
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



LSI CIRCUIT SIMULATION

ON ATTACHED ARRARY PROCESSORS

by

A. Vladimirescu

Memorandum No. UCB/ERL M84/6

20 January 1984



LSI CIRCUIT SIMULATION OF ATTACHED ARRAY PROCESSORS

by

Andrei Vladimirescu

Memorandum No. UCB/ERL M84/6

20 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



IS Circuit Simulation on Attached Array Processors

Andrei Vladimirescu

ABSTRACT

The simulation of Large-Scale-Integrated (LSI) circuits requires very

long run times on conventional circuit analysis programs such as SPICE2 and

super-mini computers. A new simulator for LSI circuits, CLASSIE, which

takes advantage of circuit hierarchy and repetitiveness, and array proces

sors capable of high-speed floating-point computation are a promising combi

nation,

The program development software environment of the Floating Point

Systems 164 is evaluated based on the experience gained with the conversion

of both SP1CE2 and CLASSIE to this machine. The FPS-164 has been used as

an attached processor to a VAX 11/760 with the UNIX operating system.

The performance of the two simulation programs on the host computer,

the VAX, and the attached processor is compared. The FPS-164 architecture

and Fortran compiler are evaluated by means of the speedup of CLASSIE

compared to SPICE2 on the same processor.

9S6



ACKNOWLEDGEMENTS

1 would like to thank Professor D. 0. Pederson who has given me the

opportunity to work on this topic as a post-doctorate research associate.

Ihe interaction with the members of the Computer-Aided-Design group, in

particular discussions with Tom Quarles and Clem Cole, are acknowledged.

The helpful suggestions and support with up-to-date documentation

from Ed Kushner and Steven Nakamoto from Floating Point Systems is

greatly appreciated.

The support of the research grants AFOSR-81-0021 and SRC-82-11-008,

and the interest of Analog Devices Semiconductor have been essential to the

work presented in this report.

006



CHAPTER 1

INTRODUCTION

The simulation of Large-Scale-Integrated (LSI) circuits requires very

long run times on standard circuit analysis programs such as SP1CE2 and

standard hardware of the super-mini or main-frame computer class (0.5 to 2

Mips). A new simulator for LSI circuits, CLASSIE, has been developed

recently [VladBS] which is more efficient and preserves the same accuracy.

Ibis report describes the experience and results obtained when adapting

SPICE2 and CLASSIE to a commercially available array processor, the Float

ing Point System 164, attached to a super-mini host computer, the VAX

11ABO. As brought outlater Cole [ColeB3] has implemented a first version of

SPICE2 on theFPS-164 attached to aVAX 11/780 with the UNIX operating sys

tem,

SPICE was developed over a decade ago for typical SSI circuits and

scalar computers of the time. The program operates on an entire circuit

which is processed at the individual electrical element level. Two basic fac

tors of present technology have been considered in the design of the newLSI

circuit simulator, CLASSIE. Hie first one is thatLSI circuits are usually a col

lection of a limited number of structurally identical functional blocks such as

logic gates, operational amplifiers, etc. The second factor is the availability

of parallel computer architectures which provide an ideal environment for

fast computations on repetitive structures. The analysis in the new program

takes into consideration the hierarchy of the LSI circuit. The identical func-

986



tional blocks are grouped together and the simulation is performed at two-

levels.

The above design considerations speed up the simulation of an 1S1 cir

cuit performed by CLASSIE up to an order of magnitude compared to SPICE2

on a CRAY-1 super (vector) computer. From the point of view of the simula

tion speed for a large circuit on a vector computer CLASSIE rates between

SPICE2 and a timing simulator.

The parallel architecture of the FPS-164 attached array processor is

conceptually different from the CRAY-1; computationally intensive codes can

be sped up however following the same basic concepts as in the case of the

CRAY-1. The floating-point computation rates of the CRAY-1, the FPS-164

and the VAX 11/780 with a floating-point accelerator are 160, 12. and 1

Ifflops, respectively. The speeds specified for the vector and array processor

are estimates based on the assumption that more than one operation is pro

cessed at the same time. Thus, as a rule of thumb, a computationally inten

sive program such as a circuit simulator should run as many times faster on

the parallel processors as specified by the raw speedup if the implementa

tion takes full advantage of the architecture.

A general overview of the FPS-184 array processor (AP) is presented in

Chapter 2. After a brief description of the architecture a critical view of the

system and program development software available on the AP is presented.

Chapter 3 provides a closer look at the details of porting two circuit

simulators, SPICE2 and CLASSIE, to the FPS-164. SPICE has been developed

over the past 14 years with no specific computer architecture in mind while

CLASSIE provides the same algorithms as the former program tailored for

parallel processing.

3L&



A performance evaluation of the two programs follows. The execution

speed of SPICE2 is compared to a general super-mini computer such as the

VAX-11/780 while the speedup due to parallelism is emphasized for CLASSIE.

Conclusions on the implementation and performance of circuit simula

tion programs on the FPS-164 are the subject of Chapter5.

The work described in this report has been performed on an FPS-164 AP

running the TT software release attached to a VAX 11/780 running release

4.1c BSDof the UNIX operating system.

zee



CHAPTER 2

The FPS-164 Attached Processor

2.1. Introduction

This chapter provides a brief description of the FPS-164 processor. The

architecture is outlined first with emphasis on the parallel processing

features.

From a programmer's pointofview the most important means to benefit

from the architectural capabilities of a computer is its software environ

ment. The second section takesa critical look at the two operation modes of

the AP and the system and program development software. The main com

ponents of the program development software," e.g.. the fortran compiler,

debugger, mathematics library, etc., are evaluated. The experience gained

from porting SP1CE2 and CLASSIE to the FPS-164 is commented on wherever

appropriate.

2.2. Hardware

The term array processor identifies a single peripheral processor with

high-speed floating-point computation capability which can be attached to a

general-purpose computer system. The tandem combination usually pro

vides a much higher computation power than the host alone. Although the

architectural synopsis and name can cause confusion with the vector com

puters the term array processor refers to a distinct category of pipelined

Single-Instruction-Multiple-Data (SIMD) processors.

c r



The Floating Point Systems AP-120B and FPS-164 are examples of com

mercially available array processors. The former is limited by a 38-bit word

while the latter is better suited for scientific applications where a 64-bit data

word is necessary. The architectural features [Char81] include multiple

(eight) functional units, multiple (seven) high-speed data paths, two data

register units of 32 registers each, up to 7.25 Mword main memory where

data and instructions are stored separately, and a 167 ns cycle time. The

functional units allow a maximum of two data computations, two memory

accesses, an address computation, four data registers accesses, and a condi

tional branch to be initiated in a given CPU cycle.

The processor achieves performance through parallelism and/or pipelin

ing. A short pipe, 2 stages for the add and 3 for the multiply unit, character

ize the FPS-164. This design matches the clock cycle time and explains the

difference in performance compared to the faster vector computers. CRAY-1

and CYBER 205. The short pipe has an advantage of providing most of the

computation speed for a relatively short vector length, [VladB2].

2.3. Software Environment

The two major components of the processor software are the system

software used at run time and program development software which assists

the conversion of a high-level language code into an executable module. The

specifics of both components of the AP software are outlined in the following

two sections.

r r



6

aai. System Software

There are two major operating systems available for the FPS-164, the

Attached Processor Executive APEX and the Single Job Executive SJE. The

two operating systems correspond to the two basic approaches of using the

AP. Programs executing under APEX perform certain tasks on the host com

puter and other tasks on the AP. Input and output routines which interact

with the user and perform more character-string operations rather than

floating-point operations canbe effectively run on the host. Tfce computation

intensive parts of the program will however run fastest on the AP. APEX con

trols the timely transmission ofdatabetween host and AP during the execu

tion of the program.

Programs executing under SJE run on the AP only. The executable

module together with the relevant data files are transferred to the AP before

a run is initiated. Upon completion of the job the files of interest are

transferred back to the host computer.

The conversion of SPICE2 and CLASSIE to FPS-164 run under SJE only.

The AP works together with a VAX running the UNIX operating system.

2L&2. Program Development Software

The software available for program development includes a fortran com

piler, APFTN64. a linker. APUNK84. object module librarian. APUBR64. sym

bolic debugger, AFDEBUG64. assembler. APAL64. and mathematics library,

APUATH64.

Sa b U



2.&2.1. APFTN64

APFTN64 is a cross compiler which runs on the host computer and pro

duces instructions which are executed on the attached processor. This is

basically an F77 compiler with a number of extensions intended to utilize the

parallel/pipelined architecture of the processor. There are several ways a

programmer can take advantage of the architecture. One approach is

through 5 different levels of optimization provided by the compiler.

OPT=0 implies the simplest compiler action where each fortran state

ment is treated individually; experience has been that at this level a program

always works once it is operational.

0PT=1 signals the compiler that it can consider blocks of statements at

one time for generating machine code; a block consists of consecutive state

ments which finish in a 'jump' or 1/0 instruction.

0PT=2 enables the compiler to try a global optimization across state

ment blocks as defined above.

0PT=3 adds pipelining to the above optimizations which exploit only

parallelism; multiple elements of an array are processed by setting up one or

two pipes through the functional unit(s).

0PT=4 is defined as 'unsafe code motion' and consists in moving invari

ant expressions outside the body of DO loop. As long as no 'zero-trip' loops

occur in the program this level of optimization may provide an additional few

percent of speed improvement

The approach for writing fortran code which takes advantage of the

architecture is similar to the guidelines followed for other parallel machines,

e.g., the CRAY-1. [Vlad82]. A 'well-behaved' DO loop in which operations with

array elements are performed is translated on all machines into a 'vector

3 t- :•



8

operation*. The difference is that on the CRAY-1 the elements of an array are

loaded into hardware vector registers and a vector operation is performed

whereas on the FPS-164 a 2-3 stage pipeline is set up through the functional

units.

Release D of the fortran compiler which has been used in this project

has been found to generate incorrect code for 0PE&2. A typical symptom is

that the attached processor hangs without being able to be initialized unless

the host computer is rebooted. The compiler seems to fail to interpret

correctly loops based on test and jump. Working code has been however gen

erated for 'well-behaved' DO loops.

In some cases even 0PT=1 can produce wrong code. The approach of

tracing back the latter case is to locate the routine which does not execute

properly and recompile it with a lower level of optimization. This failure

mode does not hang the machine; it results just in an erroneous behaviour of

some routines, e.g., SPICE2 prints an error message for a perfectly valid

statement.

An useful option of the APFTN64 fortran compiler is which turns off the

overflow/underflow interrupts generated during the execution of a user pro

gram. Unless this option is used for some of the device routines SPICE2

aborts when an underflow occurs.

Another criticism of APFTN64 when compared to another parallel pro

cessor fortran compiler* viz., the CRAY CFT [CraySO] fortran compiler, is its

noncommunicative nature. No reports are provided to the programmer on

the action taken on different loops or program blocks which can be con

verted into parallel code.



9

aa2.2. APUBRB4. AFUNKB4. APDEBUG64

APUBR64 is an useful utility for creating an object program library. For

large programs consisting of tens of modules it is a convenient way to store

the valid object modules and to replace only the ones which have been

changed.

APLINK64 is used to produce the executable module called the '•.img'

file by convention. The linker accepts both individual object files and object

libraries. A problem encountered with APUNK64 is the erratic terminator

message of a bad block encountered in an object module which was success

fully compiled and added to the library. This problem has been cured every

time it has occurred by recompiling the flagged module and recreating the

library.

A relevant option for the linker is -SYM which generates a symbol table

needed by the symbolic debugger.

The symbolic debugger. APDEBUG64, is a very useful tool for program

development. It is a quite powerful debugger similar in its description to the

fortran debugger running under the VMS operating system. An accurate

trace back including line numbers in the pertinent fortran files can be

obtained. Some of theother features, e.g.. examining values oflocal and glo

bal variables, setting breakpoints, etc., could not be tested due to difficulties

encountered with opening the symbol table file. The documentation is very

vague on this subject and various sensible approaches have lead to the same

debugger message of not finding the symbol table file. In these situation it

has been found to be faster to use just the trace back.

A conceptual drawback of the debugger is that it can be used only for

modules compiled entirely with OPT=0. This restriction deprives the user of

8 6



10

any possibility of debugging parallel code which is the primary objective for

this processor.

fca&3. APMATH64

APMATH64 is a collection of mathematical functions which operate on

arrays and scalers, m a number of situations it is advantageous to use these

efficiently coded vector routines. These functions prove effective only when

the vector length is sufficient to offset the start-up time of the routine. The

programmer must judge this on a routine-by-routine case based on the time

spent per array element. Thus, for VADD which adds the elements of two

arrays and stores the result in a third array, it takes 15-30 elements in an

array for achieving a 50% efficiency in the vector computation. In other

words it takes that many elements such that the computation time equals

the setup time for the function.



CHAPTER 3

SPICE2 and CLASSIE on the FPS-164

3.1. Introduction

A major application of the array processor is in the area of circuit simu

lation.

Tfce problems encountered during the implementation of SP1CE2 on the

FPS-164 are outlined. Although SPICE2 could not be compiled at a higher

optimization level than 1 its performance is very close to a commercially

available program which is another version of the same code tuned for the

IPS-184.

The results obtained in porting CLASSIE to the AP are very encouraging.

The programming style used in CLASSIE is geared towards parallel architec

tures and thus the critical parts could be compiled successfully at the

highest optimization level on a Fortran compiler still under development. A

factor of two speedup has been achieved over SP1CE2 running on the FPS-164

for a representative medium-size circuit, a four-bit adder.

In this chapter a number of data on CLASSIE and SP1CE2 are presented.

These numbers are obtained from runs on both scalarand vector computers.

SPICE2 performs sequential operations on both types of computers and the

apeedup stems from the differences in computer architectures. All data

which refer to CLASSIE reflect a sequential execution of statements on a

scalar computer and parallel execution on a vector computer or array pro

cessor. For a small circuit of the basic cell type, e.g., a logic gate or an

11



12

operational amplifier, the only difference between CLASSIE and SPICE2 is a

different data organization which becomes a source of speed difference.

3.2. SHCE2

3.2.1. implementation Notes

The first program to be implemented on the FPS-164 attached to a VAX

11/780running UNIX has been SPICE2 [Nage75], [Cohe76], [VladBl], [CoieB3].

In the following paragraphs a UNIX operating system is assumed for the VAX

unless specified otherwise. This provision is important because SP1CE2 com

piled with the VMS Fortran compiler runs roughly twice as fast as when com

piled with the UNIX f77 compiler. Cole in his work with the FPS-164 has not

been concerned primarily with the simulator performance; the reported

speedup of 3 for a typical circuit such as the UA741 has been obtained by

compiling the program with APFTN64 using 0PT=0. This version of SPICE2

runs on the AP under SJE, Single Job Executive.

The next step in porting SPICE2 to the AP has been to recompile the

entire program using 0PT=1. The executable generated in this way did not

run properly causing messages such as 'LESS THAN TWO CONNECTIONS AT

NODEX' to be printed for a perfectly correct input. It has been found that

by selectively recompiling the subroutines which perform the 1/0 in SPICE2,

viz., READ1N. RUNCON. DCOP, OVTPVT, PLOT, with OPT=0 while preserving the

code of all other routines at 0PT=1 a working executable can be obtained.

Typically this code which is referred to as an *0PT=1' version in spite of the

above idiosyncrasies runs twice as fast as the '0PT=0' SP1CE2. The size of

the 'image file* is reduced by one third from roughly 1.8 Mbytes to 1.2

Mbytes.



13

3he attempt to use 0PT=2 for just the computation-intensive routines

auch as the device model routines failed The code generated in this way

would typically hang the attached processor with no possibility of recovery

short of rebooting the VAX. The only routines which have been successfully

compiled at an optimization level higher than 1 are the equation solution

routines. DCDCMP and DCSOL. Both have been compiled with 0PT=3 and a

working SPICES version has been generated. The speed improvement over

the above '0PT=1' version has been less than 10%. This latter SPICE2 version

is referred to as 'OPTsl* in Table 3.1 and 3.2.

The best performance ever reported for SPICE2 on the FPS-1B4 is the

commercially available program QSPICE [ShanB3] which is typically 1.3 times

faster than the best code obtained in this work. It is believed that for obtain

ing the above performance a number of the SPICE2 routines had to be rewrit

ten to overcome the deficiencies in the APFTN64 compiler and to obtain

correct code for 0PT=3. Another difference in QSPICE is that the linear

equation solving routines have been coded in APAL64, the FPS-164 assembly

language. The small advantage in speed for QSPICE over SP1CE2 proves that

no compute-intensive part of the program can be pipelined. This difference

items mainly from a better control of the operand flow in the sparse equa

tion solution coded in APAL64.

3.2.2. Performance

Table 3.1 summarizes the execution times of SPICE2 for four examples.

The numbers given represent the time in cpu seconds needed for the tran

sient analysis. The UA741 and Adder4 are bipolar circuits while M0SAMP2

and DECODER are an NMOS operational amplifier and a binary-to-octal

decoder. A LEVEL=2 device model has been used in the analysis of the latter

ZVl



Bon Statistics

Circuit flier VAX IPS Speedup

0PT=0 OPT=l

UA741

Adder4

M0SAMP2

DECODER

178

2828

279

978

32.75

3614.2

134.7

1009.8

10.7

1136.9

24.3

139.6

4.9

604

11.05

65

6.7

6

12.2

15.5

Circuit Statisticsi

Circuit #Eqs. #Xtor fDiode #Device/Model

UA741 52 22 0 16NPN.8PNP

Adder4 451 180 108 1B0NPN, 10BD10D

MOSAMP2 25 27 0 27NM0S

DECODER 36 48 0 31 EMOS. 17 DMOS

Table 3.1. SPICE2 Run Time on FPS-164 and VAX 11/780

14



15

two circuits.

As a general remark on the performance improvement on the attached

processor it can be stated that SPICE2 runs up to an order of magnitude fas

ter than on a VAX 11/780 with floating-point accelerator and UNIX. For the

two bipolar circuits the run times are typically 8 times faster and for the

ICOS circuit 12-15 times faster. The difference between bipolar circuits and

KOS can be explained by the much larger percent time spent in the model

evaluation for the latter compared to the former. The model evaluation

seems to benefit more on the AP than the equation solution.

aa chasse

aai. implementation

The implementation of CLASSIE has been helped by the experience

gained from the SP1CE2 conversion.

As a first step the VAX/UNIX version of CLASSIE has been implemented;

this version differs from the high performance CRAY-1 version only in the

model evaluation routines which do not take advantage of vectorization. This

version had the same limitation on the optimization level used for the sem

iconductor device routines as SP1CE2.

The next step included the conversion of the diode and bipolar vector

ized model routines used on the CRAY-1 for the FPS-164. Conceptually the

'well-behaved' DO loops of the CRAY-1 CLASSIE code should produce an

equally efficient code on the AP.

A first factor affecting the performance has been the multiple branching

used for the multiple expressions of the semiconductor-device behaviour.

3 k



16

The usage of the vector merge function 'CVMGx* on the CRAY-1 has been

Teplaced by IF statements inside the DO loop. An equivalent CVMGx state

ment function [Mart83] could have been used which would have contributed

«n 10-15% speed improvement in the device-evaluation speed. This improve

ment is estimated based on a typical vector length of 30.

A second factor has affected the performance of CLASSIE on the FPS-164

more significantly. It is known as the 'potential data dependency* problem

which prohibits vectorization (pipelining) of a DO loop. Both in SPICE2 and

CLASSIE all circuit data are managed in a large block of memory defined as

an array VALUE (maximumjvaflableJatajnemory). Different data can be

distinguished by table pointers. The compiler however does not know that

there is no interaction between the data in two different tables within the

same array. On the CRAY-1 there is a 'force vectorization' statement which

can be placed in front of a loop. Release 'D' of APFTN64 does not have this

feature. This problem could be noticed as soon as the most time-consuming

modules have been compiled with 0PT=3; there was no spectacular jump in

performance which is expected when pipelining takes place. The speed

improvement is between 2-4 per DO loop at 0PT=3 compared to 0PT=2. In

the simpler forward and back substitution routines for the subcircuit

matrices the above problem has been overcome by using the APMATH64vec

tor functions. This has resulted in a 23% speed improvement for this portion

of the code only. The vector length for the above number is 36.

It is believed that all semiconductor-modelling routines could be com

piled at 0PT=4 in CLASSIE because of the programming style, 'well behaved'

DO loops, and regular data structures. The equivalent routines in SPICE2

could not be compiled correctly for 0PT>1. The equation-solving routines in



FROGRAH OPT DEVEYAL EQN90L IRAN DCOP

SPICE 1 301 329 625 21.4

CLASSIE 1 326 172 504 9.7

2 273 187 451 9.1

3 244 148 399 8.1

4 209 112 324 7.8

Table3.2. CLASSIE / SPICE2 RunTime Comparison

17



18

CLASSIE could be compiled at 0PT=3 maximum.

The most aggravating experience during the implementation of CLASSIE

lias been the fact that user data can overwrite the AP's system software com

ponents or buffers thereof if there is not sufficient memory for loading the

user program. In such cases amessage from the linker orSJE would be help

ful instead of getting a trace back leading into the system routines.

3.3.2. Performance

A running version of CLASSIE compiledwith 0PT=1 has been obtained in

a similar way as SPICE2. On any computer, in scalar mode. CLASSIE gains

15-25% in speed over SPICE2 for medium circuits in transient analysis. Even

for a small circuit, such as the UA741. CLASSIE is 20% faster than SP1CE2 on

the attached processor due to more regular data structures and the possible

optimization associated with it

In the DC operating point analysis CLASSIE is typically twice as fast as

SPICE2 on medium circuits. The additional reordering process inDC analysis

is performed on the interconnection and one subcircuit matrix for each sub-

circuit type in CLASSIE rather than a large overall matrix for the entire cir

cuit in SPICE2. In transient analysis there isnoreordering and this explains

the smaller speed difference. These same speed ratios as above between

CLASSIE and SPICE2 is found alsoon the FPS-164. The ratio between CLASSIE

compiled with0PT=1 and 0PT=0 is also about 2 on the array processor as in

the case of SP1CE2.

Table 3.2 lists the effects of the different optimization levels used in the

compilation of SPICE2 and C1ASSIE [VladB3]. The times in seconds are for a

transient analysis of the bipolar 4-bit adder circuit of 288 semiconductor

bT



COMPUTER

CRAY-1

FPS-164

DEVEVAL/LQAD

1.3

EQNSOL

IB

2.6

OVERALL

Table 3.3. CLASSIE/CRAY-l vs. CLASSlE/FPS-164 Speedup

D , i

19



20

devices, 451 equations or 36 NAND subcircuits. The transient analysis has

been performed from 0 to 350ns using the same input waveforms as

described in [VladB2]. It should be noticed that SPICE2 could not be com

piled successfully at a higher optimization level than 1.

Table 3.3 shows the speedup which is obtained by running CLASSIE on

the CRAY-1 and on the FPS-164. The speedup numbers are relative to the

performance of SPICE 2G5 on the same hardware. The overall speedup on

the FPS-164 could conceivably be improved to 3 if machine code generation

would be implemented for the linear equation solution. The speedup in the

device-evaluation part is estimated to be better if the Fortran compiler of

the systems software release 'E' is used. This latest version of the compiler

is advertised to have better pipelining capabilities than the earlier versions.

All the above factors can narrow the gap of the speedup ratio between CRAY-

1 and FPS-1B4 to roughly 1.5 in favor of the former.

i) i



CHAPTER 4

CONCLUSION

The evaluation of circuit simulation on a commercially available array

processor has been the purpose of the work presented in this report Both

the better known SPICE2 simulator and the prototype simulator CLASSIE for

U51 circuits have been ported to the FPS-164 array processor.

The FPS-164 is a promising processor for 64-bit floating-point scientific

computations from a hardware architecture point of view. The experience

gained porting the above mentioned programs shows that the available sys

tem software and program development software is relatively unfriendly and

not sufficiently debugged. The reported work has been carried out using the

Single Job Executive (SJE); under SJE the application program runs solely on

the AP. Large scientific programs intended to run on the AP are written in

Fortran; only a solid and well-debugged Fortran compiler will enable the user

to take advantage of the speed offered by the underlying architecture.

The performance of the two programs on the AP is noteworthy. SPICE2

has been found to run from 6-14 times faster on the AP than on a UNIX VAX

11/780 with floating-point accelerator. This ratio figure is between 3-7 rela

tive to the same VAX running VMS. CLASSIE runs roughly twice as fast as

SP1CE2 on the AP which brings the ratio between CLASSIE on the AP and

CLASSIE on VAX/VMS close to 12; this is also the ratio between the llflop rate

of the two computers.

21

tb6



REFERENCES

[Char81] A.E.Charlesworth, "An Approach to Scientific Array Processing:
The Architectural Design ofthe AP-120B/FPS-164 Family", Com

puter. VoL 14. Sept 1981.

[Cohe76] E-Cohen, "Program Reference for SPICED, ERL Memo No. ERL-

M592, University of California, Berkeley, June 1976.

[ColeB3] CT.Cole, "Attaching an Array Processor in the UNIX Environ

ment", MS Report, University ofCalifornia, Berkeley, April 1983.

[CRAYBO] CRAY-1 Fortran (CFT) Reference Manual. PubUcation Number

2240009. CRAY Research, Incorporated. Mendota Heights, Min

nesota, 1980.

[Mart83] C.M.Martell, '"Eliminating 'IF* Statements to Allow Software Pipe
lining", FPSNewsletter, Portland. Oregon. 1983.

[Nage75] LW. Nagel, "SPICE2 - AComputer Program to Simulate Sem

iconductor CSrcvits", ERL Memo No. ERL-M520. University of

California. Berkeley. May 1975.

[ShanB3] LJ.Shanbeck and R.S.Norin. "QSPICE: An Application of Array
Processors to CAD Simulation" Proc, IEEE International Confer

ence on CAD. Santa Clara, California, Sep. 1983.

22

frST



23

[Vlad81] AVladimirescu. K. Zhang. A.R.Newton. D.O.Pederson. and XL.

Sangiovanni-Vincentelli, "SPICE torsion 2G Users' Guide",

University of California. Berkeley, 10 Aug. 1981.

[VTad82] A.Vladimirescu. "LSI Circuit Simulation on lector Computers",
ERL Memo No. UCB/ERL-M82/75. University of California.

Berkeley, Oct 1982.

[VladB3] ^ Vladimirescu. "CLASSIE on Vector and Array Processors". Late

News Presentation, IEEE International Conference on CAD.

Santa Clara, Sep 1983.

S9T


	Copyright notice 1984
	ERL-84-6

