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Circuit Simulation in LISP

ABSTRACT

The programming language LISP is no longer restricted to applications in
the field of artificial intelligence. It is being used in many different areas and
in particular for development of LSI design tools. This report explores the
speed performance of a LISP-based circuit simulation program, BIASlisp, on
three different computer systems. They are the VAX 11/780, the HP9836
desktop computer, and the Symbolics 3600 LISP machine. The results obtained
using several modifications are reported.

Integrated circuit simulation requires an extensive amount of numerical
computation, an application for which LISP has not been very popular. How
ever, the results on the 3600 indicate that circuit simulation is possible in LISP
without any performance penalty. Moreover, BIASlisp can be interfaced with
existing LSI CAD tools in LISP thereby providing circuit simulation capabili
ties in the LISP environment.
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1. INTRODUCTION

LISP is a list-processing language which was first developed for use in artificial intelli

gence research. Because of its extensive use in all branches of artificial intelligence (AI), LISP

has been called an AI language [l]. However, it has not been confined to AI and has found

applications in the areas of text editing [2], symbolic math systems [3], LSI design [4-6] and

simulation of digital logic circuits [7]. Absence of good compilers has resulted in poor speed

performance of LISP-based systems in the past, and therefore it has not been a popular

language for number crunching applications.

With the advent of a special computer architecture [2], [8] and efficient compilers a

significant improvement in performance has resulted. This has prompted wide acceptance of

LISP in the computing community. Complex systems can now be designed using LISPwithout

any loss of performance. Moreover, program development can be greatly aided by the advan

tages associated with a LISP environment.

The intent of this work has been to investigate the suitability of LISP as a language for

development of circuit-simulation programs. Because of the extensive amount of number

crunching involved this program is also a good tool to evaluate the speed performance of

LISP-based systems involving extensive numerical computation. The higher-level data struc

tures of LISP can be used to store input data in a way that is easy to understand thereby

improving program readability. Those who have worked with SPICE 2 [9] are familiar with

the amount of effort that goes into understanding how and where input data is stored. This

makes it difficult to modify the program whereas using LISP one can write a circuit simula

tion program that readily lends itself to modifications.

A LISP-based circuit simulation program, BIASlisp, has been developed for this purpose.

It is an interactive MOS circuit simulation program which belongs to the family of BIAS pro

grams developed at UC Berkeley [10-14]. Performance evaluation has been carried out using

BIASlisp on different computer systems. The machines used for this study were the VAX
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11/780 under the UNIX 4.2 BSD operating system, the Symbolics 3600 LISP Machine, and the

HP 9836 desktop computer. Franz LISP was used to develop and debug the program on the

VAX 11/780. This code was then ported to Portable Standard Lisp (PSL) on the HP 9836 and

Zetalisp on the Symbolics 3600 by writing appropriate macros. Experiments were carried out

using several modifications and the results obtained are reported in Section 3. A comparison of

speeds achieved with circuit simulators written in other languages is made in [15]. It was

found that a LISP-based circuit simulator gave poor performance compared to a circuit-

simulation program written in C or PASCAL on the VAX 11/780 and the HP9836.

Performance evaluation of BIASlisp on the Symbolics 3600 LISP machine indicates that

LISP in itself is not a slow language. However, poor performance is observed on the VAX

11/780 and the HP9836. This is due to the lack of an architecture that efficiently supports the

LISP language. Some of the significant differences between LISP and conventional program

ming languages and the requirement for special-purpose hardware have been discussed in Sec

tion 4.
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2. PROGRAM DESCRIPTION

This section gives a description of the features of the BIASlisp program, the algorithms

used, and the LISP data structures used in the implementation.

2.1. Program Features

BIASlisp is an interactive MOS circuit simulation program which has a SPICE-like input

format. Nodes can be given names and need not be integers. A complete description of the com

mands can be found in the User's Manual given in Appendix A. The MOSFET model used in

the present version is the Shichman-Hodges model [16]; a SPICE-level 2 MOS model will be

implemented in the future. At present the analysis types available are DC operating point, DC

transfer characteristics, and time-domain transient response. The builtin dynamic memory

management of LISP has been used, and therefore the circuit size that can be simulated is lim

ited by the physical memory of the system.

2.2. Algorithms

The algorithms used for analysis are similar to those of SPICE 2 [17]. Modified nodal

analysis [18] is used to setup the system of equations. The Newton-Raphson iteration technique

has been used for the DC solution of the nonlinear equations [19-21]. Trapezoidal integration

with a Backward-Euler start-up is used for transient analysis. Iteration count has- been used

for timestep control [17]. Bi-directional threaded lists with Markowitz reordering and LU

decomposition have been used in the sparse-matrix implementation [20].
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2.3. Implementation

A brief description of the primitive LISP data items is given below. For a more detailed

treatment the reader is referred to [22-23].

2.3.1. Basic LISP Data Objects

The fundamental objects of the LISP language are called atoms which correspond to

variables in other languages. An atom can be either a number (integer or real) or a symbol.

Groups of atoms form lists and lists themselves can be grouped together to form lists. Atoms

and lists are called Symbolic Expressions (or S-expressions for short). These S-expressions are

the primitive data items of LISP. Each symbol has a property list in which relevant properties

of that atom can be stored. This is a unique feature of LISP.

23.2. Data Structures

For each element type allowed in BIASlisp there is a list which stores the names of all

elements of that type in the circuit. LISP list operators are used to store and retrieve data from

these lists. The various lists and their purpose are described in Appendix B. As an example:

Res-list stores the names of all resistors in the circuit. If the resistor names are Rl, R2, —, RN

then Res-list is (Rl R2 — RN).

Associated with each name in these lists is a property list that stores the relevant proper

ties of that name. Node names/numbers, element values, and model parameters are regarded as

properties in this scheme. There are built-in LISP functions which allow insertion and dele

tion of properties in a property list. The property list for each type of element is described in

Appendix C and two examples are given in Table 1 below:
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Type Property name Description

Resistor nl positive node
n2 negative node
value resistance value

MOS model mtype model type (nmos/pmos)
vto threshold voltage (vbs = 0)
kp intrinsic transconductance parameter
lambda channel length modulation parameter
gamma bulk threshold parameter
phi surface potential

JS bulk junction saturation current
density

TABLE 1

Property lists for a Resistor and Mosfet

2.3.2.1. Sparse-matrix implementation

There are two implementations of the sparse-matrix version: one makes use of the pro

perty list as a sparse-matrix element and the other uses structures (similar to records of PAS

CAL language and structures of C language). A sparse-matrix element stores the row and

column indices, the value, and pointers to the next element in its row and its column. The

sparse-matrix elements are linked together by bidirectional pointers according to the method

given in [24]. Pointers to the first element in a column or a row are stored in two one-

dimensional arrays. Since LISP arrays can be allocated dynamically this does not place any res

triction on the size of the sparse-matrix as does PASCAL [12]. The schematic of such an imple

mentation is shown in Figure 1 and is independent of the actual data structures used.



2.3.2.2. Full-matrix implementation

The full-matrix version uses a two-dimensional LISP array on the VAX and the LISP

machine. However, PSL on the HP9836 allows only one-dimensional arrays and so the imple

mentation makes use of vectors. Since arrays can be allocated dynamically in LISP this does

not place any limitation on the size of the circuit that can be simulated. Partial pivoting is

used during the solution phase.
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3. RESULTS AND COMPARISONS

This section presents a comparison of CPU times for program execution on the three

different systems. Three circuits have been used as benchmarks and are given as Figures 2 to

4. The first circuit is a ± 2.5V fast-settling CMOS opamp [25] which uses model parameters

from a typical CMOS N-well process [26]. It is connected in a unity-gain configuration with

the noninverting input at zero volts. Circuit 2 is a CMOS sense amplifier whereas Circuit 3 is

a chain of twenty five NMOS depletion-load inverters. Both of these use model parameters

from a CMOS N-well process [27]. The results are for DC operating point analysis and give a

good idea about simulation speed. A comparison has also been made between the full-matrix

and the sparse-matrix versions. Simulation results using BIASlisp have been given for each

machine separately and some conclusions are derived thereafter. SPICE 2G.6 timings on the

VAX 11/780 with a floating-point accelerator are also given for comparison purposes.

At the outset it is instructive to study the times for some basic operations in LISP. These

times are given in Section 3.1.

3.1. Times for basic operations in LISP

In this section the operation times for the LISP dialects in use on the three computer sys

tems are reported. They are Franz LISP on the VAX 11/780, Portable Standard Lisp on the

HP9836, and Zetalisp on the Symbolics 3600. A comparison of the operation times is made

with those in another programming language on the same system. FORTRAN was used on the

VAX 11/780 and PASCAL on the HP9836. Operation times on the Symbolics 3600 are com

pared with those for FORTRANon the VAX 11/780 using a floating-point accelerator.
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3.1.1. VAX 11/780: Comparison of FORTRAN and Franz LISP Operation times

A comparison is made for some of the basic operation times in FORTRAN and Franz

LISP on the VAX 11/780. Table 2 gives the time spent in doing the assignment yn(i,j) =

yn(i,j), where yn is a two dimensional array, for different values of i and j. The time for gar

bage collection* has not been considered as that is variable. It is clear from Table 2 that arrays

of floating-point-numbers (type is flonum-block) are inefficient compared to general arrays

(type t array in Franz LISP). In Table 3 are presented the times for nested and single do

loops as well as the times for executing 100,000 times the basic numeric operations +, -, *, /,

and exp. The time taken by the functions sqrt and log varied and Franz LISP took approxi

mately 20 sec more than the corresponding operation in FORTRAN. Each operation was

repeated 100,000 times. It should be again mentioned that the time for garbage collection is

not included as it varied from 10 sec to 150 sec. Needless to mention Franz LISP is very slow

compared to FORTRAN even if one unrealistically ignores the time for garbage collection.

*Garbage collection is a process in which memory space occupied byobjects that are no longer addressed is
reclaimed. LISP has a builtin garbage collection package which recovers such sections of the memory when
ever it runs out of space for new objects. This process is time consuming and the time required is therefore a
parameter of interest.



L [SP (type) FORTRAN (precision)
#)f times t

(sec)
flonum-block

(sec)
double

(sec)
single
(sec)

1000x100 27.5 85.5 3.0 2.07

100x1000 29.3 88.0 4.9 3.9

100x100 2.68 8.6 0.45 0.36

10x1000 3.16 9.65 2.0 1.90

TABLE 2

Comparison of LISP and FORTRAN array reference timings
on the VAX 11/780

operation LISP (sec) FORTRAN (sec)

Nested DO loops
1000x100 6.2 0.38

100x1000 6.2 0.38

10000x10 7.8 0.43

10x10000 8.3 0.38

1x100000 15.0 0.38

100000x1 25.4 1.2

Single DO loop
100000 times 7.6 0.35

V 15.0 0.35
»>

15.0 0.35
»** 16.0 0.55

V* 16.0 1.03

exp 40.0 22.4

TABLE 3

Time taken for operations in LISP and FORTRAN
on the VAX 11/780
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3.1.2. HP 9836: Operation times in Portable Standard Lisp

Portable Standard lisp (PSL) on the HP9836 uses software for floating-point calcula

tions and, therefore, the floating-point arithmetic is very -inefficient. Some functions require

more computation effort depending on their arguments so it is not possible to give a represen

tative number for the execution speed. The functions in this category are expO, sqrtO, and

logO. As an example Table 4 gives the computation time required to find log(x) for different

values of jc 1000 times. For comparison times for a PASCAL program are also given. It should

be noted that although the values of x being used have the same number of digits the compu

tation time may vary by a factor of two or more. Operations which gave consistent execution

times are compared with execution times in PASCAL in Table 5. The garbage collection time

for these operations is not included. Each operation vectort assignment v(i) •» v(i), +, -, *, and /

has been repeated 100,000 times.

PSL is slow compared to PASCAL in performing the simple arithmetic operations +, -, *,

and /. The reason for this poor performance is due to the tag checking performed during run

time as explained in Section 4.

t PSL on the HP9836 has two types of vectors: a slow vector and a fast vector. As seen in Table 5 the fast
vector is six times faster than the slow vector.
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lc* 0 LISP (sec) PASCAL (sec)

10000 21.8 3.6

30000 22.8 3.7

40000 29.9 3.6

44000 22.9 3.6

45000 57.2 3.6

46000 56.5 3.6

47000 56.6 3.6

50000 493 3.7

80000 31.9 3.6

90000 31.0 3.6

100000 23.9 3.6

TABLE 4

Computation time for logO in LISP and PASCAL
on the HP9836 1000 times

operation USP (sec) PASCAL (sec)

vG)-v(0
fast vector

4.1 3.9*

v(i) = v(i)
slow vector

23.8

Single DO loop
100000 times 9.4 1.29

V 52.6 11.25
»»

54.6 12.25
»*» 63.6 26.75

r 81.6 38.75

TABLE 5

Time taken for numerical operations in PSL
and PASCAL on the HP9836 100,000 times

* PASCAL on the HP9836 does not allow a vector of dimension 100,000. This result was obtained for an
array of dimension 1000 and then scaled up by a factor of 100. The time required for the vector operation
vG) = vO) 1000 times is 0.039sec Moreover, there is only one type of vector in PASCAL.
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3.1.3. Symbolics 3600: Operation times in Zetalisp

A comparison between the times for some basic operations using single-precision and

double-precision arithmetic* in Zetalisp on the 3600 and FORTRAN on the VAX 11/780 with

a floating-point accelerator is made in Table 6. Again no definite times could be obtained for

the function sqrt(x). The times for LISP on the 3600 vary between 17 sec to 76 sec and that

for FORTRAN on the VAX 11/780 vary between 25 sec to 64 sec for identical values of x

used in the expression sqrt(x). Each operation is repeated 100,000times.

operation LISP (sec) FORTRAN (sec)

Nested DO loops
1000x100

100x1000

10000x10

10x10000

1x100000

100000x1

0.38

0.36

0.44

0.36

0.36

1.21

0.38

0.38

0.43

0.38

0.38

1.20

Single DO loop
100000 times 0.36 OJ!5

single-
precision

double-

precision

single-
precision

double-

precision

array reference
yn(i,j)=yn(i,j)
1000x100 times

2.47 2.47 2.07 3.0

V 1.06 15.36 0.18 0.35
»>

1.06 16.36 0.18 0.35

»*» 1.06 17.0 0.19 0.55

7' 1.81 21.16 0.52 1.03

exp 18.36 56.0 22.3 22.4

log 19.03 55.1 * *

TABLE 6

Time taken for operations in LISP on the Symbolics 3600
and FORTRAN on the VAX 11/780

* Both single-precision and double-precision arithmetic are available on the Symbolics 3600. Franz LISP
and PSL only support double-precision arithmetic.
* FORTRAN timings on the VAX 11/780 for calculation of log(x) vary from 17 sec to 52 sec for the x
values used. Since a consistent number was not obtained it is not reported.
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Table 6 indicates that LISP on the 3600 is slower than FORTRAN on the VAX 11/780

for basic numeric operations +, -, *, and / by a factor of three to six in single-precision arith

metic and by a factor of twenty to forty for double-precision arithmetic. A comparison of the

exp(x) and log(x) shows that Zetalisp performs better in single-precision arithmetic!

From Tables 2 to 6 it is seen that LISP is very slow on the VAX 11/780 and the HP9836

when compared to FORTRAN or PASCAL. However, on the Symbolics 3600 the speed is rea

sonable after accounting for the absence of floating-point hardware. These results give an idea

of the circuit-simulation performance that can be achieved in LISP on these machines. The

LISP machine is the obvious winner. A circuit-simulation program in "pure" LISP on the

VAX will be very slow and has to be speeded up by some other techniques. Though the time

taken for arithmetic operations in LISP on the HP9836 is quite large compared to that on the

VAX 11/780, BIASlisp on the HP9836 is only slower by a factor of two compared to BIASlisp

on the VAX 11/780 as shown in Section 3.5.
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3.2. SPICE2 Simulation Results

Simulation results (timings and number of iterations) from SPICE 2G.6 are given for the

three circuits in Table 7 below. The solution to the operating point for Circuit 1 could be

obtained only after use of the '•nodeset' option on one node in SPICE [28]. To have a con

sistency in comparison the same option was used in BIASlisp for Circuit 1.

Description Circuit 1 Circuit 2 Circuit 3

# iterations 20 22 38

Readin (sec) 1.88 0.85 2.42

Setup time (sec) 0.70 0.22 0.63

Analysis (sec) 4.70 1.27 8.37

Matrix load (sec) 235 0jS7 5.80

LU decomp. (sec) 0J85 0.10 0.45

DC solution (sec) 0.18 0D0 0.25

Time/iteration (sec) 0.24 0.06 0.22

Table 7

SPICE Simulation Results

In Table 7 Readin indicates the time spent in reading and storing the circuit description.

Setup time is the time spent in setting up the pointers for the sparse-matrix. Analysis denotes

the total time spent in the analysis phase. This time is essentially the time spent in loading up

the nodal admittance matrix with conductances, the time required to perform the LU decom

position, and the time spent in obtaining the solution by forward and back substitution. Table

7 gives these times as Matrix load, LU decomp.t, and DC solution, respectively. The analysis

time is given in bold letters in all the tables because it indicates the total time used by the

simulation engine, and is the number that is used for comparisons. Since the time per iteration

t For SPICE this time includes the time required for reordering the equations. SPICE uses a combination of
the Markowitz algorithm and partial pivoting as the reordering strategy. This is done only for the first
iteration to avoid substantial overhead. BIASlisp uses a pure Markowitz reordering algorithm and reorders
the equations during the setup phase.
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is a useful parameter when comparing different computer systems it is also given in bold

letters.

33. BIASlisp on VAX 11/780: Full-matrix Implementation

The version of BIASlisp on the VAX was basically used to develop and debug the pro

gram. It has been written in Franz LISP [29] and runs under UNIX BSD 42. Table 8 gives a

summary of results from the full-matrix version of BIASlisp. This table depicts the same type

of information as Table 7 and in addition gives the time required for MOSFET related compu

tations, denoted by MOS calculations*, and the time required for garbage collection, indicated

by Garbage collection. It can be'seen that MOS calculations which is the time used for evalua

tion of MOS conductances and the time spent in loading these conductances in the nodal

admittance matrix is a major contributor to the Matrix load time. The Setup time has

significance only for the sparse-matrix version since during this phase the sparse-matrix

pointers are created and reordering is performed*. In Tables 8 to 14 this time indicates the

time required to create the array/vector for the full-matrix implementation and is, therefore,

a small number.

Note that there is a difference in the number of iterations required by SPICE and

BIASlisp. Under such a situation the time per iteration is a useful quantity for comparisons.

A comparison with the time taken by SPICE shows that all of the circuits require a

huge amount of CPU time for simulation. Most of this time is spent in the model evaluations

and the solution stage. Another data of interest is the time spent in garbage collection. LISP's

dynamic memory manager has it's own garbage collector which provides a safe dynamic

* SPICE run-time statistics do not give the time required for calculation of MOS conductances, therefore,
this time has been not reported for SPICE

* For BIASlisp the Setup time includes the time required for reordering. This is different from the Setup
time of SPICE in Table 7.
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Description Circuit 1 Circuit 2 Circuit 3

# iterations 14 23 26

Readin (sec) 2.5 0.95 4.2

Setup time (sec) 0.03 0.03 0.02

Analysis (sec) 127.4 34.8 245.6

Matrix load (sec) 4625 19.9 137.4

MOS calculations (sec) 397 17J0 126.6

DC solution (sec) 78.7 13.1 103.6

Garbage collection (sec) 18.1 6.21 40.68

Time/iteration (sec) 9.1 1.51 9.45

TABLE 8

BIASlisp Simulation Results on VAX 11/780:
full-matrix Version

memory management package. However, one pays for it in performance as seen in Table 8.

There is not much that can be done to reduce the time spent in garbage collection. The full-

matrix DC solution stage is definitely very slow and this is quite distressing when one com

pares this with the time spent in SPICE to solve the equations. This then motivates the use of

FORTRAN in the solution phase.

It is possible to interface functions and/or subroutines written in a language other than

LISP with a Franz LISP program. This technique was used to write a FORTRAN equation

solver for BIASlisp. The results of this experiment are presented in Table 9. There is a drastic

reduction in solution time and an overall factor of 1.5 to 2 improvement in the analysis time.

However, the time spent in MOSFET calculations increases which boosts-up the Matrix load

time by approximately thirty percent. The reason for this is that data can be transferred

between the FORTRAN program and the LISP code only by use of arrays of floating-point

numbers (arrays of type flonum-block) which are inefficient in Franz LISP as can be seen

from Table 2. After conductances have been calculated they are loaded into the admittance

matrix where inefficient array referencing leads to the increase in time. The array used in

obtaining the results for Table 8 was of a general type which is more efficiently handled in

Franz LISP as indicated in Table 2.
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Description Circuit 1 Circuit 2 Circuit 3

# iterations 14 23 26

Readin (sec) 2.45 0.92 4.2

Setup time (sec) 0.03 0.02 0.02

Analysis (sec) 663 28.1 194.6

Matrix load (sec) 61.8 2475 186.8

MOS calculations (sec) 54.5 21.9 17455

DC solution (sec) 126 038 1.83

Garbage collection (sec) 14.4 6.2 41.16

Time/iteration (sec) 4.74 1.22 7.48

TABLE 9

BIASlisp Simulation Results on VAX 11/780:
full-matrix Version with FORTRAN solve

Two distinct operations are performed in the MOSFET evaluations. One is the computa

tion of incremental conductances and the equivalent currents, and the other is the loading of

these conductances and currents into the nodal admittance matrix. The time required for the

latter operation may be significant with inefficient array referencing. To speed up mosfet

model evaluation, the model equations were coded in FORTRAN as well. Table 10 gives the

simulation time with a FORTRAN solve subroutine and a FORTRAN subroutine for calcula

tion of MOS conductances. No significant speed up is observed. Note that there is a change in

the number of iterations.

Another thing that was tried was to load the MOS conductances in the admittance

matrix in a FORTRAN coded subroutine. Table 11 gives the results with this modification:

FORTRAN subroutines are used for calculation of MOS conductances, loading the MOS con

ductances in the nodal admittance matrix, and for the solution of the system of equations.

There is a reduction in the time spent in MOSFET evaluation by a factor of two. This suggests

that the time spent in computing the conductances is not significant and the array references,

for loading the admittance matrix, are degrading the performance. In Table 12 this claim is

verified. The results are obtained by calculating the MOS conductances in LISP and loading

these conductances in the nodal admittance matrix in FORTRAN. A FORTRAN solve
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Description Circuit 1 Circuit 2 Circuit 3

# iterations 15 18 26

Readin (sec) 2.2 0.96 3.65

Setup time (sec) 0.05 0.05 0.03

Analysis (sec) 65.8 20.3 169.5

Matrix load (sec) 60.2 17.2 158.9

MOS calculations (sec) 52.9 1334 146.6

DC solution (sec) 133 025 1&3

Garbage collection (sec) 12.1 4.13 32.47

Time/iteration (sec) 439 1.12 6.52

TABLE 10

BIASlisp Simulation Results on VAX 11/780: full-matrix
version with FORTRAN solve and FORTRAN MOS

conductance calculations

subroutine has also been used. At this stage it must Jbe pointed out that though the MOSFET

model evaluation takes less time, it is still not as fast as that of SPICE

Description Circuit 1 Circuit 2 Circuit 3

# iterations 15 18 26

Readin (sec) 2.45 0.9 3.27

Setup time (sec) 0.05 0.02 0.05

Analysis (sec) 43.61 15.2 109.4

Matrix load (sec) 387 11.9 99.7

MOS calculations (sec) 30.62 9.15 7.2

DC solution (sec) 133 025 1.9s

Garbage collection (sec) 9.48 4.1 21.5

Time/iteration (sec) 2.91 0.84 4.21

TABLE 11

BIASlisp Simulation Results on VAX 11/780: full-matrix
version with FORTRAN solve, FORTRAN MOS conductance,

and FORTRAN loading of MOS conductances in the
nodal admittance matrix

LISP does seem to be at a big disadvantage when compared to a language such as FOR

TRAN. One more experiment was carried out. MOSFET model parameters and conductances

were no longer stored in property lists but structures were used instead. It was expected that
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Description Circuit 1 Circuit 2 Circuit 3

# iterations 15 18 26

Readin (sec) 2.5 0.88 3.6

Setup time (sec) 0.03 0.02 0.02

Analysis (sec) 46.5 15.9 116.2

Matrix load (sec) 40.7 12.63 105.5

MOS calculations (sec) 2.65 9.9 92.8

DC solution (sec) 127 0.98 1.88

Garbage collection (sec) 11.8 4.68 29.0

Time/iteration (sec) 3.1 0.88 4.47

TABLE 12

BIASlisp Simulation Results on VAX 11/780: full-matrix
version with FORTRAN solve and FORTRAN loading of

MOS conductances in the nodal admittance matrix

structures, being faster than property lists, would give some speed improvement. Table 13

gives the results and upon comparing with Table 8 we find that the improvement in speed is

insignificant.

Description Circuit 1 Circuit 2 Circuit 3

# iterations 14 23 26

Readin (sec) 2.5 0.95 4.2

Setup time (sec) 0.05 0.03 0.05

Analysis (sec) 118.6 35.0 249.5

Matrix load (sec) 41.7 19.1 1273

MOS calculations (sec) 36.1 15X) 1162

DC solution (sec) 743 14.1 1172

Garbage collection (sec) 18.8 8.22 44.1

Time/iteration (sec) 8.47 1.52 9.6

TABLE 13

BIASlisp Simulation Results on VAX 11/780: full-matrix
version with structures used for MOSFET storage

It has been noted in [29] that hunks* are faster than arrays. However, their size imposes

* A hunk is a vector of maximum length 128.
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a limitation on the maximum number of nodes in the circuit (less than or equal to 11). This is

a severe limitation and hence hunks were not tried. Vectors are also available in Franz LISP

and are intermediate in speed to a hunk and an array. Table 14 gives the simulation results

obtained by using a full-matrix version implemented with vectors. These results can again be

compared with Table 8. It is seen that the time per iteration does not change significantly. On

the contrary it has increased slightly and there seems to be no advantage in using vectors. Note

that the reduced analysis time for Circuit 3 is only due to the smaller number of iterations

required for convergence. The time per iteration is in fact worse.

Description Circuit 1 Circuit 2 Circuit 3

# iterations 14 23 23

Readin (sec) 2.4 0.98 3.53

Setup time (sec) 0.05 0.03 0.05

Analysis (sec) 137.0 37.5 226.8 '

Matrix load (sec) 533 19.8 138D

MOS calculations (sec) 423 16D 117.9

DC solution (sec) 80.9 152 85.4

Garbage collection (sec) 17.6 6.35 36.5

Time/iteration (sec) 9.8 1.63 9.86

TABLE 14

BIASlisp Simulation Results on VAX 11/780: full-matrix
implementation using vectors

3.4. BIASlisp on VAX 11/780: Sparse-matrix Implementation

As stated earlier there were two different ways in which the sparse-matrix was imple

mented. One makes use of structures and the other makes use of property lists. Results

obtained from these versions are given in Table 15 and Table 16, respectively. To compare

these two implementations carefully the time required for some more operations is also given.

In particular the Setup time has been decomposed into the time required to create the matrix

pointers, fiUins, and the time used in reordering. These times are indicated by Matrix pointers,
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LU JUUns, and Reordering, respectively. It can be seen that the implementation using struc

tures takes less time in reordering compared to the property list implementation resulting in

smaller setup times. However, the analysis times do not differ significantly: the implementa

tion using structures requires a slightly smaller time.

Description Circuit 1 Circuit 2 Circuit 3

# iterations 14 23 26

Readin (sec) 2.35 1.05 4.2

Setup time (sec) 72 1.67 9.9

Matrix pointers (sec) 1.85 0.92 271

Reordering (sec) 4.7 037 675

LU JUUns (sec) 0.23 0D2 D3

Analysis (sec) 5335 23.05 136.2

Matrix load (sec) 45.1 173 123.6

MC>S calculations (sec) 42.9 16.4 122D

LU decomp. (sec) 1.17 03 0.4

DC solution (sec) 432 23 7.1

Garbage collection (sec) 16.8 7.4 40.5-

Time/iteration (sec) 3.81 1.0 5.24

TABLE 15

BIASlisp Simulation Results on VAX 11/780: sparse-matrix
version using structures

There is a reduction in analysis time by use of sparse-matrix techniques but in spite of

that the program has a poor speed performance. Comparing with Table 7 we see that the time

for setup, LU decomposition, and DC solution is more than that required by SPICE, and even

the sparse-matrix implementation does not give performance comparable to that of SPICE.

Moreover, the time taken by this implementation is higher than the best time that had been

achieved earlier in Table 11 by the use of some FORTRAN subroutines. Interface to a FOR

TRAN solver is not possible as arrays of floating-point numbers are not used to store the

entries of the sparse nodal admittance matrix.
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Description Circuit 1 Circuit 2 Circuit 3

# iterations 14 23 26

Readin (sec) 2.26 0.95 4.2

Setup time (sec) 9.6 1.37 15.3

Matrix pointers (sec) 22 03 4.1

Reordering (sec) 6.63 0.85 10.7

LU JUUns (sec) 025 0J02 0D3

Analysis (sec) 57.0 23.52 143.7

Matrix load (sec) 47.1 17.8 129.8

MOS calculations (sec) 443 16.4 1273

LU decomp. (sec) 178 0.4 0.43

DC solution (sec) 425 23 8.4

Garbage collection (sec) 18.4 6.7 432

Time/iteration (sec) 4.07 1.02 5.53

TABLE 16

BIASlisp Simulation Results on VAX 11/780: sparse-matrix
version using Property lists

3.5. BIASlisp on HP9836: full-matrix and sparse-matrix versions

The Franz LISP versions of BIASlisp were ported to the PSL [30] on the HP 9836 by

the use of macros. Tables 17 and 18 give the simulation times for the three circuits using the

full-matrix and sparse-matrix versions, respectively. The sparse-matrix version on the 9836

has been implemented only with structures since they are more efficient compared to property

lists.

It is seen from Tables 17 and 18 that the Readin time is approximately three times that

of BIASlisp on the VAX. The Garbage collection time is about five percent of the analysis time

for large circuits. With a large physical memory this time can be reduced. The system on

which these results were obtained uses 5.3 Megabytes of physical memory. Even if one ignores

the time spent in garbage collection the time used for simulation is very large. A comparison

of the time per iteration for each circuit on the VAX and the HP9836 is given below in Table

19. Also included is a ratio of the time/iteration for BIASlisp to the time/iteration of SPICE2
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Description Circuit 1 Circuit 2 Circuit 3

# iterations 21 23 43

Readin (sec) 10.9 52 14.8

Setup time (sec) 0.03 0.01 0.04

Analysis (sec) 255.4 49.37 668.1

Matrix load (sec) 151.8 3623 5223

MOS calculations (sec) 143.7 343 5103

DC solution (sec) 96.9 1036 1382

Garbage collection (sec) 10.85 0.0 33.36

Time/iteration (sec) 12.16 2.15 15.54

TABLE 17

BIASlisp Simulation Results on the HP9836:
full-matrix version

Description Circuit 1 Circuit 2 Circuit 3

# iterations 24 23 43

Readin (sec) 10.9 5.1 14.7

Setup time (sec) 6.4 0.8 10.3

Analysis (sec) 184.6 39.8 524.7

Matrix load (sec) 16ZJ0 352 508.9

MOS calculations (sec) 1625 34.6 5067

LU decomp. (sec) 47 055 052

DC solution (sec) 63 12 7.92

Garbage collection (sec) 11.2 0.0 33.9

Time/iteration (sec) 7.7 1.73 12.2

TABLE 18

BIASlisp Simulation Results on the HP9836:
sparse-matrix version using structures

on the VAX 11/780. It is observed that the sparse-matrix implementation of BIASlisp is 16 to

25 times slower on the VAX 11/780 and 30 to 60 times slower on the HP9836 when com

pared to SPICE. The sparse-matrix implementation on the HP9836 doesn't give substantial

speed improvement over the full-matrix version. This is due to the mapping of structures onto

vectors instead of fast vectors*.

* PSL on the HP9836 has two types of vectors: an ordinary vector and a fast vector the latter being about
six times faster.
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Time/iteration Comparisons

Description Circuit BIASlisp on
VAX 11/780

(sec)

BIASlisp on
on HP9836

(sec)

Ratio

VAX/SPICE2

Ratio

HP9836/SPICE2

Full-matrix

version

Circuit 1

Circuit 2

Circuit 3

9.1

1.51

9.44

12.16

2.15

15.54

50.67

35.83

70.6

37.9

25.17

42.9

Sparse-matrix
version

Circuit 1

Circuit 2

Circuit 3

3.81

1.0

5.24

7.7 •

1.73

12.2

32.1

28.8

55.5

15.88

16.7

23.82

TABLE 19

Comparison of Time/iteration for BIASlisp on
the VAX11/780 and the HP9836

3.6. BIASlisp on Symbolics 3600:

Features of the Symbolics 3600 LISP machine are described in [2] where it has been

pointed out that the 3600 has been built to execute large programs requiring high-speed sym

bolic and numeric computation. Table 20 and Table 21 give the run-times for the three cir

cuits using the full-matrix and the sparse-matrix implementations, respectively with single-

precision arithmetic. In Table 22 and Table 23 the results are given for double-precision arith

metic. The dialect of LISP on the 3600 is Zetalisp.
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Description Circuit 1* Circuit 2 Circuit 3

# iterations 19 26

Readin (sec) 1.27 4.25

Setup time (sec) 0.01 0.01

Analysis (sec) 1.69 11.11

Matrix load (sec) 073 6.78

MOS calculations (sec) 0.66 638

DC solution (sec) 026 251

Garbage collection! (sec) 0.0 0.0

Time/iteration (sec) 0.09 0.43

TABLE 20

BIASlisp Simulation Results on the Symbolics 3600:
full-Matrix version with single-precision arithmetic

Description Circuit 1 Circuit 2 Circuit 3

# iterations 20 19 26

Readin (sec) 3.3 1.2 4.2

Setup time (sec) 0.45 0.07 0.68

Analysis (sec) 4.75 1.89 8.16

Matrix load (sec) 2.85 0.65 6D3

MOS calculations (sec) 2.62 0.60 5.93

LU decomp. (sec) 0.14 0.1 OjOI

DC solution (sec) 0.18 0D5 020

Garbage collection! (sec) 0.0 0.0 0.0

Time/iteration (sec) 0.23 0.1 031

TABLE 21

BIASlisp Simulation Results on the Symbolics 3600:
sparse-matrix version with single-precision arithmetic

* Results for Circuit 1 could not beobtained as the 3600 trappeddue to single-precision underflow.

t Garbage collection was turned off on the 3600. This is an option on the 3600and, therefore, the time has
been given as 0.0 sec
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BIASlisp Simulation Results on the Symbolics 3600:
full-Matrix version with double-precision arithmetic

Description Circuit 1 Circuit 2 Circuit 3

# iterations 17 23 43

Readin (sec) 3.2 1.27 4.25

Setup time (sec) 0.01 0.01 0.01 -

Analysis (sec) 28.04 6.57 87.75

Matrix load (sec) 14.92 424 637

MOS calculations (sec) 1436 4.12 63D

DC solution (sec) 10.78 133 176

Garbage collectiont (sec) 0.0 0.0 0.0

Time/iteration (sec) 1.67 0.28 2.04

TABLE 22

Description Circuit 1 Circuit 2 Circuit 3

# iterations 19 23 43

Readin (sec) 3.3 1.2 4.2

Setup time (sec) 05 0.07 0.66

Analysis (sec) 21.4 4.57 65.2

Matrix load (sec) 15.62 3.66 573

MOS calculations (sec) 14.4 351 542

LU decomp. (sec) 057 0J05 0D2

DC solution (sec) 1.15 022 2.1

Garbage collectiont (sec) 0.0 0.0 0.0

Time/iteration (sec) 1.12 0.2 1.51

TABLE 23

BIASlisp Simulation Results on the Symbolics 3600:
sparse-matrix version with double-precision arithmetic

t Garbage collection was turned off on the 3600. This is an option on the 3600and, therefore, the time has
been given as 0.0 sec.
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To get some idea about the simulation speed and to draw some conclusions the time per

iteration comparision, of the sparse-matrix implementation of BIASlisp, with SPICE is given in

Table 24. The numbers in parenthesis are the results obtained using single-precision arith

metic.

Circuit SPICE 2G.6 on

VAX 11/780

(sec)

BIASlisp on
on 3600

(sec)

Ratio

(3600/VAX)

Circuit 1

Circuit 2

Circuit 3

0.24

0.06

0.22

1.12 (0.23)
0.20 (0.10)
1.51 (0.31)

4.67 (0.96)
3.30 (1.67)
6.86 (1.41)

TABLE 24

Comparison of Time/iteration for SPICE 2G.6 on **
the VAX11/780 and BIASlisp on the 3600

It is seen that BIASlisp on the Symbolics 3600 gives reasonable performance. SPICE is

definitely faster and this is due to the slower double-precision floating-point arithmetic on the

3600. A comparison between the times for some basic operations in LISP on the 3600 and

FORTRAN on the VAX 11/780 with floating-point hardware is made in table 6. LISP on the

3600 is. slower than FORTRAN on the VAX 11/780 for basic numeric operations +, -, * and /

due to the floating-point accelerator used by the VAX 11/780. The basic numeric operations +,

-, *, and / are used very often in MOS related computations resulting in a poor performance of

BIASlisp compared to SPICE2.
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4. DISCUSSION

The performance of BIASlisp on the Symbolics 3600 LISP machine shows that LISP in

itself is not a slow language. It is the lack of an appropriate machine architecture that results

in its poor performance. A computer architecture which is suitable for conventional languages

(FORTRAN, PASCAL, and C) does not give an optimum performance for a LISP-like language.

Thus a comparison of the speed of LISP programs with programs written in other languages

on traditional machine architectures is unfair. When execution speeds are compared with a

LISP program on the LISP machine comparable performance results.

It is illuminating to examine the differences between a conventional programming

language and LISP. The two salient features of LISP are its built-in garbage collector and the

absence of type declarations for the fundamental LISP objects. These conveniences have their

penalty unless something special is done about them and the advantages and disadvantages are

considered below.

With a built-in garbage collection package a programmer need not be concerned with

allocating and freeing memory space. This has an advantage in that bugs associated with

dynamic memory management do not occur. The result is a safe and reliable storage system

which is one less headache when debugging complex systems. However, garbage collection

techniques can be expensive and time consuming and this inherently results in a poor over all

performance. As has been seen earlier a certain amount of the total simulation time is spent in

garbage collection on the VAX 11/780 and the HP9836. The 3600 provides one Gbyte of vir

tual memory address space and a hardware assisted system to reclaim unused sections of the

memory [2]. Hardware features speed up the process and storage can be reclaimed with

minimum overhead. Moreover, garbage collection on the 3600 is available as an option and can

be turned on, whereby it is run when necessary in the background, or kept off.

The other unique feature of LISP is its run-time data-type checking for the primitive

objects. No type declarations are required at compile time and are determined during run-time.
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Different techniques can be used to store the type information.

Franz LISP uses a bibop memory allocator or a typed page scheme [31]. In this method

each page contains only one type of data object and there is a table that keeps track of the

type of object in each page. Thus data objects are allocated by pages and a whole page of

objects is allocated even when only one object is required. As pointed out in [31] this scheme

was chosen primarily due to the VAX architecture.

Another method, which is used in PSL and Zetalisp, is. the typed pointer scheme.

Pointers to each object have an associated tag to indicate the type of object being referenced. A

certain number of bits have to be dedicated to the tag field. In PSL on the HP9836 the tag field

is made up of 8-bits [32] and in Zetalisp on the 3600 the tag field has 6-bits [2].

Type checking in software can be very expensive as is evidenced by a comparison of the

times taken for basic operations in Section 3 for the computers with conventional architecture.

The time for a floating-point operation in FORTRAN is very small compared to that in LISP on

the VAX and the difference can be attributed to the time required for type checking before

each operation is performed. The LISP machine makes use of a tagged architecture [2], whose

advantages are described in [33]. On the LISP machine run-time data checking is done in

hardware. There is no loss in .performance because the data-type checking is performed in

parallel with the instruction.

These considerations then motivate the choice of a different hardware for efficient execu

tion of a USP-like language. Though the VAX and the HP9836 can run LISP their architec

ture cannot efficiently support LISP and it is only on the LISP machine that one gets the

desired- performance.

It would be interesting to compare the speed of a FORTRAN program on the LISP

machine* to that on a VAX. A FORTRAN 77 environment has been provided on the Symbolics

3600 which enjoys many of the advantages associated with a LISP environment. The main

At present a FORTRAN 77 compiler is not available on the Symbolics 3600 used for this study
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advantages accompanying a LISP environment are:

a) Access to higher level data structures.

b) Interactive environment.

c) Powerful debugging facilities.

d) Philosophy of incremental compiling. Old modules may be modified and new ones can

be added with immediate effect. Functions which have been satisfactorily checked can be

compiled and used with new functions.

e) Dynamic linking and loading.

FORTRAN 77 on the Symbolics 3600 shares the advantages from (b) to (e). However, LISP

definitely has an edge over it because of the availability of higher level data structures. Much

more powerful and complex systems can be designed using LISP whereas that may not be the

case with FORTRAN.

Being a very powerful language LISP is very well suited for software development.

Incremental compiling along with dynamic linking and loading and the LISP debugging aids

provide an extraordinary environment for program development. Consequently less time is

required to debug complex programs and software development time is significantly reduced.

As far as circuit simulation is concerned BIASlisp offers a LISP environment in which

new device models can be evaluated. Only the functions involving model computation need be

interpretive with the rest of the code being compiled. Further, if the input language to the

circuit simulator is embedded in LISP it will be very easy to define new models or make

enhancements. LISP expressions would then be acceptable inputs. The user can also add his

own functions and augment the capabilities of the program.

An example of the input line for a MOSFET device in BIASlisp with an embedded input

format would be (mosfet 'ml 1 2 3 3 'modn 'lc 3e-6 'wc 12e-6). Though this format retains the

flavor of a SPICE-like input, it requires parenthesis and quotes and is not very friendly from a

circuit designer's point of view. The user has to be familiar with the features of LISP to be
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able to interact with a circuit simulation program having such an input. It was for this reason

that a SPICE-like input format was chosen for the BIASlisp program. If this program is to be

used with existing LISP-based LSI design tools or expert systems there may be no controversy

about the input format. The circuit simulator will derive the circuit information from the

data structures set up by the other programs.

Before ending this section it must be stressed that the 3600 provides an excellent

environment for software development. Compiled code can be used as compilation is fast and

debuging is effective even with the compiled code. This is not true for the HP9836 where

compiled LISP functions are difficult to debug [32]. The novel architecture of the Symbolics

3600 does make it an efficient system for executing LISP programs without loss of perfor

mance. With a floating-point accelerator the 3600 can achieve simulation speeds comparable to

that of a VAX 11/780 with floating-point hardware.
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5. CONCLUSIONS

The feasability of circuit simulation using the LISP language is investigated on three

different computer systems: VAX 11/780, HP9836, and the Symbolics 3600 LISP machine. It is

found that the circuit simulation program runs effectively only on the Symbolics 3600 LISP

machine. Systems such as the VAX 11/780 or the HP9836 are not designed to support

efficiently the LISP language.

There is no inherent shortcoming in the language itself which results in a poor perfor

mance, it is the lack of an appropriate hardware. As a language LISP is very powerful and the

LISP environment significantly aids program development. This may be one of the main rea

sons for adopting LISP as a language for VLSI-CAD tools.

In the future, it needs to be seen how powerful a LISP-based microprocessor [34-35] or a

LISP-RISC [36] system would be for running circuit simulation programs in LISP.
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APPENDEX A

BIASlisp User's Guide

1. Introduction

BIASlisp is an interactive MOS circuit simulation program for DC and time domain-tran

sient analyses. Circuits may contain linear resistors, linear capacitors, independent voltage and

current sources, diodes, and MOSFETs. There are built-in models for the semiconductor dev

ices, and only the relevant model parameters have to be specified by the user. The diode is

modeled by an ideal diode equation and the MOSFETs by the Shichman-Hodges MOS model.

The program has been written in FRANZ Lisp and can be ported to other dialects of

LISP. Currently it can be executed on the VAX 11/780, the HP9836 desktop computer, and

the Symbolics 3600 LISP machine. To begin execution the user must be in a LISP environment

and the program can be invoked by typing (biasl).

2. Input Format

The input format is similar to that of SPICE2 with additional commands to make it

interactive. A prompt 'BIASlisp ->' is displayed after which an input can be typed. Fields on

an input line can be separated by one or more blanks. No other delimiters are acceptable.

A number field has the general form x.xxxxxxe ±yy. Scale factors of SPICE are not

allowed. Only scientific notation is accepted.
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3. Circuit Description

The circuit description can be entered in a manner similar to that of SPICE2. The default

mode is the input mode. Input description can be an element specifying the circuit topology or

a control command. The control commands always start with a period. Circuit element

description lines contain the element name, the circuit nodes to which it is connected, and the

values of the parameters that determine the electrical characteristics of that element. A resis

tor name must begin with the letter r, capacitor name with the letter c, voltage source name

with a v, current source with letter i, diode with the letter d, and a mosfet with the letter m.

The name string can be as long as desired.

Nodes can be"integers or alphanumeric names. The datum node is numbered zero or gnd.

The circuit should not contain a loop of voltage sources and a cutset of current sources and/or

capacitors. A singular matrix results if the above condition is not satisfied. Every node must

have at least two connections and an error is flagged if this condition is violated.

Comment lines begin with a *\ Anything following the ** is ignored and printed out as

it is.

Data fields that are enclosed in '<>' in the description below are optional.

3.1. Element Descriptions

3.1.1. Resistors

General form:

rxxxx nl n2 value

nl and n2 are the two element nodes, value is the resistance value (in ohms) and may be

positive or negative but not zero.
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Examples:

rbias 1 2 le3

rpullup vdd vout 100

3.1.2. Capacitors

General form:

cxxxx n+ n- value <c initial condition >

n+ and n- are the positive and negative element nodes, respectively, value is the capaci

tance in Farads.

The optional initial condition is the time-zero value of the capacitor voltage, in volts.

Note that the initial conditions apply only if the 'uic' option is specified on the 'Iran' com

mand line.

Examples:

ccomp 10 11 le-6

cout vout gnd 2e-12 ic 0

3.13. Independent sources

General form:

vxxxx n+ n- value/function

ixxxx n+ n- value/function

n+ and n- are the positive and negative nodes, respectively. The associated reference

directions are used. The voltage source value is positive.when n+ is at a higher voltage than

n-. Current source value is positive with current flowing from n+ to n-.
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There are four independent source functions: DC, pulse, sinusoidal, and piece-wise linear.

A description is given below.

DC: devalue

If no source value/function is given in the input data it is assumed to be a dc source of

value zero.

Pulse: pulse vl v2 td tr tf pw per

Parameters Description Units

vl initial value volts or amps

v2 pulsed value volts or amps

td delay time seconds

tr rise time seconds

tf fall time seconds

pw pulse width seconds

per period seconds

Description of pulse parameters

Sinusoidal: sin vo va f req td theta

Parameter Description Units

vo offset volts or amps

va amplitude volts 6r amps

freq frequency Hz

td delay seconds

theta damping factor 1/seconds

Description of sin parameters

Piece-Wise Linear: pwl tl vl t2 v2 -. tn vn

Each pair of values (ti, vi) specifies that the value of the source is vi (amps or volts) at

time ti. ti's should satisfy the inequality tl <t2 <t3 ~<tn. The value of the source at inter

mediate values of time is determined by using linear interpolation on the input values.
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Examples:

vcc 5 0 5

isrc gnd 10 pulse -1 1 2e-9 2e-9 2e-9 50e-9 100e-9

vin vin gnd sin 0 1 100e6 le-9 lelO

vclock clkin 0 pwl 0 -5 10e-9 -5 15e-9 5 20e-9 5

3.1.4. Junction Diodes

General form:

dxxxx n+ n- mname < area >

n+ and n- are the positive and negative nodes, respectively, mname is the model name,

area is the area factor. If the area factor is omitted, a value of unity is assumed.

Example:

dclamp 2 3 dmodl 2.0

3.1.5. MOSFETs

General form:

mxxxx nd ng ns nb mname <c val> <wc val> <id val> <as val>

nd, ng, ns, and nb are the drain, gate, source, and bulk (substrate) nodes, respectively,

mname is the model name. Ic and wc are the channel length and channel width in meters, ad

and as are the areas of the source and drain diffusions, in square meters. If any of lc, wc, ad, or

as are not specified the default values are used, lc and wc default to le-6 and ad and as to

unity.
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Examples:

mpullup vdd vout vout gnd mdep

mpulldn vout vin gnd gnd menh

mpass 2 4 10 gnd menh lc 10e-6 wc 30e-6

3.2. Model Descriptions

The semiconductor device models are specified using the \moder command. A set of

model parameters are specified that can be used by one or more devices.

General form:

.model mname type pnamel pvall pname2 pval2 «.

mname is the model name, and type is either diode, nmos, or pmos. Parameter values are

defined by appending the parameter name, as given below for each model type, followed by

one or more blanks and the parameter value. Model parameters that are not given a value are

assigned the default values given below.

Examples:

.model mdep nmos vto -2.0 kp 35e-6 gamma 2

.model dmodl diode is le-15

3.2.1. Diode Model

The diode model parameters are given below.

name parameter units default

is saturation current amperes 1.0e-14

Diode Model Parameters
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3.2.2. MOSFET Model

The parameters for the MOS model are given below.

name parameter units default

vto zero-bias threshold voltage Volts 1.0

kp intrinsic transconductance

parameter

A/V**2 2e-6

gamma bulk threshold parameter V**0.5 0.0

phi surface potential volts 0.6

lambda channel-length modulation 1/V 0.0

js bulk junction saturation
current density

A/m**2 le-14

MOS Model Parameters

33. Control Commands

These commands control the program execution and provide an user friendly interface.

33.1. List

General form:

Js XXX

xxx is the type of circuit information that has to be listed. It is r for a resistor, c for a

capacitor, v for an independent voltage source, i for an independent current source, mo for

device models, op to list analysis options, and ckt to list all circuit elements.

Examples:

.lsr

lists all resistors in the circuit.

Js mo
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lists all device models in the circuit.

3.3.2. Change

General form:

.ch namel parami valuel name2 param2 value2 ~.

name is the element name or model name whose parameters have to be modified, param

is the keyword for the parameter that has to be modified and value is its new value. The key

words for model parameters are the same as their names given earlier. For nodes: nl and n2

refer to n+ and n- of a two node element and nl, n2, n3, and n4 are the drain, gate, source,

and bulk nodes of a mosfet, respectively. The keyword value changes the value of a resistor or

a capacitor.

Examples:

.ch modi vto 0.7

changes vto to 0.7 volts for model modi

xh rl nl 3 ml n3 0 mod4 kp le-6

changes n+ to 3 for resistor rl, ns to 0 for mosfet ml and kp to le-6 for mosfet model

mod4.

xh ccomp value 30e-12

changes the value of capacitor ccomp to 30e-12.

333. Delete

General form:
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.del namel name2 ...

namel, name2,... are deleted from the circuit description.

Example:

.del rl ccomp ml mod2

resistor rl, capacitor ccomp, mosfet ml, and model mod2 are deleted from the circuit

description.

33.4. Read

General form:

.read file-name

The circuit description is read in from the file file-name instead of the regular terminal

input.

Example:

.read circuitl

33.5. Write

General form:

.write file-name

The circuit description is written into the file file-name. Analysis options and the nodes

set to help convergence are also stored. This allows the user to store modified circuit descrip

tions.
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Example:

.write circuitl

33.6. New

General form:

.new

This command initializes the program to read in a new circuit description.

33.7. Nodeset

General form:

.set nodel vl node2 v2 ...

This command helps the program find the dc solution by specifying an initial value for

voltages at nodel, node2 ... Under normal circumstances this may not be required but may be

necessary for convergence of circuits with strong feedback.

Example:

•set vout 0.0 12 5.0

initializes nodes vout and 12 to 0 and 5 volts respectively.

33.8. Options

General form:

.op optl vail opt2 val2 ...
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This command allows the user to reset program control for specific simulation purposes.

Any combination of the following options may be included in any order.

Example:

Option Description Default

gmin minimum conductance allowed by the program le-12

reltol relative error tolerance of the program le-3

abstol absolute current error tolerance of the

program

le-12 A

vntol absolute voltage error tolerance of the
program

le-6 V

maxiter dc iteration limit 100

dcit dc transfer curve iteration limit 50

loitl lower transient analysis iteration limit 4

upitl upper transient analysis iteration limit 10

Description of Options

.op gmin le-8 reltol .0001 vntol le-4 maxiter 50

resets the values of gmin, reltol, vntol, and maxiter.

33.9. Bias point solution

General form:

.bias

This command is used to calculate the dc operating point of the circuit with the capaci

tors replaced by an open circuit. An operating point analysis is automatically performed prior

to a transient analysis, to determine the transient initial conditions , if uic is not specified on

the \tran' command.

If no analyses are requested then a dc operating point analysis is performed.
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33.10. DC transfer characteristics

General form:

.dc src-name VSTART VSTOP VINCR

The '.dc' command defines the dc transfer curve source and sweep limits, src-name is the

name of an independent voltageor current source. VSTART, VSTOP, and VINCR are the start

ing, final, and incrementing values respectively.

Examples:

.dc vin 0.25 5.0 0.25

.dc vds 0 10 1

33.11. Transient time domain analysis

General form:

.tran TSTEP TSTOP < TSTART > <iic>

TSTEP is the suggested computing increment, TSTOP is the final time, and TSTART is

the initial time. If TSTART is omitted it is assumed to be zero. The maximum step size chosen

by BIASlisp is the minimum of TSTEP and TSTOP/50.0.

uic (use initial conditions) is an optional keyword that indicates that the user does not

want the program to solve for the dc operating point before beginning the transient analysis.

If this keyword is specified then the values specified using ic on the element cards are used for

the initial transient condition.

Examples:
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.tran le-9 100e-9 0

.tran 10e-9 le-6 uic

33.12. Printout

General form:

.print print-type type namel type name2 ~

This command asks for a tabular listing of one to six output variables, print-type is the

analysis type (bias, dc, tran) for which the results are desired. The output variables can be a

node voltage or a current through a voltage source or a mosfet device. Type can be either a v

or a t indicating a voltage or current variable. Names are the node names, voltage source

names, or mosfet names.

Examples:

.print bias v 1 v vout

Prints the value of dc operating point voltages at nodes 1 and vout.

.print dc v 3 i vin i ml i m3

Prints the value of dc transfer analysis for voltage at node 3 and currents through the

voltage source vin and mosfets ml and m3.

33.13. Start analysis

General form:

.end

This command tells the program that all circuit and analysis information has been

entered. The analysis is then initiated and the desired output variables are printed. Note that
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no analysis will be performed until a '.end' command is entered.

Once analysis is complete control returns to the user who can edit the circuit description

and perform more analyses. If no further analysis is required '.exit' command is used to get

out of the program.

33.14. Exiting from the program

General form:

.exit

When the user wants to quit from BIASlisp he uses this command which ge£s him back

to the LISP environment in which the program was being executed.
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APPENDIX B

A description is given for all the lists that are used to store input data in BIASlisp.

List name Description

Res-list

Cap-list

Vsrc-list

Isrc-list

Diode-list

Mos-list

Nodenames

ModDef

stores the names of all resistors

stores the names of all capacitors

stores the names of all voltage sources

stores the names of all current sources

stores the names of all diode devices

stores the names of all MOS devices

stores the node names

stores the names of Models defined using

'•model' (useful for error check)
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APPENDIX C

A description of the property list for each element type is given below.

Element tvoe Property name Description

Resistor nl positive node
n2 negative node
value resistance value in Ohms

Capacitor nl positive node
n2 negative node
value capacitance value in Farads
ic initial condition

Voltage/ nl positive node
Current n2 negative node
source value dc value

function source function (pulse, sin, pwl)
param function parameters

Diode nl positive node
device n2 negative node

modnam model name

area area factor

MOS nl drain node

device n2 gate node
n3 source node

n4 bulk node

modnam model name

lc . channel length
wc channel width

ad drain diffusion area

as source diffusion area

A description of the property list for each model type is given below.

Model tvpe Property name Description

Diode is saturation current

MOSFET mtype

vto

kp
lambda

gamma

phi

model type (nmos/pmos)
threshold voltage (vbs = 0)
intrinsic transconductance parameter
channel length modulation parameter
bulk threshold parameter
surface potential
bulk junction saturation current density
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