Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A FLOATING POINT COPROCESSOR FOR THE

BUTTERFLY MULTIPROCESSOR SYSTEM

by

D. Y. Cheng

Memorandum No. UCB/ERL M84/55

6 July 1984

A FLOATING POINT COPROCESSOR FOR THE
BUTTERFLY MULTIPROCESSOR SYSTEM

by
D. Y. Cheng

Memorandum No. UCB/ERL M84/55
6 July 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
‘ ‘ 94720

ACKNOWLEDGEMENTS 5

The author would like to thank Professor A. R. Newton for the support, encouragement
and guidance he has given during this project.

She would like to thank Jeffrey T. Deutsch for his ideas and suggestions for this project,
for his help in changing the Crysalis operating system and the Butterfly C compiler, and for
being joint designer of the second generation floating point coprocessor for the Butterfly.

She would like to thank Glenn Simpson, Ward Harriman, John Rokasz, especially
Walter Milliken of Bolt Beranek and Newman Inc. for the:r suggestions and help during this
project.

She would like to thank Bolt Beranek and Newman Inc. for their generous support of
this project, and thank Randy Rettberg, John Goodhue, and Frank Heart for providing her a
pleasant working and living environment while at BBN.

This project was supported in part by the Semiconductor Research Corpération and their
support is gratefully acknowledged.

Finally, the author would like to thank her parents for the chance they gave to her to
continue her education in the United States.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

CHAPTER 2: THE BUTTERFLY MULTIPROCESSOR

2.1 Introduction

2.2 Architecture Of The Butterfly

2.2.1 Overview

2.2.2 The MC68000

2.2.3 The Processor Node Controller

2.2.4 Memory Management And The Memory Management Unit weccccmmmmeceee

.2.5 The 170 Co-processor

2.2.6 The Switch Interface And The Interconnection Network

2.3 Butterfly Operating System

2.3.1 Object Management System

2.3.2 Processes

2.3.3 Events

2.3.4 Dual Queues

2.3.5 Buffer Management

CHAPTER 3: THE PROTOTYPE FLOATING POINT CO-PROCESSOR

3.1 Introduction

3.2 The Interface To The Processor Node

3.3 Tradeoffs In The Architecture Design

3.3.1 The Memory To Memory Architecture

3.3.2 The Stack Pointer Architecture

3.3.3 Frame Pointer Architecture

3.3.4 On Board Stack Architecture

13

13

19

19

22

23

24

24

26

26

26

28

29

29

31

33

3.4 The Prototype

3.4.1 The Hardware

3.4.2 Performance

CHAPTER 4: PROPOSALS FOR THE NEXT GENERATION CO-PROCESSOR

4.1 Introduction

esscse

4.2 Tradeoffs

4.3 Hardware Support For Evaluating Elementary Functions

4.4 The FPP2

4.5 The FPP3

4.5.1 Introduction

4.5.2 The Control

4.5.3 The ALU

4.5.4 The Bus Iaterface And Dual Static RAM

4.5.5 The Table ROM

4.5.6 The Diagnostic System”

4.5.7 The Micro Instruction Format

CHAPTER 5: SUMMARY

APPENDIX 1: Schematics of the FPP1

APPENDIX 2: PNC Microcode for Floating Point

APPENDIX 3: Prototype Microcode

APPENDIX 4: Modified LA11

APPENDIX §: Schematics For The FPP3

APPENDIX 6: exp.c and log.c

34

34

35

37

37

38

39

42

N

46

47

48

48

49

O
.

> »
A
'

O

3>
O~
L]

CHAPTER 1

INTRODUCTION

For the past several years, the complexity of the VLSI chip designs has been increasing
rapidly. Many current circuits would be impossible to design without computer aided design
(CAD) tools. This trend is likely to continue as a result of the rapid development of the VLSI

technology.

Circuit simulation is an important part of computer aided design. It allows users to find
many design flaws without building the chip. However, there is a large distance between the
computing power required to simulate large circuits and that which current computers can
provide. Although there have been attempts to create circuit simulation programs which can
exploit the vector prbwssing capabilities of machines such as the Cray-1 [VLAS82], the result
has only been approximately an order of magnitude improvement over scalar performance, for
pr;u:tical circuits. One reason for this is that the extensive sparse matrix operations in circuit
simulation cause a "gather-scatter” problem [CAL79], where the time needed to read data from
the sparse matrix and write it back limits the machine to a small percentage of its peak

performance.

In general, most CAD problems are computationally intensive and contain high degree of
concurrency. More and more CAD programs need more computing power than today’s
sequential machine can provide. A multiprocessor system with a reasonablely high
bandwidth and low latency, such as the BBN Butterfly [RET79], gives a nearly linear increase

in performance for a small number of processors [DEU84].

The Butterfly is the first multiprocessor system with a reasonable software environment
available commercially. The current version of the Butterfly has sixteen processors in the

system. A 128 processor version is now under design. The high bandwidth, low latency, and

-2-

easily-expanded interconnection network of the Butterfly makes it suitable as a first
generation CAD machine. Many architectural and algorithmic ideas can be evaluated by
experimenting with them on multiprocessor hardware. This can lead to better insight about
what the best architectures and algorithms for computationally-intensive scientific
applications such as CAD are likely to be. However, there is no hardware support for the
fioating-point operations on the Butterfly system. Efficient floating-point is necessary for
scientific applications and this requirement motivated the project of building a floating-point

co-processor for the Butterfly.

In Chapter 2 of this report the architecture and the operating system of the BBN
Butterfly Multiprocessor System is introduced. In Chapter 3 the prototype of the first
generation floating-point co-processor FPP1 is described. Comparisons among the memory to
memory architecture, the architecture using the stack pointer, the architecture using the
frame pointer, and the on-board stack architecture are described, and tradeoffs in designing the
FPP1 are presented. The FPP1 is microprogrammable. Its speed is 2-4 times the floating-point
operation than the fast Motorola floating-point software on the 68000 employed as the main
general purpose processor in the Butterﬂy~ machine. By changing the microcode to the
architecture in which the 68000 passes the frame pointer to the processor node controller on 2
Butterfly node at the beginning of a floating-point operation, anothe;' 2.6 times speed up can be

obtained.

In Chapter 4 two new architectures for the second generation floating-point co-processor
are proposed, the FPP2 and the FPP3. The FPP2 is a low cost but relatively low performance
version of the co-processor. Its hardware supports fast evaluation of elementary functions.
The FPP3 provides the highest possible floating-point speed in the Butterfly system. Its
WEITEK chip set [WEI83] gives 5 million ficating-point operations per second performance if
4K Static RAM is used, 2.5 million floating-point operations per second performance if 16K
static RAM is used. An opticnal NS16081 chip provides 64-bit precision.

CHAPTER 2

THE BUTTERFLY MULTIPROCESSOR

2.1. Introduction

In this chapter, The main features of the Butterfly architecture and the Chrysalis
operating system are described. Only those features that are the basis of the floating-point co-
processor are described in detail; others are reviewed briefly for reference. Additional
information can be found in the Butterfly Quarterly Reports from Bolt Beranek and Newman

(BBN) [RET79].
2.2. Architecture Of The Butterfly

2.2.1. Overview The Butterfly is a 68000-based tightly coupled multiprocessor system
built by BBN as part of the DARPA voice-funnel project, designed for interfacing high speed

digitized voice signals to a packet-switched communications network.

The Butterfly multiprocessors can be configured with from 1 to 128 processor nodes. All
processor nodes communicate through an interconnection network as shown in Figure 2.1,

This network is topologicaly equivalent to the Omega network [LAW75].

Each Butterfly processor node is itself a multiprocessor. It contains the following

functional units:

- A MC68000 microprocessor
- An AMD2901-based processor node controller.

- A memory management unit which controls the segment-based virtual memory
system of the Butterfly.

- 256K bytes of on board dynamic memory.

- Up to four 2901-based 1/0 co-processors.

-4~

Figure 2.1 - Butterfly Multiprocess System

P/M. P/M P/M P/M
INTERCONNECTION NETWORK
P/M P/M P/M P/M

- Two special purpose finite state machines for interfacing the switch.

- 4X bytes of Erasable Programmable ROM for bootstrapping and diagnosis

A block diagram of these functional units and their interconnections is shown in Figure 2.2

The rest of this section describes some of these functional units in detail.

2.2.2. The MC68000 The Motorola MC68000 is a 16-bit microprocessor, with 32-bit
internal data and address registers, and a 16 bit ALU. The MC68000 communicates with the
rest of the functional units in the processor node through a 24-bit CPU address bus (CPUA
bus), a 16-bit CPU data bus (CPUD bus) and the CPU control bus. The MC68000 takes 4 clock
cycles to access memory. If CPU does not receive an acknowledge signal from the memory
before the fourth cycle, a wait state is automatically inserted. In the Butterfly multiprocessor
system, the memory access is more complicated than a uniprocessor system. The fact that

many decisions have to be made during the fourth cycle lengthens the local memory access to

five cycles.

55000 PNC

CPlLIA
CPLIN
MAan
0
Aanh

MMU MEMORY SWITCH

NTERFACE

Figure 2.2 - The Butterfly Processor Node

When the CPU receives a bus error signal together with a halt signal, it will put the
CPUA bus and the CPUD bus in the high impedance state and remain halted as long as the

balt signal remains asserted; after the halt signal is removed it reruns the bus cycle.

2.2.3. The Processor Node Controller The processor node controller (PNC) is the key

component in a processor node. The PNC handles the following functions:

- Local memory accesses and local memory refresh

- Switch interface and remote memory access

- I/O co-processor interface

- Time-of -day clock and timer handling

- Multiprocessor system synchronization and communication primitives

- Interrupt controlling

- Initializing the memory management unit registers

The PNC is a 16-bit AMD 2901-based microprogrammed machine. As shown in Figure
2.3, it contains a 16-bit 2901 ALU, a 2911 microprogram sequencer, a 1X X64 bit micro

control ROM and a PLA which generates the address of a microinterrupt service routine.

The way 68000 is serviced by the PNC is by the use of microinterrupts. In the local
memory subspace O, there are some "magic” locations which will be described in detail in the
next section. Whenever 68000 reads from-or writes into-these locations, CPUA bits 15
through 8 and some control information cause the PLA to generate the address of a proper
microinterrupt service routine. The PNC then executes the desired microcode. The 68000
waits while the PNC is performing the desired function. After the PNC finishes the function,

it sends an acknowledgement to the 68000. The 68000 then ends the memory cycle and

/,
19
:) CONTROL LINES TO OTHER
1K x 64 .BIT . PROCESSOR NODE RESOURCES
Ao~ , READ ONLY
N .. , CONTAROL
PROGRAM 7 10 STORE
« |SEGUENCER| " 10 MENMOHY
20 BRANGM CONDITIONS .
— r+1
ey LT 16817 2901
73] ARITHMETIC/
— LOGIC UNIT
2 CONTROL STORE ADDRESS BUS 5]
s |
. SERVIC UTIN e
32 FUNCTION REQUESTY ~ ICE pou 70 1
CONTROL LINES i GENEHATOR
— [%] DATA BUS

Figure 2.3 - The Processor Node Controller

proceeds [RET80}

2.2.4. Memory Management And The Memory Management Unit The Butterfly

provides segmentation-based virtual memory. The virtual memory system in the Butterfly

MAIN
MEMORY

SAR

ASAR o

| SEGMENT 1

PI1P1P

SEGMENT

SEGMENT Kk

SEGMENT F8|°
i o)

3

SEGMENT FF

Figure 2.4 - The Address Space For A Process

provides each process with up to 256 memory segments. Each segment can be 256 to 64K
bytes long which may either be in the local memory or a remote memory. Segments F8
through FF are shared among all processes in the system. Figure 2.4 shows the virtual
address space of a process. The ASAR and SAR will be explained later in this section. The 32
bit virtual address format is shown in Figure 2.5. The upper 8 bits are unused. The next 8 bits

are the segment number. The last 16 bits are the segment offset.

The physical address format is shown in Figure 2.5. This 32-bit physical address space is
the concatenation of the physical address spaces of all the processor nodes in the system. The
highest 8 bits are thus the processor node number. The physical space of each processor node
is divided into four subspaces. Two bit are used to select the subspace. The last 22 bits are the

subspace off set.

Each subspace of a processor node has a special purpose.

31 24 18 2

UNUSED SEGMENT NUMBER SEGMENT OFFSET

Figure 2.5 - The Virtual Address Format

31 24 22)
PROCESSOR SUBSPACEH SUBSPACE OFFSET
NODE NUMBER NUMBER

Figure 2.6 - The Physical Address Format

- Subspace O contains EPROM, Segment Attribute Registers, 68000
interrupt vectors, interrupt handling routines, operating system
kernel, library routines and all PNC control registers which are
used to generate required microinterrupts.

- Subspace 1 contains the 1/0 control registers on the 1/0 boards.
It is divided into four equal parts, one for each possible 170 board.

- Subspace 2 contains the local memory.
- Subspace 3 indicates that the access should be made through the

switch. This is mainly for remote memory access. But it is also possible
to map the local memory address in this subspace.

The current Butterfly system does not have a file system or secondary storage. This will

be changed in a later version of the system.

The memory management unit (MMU) provides hardware support for memory
relocation, memory protection, and address translation. The architecture of the MMU is
shown in Figure 2.7. There is an Address Space Attribute Register (ASAR) which points to
the beginning of the Segment Attribute Register (SAR) block of the currently executing
process. Figure 2.8 shows the format of the ASAR and SAR. The highest two bits of the
ASAR are the control and mode bits. The size code indicates how many segments are in the
virtual address space of the current process. The least significant nine bits are the pointer to
the first SAR of the current process. Upon context switching, the operating system only needs
to save the value of the ASAR and loads it with a new value. The 1X X16 segment attribute
RAMs contain 512 SARs each of which points to a segment in the virtual memory. Each SAR
also contains the protection information of the segment. An 8 bit adder is used in translating
the virtual address to physical address. A PLA detects the protection violation of a memory

access.

The process of translation from the virtual address to the physical address is picturized
in Figure 2.9. Bits 8 to 0 of the ASAR is ored with the segment number in the virtual address
to get the required SAR. Bits 31 to 24 of the physical address come directly from the
processor node number field of the SAR; Bit 23 to 16 of the physical address is formed by the

subspace number field and the least significant bits 5 to O of the SAR. The page offset in the

| 0
) MC52000L
l CONTRO, o e AF3Y !
¥
s t-) [
! { CPU ADDRESS BUS § MICRCCODE BIT :
(1) : ; Xx18
! SEGMENT
Is 2| ATTRIOUTE
CPU DATA SUS J’ RAMS [
i P) 1" 7
1 18 ANCH
: { 3 . 4F% muxs e {
DATA INPUT puysicaL ADA/ || Aporess | | ADORESS |
LATCH DATA MUX REGISTER | | AxTR:8UTE
) 3] | ReGisTeER p ;
e]u 18 {9
e \4 DATA B8us { l H
‘ l
n ' |
e]
‘1:'4%:{7 +. l. },
{ 1

PROTECTION VIOLATION
OETECTION
PROGRAMMABLE LOGIC
ARRAY

PROGRAMMABLE LOGIC
ARRAY TO GENERATE
MICRQINTERRUPT SERVICE

ROUTINE ADDRESS

SO

-1

Figure 2.7 - The Memory Management Unit

TO MEMORY SYSTEM

-11-

SEGMENT ATTRIBUTE REGISTER

l;li—lfll‘Tlllljlilll‘lll'lIl‘lll
S~ ~~ o St § - ~~ J‘T—' S S o —r
Processor Page Bits 19:16
Node Number Offset of the Physical
Address
Access Code Segment Size
0 R_r_x 0 0 8 16
2 R_Xr_x 11 9 24
4 RWXrwx 2 2 A 32
6 RW_rw_ 33 B 48 Subspace
8 Reree. 4 4 C 64 0 Subspace Zero
A RW____ 5 6 D 9 4 1/0
C R 6 8 E 128 8 Local Memory
E RW_r— 712 F 256 C Remote Memory

ADDRESS SPACE ATTRIBUTE REGISTER

lll'[ll:TIllllT

0'00

J 3
Kernel

Inhibit

Size Code

PONSENO

8
16
32
64

128
256

SAR
Pointer

Figure 2.8 - The SAR And The ASAR

SAR is added with bits 15 to 8 of the virtual address to form the bits 16 to 8 of the physical
address. The physical address bits 7 to O come directly from the bits 7 to O of the virtual

address.

The PNC must be able to access the MMU in order to perform some functions such as
block transfer through the switch. The Address Register is there for this purpose. To do this,
the PNC first asks the 68000 to back off the CPUA bus and the CPU control bus. The PNC
then loads the SAR address into both Address Register and the ASAR. The MMU then

proceeds to perform relocation and protection violation detection as usual [RET82].

2.2.5. The I/0 Co-processor Up to four I/0 processors can be configured in each processor
node. Each 1/0 co-processor supports four synchronous and four asynchronous channels with
a data rate of four million bits per second. As shown in Figure 2.10, the processor node
communicates with the 1/0 co-processors through an 1/0 bus called BIOLINK. Figure 2.11

shows that an 1/0O co-processor consists of four parts interconnected by a 16-bit internal bus.

- An 170 controller which provides the means for data manipulations.

- An interface to the BIOLINK, in which a finite state machine deals
with the synchronous protocol between the 1/0 co-processor and the
processor node.

- Four Signetics 2661 Enhenced Programmable Communications interface
chips with RS232C line driver/receivers,

- Four Signetics 2652 Multiprotocol Communications Controllers chips
with RS422 line driver/receivers.

The 170 controller is composed of four parts: An AMD2901-based microprocessor, 2 512 word
64-bit read-only control store in which the microprogram resides, a 2911-based microprogram
sequencer, and a 1X X16 scratch-pad memory which provides control variable and data

storage for all the channels [RET82]

2.2.6. The Switch Interface And The Interconnection Network The interface of a
processor node to the interconnection network is composed of two parts. One is the receiver

and the other is the transmitter. Figure 2.12 shows the block diagram of the receiver. The

SEGMENT
ADDRESS ATTRIBUTE

REGISTERS
000
SPACE A
o0 16 SEGMENTS ADDRESS .
SPACE
1% ?é%ﬁeg-rs ATTRIBUTE
REGISTER
040
SPACE C
STARTING VIRTUAL ADDRESS
_ 32SEGMENTS SEOMENT
0100
FFS
SPACE D SEGMENT PAGE OFFSET
32 SEGMENTS
0140 -
SPACE E
16 SEGMENTS
0160
SPACE F
16 SEGMENTS
0200
SPACEG SEGMENT ATTRIBUTE
REGISTER NO. 245
/
YIRS 9
63 SEGMENTS l v
8300 +
SPACE H
16 SEGMENTS * Y !
o020
SPACE | — _—
16 SEGMENTS
0340
PHYSICAL ADDRESS
SPACE J
32 SEGMENTS
0400
SPACE K
128 SEGMENTS

Figure 2.9 - Address Translation

-14-

TO
SWITCH

FACM
SWITCH

32 Mbos

B

PROCESSOR
MODULE

Figure 2.10 - The BIOLINK

/.'QL"‘K
18.4 Mdos
1/0 MODULE 1/0 MODULE 1) MOBULE 170 MODULE
& 0 &> x2 ®3
N maer” gt e v e izt
TO/FROM 1/0 TO/FROM 170 TO/FROM 11O TO/FROM 10
DEVICES DEVICES DEVICES DEVICES

-15-

8 MMz 18- bit
1/0 CONTROLLER

16 M bytev/sec {128 Mbdos!

- INTERFACE
- TO

e BIOLINK
-]
-—

2681 1 2852 2882

”o ¢ o0 #3 X ¢ &3

%: %: i:é %1 %3 1 %a

[N ") — d 7
v g

RS2I2C DRIVERS/RECEIVERS RS422 DRIVERS/RECEIVERS

Figure 2.11 - The 1/0 Co-processor

receiver has a ROM/PLA controlled finite state machine, a checksum generator, a 16-word
dual-port memory with 16-bit per word, and a set of ECL to TTL line drivers and receivers.
The finite state machine controls the interaction between the processor node and the switch. It
also controls the registers and line drivers and line receivers. The dual-port memory supports
two input buffers. Two input buffers are needed in order to avoid deadlock situations. The
transmitter shown in Figure 2.13 has a symmetrical architecture to the receiver. Although

there is no deadlock problem in the transmitter side, it also provides two output buffers.

The interconnection network is implemented by a set of switches and wires. Each
switch is a 4x4 crossbar plus the routing logic. The interswitch wiring is similar to the
wiring rule of the perfect shuffie network. Figure 2.14 shows 16X16 such a network. For N

processor nodes, the number of switches needed is

-16-

TO/FAOM BUTTERFLY
SWITCH OETPUT PORT

-~ - “~
PNC CONTROL SIGNALS f t f } I Y
ARmny — . .
... AN l
1RSI R
vy ¢ Y A
RECEIVER CONTROL 2 12 (I
PROGRAMMABLE 1‘2 1 | SWITCH DATA
LOGIC ARRAY | R - CLX
? (’T'-—-#‘———! I INPUT REG
13 5 l r
s " fa
RECEIVER ["'74 fal Ja l
CONTROL | A DATA DELAY o
STORE (7 i [enecxsum REGISTER
L_sTore g cx :
1w] ‘
y CHECK SUM J_ch
SYNCHRONOUS oL CLK REGISTER
[—
REGISTER 5 1 ____—_3 3 2 PORT A]
e - === Cont !
L] 16216 - BIT DUAL |
S ! PORT RAM |
. FROM PNC —=i 7, sony s ﬁ'“
MEADER CHECKSUM| MICROCODE T
s HEGISTER
1Y
TO PNC MICRO INTERRUPY 1.
SERVICE ROUTINE
ADDRESS GENERATOR DATA 8US
PLA

Figure 2.12 - The Receiver

-17-

PNC CONTROL SIGNALS

—— m—

DATA BUS
|- m :
1y PATH ENABLE 16 .
TRANSMITTER CONTROL REG .
mocnmn:a#e LOGIC L
A
T3] | erom encmicRoCODE—e{* <7 TS
44 {4 PORT RAM
) 7]
TRANSVITTER l
CSTone]
4 | A8 {4
—3‘
4
e t;;uo'z '/icascxsu:v
ROGRAMMADL
SYNCHRONOUS
REG:STER E—c;x | LOGIC ARRAY
M
j 1, ;: —
‘ 3 | Tswitcn pata
CHECKSUM
REGISTERSH QUTPUT as%g-—cu
70 PNC | -
MICROINTERAUPT | — [
SERVICE ROUTINE L
ADDRESS GENERATOR ,{3 b
PLA 2 A)
1 ty
) -
i
TO/FROM BUTTEHFLY

SWITCH INPUT PORY

Figure 2.13 - The Transmitter

N
TXlog4N
This network has several interesting characteristics:

(1) Uniform latency across the system,
The latency from any node to any other node is : log4N

(2) The latency increases very slowly when the system scales up.
(3) The bandwidth of the network is linearly proportional to the

number of the switch chips. No changes in the switch design are required
to expand the network.

These characteristics make this kind of interconnection npetwork very suitable for a

multiprocessor system with large number of processors (more than hundreds) in which low

latency and high throughput are essential [RET79a).

-18-

2.3. Butterfly Operating System

Chrysalis, the Butterfly operating system, is a process-based real-time operating system.

The system services are provided by a collection of system calls. All system resources are

conceptualized as objects and are managed by the Object Management System. The

synchronization, scheduling and interprocess communication are implemented through events,

locks and queues. The storage is allocated using a Buddy algorithm [KNU73)}, and is reclaimed

‘ by the Chrysalis garbage collector. The garbage collector scans all objects every few seconds.
If the owner field of an object claims that its owner has been deleted, this object will be

deleted by the garbage collector. In the following sections some important components of the

Chrysalis operating system are described.

2.3.1. Object Management System The Object Management System is designed to manage
the segmentation-based virtual memory in a tightly-coupled multiprocessor system. It
provides the services for memory allocation, memory protection, and controlled memory
sharing. All the resources including all data structures in the system are organized as objects.
The Object Management System manipulates each object through a 32-bit Object Handle or
Object Identifier (OID). The Object Handle is unique across the system. Each object has an
Object Attribute Block (OAB) which contains the type information, the status, protection, and
debugging information of the object, and the pointers to the object representation in the
memory. Sharing an object among processes is implemented by mapping the Object Handle
into their own address spaces. The format of the Object Handle is shown in Figure 2.15. The
processor number describes which processor contains the header data structure of the object.
The sequence number is for debugging and error detection purposes. The Offset field is the
physical address of the object due to the special usage of segment F8. As mentioned before, all
Processes in the system can access segments F8 through FF in addition to their own segments.
Physical memory starting at location 0 is mapped into segment F8 in each processor node and

is used for the operating system data structures.

e

i]

fwisI~l o

2ol

IS

B [F s

I5 fo leo

-
-~

SNMHN

Figure 2.14 - Butterfly Network

-20-

1 ‘24 1B o e

‘HQOCEDSESOR SEQUENCE OFFSET IN
N.fhﬁBER NUFBER SEGMENT FB

Figure 2.15 - The Object Handle

The Object Management System has four layers:

- The physical Memory Manager
- The Central Object Utility

- The Memory Mapping Manager
- Special Purpose Managers

The Physical Memory Manager allocates the physical memory on the node using Buddy
algorithm. This algorithm divides the memory into blocks of size of power of two and
allocates memory with a block of size of the nearest power of two. If there are no such
blocks left, it breaks a block with the next larger size. The Central Object Utility provides
the type-independent operations on objects, such as creation, deletion etc. The Memory
Mapping Manager defines and maintains the virtual address spaces for the processes in the
system. The Special Purpose Managers are a collection of managers for special objects such as

processes, events and dual queues

The Object Management system provides routines to manipulate some special objects such
as processes. To access these objects, a user must ask the Object Management system to give
him the OID and map it into his address space. If an access to an object does not have the

right access mode the access is rejected and an error is generated [RET83).

-21-

2.3.2. Processes All the tasks in the Butterfly system are represented by a set of
communicating processes which share the main memory. Each process is represented as an
object and is managed by the Object Management System. Each process has its own data
structure called the Process Control Block (PCB) which contains the addressing and
scheduling informations. When the process is switched out of the CPU, its state is also saved
in its PCB. Each process also has a data structure called Process Template which contains 2

pointer to the code and the initialized data of the process.

All the Butterfly program are developed and compiled in a host computer, VAX. Object
code with the extension ".68" is down loaded from the VAX to the Butterfly. A process is
created by first asking the Object Management System for the Process Template. The
execution of the Make_Template system call allocates the Process Template and calls the
loader demon. The loader demon cooperates with a program "bld" running on the VAX to
load and create the process. Using the existing Template, a process can be created on a
different node at run time by executing a Make_Process system call. By specifying the
argument block of the process being creating, the user can specify the name, the space
information, protection information, the type of the process and some additional information.
After having the Process Template, the user stack size has to be specified. If the specified stack
size is too small for the process, a fatal error message of "stack overflow” will be generated at

Tun time.

A process can be terminated by executing the "exit” system call or by another process
through the "Del_Obj" system call. When a process terminates, other processes can be
informed by the event mechanism. lf some of the objects of the terminating process are still
needed by some other processes, the ownership of these objects should be transferred either to
these processes or to the operating system. The Object Management System will invalidate the
owner fields of all the other objects which will then be garbage collected by the garbage
collector [RET83].

-22-

2.3.3. Events Events are an important mechanism for synchronization, scheduling and
interprocess communication. An event is an object. Each event is owned by a process a;ld is
Tepresented by a unique event handle. An object called "Event Block” is used to record the
data of the event. An Event Block contains several fields:

- A link field for putting it in a queue

- Two fields containing type information

- A sequence number field

- A field of flag bits

- A protection field

= An Owner’s Processor Handle field

- A data field

- An owner’s data field

The sequence number field refers o the number of times this block of memory has been
allocated. It matches the Sequence number field in its Event Handle if this Event Handle is
valid. The flags are for the error detection purposes. The owner’s Process Handle is used to
put this event into the right queue when the event is posted. It is also used by the garbage
collector to reclaim this block of memory. Two data fields are pointers to the data block. In
the Butterfly system, the Event Block is allocated explicitly before the event is posted.
Because of this preallocation of the Event Block, it is better for a process to allocate all its

Event Blocks when it starts to run.

When a process needs service from another process, it creates an event by making a
Make_Event system call. The Object Management System allocates the Event Block in
segment F8, and returns an Event Handle to the process. The process may then do some other
Jobs and check whether the event has occurred periodically, or it may £0 to sleep by executing
a "wait" system call. When the event occurs, it will be posted, if the owner process is
waiting for this event, the process will be waken up. A user can also specify a specific time

at which an event should be posted by executing a Set_Timer system call.

2.34. Dual Queues The dual queue is the data structure used by the Chrysalis to
implement the event and lock mechanism. The reason why it is called the dual queue is that
it can contain either Event Handles of the waiting processes or queued data elements. A flag
in the header tells whether it is a data queue or an event queue. Each dual queue has a
header portion and a ring buffer. The ring buffer must have a length of a multiple of four
bytes and it must be allocated within a 64K block. A library routine is used to initialize a
dual queue. Locks are used for synchronization. When a dual queue is used as locks, 2 "lock”
flag bit is set in the header, and it is limited to have only one element. An empty queue
represents a locked lock. A process needing the lock can execute de-queue to wait for it or
poll to test it. To unlock the lock, the process which is holding the lock uses enqueue to store

its Process Handle on the queue [RET83).

2.3.5. Buffer Management A Buffer Management System has been developed for managing

buffers more efficiently. There are two shortcomings in the Object Management System.

(1) When the Object Management System does a mapping, it checks
the access privileges of the process, checks the validity of the
Object Handle, and sets up a SAR pointing to the object. This is
too time consuming for the buffer management where the mapping is
frequently done.

(2) The object size allocated by the Object Management System is

limited to be one segment. When the number of the objects gets large,
there may not be enough SARs for the process.

The Buffer System uses the Object Management System to allocate a large amount of
memory space as a buffer pool object. A buffer pool is obtained by executing a Make_BFpool
system call. It then suballocates buffers from this space by supporting a set of simpler and
faster operations. A dual queue is used to keep all the legal buffer pool identifiers. Each
buffer pool is given a unique ID from the dual queue at creation time. When the pool is
deleted its ID is put back to the queue for reuse. Each buffer also has an ID. Figure 2.16
shows the format of the ID. The pool ID is the identifier assigned to the buffer pool at
creation time. The offset is the offset from the buffer pool pointer. All the buffer IDs are put

into a dual queue called Free Queue. A buffer is not an object. It is composed of a header and

-24-

Figure 2.16 - The Buffer Identifier

a data area. A lock is used for each buffer pool for the mutual exclusive accesses among
several processes to a buffer in the pool. A mechanism similar to "use count” is used to free a
buffer shared by several processes. It is possible for a buffer pool to span more than one

processor node.

Process can access buffers by submitting the Object Handle of the Free Queue. After a
process selects the buffer pools and maps them into its address space, it maintains a table
which transfers the buffer ID to the virtual address of the buffer. When a process finishes its
work with a buffer, it may free the buffer by calling the BFfree_buf service routine; It may
pass the buffer ID to another process without keeping a copy of the ID for itself; It may also

retain the ID after it passes the buffer to another process [RET81].

CHAPTER 3

THE PROTOTYPE FLOATING-POINT CO-PROCESSOR

3.1. Introduction

Although the Motorola 68000 ha§ integer performance in the range of a super-
minicomputer, it has no hardware or microcode to support floating-point operations. In
Appendix 7, tables of floating-point performance on different processors are listed. It shows
that the speed of floating-point operations on the MC68000 is 5-10% of that of their integer
counterparts. The resulting performance degradation may be unacceptable when trying to use
the Butterfly for scientific applications such as circuit simulation. The tradeoffs involved in
co-processor design for the Butterfly are described first, then several architectures which may
be used with the Butterfly processor node are presented. Finally, the architecture used in the

prototype floating-point co-processor and associated experimental results are presented.

3.2. The Interface To The Processor Node

A co-processor is a processor which officads specific tasks from the main CPU.
Traditionally, there are two ways to design a co-processor. The first way is to have the co-
processor sit on the CPU address and data bus. The co-processor watches all bus activities and
decodes all the instructions appearing on the bus. If the instruction is in its instruction
repertoire, it executes the instruction and returns the result to the CPU. The second way is
that instructions in the co-processor repertoire cause the main CPU to trap. The trap service
routine then sends the information to the co-processor and starts the co-processor. Both these
two methods are not suitable for our purpose. The first method is impossible since it is
impossible to tell whether the 68000 is fetching an instruction or a data in a memory access.

The second method is too slow to meet our performance requirements. The Butterfly

floating-point co-processor must have its own way to interface to the processor node.

The Butterfly floating-point co-processor interacts with the Processor Node Controller
(PNC) instead of the 68000 CPU. It takes advantage of two features of the Butterfly processor
node. One is that the PNC performs all the memory and switch functions efficiently. The
other is that on the processor node there is a memory daughter board connector, which
provides all the memory control signals and the signals coming out from the Memory Address
Data bus (MAD bus). The floating-point co-processor is thus connected to the processor node
by this daughter board connector. Figure 3.1 shows the Butterfly system with the floating-
point co-processor. The 68000 CPU is not aware of this co-processor; it treats the co-processor
as a local memory. Every floating-point instruction in the source code is compiled into a
memory reference instruction referencing a "magic” location in subspace 0. This reference
causes a microinterrupt to the PNC. The microinterrupt service routine then fetches the
operands for the floating-point operation, passes them to the floating-point co-processor, and

starts the micro engine on the co-processor. The co-processor works in lock step with the

FLORTING
58220 PNC POINT
COPROCESSOR
CPUR
CPuD
MAD
U
AD
SWITCH
MMU MEMORY
INTERFACE

Figure 3.1 - Butterfly With The Floating-Point Co-processor

-27-

PNC. After several clock cycles, The PNC reads the result from the MAD bus, stores it to the
right memory location, and informs the 68000 to end its memory cycle and to proceed. The
68000 waits for the result in the extended memory cycle until it receives an acknowledge

signal from the PNC.

There are two ways to pass the opcode to the co-processor. One is to pass it as data; the
other is to pass it as part of the address. To pass the opcode as a data, the 68000 can either put
the opcode in segment F8 or put it in the same place with the operands, and let the PNC fetch
it. This requires several cycles for the PNC to get the opcode and is thus a time consuming
approach. When the 68000 references the subspace 0 "magic" location, only the virtual
address bits 15 through 8 are used by the PLA to geherate the address of the microinterrupt
service routine. The physical address bits 7 to O are the same as the virtual address bits 7 to O.
These bits can be used to pass the opcode from the 68000 to the co-processor. No extra works

are needed for this approach, so it was chosen as the mechanism for passing the opcode.

There are two ways to pass operands to the co-processor. One way is to pass them
through segment F8. This is also slow because the process must change its access mode from
user mode to kernel mode and then change back to the user mode afterwards. The other way
is to use the run time stack. This way is better because most operations occur between data

items on the stack, such as parameters and locals.

3.3. Tradeoffs In The Architecture Design

Four different architectures were considered during the architecture design phase: the
memory to memory architecture, the architecture using the stack pointer, the architecture
using the frame pointer, and the on-board stack architecture. The tradeoff criteria are the
performance and the complexity of implementation and debugging. The performance is the
primary goal for the whole design. The complexity was limited in this case by the fact that
the whole project was to be completed in two months. In this section, each of the four

architectures is examined and the tradeoffs are compared.

33.1. The Memory To Memory Architecture The simplest architecture for
implementing floating-point is to let the 68000 do everything. In order to allow
multiprogramming, a floating-point operation has to be atomic, that is, no context switch is
allowed during floating-point operation. As shown in Figure 3.2, the 68000 first turns the
interrupts off. It then wakes up the floating-point co-processor and passes the operands to it.
After waiting for the computation to finish, it then moves the result to the correct location.
Finally, it turns the interrupts back on. There are three microinterrupts and several MOV
macro instructions involved. It is therefore quite time consuming. Also, since the data

movement is done in 68000 assembler code, it is hard to improve the performance further.

MOVEQ #n, magic-location-1 sturn off interrupts
MOVEQ #n, magic-location-2 ;wake up co-processor
MOVL a6@(-8), dO

MOVL d0, special-location-1 ;pass operand 1

MOVL a6@-4), d0

MOVL dO, special-location-2 ;pass operand 2

NOOP ;wait for result
NOOP

NOOP

MOVL special-location-3, dO ;store result

MOVL dO, a6@-12)

MOVEQ #n, magic-location-3 sturn interrupt back on

Figure 3.2 - The Simplest Architecture

The advantage of this architecture is that it requires no changes in the PNC microcode,

requires the least changes in the compiler and in the operating system.

3.3.2. The Stack Pointer Architecture In the Butterfly system, a run-time stack is used
to hold the activation records. An activation record or a frame contains the parameters for the
subroutine, its local variables, and some linkage information. One register, called the stack
pointer (SP), is used to point to the top of the stack. Another register, called the frame pointer

(FP), is used to point to the current activation record.

-29-

In the stack pointer architecture, the 68000 first moves the operands to the top of the
stack. This takes two MOVL macro instructions. It then passes the stack pointer to the PNC
by writing into a "magic” location in subspace 0, and waits for the result. After it gets the
result, it puts the result in the frame. When the 68000 passes the stack pointer to the PNC,
the PNC gets a micro interrupt. The PNC then translates the SP from a virtual address to a
physical address, and wakes up the co-processor. The co-processor starts to work in lock step
with the PNC. The PNC puts the physical address of the operand out to the memory. Two
cycles later the operand is valid on the MAD bus. The co-processor then latches the operand
into a internal register. After the co-processor gets all the operands, it starts the computation;
the PNC waits for the result. After 6 clock cycles the result is available; if the PNC wants
the result right way, the result is also available on the MAD bus. The PNC saves the result in
its registers and initiates the memory cycle to write it to the top of the stack. Finally the
PNC informs the 68000 to terminate the MOVL instruction and to proceed. The 68000 then
moves the result from the top of the stack to the right place in the activation record, and
adjust the stack pointer to where it was before the floating-point operation. Figure 3.3 shows

the assembler code for this architecture.

MOVL a6@&-8), d0 amove operand 1 to top of stack
MOVL d0, sp@-

MOVL a6@&-4), d0 smove operand 2 to top of stack
MOVL d0, sp@-

MOVL sp, OXFFC804 ;pass the stack pointer

MOVL sp@+4), d0 save the result

MOVL d0, a6@(-12)

ADDQ #8, sp aadjust the stack pointer

Figure 3.3 - Code For The Stack Pointer Architecture

The performance of this architecture is better than the memory to memory architecture.
It takes 8 macro instructions and 55 micro instructions, and the total execution time is 26 us.

This architecture is quite flexible for performance improvement so that it is easier to build a

-30-

prototype in a conservative way and improve the performance later. This architecture does
not require as many changes in the operating system and in the compiler as does the next
architecture. It is clear that in this architecture the 68000 performs some unnecessary moves
which slow down the overall operation. Also, the architecture requires a complicated PNC

microinterrupt service code.

3.3.3. The Frame Pointer Architecture Figure 3.4 shows the stack sections in the stack
pointer architecture and in the frame pointer architecture. In the stack architecture, the
68000 and the PNC communicates through the top of the stack. In the frame pointer
architecture, the frame pointer is passed to the PNC and the PNC can fetch the operands
directly from the frame and return the result into th;' right place in the frame. In addition of
the frame pointer, the offsets of the operands and the offset of the result from the frame
pointer must also be passed to the PNC. This can be accomplished in two ways. One is to pass
the frame pointer in segment F8. Every time a subroutine containing the floating-point
operations is called, a microinterrupt is generated to translate the FP from a virtual address to
a physical address and save this physical address in a fixed location in segment F8. This fixed
location is known by the PNC. Since this operation is performed once each subroutine call,
and there are usually several ﬁoating-poi:;t operations in a subroutine requiring floating-point,
the extra overhead per floating-point operation is thus small. The other way is to generate
Two separate microinterrupts. In one of the microinterrupt service routine, the FP is saved in
the internal registers of the PNC. The other routine serves all the rest of the operations. The
microcode in this case must make sure that the registers containing the FP is not rewritten by
some other interrupts between the two floating-point microinterrupts. This method is more
complicated and more time consuming since it is required for each floating-point operation.

Figure 3.5 shows the assembler code for the frame pointer architecture.

-31-

FR__Iolp FP FE—olp FP
OLD FP OLD FP
OP1 OP1
OP1 OoP1
oP2 oP2
oP2 oP2
RESULT RESULT
RESULT > ran T
oP2
oP2
OP1
SE— ORP1

Figure 3.4 - Stack Segments From The SP Architecture And The FP Architecture

MOV1 OXFFC804, immediate-data ;pass offsets to the PNC

Figure 3.5 - The Frame Pointer Architecture

Figure 3.6 shows the instruction format for the frame pointer architecture. The 68000
assembler instruction MOVI writes the 32-bit immediate data into a "magic” location. The
immediate data has four fields: offset of the operand 1, offset of the operand 2, an unused field,
and the offset of the result. Since the PNC hardware does not support byte-swap operation,
this format is so designed that the PNC can get the offsets of the operand 1 and the operand 2

from this 32-bit word immediately and, while waiting for the result, the PNC can shift the

-32-

offset of the result to the lower byte position. The PNC then calculates the effective physical
address of the operands, fetches them, and passes them to the co-processor as in the SP

architecture.

Obviously, this architecture has higher performance than the stack pointer architecture
since it uses fewer macro instructions. The disadvantage of this architecture is that it requires
complicated changes in the operating system, the compiler, and the PNC microcode. This
disadvantage makes the debugging phase more complicated, especially because the Chrysalis

operating system is not designed for easy debugging.

3.3.4. On Board Stack Architecture The memory access initialized by the PNC requires 3
clock cycles. Putting the run time stack on the co-processor can reduce the memory access
time to one clock cycle. More importantly, all the intermediate results are kept on the stack
. 5o that the performance is increased significantly. However, this architecture requires more
hardware than the previous architectures. Different memory interfaces to the co-processor
and t the rest of the system must also be provided. More changes are required in the

operating system. Obviously, this architecture should not be considered as the first prototype.

3

48 32 2
MAGIC
AN AT
MOVI LOCATION IMMEDIATE DATA
Immediate Data Format:
31 24 16 8 2
OFFSET R OFFSET 1 UNUSED OFFSET 2

Figure 3.6 - Instruction Format For The FP Architecture

3.4. The Prototype

To achieve reasonable performance in a short period of design time and to have enough
flexibility to improve the performance without changing the hardware later on, the prototype
was designed to be microprogrammable for either the SP or FP architecture and the microcode

for the SP architecture was written.

3.4.1. The Hardware Figure 3.7 shows the block diagram of the prototype floating-pointer
co-processor the FPP1. The FPP1 was designed and built using TTL. The detailed design is

included in Appendix 1. Since the 68000 and the PNC have a cycle time of 125 ns, the co-

39 MAD BUS
=1
/ || |
7/ geegggg INTERFACE
CONTROLL.OR /

(0]
Pls
R [7 c

M F
E g, 27 T 4,
G ur7—1s L 4 7

X M ; I

G RERCLTRR

| e

FUNC CJL %9 B[C|S_
WTC| 1832

\\m

[FUNC CIL A B C S
WTC 1833

Figure 3.7 - The Prototype Floating-Point Co-processor FPP1

processor also uses the 8 MHz ciock provided by the processor node.

The key components of the FPP1 are the 32-bit WEITEK 1032 floating-point multipljer
and 1033 floating-point ALU [WEI83). These WTC chips have 100ns cycle time and they
support IEEE floating-point format. In the pipeline operating mode, they have the peak
performance of 5 million floating-point operations per second. In the "flow" mode, 9 clock
cycles are required for each floating-point operation. A finite state machine (FSM)
implemented by microcode in a 512x28 PROM controls all the operations on the board in lock
step with the PNC. The FSM normally sits in an idle loop; the multiplexer (MUX) normally
selects the address coming out from the control register (CTLREG) which comes from the next
address field of the microcode. When the address decoder recognizes a special pattern on the
MAD bus in the address phase, it forces the MUX controller to select the next microcode
address from the opcode register (OPREG). The opcode register in this cycle contains the
pseudo opcode for the floating-point operation. This pseudo code is the entrance address of the
microcode in the FSM for the required floating-point operation. From the very next cycle on,
the MUX selects the next address field of the FSM microcode again. The FSM then sets up the
function code, and mode code forl the WTC chips, latches the operands and feeds them into the
chips to start the floating-point operation. Only one of the WTC chips is activated in each
operation. When the WTC chip is ready to output its result, the FSM latches the result into
the output register. If the PNC is ready to read the result, the FSM also puts it on the MAD
bus. The interface to the MAD bus contains a collection of registers, and TTL line drivers.
The PNC microcode for the floating-point operation is included in Appendix 2; the microcode
in the FSM and the program which generates the microcode of the FSM can be found in

Appendix 3.

3.4.2. Performance The FPP1 is not optimized for the performance. It is now two to four
times faster than the fast Motorola Boating-point software. The performance seen by a high
level application program is 26 us for each floating-point operation supported by the WEITEK

chips. Table 3.1 compares the time required for a floating-point addition or multiplication by

the MIT software, Motorola software, and the prototype FPP1. The corresponding speed-up is

listed in Table 3.2. A factor of 2.6 speed up can be obtained by using the frame pointer

architecture without changing the FPP1 hardware.

OPERATION MIT MOTOROLA FPP
ADD 298 69.21 26
MUL 453 979 26 |

Table 3.1 - Time Required For Addition And Multiplication

OPERATION MIT MOTOROLA
ADD 11.48 2.66
MUL 17.42 3.77

Table 3.2 - Speed Up

The performance of FPP1 is limited by the long time required for the PNC to pass
operands from the processor-node memory to the WEITEK chips. In next chapter, some

alternative co-processor architectures which have higher performance will be presented.

-36-

CHAPTER 4

PROPOSALS FOR THE NEXT GENERATION CO-PROCESSOR

4.1. Introduction

The first generation floating-point co-processor demonstrates that it is possible to build a
floating-point co-processor for the 68000-based Butterfly system but it does not provide
optimal performance on the machine. Two architectures for the next generation floating-point
co-processor which promise to improve the floating-point performance are presented in this

chapter.

FPP2 is proposed for those applications requiring moderate performance, low cost, and
fast development. By adding the capability of carrying out fast evaluation of frequently used
elementary functions in hardware, the FPP2 increases the performance of the co-processor.
Since it is also microprogrammable, it is fiexible enough 'that more power can be added to the
co-processor when needed. It requires the least changes in hardware from FPP1 of all the

architectures under consideration.

The FPP3 provides the best possible performance and can be modified to use 64-bit
floating-point chips. A 2910-based micro sequencer and a dual-port, fast, on-board memory
make it possible to carry out large blocks of calculations at very high speed. A shift register
chain is designed to provide easy debugging and diagnosis.

In the first section the tradeoffs in the design are described. In the second section the
algorithms for evaluating elementary functions are presented. The design of FPP2 is described

in detail in section three and in the last sectior the design of FPP3 is described.

-37-

4.2. Tradeoffs

The second generation floating-point co-processor design involves tradeoffs among
performance, accuracy of the result, and the complexity of hardware implementation. The
floating-point calculations in more accurate circuit models for circuit simulation require 64-bit
precision. The choice of what kind of chips to use is made by considering that the most

important goal of the second generation co-processor is high speed with an acceptable precision.

The best choice of all 64-bit floating-point chips is the HP 64-bit Monolithic floating-
point processor [WARS82]. It provides very high speed as well as 64-bit precision. However, it
is not commercially available. To build a 64 bit floating-point processor from off-the-shelve
components, bit-sliced components, such as Am2903-based processor [AMDS83], the Am29116
[AMD83], the NS16081 processor [NSD82], or Intel 80287 co-processor [INT84] may be used.

Using a 16-bit processor such as Am29116 to perform 64-bit arithmetic, operations such
as partitioning the 64 bits into 16-bit parts and then putting them back together according to
the IEEE floating-point format, must be performed in microcode. Therefore, the performance
of this approach may not be acceptable. A 64-bit processor can be built using 16 Am2903
processors and 5 Am295§ carry-look-ahead parts. The large parts count of the ALU alone
reduces the board area available for memory, which is critical for achieving the best
performance. Besides, the need to implement the floating-point operations in the microcode
also degrades the performance of the system. These disadvantages make it inappropriate to use

either bit-sliced parts or the Am29116 processor.

The Inte]l 80287 numeric data co-processor provides both arithmetic and elementary
functions, such as exponential and logarithm. It also provides 64-bit precision. The drawback
is its slow speed. Using a SMHZ clock, it takes 14 us to perform an addition, 27 us for
multiplication, 39 us for division, 36 us for square root, and 100 us for exponential [INT84).
Its single 16-bit 1/O port makes it slower considering moving the 64-bit data in and out of the

chip. It cannot meet our performance requirements.

-38-

The NS16081 processor provides 64-bit floating-point operations. It also provides addition,
multiplication and division on the same chip. The only disadvantage of this processor is that
its speed does not meet our requirement. It takes 7.4 us to perform an addition, 6.2 us for
multiplication, and 11.8 us for division after it receives all the operands [NSD82]. It may be
considered the main processor on the FPP3. However, it has only one 16-bit 1/0 port. It takes
12 clock cycles to get two 64-bit operands into-and one 64-bit result out of-the processor. This

limits the potential performance of the FPP3 greatly.

Since the WEITEK 32-bit floating-point chips are the fastest floating-point chips available
commercially and it is expected that the 64-bit WEITEK chips will be available soon, the
second generation floating-point co-processor for the Butterfly is designed based on the
WEITEK chips with an NS16081 chip on board optionally. It is expected that 32-bit precision
can satisfy most CAD applications. Occasional calculations requiring 64-bit precision can be
performed in software. Those applications requiring 64-bit precision cz'ln use the NS16081
chip. The design should consider the flexibility of upgrade the '32-bit chip to 64-bit chip,

when the WEITEK 64-bit chips or other compatible chips are available.

4.3. Hardware Support For Evaluating Elementary Functions

The prototype FPP1 hardware supports only the functions a;'ailable in the WTC chips,
and the software does the rest. In many applications, divide, square root, exponential,
logarithm, and other elementary functions are used frequently. The FPP2 is designed to

support these functions by adding minimum amount of hardware.

Using table look-up method to evaluate division and square root using IEEE floating-
point format is quite time consuming. In order to perform fast evaluation for A/Band VA ,
the table look-up and iterative method suggested by the WEITEK application note are used
[WEI83a). Issues of accuracy and IEEE compatibility are discussed in the application note.
Algorithms for calculating log A and A” are. included in Appendix 6, which may be

implemented in microcode in the FPP2.

-39-

Before describing these algorithms, it is necessary to introduce the single precision IEEE
floating-point format. Figure 4.1 shows the IEEE floating-point format. The highest bit is the

sign bit. The next eight bits are the exponent and the last 23 bits are the fraction.

Figure 4.2 illustrates the table look-up for divide (A/B). The upper 32-bit word is the
divisor B. The lower 32-bit word is the quotient Q. The sign bit of Q is the sign bit of B.
The 8-bit exponent of B is used as the address of an 8 x 256 ROM. The output of the ROM
forms the exponent of the quotient. The highest 12 bits of the fraction addresses a 12X4K
ROM. The output of this ROM is the highest 12 bits of the fraction of the quotient. The
content of the exponent ROM is calculated by the equation G = 253 - E which is the inverse

of the exponent of B. The content of the fraction ROM is calculated by the equation

40968192
4097+F

H is an approximate reciprocal of B. This table look-up gives the initial accuracy to about 12

H= - 4096

bits. The accuracy is extended to about 24 bits using the following function:

H 1=H x(2-B xH)
The final quotient is obtained by multiplying A with H1.

Q=AXHI]
In this calculation three multiplications and one subtraction are required [WEI83a).

S EXPONENT FRACTION

3130 2322]

Figure 4.1 - IEEE Floating-Point Format

-40-

31 32 23 22 1119 %)

S EXPONENT FRACITION
'\ 8 12 1
/ /

EXP FRACTION

ROM ROM

NGO
N\

S EXPONENT FRACITION

31 3@ 23 22 1110

L S

Figure 4.2 - Mapping Of Table Look-Up For A/B

Table look-up for VA is shown in Figure 4.3. The least significant bit of the exponent
is used to distinguish the cases between A has an even exponent and A has an odd exponent.

G is calculated by the function:

_379—-E
C="3
H is calculated by the function:
If E(8) =1 then
H=—22_ _ 409
T 4097+F
IF E(8) = O then
2!9 9%
H=%l0242F — ¥

H is approximately equal to -\,LA_- The initial table look-up gives about 12 bits of accuracy

-41-

31 3. 23 22 1110 e

S EXPONENT FRACTION

? 1
/-
| |

Exp FRACTION

ROM ROM

N -

S EXPONENT F RQC}'I ON

31 30 2322 1110

] I

Figure 4.3 - Mapping Of Table Look-Up For Square Root

which is improved to about 24 bits by the following function:

H 1=0.5xH }(3.0—A xH xH)
In the calculation five multiplications and one subtraction are performed [WEI83a}.

4.4. The FPP2

The frame pointer architecture is used to interface to the floating-point co-processor and
to the PNC in FPP2. That is that the 68000 passes the frame pointer to the PNC; the PNC
fetches the operands and passes them to the co-processor. After the FPP2 finishes the
calculation, it passes the result to the PNC. The PNC then stores the result in the preallocated

locations in the active frame.

As shown in Figure 4.4, the control part and the interface to the WEITEK chips of the

FPP2 are exactly the same as that of the FPP1. Two 32-bit registers, AOP and BOP are used to

-42-

MAD %?

8
/
if [TADDRESS EUS
/ DECODER INTERFACE EXP MNT CNS
ROM ROM ROM
MUX
CNTRLER
° 8 c
— P
" MislFlslT 1
E u 'lf] 'lz - 8 /ﬁ
—_ R
° G / 15
E
G

WTC INTERFACE
8 T

WTC 1232

WTC 1833

Figure 4.4 - The FPP2

save the two operands passed by the PNC. BOP register contains the operand which is used
for table look-up. A constant ROM holds the constants needed by the computations. A 4X X8
read-only memory, EXP ROM, contains the required approximation of the exponent part.
Three 12-bit ROMs contain the required approximation of the fraction part. The delay
register is provided to multiplex the output of the ROMs onto the 16-bit ROM bus. A flip-flop
is used to put the sign bit of operand B on to the ROM bus at the right time. A multiplexzer in
front of the BM register allows the B operand to be selected either directly from the MAD bus
or from the table ROM. The path directly from MAD bus to the BM register allows the

simple operations such as addition and multiplication to bypass the table ROM. A path from

-43-

the CL register to the AM register provides the fast path for recurrence calculations.

The microprogram can be written very easily for FPP2. The estimated time for carrying
out division is 15 us: 10 us to pass the operands to the board and 5 us for the execution. The
estimated time for square root is 155 us: 9.5 us for passing the operand and 6 us for

execution.
4.5. The FPP3

45.1. Introduction The fact that three clock cycles are needed for the PNC to access a 16-
bit data from the local memory limits the speed of the floating-point calculations on the
Butterfly. The only way to achieve the highest performance in ficating-point operations is to
keep as many data items on-board as possible. The FPP3 is designed to provide the highest
floating-point speed possible in the Butterfly system. In this section the design of the FPP3 is
described. 1 designed FPP3 jointly with Jeffrey T. Deutsch.

The FPP3 provides two ways to interface the PNC and the co-processor. The frame
pointer architecture is used to carry out the single floating-point operations such as
multiplication and A”*. If a complicated block such as the model evaluation is called by the

high level program, blocks of parameters are passed to the co-processor through segment F8.

The FPP3 consists of four majr parts: the control, the bus interface and the dual-port
static RAM, the table ROM and the functional unit. As shown in Figure 4.5, they
communicate through the MAD bus and three on board busses A, B, and C. A chain of on
board shift registers is used to load the microcode into the writable control store at the reset

time. It also provides a good diagnostic and debugging facility.

45.2. The Control Drawing 2 in Appendix 5§ shows the detailed design of the FPP3
control unit. A 2910-1 microsequencer, a 4X X80 bit writable control store, and a 80-bit
pipeline register generate all the control signals for the board. A ;ondition PLA collects the
informations about the operands and generates the condition code. The sequencer then selects

the condition for the next microinstruction. A bootstrap PROM initializes the micro sequencer,

-44-

MAD

D
RARIRINR:

CNTL BUS TABLE FUCTION
UNIT INTERFACE LOOKUP UNIT
SRAM ROM
COND
CONTROL

Figure 4.5 - The FPP3

loads the micro control program into the writable control store, and starts the normal
operation of the micro engine. A multiplexer (MUX) selects the instruction for the 2910-1

sequencer from multiple sources.

The writable control store (WCS) is loaded from the MAD bus under the control of both
the PNC and the bootstrap finite state machine (BSFSM). In order to keep the part count low,
the WCS is loaded serially through a shift register. Considering the fact that the PNC has to
take care t;f some other tasks such as memory refresh, the microcode loading is broken into
blocks. Each block contains one 80-bit microipstruction. If the shif ting is not overlapped

with loading each 16-bit data from the PNC, it takes 19 cycles to load each 16 bits data from

the MAD bus and shift it to the right place. The loading time is thus about 4X X195 clock

cycles which is about 50 milliseconds.

Three commands are provided for the PNC to control the BSFSM to start the FPP3 in the
normal operation mode. They are "LOAD MICROINSTRUCTION", "END OF LOADING", and
"BEGIN". All of them are implemented as special patterns on the MAD bus during the
address phase. When the BSFSM receives the reset signal, it forces the control unit to execute
the instruction at location 0. The control unit loops at location O and waits for further
instructions. When the BSFSM receives the LOAD MICROINSTRUCTION command, it loads
one microinstruction into the WCS. During loading, the address of the WCS is generated by
the 2910-1 under the control of the BSFSM. When it receives the "END OF LOADING"
command, it sets the registers in the register chain in normal operating mode and goes into a
state waiting for the floating-point instructions. When the BSRAM receives the “BEGIN"
command, it forces the 2910-1 to accept instructions from the MAP register which contains

the address of the beginning of the microcode for the desired function.

45.3. The ALU Drawing 3 in Appendix 5 illustrates the design of the ALU of the FPP3.
A WEITEK 1033 ALU chip, and 2 WEITEK 1032 multiplier provides the high speed floating-
point operations. A set of comparators generates the condition signals for the sign, the
exponent, and the fraction parts of the operand which are fed into the condition PLA. A
register MSW_REG is there to hold the most significant word of the operand and to form a
32-bit input for the comparator. Necessary paths are provided for operating the WEITEK
chips at a peak speed of 5 million floating-point operations per second which is the full speed
at which the WETEK chips can run.

Optionally, an NS16081 can be put on the B bus and the C bus. The FPP3 control unit
controls the interface of the NS16081 chip. The microcode fields needed for this chip may be

overlapped with those of the WEITEK chips to reduce the parts count.

-46-

4.5.4. The Bus Interface And Dual Static RAM Drawing 4 in Appendix § shows the bus
interface and the dual-port static RAM of FPP3. All functional units are connected by three
on board busses. The A bus and the B bus are for the operands; and the C bus are for the
result. The MAD bus transfers the information between the PNC and the FPP3. The board
communicates with the MAD bus through C bus. A path between the A bus and the C bus
provides the path from the dual-port static RAM outputs to the MAD bus. A path between
the C bus and the B bus provides a bypass path from the table ROM and the output ports of

the WEITEK chips to the input ports of the WEITEK chips.

Two 16K X16 fast static RAMs provides the high speed on board memory. These two
memories are organized as a dual-port memory system. They contain exactly the same
contents. Thus the micro engine can address two operands in the same cycle. These two
operands are passed to the WEITEK chips through the A bus and through the B bus. When
data is written into the on-board memory system, both of these memories are written. This
16K dual-port RAM system may be partitioned into 256 segments with 64 words each
segment or 64 segments with 256 words each segment. Segment O contains constants. One
segment is allocated to each block of computations, such as a model evaluation in circuit
simulation, for its parameters and temporary variables. The address to this dual-port memory
is formed by concatenating 8 bits segment number and 6 bits offset provided by the microcode.
A multiplexer (MUX) selects the 8-bit segment number from a constant address O, the MAD
bus, and the C bus. It thus allows both the PNC and the FPP3 control unit to select a

segment.

In order to run the WEITEK chips at its full speed we needed both a large amount of
on-board memory and the ability to read two 16-bit words and write one 16-bit word in the
same clock cycle. This requires a RAM with less than 35ns access time. The largest existing
35ns access time RAM is a 4K static RAM which may not be able to hold parameters for all
the simulation models on board. The FPP3 is designed to use 16K RAM at present but it is
easy to convert this memory system to one with two read ports and one write port when the

35ns large static RAMs are available. This dual-port memory organization is the key factor of

-47-

the high speed of the FPP3.

45.5. The Table ROM Drawing 5 in Appendix S shows the ROM for the table look-up for
functions 1/B and VA . This part of the design is the same as that in the FPP2. The sign bit
of the B operand is passed to the C bus in the right cycle. The 4X x8 EXP_ROM contains the
exponent of the resulting functions. Up to 16 functions can be put in this ROM. The
function is selected by the microcode. Its address is formed by concatenating 4-bit microcode
and 8-bit exponent from the B operand. Its output is the approximation of the exponent of
1/B. The two DFRA_ROMs form the table of the fraction part of 1/B. It is addressed by the
fraction part of B. The SFRA_ROM]1 contains the approximate value of VB when B has an
even exponent; the SFRA_ROM2 contains the approximate value of V3 when B has an odd
exponent. They are addressed by the fraction part of B and are selected by the least
significant bit of the exponent of B. Three registers are used to hold and form the addresses to
these tables. One register is used for time multiplexing the fraction part to the C bus. A
latch whose value is always zero is used to form the lower bits of the fraction of the

approximation of the result.

4.5.6. The Diagnostic System The pipeline register in the control unit and all the
registers interfacing the busses have both parallel and serial 1/0 ports. The serial 1/0 ports are
all chained together. They can be operated in two modes. The normal operating mode is the
paralle! 1/0 mode; they behave just as normal registers. In the diagnostic mode, these registers

behave like a single shift register chain.

There are five commands for the PNC to run the diagnosis of the board. They are
"BEGIN DIAGNOSTICS®, "SCAN IN", °SCAN OUT", "SINGLE STEP" and "END
DIAGNOSTICS". When the "BEGIN DIAGNOSTICS" commands is received by the bootstrap
finite state machine, it puts the board in the diagnostic mode. In this mode, the PNC can write
any pattern into any parts on the board, or read the content of any on-board memory. The
PNC can also single-step the on-board operation. The ability of read-modifying-write any

registers on board and single-step the executions are very similar to those provided by the

-48-

software debug system. It is possible to develop a good debugging software on top of this

system.

45.7. The Micro Instruction Format The FPP3 contains horizontal microcode with 80
bits per micro word. Figure 4.6 shows the microcode format of the FPP3. It contains four
fields each of which controls one of the four parts. Bits O to 18 form the control field for the
control unit. Bits 19 to 35 are the control field for the ALU functional unit. Bits 36 to 50 are
the control field for the table ROM unit. Bits 51 to 76 are the control for the bus interface

and the dual-port static RAM unit. Bits 77 to 80 are unused.

BUS INTERFACE TABLE FUNCTION CONTROL
& STATIC RAM LOOKUP ROM UNIT UNIT
(-] =] 35 18]

Figure 4.6 - FPP3 Microcode Format

CHAPTER §

SUMMARY

The BBN Butterfly Multiprocessor System has been used as a test-bed for ideas of how to
build a high-speed CAD machine. A prototype of the first generation floating-point co-
processor, the FPP1, has been built. The FPP1 is a WEITEK 1032/1033 based, micro-
programmable machine. The communication protocol between the FPP1 and the Butterfly
processor node is the same protocol as between the memory daughter board and the processor
node. In the current implementation of the FPP1, the 68000 passes operands and result
between the processor node and the FPP1 through the run time stack by passing the stack
pointer to the processor node controller (PNC). It takes 26 us to perform a 32-bit floating-
point addition or a 32-bit floating-point multiplication seen by a high level application
program, which is two to four times faster than the Motorola fast software. By changing the
architecture to using the frame pointer instead of the stack pointer, the speed of the FPP1 will

be 2.6 times faster.

Two proposals, the FPP2 and the FPP3, are made for the next generation floating-point
co-processor. The FPP2 is a proposal for the applications requiring low cost and moderate
performance. It provides the ability of fast evaluation of elementary functions in the

hardware.

The FPP3 provides the highest possible speed of floating-point operations on the
Butterfly. It may be built to run the WEITEK chips at their full speed with 5 million
floating-point operations per second using a 4K static RAM, or to run them at half the full
speed using a 16K static RAM. The on-board fast static RAM is organized to be able to hold all
the parameters and temporary variables and to support the data flow-of the WEITEK chips at

their full speed. A writable control store is designed to make the microcode writing easier.

-50-

Hardware support for diagnostics is provided by a shift register chain which connects all the

key registers together. This system makes the diagnostics and debugging much easier.

-51-

APPENDIX 1

SCHEMATICS OF THE FPP1

Included in this appendix are the schematics of the prototype of the first generation
fioating point coprocessor. Drawing 1 is the overall block diagram of the FPP1. Drawing 2 is
the FPP1 control unit. Drawing 3 is the FPP1 arithmetic unit. Drawing 4 is the FPP1 bus
interface. Drawing § is the interface to the Butterfly processor node.

-Al.l-

ki | 2 | l
MAD21. . 8> \G
4P
L) 6 o
Cc1S..0 I
s L]
21, .0 Ce1s.. 0
FPA BUS. RFACE
FPA ARITHIETIC InTEl
SECTION ACIB. .0
—|sas..o Be2.. 1> |
ACLS. .0\
B1S. .o\l
T LEF L.
DROHING.
MW_FIRSI=0
BUITERILY FPPL
[. X_STLP=S1ZE
LAST_MODIF IED=NOT WRITTEN
TLILF: ONTE:
BUTIERILY FPP) 211784
NITTLLR: PAGE: 1
RN Y. CHENG & ILbb ey T, MEUTSCH

B

18P
HADC2). .),

UBESLING

<1pP

[+ [N EAN |

DRESL1NG

a >{o P o

CLKNG _

23p

1574
a

o ch

21P

a3p
ap

""ém: -S5«\G
LD.S«\G
GATE.Ce\G
LD.C\G
LU_B\G
LD_AxN\G
LACL. .O>\G

jice L 2t
27

\.\m%

@ 7 7{ UACL. . @>\G
L5374
57

EBPU‘"L <@ \G
Ul .ON\G
Fe3. . \G

LD_Fe\G

_DRAYING

[
Fi
LA

ACNTRL
"V CONTHOL
51 _HODIF IED=Sun May 13 14:47:10 1504

ErIE
Xt IN21 -0
R.S1EP=512ZE

TN

FPR CONTHWU.

DATE:
112784

ThHoTr O

DORLAN Y. CHENG & JUTEREY T,

UrUTSCH

PARGE:

| ' |

2

5 [7 | : s] 5 | : | ;
<P axr
F¢3..0\G
n of{o o
]
axe 57 o]
a o4
LD_Fe\G
LD_F &\G
Ucl. . @\G
Ll .O\G
LLT
RIS, .\ Cthe foe
T" b
) c Cc1S. . N\]
A Sc2. .01
BiS. . 8>\ muitiplrer
Bie-e
CLING b
Tik 2P
| B -
Ll‘l‘l'. '.-I
- [4
Wt 1833
Fluating
mu
B,q-0
Ru
JEFING
_PROHING
X.FINST=0
FPR ARTIHMETIC SECTION
bt I A_SILP=514L
LAST_MODIF IED=Sun May 13 13:29: 14 1904
TITLE: DRIE:
FPRA ARITHMETIC SUCTION as12764
| 3ok ERANaH PR |
INRLEN Y. CHENG 8 DtFr Yy T, DRIUISCH

; |

BUNMDeNG,
MAD¢IS. . B>\ élP

P

0 '-—1 o oo o Q (D
LSI?Y 847 L8377| fusary LS3T7
6 16) 3

o 0
ake L5681 L5E 55

LO_AR\G

—CIR

R

T

Q

i

R

1
< 5

] ?
g
L
\"4

o]

LO_Ax\G

LD_Be\G

LD_Cu\G

LD.Ce\G

GATE.Ce\G

LO.SeNG

GATE .S»\G

AClS, . 0>\

BC1S. . o>\1

Ca1S. .1

S2..m\1

-DROKING DEFINE
X. FIRST=0

[4 1
FPABUSINI X. $(EP=SIZE
ST_MOLIFILI: Sun May 13 15:20:38 1984

5

11T DATL:
FPA BUS INTERE AL 2712784
Tre e el GE: 1
ORXEN Y., CHENG B TLVHIRLY (. DEUTSCH st

[l [N I 4 | ,| | &] 1

éP

MR, L 162 ..__/
(13

“

SP
[=ad
> Ly c— 2; HMADRL. . B>NT
_Autinc?, .

CS36\G
CS38\G
SORLDe\G
HR1 TE*\G
RDMDe\G
BP
MCLK»\G /
. DS2e\G
PHROK\G
[ERR&\G

P S S
/[_mxu
o

weps . ¥

1144)|

J i T I

A 12
BNy _
Ring
)

11 mapg

JUR R Rt . PRANING. DEF JtE
trs MU bus P Y SYRY]
FHHRAD X_STEP=S12E
h-cord |- LASI. HODIF [ED=Mon May 14 BA; 27:87 1044
Relpele O TITLt: DATE:
H i TenG LR VY bs3, 1884
R o as i PAGE:
ST BT NG B e Y T, (KUTSCH |
6 6

APPENDIX 2

PNC MICROCODE FOR FLOATING POINT

Included in this appendix is the program which generates the PNC microcode for the
floating point functions. In order to make this program work, some changes are also made in
pnc.h and pnc.m which can be found in BBN microcode files.

pnclO.m

; This version reads the result in to PNC registers and then writes it to the
; memory. It treats FPP as a memory daughter board.

; The floating point function entries are in the range OxFFC800 to OxFFC820.
OP code for functions in binary:

.o

; UNIT FUNCTION OP CODE VIRTUAL ADDR
;. WTC 1033: A+B 0b00001000 OxFFC804
: A-B 0b00001010 OxFFC808
s -A+B 0b00001100 OxFFCS80C
; WRAP A 0b00000000 OxFFC810
H UNWRAP A 0b00000010 OxFFC814
H FLOAT 0b00000100 OxFFC818
: FIX A 0b00000110 OxFFC81C
; ABS A 0b00001110 OxFFC820
; + ABSB
; ABS(A+B) 000010010 OxFFC824
H ABS(A-B) 0b00010000 OxFF(CS828
;. WTC 1032: A*B 0b00100000 OxFFC82C
H WA*B 0b00100010 OxFFC830
: A*WB 0b00100100 OxFFC834
: WA*WB 0b00100110 OxFFC838
; ADDED FUNCTIONS:
A/B 0b01000000 OxFFC83C
SQRT A 0v01000010 OxFFCB840
1/A 0b01000110 OxFFCB844

Virtual address OxFFC845 to OxFFC8FF are reserved.

float.1:

-A2.1-

float.2f:

float.3f:

float.2:

float.3:

float.4:

float.5:

fioat.6:

fixed_at(0x150),

interrupt,

femi,

call(float.2,Ar1,), stest for low word vs high word

cpuD ->D ->Tx2, if cycle 2, virtual SP bits 15.0

D->r1, #if cycle 1, save virtual SP 31.16
sfor float.2f

setaux(fHALT, mmR ->aD)

at(0x3a2),

case(!Arl,),

br(float.3f),

move(r0,r2) save function code in 12

at(0x312),

br(idle_ret),

mmu9, ;select memory protection word

assert(mmR! -> aD}), ;access violation?

cpuACK,

move(rl,), set up alu output

alu ->D->Tx1, ;MSW of virtual SP in Tx1

setaux(aux_dfit) ; turn 68000 back on

at(float.2f-2),

case(Arl,), 168000 is writing the low word

br(float.3),

Tx2->D->r1 ;r1 contains MSW of virtual SP
et up interface to rdpbk

Have to save Tx2 away

at(float.2f+1),

call(rdpbk.1), ;read first 2 words from stack

setBerr ;request 68000 rerun the bus cycle

at(float.3+1),

br(ficat.5),

setaux(aux_dfit), sturn 68000 back on

eras ;rdpbk already started reading the
sthird word

at(0x316),

br(float.6),

ADr->mAD->D->Tx3, MSW of operand 2 in Tx3
eras

at(0x3a5), ;Wake up FPP, float address portion
next,

0x003f ->D ->mAD, suse the constant field in CS15.0
mAD -> Ahl ->mA, ;Address 21.16 = 111111

fpp see pnc.h p.11, This asserts ADrLD

-A2.2-

float.6a:
at(float.6+1),
next,
Ahl ->mA,
eéras

float.7:
at(float.6a+1),
br(flcat.7a),
move(r2,),
alu ->D->mAD

float.7a:
at(0x322),
br(float.8),
move(r2,),
alu ->D ->mAD

float.8:
at(0x327),
br(float.9),
Tx1->D->mAD

float.9:
at(0x33c),
br(float.10a),
Tx2->D->mAD

float.10a:
at(0x357),
br(float.10),
move(r3,),
alu ->D ->mAD -> Ahl

float.10:
at(0x36e),
br(float.11),
Ahl -> mA,
add(r0,r10,r0),

alu ->D ->mAD -> ADr,
mR

float.11:
at(0x36f),
br(flcat.12),
Tx3->D->mAD,
eras

float.12:
at(0x377),
br(float.13),

ADr ->mAD ->D ->Tzx4,

;Address 21.16 = 111111

;gate the function part
;FPP FSM float entry

ywait for FPP to be set up
;gate the function part
;FPP FSM float entry

;MSW of operand 1 to FPP
;rdpbk returns MSW of operand 1

;L SW of operand 1 to FPP

;Ah1 is trashed by float.6

;read MSW of operand 2
;Tdpbk returns physical address
;of the MSW of operand 2 in r0

start reading MSW of operand 2

sMSW of operand 2 to FPP

:LSW of operand 2 in Tx4
JFPP should get this too!

-A2.3-

€ras

float.13:
at(0x379),
br{float.14)

float.14:
at(0x37d),
br(flcat.15)

float.15:
at(0x382),
br(float.16)

float.16:
at(0x389),
br(float.17)

float.17:
at(0x393),
br(float.18)

float.18:
at(0x397),
br(float.19)

float.19:
at(0x3al),
br(float.20)

float.20:
at{0x3a8),
br(float.21)

float.21:
at(0x3a9),
br(flcat.22)

float.22:
at(0Ox3aa),
br(float.22a)

float.22a:
at(Ox3ab),
br(float.23)

float.23:
at(0Ox3ac),
br(float.24),
ADr->mAD->D->Tx3,
fpp

fioat.24:

at(0x3ad),
br(float.25),

swait for result

-A2.4-

MSW of result in, Tx3 ADr = FPP

ADr ->mAD ->D -> Tx4,
fpp

at(Ox3ae),

br(float.26),

Ahl ->mA,
sub(r0,r10,r0),

alu ->D->mAD-> ADr,
mWwE

at(0x3af),

next,

Tx3->D->mAD -> ADr,
eras

at(float.26+1),
br(flcat.28),
eras

at(0x3bl1),

br(fioat.29),

Ahl ->mA,
add(10,r10,10),

alu ->D->mAD-> ADr,
mWwE

at(0x3b2),

next,

Tx4 ->D ->mAD -> ADr,
eras

at(float.29+1),
br(proc_ret),
eras

:LSW of result in Tx4, ADr = FPP

sWrite MSW of result

MSW of result to memory

:2nd eras to memory

swrite LSW of result

;LSW of result to memory

:2nd eras

-A2.5-

APPENDIX 3

PROTOTYPE MICROCODE

In this appendix, the microcode in the finite state machine on the floating point board,
both the overall microcode and the content in each PROM, are included. The microcode is not
generated by the BBN micro assembler, the program which generates this microcode is also

included.

-A3.l"

fpp.h

/*

This file is required for generating microcode for the FSM on FPP.
It contains the definitions for the fields of the microword.

Microword definition:

BIT #

VOO WNAE WO

*/

/* The following fields are defined to bo ANDed */

#define NOOP
#define GATE_S
#define LD_S
#define GATE_C
#define LD_C
#lefine LD_B
#define LD_A
#define LD_F
#define MODE

0x0007d13f

SIGNAL NAME

GATE.S
LD_S
GATEC
LD_C
LD_B
LD_A
L12
L02
U122
U022
L13
L03
U13
uo_3

FO

F1

F2

F3
LD_F
GOTO
UNUSED

0x0007fffe

0x0007ffd

0x0007f b

0x0007(f7
0x0007ffef
0x0007fdf
0x0003fF ff

0x00061dff

/* control code for 1032 */

.A3 02-

for 1032

for 1033

for both

next address

/* for AND */

/* The following fields are defined to be ORed */

#define NLD_2 NOOP

#define LAB_2 0x00000080
#define LA_2 0x00000040
#lefine LMODE_2 0x000000c0

/* The following fields are individually defined */

#iefine DAB_2 NOOP
#define ENB_2 0x0007d03f
#ilefine UMS_2 ENB_2
#define ULS_2 0x0007d23f

/* control code for 1033 */

/* The following fields are defined to be ORed */

#define NLD_3 NOOP

#define LAB_3 0x00000800
#kiefine LA_3 0x00000400
#define LMODE_3 0x00000c00

/* The following fields are individually defined */

#define DAB_3 NOOP

#define ENB_3 0x0007¢13f
#efine UMS_3 0x0007c13f
#define ULS_3 0x0007e13f

/* OPcode for 1033 */
/* The following fields are defined to be ANDed */

#lefine WRAP 0x0004113f

#define UNWRAP 0x0004513f
#define FLOAT 0x0004913f

#define FIX 0x0004d13f

#define ADD 0x0005113f

#define SUB 0x0005513f

#define NSUB 0x0005913f

#lefine AADD 0x0005d13f

#lefine SUBA 0x0006113f

#define ADDA 0x0006513f

/* OPcode for 1032 */

#define MUL 0x0004113f

#define WMUL 0x0004513f

#define MULW 0x0004913f

#iefine WMULW 0x0004d13f

-A3.3-

/*L1L0=00 */

/#L12=0,L02=1%

/*L12=1102=0%
/*L12=1102=1%

/*Ur2=1%
/*LC12=0%

/*AU12=0,U02=0%

/*U12=0,U02=1%

/*L13=0,L03=1%
/*113=1,103=0%
/#L1.3=1,103=1%

/AU13=1%
/*U13=0%

/*U1.3=0,U0_3=0%
/#U13=0,U0_3=1%

/*-A+B */

/* ABS A + ABSB¥
/* ABS(A-B) */

/* ABS(A+B) */

/* WRAP A*B*/
/* A* WRAPB¥
/* WRAP A * WRAPB ¥/

fppc

#include <stdioh>
#include <ctype.h>

#include "fpp.h"
#define WOP 19

/* This one is for the first testing only. Later on will change for single
operand operations. It is also needed to change the lal1 */

#lefine COMMON_] 0x90

#lefine COMMON_2 0x70

#define COMMON_3 0x50

#define ADD_E 0x4

#define SUB_E 0x8

#define NSUB_E Oxc
#define WRAP_E 0x10 "
#define UNWRAP_E 0x14

#define FLOAT_E 0x18
#define FIX_E Ox1c

#define AADD_E 0x20
#define ADDA_E 0x24
#define SUBA_E 0x28
#define MUL_E Ox2¢

#define WMUL_E 0x30
#lefine MULW_E 0x34
#define WMULW_E 0x38

#define IDLE1.O0OP O
#define CODE_SIZE = 512

unsigned long ucode[CODE_SIZE };

main() {
register int i;

set_ucode();

for(i = 0;i <CODE_SIZE; i++) |
printf("%07x0, ucode[i]);
}

}
set_ucode() {
regict~ irt i, next;
/* Zero everyone out */

for(i = 0;i <CODE_SIZE; i++) {
ucode] i] = (IDLE_LOOP << WOP | NOOP);

-A3.4-

/* IDLE_LOOP */

next = IDLE_1.OOP;
ucode{next] = (next << WOP | NOOP);

/* A+Bentry ¥/

next = ADD_E;

ucode[next++] = (next+1 << WOP |LD_A & NOOP);
ucode[next++] = (next+1 << WOP |LD_A & NOOP);
ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_3 << WOP | ADD & LD_F & NOOP);

/* A-B entry */

next = SUB_E;

ucode[next++] = (next+1 << WOP ILD_A & NOOP);
ucode[next++] = (next+1 << WOP | LD_A & NOOP);
ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode{next++] = (COMMON_3 << WOP | SUB & LD_F & NOOP);

/* -A+B entry */

next = NSUB_E;

ucode[next++] = (next+1 << WOP ILD_A & NOOP);
ucode[next++] = (next+1 << WOP |LD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_3 << WOP INSUB & LD_F & NOOP);

/* WRAP entry */

next = WRAP_E;

ucode[next++] = (next+1 << WOP | LD_A & NOOP);

ucode[next++] = (next+1 << WOP | LD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_] << WQOP ! WRAP & LD_F & NOOP);

/* UNWRAP entry */

next = UNWRAP_E;

ucode[next++] = (next+1 << WOP |LD_A & NOOP)

ucode[next++] = (next+1 <<WOPILD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++) = (COMMON_] << WQP | UNWRAP & LD_F & NOOP);

/* FLOAT entry */

next = FLOAT_E;

ucodelnext++] = (next+1 << WOP | LD_A & NOOP);

ucode[next++] = (next+1 << WOP |LD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_] << WOP | FLOAT & LD_F & NOOP)

/* FIX entry */

-A3.5-

next = FIX_E;

ucode[next++] = (next+1 << WOP|LD_A & NOOP);
ucode[next++] = (next+1 << WOP ILD_A & NOOP);
ucode[next++) = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_]} << WOP | FIX & LD_F & NOOP);

/* ABS A + ABS Bentry */

next = AADD_E;

ucode[next++] = (next+1 << WOP |LD_A & NOOP);

ucode[next++] = (next+1 << WOP |LD_A & NOOP);

ucode[next++) = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_3 << WOP | AADD & LD_F & NOOP)

/* ABS(A+B) entry */

next = ADDA_E;

ucode[next++] = (next+1 << WOP |LD_A & NOOP);

ucode[next++] = (next+1 << WOP ILD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);

" ucode[next++] = (COMMON_3 << WOP | ADDA & LD_F & NOOP);

/* ABS(A-B) entry */

next = SUBA_E;

ucode[next++] = (next+1 << WOP |LD_A & NOOP);

ucode[next++] = (next+1 << WOP | LD_A & NOOP);

ucode[next++) = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++) = (COMMON_3 << WOP | SUBA & LD_F & NOOP);

/* A*B entry */

next = MUL_E;

ucode[next++] = (next+1 << WOP | LD_A & NOOP);
ucode[next++] = (next+1 << WOP |LD_A & NOOP);
ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_2 << WOP IMUL & LD_F & NOOP);

/* WA*B entry */

next = WMUL_E;

ucode[next++] = (next+1 << WOP ILD_A & NOOP);

ucode[next++] = (next+1 << WOP ILD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++] = (COMMON_2 << WOP | WMUL & LD_F & NOOP),

/* A*WB entry */

next = MULW_E;

ucode[next++] = (next+1 << WOP I LD_A & NOOP);

ucode[next++] = (next+1 <<WOP |LD_A & NOOP);

ucode[next++) = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++) = (COMMON_2 << WOP | MULW & LD_F & NOOP);

/* WA*WB entry */

next = WMULW_E;

ucode[next++] = (next+1 <<WOPILD_A & NOOP);

ucode[next++] = (next+1 << WOP | LD_A & NOOP);

ucode[next++] = (next+1 << WOP | MODE & LD_F & NOOP);
ucode[next++) = (COMMON_2 << WOP | WMULW & LD_F & NOOP)

/* COMMON_3 for WTC 1033 */

next = COMMON_3;

ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode{next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1

<< WOP | LMODE_3 | LD_F & LD_B & NOOP);
<<WOPILAB_3|LD_A & LD_B & NOOP);
<<WOP | LAB_3 | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<<WOPIUMS_3); ,

<< WOP | ULS_3 & L:D_S)y/* this may be wrong! */
<<WOP ILD_C & NOOP); .

<< WOP | LD_C & GATE_C & NOOP);

<<WOP | GATE_C & NOOP);)

ucode[next++] = IDLE_LOOP << WOP |LD_C & GATE_C & NOOP);

/* COMMON_2 for WTC 1032 */

next = COMMON_2;

ucode[next++] = (next+1
ucode{next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1

<< WOP | LMODE_2 | LD_B & LD_F & NOOP);
<<WOPI|LAB_2|LD_A & LD_B & NOOP);
<<WOP I LAB_2 | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WQP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | UMS_2);

<<WOPI|ULS_2 & LD_S);

<< WOP | LD_C & NOOP);

<<WOP I LD_C & GATE_C & NOOP);

<< WOP | GATE_C & NOOP);

ucode[next++] = (IDLE_LOOP << WOP |LD_C & GATE_C & NOOP);

/* COMMON_] for single operand */

next = COMMON_1;

ucode{next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = {next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1
ucode[next++] = (next+1

<<WOP | LMODE_3 | LD_F & NOOP);
<<WOPI|LA_3ILD_A & NOOP);

<< WOP | LA_3 | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

<< WOP | NOOP);

-A3.7"

ucode[next++] = (next+1 << WOP | NOOP);

ucode[next++] = (next+1 << WOP | UMS_3);

ucode[next++] = (next+1 << WOP!ULS_3 & LD_S);

ucode[next++] = (next+1 << WOP | LD_C & NOOP);

ucode[next++] = (next+1 << WOP | LD_C & GATE_C & NOOP);
ucode[next++] = (next+1 << WOP | GATE_C & NOOP);
ucode[next++] = (IDLE_LOOP << WOP ILD_C & GATE_C & NOOP);

-A3.8-

The Microcode

02fd11f
037d11f
03a113f
281113f
04fdiif
057d11f
05a113f
281513f
06fd11f
077d11f
07a113f
281913
08fd11f
097d11f
09a113f
280113
Oafdl1f

Ob7d11f
Obal13f
280513f
Ocfd11f

0d7d11f
Oda113f
280913f
Oefdilf

of7d11f
Ofal13f

280d13f
10fd11f
117d411f
11a113f
281d13f
12fd11f
137d11f
13a113f
282513f
14fd11f
157d11f
15a113f
282113f
16fd11f

177d411f
172113f
380113f
18fd11f
197d11f
19a113f
380513f
lafd11f

1b7d11f

-A3.9-

1bal13f
380913f
1cfd11f

147d11f
1dal13f
380d13f
28bdd2f
297d90f
29fd93f
2a7d13f
2afd13f
2b7d13f
2bfd13f
2¢7d13f
2cfd13f

2d7c13f
2dfe13d
2e7d137
2efd133
007d133
38bdief

397418f
39fd1of
3a7d13f
3afd13f

3b7d13f
3bfd13f
3c7d13f
3cfd13f

3d7d03f
3dfd23d
3e7d137
3efd133
007d133

-A3.10-

APPENDIX 4

Modified LA11

In this appendix the boolean equations which define the entrance address of the PNC
microinterrupt service routine for the floating point functions, and the current contents of

this PLA are presented.

Hloating point functions are implemented by writing to group A registers
!150 for two operands floating point functions

!151 for single operand floating point functions

101 0101 0000 if v1.0=00 & wr=1 & 215.8 = 11001000

101 0101 0001 if v1.0=00 & wr=1 & a15.8 = 11001001

csa0= /vi*/vO*wr*alS5*a14*/al13*/a12*a11*/a10*/a9*a8;
csad= /v1*/vO*wr*alS5*a14*/a13*/a12*a11*/a10*/a9*/a8;

csa6= /v1¥/vO*wr*al5*al4*/a13*/a12*a11*/a10*/a9*/a8;

1al11 content

SA000,
00

$A100,

ff ff ff fO ff fO ff £fO ff 30 ff 30 ff 30 3f fO
ff 00 £3 3c cO bf ff ff d5 2a 2a dS 3f c0 ff 00
ff 7f £3 be ff ff 4f 4f

$A200,

FHAIFbbF77FF01el If 1f el O1F
fe O1 ff ff 1f el ff ff ff 01 O1 £ O1 £ ff 0O
ff 77 ba dc ef ef ee fe

SA300,

ff ff bd ff 7b ff {7 ff ef 3e 3f cO OO0 ff 00 ff
ff 00 ff 01 fe c1 ff ff ff 00 00 ff 00 f ff 00

-Ad.1-

ef £7 7b bd ff de df de

$A400,
fEXMEITTeff 7 £878 ff 78 ff 78 &7
ff 80 ff 78 67 dd ff ff 6f fO 70 ef 60 ff 9f e0
ff 66 27 5f fb fb 65 23

$AS00,

1f 1e 17 Of 1f 07 1f 07 07 1f 1f 07 1f 07 07 1f
18 07 1f 1f 1f OS5 1f 1f 1f If 1f 1f 07 1f 18 07
1f 1d 1f 16 Of 1f Of 1b

$A600,

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

$5739d,

-A4.2-

APPENDIX §

SCHEMATICS FOR THE FPP3

This appendix contains the drawings for the FPP3. Drawing 1 is the high level block

diagram of the FPP3. Drawing 2 is the control unit. Drawing 3 is the ALU and functional

unit. Drawing 4 is the bus interface and the dual-port static RAM. Drawing § is the table

ROM and its interface. Drawing 6 is the interface to the Butterfly processor node.

-ASQI'

7 1 " n e a l ? I 1
i8N
CiaS 2Nl — -
ap g
>
o WO - G,
a1 T 800 s01 sno sot 50 B ¢
[~ Yoo (T)
NEWPR NEWPR NEWPO
CONTROL, DUBLSRAN au NEWFPA
TBLROM
Ave Aoe
HI.-. [“H
A%, 02N
BlS., 0201
DRAHING JErINE
NEWFPA N_FIRST=RA
Nwon
xX_Sire=s121
LAST_MODIFIFD=Sun Jul 1 16:A5:23 1BR4
rreee nre
[X231 Gs3, 1804
¢ T TN, B3
PN Y, CHINT Q IFENERYy T, 1IN 1TS00 [}
]) .] o 4 ' l - l T

[cta i~ DA [32N |
RO

AP DG

RPILING

CTL2N\G
FLHODENG

114

-]
MDD ?, N1

S1GNG
owreN\G
EXP2SS\G
FRACONG
3¢2..0>\G
PLR¢I.. DO \L

ae

-

otem s

(s

cSereind
CCGEN

oneren

.\Cf‘_.

Mo 2. . IN\1

PLRC19. . 8> \L

K
akss "5

MCLKe\G

s

BLRIZDI M ASTR. (]
1

g

axng

gﬂ

PLR¢

;| N

-aa
wratic e

-
e uge

(3 l’Lm 2L\

SpINt_| S

-DRAHING.

NCBS PR CONTROL
N WreWTROL

Levaf _montr IFD- Sun Jul

1883

8

BN IERY4R]

DIN_CEe\G
DIN_ OFe\G
C..TO . HAD\G
ADR_ENe\G
SRAML _RDACS, . 3>\G
SRAMLE _WES\G
AM2_NDASK, . \G
SRAMZ_WFe\G
9RAMI_ENNG
SRAML _O0Te\G
GRAMZ_ENG
SRAM2_0E*\G
C_TO_Ba\G
__'6 SIGN_EN\G
SIGN_CE»\G
DEL _ENe\G
DEL.OEa\G
ZERO_OE NG
EXP_ROM_OEa\G
DFRA_CEMG
SFRA_OENG
ERDR_ENNG
FROR] _FHa\G
FATR2_FNe\G
F¢3..8°\G
LO.F G
B_SEL\G
HSH_OEe\G
COND_OC»\G
AT LcL. . 0\G

HAT UL, . B8N\G

ALU.Lcl. . MN\G
AU UL, .M\G
SOBFe MUX_SELC], . B\G
:;anlnc-cc-\c
ADIAG.OC=\G
EXP_STL
INING
VNG
NG
LEF I
X.riRst-a

D 1 YSH I BI2E

[RRI NS

NEW I'N CONIROL

[
S 1/P4

T

™

LI)

PN Y, CRENG & JEFFREY T, IwIncoa []

)

C¢1S. . M\I

AclS. . BON\1
Bc1S. . \1
185 [
4 4 150
F(3..9\G 16 B3B¢
T | -l Bob¢
o) ¢
ake b ' l?(é' o o POPCIS. . O\L :
L1, LN '
P
LDreG e ot
L]
AR ¢ L JUR AN
B-5CLN\G ™ MBN_0ENG ocaj
0_
r ~e 09 ‘a"
MAT L. . ONG > uries? —.T
**® riosting
AT UL, . O\G M U, ruttipiien
ReisS, .o\1
h por«¢B,
clw il oc2ey 1"
—— e_|Eins
, e ree ':’__
AU.LLL. .OI\G |.-4 wrLiesy "
4** riceting
ALU_UCT. . ON\G % =Y oL
G
« % L 20UT<2,, N\,
TEFING.
IROHING
X_FIRST=A
N A LU
NWNLY X_SICP-SIZE
1A% _MODIFIED*Sat Jun 30 17:31:21 1884
AERIR RS parr:
NCLE SN At 2-12/,04
L L B SR
. BAr N Y, CHONG R JEVEREY [, DTHTSON

G l ~ | - [- | 1 - [T '

5] 4 | 3 | ? | !
Mg ar 2oP
2N\L B _BD. . .. A
(2L R A 1655 e =
= N v;}:' - f 2%
MADCIS, %ote” -
SDINL] 901 004
'
cva oed '{s
RIN_CEeNG [8) R\
MADC1S. . @>\1
DIN.OEeNG)
CJOIADeNG
[XI-NN AN L
“ﬂi.i
axe M fép
18P
! 18
D AQIET-48 O D AQIeT-43
om A 1L NN
B0 L NG waree o sraric ane
Ssp-8 LI]
&lp e ~e .-. £z
RAML-ARNCE. LI NG.
/ i Do
8, 14P e
8
o _)L\ : ié’
RAR2-ARNS. .02 /
B2 _HEeNG i-s 189
1 sP
sm; ‘e
(8
BALLENG ° ° I
L8a7y e’
¢ ooroed_ SDONL
or
EEUCLG] o oo
Y
SRARLMNNG
B2 0LeNG
Cal0 820G
Q016G.CE2N\G
AVLAG.QLaNG
Q815 . P, VRSP RO ORI DU DR SR
IR -9 LY) e e e e e e e = e e - P B e ——— e e
bt AN
X F LR 0
X S8 e AR N vt e
N LI LRE edn X oS B [T RLTIN TIRCRRNG U] 4 ., 1une
(LT SXE VRN
IR T TI I T TN YU B B RO RN B T TR YT -
] LY B ST T N [U NS R K RN § 3

P [7 | " | T | a 1 a | 2 | 1
S ——
CiSe] S T 1 - -
BUSINL. . U man K 4228 - s o
aorve \ | DELAYSA, . N) P L5 NS VAN |
0 QLVAG | _/ - "
.d ae e S
o« [¥ X P
SM.D‘.QG_..___B—
SO0 NG
PELCNeNG. L
- PEL.QLe\G, -
TEROQL exG G
Ce14, . 2N -
20000 "ar14
N\ .
B EXP_SELNG . CeB.. 0\ <
- / 170
LS. L2 .
DELAY (4> \L C¢B. .\
6“‘ 13P 189
PR OCeNG ll:l.nY(:;\L C¢B. . O\
1B714) Y vea. . e
-
ofhy
|- 122 hem71 40 71308
C3l %
EXP(T. . OL yonmon (IL_D g
DFRALOESNG o _cm DELAY (3. . O \L
[N B
SFRA_OLeN\G -
XPCB\L
)]
- ¥ ExeamAL Py L P@r L
Beld. (ol P RON_ADRCLLL . MM
Qa2 40
—pTpe PBL O[T o) L T N X
« g T RIS, N o ey _IRBHING. EEING
[(R.3 14
P e T X_FIRGT=0
o CADR_CHMNG CLING 53’ %ggta.%gg" § a
o
[~ 4
ﬁ.‘

FoDE] _EveNG _ |

CAQL el

LAST_MODIFIC0=Sun Jul

X_STer-S12E

1 17:08: 70 1994

[RECICE]
[CRYTRLLTN R LN A A

TRITF ¢
%2,

1904

LN

ety oy

1

. SN

N R PR

] TanG
DEANY
S ING

S 4 I e l 1
&
M2 1662 yi sP
7 1\ -4
aP —& L_I 7[’ tRD2L. . &\
[« 2} KW AN <} ?/ /
CSI6N\G
CH3UNG
#,p
MCLK*\G /
L DS24\G
MERR®\G

-LRAHING DEFIE
N 12 PR PAD X.FIRST=0
L b P €T X_SiLh=51a

LAST_MODIFIED=MoN May 14 BA: 25: 44 1984

TIfLE: DATE:
NWFPA D 5/3, 1884
LGNGO PRGC:
IRk N V. CHENG 8 JUFHREY T, DEUTSCH 1

3 | o] 1

APPENDIX 6

EXP.C AND LOG.C

This appendix contains the C programs which calculate e* and log x. These programs

are copied from /usr/src/lib.

’AG-I-

/t
/t

x/

@#exp.c 41 12/25/82 */

exp returns the exponential function of its
floating-point argument.

The coefficients are #1069 from Hart and Cheney. (22.35D)

#include <errno.h>
#include <math.h>

int

€rrno;

static double p0 = ,2080384346694663001443843411e7;
static double pl = ,3028697169744036299076048876e5;
static double p2 = ,6061485330061080841615584556¢2;
static double g0 = ,6002720360238832528230907598e7;
static double ql = .3277251518082914423057964422¢6;
static double g2 = ,1749287689093076403844945335¢4;
static double log2e = 1.4426950408889634073599247;
static double sqrt2 = 1.4142135623730950488016887;
static double maxf = 10000;

double

explarg)
?ouble arg;

/*

double fract;
double templ, temp2, xsq;
int ent;

if(arg == 0.)
return(1.);

if(arg <-maxf)
return(0.);

if(arg > maxf) {
errno = ERANGE;
return(HUGE);

arg *= log2e;

ent = floor(arg);

fract = (arg-ent) - 0.5;

xsq = fract*fract;

temp] = ((p2*xsq+p1)*xsq+p0)*fract;

temp2 = ((1.0*xsq+q2)*xsq+q1)>*xsq + q0;
return(ldexp(sqrt2*(temp2+temp1)/(temp2-temp1), ent));

@(#log.c 4.1 12/25/82 */

log returns the natural logarithm of its floating

-A6.2-

point argument.
The coefficients are #2705 from Hart & Cheney. (19.38D)

It calls frexp.
*/

#include <errno.h>
#Anclude <math.h>

int errno;

double frexp(}

static double log2 = 0.693147180559945309¢0;
static double 1n10 = 2.302585092994045684;
static double sqrto2 = 0.707106781186547524e0;
static double pO = -.240139179559210510e2;
static double p1l = 0.309572928215376501¢2;
static double p2 = -.963769093368686593¢1;
static double p3 = 0.421087371217979714¢0;
static double g0 = -,120069589779605255¢2;
static double gl 0.194809660700889731¢2;
static double q2 = -.891110902798312337%1;

double

log(arg)

double arg;

{
double x,z, zsq, temp;
int exp;

if(arg <= 0.) {
errno = EDOM;
return(-HUGE);

x = frexp(arg,&exp);
while(x <0.5) {

X = x*2;

exp = exp-1;

}

if (x <sqrto2) {
X = 2%x;
exp = exp-1;

z = (x-1)/(x+1);
25q = 2*z;

temp = ((p3*2sq + p2)*zsq + p1)*zsq + pO;

temp = temp/(((1.0*zsq + q2)*zsq + q1)*zsq + qO);
temp = temp*z + exp*log2;

return(temp);

double
log10(arg)

-A6.3-

?ouble arg;

return(log(arg)/In10);

-A6.4-

L

APPENDIX 7

FLOATING POINT SPEED

Included in this appendix is a note by J.T. Deutsch. This note gives floating point
times for 68000 software, and several commercial floating point chips.
68000 SOFTWARE

Here are some times for software floating point on 68000 based machines (10mhz

68000, no wait states).

MOTOROLA
OP 32-BIT
ADD 18us
SUB 20us
MUL __ 45us
MIT

10) 32-BIT 64-BIT
ADD 206us 220us
MUL 328us 345mes

NS 16081 10MHZ

OP 32-BIT 64-BIT
ADD 7.4us 74us -
MUL _ 4.8us 4.8us

INTEL 80287 SMHZ

OP 32-BIT 64-BIT
ADD 14us 14us
SUB 18us 18us
MUL 19us 27us
DIV Yus 39us
SQRT 36us 36us
TAN 90us _90us

FLOATING POINT FUNCTIONAL UNITS

These chips are not designed as co-processors for a particular microprocessor. All

have synchronous TTL-level interfaces.

HP CHIPS
OP 32-BIT 64-BIT VECTOR
ADD 700ns 1.1us (L*300ns+{400ns/32bits or 800ns/64)
MUL lus 14us (L*600ns)+
WEITEK CHIPS

op 32-BIT VECTOR
ADD 900ns (L*200ns}+400ns
MUL 900ns (L*200ns}+400ns

'A7.2-

3

REFERENCES

[NAG75)
LN. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits”,
University of California Electronics Research Laboratory, Memo ERL-MS520, May 1975

[KNU73]
D.E. Knuth, "Fundamental Algorithms", Vol. 1, pp.442-445, Addison and Wesley,
1973

[DEU84]
J.T. Deutsch, and A.R. Newton, "A Multiprocessor Implementation of Relaxation Based
Electrical Circuit Simulation”, Proceedings, 21st IEEE Design Automation Conference,
Albequerque, New Mexico, June 1984

[RET79]
R.D. Rettberg. C. Wyman, et. al,, "Development of a Voice Funnel System: Design
Report”, BBN Reports #4098, Bolt Beranek and Newman Inc., August, 1979

[LAW7S)
D.H. Lawrie, " Access and alightment of data in an array processor”, IEEE Transactions
on Computers, C-24(12), Dec. 1975, pp.1145-1155.

[RET79a]
R.D. Rettberg, "Development of a Voice Funnel System: Design Report”, Quarterly
Technical Report #4143, Bolt Beranek and Newman Inc., June, 1979

(RET80]
R.D. Rettberg, "Development of a Voice Funnel System: Design Report”, Quarterly
Technical Report #4563, Bolt Beranek and Newman®Inc., November, 1980

[RETS1]
RD. Rettberg, "Development of a Voice Funnel System: Design Report”, Quarterly
Technical Report #4564, Bolt Beranek and Newman Inc., January, 1981

[RETS2]
R.D. Rettberg, "Development of a Voice Funnel System: Design Report”, BBN Reports
#4845, Bolt Beranek and Newman Inc., January, 1982

[RET83]
R.D. Rettberg, B. Mann, J. Goodhue, and M. Hoffman, "Chysalis Operating System”,
Bolt Beranek and Newman Inc., June 1983

[WARS2)
F.A. Ware, WH. McAllister, J.R. Carlson, D.K. Sun, and RJ. Vlach, " 64 Bit Monolithic
Floating Point Processors”, IEEE Journal of Solid-State Circuits, Vol. SC-17, NO. 5,
October 1982, pp 898-907.

{AMDS3]
"Bipolar Microprocessor Logic and Interface”, Am 2900 Family 1983 Data Book,
Advanced Micro Device Inc., 1983

[NSD82]
"NS16081 Floating-Point Unit", Product Review, National Semiconductor Inc., October
1982

[INT84]
" 80287 80-Bit HMOS Numeric Processor Extension 80287-3", Microsystem Components
Handbook, Vol 1, Intel Inc. 1984, pp 4-52 10 4-75.

[WEIs3]
"WTL 1032/1033 High-Speed 32-bit IEEE Floating-Point Multiplier/ALU", Data Sheet
available from Weitek Inc., Sunnyvale, CA., 1983

[WEI83a)
"WTL 1032/1033 Floating Point Division/Square Root/IEEE Arithmetic”, Application
Note, Weitek Inc., Sunnyvale, CA., 1983

[vLAS2]
A. Vladimirescu and D.O. Pederson, "Performance Limits of the CLASSIE Circuit
Simulation Program”, Proceedings of Int. Symp. on Circ ans Syst., Rome, May 1982

[CAL79]
D.A. Calhan and W.G. Ames, "Vector Processors: Models and Applications”, IEEE
Trans. on Circ. and Syst., Val. CAS-26, September 1979

	Copyright notice 1984
	ERL-84-55

