3.1.

Fig. 1.3.2 shows the summary of the photochemical decomposition of positive photoresist. When the resist is exposed to U.V. light the PAC absorbs the light energy and immediately transforms into ketene by releasing nitrogen gas. This ketene is very reactive. At room temperature it experiences two types of reactions depending upon the atmosphere. In the normal humid environment the ketene is transformed into
carboxylic acid. By the presence of this acid the resist is very soluble in an aqueous basic developer. If the photoresist is exposed in vacuum atmosphere where there is no water available the ketene reacts with the resin and forms an ester. This product is not very soluble in normal type of developer. In unexposed resist the resin is rendered less soluble by a local cross-linking between the sensitizer and resin in basic atmosphere.

Under practical development conditions the exposed areas are developed very fast and the unexposed areas are developed even slower resulting in a high contrast image. As an example, for AZ1350J positive resist the dissolution rate of the resin only is about 10 to $20 \mathrm{~nm} / \mathrm{sec}$. With the sensitizer the rate is reduced to below $1 \mathrm{~nm} / \mathrm{sec}$. In contrast the rate for exposed resist increases to above $200 \mathrm{~nm} / \mathrm{sec}$ due to the large amount of carboxylic acid present in the resist. As implied in Fig. 1.3.2 the development rate can be described as a function of the amount of the transformation from sensitizer to carboxylic acid. Thus it is important to exactly determine the amount of the photo-produced acid (PPA). The amount of PPA can be experimentally determined normalized to the initial concentration of sensitizer(PAC). The normalized concentration of PAC remaining after the exposure which is denoted M can be calculated by measuring the transmittance as a function of exposure time. The measurement technique and experimental apparatus are discussed in next chapter.

References

1. A.R.Neureuther, "Resist Profile Quality and Linewidth Control", Symposium on Silicon Processing, Jan., 19-22, 1982
2. D.C.Hofer, C.G.Wilson, A.R.Neureuther, and M.Hakey, "Characterization of the Induction Effect at Mid UV Exposure: Application to AZ2400 at 313 nm", SPIE Vol. 334, Optical Microlithography, Paper No. 26, Mar., 1982
3. W.G.Oldham, S.N.Nandgaonkar, A.R.Neureuther, and M.M.O'Toole, "A General Simulator for VLSI Lithography and Etching Process", IEEE Trans. ED-26 No.4, April 1979
4. M.Hatzakis, B.J.Canavello, and J.M.Shaw, "Single-Step Optical Lift-Off Process", IBM J. Res. develop. Vol 24, No.4, July 1980
5. R.M.Halverson, M.W.MacIntyre, and W.T.Motsiff, "The Mechanisms of Single-Step Liftoff with Chlorobenzene in a Diazo-Type Resist", IBM J. Res. develop. Vol 26, No.5, Sept., 1982
6. W.S.DeForest, "Photoresist Materials and Process", McGraw Hill Book Co., 1975
7. J.Pacansky and J.Lyrea, "Photochemical Decomposition Mechanism for AZ-Type Photoresists", 24-42, IBM J. Res. develop, 1979
8. KODAK Micro Positive Resist 809, seminar in print, Eastman KODAK company, 1977

RESIST PROCESSING

Fig. 1.2 .1

POSITIVE PHOTORESIST

P.A.C. : DIAZO OXIDE ORTHOQUINONE DIAZIDE

Fig. 1.3.1

PHOTO DECOMPOSITION

ESTER

Fig. 1.3.2

CHAPTER 2

MEASUREMENT SYSTEMS FOR RESIST CHARACTERIZATION

2.1 Introduction

Various authors ${ }^{1-4}$ have reported the measurement systems for the characterization of photoresist. The first of these, the IOTA system designed by Konnerth and Dill ${ }^{1,2}$ is elegant and accurate. However, the IOTA instrument is not commercially available, and the data acquisition time is limited by the technique used of wavelength scanning. Recently Perkin-Elmer ${ }^{5}$ announced a multichannel development rate monitoring system. It should be available sometime in 1984.

The following describes an entirely computer controlled measurement system which is accurate, simple, inexpensive, and has a high data acquisition rate. The measurement system is separated into two parts : the exposure system and the development system. The exposure system is based on Dill's analysis of the exposure of positive photoresist ${ }^{6}$. The transmittance variation during exposure is used to define the state of the resist. The data are recorded via an IBM/PC. The exposure parameters A, B, and C, and the status tag, M, (normalized concentration of PAC remaining in the exposed resist) are computed. The development system utilizes a $\mathrm{He}-\mathrm{Ne}$ laser at 633 nm . It measures the film thickness inteferometrically and the reflectivity from the resist film is recorded on the IBM/PC during the development. The program for the development automatically finds the dissolution rate at any depth in the resist.

2.2 Exposure System

In the original work of Dill et al^{6} the exposure of positive photoresist was described by three parameters (A, B, C) and a status tag M (normalized concentration of PAC). For a resist film on a glass substrate whose refractive index is matched to that of resist the light intensity change, $\Delta \mathrm{I}$, within a resist thickness, $\Delta \mathrm{x}$, is simply given by

$$
\begin{equation*}
\frac{\partial I(x, t)}{\partial x}=-\alpha I(x, t) \tag{2.2.1}
\end{equation*}
$$

where α is the absorption coefficient of the medium. For positive photoresist α is given by

$$
\begin{equation*}
\alpha=A M(x, t)+B \tag{2.2.2}
\end{equation*}
$$

where A is the absorption coefficient of the bleachable components and B is the absorption coefficient of the non-bleachable components. $M(x, t)$ is given by

$$
\begin{equation*}
M(x, t)=\exp \left(-C \int_{0}^{t} I\left(x, t^{\prime}\right) d t^{\prime}\right) \tag{2.2.3}
\end{equation*}
$$

where C is a light sensitivity parameter. PAC decays exponentially with the dose as seen in equation (2.2.3). Equations (2.2.1) and (2.2.3) can also be solved for $I(x, t)$ and $M(x, t)$ by straightforward numerical integration once A, B, C and $I(0, t)$ are specified.

These A,B,C parameters are directly determined from the transmittance data for a bleached resist. The internal transmittance, T, of a resist film is given by integrating equation (2.2.1) as

$$
\begin{equation*}
T(t)=\exp \left(-\int_{0}^{d}(A M(x, t)+B) d x\right) \tag{2.2.4}
\end{equation*}
$$

where the integration extends over the resist thickness, d. This leads to a set of asymptotic relations for A, B, and C parameters based upon the transmittance of a resist film at the beginning and the end of full exposure, and the initial rate of change of the transmittance.

$$
\begin{align*}
& A=\frac{1}{d} \ln (T(\infty) / T(0)) \tag{2.2.5}\\
& B=\frac{1}{d} \ln T(\infty) \tag{2.2.6}\\
& C=\frac{A+B \quad d T(0)}{A I(0, t) T(0)(1-T(0)) d t} \tag{2.2.7}
\end{align*}
$$

Instrumentation

A schematic diagram for the exposure system to measure A, B, and C parameters is shown in Fig. 2.2.1. A mercury lamp is used as exposure light source with 200 watt power supply. The exposure beam is carefully aligned to produce the maximum uniform intensity at the surface of a resist sample. An optical filter with narrow band pass at $436 \pm 0.5 \mathrm{~nm}$ is used for monochromatic illumination. This monochromatic light passes through the beam splitter (a thin glass substrate) and exposes the resist film. The intensity of the beam transmitted through the resist sample is detected by the signal diode and recorded in the computer. In general, the source light intensity varies with time. To monitor the source the light reflected from a beam splitter is detected by another photodiode. This reference beam intensity is also recorded in the computer.

The output current of the photodiode is first converted to voltage with a simple trans-resistance amplifier. A calibrated photodiode is used
for the light intensity measurement at the input of the amplifier. Typically, the noise level is less than 2 mV at the gain of 20 Mohm . The output of the amplifier goes to an A/D converter within the IBM P/C hardware.

Software

The program codes written in BASIC for the exposure measurement system are EXPOSE.BAS and ABCMX.BAS. The following describes the functions of each program. The listings of these programs are found in Appendix A.

EXPOSE.BAS
The function of the EXPOSE.BAS is shown as block diagrams in Fig. 2.2.2. Each block controls two A/D converters ${ }^{7}$ simultaneously at a preset time interval and collects the intensities from both the signal diode and the reference diode. In the first block the light intensity at the position of resist surface is measured without a resist sample. The average intensity ratio of signal to reference is calculated. In the second block the reflectance at the resist surface is similarly measured by taking transmitted intensity with a blank substrate. In the third block the transmittance with a resist sample is measured. The resist film on a substrate with matched index of refraction is placed on the sample holder. The shutter is opened for a desired exposure time. This routine allows data collection up to 10 different periods with different time interval in each period. The time interval and the number of data points can be given for a flexible data collection: more data points for fast-varying signal and less data points for slow-varying signal. For the complete bleaching of resist, for instance, one can separate data collection into three different periods: the first period with small time interval (minimum is
0.02 sec), the second period with an intermediate, and the third period with large time interval (maximum is 99 sec). This flexibility is useful for a small computer which is slow and has limited memory space. The transmitted signal intensity and the reference intensity at the resist surface (air) are stored for the calculation of A, B, C parameters and M value at every depth of the resist.

ABCMX.BAS

This program calculates transmittance from the data stored by EXPOSE.BAS. Then, with known resist thickness (The resist thickness is measured by the development rate measurement system which will be discussed in next section), it calculates A, B, C parameters and M value at any position within the resist film. The main features of the ABCMX.BAS are shown in Fig. 2.2.3.

The stored data are read first and the exact amount of exposure dose is calculated by integration of the light intensity with respect to time during the shutter-open. The transmittance is obtained by the ratio of the signal intensity to the reference intensity at the resist surface at each time of data collection. The PLOT-TR routine plots the transmittance data vs exposure time as shown in Fig. 2.2.4 for a resist sample. As exposure increases ($t>0$) the transmittance increases due to the destruction of PAC by the light. From this transmittance curve A, B, and C parameters are estimated in the EST-TR routine. The A is estimated for the first point and the B for the last point on the curve. The C is estimated by several points in the beginning through standard linear fitting. ${ }^{8}$

In the CAL-TR routine the theoretical transmittance is calculated by numerically solving the two equations (2.2.1) and (2.2.3). The photoresist
thickness is divided by N for the numerical integration. The number of division is given by 10 since in a non-reflecting medium the exposure intensity decreases monotonically with distance(x) and it is well approximated by a linear function of x for a thin layer of resist film. The exposure intensity variation with x and the division of the resist film is shown in Fig. 2.2.5. The light intensity after the first layer is calculated and the M value is updated. This calculation in pairs continues for the next division until the last layer is reached. This pair-calculation only needs one dimensional array and is desirable for small computer whose memory space is often limited by the size of the two dimensional array. This process is repeated for each of the intensity vs time data. The last array of M gives the M value at each division of resist thickness for the given exposure dose.

The theoretical transmittance is compared with the experimental data in the REFINE-ABC. A simple algorithm for the refinement of A, B, and C values is as follows. The experimental data is so accurate that the estimate already gives MSD below 10^{-3}. To reduce the MSD further the C value, for example, is increased or decreased keeping the other A and B values unchanged. The increment (dC) is given by the square root of the previous MSD:
$\mathrm{dC}=\mathrm{SQR}(\mathrm{MSD})$

Thus the increment itself is varying. The new estimate (CE) is given by

$$
C E=C *(1 \pm d C)
$$

The sign of the increment is so chosen as to reduce MSD. Initially the C is given by the estimate from the transmittance data. Whenever the CE produces minimum MSD the C parameter is updated by the $C E$ value. If

MSD is not reduced by the CE more than 5% it is decided to refine another parameter A or B in the same manner. This refining process continues until MSD is reduced to 10^{-4}. The calculated transmittance and the experimental data are displayed on the screen for a visual comparison (Fig. 2.2.4).

For a partially bleached resist the B value is not computed, rather it is taken from a fully exposed sample. The M values are calculated for all samples with various exposure levels. The M value variation during the exposure is plotted against depth with dose as parameter in Fig. 2.2.6. As expected the M values decrease with increasing exposure doses. At any dose the M values increase with increasing depth since the exposure intensity is decreased due to the absorption of the light by the photoactive compound.

2.3 Development System

Consider a thin layer of transparent resist film with thickness d and refractive index n_{2} surrounded by non-absorbing mediums of refractive indices n_{1} and n_{3}, and suppose that a plane wave of monochromatic coherent light is incident upon the layer at angle v_{1}. As shown in Fig. 2.3.1 the ray $O A$ represents the direction of propagation of the incident wave (wavelength λ_{1}). At the first surface this wave is divided into two plane waves, one reflected in the direction $A D$ and the other transmitted into the layer in the direction $A B$. The latter wave is incident on the second surface at angle ϑ_{2} and is there divided into two plane waves, one transmitted in the direction BE , the other reflected back into the layer in the direction BC , and the process of division of the wave remaining inside
the layer continues at the point C.
For a linearly polarized electric field, with electric field vector either parallel or perpendicular to the plane of incidence, the total reffected intensity, I_{r}, from the first surface can be calculated as

$$
\begin{equation*}
I_{r}(t)=I_{i} \frac{R_{1}+R_{2}+2 \sqrt{R_{1} R_{2}} \cos (k d(t))}{1+R_{1} R_{2}-2 \sqrt{R_{1} R_{2}} \cos (k d(t))} \tag{2.3.1}
\end{equation*}
$$

where I_{i} is the incident beam in medium 1 and R_{1} and R_{2} are the reflectivities from the first and the second interface, respectively. Resist thickness, $d(t)$, is a function of time. k is defined as

$$
\begin{equation*}
k=\pi \frac{4}{\lambda_{1}} n_{2} \cos v_{2} \tag{2.3.2}
\end{equation*}
$$

If the reflectivities from the interfaces are much smaller than unity equation (2.3.1) can be reduced to a simpler form.

$$
\begin{equation*}
I_{r}(t) \approx I_{i}\left(R_{1}+R_{2}+2 \sqrt{R_{1} R_{2}} \cos (k d(t))\right) \tag{2.3.3}
\end{equation*}
$$

A linearly polarized electric field which is arbitrarily placed on the plane of incidence can be resolved into components parallel and perpendicular to the plane of incidence. The sum of each intensity does not change since two light beams polarized at right angle to each other do not interfere. A more convenient expression for the reflected bearn intensity, $I(t)$, is given by

$$
\begin{equation*}
I(t) \approx I_{\min }+\frac{I_{\max }-I_{\min }}{2}(1+\cos (k d(t))) \tag{2.3.4}
\end{equation*}
$$

During the development the intensity varies sinusoidally between $I_{\max }$ and $I_{\text {min }}$ with resist film thickness.

Instrumentation

Fig. 2.3.2 shows a schematic diagram for the development rate measurement system. A resist sample is loaded on the development cell and is illuminated from the back side of the transparent substrate by a linearly polarized He-Ne laser beam at 633 nm . This avoids the problems associated with propagation through the turbulent and partially opaque developer fluid. The reflected beam only from the resist film is detected by a photodiode. The diode current is amplified through current-voltage converter which is similar to the one for the exposure system. The voltage output is recorded in the computer during the development. A lens is used to reduce beam size down to $50 \mu \mathrm{~m}$ to avoid the intensity reduction due to resist striation.

More details about the development cell are shown in Fig. 2.3.3. The substrate is placed upside down on the development cell and held in place by means of vacuum. The developer is equilibrated in a temperature bath. The developer is pumped through the field area slot (1/8 by $1 / 8$ inch) past the surface of the substrate. The development temperature is monitored by a thin thermocouple wire inserted into the development cell. The liquid velocity in the channel may be varied over the range 0.5 to $100 \mathrm{~cm} / \mathrm{sec}$.

Software

The BASIC codes for the development system are DEVELOP.BAS, PEAKNOIS.BAS, and RATEX.BAS. The codes are listed in Appendix B.

DEVELOP.BAS

This program takes reflectivity variation during the development by controlling only one TECMAR A/D converter ${ }^{7}$ and stores the raw data for
the rate calculation. The data taking procedure, in principle, is the same as that of the EXPOSE.BAS. The maximum data collection rate is limited to 0.02 second per data point with a safety margin. With this time interval development rates up to $2 \mu \mathrm{~m} / \mathrm{sec}$ may be measured. For slow development rates, the data are plotted during collection. The maximum data collection rate for the plotting is set at 0.04 second per data point, again with a safety margin. Typical reflectivity variation plotted during the development is shown in Fig. 2.3.4. The intensity drop indicates that the developer is introduced in the development cell. As the development progresses the reflectivity varies sinusoidally with resist thickness variation. When all the resist is removed the reflectivity does not change any more. The actual envelope of the sinusoids sometimes decays with depth due to a non-uniform thickness during development. In such cases the local $\mathrm{I}_{\text {max }}$ and $\mathrm{I}_{\text {min }}$ in each period are applicable to equation (2.3.4).

PEAKNOIS.BAS

This program finds the local $I_{\max }$ and $I_{\min }$ in each period of the reflectivity variation. It also removes noise from the data. For simplicity and accuracy of the data reduction with moderate speed the PEAKNOIS.BAS combines computer analysis with human intervention.

Every data point is plotted on the screen. A stretching line is seen on the screen and scans through the data points. When the line passes by the peak point the operator stops the scanning by hitting any key on the key board. Then the largest number is found around the point at which the scanning is stopped. This procedure continues until all $I_{\text {max }}$ and $I_{\text {min }}$ are found. While scanning an extraordinary gap or a jump between the two adjacent points may be detected. The operator is asked if it is noise
or not. The noise points are replaced with new points which are determined by the curve fitting to several points around the noise points. The fitting is done by the standard second order polynomial ${ }^{8}$ excluding the noise points.

RATEX.BAS

This program calculates development rate at any depth of resist. First the thickness is calculated at every development time according to the equation (2.3.4) with the local $\mathrm{I}_{\max }$ and $\mathrm{I}_{\min }$ obtained by the PEAKNOIS.BAS. In Fig. 2.3.5 the thickness variation derived from the raw data is plotted against the development time. In order to obtain the development rate the development time is divided into several sections. In each section the thickness data are fitted to a parabolic function of time:

$$
\begin{equation*}
d(t)=a_{0}+a_{1} t+a_{2} t^{2} \tag{2.3.5}
\end{equation*}
$$

The standard curve fitting ${ }^{8}$ for second order polynomial by the least square error method is employed. The size of the segment is automatically adjusted such that the mean square error is less than 10^{-5} in each segment. Finally the derivative $d d(t) / d t$ is taken at each time. The time is converted to the corresponding thickness by equation (2.3.3). As an example the rate at every $0.01 \mu \mathrm{~m}$ is shown in Fig. 2.3.6. In this example the development rate is slow at the surface, increases with depth, and decreases again beyond a certain depth. At the surface the development rate is supposed to be highest because the exposure light intensity is highest there. But actual development rate is lowest at the surface. This is due to the surface-rate-retardation which will be discussed in Chapters 3 and 4.

References

1. K.L.Konnerth and F.H.Dill, "IOTA, a New Computer Controlled Thin Film Thickness Measurement Tool", Solid State Electronics, Vol. 15, pp. 371380, 1972
2. K.L.Konnerth and F.H.Dill, "In-Situ Measurement of Dielectric Thickness During Etching or Developing Process', IEEE Trans. on Electron Devices, Vol. ED-22, No.7, PP. 452-456, July 1975.
3. W.G.Oldham, "In-Situ Characterization of Positive Resist Development", SPIE Vol. 135 Development in Semiconductor Microlithography III, 1978
4. M.Exterkamp, W.Wong, H.Damar, A.R.Neureuther, and W.G.Oldham, "Resist Characterization: Procedures, Parameters, and Profles," SPIE Vol, 334, Optical Microlithography, 1982.
5. A.W.McCullough, S.P. Grindle, and W.D. Buckley, "A Multichannel Development Rate Monitor," Perkin-Elmer Corp., Norwalk, Connecticut 06856
6. F.H.Dill, W,P,Hornberger, P.S.Hauge, and J,M,Shaw, "Characterization of Positive Photoresist", IEEE Trans. on Electron Devices, Vol. ED-22, No.?, PP. 445-452, July 1975.
7. TECMAR Lab Tender and Lab Master Manual, TECMAR Inc., 1979
8. C.F.Gerald, "Applied Numerical Analysis," 2nd Edition, Chap. 10 Addison-Wisley Publishing Co., Inc., 1978

Fig. 2.2.1

EXPOSE.BAS

Fig. 2.2.2

ABCMX.BAS

Fig. 2.2.3
Fig. 2.2.4

Fig. 2. 2.5

Fig. 2.2 .6

KODAK 820
PREBAKE $100^{\circ} \mathrm{C} 30 \mathrm{~min}$
$A=0.49$
$B=0.031$
$C=0.0125$

Fig. 2.3.1

Fig. 2.3.2

mu

Fig. 2.3.6

CHAPTER 3

DEVELOPMENT OF POSITIVE PHOTORESIST

3.1 Introduction

In order to quantitatively simulate photolithography, accurate models and sets of model parameters are required for various resists, developers, and processing conditions. In their pioneering studies of positive photoresist Dill, et al, ${ }^{1,2}$ proposed a simple model for exposure and development. They proposed the parameters A, B, and C to define the status of exposed resist in terms of a normalized concentration (M) of photo-active compound (PAC). They also described the resist development behavior using a polynomial fit to the logarithm of rate versus M with the parameters $\mathrm{E}_{1}, \mathrm{E}_{2}$, and E_{3} defining the polynomial. Other polynomials ${ }^{3}$ and Fermi-Dirac distribution functions ${ }^{4}$ have been proposed. To the best of our knowledge all of these functions are somewhat inadequate because they do not describe the rate over the full range of M or the rate variation near the surface. Several other papers have reported the importance of the retardation of the development rate near the surface and proposed various models to include the depth dependence ${ }^{5,7}$.

This chapter introduces a new comprehensive model which describes the development behavior for positive photoresists as a function of depth and M over the full range of exposure. Model parameter values derived from development rate data are given for several resist and developer systems under various processing conditions. In Appendix C lists all resist parameters up to date.

3.2 Dissolution Rate Equation

With sufficient agitation (which depends on exposure) the development of positive photoresist can be surface reaction-rate limited, and therefore describable by a kinetic function which depends on the state of the resist, the development chemistry, and the temperature. Dill et al defined the state of the resist by the parameter M , a normalized concentration of PAC remaining after exposure, and described the development behavior of AZ1350J resist only as a function of M, holding the development chemistry and temperature constant. In later studies they showed the presence of a surface effect ${ }^{8}$ in which either there was a delay before the onset of dissolution or the region near the surface has a reduced dissolution rate. We will call the former phenomenon 'surface-induction' (the time delay before development starts) and the latter 'surface-rateretardation' (the retardation of dissolution rate near the surface compared to the dissolution rate in the bulk).

With a retardation effect it is necessary to account for the depth dependence of development rate in a more fundamental way. A new development rate model is needed satisfying several conditions:
(1). The function should be analytic and fit the data over the full range of M from zero to one at any position in the resist.
(2). The number of parameters should be minimized.
(3). The parameters should have physical significance if possible.
(4). The parameters should be easy to extract given a set of rate data.

We have chosen to retain the product formulation in which the retardation of the development rate near the surface is used as a multiplier
$\mathrm{f}(\mathrm{z}, \mathrm{M})$ to the bulk development rate $\mathrm{R}_{\mathrm{bulk}}$:

$$
\begin{equation*}
\text { Rate }(z, M)=f(z, M) R_{\text {bulk }}(M) \tag{3.2.1}
\end{equation*}
$$

This product formulation is simple in both conception and implementation for modeling of surface-retardation. It is further attractive physically since we have found that the depth dependence is independent of M, that is $f(z, M)$ can be further separated into individual functions of z and M. ${ }^{9}$

Bulk Development Rate :
The simplest model for bulk development must account, at least, for two processes: (1) the dissolution of base resin modified by the presence of photo-active compound (PAC) and (2) the dissolution of base resin modified by the presence of reacted PAC (largely carboxylic acid, here denoted PPA for photo-produced acid). The state parameter M is essentially the relative concentration of PAC remaining; similarly $1-\mathrm{M}$ is the relative concentration of PPA. In unexposed photoresist, the presence of PAC slows the development in comparison with a pure base resin. On the other hand in a moderately exposed state, the PPA greatly enhances the development rate, again in comparison with a pure base resin. Conceptually the development may be viewed as the dissolution of the various fraction of the resin-PAC and resin-PPA system. The simplest case of combining the processes is to consider an incremental thickness of resist dz and add the times to dissolve the resist fractions. This approach has led us to the following form for the bulk development rate function $R_{\text {bulk }}$:

$$
\begin{equation*}
\frac{1}{R_{\text {bulk }}}=\frac{1-M P}{R_{1}}+\frac{M P}{R_{2}} \tag{3.2.2}
\end{equation*}
$$

The parameters R_{1} and R_{2} are the simple limiting rates for fully exposed resist and unexposed resist, respectively. The function P describes the enhancement of development by the presence of PPA. We have chosen a function given by

$$
\begin{equation*}
P=\exp \left(-R_{3}(1-M)\right) \tag{3.2.3}
\end{equation*}
$$

where R_{3} is a sensitivity parameter, which is a measure of how fast the development rate increases as the exposure increases. The combination of equations (3.2.2) and (3.3.3) gives

$$
\begin{equation*}
R_{\text {bulk }}=\frac{1}{R_{1}^{-1}\left(1-M \exp \left(-R_{3}(1-M)\right)\right)+R_{2}^{-1} M \exp \left(-R_{3}(1-M)\right)} \tag{3.2.4}
\end{equation*}
$$

Equation (3.2.4) describes the bulk development rate over the full range of exposure from $M=0$ to $M=1$. At $M=0$ and $M=1 R_{\text {bulk }}$ reduces to its two limiting rates R_{1} and R_{2}. This satisfies the requirements stated above. Without M in front of the exponential term Equation (3.2.4) can be reduced to the similar form of the Fermi-Dirac distribution function which was proposed earlier by Brochet et al. ${ }^{4}$ (but which is unable to fit the data over the wide range of conditions described below). Equation (3.2.4) has the minimum set of parameters which can describe the dissolution of a two-component mixture. In the event that the effective number of components is increased, more parameters are required. For example, if additives or processing is used to direct the exposure-product pathway to a mixture of organic acid and ketene, ${ }^{10}$ at least one more parameter would be required physically.

Surface Rate Retardation :
As indicated above, the develcoment rate near the surface is described by the product of the bull rate and a multiplier $f(z, M)$. The multiplier may depend both on depth and exposure. However, physically we do not expect the form of the dexh function to depend on the exposure or development details. We thus model the multiplier as itself the product of two terms. We further choose the simplest physically appealing form for the \mathbf{z} dependence, a decaping exponertial function. The multiplier may be written as

$$
\begin{equation*}
f(z, M)=1-(1-f(0, M)) \exp \left(-z / K_{4}\right) \tag{3.2.5}
\end{equation*}
$$

where z is the depth into the resist, R_{4} is the ctaracteristic retardation depth, and $f(0, M)$ is the ratio of surface development rate to bulk development rate at any M value. The depth paraneter R_{4} should in principle depend only on the resist and how it is prccessed. It measures, in effect, the thickness of the "tough skin". The dependence of f on exposure, reflected in the parameter $f(Q M)$, may also depend strongly on development details (developer, dilution, temperdure, etc.). Under the simplest conditions it is found that $(0, M)$ can be modeled by a simple linear function of M :

$$
\begin{equation*}
f(0, M)=R_{5}-\left(R_{5}-R_{8}\right) M \tag{3.2.6}
\end{equation*}
$$

where R_{5} is the ratio of surface rate to bulk rate at $M=0$ and R_{6} the ratio at $M=1$. For other systems, eg., the development of KODAK 820 resist in KODAK 932, a more complicated beharior is seen In such cases we have chosen to use a piecewise linear function of M, with the minimum number of parameters needed to accurately describe $f\left(0, H_{\text {: }}\right.$.

3.3 Derivation of Model Parameters from Experiments

Details about the measurement technique are described in Chapter 2. A brief summary is presented here. The photoresist is spun on a glass substrate with matched index of refraction and prebaked. The substrates are exposed at 436 nm . For each sample the transmittance variation during the exposure is recorded in a mini-computer and the program ABCMX.BAS calculates the M value at any position within the resist. The exposed substrate is loaded on the development cell for the dissolution rate measurement. The resist is illuminated by He-Ne laser at 633 nm from the back side of the transparent substrate. The desired reflected beam is directed to the detector and the variation of the reflectivity is recorded in the mini-computer. The program RATEX.BAS calculates the development rate at every depth within the resist film.

The bulk development parameters, R_{1}, R_{2}, and R_{3} are derived by fitting equation (3.2.4) to the bulk rate vs M data. Points deeper than 0.6 $\mu \mathrm{m}$ are considered to be in the bulk. A fitting program is used to minimize the sum of the square error with the initial estimates of R_{1}, R_{2}, and R_{3}. The program is stable and minimizes the square errors from the estimates based on R_{1} as the rate at $M=0, R_{2}$ as the rate at $M=1$, and R_{3} as the slope near $M=1$ in the plot of \log (rate) vs M.

Once the parameters R_{1}, R_{2}, and R_{3} are determined, the program finds the other parameters R_{4}, R_{5}, and R_{6} by fitting equation (3.2.1) to all data, the rate vs M and depth. R_{5} and R_{6} are easily estimated by the ratios of the surface rate to the bulk rate at $M=0$ and $M=1$, respectively. The estimate for R_{4} is not explicit on the rate vs M plot but can be found by a local fitting of equation (3.2.5) to the rate vs depth for the unexposed resist.

3.4 Resist Development

In this section the development behavior is demonstrated for KODAK 820 and Shipley MICROPOSIT 1470 positive photoresists under various processing conditions with several developers. It was first necessary to establish a suitable flow rate for development rate characterization. In this study it was desirable to remain in the surface reaction-rate control regime, consistent with the model equations used. The bulk development rates of normally processed, heavily exposed resist ($M=0.12$) were measured for samples of MICROPOSIT 1470 and KODAK 820 resists as a function of flow rate across the resist surface. The results, shown in Fig. 3.4.1, indicate that the desired regime is obtained for flow rates exceeding 10 $\mathrm{cm} / \mathrm{sec}$. All data were taken at the flow rate of $15 \mathrm{~cm} / \mathrm{sec}$.

Fig. 3.4.2 illustrates the effect of prebake temperature on MICROPOSIT 1470. Equation (3.2.4) is fitted to the experimental data, plotted as rate versus M . The standard condition is $20^{\circ} \mathrm{C}$ development in MICROPOSIT 351 developer in 1:5 dilution following 20 minute prebake. Data points near the surface are excluded because of a small surface-retardation effect. However, the complete parameter set, including the retardation model parameters, is given in Table I of Appendix C. For moderately and heavily exposed resists, the development rate decreases with prebake temperature. Presumably the rate reduction is primarily accounted for by the reduced fraction of PPA photo products (carboxylic acid) after U.V.exposure owing to PAC destruction by high temperature bake before exposure. ${ }^{8}$

The impact of prebake temperature on the resist profile is shown in Fig. 3.4.3. (rate data from Fig. 3.4.2). The resist line-edge-profile is shown for a $1.0 \mu \mathrm{~m}$ line in a pattern of equal lines and spaces. The simulated
exposure condition uses a lens with $N A=0.28, \sigma=0.7$, and δ (defocus) $=1.5$ $\mu \mathrm{m}$ at the wavelength of 436 nm . The dose shown as a parameter is adjusted to yield a nominal final linewidth of $1.0 \mu \mathrm{~m}$. No significant effect of prebake is observed below about. $100^{\circ} \mathrm{C}$, but rapid degradation in edge slope, sensitivity, and resist thickness is observed at $120^{\circ} \mathrm{C}$.

The dissolution rates for several developer solutions are compared in Fig. 3.4.4. It is interesting that different developers but with proper dilutions show similar development behavior. MICROPOSIT developer diluted 1:1, MICROPOSIT 351 developer diluted $1: 5$, and MICROPOSIT MF312 developer diluted 1:1.5 demonstrate essentially the same development behavior. Increasing the concentration in 351 type developer from 1:5 to 1:3 and in MF312 metal ion free developer from 1:1.5 to $1: 1$ the overall development rate increases. MF312 type developer diluted $1: 1$ and 351 type developer diluted 1:3 show an effective higher sensitivity owing to faster development rates over the entire exposure range. But the line edge profile shown in Fig. 3.4 .5 is worse than that in the standard developer solution because the unexposed development rate is high ($\sim 0.0025 \mu \mathrm{~m} / \mathrm{sec}$) resulting in a large amount of thickness loss at the top.

Whereas the MICROPOSIT resist studied here has a modest surface effect, the KODAK 820 resist shows a large development rate retardation near the surface. In order to illustrate this depth dependence, the development rates are plotted in Fig. 3.4.6 (a) and (b). The measured development rate normalized to the bulk rate is shown for two exposure extremes, 0 and $300 \mathrm{~mJ} / \mathrm{cm}^{2}$. The dashed lines are the exponential fit to the data (small dots) in each figure. The ratio of the surface rate to the bulk rate varies from 0.08 to 0.6 in KODAK 809 type developer and from 0.06 to 0.5 in MICROPOSIT 351 type developer over the exposure range of 0 to $300 \mathrm{~mJ} / \mathrm{cm}^{2}$. In both cases the exponential decay distance is 0.25
$\mu \mathrm{m}$.
The complete development behavior for KODAK 820 resist in KODAK 809 developer is shown in Fig. 3.4.7. The development rates are plotted vs M for a number of samples covering a full range of exposures from 0 $\mathrm{mJ} / \mathrm{cm}^{2}(\mathrm{M}=1)$ to $300 \mathrm{~mJ} / \mathrm{cm}^{2}(\mathrm{M}=0.02)$. The rate for each resist sample is lowest at the surface due to the surface-retardation effect, increases rapidly with depth, and saturates to the bulk rate (which has a small decrease with depth because of absorption). In all cases an exponential decay depth of $0.25 \mu m$ fits the data well for the surface-retardation effect. The M value can be calculated from the exposure dose at any depth of each resist sample with known A, B, and C parameters. Thus the left-most point on each sample gives the surface rate, and the right-most point gives the bulk rate. The upper dotted curve is the bulk rate from equation (3.2.4). The lower dotted curve is the surface rate from equation (3.2.1), with the forms of equations (3.2.5) and (3.2.6) used for $f(z)$. Note that in the insert both the measured data and the results of the model with the R parameters are shown and indicate good agreement with the model. As mentioned earlier the bulk rate is described by R_{1}, R_{2}, and R_{3} in which $R_{1}(0.23 \mu \mathrm{~m} / \mathrm{sec})$ is the rate at $M=0, R_{2}(0.0016 \mu \mathrm{~m} / \mathrm{sec})$ the rate at $M=1$, and $R_{3}(5.6)$ a sensitivity parameter. The surface rate is described by the retardation factor $f(0)$ to the bulk rate at a fixed M value. The value of $f(0)$ at $M=0$ is 0.62 and denoted by R_{5}. The value of $f(0)$ at $M=1$ is 0.08 and denoted by R_{6}. The value of $f(0)$ between $M=0$ and $M=1$ is described by a linear interpolation between R_{5} and R_{6} with respect to M. The rate at any depth with a constant M can be obtained by the exponential function with the characteristic retardation depth of $R_{4}(0.25$ $\mu \mathrm{m})$.

An even more pronounced retardation effect was observed with this resist using a different developer, particularly at low exposure. The time to develop the top $0.1 \mu \mathrm{~m}$ in KODAK 932(metal ion free) developer is plotted against exposure in Fig. 3.4.8. For the standard development with KODAK 809 the etch time is continuous over all exposures but with 932 developer a discontinuity is seen at about $40 \mathrm{~mJ} / \mathrm{cm}^{2}$. In 932 type developer for exposures less than $40 \mathrm{~mJ} / \mathrm{cm}^{2}$, the retardation factor $\mathrm{f}(0)$ is about 0.02 , and for exposures greater than $40 \mathrm{~mJ} / \mathrm{cm}^{2} f(0)$ varies from 0.13 to 0.45 .

The complete development behavior in 932 type developer is shown in Fig. 3.4.9. The bulk rate is normal and described by $\mathrm{R}_{1}(0.33 \mu \mathrm{~m} / \mathrm{sec})$, $R_{2}(0.0015 \mu \mathrm{~m} / \mathrm{sec})$, and $R_{3}(10)$ but the surface rate is discontinuous at about $\mathrm{M}=0.6$ (dose $=40 \mathrm{~mJ} / \mathrm{cm}^{2}$). To model this surface behavior the surface ratio is separated into three regions and is modeled by a simple piecewise linear equation $f(0, M)=R_{5}+M\left(R_{7}-R_{5}\right) / R_{8}$ for $0<M<R_{8}$, $f(0, M)=R_{7}+\left(M-R_{8}\right)\left(R_{9}-R_{7}\right) /\left(R_{10}-R_{B}\right) \quad$ for $\quad R_{8}<M<R_{10}, \quad f(0, M)=R_{9}+\left(M-R_{10}\right)\left(R_{9}-\right.$ $\left.R_{6}\right) /\left(R_{10}-1\right)$ for $R_{10}<M<1$. This piecewise linear fit, while inelegant, is simple to use and quite flexible. If even more exotic behavior is discovered the function can be extended to more segments in an obvious way. In all regions the best fit for R_{4} is $0.25 \mu \mathrm{~m}$.

The role of surface retardation in achieving vertical resist profiles is examined in Fig. 3.4.10. In this simulation the resist is exposed at 90 $\mathrm{mJ} / \mathrm{cm}^{2}$ and developed for 10 seconds longer than break-through. The image of a $1 \mu \mathrm{~m}$ line was produced with an optical system of $\mathrm{NA}=0.28$, $\sigma=0.7$, and $\delta=1.5 \mu \mathrm{~m}$ at 436 nm . The resist profile is shown for three cases with (I) bulk rate only (in KODAK 809), (II) retardation (in KODAK 809), and (III) retardation (in KODAK 932). In the absence of an retarda-
tion effect a large amount of resist loss at the top occurs and the wall angle is about 76°. Including the retardation the fop loss is small and more vertical or even under-cut profiles are obtained. An example of resist profile simulation (SAMPLE) is given in Appendix D.

3.5 Resist Contrast

Resist contrast is often used as a single pararreter to compare the performance. Although the definition of the resist contrast for optical resists has not been established we may adapl the definition for electron-beam resists. The resist contrast, γ, is deined by the slope on the plot of resist thickness remaining vs logarithry of dose(D) at fixed resist thickness(T) and development time (t) as shown in Fig. 3.5.1. Analytically γ may be given by

$$
\begin{align*}
\gamma & =\frac{\partial T}{\partial \log (D)} \\
& =2.3 D \frac{\partial M}{\partial D} \frac{\partial R}{\partial M} \frac{\partial T}{\partial R} \tag{3.5.1}
\end{align*}
$$

For bulk development rate with the resist filmon a matched substrate

$$
\begin{align*}
& \frac{\partial R}{\partial M}=\frac{-R}{M} \frac{R}{R_{1}}\left(\frac{R_{1}}{R}-1\right)\left(1+R_{3} M\right) \tag{3.5.2}\\
& \frac{\partial M}{\partial D}=-C M \tag{3.5.3}\\
& D=\frac{-\ln (M)}{C} \tag{3.5.4}
\end{align*}
$$

If the film is thin enough for the rate dependence on thickness to be ignored

$$
\begin{equation*}
\frac{\partial T}{\partial R} \approx \frac{T}{R} \tag{3.5.5}
\end{equation*}
$$

Inserting equations (3.5.2) to (3.5.5) into equation (3.5.1) yields

$$
\begin{equation*}
\gamma \approx 2.3 T \frac{R}{R_{1}}\left(\frac{R_{1}}{R} 1\right) \ln (M)\left(1+R_{3} M\right) \tag{3.5.6}
\end{equation*}
$$

If R_{1} is much greater than R then γ is further simplified as

$$
\begin{equation*}
\gamma \approx 2.3 \operatorname{Tln}(M)\left(1+R_{3} M\right) \tag{3.5.7}
\end{equation*}
$$

M can be evaluated from equation (3.2.4) through equation (3.5.5) with fixed thickness(T) and development time (t). Including the depth dependence of development rate it is hard to obtain a simple expression for γ. In such case γ can be calculated numerically.

The resist contrast is compared for several types of resist and developer systems with the thickness of $1 \mu \mathrm{~m}$ and a development time of 60 seconds. The thickness remaining is plotted against $\log (D)$ in Fig. 3.5.2. For MICROPOSIT 1470γ is 3.6 from the numerical calculation. γ is highest (5.1) for the strong rate-retardation case with KODAK 820 in 932 type developer. The effect of rate-retardation on γ is illustrated with KODAK 820 in 809 developer. Including the retardation γ increases from 3.2 to 3.9. The dependence of γ on the type of substrate is also shown in this figure for MICROPOSIT 1470 resist on a silicon wafer. The rate oscillates owing to the standing wave effect. The average slope near the bottom of the resist is given for γ (3.3). The effective resist contrast is lower on a reflecting substrate.

References

1. F.H.Dill, W,P,Hornberger, P.S.Hauge, and J,M,Shaw, "Characterization of Positive Photoresist", IEEE Trans. on Electron Devices, Vol. ED-22, No.7, PP. 445-452, July 1975.
2. K.L.Konnerth and F.H.Dill, "In-Situ Measurement of Dielectric Thickness During Etching or Developing Process", IEEE Trans. on Electron Devices, Vol. ED-22, No.7, PP. 452-456, July 1975.
3. M.M. O'Toole and W.J. Grande, "Characterization of Positive Resist Development," IEEE EDL-2, Dec., 1981.
4. Par A. Brochet, G.M.Dubroeucq, et M.Lacombat, 'Modelisation des processus dexposition et de developpement dune ressine photosensible positive: Application au masquage par projection", Revue Technique Thomson-CSF, Vol. 9, No 2, Jun., 1977
5. A.R. Neureuther, D.F. Kyser, and C.H. Ting, 'Electron-Beam Resist Edge Profile Simulation," IEEE Trans. ED-26, No.4, April, 1979.
6. A.R.Neureuther, "Resist Profile Quality and Linewidth Control", Symposium on Silicon Processing, Jan., 19-22, 1982
7. D.C.Hofer, C.G.Wilson, A.R.Neureuther, and M.Hakey, "Characterization of the Induction Effect at Mid UV Exposure: Application to AZ2400 at 313 nm'. SPIE Vol. 334, Optical Microlithography, Paper No. 26, Mar., 1982
8. F.H.Dill and J.M.Shaw, "Thermal Effects on the Photoresist AZ1350J", IBM J. Res.develop. May 1977.
9. Deok J. Kim, W.G.Oldham, and A.R.Neureuther, "Characterization and

Modeling of a Resist with Built-In Induction Effect", KODAK Microelectronics Seminar, Interface 83, San Diego, Nov., 1983
10. J.Pacansky and J.Lyrea, "Photochemical Decomposition Mechanisms for AZ-Type Photoresists', 24-42, IBM J. Res. develop, 1979

Etch-Rate ($\mu \mathrm{m} / \mathrm{sec}$)

Fig. 3.4.2

Fig. 3.4.4

Fig. 3.4 .5

Fig. 3.4.6(a)

Fig. 3.4.6(b)

Fig. 3.4.7

Fig. 3.4.8

Fig. 3.4.9

Fig. 3.4.10

Fig. 3.5.2

CHAPTER 4

SURFACE RATE RETARDATION

4.1 Introduction

For conventional positive photoresists under normal processing conditions the development rate of the resist depends primarily on the exposure dose and increases with increasing dose. The energy absorption in U.V. exposure is highest at the top of the resist film because of the attenuation in the resist, leading to slanted resist profiles.

Various attempts have been made to extend the limit of optical lithography for vertical or even under-cut features (under-cut profiles are desirable for lift-off processes). ${ }^{1-3}$ AZ-type photoresists prebaked at high temperature display close to vertical resist profiles. ${ }^{1}$ Chlorobenzene treatment on the resist surface result in under-cut profiles. ${ }^{2,3}$

A development delay which is often seen with AZ-type photoresists prebaked at high temperature is termed "surface-induction" because the delay is confined within a very thin layer ($\sim 0.005 \mu \mathrm{~m}$) at the top of the resist. For KODAK 820 resist under normal processing conditions the rate reduction is extended deep into the resist bulk ($\sim 0.25 \mu \mathrm{~m}$). We will call this phenomenon "surface-rate-retardation". As discussed in Chapter 3 simulated resist profiles for KODAK 820 indicate that vertical or undercut profiles can be obtained with surface-rate-retardation.

In this chapter the physical origin of the strong rate retardation for KODAK 820 resist is explored. Surface treatments to control the surface rate are also discussed.

4.2 Functional Characterization of

Surface-Rate-Retardation

The surface-rate-retardation for KODAK 820 is not cnly observed with one particular type of developer. As shown in Fig. 4.2.1 the rate is retarded with typical types of developers which are commercially available. It might be expected that the prebake procedures affect the surface-rate-retardation behavior. However, in an experiment for KODAK 820 resist as illustrated in Fig. 4.2.2, no big difference was seen between a 30 minute oven bake at $100^{\circ} \mathrm{C}$ (normal baking) and a Iminute hot-plate bake at $120^{\circ} \mathrm{C}$. A bake in a vacuum ($25^{\prime \prime} \mathrm{Hg}$) also shows little difference.

The fundamental question about the strong rate-retardation is Whether it is a resist property or it comes from the dynamics of chemical reaction between the resist and developer. A number of experiments were carried out to investigate the mechanism of retardation for unexposed KODAK 820 resist. In one simple experiment the development was terminated in the bulk of resist by water and reinitiaied by developer. Fig. 4.2.3(a) shows the reflectivity variation during the development obtained from the dissolution rate measurement system (the details about the measurement system are given in Chapter 2). The flat zone in the middle of the reflectivity signal indicates that water is passing through the development cell. The oscillation period of the signal at the start of development is the longest (the slowest development rate at the surface). Such a long period never returns at the second start of development in the middle of the resist. This experiment suggests that the retardation effect is built-in to the resist.

The rate retardation with resist depth is more clear in Fig. 4.2.3(b). The development rates are plotted vs resist depth for two different types of developers. The dotted line is for a developer solution of one part of MICROPOSIT 351 and three parts of water. The dashed line is fo: undiluted KODAK 932 developer. For both cases the dissolution rates are minimum at the surface, increase with depth, and saturate. The dissolution rates are still continuous except for minor glitches which were introduced when the development was interrupted by water. The dissolution rates for several samples in which the top $0.5 \mu \mathrm{~m}$ of resist was removed by dipping in developer, rinsed with water, and dried with nitrogen-blow were also measured. Although a small development delay was introduced at the start of development the dissolution rate was not so retarded as it had been at the first surface.

Normal resist processing involves spin-coating and baking before development. In order to clarify which step introduces the rateretardation a sample was spun, dried at room temperature for a month, and developed in undiluted KODAK 932 developer. The dissolution rate is plotted against resist depth in Fig. 4.2.4. No significant rate variation is seen from the surface to bulk. This suggests that the distribution of each component of resist material is uniform within the resist film and that the spin-coating is not responsible for the strong rate-retardation.

A sample was baked at $100^{\circ} \mathrm{C}$ for 15 minutes. The top $0.4 \mu \mathrm{rr}$ of the resist was etched away. The sample was rinsed with water, dried with $\mathrm{N}_{2}-$ blow, and baked again at $100^{\circ} \mathrm{C}$ for another 15 minutes. The dissolution rate for this sample is plotted as a function of resist depth in Fig. 4.2.5 (dotted line). The normal dissolution rate variation is also shown as a comparison (dashed line). The development behavior is not exactly the same as normal one but it suggests that the rate-retardation may be
bake-related.

4.3 Surface Rate Control

To modify the surface rate chlorobenzene-dip prior to development is commonly used for AZ-type photoresists. ${ }^{2,3}$ MICROPOSIT 1470 resist dipped in chlorobenzene for 10 minutes after exposure ($200 \mathrm{~mJ} / \mathrm{cm}^{2}$) was developed in a solution of one part of MICROPOSIT 351 and five parts of water. The reflectivity variations during the development are shown in Fig. 4.3.1. The reflectivity variation for samples with chlorobenzene-dip (dotted line) is quite abnormal as compared with the reflectivity variation for normal samples (solid line). The distortion of the reflectivity signal is owing to non-uniformity as discussed in Chapter 2. The development time for the first oscillation period is much longer than the development time for the last three, indicating slow dissolution rate near the surface. According to the suggested model ${ }^{3}$ chlorobenzene diffuses into the resist film, swelling it and forming a gel to the depth of the diffusion. The solvent and low-molecular-weight resin species diffuse out through the chlorobenzene resist gel, leaving a solvent-deficient layer near the surface.

KODAK 820 resist samples prebaked at $100^{\circ} \mathrm{C}$ for 30 minutes were developed in a solution of either one part of KODAK 809 and three parts of water or one part of MICROPOSIT 351 and five parts of water. A 10 minute dip in chlorobenzene after various exposure doses did not affect the surface rate. However, a very long time dip (~ 48 hour dip) in chlorobenzene after exposure ($200 \mathrm{~mJ} / \mathrm{cm}^{2}$) resulted in a very slow surface rate as shown in Fig. 4.3.2(a). Samples prebaked at $80^{\circ} \mathrm{C}$ for 20 minutes exhibited a slow surface rate with a 10 minute dip in chlorobenzene after
exposure ($200 \mathrm{~mJ} / \mathrm{cm}^{2}$) as shown in Fig. 4.3.2(b). In both figures normal rate behavior (without chlorobenzene-dip) is included for comparison. These experiments imply that chlorobenzene still modifies the surface of KODAK 820 resist according to the model. ${ }^{3}$

Samples of KODAK 820 resist were exposed to the vapor of the resist solvent. For 30 minute vapor-soak the development rate is very high everywhere in the resist. For 3 minute vapor-soak, as shown in Fig. 4.3.3, the development rate is very high near the surface where the solvent vapor penetrated (solid line). But beyond the penetration depth the development rate drops to the normal value. When the vapor-soaked sample was baked again (at $100^{\circ} \mathrm{C}$ for 15 minutes) the rate retardation returned (dotted line). Clearly the solvent vapor plays a role in surface rate control.

References

1. F.H.Dill and J.M.Shaw, "Thermal Effects on the Photoresist AZ1350J," IBM J. Res. Develop, May, 1977.
2. M.Hatzakis, B.J.Canavello, and J.M.Shaw, 'Single-Step Optical Lift-Off Process," IBM J. Res. Develop. Vol 24, No.4, July 1980.
3. R.M.Halverson, M.W.McIntyre, and W.T.Motsiff, "The mechanism of Single-Step Lift-Off with Chlorobenzene in a Diazo-Type Resist," IBM J, Res. Develop. Vol 26, No.5, Sept., 1982.

Fig. 4.2.1

Fig. 4.2.2

Fig. 4.2.3(a)

Fig. 4.2.3(b)

Fig. 4.2 .4

Fig. 4.2 .5

Fig. 4.3.1

KODAK 820
BAKE, $100^{\circ} \mathrm{C}$ 30MIN
DEVELOPER,351(1:5)

Fig. 4.3.2(a)

KODAK 820
BAKE, $80^{\circ} \mathrm{C}$ 2OMIN
DEVELOPER, 351(1:5)

Fig. 4.3.2(b)

Fig. 4.3.3

CHAPTER 5

DESIGN ALGORITHM FOR RESIST FEATURES

5.1 Introduction

SAMPLE ${ }^{1}$ has been used to simulate resist profiles for a given resist process. In order to design resist features, however, it is not practical to find an optimum resist process by simulating all the profiles under a number of processing conditions. The problem is one of computing time as well as a convergent algorithm. Most of the CPU time is conṣumed in the development simulation based upon the string development model. ${ }^{2}$ Each development simulation starts from the top surface and calculates the etch front over all points in the resist.

In this chapter the feasibility of using a simple model to estimate certain features of the resist profile. The technique used is especially appropriate for resist on a reflecting substrate. An algorithm to obtain the slope and linewidth is described and the results are discussed.

5.2 Simplified Development Algorithm

The development of resist in the present SAMPLE is based on the string development algorithm originally devised by R.Jewett. ${ }^{2}$ It follows a development contour by keeping track of the positions of the points on the developing string. This process requires the large amount of computing time. Typically the resist on silicon wafer creates standing wave pattern and the etch front is extremely non-linear. For a good approximation to the exact boundary, the string points around the sharp points
should be divided into many segments so that any curve would be well defined. Obviously the computing time increases with every segment. There are several other problems associated with the string point process around the sharp points and the resist boundary. ${ }^{2,3}$ The computing time is further increased by dealing with these problems.

For the purpose of finding only the slope and the position of the resist profile it may be sufficient to follow only fastest-moving points. In a typical projection system the maximum intensity occurs at the middle of the clear area. As sketched in Fig. 5.2.1(a) the horizontal intensity varies on the resist surface. For resists on a reflecting substrate the standing wave effect creates a periodic pattern of maximum and minimum energy coupling in the z direction. The resist develops fastest at the points of maximum intensity. Lateral development proceeds from these high-intensity positions, leaving the periodic sharp points on the boundary as shown in Fig. 5.2.1(b). Choosing two points (A and B in Fig. 5.2.1(b)) one can estimate the resist feature as follows.

$$
\begin{equation*}
\text { slope }(t)=\tan ^{-1} \frac{z_{A}-z_{B}}{x_{B}(t)-x_{A}(t)} \tag{5.2.1}
\end{equation*}
$$

As indicated the slope is a function of the development time. x is given by

$$
\begin{equation*}
x=\int_{t(0, z)}^{t(x, z)} R(x, z) d t \tag{5.2.2}
\end{equation*}
$$

where $R(x, z)$ is the rate function depending upon the position as well as M value at the position and $t(x, z)$ is the development time to reach the point (x, z) given by

$$
\begin{equation*}
t(x, z)=\int_{0}^{z} \frac{d z^{\prime}}{R\left(0, z^{\prime}\right)}+\int_{0}^{x} \frac{d x^{\prime}}{R\left(x^{\prime}, z\right)} \tag{5.2.3}
\end{equation*}
$$

5.3 Design Algorithm

Using the standard SAMPLE optical algorithm and the development algorithm described in the previous section line-edge slopes are rapidly calculated for each resist process until a desired slope is matched to a calculated slope. A user specifies the optical constants to run the IMAGE and EXPOSE subroutines of SAMPLE. He also specifies the line-edge slope and resist linewidth of a desired resist feature as defined in Fig. 5.3.1.

For a selected set of resist parameters (A,B,C, and R parameters) the rate function, $R(M, z)$, and the M distribution within the resist, $M(x, z)$, are combined to produce the rate as a function of position, $R(x, z)$. The M distribution is provided by the SAMPLE. ${ }^{1}$ The slope is calculated with varying dose. At each dose the development time is calculated according to equation (5.2.3) with $x=$ given linewidth and $z=$ given thickness. The slope at this development time is calculated according to equation (5.2.1) through (5.2.2). If a calculated slope is not matched to the given slope within the dose range of the EXPOSE another set of resist parameters is selected and this whole procedure continues. When the given slope is matched, the process recipe is given as the dose, the development time, and the resist process corresponding to the selected resist parameters.

The details for numerical integration of equations (5.2.2) and (5.2.3) are given as follows. For a given rate array R vs x (or R vs 2) the integration is performed within each division of x (or 2) as shown in Fig. 5.3.2. The increment is chosen depending upon the rate as

$$
\mathrm{dt}=(\mathrm{x}(\mathrm{i}+1)-\mathrm{x}(\mathrm{i})) / \operatorname{maxrate}(\mathrm{r}(\mathrm{i}), \mathrm{r}(\mathrm{i}+1)) / \text { ndev }
$$

The highest rate in each division is used to determine the maximum time interval. This time interval is divided by an arbitrary number, ndev, to give a small enough time increment. Thus the time increment is varying in each division. The development length, x, progresses by $x=x+r a t e * d t$ and the development time by $t=t+d t$. The rate is updated whenever x is updated:
rate $=r(\mathrm{i})+(\mathrm{r}(\mathrm{i}+1)-\mathrm{r}(\mathrm{i}))^{*}(\mathrm{x}-\mathrm{x}(\mathrm{i})) /(\mathrm{x}(\mathrm{i}+1)-\mathrm{x}(\mathrm{i}))$

When the process moves from one division, $x(i)$ and $x(i+1)$, to next division, $x(i+1)$ and $x(i+2)$, the development time is trimmed to eliminate the accumulative error as
$t=t-(x-x(i+1)) /$ rate
and also x as
$\mathrm{x}=\mathrm{x}(\mathrm{i}+1)$

The FORTRAN codes to implement this algorithm, input, and output format are found in Appendix E.

5.4 Results

The resist profile based on the simplified development algorithm is shown in Fig. 5.4.1 (The positions of maximum intensity are connected by dotted line). This is obtained for the given slope of 82 degree and the linewidth of $0.8 \mu \mathrm{~m}$ for an image of $1 \mu \mathrm{~m}$ line and spaces with $\mathrm{NA}=0.28$, $\sigma=0.7$, and $\delta($ defocus $)=1.5$ by searching for 3 different resists and 10 different developers in 32 seconds. Each development is done for 20 different doses. An optimum process is found to be KODAK 820 resist pre-
baked at $100^{\circ} \mathrm{C}$ for 30 minutes. The dose is $60 \mathrm{~mJ} / \mathrm{cm}^{2}$ and the development time is 100 seconds. The developer solution is one part of KODAK 809 developer and three parts of water. The development temperature is $20^{\circ} \mathrm{C}$. To compare with the detailed resist profiles this process information is entered in the input of SAMPLE. The result of SAMPLE is also shown in Fig. 5.4.1. (solid line) There is no significant difference between the two profiles in terms of the line-edge slope and resist linewidth. Another example of comparison is given in Fig. 5.4.2 for MICROPOSIT 1470. This is searched for the slope of 75 degree at $0.8 \mu \mathrm{~m}$ resist line. The dose is found $41.6 \mathrm{~mJ} / \mathrm{cm}^{2}$ and the development time 52.6 seconds. MICROPOSIT 351 developer diluted 1:3 is selected and development temperature is $20^{\circ} \mathrm{C}$.

One application of the simplified development algorithm is a rapid evaluation of process sensitivity to resist features. In Fig. 5.4.3(a) the slope is plotted against dose with $\triangle C D$ as parameter. ($\triangle C D$ is the difference between the resist linewidth and the linewidth on the mask) The slope increases with large $\triangle C D$ over all exposure. With the bulk rate only the slope increases rapidly in the low exposure range. At doses higher than $100 \mathrm{~mJ} / \mathrm{cm}^{2}$ the slope is not very sensitive to dose variation. Including the depth dependence with $\triangle C D=0.2 \mu \mathrm{~m}$ the resist slope is not very sensitive to doses ranging 50 to $200 \mathrm{~mJ} / \mathrm{cm}^{2}$ (Fig. 5.4.3(b)). Clearly the rate-retardation near the surface makes the resist feature less sensitive to dose variation.

References

1. W.G.Oldham, et al, "General Simulator for VLSI Lithography and Etching", IEEE ED-26, No. 4, 1979
2. R.Jewett, "A String Model Etching Algorithm", Memo No. UCB/ERL M79/68, Oct., 1979
3. M.M.O'Toole, "Simulation of Optically Formed Image Profiles in Positive Photoresist", Ph.D. dissertation, EECS, U.C.Berkeley, 1979

(a)
(b)

Fig. 5.2.1(a) \& (b)

Fig. 5.3.1

Fig. 5.3.2

Fig. 5.4.1

Fig. 5.4.2

Fig. 5.4.3(a)

Fig. 5.4.3(b)

Appendix A

The BASIC Program for Exposure


```
SEO NEXT J
S9( SDEV=SQR(DEV)/KP*100 "standard deviation in %
G00 PRINT "Standard Deviation per Power (%) = ";SDEV
610 PRINT "* of out-of-average power ( +- ";DP*1O0;:PRINT " % ) = ";NG
620 PRINT " "
G3O IF SDEV }>.1 THEN PRINT "REPLACE BULE FDR EETTEF UNIFORMITY !!"
640 PRINT " "
6SO FRINT "Measure the reflectance ... "
660 PRINT "Do you know the refractive inder of the matched substrate [y/ri] ":
670 INPUT RINS
6BO IF RINS <> "Y" AND RINS &> "n" THEN 6GO
690 IF RIN$="Y" THEN 770
700 PRINT "Place the matched substrate on the holder. Then hit any key."
710 IF INKEY$ = "" THEN 710
720 GFLAG$="y"
730 GOSUE 43日0
740 AVGR=RSUM/KF:REFL=1-AVGR/AVG
750 IF REFL := O THEN 70O
760 GOTO BCIO
770) FRINT "Give the refractive indes:. "::INFUT RINX
780. IF FINX & 1! THEN 770
790 REF=(1-FINX)/(1+RINX):REFL=REF*REF
80@ PFiINT "Reflectivity = ";REFL
810 FRINT " "
B2O FRINT "Now measure the transmittance during the exposure ... "
8\XiO FRINT "******* ANSWER THE FOLLOWING *******"
840 PFINT "resist name for the measurement "::INFUT RESIST$
8SO PRINT "prebake temp. ['C] ";:INFUT EKTTEMF
8ó PRINT " time [min] "::INPUT EkTIME
870 PRINT " "
8EO FRINT " "
990 FRINT "The following measurement is for ..."
9OO FFINT "resist name: ";RESIST&
910 FRINT "prebake temp.";Ek:TEMF
920 PFINT " time ";EKTIME
930 FRINT "Are these all correct [y/n] ";:INPUT PRC$
94! IF FRC& <> "Y" AND PRC$ << "n" THEN 930
950 IF FRC$ = "n" THEN BSO
960 FRINT " "
970 FRINT "******* Read this instruction *******"
980) FFINT "Each wafer is given a file number by the user: the"
9OG PRINT "file number should be of the form mmddrr, where mm is"
1OOO FRINT "month, dd is date, and rr is run number."
1010 FRINT "Example: on May 13 we do run 95 "
1020 FFINT "the file name would be given 0sis95."
10SO FRINT " "
104G ERASE H.L,F 'erase the previous result
1050 DIM H(SOOO), L(J000),F(J000) "have room to spare, check with "print fre{:,'
10o(% PRINT "specify file number"; :INFUT A$
1070 IF A }=>0"000000" THEN END
10日0) ES="E:"
1090 D$="T.DAT"
1100 I$=E$+AS+Ds
1110 PFINT "Enter the dose level [mJ/cm2] ";:INFUT DOSE
1120 PERIOD=1
11SO IF DOSE >= OOQ THEN FERIOD=S :FRINT "Three periods are given."
1140 PRINT " "
1150 DTMIN=.02* : DTMAX=60): DTPLOT=.014#:T2MIN=1.B
1160) FRINT "minimum data collection rate : tl(sec) =";DTMAX
1170 FFINT "ma>: imum data collection rate:"
1180. REM FRINT "without displaying data in real time"
1190 FRINT "Firgt period (without plot) ... tl s= ";DTMIN
1200 FRINT " (with plot) ... t1 >m ":DTFLOT
1210 PRINT "Second period and on (with/without) ... t1 >= ";TIMIN
1220 PRINT " "
```



```
2540 NEXT J
2550 REM
256G PRINT "calculating intensities ..."
2570 N(O)=0:NI=1:FSUM=0 : F:Sm0 :TS=0
2580 FOR IP=1 TO PERIDD
2590 NF=NI+N(IF)-1
2600 FOF I=NI TO NF
2G10 H(I)=H(I)/VTOMW :F (I)=F'(I)*AVG
IF P(I) >= PWCUT THEN TS=TS+TI(IF)
IFF(I) >= P2*AVI DR F(I) =: FI*AVI THEN 2650
KS=K:S+1:PSUM=FSUM+P(I)
NEXT I
NI=NF+1
NEXT IF
NDS=NF-K:S
PRINT "# of cut data = ";NDS
FFINT "Do you want to check the procesaed data ";:INFUT CD$
IF CD$ < > "y" AND CD$ <> "n" THEN 2700
IF CDs = "n" THEN 2日7!
27S0 N(0)=0
2740 NI=?
2750 FOF IF=1 TO FEFIOD
2760 PRINT "period ":IF
2779 NF=NI +N(IF)-1
27日0 FRINT N(IF),T1(IP),D,T2,REFL
2790 FOF I=NI TO NF STEF 7
```



```
2日10 FRINT USING "#####,######";H(I),H(I+1),H(I+2),H(I+J),H(I+4),H:I+5),H:I40,
282G FRINT " "
2830 NEXT I
2840 NI=NF+1
2日50 NEXT IF
2860) REM
2870 FEM calculate average intensity agamn during the erposure
2日gの AVI=PSUM/KS *The average intensity at the resast surface (alr')
2800 DEV=0 : 3S=0
2OOQ FOF I=1 TD NF
2910 IF F(I) >= P2*AVI QR P(I) m@ P1*AVI THEN 29SO
2920 DEV=DEV+(F(I)-AVI)^2/AVI :JS=JS+1 *Standard deviation source power
2950 NEXT I
2940 SDEV=SQF(DEV)/JS*1(O) Ffor %
2950, D=AVI :T2=TS :DOS=D*T2
2960 FRINT " "
2970 FRINT "Average.Intensity at the Surface (Air) = ":D
29日0 FFINT "E%posure Time (sec) = ":T2
299( FFINT "Exposed Dose (air) (mJ/cm2) = ":DOS
Si%G PFINT "Standard Deviation per Fower (%) = ";SDEV
EOIG FRINT " "
EO20 FFINT "*** want to save it [y/n] ";:INFUUT WT$
SOSG IF WT$ < "Y" AND WT$ &% "n" THEN S020
SO4! IF WT$ = "n" THEN BEO
juSG FRINT "saving data and reference at the resist surface(alr) ... "
30GO OFEN I$ FOR OUTFUT AS #1
E@70 FRINT 1, RESIST$
3OG FFINT #1, EKTEMF
3090 FRINT # 1,BKTIME
S1!以 FFINT #1,USING "##";FEFIDD'
3110 NI=1
\Xi120 FOF IF=1 TO PERIOD
3130 NF=NI +N(IF)-1
3140, FFINT #1,N(IF),T1(IF),D,T2,FEFL
31SO FFIINT #1. "source-channel"
S160 FOR I=NI TO NF STEF }
```



```
3180 NEXT I
3190 PRINT %1, "data-channel"
```

3200 3210	FOR I $=$ NI TO NF STEF 7 PRINT \＃ $1, \mathrm{USING}$＂\＃\＃\＃\＃．＊\＃\＃\＃\＃； $\mathrm{H}(\mathrm{I}), \mathrm{H}(\mathrm{I}+1), \mathrm{H}(\mathrm{I}+2), \mathrm{H}(\mathrm{I}+3), \mathrm{H}(\mathrm{I}+4), \mathrm{H}(\mathrm{I}+5), \mathrm{H}(\mathrm{I}+\mathrm{O})$
3220	NEXT I
3230	$\mathrm{NI}=\mathrm{NF}+1$
3240	NEXT IP
3250	CLOSE \＃1
3260	GOTO BEO
$\underline{\mathrm{E}} 270$	REM This routine is the data collection routine during which the collected
3280	REM data are displayed in real time：consequently，the rate of data
3290	REM collection 15 slow．data rate $=1 / .032=31$
3300	REM Note：In order to save e：euction time，this segment of the code worls
E310	REM for positive voltage only（＇If h＞32767 ther h－h－655．6＇＊is stipped
3320	REM graphics information
3530	REM（ 0，0）（639，0）each coordinate pair＝（x，y）or（col，row）
3.340	REM（ 0，199）（639，199）the whole screen $=6400$ 200
3350	CLS＇clear screen
3360	KEY OFF＂turn off the function－key display
3370	SCREEN 2 ＇high－resolution graphic screen（640：200）
3580	REM＊＊＊between the two marks the program has to run quick as a ratbit
E－90	FRINT＂hit any key during data collection to stop
5400	FRINT＂＊＊＊REMEEEF ：Exposure Time＝＂；T2；：PFINT＂seconds＊＊＊＂
5416	FRINT＂：Substrate＝＂；As
3420	GOSUE 4210
5450	REM Setting the boards
E440	
5450	ADLT＝日io \quad I／O starting address of Tecmar Lab Tender Ecard
3460	OUT ADF：$+9,255$＊master reset the timer
3470	OUT ADFS＋9，95＇load all counters
3480	SM＝INF（ADFS +0 ）＊reset the status bit in Lab Master
3490	ST＝INF（ADLT＋1），the status bit in Lab Tender
3500	OUT ADFS +4.128 ＇control byte of A／D（10000000）：Lab Master
3510	OUT ADFS＋5，0 A／D input channel number 0
5520	QUT ADLT， 2 （A／D input channel LT
SE30	QUT ADFS＋9，23＇data pointer to master mode register
3540	OUT ADFS＋ 0 ， 0 master mode reg 1 （0000 0 0 00）
3550	OUT ADFS＋日， 128 ＇master mode reg h（1 0 0 0 owos）
3560	OUT ALRS 9,5 data pointer to counter mode reg of counter 5
3570	OUT ADFS + B，49＇counter mode register 1 （00110 001）
3580	
3596	OUT ADFS＋日，CMFH\％＂counter mode reg h（000）01110）
3600	OUT ADFS +8, TLL\％（1）counter load value 1 ．clves；＋otint（\％ilo
3610	OUT ADRS＋8，TLH\％（1）＂counter load value h
3620	FRINT＂When ready type go＂；：INFUT Gs
36.30	IF Gs ¢＂go＂AND $6 \$ \ll$＂G0＂THEN 3620
5640	PRINT＂Feriod ．．． 1 ＂
S650	OUT 1812，152：OUT 1817，112：OUT 日16．96
E660	FOR $\mathrm{I}=1$ TO $\mathrm{N}(1)$
3670	IF INF（1812）＜12日 OF INF（816）＜128 THEN 3070
3680	
9）＊63	
3690	IF 1／639＝I 1639 THEN CLS
3700	NEXT I
3710	GOTO 3730
5720	$N(1)=1$
5730	IF PERIOD $=1$ THEN 2560 ，only one period was specified
5740	$\mathrm{NI}=\mathrm{N}(1)+1$
3750	FOF：IF＝2 TO FEFIOD
3760	FFint＂Feriod ．．．＂；If
5770	$N F=N I+N(1 F)-1$
3780	GOSUE 3840．
5790	$N \mathrm{I}=\mathrm{NF}+1$
3日，	NEXT IF
3810	GOSUE 4210
3820	GOTO 256\％
－ 030	REM Subroutine Set－Up for data collection
3840	ADFS $=180 \mathrm{~B}$（ I／O startıng address of Tecmar Lab Master Eloard


```
4500 OUT ADRS+9.23 'data pointer to master mode register
4510 OUT ADRS+8,0
4520 OUT ADRS+B,128 master mode reg h (1 0 0 0 0,000)
45SO OUT ADRS+9.5
4540 OUT ADRS+8,49 =counter mode register l (ocilo (oil)
'master mode reg l (0000 0 0 00)
4550 TA=.75 :PA=.001 :CMRH%=14
45O: TTA=TA/PA :TEMPA=TTA\100
4570 TLL%=FNECD (TTA-TEMFA*1CO) :TLH%=FNECD (TEMFA)
4S80 OUT ADFS+B, CMRH%
4590 OUT ADFS+8, TLL%
4600 OUT ADFSS+B, TLH%
4610 WFN=0 " chech power limits for safety
4620 IF GFLAG$="Y" THEN 4740
4630) PRINT " V1 VO V1/VO "
4040 OUT 1817,112 :OUT 1日12, 132 :OUT 816,96
4650 IF INF(1812)<128 DR INF(816)<128 THEN 4650
4660) H=256*INF(1814)+INF(1813):F=(INF (817)-128)/128*5
4670 IF H:32767 THEN H=H-655.36!
4680 H=H/204.8
4090 FRINT USING "#####.#####":H,F,H/(P+.OCOOOO1)
4700 IF H< HL OR H % HH THEN WFN=1
4710 IF F & PL OF: F > FH THEN WFN=1
4720 IF INKEY& &` "" THEN 4930
4750 GOTO 4650
4740 REM plot routine
475% CLS :KEY OFF :SCREEN 2
4760 FFINT "DATA IS TAKEN AT EVERY ";TA ;:PRINT " SEC. "
4770 GOSUE 4210
4780 I=0 : K:0 : HSUM=0 :RSUM=0
4790 OUT 1817.112 :OUT 1812, 132 :OUT B16,90
4日00 IF INF(1812)<128 OF INF (816)<128 THEN 4800
481O I=I+1 : k: =k+1
4820 H=256*INF(1814)+INF(181\Xi):F=(INF(817)-128)/128*S
4830 IF HSS2767 THEN H=H-65536!
4840. H=H/20.4.日
485.0 PSET (I, 198-H*20):PSET (1, 198-F*20)
4860 IF H < HL OR H : HH THEN WRN=1
4870 IF F & FL OR F ` FH THEN WRN=1
4880) H(F)=H/VTOMW
4890 HSUM=HSUM+H(K) :RSUM=RSUM+H(K)/F
4900 IF I/6 %9=1\639 THEN I=0 :CLS
4910 IF H => KF THEN 4930
4920 GOTO 480%
49こO RETUFN
```

```
10 REM Frogram Name: ABCMX. EAS by Deok J. kim version: 2.S Feb. 2G .a=
20 FEM Function: Calculate EEST A,E,C and M with X from EXFOSE data
SO NDX=10 The resist thickness is divided by NDX
4O JSTEP=1 :NEACH=100, skip the data points by JSTEF for data more than Neast,
SO EEEF
60) DIM CHO(3000), CH1 (3000), TFV (3000)
70 FFINT "Which diskette is your data on [a/b] "::INPUT DISF&
日G IF DISK:$ <> "a" AND DISFis <> "b" THEN 70
90 FILEEXTENTIONS = "dat"
100 FRINT "do you want to see the data file on disi [y/n]": : INFUT ANSWEFs
110 IF ANSWER$ <> "Y" AND ANSWER$ <> "n" THEN FRINT "answer y for ye= arid ri for
no" : GOTO 100
120 IF ANSWER$ = "y" AND DISKis = "a" THEN FILES "a:*.dat"
130 IF ANSWEF生 = "Y" AND DISK:$ = "b" THEN FILES "b:*. dat"
140, FRINT "input the name (number only) of your data file": : INFUIT FILENHMEF
150 FILET$ = DISK$+":"+FILENAME$+"T" + "." + FILEEXTENTIUN$
160 DFEN FILET$ FOF INFUT AS W1
170 INFUT #1,RESIST$
180 INFUT #1, EK:TEMF
190 INFUT #1, EKTIME
200 INFUTT #1, IPEFIOD
210 I E=0
2こ0 IF=0
2RO IF=IF+1
240 IF IF % IFERIOD THEN GOTO 370
250) INFUT #1, N(IF),T1(IF),F(IF),T2(IF),FEFFL
26GIA=1+IE
27! IE=IE+NS!IF)
2BO INFUT #1. SO$!IF)
20.: FOF: I=IA TO IE STEF 7
OO
E1O NEXT I
E2G INFUT #1, S1$(IF)
EO FOF I=IA TO IE STEF 7
340 INFUT #1,CHI(I),C
E5% NEXT I
36O GOTO 2SO
\Xi7% CLOSE #1
SBO N=IE
390 FFIINT " "
40() REM
410 RG=1-FEFL : FWCUT=.1 (mW/cm2)
420 REM Check if the source was taken from CHANNEL LT
4%) NCH=0 : ICUTmO
44!. FOF. I=1 TO N
450) IF CHO(I) & FWCUT THEN ICUT=ICUT+1 :GOTO 470
460) TFV (I) =CH1 (I)/CHCI(I)/RG
470 NEXT I
48O FFINT"".
49O FFINT " "
S@O FRINT "Data file ";:FRINT FILET$;:FRINT " is opened."
S1G FFIINT " "
S20 FRINT "Exposure power was cut below ";FWCUT ::FFINT " [mw/cmこ]"
SSM FRINT " of cut data is "!ICUT
S4@ FRINT " "
S50 REM FFINT "Do you want to see the data [y/n]"::INFUT SEES
560) SEE$="n"
570 IF SEES = "n" THEN GOTO B10
```

```
5BO REM REGIN of ECHDING INFUT
59Q FRINT " "
G00 PRINT "Current Input File ";:FRINT FILETs
610 PRINT " "
G20 PFIINT RESIST$
630 PFINT "prebake "; Ek.TEMF, ERTIME
640 FRINT USING "##"; IPERIOD
650 IE=0
660 IP=0
670 IF=IF+1
GEO IF IF > IFERIOD THEN GOTO EIO
690) PRINT N(IP),T1(IF),F(IF),T2(IF),REFL
700)IA=1+IE
710 IE=IE+N(IF)
720 PRINT SO$(IF)
75G FOF I=IA TG IE STEF 7
74%
```



```
(I+S), CHC)(I +6)
750 NEXT I
760) FFINT S1S(IF')
770 FOR I=IA TO IE STEF 7
```



```
(I+5), CHI(I+6)
790 NEXT I
BOO GOTO 670
810 REM END Of ECHOING INFUT
B2O REM THIS IS THE FROGRAM TO CALCULATE A,E,C PARAMETEF:S
8\XiO F.RINT "Ex:posure DOSE calculation is ne:t ... "
840 NI = 1
850 IF CHO(NI) & PWCUT THEN NI=NI +1 :EEEF : GOTO ESG
860) NF = N
870 IF CHC)(NF) \thereforeFWCUT THEN NF=NF-1 : EEEF : GOTO E70
8BO)TI=CHI(NI)/(CHO)(NI)*F:G)
840 IF TI % 1 THEN FFINT "TI : 1 at ":NI :NI=NI+1 :GOTO 8&O
9OO IF TI := O THEN FRINT "TI <= O at ":NI :NI=NI+1 :GOTO B8!
910 TIMEI=T1(1)*NI
920 TIMEF=0
950 DOS=0 : SUMIO=0 : INSUM=0
940 IE=0
950) IF=0
900 IF=IF+1
970 IF IF IFEFIOD GOTO 10BO
980 IA=1+IE
900)IE=IE+N(IF)
1OOG FOR I=IA TO IE
101O IF CHO!I) : FWCUT THEN EEEF :GOTO 106O
1OIO TIMEF=TIMEF +TI(IF)
10O FWO=CHO(I)
1040 DOS=DOS+FWO*TI(IF):SUMIO=SUMIO+FWO
1OSO INSUM=INSUM+1
1000 NEXT I
1070 GOTO 960
10日!) NF 1=NF
1090 AVGIG=SUMIG/INSUM
1100 PRINT "Average Intencity (air) = ";AVGIO
1110. IF CHO(NF1) & FWCUT THEN NF1=NF1-1 :EEEF :GOTO 111%
1120 TF =CH1(NF1)/(CHO(NF1)*RG)
113O IF TF % 1 THEN FRINT "TF > 1 at ":NF1:NF1=NF1-1 :GOTO 1110
1140 IF TF<=0 THEN FRINT "TF < = 0 at ":NF1:NF1=NF1-1 :GOTO 1110
11SO) TI=CHI(NI)/(CHO(NI)*RG)
1160)NF=FNF1:NFINAL=NF1
1170 FFINT " "
11GOG FRINT "+++++++++++++++++++++++++++++++++++++++++++++++++++++++"
1190 FRINT ""
120@ FRINT "Exposure starts at ":FRINT TIMEI::FRINT "sec"
121! FFINT "Transmittance 15 ";:FRINT TI
```

```
122O PRINT "."
12S@ PRINT "Exposure ends at ";:FRINT TIMEF::PRINT "sec"
1240 PRINT "Transmittance is ";:PRINT TF
1250 PRINT ""
1260 FRINT "Exposed Doses in Air ";:PRINT DOS ;:PRINT " [mJ/cm`J"
1270 PRINT "Exposed Doses from Data ";:PRINT F(1)*T2(1);:PRINT " [mJ/Em2]"
12日0 PRINT ""
1290 PRINT " + ++++++++++++++++++++++++++++++++++++++++++++++++++++++++"
1300 PRINT " "
1310 REM get thickness of resist from RX file
1320 DEPTH$=DISk$ + ":" + FILENAME$ + "RX" + ".DAT"
13JO PRINT "Finding thickness from ";DEPTHs
1340 OFEN DEPTH$ FOR INFUT AS #1
1350 INFUT #1, RESIST$
1360 INFUT 1, DEVELOFERक
1370 INFUT 1, DEVTEMF
1380 INFUT #1, THICK
1390 CLOSE #1'
1400 PRINT " "
1410 PRINT RESIST$
1420 FRINT DEVELOFER$
1430 FRINT DEVTEMF
```



```
1450 PFINT "--------------------------------------------------
1460 FRINT "The thickness of the resist is ";THICE
1470 FRINT "-------------------------------------------------
1480 PRINT " "
1490 REM ESTIMATE A,E,C
150%) REM
1510 REM
1520 REM CALCULATE THE SLOFE TO ESTIMATE C PARAMETER
15SO REM EASED ON STRAIGHT LINE FITTING y=TG+S*t
1540 FRINT "Flot of transmittance will be next. Hit any key. "
1SSO IF INKEY$ = "" THEN 1550
1560 GOSUE 4080
157% FRINT "How many data from the beginning to estimate the slope "::INFLIT NS
15B0 MVAL=1
1590 FULDOS=1000
1600 IF DOS >=FULDOS THEN MVAL=0: GOTO 1660
1610 PFINT "DOse : " ;FULDOS ;:FFINT "Gave E value "::INPUT EE
1620 PRINT "How many points at the end would give the last transmittance"
1630 FRINT "If you don't remember the last picture then type back ": INF|IT EAt i
1640. IF EAR'$ & "bact:" THEN 1660
165% GOSUE 4080
1660 PRINT "How many data from the end for the last transmittance ";:INFUT NA"
1670 EEEF
1680 NF 1=NF:NFS=NF-NAV+1
1690 NCUT=0 : TFSUM=0
1700 IF CHO(NF1) & FWCUT THEN NCUT=NCUT+1 : EEEF :GOTO 1750
1710 TF1=CH1(NF1)/(CHO)(NF1)*FG)
1720 TFSUM=TFSUM+TF1
17SO NF1=NF 1-1
1740 IF NF1 < NFS THEN GOTO 1760
1750 GOTO 1700
176() NAVE=NF-NF 1-NCUT
1770 TF=TFSUM/NAVE
1790 TFMエTF
1790 IF MVAL=1 THEN 1日10
18(N) EE=-(1/THICK)*LOG(TF)
1日10 REM Eiginning of estimatiom
1820 EEEF
18%(0) X=0
1840 Y =0
1850 XY=0
1800 XX=0
1B7! YY=0
18日O VO=O
```

```
1890 NIS=NI+NS-1
1900 NDEAD=0
1910 FOR I=NI TO NIS
1920 IF CHO(I) : PWCUT THEN NDEAD=NDEAD+1 :BEEF : GOTO 2010
19S0 YI=CHI (I) / (CHO(I)*RG)
1940 XI=T1(1)*(I-NI +1 -NDEAD)
1950 Y =Y+YI
1960 X=X+XI
1970 XY=XY+XI*YI
1980 XX=XX+XI*XI
1990}YY=YY+YI*YI
2000 VO=VO+CHO(I)
2010 NEXT I
2020 EEEF
20S! NS=NS-NDEAD
2(140 T(1) (Y*XX-X*XY)/(NS*XX-X*X)
20SG S = (NS*XY-X*Y)/(NS*XX-X*X)
2(160) 10mRG*VG/NS *intensity on the resist surface
2070 FRINT " "
20日0 PRINT "Estimated Slope =";:FRINT S
2090 FRINT "Esitraplated TG ="::PRINT TO
2100 PRINT." "
2110 TF=EXF(-EE*THICK;)
2120 AE= (LOG(TF)-LOG(TO))/THICk
2130 CE =(AE+EE)*S/(IO*AE*TO*(1-TO))
2140 IF MVAL=1 THEN ME=-(LOG(TFM)/THICK+EE)/AE
2150 PRINT "Estimated A Farameter ="; :PRINT AE :AEO=AE
2160) FRINT "Estimated E Farameter ="; :FRINT EE :EEO=EE
2170 FRINT "Estimated C Farameter ="; :PRINT CE :CEO=CE
21日@ FRINT "Estimated M Farameter =": :PRINT ME :MECI=ME
2190 F.RINT " "
2200 IF MUAL=1 THEN PRINT "E was given from dose > ";FULDOS :GOTO 2230
2210 FFINT "E is based on the last "; :PRINT NAVE;:PFINT " points."
222@ FRINT "# of dead points are "; :FRINT NCUT
2こ0) PRINT "C is based on the first ": :PRINT NS::FFINT " points."
2=40% FRINT "# of dead points are "; :FRINT NDEAD
2250, REM END OF A,E,C. ESTIMATION
2260 TI=[H1 (NI)/(CHC)(NI)*RE)
2270 RT=TO;TI
22日6 FFINT " "
2290.FFRINT "TO/TI =";:PFINT RT
2\Xi00 PRINT " "
2`10 SLOF=1
z-20 FRINT "Do you want to plot the slope in the first section [y/n] ";:INFuT SL
$
```



```
2:40 IF SL$ = "Y" THEN GOSUE 40BO
2JS0 SLOF=0
256?.L LAST=1
2\Xi70 FFi|NT "Do you want to plot the average TR in the lagt section [y!n] "::INFL
T LAST$
2\XiB!) IF LAST$ «% "y" AND LAST$ \therefore: "n" THEN 2S70
2こ90.) IF LAST$ = "Y" THEN GOSUE 4080
2400 LAST=0.
2419 FRINT "Do you want to re-estimate A,E,C [y/n] "::INFUT REs
242! IF RE$ &% "Y" AND RE$ & "n" THEN 2410
24ミO) IF RES ="Y" THEN 1540
2440. FEM
```



```
246!. FRINT "Frecision of A,B,C starts now ... "
247! ERASE CH1
248% DIM TRO!SOO(1),IR(100),M(100), DEFTH(100)
249!. FRINT "Do you already know closer A.E,C [y/n] "::INFUT AECH$
25@0 IF AECHS << "Y" AND AECH$ <: "n" THEN 2490
251% IF AECHS = "n" THEN 2S5O
```

```
2520 FRINT "Give A,E,C ":INFUT AE.EE,CE
2530 IF EE & EEO THEN MVAL=1
2540 IF MVAL=1 THEN MPAR=-(LOG(TFM)/THICK+EE)/AE :PRINT "M = ";MFPAR
2ESG PFINT " "
2560 A=AE :EmRE :C=CE
2570 FFINT A,B,C
2580 PRINT "The thickness division is given ":NDX
2590' PRINT " "
2600 FOR IF=1 TO IPERIOD
2610 PRINT "PERIOD ";IF
2620 JSTEF(IP) mJSTEF
2630 PRINT " of data = ";N(IP)::FRINT " Current JSTEF = ";JSTEF
2640 IF (NF-NI) & 100 THEN 2670
2650 IF N(IF) > NEACH THEN PRINT "Change JSTEP ";:INPUT JSTEP(IP)
2660 IF JSTEP(IF) : 1 THEN FRINT "... JSTEF & 1 ... WFONG !!! " :GOTO 2OIO
2 6 7 0 ~ N E X T ~ I F ~
2680 GOSUE 3500
2690 IF MSD : .0001 THEN MSDF=MSD :GOTO 3440
2700 IF MSD > .OO2 THEN FFINT "ESTIMATE AGAIN : ":GOTO 2520
2710 FC=SOF:(MSD)
2720 PA=FC :FE=-PC
27-0 REM Refinement of C,A, and E parameters
2740 MSDF=MSD :MSDRDS=MSD
2750 FOF IROUND=1 TO S
276@ FRINT "m=n== ROUND ":IROUND ;:FRINT " m===="
2770 REDU=0
2780 SET=0
2790 C=CE* (1+PC)
2800 FRINT "Frevious MSD = ";MSDF ;:PRINT " ... process C now "
2910 GOSUE 3500
2820 IF MSD > MSDP THEN 2900
2BSO SET=0 : REDUCO
2B40 CE=C :MSDP=MSD : PC=SQR(MSD)*PC/ARS (FC)
2850 IF MSD=<.0001 THEN 3440
2860 IF MSD > MSDF*. }997\mathrm{ THEN OUTLOOF=1 ELSE OUTLOOF=0
2970 IF OUTLOOF=1 THEN 2940
2880 IF MSD : .OOOS/IROUND THEN 2940
29GO GOTO 2790
290) IF SET=0 THEN FC=-FC :SET=1 :GOTO 2790
2910 IF REDU=1 THEN C=CE :GOTO 2940
2930 FC=FC/2 :REDU=FEDU+1
2950 GOTO 2790
2940. REDUA=0
2950 SET=0,
2900) A=AE*(1+FA)
2970 FFINT "Frevious MSD = ":MSDF ;:PRINT " ... process A now "
2980 GOSUE 350%
2990 IF MSD > MSDF THEN SO7%
S000 SET=0 : REDUA=0,
S010 AE=A :MSDF=MSD : FA=SQF(MSD)*FA/AES (FA)
3020 IF MSD i= .0001 THEN }344
ZuSO IF MSD % MSDF*. }997\mathrm{ THEN OUTLOOF=1 ELSE OUTLOOF=0
3040 IF OUTLOOF =1 THEN }311
SOSO IF MSD : .OOOS/IFOUND THEN S110
3060 GOTO 2960
E0170 IF SET=0 THEN PA=-FA :SET=1 :GOTO 2960
3OBO) IF REDUA=1 THEN A=AE :GOTO S110
F090, FA=F.A/2 :REDUA=REDUA+1
3100 GOTO 2960
3110 FEDUE=0
-120 SET=0
2120) E=EE* (1+PE)
E14O FRINT "FREviOUS MSD = ";MSDF ;:FRINT " ... process E now .
Z150 GOSUE 350%
E160, IF MSD > MSDF THEN 3240,
3170 SET=0 : REDUE=0
```



```
SBSO PRINT "Plot for calculated and experimental TR is ne:t. Hit ariy ker."
3B60 IF INKEY& = "" THEN 3B60
3日70 PREC=1
3日GO GOSUE 40日O
3090 PREC=0
3900) PRINT " "
3910 PRINT "Do you want to save it [y/n] ";:INFUT MX$
3920 IF MX$ <. "Y" AND MX$ & "n" THEN 3910
3930 IF MX$ = "n" THEN ERASE TRO,IF,M,DEFTH :GOTO 24B0
3940 PRINT "Which disk do you want it to be saved [a/b] ";:INFUT DISk:s
3950 FILEMXs = DISK$ + ":" + FILENAME$ +"m>" +".dat"
3960) DPEN FILEMX$ FOR OUTFUT AS #1
3970 PRINT #1,RESIST$
3980 PRINT #1,USING "#############";EKTEMF
```



```
40OO PRINT #1,USING "#############";A,E,C
4010 PRINT #1,USING "#####.######";(NDX+1), THICK.,DOS,REFL
402O FOR I=0 TO NDX
```



```
4040 NEXT I
40S0 CLOSE #1
4060 END
4070 FRINT "GO GET THE REQUIRED DATA !!!"::END
40日O REM Fl ot Subroutine
40190 CLS :KEY OFF :SCREEN 2
4100 EEEF
4110 MG=1
4120 MGY=1
41:O FRINT "FILE NAME =":FILENAMES ;:PRINT " IO =";AVGIO;:FFINT "[mWiEmこ]":
4140 PRINT " DOSE =":DOS ;:FFINT "[mJ/cm2]"
4150 NSRT=NI : NEND=NF
4100 NSLM=0
4170 FOR IF=1 TO IFEFIOD
4180 NSUM mNSUM +N(IF)
4190 PRINT "The end of period ":IF ::FRINT " ": NSUM::FRINT " dt= ":TI'IF:
4200 NEXT IF
4210 FRINT "Flot Fange X1,X2 ":: INFUT NSFT,NEND
4220 FRINT "Magnification }x,Y\mathrm{ "::INFUT MG.MGY
42SO NMGSET=0
424! IF MG & O THEN NMGSET=1 :MGA=AES (MG)
4250) Mk:=1
4260 IF MG := 0 THEN MG=1: MK:=MGA :NN=INT((NEND-NSRT)/MGA+1) :GOTO 4こE:\
4270 NN=MG* (NEND-NSFT) +1
4280 k=1
4290 GOSUE 4940
4EOM IF FREC=1 THEN FFINT "A,E,C,MSD "::FFIINT USING " #.####,巫" ":A.E.C.MSI,
4こ10 FOF I=1 TU NN STEF MG
4S20 Y=MGY*TRV(K'+NSF:T-1)
4FSO IF PREC = 1 THEN Y1=MGY*TRO(k:+NSRT-1)
4340) FSET(I-(I\6\Xi9)*639,199-Y*20)
4350) IF PREC = 1 THEN FSET (I-(I\639)*6.39.199-Y1*20)
4360 IF I/639=1\6.39 THEN 4770
4370 k=k+Mk
4\Xi80 NEXT I
4%90 IF SLOF <> 1 THEN 4470
440,0}k=
4410 FOF 1=1 TO NN STEP MG
4420. IF I & NI THEN 446O
4430}\quadY=(TO+S*T1(1)*(K+NSFT-1-NI))*MG
4440)FSET (I- (I\6J9)*6こ`,199-Y*20)
44S0) N:=k:+Mr.
446%) NEXT I
4470 IF LAST \therefore% 1 THEN 4S40
4480 r=1
4490. FOF I= 1 TO NN STEF MG
```

```
4EOG) Y=MGY*EXF(-EE*THICN:
4S10 FSET (I-(1\639)*639,199-Y*20)
4520 K=ki+Mk
45%O NEXT I
4540 IF NEND > N GOTO 4820
4SSO FRINT "Do you want to checr: the data in the plot [y/n] "::INFUT FFs
4560 IF FRR$ & "Y" AND PR$ &% "n" THEN 4550
4570 IF FR& = "n" THEN 4730
45日0 FRINT "Eeginming number ";NSRT
4E90 NQ=INT ((NEND-NSRT+1)/7)
4600 NEE=7*NQ+NSRT-1
4%10 NR=NEND-NEE
4G20 FQR I=NSRT TO NEE STEF 7
```



```
),TRV(I+6)
4640 NEXT I
4650 IF NF:## THEN 4720
4660 1=0
4670 I = I +1
4680 PRINT USING "䉽䉽.刑料䉽";TRV(NEE+I):
4690 IF I `m NR THEN 4710
4700 GOTO 4670
4710 PRINT "&&&&&&&&&&"
4720 FFINT "Ending number ":NEND
4730 FRINT "Do you want to see another section [y/n] ";:INFUT SEE$
4740 IF SEE$ }\because\mathrm{ "Y" AND SEE$ }
4750 IF SEES="y" THEN CLS : GOTO 41S0
4700 IF SEE$ = "n" THEN 4820
4770 FRINT "Do you want to plot further [y/n] "::INFLTT YE$
4780 IF YE$ &> "Y" AND YEs & "n" THEN 4770
4790. IF YE$ = "Y" THEN CLS
48%O GOSUE 4940
4B10 GOTO 438%
4820 RETUFN
48SO REM AUTO CONTINUE
484O V$="O":NTON=44O/7 :RO=0
4850 M=440
4860 IF RO:10 THEN 49%O
4870 SOUND M. . }
488@ V$=INF.EY$
4890 IF V$="Y" THEN GOTD 49E0
49@G IF Vs="n" THEN GOTO 49J0
4910 IF M:1320 THEN FD=FOD+1:M=M-FO*B8 :GOTD 4B60
4920 M=M+NTON :GOTO 4870
493:) RETUFN
494:) REM subroutine grid
49S0) SCALE=MG :XTIC=10:YTIC=.1
4960 IF NMSET=1 THEN SCALE=1/MGA
4970 NGF:ID=XTIC*SCALE :LRESET=10*NGFID
4980 LTEN=-1 :LXTEN=1
4990) FOF L=1 T0 6S1 STEF NGFID
SOON FSET(L, 199)
EO1O LTEN=LTEN+1
SOIO IF LTEN=LXTEN*10 THEN LXTEN=LXTEN+1 :FSET(L,198)
50SO NEXT L
SC40. NYSTF=YTIC*2O*MGY :NYRESET=S*NYSTF
505%) FOF: LY=0 TO 199 STEF NYSTF
S(.60) FSET (1,199-LY)
507% IF LY/NYFESET=LY\NYRESET THEN PSET (2,199-LY)
SO日0 IF LY/2/NYRESET=LY\(2*NYRESET) THEN FSET(J.199-LY):PSET(4.199-LY)
5090) NEX.T LY
51ON RETURN
```


Appendix B

The BASIC Program for Development

```
10 REM Program Name: DEVELOF.BAS by Deok J. Kim version: 2.1 Dec 20'82
20 REM Furpose: to collect data by controlling the Tecmar A/D converter
30 REM maximum data rate = 50 for the safety
40) REM maximum data rate = 25 with graph in real time
50 REM
60 DIM H(6000),L(6000) "still have room to spare, check with "print fre(%:)"
70 DEF FNECD (X) = X+6*(X\10) "convert an iriteger from binary to ECD form, thi
g function is only good for B bits data thus 99 is the marimum value
BO REM
90 FRINT " "
100 PRINT "******* ANSWER THE FOLLOWING *******"
110 FFINT "Resist name ";:INFIUT RESISTs
120 FFINT "Developer [say, MiF 1:3, \Xi is the water]"::INFUT DEVELOFEF:$
130 FFINT "Develop Temperature ["cj";:INFUT DEUTEMF
140 FRINT " "
150 PRINT "each wafer is given a file number by the user; the"
160 FRINT "file number should be of the form mmddrr, where mm is"
170 FRINT "month, dd is date, and rr is run number, example: on"
180 FFINT "May 1S we do run 95 the file number would be given 051395"
190 FRINT " ",
200 ERASE H,L
    erase the previous result
210 DIM H(0000), L(6000) 'still have room to spare, check with "print fre(:)
220 FRINT " "
230) FRINT "The following measurement is for ...."
240 PRINT RESIST$
250 FRINT DEVELOFER$
200 FRINT "Dev Temp ";DEVTEMF
270 FFINT " "
280 FRINT "All correct [y/n] ";:INFUT FRC$
290 IF FFC& << "Y" AND PRC$ <> "n" THEN 220
300 IF PRC& = "n" THEN 90
310 FRINT "Specify file number ( 0000000 = end ) ";:INFUT A&
320 IF A&="000000" GOTO 2500
ES( E$="E:"
34O D$=". DAT"
SEO IS = ES + As + Ds
360 IT$ = ES + As + "T" + D$ .
STO REM
300 NMAX=6000 : DTMIN=.02# :DTMAX=60! : DTFLOT=.O4*
390 FFINT "Did you expose the resist [y/n].";:INFUT EXFO$
400 IF EXFOS `` "y" AND EXFOS < 
410 IF EXFO$="n" THEN D=0:T2=0:GOTO 510
420 FRINT "Reading Exposure File ..."
4SO OFEN IT$ FOR INFUT AS #1
440 INFUT *1, RESTS
450 INFUTT #1, EK:TEMF
460 INFUT #1, EKITIME
470 INFUT #1, PERIOD
4EO INFUT #1, NT,ET1,D,T2,FEFL
490 CLOSE |1
SOG IF RESISTs \because% REST's THEN FRINT "Check the Resist Name. "
S10 PRINT "Exposed Dose (mJ/cmz) ";D*T2
E2O FRINT ""
SJO FRINT "Give the number of sampling points."; : INPUT N
S4G IF N : NMAX THEN PRINT "MAX = 6OCO%":GOTO SEO
SEO FFINT "."
EbO FFINT "minimum data collection rate for safety : tl(sec) =";DTMAX
S70 FFINT "maximum data collection rate:"
```


1230 PRINT＂＂	
1240 HMIN＝G（0）： $\mathrm{HMAX}=\mathrm{G}(9): \mathrm{GSUM}=0$	
1250	FOR I＝0 TO 9
1260 IF $G(1)$ \＆HMIN THEN HMIN＝G（I）	IF $G(I)$ ：HMIN THEN HMIN＝G（I）
1270	IF G（I）＞HMAX THEN HMAX＝G（I）
1280 GSUM＝GSUM＋G（I）	
1290 NEXT	
1300 GAV＝GSUM／10 ：DHX＝（HMAX－GAV）／GAV ：DHN＝（GAV－HMIN）／GAV	
1310	DMAX $=$ DHX ：IF DHN ？DHX THEN DMAX $=$ DHN
1315 FRINT＂The power is averaged for the last 10 samples．＂	
1520 FRINT＂Power m＂；GAV；：FRINT＂（＋－＂；DMAX＊100：FFRINT＂\％）＂	
1322	IF DMAX $¢=.01$ THEN 1360
1525 FRINT＂Deviation is la	
1326	FRINT＂Wıll you align the beam again ？［y／n］＂；：INFUT REALNs
1327 IF REALN\＄＜＞＂n＂THEN 1005	
1360 REM now ready to collect data 1370 ADRS＝1日Ci8＇I／D starting address of Tecmar Lab Master Eoard	
1380 OUT ADFS＋9，25s＇master reset the timer	
1390 OUT ADRS＋9，95＇load all counters	
$1400 \mathrm{X}=\mathrm{INF}($ ADPS +6$) \quad$ ）reset the status bit	
1410 OUT ADFS $+4,128$＇control byte of A／D（10000000）	
1420 OUT ADFS＋S，CHAN＇A／D input channel number	
1430 OUT ADRS $+9,23$＊data pointer to master mode register	
1440 OUT ADFS＋B，0 ${ }^{\text {a }}$（master mode reg l（0000 0 0 00）	
1450 OUT ADFS＋8，12日 ：master mode reg h（10000000）	
1460	OUT ADFS＋9．5 ${ }^{\text {a }}$ ，data pointer to counter mode reg of counter 5
1470 OUT ADFS $+8,49$＇counter mode register 1 （00110 0011）	
1480 REM fast clf range $=.001$ to 9.999 sec；slow clt．range $=.01$ to 99.99 ger	
1490 IF T1 $\leq=2$ THEN FAST $=1$ ELSE FAST $=0{ }^{\circ} \mathrm{DECIDE}$ TO USE FAST OF SLOW CLOCk：	
1500 IF FAST $=1$ THEN $F=.001$ ELSE $F=.011{ }^{\circ} \mathrm{F}=\mathrm{PERIOD}$ OF TIMEF：CLK FULSES	
$1510 \mathrm{TI}=\mathrm{T} / \mathrm{F}$（ $\mathrm{ti}=\mathrm{timer}$ load value in integer form	
1520 REM convert the timer load value from 16 －bit binary to 16－bit ECD	
1530 REM the timer load values are in ECD format， 0 －9999 for 16 －bit data	
1540 TEMF $=$ TIT100	
1550 TLL\％＝FNECD（TI－TEMF＊100）	
1560 TLH\％＝FNECD（TEMF）	
1580 OUT ADFS＋B，CMRH\％＊counter mode reg h（000 01110）	
1600 OUT ADRS＋8，TLH\％＊counter load value h	
1610 REM the following program segment has been optimized	
1620 REM 1817 ＝adrst9 adrs＝180	
1630 REM $1812=$ adrs +4	
1640 REM 1813＝adrs＋5	
1650 REM $1814=$ adrsto	
1660 IF T1 $\quad=$ DTFLOT THEN GOTO 2050	
1670 FFINT＂＊＊＊＊＊NO－FLOT during the data collection＊＊＊＊＊＂	
1680 REM＊＊＊between the two marks the program has to run quict as a rabolt	
1690 FRINT＂Hit any key to stop during data collection＂	
1700 FFINT＂when ready type go＂	
1710 INFUT GS	
1730．PRINT＂callecting data．．．＂	
1740 OUT 1817，112：OUT 1812，132	
1756．FOR $1=1$ TO N	
1760 IF INF（1812）：12日 THEN 1760	
1770 L（I）＝INF（1813）：H（I）＝INF（1814）：IF INKEY¢¢\％＂THEN 1810	
1780 NEXT I	
1790 REM ${ }^{* * *}$ the program can now leisurely walk as a turttle1800 GOTO 1830	
$1810 \mathrm{~N}=1 \quad$＇because the data collection was cut short．sc 29	
1820 FRINT＂\＃of data collected $=$＂in	
1 19\％REM convert data from two＇s complement to floating point format．	
1840 PRINT＂processing data．．．＂	
1850 FOF $I=1$ TO N	
1860	H（1）$=256 * H(1)+L(1)$
1870	1F H（1）>32767 THEN H（I）＝H（1）－65536

```
18日0 H(I)=H(I)/204.8
1890 NEXT I
1900 REM
1910 CLS: KEEY OFF : SCREEN 2
1920 GOSUE 2520
1930 GRID = 0
1940 FOF I=1 TO N
1950 PSET (I-(I\6S9)*639,190-H(I)*20)
1960 IF I/639 = I\6S9 THEN GRID=1 :CLS
1970 IF GRID =0 THEN 2000
1980 GOSUE 252O
1990'GRID=0
2000 NEXT I
2010 EEEF : BEEF : EEEF
20Z0 PRINT "Read the development temperature ": : INFUT DEVTEMF
20SO IF DEUTEMF &=0 OF DEVTEMF ? 100 THEN 2010
2040 GOTO 2J60
2050 KEM This routine is the data collection routine during which the collected
2060 REM data are displayed in real time; consequently, the rate of dita
2070 REM collection is slow. data rate = 1/.0E2 = 31
208g FEM Note: In order to save exeluction time, this segment of the code worls
2(19) REM for positive voltage only.
2100 REM graphics information
2110 REM ( O, (1) (639, O) each coordinate pair x (:yy) or (col.row:
2120 FEM ( 0,199) (639,199) the whole sereen = 640%20%
2130 CLS *clear screen
2140 KEY OFF :turn off the function-key display
2150 SCREEN 2 "high-resolution graphic sereen (640%200)
2160 FEM *** between the two marks the program has to run quick as a rabtit
2170 FRINT "Hit any key. to stop during data collection "
21日0 GOSUE 2S20
2190 PRINT "when ready type go ";:INFUT Gs
2200 IF G$<>"go" THEN 2190
2210 OUT 1817,112:OUT 1812,132
2220 FOF: I=1 TO N
2250 IF INF (1812)<128 THEN 22S0
2240 H(I)=(256*(INF(1814))+INF(1813))/204.8:FSET(I-(I\6\Xi9)*6\Xi9,198-H(I)*20):IF ]
NKEY呼"" THEN 2290
2250 IF I/639 = I\639 THEN CLS
2こ60 NEXT I
227! REM *** the program can now leisurely walt ac a turttle
22B0 GOTO 2300
2290 N = I :because the data collection was cut short. so 15 ri
2S00 FRINT "# of data collected m ";N
2F10 GOSUE 2520
2E2@ REM
2S3G EEEF :EEEF :EEEF
2ड40 FRINT "Read the development temperature "::INFUT DEVTEMF
2350 IF DEVTEMF <=0 OF DEVTEMF % 100 THEN 23S0
2560 FRINT "saving data on ";Bs+A$+D$
2E70 OFEN I$ FOF OUTFLT AS #1
2J8O PRINT 1,RESISTS
2`90 PRINT %1,DEVELOFERS
2400 FRINT #1,DEVTEMF
```



```
2420 FOR I=1 TO N STEF }
```



```
2440 NEXT I
2450 CLOSE #1
2460 FRINT " "
2470 FRINT "Will you continue [y/n] "::INFUT CONs
2480 IF CONS \therefore: "Y" THEN 2EOQ
2490) GOTO 200
2SOG FRINT "***** THANK: YOU FOR CHECKIING EVERYTHING :",*****"
2510 END
```

```
2520 REM Subroutine GFID
25.50 MG=1 :MGY=1
2540 XTIC=10 :YTIC=.5
2550) NGRID=XTIC*MG :LRESET=10*NGRID
2560 LTEN=-1 :LXTEN=1
2570 FOR L=1 TD 651 STEF NGRID
2580 PSET (L,198)
2590 LTEN=LTEN+1
2600 IF LTEN=LXTEN*10 THEN LXTEN=LXTEN+1 :FSET(L,197)
2 6 1 0 ~ N E X T ~ L ~
2620 NYSTP=YTIC*20*MGY :NYRESET=2*NYSTF
2630 FOR LY=0 TO 198 STEF NYSTF
2640 FSET(1,198-LY)
2650 IF LY/NYFESET = LY\NYRESET THEN FSET (2,198-LY)
2660. IF LY/S/NYRESET = LY\(S#NYRESET) THEN FSET(S,198-LY):FSET (4,198-LY)
2670 NEXT LY
2080 RETURN
```



```
590 YA=0:ARROW=0:MAN=0
G(i) NS=1 : NE=N 'Thas is the default plot range
610 CLS :KEY OFF :SCREEN 2
620 GOSUE 2540
630 NMGSET=0 :NSALL=NS :NEALL=NE
640 FRINT "Can you find all the verteces from the picture [y/n]";:INFUT AF:%s
6E0. IF AFV'& <> "Y" AND APV& <> "n" THEN 640
660 IF AFV$ = "ח" THEN S6Q
670 FRINT " "
680 PRINT "If the drop point and the first verte:: are not distinctave "
690 FRINT "then take the next one as the first verte:"
700 PRINT " "
710 PRINT "Type 1 for first peak or O for first valley "::INFUT fIRST
720 IF FIRST <> 1 AND FIRST &> 0 THEN 710
7SO PRINT "How many peaks and valleys ? Give the total number. ";:INFUT NFVVS
740 IF FIRST=1 THEN PRINT "*** First pear ***"
750 IF FIRST=0 THEN PRINT "*** First valley ***"
700 PFINT "The total # of peaks and valleys = ";NFVS
70 IF NFVS & 1 THEN 700
7E% REM Eiginning of arrow-work
T00 IF MG < 1 THEN FFINT "Divide the picture properly. MG == 1":GOTO 50.,
8OO ISUM=0 :NTEST=NPVS+1
810 YA=1 Ffor Arrow-Work Routine
8"O FFINT ""
8:O FFINT " "
840 PFiNT "The picture will come up on the screen. When you decade the"
850 FRINT "arrow position an arrow begins to grow from the left side."
860 FFINT "You should stop it as soon as it passes the interested point"
870 FRINT "by hatting any key. Hit again and it grows again."
880 FRINT "Repeat the action until you find all points."
890 PRINT "Flot ";NS::PRINT " - ";NE;:PRINT " : Mag :=":MG::FRINT ",y=":MGY
900 FRINT "You may change mag in : and y ";:INFUT MG,MGY
910 IF MG : 1 THEN PFINT "*** Mr must be FOSITIVE INTEGER ***" :GOTO 9O@,
920 IF(MG* (NE-NS) > 600) THEN NE=NS+INT(600/MG)
930 FRINT "You can vary the speed of arrow. Min=1,Ma:=7"::INPUT SFEED
940) IF SFEED & 1 OR SFEED > }7\mathrm{ THEN 930
950 NSFEED=INT (8-SFEED)
900 IF (MG*(NE-NS) % 600 ) THEN FRINT "Change end-point "::INFULT NE
970 IF (MG*(NE-NS) > 600 ) THEN FRINT "TOo large !!":GOTO 900
98G CLS:KEY OFF:SCREEN 2
990 GOSUE 2540
1000 FFINT "Give arrow position. O < ma:t,min < 10 ";:INFLIT YMAX, YMIN
1010 IF YMAX <= 0 OF YMIN }>=10\mathrm{ THEN 960
1020 IF YMIN := 0 OF YMAX }>=10\mathrm{ THEN 960
1050 GOSUE 3220
1040 IF ISUM: NTEST THEN 1070
10SO NS = NFV(ISUM-1) :NE=N
1060 ARROW=1 :GOTO 810
1070 SMTH$ = "n"
1080. REM Find oput the points around the arrow-stop
1090 REM Computer will search 10 points around it.
1100 REM Find drop-point first.
111O N1=NPV(O)-S
1120 IF N1< < THEN N1 = 1
113O NDROF=NPV(O)+5
1140 IF V(NDROP-1) > V(NDROF)*1.3 THEN 1190
1150, IF NDROF=N1 THEN 1190
1100 EEEF
1170 NDFOF=NDROF - 1
1180 GOTO 1140
1190 NFY!(1)=NDFOF+1
120G REM Find peaks and valleys
1210 TEST=FIFST : IT=0
1220 IF TEST = 1 THEN GOSUE 3360
12E0 IF IT \= NFVS THEN 1280
1240 IF TEST = O THEN GOSUE 34EO
1250, IF IT >= NFVS THEN 1280
```

```
1200 EEEF
1270 GOTD 1220
1280 REM Find the flat point
1290 N1=NPV (NPVS+1)+1 :N2=NPV(NPVS+1)+5
130O IF NZ.ON THEN N2=N
1310 NFLAT=N2
1520 IF NFLAT : N1 THEN NFV (NPVS+1)=NFLAT :GOTO 1410
15\XiO NFLAT1=AES (V(NFLAT-1)-V(NFLAT))
1340 NFLAT2=AES (V(NFLAT-2)-V (NFLAT))
1350 NFLATJ=AES (V (NFLAT-J)-V(NFLAT))
1500. IF NFLAT1;.00J AND NFLAT2;.00J THEN 1390
1370 EEEF
1380 NFLAT=NFLAT-1 :GOTO 1320
1390 IF NFLATS % . OCS THEN 1410
1400) NFLAT=NFLAT-1 :GOTO 1320
1410 NPV(NFVS+1)=NFLAT
1420 REM Check the points
1430 NS=1:NE=N:MG=1:MGY=1:YA=0
1440 CLS:KEY OFF:SCREEN 2
1450% PRINT "***** X-Mag must be FOSITIVE INTEGER *****""
1460 FRINT "***** (plot-points) x (X-Mag) <= 6SO *****"
1470 LIMFLOT=1
1480 GOSUE 2540.
1490 IF LIMFLOT=1 THEN' 1440
1500 GOSUE 3540
1510 PRINT " n
1520 PRINT "... correct [y/n] "::INFUT ALC$
15S0 IF ALC$ <> "y" AND ALC$ <> "n" THEN 1520
1540 IF ALC$ = "n" THEN 1590
15SG PRINT "Did you check: all verteces [y/n] "::INFUT ALCHs
1560 IF ALCH& < "Y" AND ALCHs }\therefore>>"n" THEN 15S
1570 IF ALCH$ = "n" THEN 14S0
1580 GOTO 1800
1590 MAN=1
160! FFINT "HOW many are unbalanced "::INFUT MH
1610 IF MH:=0 OR MH=% (NPVS+2) THEN 16(10)
1620 DIM WF(30)
1630 FFINT "Enter the wrong one "
1640 FOR I=1 TO MH
1650% INFUT WF(I)
1660 NEXT I
1670 FOR JW=1 TO MH
168O NW=WF(JW)
1690 CLS:KEY OFF : SCREEN 2
17(IO FFINT "******* correcting = ";NFViNW)
1710) NE=NFV (NW) +10:NS=NF'V (NW)-10:IF NS :=0 THEN NS=1
1720 MG=5
1730 GOSUE 2540
1740 GOSUE 3540
1750 FRINT "Enter the right number ";:INFUT NFV(NW)
176O NEXT JW
177! MAN=0
1780 ERASE WR
1790 GOTO 1430
18GM FFIINT " *
1819 PRINT "*************************************************"
182O FRINT " "
18?0 FRINT "The information obtained from the plot-work"
1日40 FRINT " "
1850 PRINT "**************************************************
1860.) FOR I=1 TO NTEST
1870 IF NFV(I) & NFV(I-1) THEN FRINT "Wrong order in vortes: number.":GOTC EE.."
1880 NEYT I
18FC FRINT " "
1900 PRINT "DROD point =";:PRINT USING "#䉽判";NFV(C)
```

```
1910) FIRST=0:I=1:JX=0
1920 IF V(NFV(1)) > V(NPV(2)) THEN FIFST = 1
19S0 IF FIRST = 1 THEN Im0: JX=1
1940 FOR J=1 TO NFVS
1950 I=I+(-1)^n(J+JX)
1960 K=ABS (1)
```



```
V(NFV(J))
1980 NEXT J
1990 PFINT "End point ="s:PRINT USING "#####";NFV(NFVVS+1)
2000 FRINT " "
2010 PRINT "Do you want to check [v/n] "::INFUT COF&
2020 IF COR$ <<> "y" AND COF.$ <> "n" THEN 2010
20S0 IF COFs }=\mathrm{ "y" THEN 1420
2040 IF SMTH$ = "Y" THEN 2250
20SO PFINT "Do you want to check noise [y/n] ";:INFUT CNS\Phi
2060 IF CNS$="n" THEN 2250
2070 PFINT "***** noise checking *****"
2080 NOISE=.05
2090 NS=1 : NE=NFV(0)
21%G GOSUE S7BO
2110 FOF NC=1 TO NFVS+1
2120) NS=NFV(NC-1) :NE=NFV (NC)
2130 GOSUE 3780
2140 IF NOI$ & ":" THEN 2160
2150% GOSUE 5780
2160 NEXT NC
2170 NS=1 :NE=NFU(NFUS+1)
2180% CLS:KEY OFF:SCREEN 2:MG=1:MGY=1
2190 GOSUE 2540
2200 FFINT " "
2210 FRINT "All smooth out [y/n] ";:INFUT SMTH$
2220 IF SMTH$ & "Y" AND SMTH$ }\therefore\mathrm{ "n" THEN 2210
22SO IF SMTH$ = "y" THEN 2250
2240 GOTD 5150
22S0 FFINT "On which digk do you want to save it [a/b] ";:INFUT SV&
226i) IF SV& }\because\mathrm{ "a" AND SV$ : 
2270 FEAK:$ = SV$ + ":" + FILENUMEEF& + "p" + "." + "dat"
22B0. NDFFF=NFVS+2
229! OFEN FEAT'S FOF OUTFUUT AS #1
2SOG FRINT *1,RESIST$
2E10 FFINT #1, DEVELOFEFS
2\Xi20 FRFINT #1.DEVTEMF
2ESG FRINT #1,NDFF,DT,FW,TE,REFL
2340 NDFF 1=NFVS+1
Z=O FOF: 1F=O TO NDFF1
```



```
ここ70. NEXT IF
2380 CLOSE #1
2400% FILENO$=SUS+":"+FILENUMEEFs+"no"+". dat"
2410) OFEN FILENDS FOR OUTFUT AS #1
2420 FRINT 1,RESIST$
24Si: FRINT #1,DEVELOFER$
244\therefore FRINT 1,DEVTEMF
245%)FFINT %1,NFV(NFUS+1),DT,FW,TE,REFL
2460) FOF I=1 TO NFV(NFVS+1) STEF }
```



```
2480. NEXT I
2490. CLOSE #1
250% END
2510 REM
2520 REM
2s-0 FEM This is the subroutine FLOTMAG.
254!. FFINT "Total * of data ";N
2SSO FRINT "Flot range from "gNS::PFINT " to "&NE
2560 IF YA &> O THEN 2740
```

```
2570 PRINT "Will you change the plot range [y/n] ";:INFUT FCH$
25B0 IF PCH$="y" THEN PRINT "Give two numbers. #1,#2 ";:INPUT NS,NE
2590 IF LIMPLOT=1 AND (NE-NS) >630 THEN PRINT "Ma>imum points <= 6SO":GOTO 2570
2600 IF NS > NE THEN PRINT "You are a fool. Nstart & Nend !!!":GOTG 257!
2610 PRINT "Do you want to change magnification [y/n]";:INPUT MAGs
2620 IF MAG$ <> "y" AND MAG$ <. "n" THEN 2610
26SO IF MAGs = "n" THEN 2690
2640 NMGSET=0
2650 FRINT " in x-axis ";:INFUT MG
2660) IF LIMPLOT=1 AND MG < 1 THEN FRINT "Give positive integer.":GOTO 2G40
2670 IF MG < O THEN NMGSET=1 :MGA=AES (MG)
2680 PRINT " in Y-asis ";:INFUT MGY
2690 TST=NS*DT
2700 TEND=NE*DT
2710 PRINT "*
2720 PRINT "Plot begins at ";TST;:FRINT "sec"::FRINT " ends at ";TEND::FRIINT "SE
E"
27S0 PRINT " "
2740 Mr=1
27S0 IF MG <= 0 THEN MG=1:MK:=MGA:NN=INT((NE-NS)/MGA +1):GOTO 2770
2760 NN=MG* (NE-NS) +1
2770 IF LIMFLOT=1 AND NN ; 638 THEN FRINT "DIVIDE FLOT-RANGE !:"
2780 GOSUE 4970
2790 IF LIMFLOT=1 AND NN ? 6JB THEN RETURN
2800 LIMPLOT=0
2810 k=1
2820 FOF I=1 TO NN STEF MG
2830 Y=MGY*V(K+NS-1)
2840 FSET(I-(I\639)*639.199-Y*20)
2850 IF I/659 = I\639 THEN 3150
2860 k=k'MK
2870 NEXT I
288G IF NE`N GOTO S210
2B90 IF IF > 1 THEN Eこ10
2900 IF MAN <> 1 THEN 3210
2910 PRINT "Do you want to check the data in the plot [y/n] "::INFUT FF:s
2920 IF FRR$ & "Y" AND FR$ }\because>"n" THEN 291%
2930 IF FR& = "n" THEN 3090)
2940 FRINT "Eleginning number ":NS
2950 NQ=INT ((NE-NS+1)/7)
2960) NEE=7*NO+NS-1
2970, NF=NE-NEE
29B0: FOF I=NS TO NEE STEF 7
```



```
30OO NEXT I
EOIO IF NR = O THEN SOQO
3020) I=0
SOJO I=I+1
```



```
3OSO IF I 2= NR THEN 3070
3060 GOTO 30SO
3n70 FFINT "xxxmxexymx"
3r,#0 FRINT "Ending number ";NE
O(190 IF IF > 1 THEN 1590
3100 REM PRINT "Do you want to see another section [y/n]";:INFUT SEEm
3110 REM IF SEES {> "Y" AND SEES &> "n" THEN 2G10
3120 REM IF SEES = "Y" THEN CLS :GOTO 3SO
3130) REM IF SEE$ = "n" THEN 270%
\Xi140 RETURN
Z1SO PRINT "Do you want yo plot further [y/n] ";:INFUT YES
Z160 IF YE$ &> "Y" AND YE$ {> "n" THEN S150
S170 IF YEs = "n" THEN 3210
3180 CLS
S190 GOSUF 4970
B2O% GOTO 2870
E210 RETURN
```

```
3220 REM Subroutine Arrow Growth
3230 FOR I=1 TO NN
3240 FOR K=1 TO NSPEED
3250 PSET (I, 199-YMAX*MGY*20)
3260 PSET (1, 199-YMIN*MGY*20)
3270 NEXT K
3280 IF INKEY$ &> "" THEN 3310
3290 NEXT I
SS00 RETURN
3310 IF TNKEY$ = "" THEN 3S10
3520 NFV (ISUM)=INT ((I-1)/MG)+NS
S3SO IF ISUM = NTEST THEN ISUM=ISUM+1 :GOTO S.300
3S40 ISUM=1SUM+1
S350 GOTO 3290
3300 REM Max-routine
3370 IT=IT+1
35BO N1=NFV(IT)-5
S390 N2aNFV(IT)+5
E40 FOR KR=N1 TO N2
3410 IF V(K:R) > V(NFV(IT)) THEN NFV(IT)=K:R
342O NEXT KRR
3430 TEST=0
3440 RETURN
34E0 REM Min-routine
3460 IT=IT+1
3470 N1=NFV(IT)-E
3480 N2=NPV(IT)+5
3490 FOF K:R=N1 TO N2
3EOO IF V(KFF) & V(NFV(IT)) THEN NPV(IT)mFKR
3E10 NEXT KR
3520 TEST=1
3530 RETURN
SS40 REM Re-calculated Arrow-point plot
SESO IF NMGSET=0 THEN 3610
3560 FFINT "X-mag & 0 !! Hit any key to plot agair."
3570 IF INKEY$ = "" THEN 3570
ES80 GOTO 14SO
S590) ICHI=0:ICH2=0
B600 IF NE < NFV(O) THEN FRINT "... RETURN " :GOTO E770
SO1O FOR I=0 TO NFVS+1
S620 IF NFV(I) >= NS THEN ICH1=I :GOTO 364O,
SGSO NEXT I
364O FOR I=0 TO NFVS+1
3650 IF NFV(NPVS+1-I) <= NE THEN ICH2=NFVS+1-I :GOTO SO@O
3660 NEXT I
2670 PRINT "=== ";
368G FOR I=ICH1 TO ICH2
390 FOR J=1 TO 39
E700 LX=MG*(NFV(I)-NS)+1
E710 Y=199-(10-.25*J)*20
=720 FSET(LX,Y)
#5O NEXT J
E740 FRINT USING "######";I;
$750 NEXT I
E760 FRINT " ==="
5770 RETURN
5780 REM nolse out
3790 NETW=NE-NS :MG=1
3BOO IF NETW : 319 THEN MG=?
EB1O IF NETW & 213 THEN MG=3
3820 IF NETW ; 160) THEN MG=4
3030 VMAX = V(NS)
3840) FOF I=(NS+1) TO NE
S8SO IF V(I) % VMAX THEN VMAXEV(I)
EE6O NEXT I
Z070 MAXY=S :MGY=MAXY/VMAX
```

```
3880 MK:=1 :k:=1
3890 NN=MG*(NE-NS) +1
3900 CLS:KEY OFF:SCREEN 2
3910 GOSUE 4970
3920 FOR I=1 TO NN STEF MG
3930 }\quadY=MGY*V(Ki+NS-1
3940) PSET(I,199-Y*20)
S950 ki=ki+Mk:
5960 NEXT I
3970 NX=S : EEEP
3980 PRINT "NX =";NX ;:PRINT " NOISE =";NOISE
3990 PRINT "ANY SINGLE NOISE IN THE FICTURE [%/Y/n] ";:INFUT NOIs
4000 IF NOI$ = "n". THEN RETURN
4010 IF NOI$ = "x" THEN PRINT "Give NX ,NDISE "::INPUT NX,NOISE
4020 IF NX < 2 THEN FRINT "NX should not be smaller than 2 " :GOTO 3970
4030 k:=2 :MK゙=1
4040 FOR I=1 TO (NN-MG) STEP MG
4050) Y1=V (ki+NS-2)
4060) PSET(I.199-MGY*Y1*2(1)
4070 Y=V(ki+NS-1)
4080 IF ABS (Y-Y1) > NOISE THEN 4170
40190 FOF J=1 TO MG
4100 Y(J)=Y1+J* (Y-Y1)/MG
4110 FSET(I+J,199-MGY*Y(J)*20))
4120 NEXT J
4150 ki=ki+Mk
4140 NEXT I
4150, RETUFN
410゙) END
4170 REM noise warning ************
4180 LOCATE 3. 1:FRINT "When it sourids type n for noise or p for passing "
4190 V$="0"
420% NTON=220/7
4210 M=こ20
4220% SOUND M.1.5
42ड0 VS=INFEY$
4240 IF V$ = "n" THEN 4280
4250 IF V$ = "p" THEN 42B0
4260 IF M > 1000 THEN 4090
4270 M=M+NTON :GOTO 4220
4280) LDCATE 3. 1:PRINT STRING$(60. \Xi)
4290 IF V$ = "p" THEN 4090
43@G REM E:trapolate the noise point by quadratic curve fitting
4\Xi10 NREF=NFV(0)
4.20 IF NS : NFV(O) THEN NREF=0
4SEO IF (k+NS-1) < (NREF+NX) THEN Y=Y1:V(K+NS-1)=Y :GOTO 400!
4F40 FITZ = 0
4こ50 GOSUE 4670
4こ60 Y=F0
4E70 V (Ki+NS-1)=Y
4380 GOTO 4C190
4\Xi90 REM BALANCING the VEFTECES
44!N NEAL =3 :NO=2*NEAL
4410 NEAL = =NEAL
4420 IF NFV(1)-NFV(0) : NEAL THEN NEAL1=NPV(1)-NFV (0)
44%ONQ1=2*NEAL1
444C. FIT2=1
4450. FOR IEV=1 TO NFVS
4460 NX=NEAL
4470 IF IEV=1 THEN NX=NEALI
4480 IF NX < 2 THEN FRINT "NX < 2 "
4490 GOSUE 4670
45(0) V (NFV (IRV)) =A0
4510 NSFT = 1
452% NX=NEAL
45EO IF IEV=1 THEN NX=NEAL\
```

```
4S40 FOR IX=1 TO NX
4ESO I R=IX*NSFT
4560 YR=A0)+A1*IO+A2*IO*IO
4S70 IF A2 > O THEN 4620
4S日0 IF V(NFV(IEV)-IQ) > AO THEN V(NFV(IEV)-IQ)=YF
4590 NEXT IX
4600 IF NSFT = -1 THEN 4660
4610 NSFT=-1 :GOTO 4540
4620 IF V(NPV(IEV)-IQ) : AO THEN V(NFV(IEV)-IQ) = YR
46\Xi\Omega GOTO 4590
4640 NEXT IEV
4650 FIT2=0
4660 RETURN
4670 REM Quadratic Fitting
4680) NSUM=2*NX
4690)SX=0:S\times2=0:SXJ=0:S\times4=0:SY=0:S SY=0:S S2Y=0
4700 NSFT=1
4710 FOR IX=1 TO NX
4720 IQ=IX*NSFT
4730 SX=5x+10
4740 SX2=SX2+10^2
4750 SXE=5\times5+10%5
4760 5\times4=5\times4+10%4
4770 X=F*+NS-1-IQ
4780) IF FIT2 = 1 THEN X=NFV(IEV)-IQ
4790 Y=V(X)
4800}\quadSY=5Y+
481O SXY=SXY+Y*IO
4820 SX2Y=5X2Y+Y*IQ*IQ
4BEO NEXT IX
4840 IF NSFT = -1 THEN 4B90
4850 NSFT=-1 :GOTO 4710
486!: REM
4870. REM calculate AO,A1,AI in }y=AO+A1*1q+A2*1q`
4BEO FEM
4&GG DET=NSUM*SX2*SX4+2*SX*SX2*SXこ-SX2*SX2*SX2-SX*SX*SX4-NSUM*SX\Xi*SXT
4400 AO=SY*SX2*SX4+SX*SXS*SX2Y+SX2*SXJ*SXY-SX2*SX2*SY2Y-SX.S*SX5*SY-5Y*5Y4*5YY
4910 AO=AO/DET
4920 A1=NSUM*SYY*SX4+SY*SX2*SXJ+SX*SX2*SX2Y-SX2*SX2*SXY-SY*SX*SX4-NSUM*SXJ*S:2%
49%% A1=A1/DET
494!. A2=NSUM*SX2*SX2Y+SX*SX2*SXY+SX*SY*SXJ-SX2*SX2*SY-SX*SX*SX2Y-NSLIM*SXZ*SYY
495% A2=A2/DET
4900 FETUFN
4970) REM GFID subroutine
4980. SCALE = MG
4990 IF NMGSET =1 THEN SCALE=1/MGA
EOCO XTIC=10:YTIC=.S
SO10 NGFID=XTIC*SCALE :LRESET=10*NGFID
502O LTEN=-1 :LXTEN=1
SOSO FOF L=1 TO 6J1 STEF NGRID
5040) FSET (L, 199)
505%) LTEN=LTEN+1
SOG0, IF LTEN=LXTEN*10 THEN LXTEN=LXTEN+1 :PSET(L.198)
507% NEXT L
E0,00. NYSTF=YT1C*20#MGY :NYFESET=2*NYSTF
S@90 FOF LY=0 TO 199 STEF NYSTF
5!90% FSET(1,199-LY)
5110 IF LY/NYRESET = LY\NYRESET THEN FSET (2.199-LY)
5120 1F LY/S/NYRESET = LY\(S*NYRESET) THEN PSET(J.199-LY):FSET(4,190-LY)
513G NEXT LY
5140 RETURN
SISG REM HEAVY NOISE REMOVAL SUEROUTINE
5160. FRINT "" of zone = "; NPUS+1
SI7C FRINT "Enter the heavy nosse zone number "::INFUT HEV
S10% IF HEV % NFVS+1 THEN 5160
S190 IF HEV }:=0\mathrm{ THEN S570
```

```
S200 NHEV=INT (HEV)
5210 NHEVS=NHEV-1
S220 N1=NPV(NHEVS) :N2\squareNPV(NHEV)
5230 CLS :KEY OFF :SCREEN 2
S240% PRINT "ZONE NUMEER = ";NHEV
5250 PRINT "Flot Zone ";N1 ;:PRINT " - ";N2
S260 PRINT "Flot Range #,"" ;:INFUT NS,NE
5270 IF NS >= NE THEN S260
S280 IF NS < N1 OR NS ` N2 THEN S260
S290 IF NE & N1 OR NE % N2 THEN E260
ESOO FFINT "Magnifacation MX,MY ";:INPUT MG,MGY
S:10 IF MG : 1 OR MGY : O THEN ESOO
SE20 NN=MG* (NE-NS) +1
5350 k=1
5:40 FOR IP=1 TO NN STEF MG
SSEO Y=MGY*V (k+NS-1)
5:60 FSET(IP-(IF\639)*639, 199-Y*20)
5370 k=k+1
ES8O NEXT IP
S:90 PRINT "Can you find the two nodal points [y/n] "::INFUT TNF&
E4OO IF TNPs & }>\mathrm{ "Y" THEN 5160
5410 PRINT "Enter two numbers ";:INFUT J1.J2
5420 IF J1 `e J2 THEN 5410
5430 IF J1 & NS OF J1`NE THEN 5410
5440 IF J2%NS OR J2 % NE THEN E410
S450 FOR: J=J1 TO J2
5460 V(J)=V(J1) + (V(J2)-V(J1))*(J-J1)/(J2-J1)
5 4 7 0 ~ N E X T ~ J ~
5480 k=1
S490 FOF JP=1 TO NN STEP MG
SEOO Y=MGY*V (Ki+NS-1)
SE10 FSET (JP-(JF\6S9)*6ミ9, 199-Y*20)
5520 k=k+1
SESO NEXT JF
EE4O PFITNT "Hat any key to continue "
5550 IF INREY暞 ="" THEN S550
5560 CLS : GOTO 5160
5570 GOTO 2170
```

```
10. REM Frogram RATEX.bas by Deok J. Kim Version 1.6 May 25 *:
20 REM This is the extended version of RXEEST.EAS (0.9)
Z0 REM Find rate by fitting data with least square method
40 REM This program produces Xf file which can be cenverted to RATE vs DEFTH
SO EEEF
60 DIM H(2S00), XT (2J00), XTF(2300),V(2300), VT (100), NT (100), NTH(100)
70 DIM KE (100), AO(100),A1 (100), A2(100) , X(100)
80) FI=3.1415926S4* *constant
90. FEM The ticks in x,y axes are given by xtic,ytic for plotting
100 XTIC=10:YTIC=.1
110 PRINT "Which disk has the data file [a/b] ";:INFUT DISF:s
120 IF DISK゙$ &> "a" AND DISK$ < "b" THEN 110
13@ PRINT " "
140 PRINT "Do you want to see the data files on the dist [v/n] "::INFUT fNW%
150 IF ANWS <> "Y" AND ANW$ &> "n" THEN 140
160 FRINT " "
170 IF ANWs = "Y" AND DISk's = "a" THEN FILES "a:*.dat"
180 IF ANW$ = "Y" AND DISK.$ = "b" THEN FILES "b:*.dat"
190 FRINT " "
200) FILEEXTENTIONs= "dat"
210 PFINT "Enter the file name(only number) ";:INFUT FILENUMEEF:%
220 FILEFEAK$ = DISF$ +":" + FILENUMEEFS + "p" +"."+ FILEEXTENTIONF
230) FILE$ = DISK$ +":"+FILENUMEEF& + "no" + "." + FILEEXTENTION$
240) FRINT " "
250) PRINT "Open Files ... ":FILEFEAK:$,FILE$
260) OFEN FILEFEAK:$ FOF INFUT AS #1
270 INFUT #1,RESIST$
28%) INFUT #1.DEVELOFEF$
290 INFUT #1,DEVTEMF
SOG INFUUT #1,NF,DT,FW,TX,REFL
\Xi10 FOR I=1 TO NF
320 INFUT 1,NT (I),VT (I)
EBCr NEXT I
340 CLOSE #1
ESO OFEN FILES FOF INFUT AS #1
S60 INFLIT *1,FESIST$
370 INFUT %1,DEVELOFER$
SEO INFUT #1.DEVTEMF
390 INFUT #1,N,DT,FW,TX,REFL
400 FOF I=1 TO N STEF }
410 INFUT (1,H(I),H(I+1),H(I+2),H(I+\Xi),H(I+4),H(I+5),H(I+6)
420 NEXT I
4.30 CLOSE #1
440 FRINT " "
4SO FRINT "***** peak: data *****"
460 FRINT " "
47G FRINT RESIST$
4BO PFINT DEVELDPEF$
490 FRINT "DEv Temp ";DEVTEMF
SO@ FRINT NF,DT,FW,TX,REFL
510 FOR I=1 TO NF
S20 FRINT NT(I),VT(I)
5SO NEXT I
540 GOTO 670
SEO PRINT "Will you check intensity vs tame data [y/n] ";:INFUT AN$
Sb0 IF ANS & "Y" AND ANS < " %" THEN S5:
570 IF AN$ = "n" THEN 670
SBO FFIINT " "
```

```
SOG FRINT RESIST$
600 PRINT DEVELOPERS
G1O FRINT DEVTEMF
620 PFINT N,DT,PW,TX,REFL
GSO FOR I=1 TQ N STEP }
```



```
    NEXT I
```



```
    REM find out proper MAX and MIN for the firgt fractional wave deptr.
```



```
    VMAX=VT (1):VMIN=VT (1)
    FOR IF=2 TO NF
        IF UT(IP) % UMA: THEN VMAX=VT (IF)
        IF VT(IP) < VMIN THEN VMIN=VT(IP)
    NEXT IF
    FIRST=0 :IF UT(1) : VT (2) THEN FIRST=1
    IF VT(1) > VT(I) THEN VPI=UMAX :VVI=VT (2)
    IF VT (1) & VT(S) THEN VP1=VT (S) :VV1=VT (2)
    IF FIFST=1 AND VT(1) >VT(3) THEN VF1=VT(2):VV1=VT (3)
    IF FIRST=1 AND VT(1) < VT (3) THEN VF1=VT (2) :VV1=VMIN
    REM UF1:first peak ; UVI:firgt valley
    REM ====#=====================
    REM =
    REM = find depth vs time =
    REM = =
```



```
    FFINT " "
    FRINT "Selection of the resist type ... "
    FFINT " 1. K:DDAK: 820 "
    FRINT " 2. Shipley Microposit 1470 "
    FRINT " J. Hunt WX-118"
    FRINT "Enter the number. If anything else then return. "::INFUT FESI
    IF RESI=1 THEN RINX=1.61 :GOTO 950
    IF RESI=2 THEN RINX=1.62:GOTO 950
    IF RESI=3 THEN FINX=1.625 :GOTO 950
    PFINT "What is the resist indes at 6S28 "::INPUT RINX
        WLUM= . 6=28
        ANGA=TO:ANG=ANGA*F1/1EO
        TNTH=SIN(ANG)/SOR(FINX*RINX-SIN(ANG)*SIN(ANG))
    QUAT=WLUM/4/(FINX/COS (ATN(TNTH))-TNTH*SIN(ANG))
    DAFLOT=0 : DAGFLOT=0: XTFLOT=0: XTFPLOT=0 :RATESET=0
    XS=0 :PRINT "m======= ETCH-DEFTH vS TIME ======="
    FOR IF=1 TO NF-1
    EEEF :FRINT "XS =";:FRINT USING "梧#########":XS : :PFIINT " ... IF:=":IF
    FOSFHI=0: :IF VT (IF) \VT(IF+1) THEN POSFHI=1
    V()=(VT(IF)+VT(IF+1))/2:VI=AES(VT(IF)-VT(IF+1))/2
    IF IF=1 THEN VO=(VF1+VV1)/2:V1=(VF1-VV1)/2
    IS=NT (IP):IE=NT(IF+1)
    FOF IK=IS TO IE
            IF H(IK)=V@ THEN FHI = FI/?
            Y=AES((H(IK:)-VO)/V1) :IF Y >= 1 THEN ARCCOSY=0:GOTO 1110
            ARCCOSY = FI /2 - ATN(Y/SQF(1-Y*Y))
            IF H(IK) % VO THEN FHI = ARCCOSY
            IF H(IK:) : VO THEN FHI = FI - ARCCOSY
            IF IK=NT (1) THEN PHICI=FHI
            IF POSFHI=O THEN FHI=PI-FHI
            IF IH=IS THEN FHIS=PHI
            XT=QUAT* (FHI-FHIS)/FI
            XT(I\mp@subsup{r}{}{\circ})=XS+XT
            NEXT IK:
        YS=XT(IE)
        NEXT IF
        EEEF : THICK=XT(NT (NF))
        FRINT "The resist film thicl:ness is ";THICr ::FFINT " um"
        GOTO 1270
        DAFLOT=1 :XTFLOTz1 :FRINT "Flot Thiciness vs Time ......"
```

```
1250 GOSUE 3510
1260 DAFLOT=0 : XTFLOT=0
1270 BEEF
```



```
1290
1300
    KE (0)=0 :KEE(1)=NT(1) :MSDCOMF=0 :PRINT "MSD Compare Mode =";MSDCOMF
    PRINT "The drop point =";NT(1)
    NDIV= 日 :PRINT "# of division m";NDIV
1こ20 IWID=INT((NT(NF-2)-NT(1))/NDIV) :IDF=NDIV+1
1500 FOR IF=2 TO IDF
1340 K:E(IF)=kE(IF-1)+IWID
1350 NEXT IP
1300 PFINT " "
1370 PRINT "++++++ division schedule ++++++"
13日G PRINT "
1390 FOR IP=1 TO IDF
1400 PRINT USING " #####";IP,KE(IF)
1410 NEXT IF
1420 FRINT " "
1430
1440
1450
1460
1470
1480 IF IF = IDF-1 THEN KF=
1490 FRINT ""
1500 GOSUE 2700
1510 IF MSDCOMF=0 THEN MIE=1 :KF=2 :GOTO 1770
1520 MINMSD=10
15SO FOR IE=1 TO KF
1540 IES=k'E(IF) :IEE=kE(IF+IE)
1550 MSD1=0
1560 MSD2=0
1570 PRINT "IF = ";IF ;:PRINT " ... IE =";IE :EEEF
1580 PFINT FLO(IB),FLI(IE)
1590 FRINT FFO(IE),FF1(IE),FF2(IE)
1600 FOR IM=IES TO IEE
1610 TM=DT*IM
1620 DEL1 = TM*FLI(IE) + FLO(IE) - XT(IM)
16%0 DEL2 = TM*TM*FF2(IE) + TM*FP1(IE) + FPG(IE) - XT(IM)
1640 MSD1 = MSD1 + DEL 1*DEL1
165% MSD2 = MSD2 + DEL2*DEL2
1660. PRINT USING " #.####*N^N ":MSD1,MSD2
16?0 NEXT IM
1680 NMSD=1EE-IESS+1
1690 IF MSD1/NMSD & MINMSD THEN MINMSD=MSD1/NMSD :KF=1 :MIE=IE
1700 IF MSDE/NMSD < MINMSD THEN MINMSD=MSDZ/NMSD :KF=2 :MIE=IE
1710 NEXT IF
1720 FFINT "MINIMUM MSD = ";:PRINT USING "#.### \cdots
17ES IF KF=1 THEN PFINT " for LINEAR FIT ";
1740) IF KFF=2 THEN FRINT " for FAFAEOLIC FIT ";
1750 IF MIE=1 THEN FRINT " with next first division"
1760 IF MIE=2 THEN PRINT " with next second division"
1770 1FE=IFE+1:NTH(IFE)=K:E (IF+MIE)
1780 IF K'F=1 THEN AO(IFE)=FLO(MIE):A1(IFE)=FLI(MIE) :AZ(IFE)=0
1790 IF KF=2 THEN AO(IPE)=FFO(MIE):A1(IFE)=FF1(MIE):A2(IFE)=FF2(MIE)
1800 IF IF > 1 THEN 1830
1810 FANOMA1(1)*A1(1)-4*AZ(1)*AO(1)
1日12 IF FANO, O THEN 18SO
181Z IF KE(2) : (KE(1)+5) THEN FRINT "Zero Surface Rate ! " :GOTO 24SO
1日15 FOF IDUM=0 TO (IDF-2)
1日16 ICN=IDP-IDUM : KE(ICN+1)=KE(ICN)
1817 NEXT IDUM
1820 KE (2)=1NT((KE(1)+KE(3))/2)
1B2こ IDF=IDF+1
1G2S FRINT "..... ."
1824 FRINT "mode ... automatic davision "
```

```
1825 GOTO 2620
1日ड0 JS=NTH(IFE-1):JE=NTH(IPE)
1840 DEVS=0:C2=A2(IFF):C1=A1(IPE):CO=AO(IFE)
1850 FRINT "CO,C1,C2 FROM ";JS ;:PRINT " TO ";JE
186O PRINT CO,C1,C2
1B7O FOF IX=JS TO JE
1880 TIX=DT*IX 'etching starts from drop-point. nt(1)
1890) XTF(IX)=C0 + CI*TIX + C2*TIX*TIX
1900 IF XSKIF=1 THEN 1920
1910 IF XTF(IX) := XR THEN TF=(IX-NT(1))*DT :XSKIF=1 :PFINT "TR =":TF
1920 DEVX=XT(IX)-XTF(IX) : DEVS=DEVS+DEVX*DEVX
1930 NEXT IX
1940) X(IFE)=XTF(JE)
19S0 SDF=DEVS/(JE-JS+1) :FRINT "MSDF =":SDF
1960 IF SDF ; SDMX THEN SDMX=SDF :IFEMX=IFE
1970 IF=IF+MIE
19GO GOTO 1470
1990 EEEF : FRINT " "
200) FRINT "m==ェェ=ะ== RATE FARAMETERS ========="
2010 FOF I=1 TO IFEG
2(IO FRINT NTH(I),:FRINT USING " #.#####\cdots% ":AO!I),A1(I).AZ!I!
20.30 NEXT I
2040 FFINT " "
20E:;) FRINT "Time for etching ";XF ::PFINT " Lum = ";TR ::FF:INT " sec."
2060 FRINT "Masimum Deviation ":SDMX : F'FINT " at ";IFEN\
2(170) FFiINT "=========== Flot Fitted Depth ==========="
20日0 XTFLOT=1 : XTFFLOT=1
2090 GOSUE SE10
210@ XTFLOT=0 : XTFFLOT=0
2110 EEEF
2120 FXFLLOT=0:XF=1 : RNOFM=. 1 :NOF:Y=5
21こ0 FRINT "=ェ======= Rate vs Depth m=m=======m"
2140}\times(0)=00% : XSUM=0,
2150 FOR I=1 TO IFE
2160 EEEF
2170 IF XSUM ` X(I) THEN 2270
2180 FAN=A1(I)*A1(I)-4*A2(I)*(AO(I)-XSUM) :IF FAN \therefore O THEN 22SO
2190) F&ATE=SQF:(FAN) :IF XSUM=0) THEN RSUR=RATE
2200 IF RXPLOT=0 THEN 2240
ミこ10 YF=199-NDFY*RATE*2O/FNDKM
=こ=! MX=INT (SOO*XF*XSUM) +1
2ここO PSET(MX.YF)
2=40) IF FXFLOT=0 THEN FFINT USING " ###.#######":FIATE,XS!MM
2=5%% XSUM=XSUM+.01 :IF XSUM ` 1.25 THEN 2280)
ここO\becauseGGOTO 217!
Eこ7! NEXT I
=OGO RELH=RATE :RATESET=1
2こЭG IF FXPLOT=1 THEN 241O
2马@@ RXFLOT=1 :CLS :KEY OFF :SCREEN 2
```



```
2ここO FRINT "= RATE vS DEFTH ="
```



```
ここ4! FFINT "File Name = ";FILENUMEER$;:FRINT " ";FESIST$:
2こ41 FRINT " in "iDEVELDFEF$;:FRINT " at ":DEVTEMF
2こ.45 FRINT "DOSE = ";FW*TX
2%5: FRINT "Surface Rate =";RSUR ;:FRINT " Bulf Rate =";FELr
2=6! FRINT "Norm-Fate, Norm-Level "::INFUT RNDRM, NGFir
2.7i) MGY=1 :NMGSET=1 :MGA=2
2=80 GOSUE 40.30
2F9!) NMMGSET=r
24%% GOTO 214%
Z4:% FFINT "Flot again [y/n] ";:INFUT CFSs
24ご! IF CFS$ = "Y" THEN EEEF :GOTO 2SOO
Z4E.O FFINT "DO you want to save this Ff vs X data [yin] ":: INFUT SFXs
244!) IF SFX$ = "y" THEN 2960
245:'FFINT "Will you do it again with your owri division [v!n] "::INF:UT QW&
```

```
2460 IF OW$ &% "Y" THEN 26.30
2470 ERASE XTF
2480 DIM XTF (2300)
2490 IF IF > }1\mathrm{ THEN 2520
2500 FOR I=1 TO IDF :PRINT I,KE(I) :NEXT I
2510 GOTO 2530
2520 FOF I=0 TO IPE :PRINT (I+1),NTH(I) :NEXT I
2530. FRINT "Enter the divigion. No entry means STOF THERE."
2540 PRINT "The drop point is ";kE(1)
2550 10=2
2560 INPUT KE(IO) :IF KE(IO) = 0 THEN 2590
2570 IF KE(IO) & NT(1) THEN PFINT "entry is small. ENTEF AGAIN "::INFUT FE:IG,
2580 10=10+1 :BEEF :GOTO 2SOO
2590) IDF=10-1
2600 IF KE(IDF) % NT (NF-1) THEN KE(IDP)=NT(NF-1) :PRINT "Last entry was cuit."
2610 PRINT "MSD Compare Mode. Type 1 only for compare. ";:INFUT MSDSF:IF
2620 RATESET=0 :DAPLOT=0 :DAGPLOT=0 :GOTO 14.30
2630 FRINT ")>>>> DATA GENERATING <<<<<<"
2040 GOSUE }311
2650 DAFLOT=1 :DAGFLOT=1 :FRINT "Plot Fitted-Data vs Time ......"
2660 GOSUE SS10
2670 DAFLOT=0 : DAGFLOT=0
2b80% EEEF
2690 GOTO 2960
2700 REM =========== SURFOUTINE FUNCTION FIT =m=x=m=========
2710 S1=0:S2=0:S5=0 :S4=0: Z0=0:21=0 :22=0
2720 IHOV1=INT((KE (IF)-KEE(IF-1))/2):IHOVZ=INT((KEE(IF+1)-K:E(IF))/2)
27SO IQ1=KE(IF)-IHOV1 :IF IQ1 & KE(1) THEN IQI=KE(1)
2740 TI=DT*IQ1 : IOS=101
2750 FOR IA=1 TD K'F
2760 IOE=KE(IF+IA) +IHOUZ :IF IQE > KE(IDF) THEN IQE=KE(IDF)
2770 FOF IQ=IOS TO IQE
2780 TO=DT*IQ-T1
2790 S1=S1+TQ :S2=S2+TQ*TO:S3=SS+TQ*TQ*TQ :S4=S4+TQ*TQ*TQ*TO
2800 Y=xT (IO)
2810. ZO=ZO+Y:Z1=Z1+Y*TQ:Z2=22+Y*TQ*TQ
2820 NEXT IL
28SO NQ=10E-101+1 : IOS=1QE+1
2840 FRINT "# of sampling data = ":NQ
28S0 DET=NC*S2-S1*S1 :EEEP
2860 AO)=(S2*20-S1*Z1)/DET :A1=(NQ*Z1-S1*ZO)/DET
2970 FLO(IA)=AO-A1*T1 :FLI (IA)=A1
2880 DET=NQ*S2*S4+2*S1*S2*SS-52*S2*S2-S1*S1*S4-NO*ST*SE :EEEF
2890 A0={20*S2*S4+S1*SS*22+S2*S3*21-S2*S2*22-SJ*SS*2O-S1*S4*21)/DET
2900.A1=(NO*21*S4+20*S2*SS+S1*S2*22-S2*S2*Z1-2O*S1*S4-NO*SS*E2)/DET
2910 A2=(NQ*S2*22+S1*S2*21+S1*20*S:-S2*S2*20-S1*S1*22-NO*SS*21)/DET
2920 FFO(IA)=AO-A1*T1+A2*T1*T1:FFI(IA)=A1-2*AI*T1:FF2(IA)=A2 time shift
2930 NEXT IA
2940 RETURN
2950 FFINT " "
2900 FRINT "want to save it on a or b ";:INFUT DISKs
2970 IF DISK$ << "a" AND DISK:$ <> "b" THEN 2960
2980 VFXs=DISK:$+":"+FILENUMEER$+"FX"+".."+FILEEXTENTION$
2990 OFEN VFX$ FOF OUTFUT AS #1
300G FFINT #1,RESIST$
3010 FRINT #1,DEVELDPEF*
3020 PRINT #1.USING "****.**###":DEVTEMF
30S0 FRINT #1,USING "####.#####";THICK
Sr:4O. FRINT #1,USING "####.######":IFE.DT,FW,TX.REFL
30SO FOR I=1 TO IFE
3060 FRINT *1,USING " #.*###\cdots\cdots\cdotsan ";x(I),AO(I),A1(I),A2(I)
3070 NEXT I
zoroc ClOSE #1
3090 END
```


3150	ERASE V
3140	DIM V（2000）
3150 IF VT（1）：VT（2）THEN PHIOm－PHIO	IF VT（1）：VT（2）THEN PHIOm－PHIO
3160 MSD $=0: 3 M S D=0$	
3170 FOR IF $=1$ TO NF－2	
$3180^{\circ} \mathrm{EEEF}$	
3190 V $=(V T(I P)+V T(I F+1)) / 2: V 1=A E S(V T(I F)-V T(I F+1)) / 2)$	
S200 IF IF＝1 THEN V $=(V F 1+V \mathrm{~V} 1) / 2: V 1=(V P 1-V V 1) / 2$	
3210 FOR IT＝NT（IF）TO NT（IF＋1）	
こ220	DFS＝XTF（IT）：IF IT \％NTH（IFE）THEN 3280
3230	THETA $=$ FHI $1+$ PI＊DFS／QUAT
$3240 \quad V(I T)=V O+V 1 *(C D S(T H E T A))$	
3250	MSD＝MSD＋（V（IT）－H（IT））＊（V（IT）－H（IT））：JMSD＝JMSD＋1
E260 NEXT IT	
3こ70 NEXT IP	
$\bigcirc 280$	MSD＝MSD／JMSD ：PRINT＂MSD total $=$＂；MSD
3290 RETURN	
3510	REM PLOT simulated data
STSO MG＝1 ：MGY＝1	
S340 IF FRTF＝1 THEN FRINT＂of data te be plotted＂：NFT ：GGTG Jこg	
ここらG FFINT＂Total \＃of data＂：N．	
Ėbl FRINT＂plot－range \＃，\＃＂；：INFUT NS，NE ：NFT＝NE－NS＋1	
3370 NMGSET $=0$	
3380 PRINT＂＊＊＊＊＊＊＊PLOT MENUE＊＊＊＊＊＊＊＂	
3ड90 FRINT＂X－mag＂；：INFUT MG	
－400 IF MG $=0$ THEN FRINT＂X－mag $x 0:$ not allowed ！！＂：GOTO 3.390	
3410 FREINT＂Y－mag＂；：INFUT MGY	
S420 IF MGY＜$=0$ THEN FRINT＂Y－mag $\%$ 0 ！＂：G0T0 3410	
3430 FRINT＂YO＂；：INFUT Y0	
3440 IF MG＜O THEN NMGSET＝1 ： $\mathrm{OGA}=\mathrm{AES}$（MG）	
34E：TS＝NS＊DT ：TE＝NE＊DT	
5400 CLS ：KEY OFF ：SCREEN 2	
S480 FFin T＂File Name＝＂；FILENUMEEF\＄；FRINT＂TR＝＂：TR：：FRINT	
こ49G FRINT＂Quarter Depth＝＂；QUAT ；：FRINT＂Angle of Incidence＝＂：MldGM	
⑤00 IF RATESET $\because \geqslant 1$ THEN 3 Sこ0	
5510	
SS工O FRINT＂Flot－Range m＂：NS ：FFINT＂－＂；NE ：：FRINT＂dt＝＂；DT：	
$\pm 5 \bigcirc 0$ IF DAGFLOT $=1$ THEN FRINT＂MSD for all data $=$＂：MSD	
5540 IF DAGFLOT $\because 1$ THEN PFINT	
ESBO NN＝MG＊（NE－NS）＋ 1	
5590 GOSUE 4030	
S600 IF XTFFLOT $\because 1$ THEN 36	
$\Xi \in 10$ REM FOF IF＝0 TO IFE ：FRINT IF＋1．NTH（IF）：NEXT IF	
3620 $k=1$	
36 SO FOF I＝1 TO NN STEF MG	
－655 IF（k＋NS－1）：NT（1）THEN 3700	
$\because 640 \quad D A=M G Y *(H(k+N S-1)-Y O) \quad: D A G=M G Y *(V(K+N S-1)-Y(1)$	
3660 IF DAPLOT $=1$ THEN FSET（I－（I\639）＊639．199－DA＊20）	
－670 IF XTFLQT $=1$ THEN FSET（1－（1\6こ9）＊6\％9，199－XT＊20）	
S680 IF XTFPLOT＝1 THEN FSET（I－（I）639）＊6．39．199－XTF＊工い）	
370．IF $1 / 639=11639$ THEN 3960	
$3710{ }^{\circ}=r^{\prime}+\mathrm{Mk}$	
E720 NEXT I	
こ7この IF NE 2 N THEN 3950	
$\bigcirc 740$	FRINT＂DATA－CHECK：［y／n］＂：INPUT PRis
－750	
5760	IF FRs $=$＂n＂THEN 3920

```
3770 PRINT "Emeganning number ";NS
E780) NQ=INT((NE-NS+1)/7)
3790 NEE=7*NQ+NS-1
SGOC'NF=NE-NEE
3010 FOF I=NS TO NEE STEF }
\Xi日20 PRINT USING "#####.#####" :V(I),V(I+1),V(I+2),V(I+\Xi),V(I+4),V(I+5).V(I+क)
38SO NEXT I
3840 IF NF=0 THEN 3910
3050 1=0
3860 I=I+1
ミ870 FRINT USING "####.#####" ;V(NEE+1)
388% IF I >= NF: THEN 3900
3890 GOTO 3860
300O FRINT "
E910 PRINT "Ending number ";NE
3920 PRINT "Want to see another section [y/n] "::INFUT SEEs
S9-0 IF SEE$ <> "y" AND SEE$ < 
3940 IF SEE$ = "Y" THEN SESO
3950 GOTO 4020
SOSO FRINT "Want to plot further [y/n] ";:INFUT YEs
3970 IF YEq << "y" AND YE& << "n" THEN S960
B980 IF YEs = "n" THEN 4020
3990 CLS
4000 GOSUE 4030
4010 GOTO 372O
4 0 2 0 ~ R E T U F N
40SO REM sutroutine GRID
4040 SCALE = MG
40SO IF NMGSET=1 THEN SCALE = 1/MGA
406O NGRID=XTIC*SCALE :LRESET=10%NGF:ID
4070 LTEN=-1 :LXTEN=1
4OBG FOF: L=1 TO 6E1 STEF NGFID
4090 FSET(L.199)
410) LTEN=LTEN+1
4110 IF LTEN=LXTEN*10 THEN LXTEN=LXTEN+1 :FSET(L,198)
4120 NEXT L
4150 IF NORMS = "y" THEN MGY=1
414O NYSTF=YTIC*2O*MGY : NYRESSET=S*NYSTF
41EOG FOF: LY=0 TO 199 STEF NYSTF
4160 FSET(1.199-LY)
4170 IF LY/NYFESET = LY\NYRESET THEN FSET(2,199-LY)
4180) IF LY/2/NYRESET = LY:(\Omega*NYRESET) THEN FSET(E,199-LY):FSET(4,10G-LY)
4190 NEXT LY
4 2 0 0 ~ R E T U F N ~
```


Appendix C
 Resist Parameter Table

TABLE 1．R Perameleri for YICROPOST 1470 at Vanous Prebake Temperaures
Prebaked for 20 mun and developed in 351 l：5 at $20^{\circ} \mathrm{C}$

\mathbf{R}	$80^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	75／100 Cl	1206
$R_{1}(\mu \mathrm{~m} / \mathrm{sec})$	0.24	0.20	0.13	0.017
$R_{2}(\mu m / s e c)$	0.0005	0.0006	0.0005	00005
R_{3}	81	6.1	53	2.2
$R_{1}(\mu m)$	0.24	014	013	0%
R_{0}	0.76	0.40	0.17	0．05
R_{1}	0.35	0.28	0.26	$0: 1$

TABLE D R Paramelers for MUCROPOSTT 1470 for Several Developers Prebaked a！ $80^{\circ} \mathrm{C}$ for 20 min ．and developed at $20^{c} C$

R	$\begin{gathered} \text { MICROPOSIT:I:20 } \\ 1: 1 \end{gathered}$	$\begin{array}{r} 351: \mathrm{H}, 2 \mathrm{C} \\ 1.5 \\ \hline \end{array}$		$\begin{gathered} \mu 5: 2 . Y_{2} \\ 1 \\ \hline \end{gathered}$
R $\mathrm{R}_{1}(\mu \mathrm{~m}$＇ser $)$	0.27	024	64%	63 ：
R_{2}（ $\mu \mathrm{m}$＇se：）	00006	0.005 ．	000こう	005
R_{2}	7.4	81	$6 . 亡$	7.2

TABIX：II AB．C Exposure Paramelers for MICKOPOST 1470 if Vanous Prebake Temperalures Exposed al 436 nm and prebaked for 20 mm ：

A．Pr	$80^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C} \cdot \mathrm{C}$	$12^{n^{\circ} \mathrm{C}}$
A $\left(\mu m_{0}^{-1}\right)$	0.54	03^{\prime}	$03 i$
$B\left(\mu m^{-1}\right)$	003	00 ？	0.1 .1
C（ems ${ }^{8} \cdot{ }^{\text {a }}$ ：	0.019	CC：	C Ci：

TABLE：N A．B．C．and R Perameters for MICKOHOSTT 1330 J
Exposed at 436 nm and prebaked a！ $70^{\circ} \mathrm{C}$ for 6i．mir． Developer MICKDROS：T 1 ：at $20^{\circ} 6^{\circ}$

A．B．C	K． K, P		
A $\left(\mu \pi_{1}{ }^{\text {a }}\right.$ ）	0.53	$K_{1}\left(\mu r_{1}\right.$ sr．）	03.
B（ $\mu \mathrm{m}^{+1} \mathrm{~m}^{2}$ ）	0045	H_{3} ！$\mu \mathrm{m}$	00^{0}
$\mathrm{C}\left(\underline{\mathrm{m}} \mathrm{m}^{2} ; \mathrm{mJ}\right)$	0013	K_{3}	74

TABLE V．A B C Paramelers for KODAK $8 \geq 0$ Prebaked at $100^{\circ} \mathrm{C}$ for 30 min

| $A\left(\mu m^{-1}\right)$ | $B\left(\mu m^{-1}\right)$ | $C\left(\mathrm{~cm}^{2} / \pi .1\right)$ |
| :---: | :---: | :---: | :---: |
| 0.51 | 0.031 | 0013 |

TABLE V．R Paramelerz for KODAK 820
Prebaked al $100^{\circ} \mathrm{C}$ for 30 m r．

Developer	R_{1}	R_{2}	R_{3}	R_{4}	R	Rr	\boldsymbol{H}	k_{p}	K_{5}	$k:$
$\begin{aligned} & 1 \text { KODAY } 305 \\ & 3 \text { water } \\ & \text { al } 20^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	0.23	0.0016	3.6	0.25	062	005		－		－
$\begin{aligned} & 1 \text { KODAK } 932 \\ & 1 \text { noler } \\ & \text { at } 25^{\circ} C \end{aligned}$	033	00015	10	025	O4＇2	002	013	0 ¢	00%	065

R_{1} and K_{2} art in $\mu \pi_{1}$＇se：
R_{4} is in μm
$R_{:}$and $R_{:} \cdot R_{i c}$ are dimensionless

```
Appendix D
Example of Resist Profile Simulation (SAMPLE)
i. Input Example
```

```
trial 35 90;
```

trial 35 90;
linespace 1.0 1.0;
linespace 1.0 1.0;
trial 22 1.
trial 22 1.
run 1;
run 1;
dcse 90.0;
dcse 90.0;
resmodel (.435S) (.5 .03.0125)
resmodel (.435S) (.5 .03.0125)
(1.68-.017 1.03i62);
(1.68-.017 1.03i62);
run 3
run 3
devrate 2 0.23 0.0016 5.6 0.25 0.62 0.0日;
devrate 2 0.23 0.0016 5.6 0.25 0.62 0.0日;
trial 2 0 1 1;
trial 2 0 1 1;
trial 3日 1 ;
trial 3日 1 ;
devtime 15 75 5;
devtime 15 75 5;
run 4;

```
run 4;
```

-6ees	8AMPLE	****
-exet	Siauletion and Modelijing of Profiles in	- ****
-	Lsthogrephy and Etching	*
	(ERL, EECS. UCB)	

Input =trial 3596 ,
Input =1inespace 1.0 1.0:

```
The cesk is grating oith periodic pattern of
            line/spece 1.00000 1.00000 microaeters uide
    Input etraal 22 1 0.5 1
The uindov is 1.O micrometers vide
            The eest edge is 0.5 micrometers fros the left edoe of the wandow
    Inpue moun 1.
```

Run the sesging subsustem to get
the normilized horizontal energy distrioution
in the iadge of the eask resulizing from
- unifara idlumination on the mash with a
total of 1.0 mJ/em2

- Run serge
- $\omega+\bullet \bullet+\rightarrow+$ -

Iange parameter values

A periodic aest pettern with 1.0000 um ade lines and 10000 un eide spases
intensity eindoe is 10000 un wide
Mash oge (L/S) is located at 03000 un prom the left window boundery
Parcoz used for pertial coherent intensity coaputation

1

Find out the actual bieaching in the resist


```
- Run Espose -
**-tecemetermeth
Eaposure paraesters:
    Dose = 90.0 N/Emet?
Resist perseeters:
```



```
        4358
        O. 5000
0.0300
    0.0125
Hafer pareaeters:
    Layer no. 1 is photopesist, and its eatinction coeppiciont
        velues. t. given belov are at the start op expeosure.
    luyer no. 1 thiciness=1.0376 um
    Mavelength: .4358 um
    Vertical standing weve period in the photoresist is 0. 1297 un
```



```
Intermediete results:
    Photoresist hes 96 vertical and 49 horizental grid divisions
        Thictiness of verticel grid divisions is . 010日 un
        Width of horizontal grid divisions is.0204 um
Emposure fesudts:
    Overall frectional power reflected
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Dose (ed/cmer2): Hevelength . 4358 um: & \[
\stackrel{0 .}{0.0070}
\] & \[
\begin{array}{r}
7.1 \\
0.0118
\end{array}
\] & \[
\begin{array}{r}
14.2 \\
0.0177
\end{array}
\] & \[
\begin{array}{r}
21.3 \\
0.0245
\end{array}
\] & \[
\begin{array}{r}
294 \\
0.0319
\end{array}
\] & \[
\begin{array}{r}
35.6 \\
0.0397
\end{array}
\] \\
\hline Dose (mJ/cnetz): Havelength . 435 un : & \[
\begin{array}{r}
427 \\
0.0477
\end{array}
\] & \begin{tabular}{l}
49. 8 \\
0. 0557
\end{tabular} & \[
\begin{array}{r}
57.3 \\
0.0637
\end{array}
\] & \[
\begin{array}{r}
65.8 \\
0.0723
\end{array}
\] & \[
\begin{array}{r}
75.7 \\
0.0812
\end{array}
\] & \[
\begin{array}{r}
871 \\
0.0900
\end{array}
\] \\
\hline \begin{tabular}{l}
Dose ( \(\quad\) J/cmet2): \\
Hevelength. 4358 un:
\end{tabular} & \[
\begin{array}{r}
100.1 \\
0.0981
\end{array}
\] & \[
\begin{array}{r}
115.2 \\
0.1052
\end{array}
\] & \[
\begin{array}{r}
132.4 \\
0.1111
\end{array}
\] & & & \\
\hline
\end{tabular}
1
    Input =devrate 2 0 23 0.0016 5.6 0.25 0.62 0.0日;
The development rate is given by an analutic function in M and z as.
    Rate(M, z)=f(M,z)eRb(M)
        Where Rb(M) is bulk rate
                        P(M, 2) is rate-retardation factor noer surface
```



```
            Where RI = 0. 23000 un/sec. R2 = 0.00160 um/sec. R3 m 5.60
        f(M.z)=1-(1-(RS-(R5-R6)0+H))=erp(-z/R4)
                Where R4=0.25000 un, RS = 0.62000. R6 = 0.00000
    Input =trial 201 1 1
this trial-stmt sets the flags
    idevfi(i)= 0. ydevfi(2)= 1. idevfi(3)= 1
    Input merial 30 1 1
    Input adevtaae 15 75 5 s
Develope the resdet Prom 15.00000 to 75.00000 seconds in S steps
    Input mrun 4,
Find the developed profiles of the photoresist
```


-rat

ment dovelepeent eusput - 790 .01

dwitiel develegeent pun

Appendix E

The FORTRAN Program for the Design Algorithm

The FORIRAN code for the design algorithm has been added to the SAMPLE. The name of the subroutine is tral12. This also contains the subroutines RATEZX and DEVLOP. The following is the program codes as a part of mod02x2.f in the SAMPLE.

```
c
c /* 2f argl = le call tralic routine (added by deok klm, July, 'Ea,
10 if(itest.ne ji') goto 15
negin=0
    jdeok = rmminet - 1
    If(joeck ge. 1) gute 11
urite:1print.JZ)
return
dostmi=stnmls(r)
ddos =retnele(こ)
devbrk=stnmice(a)
rēsaw=stnmls(*)
slone=stnmls(心;
iff(doetar. lt 0) weg2n=1
if(dios . le 0) tregin=1
if(sQ~brk.1r. 0) negan=1
if(slope le 0, negin=1
if(resiu.je 0) wegin=)
If(negi: eq O) goto 14
urd(ec(2print.15)
return
formai(/, 4sin***** At least onf input must be specified *****,/,
form:t(/. 39n***** AlJ inputs must be positive *****,/)
cont inue
call tralle(jdeok, dostar.ddos,devbrk, resiw. slope)
return
```

c

```
C
C
c
c
c
c
C
C
c
C
C
l
    if(:1तos 1t (, 2) ddos=100
    if(sueck.le. i.) devbrk=100,0
    if(jucok le j) resim=0 [*llw
    if(joeck le 4) slope=8\ddot{C}0
    resaumax-rlwtiswiz O
    ifiresiu le resiminax) gotc 11
    urit; (iprint.j0)
    lo formit(/S4h***** resist linewidth on the wafer is too large met*./)
    return
    1. 2f(sICDC jt jEO O) guto i'
    w! !e(if!2nt.1\overline{c}
    la'format(/bIn***** maxamum slope is lamated to l甘Cidegrees ****:,/)
    returr
    1:3 continue
    del=1Op=(1;
    slophj=slopfrcol=1ul
    sloflo=slope-delsluf.
    manux=undorg+wlnतtow
    reszz=ulidorg', tsiw/:'
    horifin=horintij)
    hormizv=horint(s)
    Jmin=:
    jmac-1
    jhor is v=inmhpts.
    do :7 i= 1.jhnreic
    if ihorint(3). le hormax) grito 1b
    hormar=horint(i)
    jmax=j
1f if (toorint(z).ge horman) goto 17
    hormin=horintis)
    jm1:1x1
1% continus.
    hxmin=(jman-1)"deltx
    hxmax=(jmax-1;)dejts
    devuji=abs(ham: x-hxmsn)
```

```
        if (w:ndow. ac. devwid) goto jE
        urire{iprint.E'1}
    14 contar.ue
C
c DETi:HP!&E the direction of lateral develop
    latne.flc=0
    if (hxmax.gt hxmin) latdevflg=-1
    if (nxmin.gt hxmax) latdevflg=1
    if (dretdevfln. ne O) gotu d'f
    wTz&f(iprant.eil)
    gotu:000
    1% conciruf
    21 forr.at('warni|s ... CHECK THE POSITION DF WINDOW')
        dIr=jgn=-1 0
        if (letdevflg.gt. O) ditsign=1 O
C
    dos.rec=expus(1)
    do 2O i=1, ne.:?)v
    if (\varepsilon(pos(i).gt dosmax) dosmax=expo:(i)
    2' conti:ue
i
    FIN! iHL Z-LEVEL FCH PEAF. ENFHGY COUPIED
    halrosv=|endivia
    ntest.int(halfciv)
    i=j
    milev:i)=2
    do 25 iznos=3. nprfte-1
    siged=rmzdos(12pCs+1.ntest)-rmzdos(12pos, ntest)
    sigito-rmzdos(izpos.ntest)-rmzdos(izpos.-1, ntest)
    if((:igtl.le OO) or (sigto.gt. O O)) goto 25
    i=i+1
    mz1~ソ(i)=12po.
        25 continuc
        1last=1+1
        mzlev\גdectl=..irppts
        do 28 k=1, 2lme.t
        depti:(k)=deltz*(mzlev(k)-í)
        writtiiprant, l\C) depth(k),rmzdos(mzlpv(k), ntect)
        28 con!inue
c j17 format(E.f10i)
l
    writi:iprant, 392)
```



```
c
    dosjim=SUO O
    dose=dostar-ddos
    e0r) dose=dose+ddos
        if (dose.je. doslym) goto 40t,
        wriveizprint,4:``) duslim
    40:' form.jt(/'Dose js lımated arbitraraly it ',flO 3)
    AOS writf(iprint.4:.7) dwse
    40% forns.jt(/'******* INCIDENT DOSE (mJ/cmal) =',f7.3)
C
L
CALCLI. ATES BREAKTHROUGH TIMF
nnflg=0
vardos=dosethormax
if inormax. لc 0 (u) gotu ju(1)
1 f (vardos.gt. dosmar) goto 1000
cald ratezx
devjim=dpvbrk
call devlop
if ixsum ge depth(idastr) g(to 33
wrict (2print. 35) timr
got.. 40 ()
3」 tbraax=tims
wrive (aprint.j4) tbreak
```

```
    34 formijt('break t 2me =',f10 b)
    35 formot('RESIST IS NOT BROKEN THROUGH IN TIME LIMIT =',fo p)
c
c
    CALCIILATES DEVTIME FOR RESIST LINEWIDIH
    nhflg=1
    do 4E k=1, jhordiv
    vardos=dose*hurint(h)
    cald ratezx
    do 40 kvz1.jlest
    rrh(k,tv)=rr(W)
    4 0 ~ c o n : i n u e ~
    4:' coniminu
        do 48 k=1, jhordiv
        kn=k
        if (latdevflg gt. O) goto 4%
        kn=.shritdiv-k+1
    47 rr(k)-Trh(kn,jiast)
    x(k)=(k-1)*dp)tx-wrrjorg
    4t consi\cdotue
    xlion is the acrumulative development lerigth,
    x]2T: ab:(rpgax-hxmiax)
    cald devjol
    xz(j)ast)=nxmax+oirseggn*xum
    tline=tjme+tbrrak
    wrate(zprint,jg.g) tisne, Tesiw
```


CALCLLATES RL:OIST TE: LOSO
nhelgrel
varjos=dose*hcilman
call ratery
devijm=tj3n(0
cajl devjur.
toploss=xsum
w;ite(2plarit.J34) toplese
139 fo-rat('resist top loss =',ff() 5)
CALCIMGTES. LATERAL DEVELOFHIENI LENGTH
now xijr ze tunated to waridow length
x12m,2 -2ridGu
nhflg=1
do 73 klet=1.jlast-1
do 6\& k=j.jhiriav
kn=k
If (Jatdevfla gt O) gotu SE
kr=jhロ「Jふい-k!)
SG rr(*)\#irli(lr..kiat)

```

```

 06. continue
 now oevizm ze lamited to the dertame fot res.lst linewadth
 devlig:=tline-zt(klat)
 cald devlon
 xz(x+et)=hxmax+d_rsign*xsum
 73 conimeut
 uriteidprint.1<5s)
 write(iprint.j46) wndorg,resix.windx
 14S format(/10, WNLORG(x).1OH RESIST(x),10l, WINDOW(x))
 14}. forrat(3(f7. 5, 3x))
 writpisprint.148)
    ```

```

 xdmar= - - coos.0
 do B3 k=1.11ast
 xdyf=xz(dlast)-xz(k)
 If(xdif.le. idmax) goto ध2
 xdmax=xdit
 kmax=k
    ```
```

 日:' 1f(depth(k).le. toploss) ktop=k+1
 zdeptin=-1*depth(k)
 write(iprint,ito) zdepth, zz(k), zt(k)
 83 continue
 150 format(3f10.5)
xdifir.p:=xz(ils!t)-xz(ktop)
xdmas=xz(ilast)-xz(kmax)
xdjf\pir.d=xg(ilनst-1)-xz(ktop)
if (sdiftop.en. O.) goto 400
if (xumax.ea. O) gnto 4u0
if (xdifmod en. 0.) goto 40()
slovetop=(depth(ilast)-depth(ktop))/xdjftop
slopebot=(depth(ilast)-depth(kmax))/xdmax
slosemod=(depth(ilast-1)-depth(ktop))/sdifmed
angletop=atan(slopetop)+180/s 14
if (arigletop.lt 0) angletup=180+angletop
angleoot=atan(slopebot)*180/3 14
if (Eriglebot.lt O) anglebot=180+anglebot
anglerod=atali(slopemod)+1EO/'3.14
if {s:iglenod. lt. O.) anglemud=1BO+aniolemed
sloptestinanglerod
uritei(iprint, \&:5)
153 foras.3t(/IOH ANELE,1OH Z(A),1OH. Z(H))
zhigh=-1*depthiktop)
zlow=-1*defth(;last)
writeidprint, i\leqslantO) angletop, 2hjgh, zlow
zhigh= - |*defth(xmex)
2do.j=-1-dentli(tlast)
urate{iprint.jEO) anglebot, 2high, 2lo:山
zh2jh=-1*depth(ktop)
zlo.j=-1*depth(1last-1)
uritie(2print,j末0) anglemod, 2high, zlow
zfijaeok en 1) guto zONC
if (sloptest.oe slople) gota 500
gotい 40(1
SOO if ((sloptest.ge sloplo). and (sloptest. le slophi)) gute 5s0
1f(ddos.lt (' () gnto 10:0
doserdose-ddos
ddos=ddos/ac.S
goto sO()
SSO wrateijprart. Se0; sloptest, rcsiw, dose, tlant
SeO formist(//9hThe slope,1x,f(2, Ix,9n(degtees), 1x, 3hard, 1x.
* lonresist lifiewidth. Ix.ff 1, 1x, 4niumi./
* Ihare obtairied, 1x.
* 9hwith dose, Jx,f4 1,1x, 8t,(m,1/cme), 1x,
* 11herid develme, Ix,fb 1, Ix, Sh(ser))
gnto 20(n)
1(00 dosair=dosm.ja/t.ornax
writeisprınt,i(1Oi') dosa11
ICOI write(aprint.j(:04) hormax
write(iprint.l(1OO) dosmax
1002 format('LIMI| of Incident Dosc =',fo i')
1004 format('Horizontal Image Maximum =', f0. 3)
1006 formst('1mum vose in RMZDOS table =', f(e a)
1020 write(iprint, l(こ2) slope,dels)op, resim
1022 format(/1x, 1甘hNo match for slope.1x,fo 2.1x,2h+-,1x,f3 1.1x,
* 3hand, lx. 16hresist lanewidth,1x,f4 1)
2000 contariue.
rps(1;=-1)
rps(E)=r:*
Tys(\Xi)=::4
rps(4)=rA
rps(E)=rs
rps(6)=1G
rps(71=17
rps(E)=rG

```
```

 rps(9)=r4
 rpsil0)=r10
 writeiaprint.Ė(:10)
 writeidprint, E(:EO) (rps(ik), ik=1,kim)
 2U10 format(4bhby the process for the following R parameters)
C(120 farnat(b(fB.5))
return
end
C
c
6
l
204 1*(revpre(jk). Je vardes' and (vardes de expos(jt+l))) guto c'u:
204 continue.
2()5,j=0
kol=1
do 250 j=E,nernts
x suri=dejtz*(1-2)
If (nhfig ne 1) guto 24i4
if (}.ne. mz}ev(koj)) goto i'SO
kol=k0l+1
24G coffx(rmzdos(i, jk+1)-rmzdos(i,jk))/(expos(jk+1)-expos(jv))
res=rezdos(j, .k)+coff*(vardos-expos(jk))
temp=res*exp(-r 3*(1 O-res))
rblk=1.0/((1 0-temp)/rl + ten.p/rа)
surfzl.()
ysur:=de|tz*(i-2)
rn=res
zsul= TA
STO=TS
5T1=rG
sre1%r%
sme\=r自
sre己=r4
smez=rl()
kdeor=kam-3
if (rdeok . lt. 1) geto 314
If (xdecl ne. 3) guto 3OR
Tom = sr()- (srO-srl)*rm
go:0 3J:1
308 continue.
if (xdeor gt. b) guto 310
if (Tr,gt. sniri) goto 30't
Tom = sr() - (sro-srnl)\#rm/smes
gotu 31`
30'f rom = srel - (srel-srl)*(rm-smel)/(1-smel)
goto 313
31(1
1f itr gi sm(1) guto 311
rorr E ST() - (frC-5rnl)*rm/smes
goto 31:3
31J conitinue.
if {smel ge smec') poto il:s
1f (1, g at sme2) guto 31;'
rom = srel - (srel-sree)*(rm-smel)/(smeZ-smil)
qoto 313

```
```

 31\ddot{e}}\mathrm{ continue
 rom = srez - (srez-sri)*(rm-smez)/(1-smez)
 313 contitive
 surt = 1- (1-rom)*exp(-xsum/zsur)
 314 rate:surf*rblk
 j=j+1
 Tr(j)=rate
 pac(j)=ric
 M(J)=:sum
 if (nhflg eq 1) goto 250
 writeisiprint, i%O) rate,res,xsum
 250 contrive
 320 format(3f10.5)
 jxSum: = j
 return
 erid
 `
c generates defth vs time
:
comaser, /rrpacxi rr(b(10), pac(300), x(500). jxsum
comacon /horizri/ nhffg,depth(s(1), zt(5())
commori/dvtiml; jtordiv,xlim,time,xsum,devlim
commen /101 ; itermi,ibulk,iprcut,iresul,iin,iprint,apurach
c
c ndevt . increonent of dev time dtmdx/rate/ndevt
ndert=?0
timp=0.0
x sun.=x(1)
urate:iprint,7j0) ri(1), 又5um,time
jend=jxsum-1
if (nhflg.eq. 1) jerid=jhordiv-1
kal=1
de 65C i=1, jend
ratest=rr(1)
if (rr(i+1).gt. ratest) ratest=rr(i+1)
dt=(x(i+1)-x(j))/ratest/ndevt
blb rate=rr(i)+(rr(i+1)-rr(i))*(xsum-x(2))/(x(i+1)-x(i))
if (nhflg ne 0) guto b20
If (xsumin lt oepth(kal)) goto 6z0
zt(kal)=t_me-(xsum-depth(kal))/rate
kal=kal+1
bEO if (timf ge oeviim) goto 7(N)
1f (ntaflo. ne. 1) goto b30
if (xsur ge xlim) goto %os
630) 1; (x5um,ge. (12+1)) goter 64(1

```

```

 tamertzme4d:
 goto 61:,
 640 tamP=tim.f-(xsun-x(1+1))/rate
 s Uun=x(2+1)
 write(iprint, %/0) rr(i+1). xsum, time
 OSO continus
 goto 756,
 700 xsum=xsum-ratf*(time-devlim)
 tima-devilm
 goto 75!
 70S t2me=t2mer-(x=117-xlim)/ratr
 zsu{:=xlin.
 710 forn:ar(3f10 S)
 7bU con:jriuc
 ret:rr.
 end
 c

```

\section*{i. Input Examples}

In the first input example, the optical constants should be given to run the subroutines IMAGE and EXPOS of the SAMPLE as described in Chapter 5. Run 1 and run 3 provide the horizontal image and RMZDOS tables, respectively. A maximum dose should be given before run 3 in order to produce the RMZDOS table. The devrate 2 must be specified for the \(R\) parameters. The trial 12 statement executes the design algorithm. The first two variables are a starting dose and a dose increment, respectively. The routine calculates the slope for the given linewidth with varying dose. The third variable is the time limit for the resist break-through, because long development time for resist break-through is not desirable in practice. The fourth and the fifth variables are the resist linewidth on the wafer and the slope of the resist wall, respectively.

If only the first variable(dose) is given as shown in the second input example the slope is still calculated for the resist linewidth with \(20 \%\) bias. If the resist is not broken-through within 100 seconds dose is automatically increased by 10 mJ per square centi-meter and the resist profile is calculated.

In the third input example a search of several processes for a desired feature is illustrated. A, B, and C parameters for different resists (or same resist but different bake condition) are followed by the corresponding \(R\) parameters. More than one process may be obtained for a desired profile.

Input Example 1
```

liriespace \& 0 1.0;
trial 35 r'心 ;
ruH1;
driee 200.%;
resmodel (4358) (.51.0's1.0125)
(1.68 -0.017 1.03762) ;
run 3;
devrate 2 0. 23 0.0016 5.6 0. 25 0. Sé 0.08;
trial 12 3% 0 10.0 100.00.8 82.0;

```

\section*{Input Example 2}
```

litiespace j O 1.0;
trjal 35 요;
rW3! 1 ;
dase ̈CO. }\overline{:}\mathrm{ ;

```
TEsmodel (.4358) (.51.0is).01玉5)
    (1.65j-0.017 1.03762);
r!n 3;
devtate 20.230 .001 亿 5.6 0. 25 0. Sá 0.08;
trjal 12 \%i! 0 ;

Input Example 3
```

liriespace 」 O 1.0;
trjal 35 怘;
1u:; 1 ;
drise EOO.0;

```
\(\begin{aligned}\text { resmodel (. } 4359) & (.51 .031 .0150 \\ & (1.68-0.017 \text { 1.0さ7も2); }\end{aligned}\)
ru:1 is;



trial 12 3\%.0 10.0 100.0 0 日 75.0;
\(\begin{aligned}\text { resmedel } i .4358) & (.5 i m .03 .014) \\ & (1.63-0(17103 / 62) ;\end{aligned}\)
run is ;
devrate \(20240.000 t\) 3. 1 ;
trial 12 3\% 0 10.0 100.0 (1. 0 7. 0 ;
devtate 20.37 0.0以心s 7. 4 ;
trial 12.3010 .01000018750 ;
devrate 2 D. 44 O. OOE: B. 2 ;
trial 12 3: 0 10.0100 0 0 8 750;

trial 12 3. 0 10.0 100.0 0.8750;

\section*{ii. Output Examples}

In the output examples the ordinary outputs for image and exposure are not shown and only the output for the trial 12 statement is shown. WNDORG, RESIST, and WINDOW are the origin of the window, the coordinate of resist linewidth, and the coordinate of the window, respectively. Z, X, and Z-TIME are the maximum energy coupled position in the Z direction, the position of the lateral development, and the break-through time with depth for the maximum horizontal intensity. The angles are evaluated for three different sets of depths. The angle for the search is the last one as defined in Chapter 5. The top of the resist is still shown but, in fact, the resist top is lost. The resist top loss is also shown.
```

 Input=trial 12 30.0100100.008 82 0.
    ```

```

\#\&***** INC.IDENT DOSF. (mJ/cma) = 30.000
RESIST IS NCT BROKEN THROUGH IN TIME LIMIT =100.00
*\&***** INCJDENT DOSE (mJ/cm2) = 40.000
RESIST IS NCT BROKEN THROUGH IN TIME LIMIT =100.00
******* INEIDENT DOSE (mJ/cme) = 50.000
RESIST IS NCT BROKEN THROUGH IN TIME LIMIT }=100.0
******* INCJDENT DOSt (mJ/cm2) = 60.000
bieal time = 78 55:20
devtime =1"い\29 ; resist linewidth =0.800
TEsist t0, 10Ss=0.04003
WNDORG(x) HESIST(x) WINDOW(x)
O O.4OO 1 OOO

```

```

 -0 1297. 0 22423 12 625:0
 -0 25953 0 19673 21 72506
 -0 38711 0.19751 30 13230
 -0 5188' O 21400 39 62B86
 -0.64851 0 24133 47 56185
 -0 7782: 0 278in 57 13709
 -0 9079.- 0 3282S 6747599
 -1 02set 0 400r.2 78.55730
 APJGL: Z(A) Z(B)
 78 95437 -0 12970 -1.02681
 75 21965 -0. 25940 -1 02681
 E2 42017 -0.12970 -0.90792
 The slopp G: 42 (degrees) and resist linewidth O & (um) are obtamrea
 wath dose (r: O (mJ/cmz) and devtame 100 3 (sec)
by the procrss for the following k parameters
O 23000 O 50160 5 600c0 0 25000 O 62000 0 08000
********** End of lal session **********
Fxet tames 13 solu, 3.103s seconds 01 16 31

```
```

 Input=trial 12 90.0.
    ```

```

***\#\#F* IN::JDENT DA5! (mJ/(me) = 90 000
brear tame - 40 5i3r75
devtame = L.i, 14 ; resist linewidth = 0 800
resist to" loss = C 0ebo:
WNDOKG(x) HELIST(: WINDOW(x)
O O AOO 1 (OO)

7		Z．71rir．
－	0 2つから：	0
－0 1297\％	0 220\％：	Bこ59E
－0．2594：	O 20a3＇	10 36505
－0．3e711	0． 211 SH	14 6：3603
－0 518e：	O．2260；	19 03791
－0．64851	025014	23 73セنご
0．7782！	－28ㄷ．． 1	ご
－0 $9079{ }^{-}$	0 3275	3446778
02651	40	40 S

 ANGL:- Z(f.) j(E)
 79 0666% -0 129%% -1 02651
 76 0479% -0 2594? -1 02681
 B2 6033! -0.129心 -0 90792
 Dy the pro:ess for the followino K parameters
O 23:J00 O :O160 E S人000 O 25.50C O b2000 O 0e000
\#\#t+***-* End oi lal 5essjon ***s******
Exec tam": liz bl%u, E'51%s seconds O1 2i' lt

```
```


[^0]: Research sponsored by the Air Force Office of Scientific Research (AFSC) United States Air Force under Contract No. F49620-79-C-0178.

