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CHAPTER 1

INTRODUCTION

For the past several years, the complexity of the VLSI chip designs has been increasing

rapidly. Many current circuits would be impossible to design without computer aided design

(CAD) tools. This trend is likely to continue as a result of the rapid development of the VLSI

technology.

Circuit simulation is an important pan of computer aided design. It allows users to find

many design flaws without building the chip. However, there is a large distance between the

computing power required to simulate large circuits and that which current computers can

provide. Although there have been attempts to create circuit simulation programs which can

exploit the vector processing capabilities of machines such as the Cray-1 [VLA82], the result

has only been approximately an order of magnitude improvement over scalar performance, for

practical circuits. One reason for this is that the extensive sparse matrix operations in circuit

simulation cause a "gather-scatter" problem [CAL79], where the time needed to read data from

the sparse matrix and write it back limits the machine to a small percentage of its peak

performance.

In general, most CAD problems are computationally intensive and contain high degree of

concurrency. More and more CAD programs need more computing power than today's

sequential machine can provide. A multiprocessor system with a reasonablely high

bandwidth and low latency, such as the BBN Butterfly [RET79], gives a nearly linear increase

in performance for a small number of processors [DEU84],

The Butterfly is the first multiprocessor system with a reasonable software environment

available commercially. The current version of the Butterfly has sixteen processors in the

system. A 128 processor version is now under design. The high bandwidth, low latency, and
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easily-expanded interconnection network of the Butterfly makes it suitable as a first

generation CAD machine. Many architectural and algorithmic ideas can be evaluated by

experimenting with them on multiprocessor hardware. This can lead to better insight about

what the best architectures and algorithms for computationally-intensive scientific

applications such as CAD are likely to be. However, there is no hardware support for the

floating-point operations on the Butterfly system. Efficient floating-point is necessary for

scientific applications and this requirement motivated the project of building a floating-point

co-processor for the Butterfly.

In Chapter 2 of this report the architecture and the operating system of the BBN

Butterfly Multiprocessor System is introduced. In Chapter 3 the prototype of the first

generation floating-point co-processor FPPl is described. Comparisons among the memory to

memory architecture, the architecture using the stack pointer, the architecture using the

frame pointer, and the on-board stack architecture are described, and tradeoffs in designing the

FPPl are presented. The FPPl is microprogrammable. Its speed is 2-4 times the floating-point

operation than the fast Motorola floating-point software on the 68000 employed as the main

general purpose processor in the Butterfly machine. By changing the microcode to the

architecture in which the 68000 passes the frame pointer to the processor node controller on a

Butterfly node at the beginning of a floating-point operation, another 2.6 times speed up can be

obtained.

In Chapter 4 two new architectures for the second generation floating-point co-processor

are proposed, the FPP2 and the FPP3. The FPP2 is a low cost but relatively low performance

version of the co-processor. Its hardware supports fast evaluation of elementary functions.

The FPP3 provides the highest possible floating-point speed in the Butterfly system. Its

WETTEK chip set [WEI83] gives 5 million floating-point operations per second performance if

4K Static RAM is used, 2.5 million floating-point operations per second performance if 16K

static RAM is used. An optional NS16081 chip provides 64-bit precision.
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CHAPTER 2

THE BUTTERFLY MULTIPROCESSOR

2.1. Introduction

In this chapter, The main features of the Butterfly architecture and the Chrysalis

operating system are described. Only those features that are the basis of the floating-point co

processor are described in detail; others are reviewed briefly for reference. Additional

information can be found in the Butterfly Quarterly Reports from Bolt Beranek and Newman

(BBN) [RET79].

2.2. Architecture Of The Butterfly

2.2.1. Overview The Butterfly is a 68000-based tightly coupled multiprocessor system

built by BBN as part of the DARPA voice-funnel project, designed for interfacing high speed

digitized voice signals to a packet-switched communications network.

The Butterfly multiprocessors can be configured with from 1 to 128 processor nodes. All

processor nodes communicate through an interconnection network as shown in Figure 2.1,

This network is topologicaly equivalent to the Omega network [LAW75].

Each Butterfly processor node is itself a multiprocessor. It contains the following

functional units:

- A MC68000 microprocessor

- An AMD2901-based processor node controller.

- A memory management unit which controls the segment-based virtual memory
system of the Butterfly.

- 256K bytes of on board dynamic memory.

- Up to four 2901 -based I/O co-processors.



INTERCONNECTION NETWORK

Figure 2.1 - Butterfly Multiprocess System

- Two special purpose finite state machines for interfacing the switch.

- 4K bytes of Erasable Programmable ROM for bootstrappingand diagnosis

A block diagram of these functional units and their interconnections is shown in Figure 2.2

The rest of this section describes some of these functional units in detail.

2.2.2. The MC68000 The Motorola MC68000 is a 16-bit microprocessor, with 32-bit

internal data and address registers, and a 16 bit ALU. The MC68000 communicates with the

rest of the functional units in the processor node through a 24-bit CPU address bus (CPUA

bus), a 16-bit CPU data bus (CPUD bus) and the CPU control bus. The MC68000 takes 4 clock

cycles to access memory. If CPU does not receive an acknowledge signal from the memory

before the fourth cycle, a wait state is automatically inserted. In the Butterfly multiprocessor

system, the memory access is more complicated than a uniprocessor system. The fact that

many decisions have to be made during the fourth cycle lengthens the local memory access to

five cycles.
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Figure 2.2 - The Butterfly Processor Node

When the CPU receives a bus error signal together with a halt signal, it will put the

CPUA bus and the CPUD bus in the high impedance state and remain halted as long as the

halt signal remains asserted; after the halt signal is removed it reruns the bus cycle.

2.2.3. The Processor Node Controller The processor node controller (PNC) is the key

component in a processor node. The PNC handles the following functions:

- Local memory accesses and local memory refresh

- Switch interface and remote memory access

- I/O co-processor interface

- Time-of-day clock and timer handling

- Multiprocessor system synchronization and communication primitives

- Interrupt controlling



- Initializing the memory management unit registers

The PNC is a 16-bit AMD 2901-based microprogrammed machine. As shown in Figure

2.3, it contains a 16-bit 2901 ALU, a 2911 microprogram sequencer, a IK x64 bit micro

control ROM and a PLA which generates the address of a microinterrupt service routine.

The way 68000 is serviced by the PNC is by the use of microinterrupts. In the local

memory subspace 0, there are some "magic" locations which will be described in detail in the

next section. Whenever 68000 reads from-or writes into-these locations, CPUA bits 15

through 8 and some control information cause the PLA to generate the address of a proper

microinterrupt service routine. The PNC then executes the desired microcode. The 68000

waits while the PNC is performing the desired function. After the PNC finishes the function,

it sends an acknowledgement to the 68000. The 68000 then ends the memory cycle and
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Figure' 2.3 - The Processor Node Controller
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proceeds [RET80].

2.2.4. Memory Management And The Memory Management Unit The Butterfly

provides segmentation-based virtual memory. The virtual memory system in the Butterfly

RSAR
SAR

MAIN

MEMORY

SEGMENT l

SEGMENT j

SEGMENT k

SEGMENT F3

SEGMENT FF

Hgure 2.4 - The Address Space For A Process
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provides each process with up to 256 memory segments. Each segment can be 256 to 64k

bytes long which may either be in the local memory or a remote memory. Segments F8

through FF are shared among all processes in the system. Figure 2.4 shows the virtual

address space of a process. The ASAR and SAR will be explained later in this section. The 32

bit virtual address format is shown in Figure 2.5. The upper 8 bits are unused. The next 8 bits

are the segment number. The last 16 bits are the segment offset.

The physical address format is shown in Figure 2.5. This 32-bit physical address space is

the concatenation of the physical address spaces of all the processor nodes in the system. The

highest 8 bits are thus the processor node number. The physical space of each processor node

is divided into four subspaces. Two bit are used to select the subspace. The last 22 bits are the

subspace offset.

Each subspace of a processor node has a special purpose.

31 24 16 0

UNUSED SEGMENT NUMBER SEGMENT OFFSET

Figure 2.5 - The Virtual Address Format

31 24 22

PROCESSOR

NODE NUMBER

SUBSPACE

NUMBER
SUBSPACE OFFSET

Figure 2.6 - The Physical Address Format
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- Subspace 0 contains EPROM, Segment Attribute Registers, 68000
interrupt vectors, interrupt handling routines, operating system
kernel, library routines and all PNC control registers which are
used to generate required microinterrupts.

- Subspace 1 contains the I/O control registers on the I/O boards.
It is divided into four equal parts, one for each possible I/O board.

- Subspace 2 contains the local memory.

- Subspace 3 indicates that the access should be made through the
switch. This is mainly for remote memory access. But it is also possible
to map the local memory address in this subspace.

The current Butterfly system does not have a file system or secondary storage. This will

be changed in a later version of the system.

The memory management unit (MMU) provides hardware support for memory

relocation, memory protection, and address translation. The architecture of the MMU is

shown in Figure 2.7. There is an Address Space Attribute Register (ASAR) which points to

the beginning of the Segment Attribute Register (SAR) block of the currently executing

process. Figure 2.8 shows the format of the ASAR and SAR. The highest two bits of the

ASAR are the control and mode bits. The size code indicates how many segments are in the

virtual address space of the current process. The least significant nine bits are the pointer to

the first SAR of the current process. Upon context switching, the operating system only needs

to save the value of the ASAR and loads it with a new value. The IK xl6 segment attribute

RAMs contain 512 SARs each of which points to a segment in the virtual memory. Each SAR

also contains the protection information of the segment. An 8 bit adder is used in translating

the virtual address to physical address. A PLA detects the protection violation of a memory

access.

The process of translation from the virtual address to the physical address is picturized

in Figure 2.9. Bits 8 to 0 of the ASAR is ored with the segment number in the virtual address

to get the required SAR. Bits 31 to 24 of the physical address come directly from the

processor node number field of the SAR; Bit 23 to 16 of the physical address is formed by the

subspace number field and the least significant bits 5 to 0 of the SAR. The page offset in the

-1&-
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SAR is added with bits 15 to 8 of the virtual address to form the bits 16 to 8 of the physical

address. The physical address bits 7 to 0 come directly from the bits 7 to 0 of the virtual

address.

The PNC must be able to access the MMU in order to perform some functions such as

block transfer through the switch. The Address Register is there for this purpose. To do this,

the PNC first asks the 68000 to back off the CPUA bus and the CPU control bus. The PNC

then loads the SAR address into both Address Register and the ASAR. The MMU then

proceeds to perform relocation and protection violation detection as usual [RET82].

2.2.5. The I/O Co-processor Up to four I/O processors can be configured in each processor

node. Each I/O co-processor supports four synchronous and four asynchronous channels with

a data rate of four million bits per second. As shown in Figure 2.10, the processor node

communicates with the I/O co-processors through an I/O bus called BIOLINK. Figure 2.11

shows that an I/O co-processor consists of four parts interconnected by a 16-bit internal bus.

- An I/O controller which provides the means for data manipulations.

- An interface to the BIOLINK, in which a finite state machine deals
with the synchronous protocol between the I/O co-processor and the
processor node.

- Four Signetics 2661 Enhenced Programmable Communications interface
chips with RS232C line driver/receivers,

- Four Signetics 2652 Multiprotocol Communications Controllers chips
with RS422 line driver/receivers.

The I/O controller is composed of four parts: An AMD2901-based microprocessor, a 512 word

64-bit read-only control store in which the microprogram resides, a 2911-based microprogram

sequencer, and a IK Xl6 scratch-pad memory which provides control variable and data

storage for all the channels [RET82].

2.2.6. The Switch Interface And The Interconnection Network The interface of a

processor node to the interconnection network is composed of two parts. One is the receiver

and the other is the transmitter. Figure 2.12 shows the block diagram of the receiver. The
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receiver has a ROM/PLA controlled finite state machine, a checksum generator, a 16-word

dual-port memory with 16-bit per word, and a set of ECL to TTL line drivers and receivers.

The finite state machine controls the interaction between the processor node and the switch. It

also controls the registers and line drivers and line receivers. The dual-port memory supports

two input buffers. Two input buffers are needed in order to avoid deadlock situations. The

transmitter shown in Figure 2.13 has a symmetrical architecture to the receiver. Although

there is no deadlock problem in the transmitter side, it also provides two output buffers.

The interconnection network is implemented by a set of switches and wires. Each

switch is a 4x4 crossbar plus the routing logic. The interswitch wiring is similar to the

wiring rule of the perfect shuffle network. Figure 2.14 shows 16x16 such a network. For N

processor nodes, the number of switches needed is
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~-xlog4N

This network has several interesting characteristics:

(1) Uniform latency across the system.
The latency from any node to any other node is : log4N

(2) The latency increases veryslowly when the system scales up.

(3) The bandwidth of the network is linearly proportional to the
number of the switch chips. No changes in the switch design are required
to expand the network.

These characteristics make this kind of interconnection network very suitable for a

multiprocessor system with large number of processors (more than hundreds) in which low

latency and high throughput are essential [RET79a].
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2.3. Butterfly Operating System

Chrysalis, the Butterfly operating system, is aprocess-based real-time operating system.
The system services are provided by a collection of system calls. All system resources are
conceptualized as objects and are managed by the Object Management System. The

synchronization, scheduling and interprocess communication are implemented through events,
locks and queues. The storage is allocated using aBuddy algorithm [KNU73], and is reclaimed

by the Chrysalis garbage collector. The garbage collector scans all objects every few seconds.
If the owner field of an object claims that its owner has been deleted, this object will be
deleted by the garbage collector. In the following sections some important components of the
Chrysalis operating system are described.

2.3.1. Object Management System The Object Management System is designed to manage
the segmentation-based virtual memory in a tightly-coupled multiprocessor system. It

provides the services for memory allocation, memory protection, and controlled memory

sharing. All the resources including all data structures in the system are organized as objects.
The Object Management System manipulates each object through a 32-bit Object Handle or

Object Identifier (OLD). The Object Handle is unique across the system. Each object has an
Object Attribute Block (OAB) which contains the type information, the status, protection, and

debugging information of the object, and the pointers to the object representation in the

memory. Sharing an object among processes is implemented by mapping the Object Handle

into their own address spaces. The format of the Object Handle is shown in Figure 2.15. The

processor number describes which processor contains the header data structure of the object.

The sequence number is for debugging and error detection purposes. The Offset field is the

physical address ofthe object due to the special usage of segment F8. As mentioned before, all

processes in the system can access segments F8 through FF in addition to their own segments.

Physical memory starting at location 0 is mapped into segment F8 in each processor node and

is used for the operating system data structures.

-19-
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The Object Management System has four layers:

- The physical Memory Manager

- The Central Object Utility

- The Memory Mapping Manager

- Special Purpose Managers

The Physical Memory Manager allocates the physical memory on the node using Buddy

algorithm. This algorithm divides the memory into blocks of size of power of two and

aUocates memory with a block of size of the nearest power of two. If there are no such

blocks left, it breaks a block with the next larger size. The Central Object Utility provides

the type-independent operations on objects, such as creation, deletion etc. The Memory

Mapping Manager defines and maintains the virtual address spaces for the processes in the

system. The Special Purpose Managers are a collection of managers for special objects such as

processes, events and dual queues

The Object Management system provides routines to manipulate some special objects such

as processes. To access these objects, a user must ask the Object Management system to give

him the OID and map it into his address space. If an access to an object does not have the

right access mode the access is rejected and an error isgenerated [RET83].
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23.2. Processes All the tasks in the Butterfly system are represented by a set of

communicating processes which share the main memory. Each process is represented as an

object and is managed by the Object Management System. Each process has its own data

structure called the Process Control Block (PCB) which contains the addressing and

scheduling informations. When the process is switched out of the CPU, its state is also saved

in its PCB. Each process also has a data structure called Process Template which contains a

pointer to the code and the initialized data of the process.

All the Butterfly program are developed and compiled in a host computer, VAX. Object

code with the extension ".68" is down loaded from the VAX to the Butterfly. A process is

created by first asking the Object Management System for the Process Template. The

execution of the MakeJTemplate system call allocates the Process Template and calls the

loader demon. The loader demon cooperates with a program "bid" running on the VAX to

load and create the process. Using the existing Template, a process can be created on a

different node at run time by executing a Make_Process system call. By specifying the

argument block of the process being creating, the user can specify the name, the space

information, protection information, the type of the process and some additional information.

After having the Process Template, the user stack size has to be specified. If the specified stack

size is toosmall for the process, a fatal error message of "stack overflow" will be generated at

run time.

A process can be terminated by executing the "exit" system call or by another process

through the "Del_0bf system call. When a process terminates, other processes can be

informed by the event mechanism. If some of the objects of the terminating process are still

needed by some other processes, the ownership of these objects should be transferred either to

these processes or to the operating system. The Object Management System will invalidate the

owner fields of all the other objects which will then be garbage collected by the garbage

collector [RET83].
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233. Events Events are an important mechanism for synchronization, scheduling and
interprocess communication. An event is an objec, Each event is owned by aprocess and is
represented by aunique event handle. An ob^ct called "Event Block" is used to record the
data of the event. An Event Block contains several fields:

- A link field for putting it in aqueue

- Two fields containing type information

- A sequence number field

- A field of flag bits

- A protection field

- An Owner's Processor Handle field

- A data field

- An owner's data field

The sequence number field refers to the number of times this block of memory has been
allocated. ,t matches the sequence number field in its Event Handle if this Event Handle is
valid. The flags are for the error detection purposes. The owner's Process Handle is used to
put this event into the right queue when the event is posted. It is also used by the garbage
collector to reclaim this block of memory. Two data fields are pointers to the data block. In
the Butterfly system, the Event Block is allocated explicitly before the event is posud.
Because of this ..reallocation of the Event Block, it is better for aprocess to allocate all its
Event Blocks when it starts to run.

When aprocess needs service from another process, it creates an event by making a
Makej-vent system call. The Object Management System aUocates the Event Block in
aegment F8, and returns an Even, Handle to the process. The process may then do some other
jobs and check whether the event has occurred periodically, or it may go to sleep by executing
a"wait" system call. When the event occu*. it will be posted, if the owner process is
waiting for this event, the process will be waken up. Auser can also specify aspecific time
at which an event should be posted by executing aSetJimer system call.
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2-3.4. Dual Queues The dual queue is the data structure used by the Chrysalis to

implement the event and lock mechanism. The reason why it is called the dual queue is that

it can contain either Event Handles of the waiting processes or queued data elements. A flag

in the header tells whether it is a data queue or an event queue. Each dual queue has a

header portion and a ring buffer. The ring buffer must have a length of a multiple of four

bytes and it must be allocated within a 64K block. A library routine is used to initialize a

dual queue. Locks are used for synchronization. When a dual queue is used as locks, a "lock"

flag bit is set in the header, and it is limited to have only one element. An empty queue

represents a locked lock. A process needing the lock can execute de-queue to wait for it or

poll to test it. To unlock the lock, the process which is holding the lock uses enqueue to store

its Process Handle on the queue [RET83].

23.5. Buffer Management A Buffer Management System has been developed for managing

buffers more efficiently. There are two shortcomings in the Object Management System.

(1) When the Object Management System does a mapping, it checks
the access privileges of the process, checks the validity of the
Object Handle, and sets up a SAR pointing to the object. This is
too time consuming for the buffer management where the mapping is
frequently done.

(2) The object size allocated by the Object Management System is
limited to be one segment. When the number of the objects gets large,
there may not be enough SARs for the process.

The Buffer System uses the Object Management System to allocate a large amount of

memory space as a buffer pool object. A buffer pool is obtained by executing a MakeJJFpool

system call. It then suballocates buffers from this space by supporting a set of simpler and

faster operations. A dual queue is used to keep all the legal buffer pool identifiers. Each

buffer pool is given a unique ID from the dual queue at creation time. When the pool is

deleted its ID is put back to the queue for reuse. Each buffer also has an ID. Figure 2.16

shows the format of the ID. The pool ID is the identifier assigned to the buffer pool at

creation time. The offset is the offset from the buffer pool pointer. AH the buffer IDs are put

into a dual queue called Free Queue. A buffer is not an object. It is composed of a header and
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31 24 16

POOL ID UNUSED OFFSET

Figure 2.16 - The Buffer Identifier

a data area. A lock is used for each buffer pool for the mutual exclusive accesses among

several processes to a buffer in the pool. A mechanism similar to "use count" is used to free a

buffer shared by several processes. It is possible for a buffer pool to span more than one

processor node.

Process can access buffers by submitting the Object Handle of the Free Queue. After a

process selects the buffer pools and maps them into its address space, it maintains a table

which transfers the buffer ID to the virtual address of the buffer. When a process finishes its

work with a buffer, it may free the buffer by calling the BFfreeJmf service routine; It may

pass the buffer ID to another process without keeping a copy of the ID for itself; It may also

retain the ID after it passes the buffer to another process [RET81].
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CHAPTER 3

THE PROTOTYPE FLOATING-POINT CO-PROCESSOR

3.1. Introduction

Although the Motorola 68000 has integer performance in the range of a super

minicomputer, it has no hardware or microcode to support floating-point operations. In

Appendix 7, tables of floating-point performance on different processors are listed. It shows

that the speed of floating-point operations on the MC68000 is 5-10% of that of their integer

counterparts. The resulting performance degradation may be unacceptable when trying to use

the Butterfly for scientific applications such as circuit simulation. The tradeoffs involved in

co-processor design for the Butterfly are described first, then several architectures which may

be used with the Butterfly processor node are presented. Finally, the architecture used in the

prototype floating-point co-processor and associated experimental results are presented.

3.2. The Interface To The Processor Node

A co-processor is a processor which offloads specific tasks from the main CPU.

Traditionally, there are two ways to design a co-processor. The first way is to have the co

processor sit on the CPU address and data bus. The co-processor watches all bus activities and

decodes all the instructions appearing on the bus. If the instruction is in its instruction

repertoire, it executes the instruction and returns the result to the CPU. The second way is

that instructions in the co-processor repertoire cause the main CPU to trap. The trap service

routine then sends the information to the co-processor and starts the co-processor. Both these

two methods are not suitable for our purpose. The first method is impossible since it is

impossible to tell whether the 68000 is fetching an instruction or a data in a memory access.

The second method is too slow to meet our performance requirements. The Butterfly
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floating-point co-processor must have its own way to interface to the processor node.

The Butterfly floating-point co-processor interacts with the Processor Node Controller

(PNC) instead of the 68000 CPU. It takes advantage of two features of the Butterfly processor

node. One is that the PNC performs all the memory and switch functions efficiently. The

other is that on the processor node there is a memory daughter board connector, which

provides all the memory control signals and the signals coming out from the Memory Address

Data bus (MAD bus). The floating-point co-processor is thus connected to the processor node

by this daughter board connector. Figure 3.1 shows the Butterfly system with the floating

point co-processor. The 68000 CPU is not aware of this co-processor; it treats the co-processor

as a local memory. Every floating-point instruction in the source code is compiled into a

memory reference instruction referencing a "magic" location in subspace 0. This reference

causes a microinterrupt to the PNC. The microinterrupt service routine then fetches the

operands for the floating-point operation, passes them to the floating-point co-processor, and

starts the micro engine on the co-processor. The co-processor works in lock step with the

680210 PNC

FLOATING

POINT

COPROCESSOR

CPUA

CPUD

MAD

D

AD

MMU MEMORY
SWITCH

INTERFACE

Figure 3.1 - Butterfly With The Floating-Point Co-processor
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PNC. After several clock cycles, The PNC reads the result from the MAD bus, stores it to the

right memory location, and informs the 68000 to end its memory cycle and to proceed. The

68000 waits for the result in the extended memory cycle until it receives an acknowledge

signal from the PNC.

There are two ways to pass the opcode to the co-processor. One is to pass it as data; the

other is to pass it as part of the address. To pass the opcode as a data, the 68000 can either put

the opcode in segment F8 or put it in the same place with the operands, and let the PNC fetch

it. This requires several cycles for the PNC to get the opcode and is thus a time consuming

approach. When the 68000 references the subspace 0 "magic" location, only the virtual

address bits 15 through 8 are used by the PLA to generate the address of the microinterrupt

service routine. The physical address bits 7 to 0 are the same as the virtual address bits 7 to 0.

These bits can be used to pass the opcode from the 68000 to the co-processor. No extra works

are needed for this approach, so it was chosen as the mechanism for passing the opcode.

There are two ways to pass operands to the co-processor. One way is to pass them

through segment F8. This is also slow because the process must change its access mode from

user mode to kernel mode and then change back to the user mode afterwards. The other way

is to use the run time stack. This way is better because most operations occur between data

items on the stack, such as parameters and locals.

33. Tradeoffs In The Architecture Design

Four different architectures were considered during the architecture design phase: the

memory to memory architecture, the architecture using the stack pointer, the architecture

using the frame pointer, and the on-board stack architecture. The tradeoff criteria are the

performance and the complexity of implementation and debugging. The performance is the

primary goal for the whole design. The complexity was limited in this case by the fact that

the whole project was to be completed in two months. In this section, each of the four

architectures is examined and the tradeoffs are compared.

-28-



3.3.1. The Memory To Memory Architecture The simplest architecture for

implementing floating-point is to let the 68000 do everything. In order to allow

multiprogramming, a floating-point operation has to be atomic, that is, no context switch is

allowed during floating-point operation. As shown in Figure 3.2, the 68000 first turns the

interrupts off. It then wakes up the floating-point co-processor and passes the operands to it.

After waiting for the computation to finish, it then moves the result to the correct location.

Finally, it turns the interrupts back on. There are three microinterrupts and several MOV

macro instructions involved. It is therefore quite time consuming. Also, since the data

movement is done in 68000 assembler code, it is hard to improve the performance further.

MOVEQ &i, magic-location-1 ;turn off interrupts
MOVEQ #n, magic-location-2 ;wake up co-processor
MOVL a6@(-8), dO
MOVL dO, special-location-1 ;pass operand 1
MOVL a6@(-4), dO
MOVLdO, special-location-2 ;passoperand 2
NOOP ,-wait for result
NOOP

NOOP

MOVL special-location-3, dO jstore result
MOVLdO,a6@(-12)
MOVEQ #n, magic-location-3 ;turn interrupt back on

Figure 3.2 - The Simplest Architecture

The advantage of this architecture is that it requires no changes in the PNC microcode,

requires the least changes in the compiler and in the operating system.

33.2. The Stack Pointer Architecture In the Butterfly system, a run-time stack is used

to hold the activation records. An activation record or a frame contains the parameters for the

subroutine, its local variables, and some linkage information. One register, called the stack

pointer (SP), is used to point to the top of the stack. Another register, called the frame pointer

(FP), is used to point to the current activation record.
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In the stack pointer architecture, the 68000 first moves the operands to the top of the

stack. This takes two MOVL macro instructions. It then passes the stack pointer to the PNC

by writing into a "magic" location in subspace 0, and waits for the result. After it gets the

result, it puts the result in the frame. When the 68000 passes the stack pointer to the PNC,

the PNC gets a micro interrupt. The PNC then translates the SP from a virtual address to a

physical address, and wakes up the co-processor. The co-processor starts to work in lock step

with the PNC. The PNC puts the physical address of the operand out to the memory. Two

cycles later the operand is valid on the MAD bus. The co-processor then latches the operand

into a internal register. After the co-processor gets all the operands, it starts the computation;

the PNC waits for the result. After 6 clock cycles the result is available; if the PNC wants

the result right way, the result is also available on the MAD bus. The PNC saves the result in

its registers and initiates the memory cycle to write it to the top of the stack. Finally the

PNC informs the 68000 to terminate the MOVL instruction and to proceed. The 68000 then

moves the result from the top of the stack to the right place in the activation record, and

adjust the stack pointer to where it was before the floating-point operation. Figure 3.3 shows

the assembler code for this architecture.

MOVL a6@(-8), dO miove operand 1 to top of stack
MOVL dO, sp@-
MOVL a6@(-4), dO ;move operand 2 to top of stack
MOVL dO, sp@-
MOVL sp, 0XFFC804 mass the stack pointer
MOVL sp@(+4), dO jsave the result
MOVL dO, a6@(-12)
ADDQ #8, sp jadjust the stack pointer

Figure 3.3 - Code For The Stack Pointer Architecture

The performance of this architecture is better than the memory to memory architecture.

It takes 8 macro instructions and 55 micro instructions, and the total execution time is 26 fxs.

This architecture is quite flexible for performance improvement so that it is easier to build a

-30-



prototype in a conservative way and improve the performance later. This architecture does

not require as many changes in the operating system and in the compiler as does the next

architecture. It is clear that in this architecture the 68000 performs some unnecessary moves

which slow down the overall operation. Also, the architecture requires a complicated PNC

microinterrupt service code.

333. The Frame Pointer Architecture Figure 3.4 shows the stack sections in the stack

pointer architecture and in the frame pointer architecture. In the stack architecture, the

68000 and the PNC communicates through the top of the stack. In the frame pointer

architecture, the frame pointer is passed to the PNC and the PNC can fetch the operands

directly from the frame and return the result into the* right place in the frame. In addition of

the frame pointer, the offsets of the operands and the offset of the result from the frame

pointer must also be passed to the PNC. This can be accomplished in two ways. One is to pass

the frame pointer in segment F8. Every time a subroutine containing the floating-point

operations is called, a microinterrupt is generated to translate the FP from a virtual address to

a physical address and save this physical address in a fixed location in segment F8. This fixed

location is known by the PNC. Since this operation is performed once each subroutine call,

and there are usually several floating-point operations in a subroutine requiring floating-point,

the extra overhead per floating-point operation is thus small. The other way is to generate

two separate microinterrupts. In one of the microinterrupt service routine, the FP is saved in

the internal registers of the PNC. The other routine serves all the rest of the operations. The

microcode in this case must make sure that the registers containing the FP is not rewritten by

some other interrupts between the two floating-point microinterrupts. This method is more

complicated and more time consuming since it is required for each floating-point operation.

Figure 3.5 shows the assembler code for the frame pointer architecture.
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Figure 3.4 - Stack Segments From The SP Architecture And The FP Architecture

MOVI 0XFFC804, immediate-data mass offsets to the PNC

Figure 3.5 - The Frame Pointer Architecture

Figure 3.6 shows the instruction format for the frame pointer architecture. The 68000

assembler instruction MOVI writes the 32-bit immediate data into a "magic" location. The

immediate data has four fields: offset of the operand 1, offset of the operand 2, an unused field,

and the offset of the result. Since the PNC hardware does not support byte-swap operation,

this format is so designed that the PNC can get the offsets of the operand 1 and the operand 2

from this 32-bit word immediately and, while waiting for the result, the PNC can shift the
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offset of the result to the lower byte position. The PNC then calculates the effective physical

address of the operands, fetches them, and passes them to the co-processor as in the SP

architecture.

Obviously, this architecture has higher performance than the stack pointer architecture

since it uses fewer macro instructions. The disadvantage of this architecture is that it requires

complicated changes in the operating system, the compiler, and the PNC microcode. This

disadvantage makes the debugging phase more complicated, especially because the Chrysalis

operating system is not designed for easy debugging.

33.A. On Board Stack Architecture The memory access initialized by the PNC requires 3

clock cycles. Putting the run time stack on the co-processor can reduce the memory access

time to one clock cycle. More importantly, all the intermediate results are kept on the stack

so that the performance is increased significantly. However, this architecture requires more

hardware than the previous architectures. Different memory interfaces to the co-processor

and to the rest of the system must also be provided. More changes are required in the

operating system. Obviously, this architecture should not be considered as the first prototype.

53 48 32

MOUI
MAGIC

LOCATION
IMMEDIATE DATA

Immediate Data Format:

31 24 16 e 0

0FF5ET R OFFSET 1 UNU5ED OFFSET 2

Figure 3.6 - Instruction Format For The FT Architecture
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3.4. The Prototype

To achieve reasonable performance in a short period of design time and to have enough

flexibility to improve the performance without changing the hardware later on, the prototype

was designed to be microprogrammable for either the SP or FP architecture and the microcode

for the SP architecture was written.

3.4.1. The Hardware Figure 3.7 shows the block diagram of the prototype floating-pointer

co-processor the FPPl. The FPPl was designed and built using TTL. The detailed design is

included in Appendix 1. Since the 68000 and the PNC have a cycle time of 125 ns, the co-
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processor also uses the 8MHz clock provided by the processor node.

The key components of the FPPl are the 32-bit WETTEK 1032 floating-point multiplier
and 1033 floating-point ALU [WEI83]. These WTC chips have 100ns cycle time and they
support IEEE floating-point format. In the pipeline operating mode, they have the peak
performance of 5 million floating-point operations per second. In the "flow" mode, 9 clock

cycles are required for each floating-point operation. A finite state machine (FSM)

implemented by microcode in a512x28 PROM controls all the operations on the board in lock

step with the PNC. The FSM normally sits in an idle loop; the multiplexer (MUX) normally
selects the address coming out from the control register (CTLREG) which comes from the next

address field of the microcode. When the address decoder recognizes aspecial pattern on the

MAD bus in the address phase, it forces the MUX controller to select the next microcode

address from the opcode register (OPREG). The opcode register in this cycle contains the

pseudo opcode for the floating-point operation. This pseudo code is the entrance address of the

microcode in the FSM for the required floating-point operation. From the very next cycle on,
the MUX selects the next address field of the FSM microcode again. The FSM then sets up the
function code, and mode code for the WTC chips, latches the operands and feeds them into the

chips to start the floating-point operation. Only one of the WTC chips is activated in each

operation. When the WTC chip is ready to output its result, the FSM latches the result into

the output register. If the PNC is ready to read the result, the FSM also puts it on the MAD

bus. The interface to the MAD bus contains a collection of registers, and TTL line drivers.

The PNC microcode for the floating-point operation is included in Appendix 2; the microcode

in the FSM and the program which generates the microcode of the FSM can be found in
Appendix 3.

3.4.2. Performance The FPPl is not optimized for the performance. It is now two to four

times faster than the fast Motorola floating-point software. The performance seen by ahigh
level application program is 26 fis for each floating-point operation supported by the WETTEK

chips. Table 3.1 compares the time required for a floating-point addition or multiplication by
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the MTT software, Motorola software, and the prototype FPPl. The corresponding speed-up is

listed in Table 3.2. A factor of 2.6 speed up can be obtained by using the frame pointer

architecture without changing the FPPl hardware.

OPERATION MIT MOTOROLA FPP
ADD 298 69.21 26
MUL 453 97.9 26

Table 3.1 - Time Required For Addition And Multiplication

OPERATION MTT MOTOROLA
ADD 11.48 2.66
MUL 17.42 3.77

Table 3.2 - Speed Up

The performance of FPPl is limited by the long time required for the PNC to pass

operands from the processor-node memory to the WETTEK chips. In next chapter, some

alternative co-processor architectures which have higher performance will be presented.
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CHAPTER 4

PROPOSALS FOR THE NEXT GENERATION CO-PROCESSOR

4.1. Introduction

The first generation floating-point co-processor demonstrates that it is possible to build a

floating-point co-processor for the 68000-based Butterfly system but it does not provide

optimal performance on the machine. Two architectures for the next generation floating-point

co-processor which promise to improve the floating-point performance are presented in this

chapter.

FPP2 is proposed for those applications requiring moderate performance, low cost, and

fast development. By adding the capability of carrying out fast evaluation of frequently used

elementary functions in hardware, the FPP2 increases the performance of the co-processor.

Since it is also microprogrammable, it is flexible enough that more power can be added to the

co-processor when needed. It requires the least changes in hardware from FPPl of all the

architectures under consideration.

The FPP3 provides the best possible performance and can be modified to use 64-bit

floating-point chips. A 2910-based micro sequencer and a dual-port, fast, on-board memory

make it possible to carry out large blocks of calculations at very high speed. A shift register

chain is designed to provide easy debugging and diagnosis.

In the first section the tradeoffs in the design are described. In the second section the

algorithms for evaluating elementary functions are presented. The design of FPP2 isdescribed

in detail in section three and in the last sectior the design of FPP3 isdescribed.
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4.2. Tradeoffs

The second generation floating-point co-processor design involves tradeoffs among

performance, accuracy of the result, and the complexity of hardware implementation. The

floating-point calculations in more accurate circuit models for circuit simulation require 64-bit

precision. The choice of what kind of chips to use is made by considering that the most

important goal of the second generation co-processor is high speed with an acceptable precision.

The best choice of all 64-bit floating-point chips is the HP 64-bit Monolithic floating

point processor [WAR82]. It provides very high speed as well as 64-bit precision. However, it

is not commercially available. To build a 64 bit floating-point processor from off-the-shelve

components, bit-sliced components, such as Am2903-based processor [AMD83], the Am29116

[AMD83], the NS16081 processor [NSD82], or Intel 80287 co-processor [INT84] may be used.

Using a 16-bit processor such as Am291l6 to perform 64-bit arithmetic, operations such

as partitioning the 64 bits into 16-bit parts and then putting them back together according to

the IEEE floating-point format, must be performed in microcode. Therefore, the performance

of this approach may not be acceptable. A 64-bit processor can be built using 16 Am2903

processors and 5 Am2959 carry-look-ahead parts. The large parts count of the ALU alone

reduces the board area available for memory, which is critical for achieving the best

performance. Besides, the need to implement the floating-point operations in the microcode

alsodegrades the performance of the system. These disadvantages make it inappropriate to use

either bit-sliced parts or the Am29116 processor.

The Intel 80287 numeric data co-processor provides both arithmetic and elementary

functions, such as exponential and logarithm. It also provides 64-bit precision. The drawback

is its slow speed. Using a 5MHZ clock, it takes 14 /us to perform an addition, 27 ps for

multiplication, 39 /is for division, 36 /xs for square root, and 100 /as for exponential [INT84.1.

Its single 16-bit I/O port makes it slower considering moving the 64-bit data in and out of the

chip. It cannot meet our performance requirements.
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The NS16081 processor provides 64-bit floating-point operations. It also provides addition,

multiplication and division on the same chip. The only disadvantage of this processor is that

its speed does not meet our requirement. It takes 7.4 fis to perform an addition, 6.2 fjs for

multiplication, and 11.8 /*s for division after it receives all the operands [NSD82]. It may be

considered the main processor on the FPP3. However, it has only one 16-bit I/O port. It takes

12 clock cycles to get two 64-bit operands into-and one 64-bit result out of-the processor. This

limits the potential performance of the FPP3 greatly.

Since the WETTEK 32-bit floating-point chips are the fastest floating-point chips available

commercially and it is expected that the 64-bit WETTEK chips will be available soon, the

second generation floating-point co-processor for the Butterfly is designed based on the

WETTEK chips with an NS16081 chip on board optionally. It is expected that 32-bit precision

can satisfy most CAD applications. Occasional calculations requiring 64-bit precision can be

performed in software. Those applications requiring 64-bit precision can use the NS16081

chip. The design should consider the flexibility of upgrade the 32-bit chip to 64-bit chip,

when the WETTEK 64-bit chips or other compatible chips are available.

A3. Hardware Support For Evaluating Elementary Functions

The prototype FPPl hardware supports only the functions available in the WTC chips,

and the software does the rest. In many applications, divide, square root, exponential,

logarithm, and other elementary functions are used frequently. The FPP2 is designed to

support these functions by adding minimum amount of hardware.

Using table look-up method to evaluate division and square root using IEEE floating

point format is quite time consuming. In order to perform fast evaluation for A/B and Va ,

the table look-up and iterative method suggested by the WETTEK application note are used

[WEI83a]. Issues of accuracy and IEEE compatibility are discussed in the application note.

Algorithms for calculating log A and A* are included in Appendix 6, which may be

implemented in microcode in the FPP2.
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Before describing these algorithms, it is necessary to introduce the single precision IEEE

floating-point format. Figure 4.1 shows the IEEE floating-point format. The highest bit is the

sign bit. The next eight bits are the exponent and the last 23 bits are the fraction.

Figure 42 illustrates the table look-up for divide (A/B). The upper 32-bit word is the

divisor B. The lower 32-bit word is the quotient Q. The sign bit of Q is the sign bit of B.

The 8-bit exponent of B is used as the address of an 8 x 256 ROM. The output of the ROM

forms the exponent of the quotient. The highest 12 bits of the fraction addresses a 12x4K

ROM. The output of this ROM is the highest 12 bits of the fraction of the quotient. The

content of the exponent ROM is calculated by the equation G = 253 - E which is the inverse

of the exponent of B. The content of the fraction ROM is calculated by the equation

H ="096X8192 _
4097+F

H is an approximate reciprocal of B. This table look-up gives the initial accuracy to about 12

bits. The accuracy is extended to about 24 bits using the following function:

H l=ir* x(2-5x//)

The final quotient is obtained by multiplying A with HI.

Q=A XH 1

In this calculation three multiplications and one subtraction are required [WEI83a].

s EXPONENT FRACTION

31 30 23 22 0

Figure 4.1 - IEEE Floating-Point Format
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Table look-up for VA~ is shown in Figure 4.3. The least significant bit of the exponent

is used to distinguish the cases between A has an even exponent and A has an odd exponent.

G is calculated by the function:

379-£

H is calculated by the function:

If E(8) = 1 then

IF E(8) = 0 then

G =

H =
119

4097+F

»19

H =
8192+2P

H is approximately equal to , The initial table look-up gives about 12 bits of accuracy
v A
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Figure 4.3 - MappingOf Table Look-Up For Square Root

which is improved to about 24 bits by the following function:

H \~OjSxH x(3.0-A XH XH )

In the calculation five multiplications and one subtraction are performed [WEI83a].

4.4. TheFPP2

The frame pointer architecture is used to interface to the floating-point co-processor and

to the PNC in FPP2. That is that the 68000 passes the frame pointer to the PNC; the PNC

fetches the operands and passes them to the co-processor. After the FPP2 finishes the

calculation, it passes the result to the PNC. The PNC then stores the result in the preallocated

locations in the active frame.

As shown in Figure 4.4, the control part and the interface to the WETTEK chips of the

FPP2 are exactly the same as that of the FPPl. Two 32-bit registers, AOP and BOP are used to
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Figure 4.4 - The FPP2

CNS

ROM

save the two operands passed by the PNC. BOP register contains the operand which is used

for table look-up. A constant ROM holds the constants needed by the computations. A AK X8

read-only memory, EXP ROM, contains the required approximation of the exponent part.

Three 12-bit ROMs contain the required approximation of the fraction part. The delay

register is provided to multiplex the output of the ROMs onto the 16-bit ROM bus. A flip-flop

is used to put the sign bit of operand Bon to the ROM bus at the right time. A multiplexer in

front of the BM register allows the Boperand to be selected either directly from the MAD bus

or from the table ROM. The path directly from MAD bus to the BM register allows the

simple operations such as addition and multiplication to bypass the table ROM. A path from
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the CL register to the AM register provides the fast path for recurrence calculations.

The microprogram can be written very easily for FPP2. The estimated time for carrying

out division is 15 fis: 10 /lis to pass the operands to the board and 5 fis for the execution. The

estimated time for square root is 15.5 fis: 9.5 fis for passing the operand and 6 fis for

execution.

4.5. TheFPP3

4.5.1. Introduction The fact that three clock cycles are needed for the PNC to access a 16-

bit data from the local memory limits the speed of the floating-point calculations on the

Butterfly. The only way to achieve the highest performance in floating-point operations is to

keep as many data items on-board as possible. The FPP3 is designed to provide the highest

floating-point speed possible in the Butterfly system. In this section the design of the FPP3 is

described. I designed FPP3 jointly with Jeffrey T. Deutsch.

The FPP3 provides two ways to interface the PNC and the co-processor. The frame

pointer architecture is used to carry out the single floating-point operations such as

multiplication and A * . If a complicated block such as the model evaluation is called by the

high level program, blocks of parameters are passed to the co-processor through segment F8.

The FPP3 consists of four major parts the control, the bus interface and the dual-port

static RAM, the table ROM and the functional unit. As shown in Figure 4.5, they

communicate through the MAD bus and three on board busses A, B, and C. A chain of on

board shift registers is used to load the microcode into the writable control store at the reset

time. It also provides a good diagnostic and debugging facility.

4.S.2. The Control Drawing 2 in Appendix 5 shows the detailed design of the FPP3

control unit. A 2910-1 microsequencer, a AK X80 bit writable control store, and a 80-bit

pipeline register generate all the control signals for the board. A condition PLA collects the

informations about the operands and generates the condition code. The sequencer then selects

the condition for the next microinstruction. A bootstrap PROM initializes the micro sequencer,
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Figure 4.5 - The FPP3

loads the micro control program into the writable control store, and starts the normal

operation of the micro engine. A multiplexer (MUX) selects the instruction for the 2910-1

sequencer from multiple sources.

The writable control store (WCS) is loaded from the MAD bus under the control of both

the PNC and the bootstrap finite state machine (BSFSM). In order to keep the part count low,

the WCS is loaded serially through a shift register. Considering the fact that the PNC has to

take care of some other tasks such as memory refresh, the microcode loading is broken into

blocks. Each block contains one 80-bit microinstruction. If the shifting is not overlapped

with loading each 16-bit data from the PNC, it takes 19 cycles to load each 16 bits data from
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the MAD bus and shift it to the right place. The loading time is thus about AK Xl9x5 clock

cycles which is about 50 milliseconds.

Three commands are provided for the PNC to control the BSFSM to start the FPP3 in the

normal operation mode. They are "LOAD MICROINSTRUCTION", "END OF LOADING", and

"BEGIN". All of them are implemented as special patterns on the MAD bus during the

address phase. When the BSFSM receives the reset signal, it forces the control unit to execute

the instruction at location 0. The control unit loops at location 0 and waits for further

instructions. When the BSFSM receives the LOAD MICROINSTRUCTION command, it loads

one microinstruction into the WCS. During loading, the address of the WCS is generated by

the 2910-1 under the control of the BSFSM. When it receives the "END OF LOADING"

command, it sets the registers in the register chain in normal operating mode and goes into a

state waiting for the floating-point instructions. When the BSRAM receives the "BEGIN"

command, it forces the 2910-1 to accept instructions from the MAP register which contains

the address of the beginning of the microcode for the desired function.

4.53. The ALU Drawing 3 in Appendix 5 illustrates the design of the ALU of the FPP3.

A WETTEK 1033 ALU chip, and a WETTEK 1032 multiplier provides the high speed floating

point operations. A set of comparators generates the condition signals for the sign, the

exponent, and the fraction parts of the operand which are fed into the condition PLA. A

register MSW_REG is there to hold the most significant word of the operand and to form a

32-bit input for the comparator. Necessary paths are provided for operating the WEITEK

chips at a peak speed of 5 million floating-point operations per second which is the full speed

at which the WETEK chips can run.

Optionally, an NS16081 can be put on the B bus and the C bus. The FPP3 control unit

controls the interface of the NS16081 chip. The microcode fields needed for this chip may be

overlapped with those of the WETTEK chips to reduce the parts count.
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43.4. The Bus Interface And Dual Static RAM Drawing 4 in Appendix 5 shows the bus

interface and the dual-port static RAM of FPP3. AD functional units are connected by three

on board busses. The A bus and the B bus are for the operands; and the C bus are for the

result. The MAD bus transfers the information between the PNC and the FPP3. The board

communicates with the MAD bus through C bus. A path between the A bus and the C bus

provides the path from the dual-port static RAM outputs to the MAD bus. A path between

the C bus and the B bus provides a bypass path from the table ROM and the output ports of

the WETTEK chips to the input ports of the WETTEK chips.

Two 16K XI6 fast static RAMs provides the high speed on board memory. These two

memories are organized as a dual-port memory system. They contain exactly the same

contents. Thus the micro engine can address two operands in the same cycle. These two

operands are passed to the WETTEK chips through the A bus and through the B bus. When

data is written into the on-board memory system, both of these memories are written. This

16K dual-port RAM system may be partitioned into 256 segments with 64 words each

segment or 64 segments with 256 words each segment. Segment 0 contains constants. One

segment is allocated to each block of computations, such as a model evaluation in circuit

simulation, for its parameters and temporary variables. The address to this dual-port memory

is formed by concatenating 8 bits segment number and 6 bits offset provided by the microcode.

A multiplexer (MUX) selects the 8-bit segment number from a constant address 0, the MAD

bus, and the C bus. It thus allows both the PNC and the FPP3 control unit to select a

segment.

In order to run the WETTEK chips at its full speed we needed both a large amount of

on-board memory and the ability to read two 16-bit words and write one 16-bit word in the

same clock cycle. This requires a RAM with less than 35ns access time. The largest existing

35ns access time RAM is a 4K static RAM which may not be able to hold parameters for all

the simulation models on board. The FPP3 is designed to use 16K RAM at present but it is

easy to convert this memory system to one with two read ports and one write port when the

35ns large static RAMs are available. This dual-port memory organization is the key factor of
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the high speed of the FPP3.

433. The Table ROM Drawing 5 in Appendix 5 shows the ROM for the table look-up for

functions 1/B and VA~. This part of the design is the same as that in the FPP2. The sign bit

of the B operand is passed to the C bus in the right cycle. The AK x8 EXP_ROM contains the

exponent of the resulting functions. Up to 16 functions can be put in this ROM. The

function is selected by the microcode. Its address is formed by concatenating 4-bit microcode

and 8-bit exponent from the B operand. Its output is the approximation of the exponent of

1/B. The two DFRAJROMs form the table of the fraction part of 1/B. It is addressed by the

fraction part of B. The SFRA_ROMl contains the approximate value of V5 when B has an

even exponent; the SFRA_ROM2 contains the approximate value of V5~ when B has an odd

exponent. They are addressed by the fraction part of B and aTe selected by the least

significant bit of the exponent of B. Three registers are used to hold and form the addresses to

these tables. One register is used for time multiplexing the fraction part to the C bus. A

latch whose value is always zero is used to form the lower bits of the fraction of the

approximation of the result.

43.6. The Diagnostic System The pipeline register in the control unit and all the

registers interfacing the busses have both parallel and serial I/O ports. The serial I/O ports are

all chained together. They can be operated in two modes. The normal operating mode is the

parallel I/O mode; they behave just as normal registers. In the diagnostic mode, these registers

behave like a single shift register chain.

There are five commands for the PNC to run the diagnosis of the board. They are

"BEGIN DIAGNOSTICS", "SCAN IN", "SCAN OUT", "SINGLE STEP" and "END

DIAGNOSTICS". When the "BEGIN DIAGNOSTICS" commands is received by the bootstrap

finite state machine, it puts the board in the diagnostic mode. In this mode, the PNC can write

any pattern into any parts on the board, or read the content of any on-board memory. The

PNC can also single-step the on-board operation. The ability of read-modifying-write any

registers on board and single-step the executions are very similar to those provided by the
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software debug system. It is possible to develop a good debugging software on top of this

system.

43.7. The Micro Instruction Format The FPP3 contains horizontal microcode with 80

bits per micro word. Figure 4.6 shows the microcode format of the FPP3. It contains four

fields each of which controls one of the four parts. Bits 0 to 18 form the control field for the

control unit. Bits 19 to 35 are the control field for the ALU functional unit. Bits 36 to 50 are

the control field for the table ROM unit. Bits 51 to 76 are the control for the bus interface

and the dual-port static RAM unit. Bits 77 to 80 are unused.

BUS INTERFACE

& STATIC RAM

76 50

TABLE

LOOKUP ROM

35

FUNCTION

UNIT

Figure 4.6 - FPP3 Microcode Format
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CHAPTER 5

SUMMARY

The BBN Butterfly Multiprocessor System has been used as a test-bed for ideas of how to

build a high-speed CAD machine. A prototype of the first generation floating-point co

processor, the FPPl, has been built. The FPPl is a WEITEK 1032/1033 based, micro-

programmable machine. The communication protocol between the FPPl and the Butterfly

processor node is the same protocol as between the memory daughter board and the processor

node. In the current implementation of the FPPl, the 68000 passes operands and result

between the processor node and the FPPl through the run time stack by passing the stack

pointer to the processor node controller (PNC). It takes 26 fis to perform a 32-bit floating

point addition or a 32-bit floating-point multiplication seen by a high level application

program, which is two to four times faster than the Motorola fast software. By changing the

architecture to using the frame pointer instead of the stack pointer, the speed of the FPPl will

be 2.6 times faster.

Two proposals, the FPP2 and the FPP3, are made for the next generation floating-point

co-processor. The FPP2 is a proposal for the applications requiring low cost and moderate

performance. It provides the ability of fast evaluation of elementary functions in the

hardware.

The FPP3 provides the highest possible speed of floating-point operations on the

Butterfly. It may be built to run the WETTEK chips at their full speed with 5 million

floating-point operations per second using a 4K static RAM, or to run them at half the full

speed using a 16K static RAM. The on-board fast static RAM is organized to be able to hold all

the parameters and temporary variables and to support the data flow of the WETTEK chips at

their full speed. A writable control store is designed to make the microcode writing easier.
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Hardware support for diagnostics is provided by a shift register chain which connects all the

key registers together. This system makes the diagnostics and debugging much easier.
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APPENDIX 1

SCHEMATICS OF THE FPPl

Included in this appendix are the schematics of the prototype of the first generation
floating point coprocessor. Drawing 1 is the overall block diagram of the FPPl. Drawing 2 is
the FPPl control unit. Drawing 3 is the FPPl arithmetic unit. Drawing 4 is the FPPl bus
interface. Drawing 5 is the interface to the Butterfly processor node.
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APPENDIX 2

PNC MICROCODE FOR FLOATING POINT

Included in this appendix is the program which generates the PNC microcode for the
floating point functions. In order to make this program work, some changes are also made in
pnc.h and pncm which can be found in BBN microcode files.

pncl0.m

; This version reads the result in to PNC registers and then writes it to the
; memory. It treats FPP as a memory daughter board.

; The floating point function entries are in the range 0xFFC800 to OxFFC820.
; OP code for functions in binary:

UNIT FUNCTION OP CODE VIRTUAL

WTC 1033: A+B ObOOOOlOOO 0xFFC804

A-B ObOOOOlOlO OxFFC808

-A+B ObOOOOllOO 0xFFC80C
WRAP A ObOOOOOOOO 0xFFC810

UNWRAP A ObOOOOOOlO 0xFFC814

FLOAT ObOOOOOlOO OxFFC818

FDC A ObOOOOOllO 0xFFC8lC
ABSA ObOOOOlllO 0xFFC820

+ ABSB

ABS(A+B) ObOOOlOOlO 0xFFC824

ABS(A-B) ObOOOlOOOO 0xFFC828

WTC 1032: A*B ObOOlOOOOO 0xFFC82C

WA*B ObOOlOOOlO OxFFC830

A*WB ObOOl00100 0xFFC834

WA*WB ObOOlOOllO OxFFC838

ADDED FUNCTIONS:

A/B ObOlOOOOOO 0xFFC83C
SQRT A ObOlOOOOlO 0xFFC840

1/A ObOlOOOllO 0xFFC844

Virtual address 0xFFC845 to 0xFFC8FF are reserved.

float.1:
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fixed_at(0xl50),
interrupt,
temi,
call(float.2,Arl,),
cpuD->D->Tx2,
D->rl,

setaux(fHALT, mmR - > aD)

;test for low word vs high word
if cycle 2, virtual SP bits 15.0
if cycle 1, save virtual SP 31.16
;for float.2f

floatJif:

at(0x3a2),
case(!Arl,),
bKfloat.3f),
move(rO,r2) ;save function code in r2

float.3f:

at(Ox312),
br(idle_ret),
mmu9,
assert(mmRl -> aDl),
cpuACK,
move(rl,),
alu->D->Txl,
setaux(aux_dflt)

float.2:

float.3:

float.4:

float^:

fioat.6:

select memory protection word
access violation?

;set up alu output
;MSW of virtual SP in Txl
; turn 68000 back on

at(float.2f-2),
case(Arl,),
br(float.3),
Tx2->D->rl

at(float.2f+l),
call(rdpbk.l),
setBenr

#8000 is writing the low word

,t1 contains MSW of virtual SP
jset up interface to rdpbk

;Have to save Tx2 away

n*ead first 2 words from stack

p-equest 68000 rerun the bus cycle

at(float.3+l),
bKfloat5),
setaux(aux_dflt),
eras

at(0x316),
bKfloat.6),
ADr -> mAD -> D -> Tx3,
eras

at(Ox3a5),
next,

0x003f->D->mAD,
mAD->Ahl ->mA,
fpp

nmrn 68000 back on
p-dpbk already started reading the
jthird word

;MSW of operand 2 in Tx3

;Wake up FPP, float address portion

;use the constant field in CS15.0
Address 21.16 =111111
;see pnch p.ll, This asserts ADrLD
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float.6a:

at(float.6+l),
next,

Ahl ->mA,
eras

float.7:

at(float.6a+l),
br(float.7a),
move(r2,),
alu ->D->mAD

float.7a:

at(Ox322),
br(float.8),
move(r2,),
alu ->D->mAD

float.8:

at(Ox327),
br(float.9),
Txl ->D->mAD

float.9:

at(0x33c),
br(float.lOa),
Tx2->D->mAD

floaUOa:

at(Ox357),
br(float.lO),
move(r3,),
alu -> D -> mAD -> Ahl

float.10:

at(Ox36e),
brtfloaUl),
Ahl ->mA,
add(rO,rlO,rO),

alu-> D-> mAD-> ADr,
mR

float.ll:

at(0x36f),
bKfloat.12),
Tx3->D->mAD,
eras

float. 12:

at(0x377),
bKfloat.13),
ADr-> mAD-> D->Tx4,

Address 21.16 =111111

;gate the function part
JPP FSM float entry

rwait for FPP to be set up
;gate the function part
fPP FSM float entry

;MSW of operand 1 to FPP
;rdpbk returns MSW of operand 1

;LSW of operand 1 to FPP

;Ahl is trashed by float.6

p-ead MSW of operand 2
ptipbk returns physical address
;of the MSW of operand 2 in rO

jstart reading MSW of operand 2

;MSW of operand 2 to FPP

dLSW of operand 2 in Tx4
;FPP should get this too!
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eras

float.13:

at(Ox379),
bKfloat.14)

float.14:

at(Ox37d),
bKfloat.15)

float.15:

at(0x382),
bKfloat.16)

float.16:

at(Ox389),
br(float.l7)

float.17:

at(Ox393),
br(float.l8)

float.18:

at(0x397),
br(float.l9)

float.19:

at(0x3al),
brCfloat.20)

float.20:

at(Ox3a8),
br(float.2l)

float.21:

at(0x3a9),
bKfloat.22)

float.22:

at(0x3aa),
br(float.22a)

float.22a:

at(0x3ab),
br(float.23)

fioat^3:
at(0x3ac),
br(float.24),
ADr-> mAD-> D-> Tx3,
fpp

float.24:

at(0x3ad),
bKfloat^5),

rwait for result

;MSW of result in, Tx3 ADt « FPP
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ADr-> mAD-> D->Tx4,
fpp

float.25:

at(0x3ae),
br(float^6),
Ahl ->mA,
subdOjlOjO),
alu ->D->mAD->ADr,
mWwE

float.26:

at(0x3af),
next,

Tx3 -> D -> mAD -> ADr,
eras

float.27:

at(float.26+l),
bKfloat.28),
eras

float.2 8:

at(0x3bl),
bKfioat.29),
Ahl->mA,
add(rO,rlO,rO),
alu-> D-> mAD-> ADr,
mWwE

float.29:

at(0x3b2),
next,

Tx4 -> D -> mAD -> ADr,
eras

float.30:

at(float.29+l),
br(proc_ret),
eras

;LSW of result in Tx4, ADr = FPP

;Write MSW of result

;MSW of result to memory

;2nd eras to memory

rwrite LSW of result

;LSW of result to memory

;2nd eras
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APPENDIX 3

PROTOTYPE MICROCODE

In this appendix, the microcode in the finite state machine on the floating point board,

both the overall microcode and the content in each PROM, are included. The microcode is not

generated by the BBN micro assembler, the program which generates this microcode is also

included.
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fpp.h

/*

This file is required for generating microcode for the FSM on FPP.
It contains the definitions for the fields of the microword.

Microword definition:

•/

BIT#

0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19.26
27

SIGNAL NAME

GATE_S
LD^
GATEX
LDX
LD_£

LD_J\
Ll_2
L0_2
Ul_2
U0_2

LU
LO^
U1J
U0.3
FO

Fl

F2

F3

LD_F
GOTO
UNUSED

for 1032

for 1033

for both

next address

/* The following fields are defined to bo ANDed */

define NOOP

^define GATE_S

define LD_S

fWefine GATEX

fWefine LDX

define LD_B

define UCLA

fWefine LD_f

define MODE

Ox0007dl3f

0x0007fFfe

0x0007fffd

0x0007fffb

Ox0007iTf7

0x0007ffef

0x0007ffdf

0x0003flFff

0x00061drT

/* control code for 1032 */
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/* The following fields are defined to be ORed */

define NLD_2
define LAB.2
define LA_2
define LMODE_2

NOOP

0x00000080

0x00000040

OxOOOOOOcO

/* The following fields are individually defined */

define DAB_2
define ENB_2
define UMS_2
define ULS_2

NOOP
0x0007d03f

ENB_2
Ox0007d23f

/* control code for 1033 V

/* The following fields are defined to be ORed */

define NLD_3
define LABJ
feline LA_3
define LMODE.J

NOOP

0x00000800

0x00000400

OxOOOOOcOO

/* The following fields are individually defined */

define DAB.J
define ENB_3
define UMS_3
define ULS_3

NOOP
Ox0007cl3f

Ox0007cl3f

Ox0007el3f

/* OPcode for 1033 */

/* The following fields are defined to be ANDed */

/*LlJ-0 = 00 V

/* Ll_2 = 0, L0_2 = 1 */
/* Ll_2 = 1, L0_2 = 0 V

/* Ll_2 = 1, L0_2

/* Ul_2 = 1 */
/* Ul_2 = 0 */

/* Ul_2 = 0, U0.2 = 0 */
/* Ul_2 = 0, U0_2 = 1 */

/* L1J = 0, L0_3 = 1 V
/* L1J = 1, L0.J = 0 V

/* L1J = 1, L0_3

/* Ul_3 = 1 */
/* Ul_3 = 0 */
/* U1J = 0, U0_3 = 0 V
/* U1J = 0, U0_3 = 1 */

IV

1 */

define WRAP 0x0004113f

define UNWRAP 0x0004513f

define FLOAT 0x0004913f
define FIX 0x0004dl3f

define ADD 0x0005113f

define SUB 0x0005513f

^define NSUB 0x0005913f /* -A+B */

^define AADD 0x0005dl3f /* ABS A + ABS B V

^define SUBA 0x0006113f /* ABS(A-B) */
^define ADDA 0x0006513f /* ABSCA+B) V

/• OPcode for 1032 V

^define MUL 0x0004113f

^define WMUL 0x0004513f /* WRAP A * B V

define MULW 0x0004913f /* A * WRAP B */

#ttefine WMULW 0x0004dl3f /* WRAP A * WRAP B V
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fpp.c

include <stdiah>

iftnclude <ctype.h>

ftnclude "fppJi"

fWefine WOP 19

/* This one is for the first testing only. Later on will change for single
operand operations. It is also needed to change the la 11 */

define COMMONJ 0x90
define COMMONS 0x70
define COMMONS 0x50

flWefine ADD_E 0x4

define SUBJE 0x8

define NSUB_E Oxc

define WRAP_E 0x10

define UNWRAP_E 0x14

define FLOATJE 0x18

define FIX_E Oxlc

define AADD.E 0x20

define ADDAJE 0x24

define SUBA_E 0x28

define MUL_E 0x2c

define WMUL.E 0x30

define MULW_E 0x34

define WMULWJ 0x38

define IDLEJ.OOP 0

define CODE.S1ZE 512

unsigned long ucode[ CODE

mainO {
register int i;

set^ucodeO;

foK i = 0; i <CODE_SIZE; i++ ) {
printfC "%07x0, ucode[ i ] >,

I
I

set_ucode() {

regie: '• int i, next;

/* Zsto everyone out */

for( i - 0; i <CODE^SIZE; i++ ) {
ucodef i ] - (IDLEJ.OOP « WOP INOOP);

}
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/* IDLEXOOP V

next = IDLEXOOP;
ucode[next] = (next « WOP INOOP);

/* A+B entry */

next = ADDX;
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] - (next+1 « WOP ILD_A & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMONS « WOP IADD & LDX & NOOP );

/* A-B entry */

next = SUBX;
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] = (next+1 « WOP 11XLA & NOOP>,
ucode[next++] - (next+1 « WOP IMODE & LDX & NOOP>,
ucode[next++] - (COMMON.3 « WOP ISUB & LDX & NOOP );

/* -A+B entry */

next = NSUBX;
ucode[next++] - (next+1 «WOPILD_A& NOOP);
ucode[next++] = (next+1 « WOP ILDj\ & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMONS « WOP INSUB & LDX & NOOP >,

/* WRAP entry */

next = WRAPX;
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] « (next+1 « WOP ILD^A & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMONS « WOP IWRAP & LDX &NOOP >,

/* UNWRAP entry */

next = UNWRAPX
ucode[next++] = (next+1 « WOP ILD_A & NOOP>,
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMONJ « WOP IUNWRAP & LDX & NOOP );

/* FLOAT entry */

next » FLOATX;
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] = (next+1 « WOP IUCLA & NOOP>,
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMONS « WOP IFLOAT & LDX & NOOP >,

/* FIX entry */
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next» FIXX
ucode[next++] - (next+1 « WOP I1XLA & NOOP);
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] - (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMONJ « WOP IFDC & LDX & NOOP >,

/* ABS A + ABS B entry V

next = AADDX;
ucode[next++] - (next+1 « WOP 11XLA & NOOP);
ucode[next++] - (next+1 « WOP ILDJ\. & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMON.3 « WOP IAADD & LDX & NOOP );

/* ABS(A+B) entry V

next = ADDAX
ucode[next++] = (next+1 « WOP ILD_A & NOOP);
ucode[next++] = (next+1 « WOP ILD_j\ & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] = (COMMON_3 « WOP IADDA & LDX & NOOP );

/* ABS(A-B) entry */

next = SUBAX;
ucode[next++] - (next+1 « WOP 11XLA & NOOP>,
ucode[next++] - (next+1 « WOP ILD_J\ & NOOP>,
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] - (COMMONS « WOP ISUBA & LDX & NOOP >,

/* A*B entry */

next - MULX
ucode[next++] » (next+1 « WOP ILD^A & NOOP);
ucode[next++] = (next+1 « WOP ILDJV & NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] - (COMMONS « WOP IMUL & LDX & NOOP );

/* WA*B entry V

next - WMULX
ucode[next++] - (next+1 « WOP ILD_A & NOOP>,
ucode[next++] = (next+1 « WOP 11£LA &NOOP);
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] - (COMMONS « WOP IWMUL & LDX & NOOP );

/* A*WB entry V

next = MULWX
ucode[next++] = (next+1 « WOP ILD^A & NOOP>,
ucode[next++] = (next+1 « WOP 11XLA & NOOP>,
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP);
ucode[next++] - (COMMON.2 « WOP IMULW & LDX & NOOP >,

/* WA*WB entry V
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next = WMULWX;
ucode[next++] - (next+1 « WOP ILD_A & NOOP>,
ucode[next++] = (next+1 « WOP ILD_A & NOOP>,
ucode[next++] = (next+1 « WOP IMODE & LDX & NOOP>,
ucode[next++] =(COMMONS « WOP IWMULW & LDX & NOOP >,

/* COMMON.3 for WTC 1033 */

next - COMMONS;
ucode[next++]»(next+1
ucode[next++] =(next+1
ucode[next++] •» (next+1
ucode[next++] = (next+1
ucode[next++]= (next+1
ucode[next++] = (next+1 « WOP INOOP);
ucode[next++] «= (next+1 « WOP INOOP);
ucode[next++] = (next+1 « WOP INOOP);
ucode[next++] - (next+1 « WOP INOOP);
ucode[next++] = (next+1 «WOPIUMS_3); ,
ucode[next++] =(next+1 « WOP IULS_3 & LD_S>/* this may be wrong! */
ucode[next++] = (next+1 « WOP ILDX & NOOP);
ucode[next++] = (next+1 « WOP ILDX & GATEX & NOOP>,
ucode[next++] = (next+1 « WOP IGATEX & NOOP);
ucode[next++] = (IDLEXOOP « WOP ILDX & GATEX & NOOP);

« WOP ILMODE_3 ILDX & LDX & NOOP>,
« WOP ILAB_3 ILD^A & LDX & NOOP>,
« WOP ILAB.J INOOP);
«WOPINOOP>,
« WOP INOOP);

/* COMMONS for WTC 1032 V

next = COMMONS;
ucode[next++] =(next+1 « WOP ILMODE.2 ILDX & LDX & NOOP);
ucode(next++] = (next+1 « WOP ILAB_2 ILD_A & LDX & NOOP);
ucode[next++] = (next+1 « WOP ILAB_2 INOOP);
ucodejnext++] « (next+1 « WOP INOOP);
ucode[next++] = (next+1 « WOP INOOP);
ucode[next++] = (next+1 «WOPINOOP>,
ucode[next++] = (next+1 «WOPINOOP>,
ucode[next++] - (next+1 « WOP INOOP);
ucode[next++] = (next+1 « WOP INOOP);
ucode[next++] = (next+1 «WOPIUMS_2);
ucode[next++] = (next+1 « WOP IULS.2 & LDX);
ucode[next++] =(next+1 « WOP ILDX & NOOP>,
ucode[next++] = (next+1 « WOP ILDX & GATEX & NOOP);
ucode[next++] » (next+1 « WOP IGATEX & NOOP>,
ucode[next++] - (IDLEXOOP « WOP ILDX & GATEX & NOOP>,

/* COMMONJ for single operand V

next - COMMONS;
ucode[next++] «= (next+1 « WOP ILMODEJ ILDX & NOOP);
ucode[next++] - (next+1 « WOP ILA_3 IIXLA & NOOP);
ucode[next++] =(next+1 « WOP ILA.3 INOOP>,
ucode[next++] - (next+1 «WOPINOOP>,
ucode[next++] = (next+1 « WOP INOOP>,
ucode[next++] «= (next+1 « WOP INOOP);
ucode[next++] - (next+1 « WOP INOOP);
ucode[next++] = (next+1 « WOP INOOP);
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ucode[next++
ucode[next++
ucode[next++
ucode[next++'
ucode[next++!
ucode[next++
ucode[next++

(next+1 « WOP INOOP);
(next+1 «WOPIUMSX);
(next+1 «WOPIULSX&LDX);
(next+1 « WOP ILDX & NOOP);
(next+1 « WOP ILDX & GATEX & NOOP>,
(next+1 « WOP IGATEX & NOOP);
(IDLEXOOP « WOP ILDX & GATEX & NOOP);
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The Microcode

02fdllf

037dllf

03all3f

281113f

04fdllf

057dllf

05all3f

281513f

06fdllf

077dllf

07all3f

281913f

08fdllf

097dllf

09all3f

280113f

Oafdllf

0b7dllf

0ball3f

280513f

Ocfdllf

0d7dllf

0dall3f

280913f

Oefdllf

Of7dllf

Ofall3f

280dl3f

lOfdllf

117dllf

llall3f

281dl3f

12fdllf

137dllf

13all3f

282513f

14fdllf

157dllf

15all3f

282113f

16fdllf

177dllf

17all3f

380113f
18fdllf

I97dllf

19all3f

380513f
lafdllf

lb7dllf
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Iball3f

3809l3f

lcfdllf

ld7dllf

ldall3f

380dl3f

28bdd2f

297d90f

29fd93f

2a7dl3f

2afdl3f

2b7dl3f

2bfdl3f

2c7dl3f

2cfdl3f

2d7cl3f

2dfel3d

2e7dl37

2efdl33

007dl33

38bdief

397dl8f

39fdlbf

3a7dl3f

3afdl3f

3b7dl3f

3bfdl3f

3c7dl3f

3cfdl3f

3d7d03f

3dfd23d

3e7dl37

3efdl33

007dl33
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APPENDIX 4

Modified LAI 1

In this appendix the boolean equations which define the entrance address of the PNC

microinterrupt service routine for the floating point functions, and the current contents of

this PLA are presented.

floating point functions are implemented by writing to group A registers
!150 for two operands floating point functions
!151 for single operand floating point functions
• 01 0101 0000 if vl.0=00 & wr=l & al5.8 = 11001000

! 01 0101 0001 if vl.0=00 & wr=l & al5.8 = 11001001

csa0= /vl*/v0*wr*al5*al4*/al3*/al2*al l*/alO*/a9*a8;

csa4= /vl*/vO*wr*al5*al4Val3*/al2*al l*/alO*/a9*/a8;

csa6= /v1*/vO*wr*al5*al 4*/al 3*/al2*al l*/al 0*/a9Va8;

la11 content

SA000,
00

SA100,
IT ff ff f0 fF fO ff fO fF 30 ff 30 ff 30 3f fO

ff 00 f 3 3c cO bf ff ff d5 2a 2a d5 3f cO ff 00
ff 7f f 3 be fT ff 4f 4f

$A200,
ff ff dd ff bb ff 77 ff ff 01 el If If el 01 ff
fe 01 ff ff If el ff ff ff 01 01 ff 01 ff ff 00
ff 77 ba dc ef ef ee fe

SA300,
ff ff bd ff 7b ff f 7 ff ef 3e 3f cO 00 ff 00 ff
ffOOffOlfeclffffffOOOOffOOffffOO
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ef f 7 7b bd ff de df de

$A400,
ff ff 7f ff 7f ff 7e ff 7f f 8 78 ff 78 ff 78 e7
ff 80 ff 78 67 dd ff ff 6f fO 70 ef 60 ff 9f eO
ff 66 27 5f fb fb 65 23

SASOO,
If le 17 Of If 07 If 07 07 If If 07 If 07 07 If

18 07 If If If 05 If If If If If If 07 If 18 07

If Id If 16 Of If Of lb

SA600,
00000000000000000000000000000000

00000000000000000000000000000000

00 00 00 00 00 00 00 00

$S739d,
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APPENDIX 5

SCHEMATICS FOR THE FPP3

This appendix contains the drawings for the FPP3. Drawing 1 is the high level block

diagram of the FPP3. Drawing 2 is the control unit. Drawing 3 is the ALU and functional

unit. Drawing 4 is the bus interface and the dual-port static RAM. Drawing 5 is the table

ROM and its interface. Drawing 6 is the interface to the Butterfly processor node.
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APPENDIX 6

EXP.C AND LOG.C

This appendix contains the C programs which calculate e' and log x. These programs

are copied from /usr/src/lib.
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/* @(#)exp.c 4.1 12/25/82 V

/*

exp returns the exponential function of its
floating-point argument.

*/
The coefficients are #1069 from Hart and Cheney. (22.35D)

^Include <errno.h>

tftnclude <math.h>

int

static

static

static

static

static

static

static

static

static

errno;

double

double

double

double

double

double

double

double

double

pO

Pi
P2
qO

qi
q2
log2e
sqrt2
maxf

.208038434669466300144384341 le7

3028697169744036299O76048876e5
.6061485330061080841615584556e2
.6002720360238832528230907598e7

.3277251518082914423057964422e6

.1749287689093076403844945335e4
1.4426950408889634073599247;
1.4142135623730950488016887;
10000;

double

expCarg)
double arg;

double fract;
double tempi, temp2, xsq;
int ent;

if(arg — 0.)
returnO.);

if(arg <-maxf)
returnCO.);

if(arg > maxf) {
errno » ERANGE;
return(HUGE);

}
arg *= log2e;
ent - flooKarg>,
fract - (arg-ent) - 0.5;
xsq = f ract*fract;
tempi »((p2*xsq+pl)*xsq+p0)*fract;
temp2 • ((l.0*xsq+q2)*xsq-+ql)*xsq + qO;
return(ldexp(sqrt2*(temp2+templ)/(temp2-templ), ent));

/* @(#)log.c 4.1 12/25/82 V

/*

log returns the natural logarithm of its floating
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V

point argument.

The coefficients are #2705 from Hart & Cheney. (19.38D)

It calls f rexp.

include <errnoJi>

include <math.h>

int errno;
double frexpC);
static double log2
static double In 10

static double sqrto2
static double pO
static double pi
static double p2
static double p3
static double qO
static double ql
static double q2

double

log(arg)
double arg;
{

= 0.693147180559945309eO;
«= 2.302585092994045684;
= 0.707106781186547524e0;

= -.2401391795592105l0e2;
= 0.309572928215376501e2

= -.963769093368686593el;
- 0.421087371217979714e0:

= -.120069589779605255e2;

- 0.194809660700889731e2

- -.891110902798312337el;

double xa zsq, temp;
int exp;

if(arg <= 0.) {
errno - EDOM;
return(-HUGE>,

}
x = frexp(arg,&exp);
while(x<0i3 I

x = x*2;
exp » exp-1;

}
if(x <Sqrto2) {

x = 2*x;
exp » exp-1;

z-(x-l)/(x+l>,
zsq •» z*z;

temp = ((p3*zsq + p2)*zsq + pi )*zsq + pO;
temp • temp/(((l.O*zsq + q2)*zsq + ql)*zsq + qO);
temp = temp*z + exp*log2;
return(temp>.

double

loglO(arg)
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double arg;

return(log(arg)/lnlO);
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APPENDIX 7

FLOATING POINT SPEED

Included in this appendix is a note by J.T. DeuTsch. This note gives floating point

times for 68000 software, and several commercial floating point chips.

68000 SOFTWARE

Here are some times for software floating point on 68000 based machines (lOmhz

68000, no wait states).

MOTOROLA

MIT

NS 16081 10MHZ

OP 32-BIT

ADD 18/xs
SUB 20ms
MUL 45ms

OP 32-BIT 64-BIT

ADD 206ms 220ms
MUL 328ms 345mg s

OP 32-BIT 64-BIT
ADD 7.4ms 7.4ms
MUL 4.8ms 4.8ms



INTEL 80287 5MHZ

OP 32-BIT 64-BIT

ADD 14ms 14ms
SUB 18ms 18ms
MUL 19ms 27ms
DIV 39ms 39ms

SORT 36ms 36ms
TAN 90ms 90ms

FLOATING POINT FUNCTIONAL UNITS

These chips are not designed as co-processors for a particular microprocessor. All

have synchronous TTL-level interfaces.

HP CHIPS

OP 32-BIT 64-BIT

ADD 700ns 1.1ms
MUL 1ms 1.4ms

WEITEK CHIPS

VECTOR
(L*300ns>+(400ns/32bits or 800ns/64)

(L*600ns>+

OP 32-BIT
ADD 900ns

MUL 900ns

VECTOR
(L*200ns)+400ns
(L*200ns>f400ns
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