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"j Abstract

The inherent saturation nonlinearity of the op amp is used to design circuits

having a wide variety of useful nonlinear v-i characteristics. These circuits are

made of one op amp and 3 or 4 linear resistors which are passive under a rather

mild assumption derived from the 3-port paramouncy condition. Explicit design

formulas are given for each prototype circuit and numerous examples are given and

validated by actual measurements.
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1. Introduction

Operational amplifiers (op amps) have been used almost exclusively as a
11"ear element in circuit design [1-3]. Even in nonlinear circuit applications,
such as synthesis of precision nonlinear driving-point characteristics [4] the
op amp is operated only in the linear region, and the circuit's nonlinear

behavior is provided by other nonlinear elements such as pn-junction diodes.
Consequently, the dynamic range of the input signal in most op amp circuits
must be restricted to avoid driving the op amp into saturation.

In this paper we will exploit, rather than avoid, the inherent nonlinearity

of the op amp in designing practical circuits. In particular, we will show

that any one-port made of one op amp and linear positive resistors (Fig. 1(a))

is characterized by one of the ten odd-symmetric driving-point characteristics

shown in Fig. 1(b), assuming the op amp has a symmetric saturation characteristic.

Moreover, we will show that under a rather mild inequality assumption, any of

these v-i characteristics can be realized by the canonical circuit shown in

Fig. 2.

Each v-i characteristic in Fig. 1(b) has numerous applications [5-7]:

characteristic (i)-(iv) in Fig. 1(b) can be used for wave shaping applications;

characteristic (v)-(vi) can be used for designing oscillators and multivibrators,

whereas characteristics (vii)-(x) can be used for designing flip-flops. More

over, since these characteristics can be realized with high precision, they can

be used as building blocks for synthesizing more complicated v-i characteristics.

Since the origin in each v-i characteristic in Fig. 1(b) can be translated to any

other point in the v-i plane by adding one or two batteries, we have an unusually

large repertoire of accurate v-i characteristic building blocks made of only op

amps, linear positive resistors, and batteries.

Because of its widespread applications, Section 2 is written in a "cookbook"

style for users interested only in building the canonical op amp circuits to

have any one the v-i characteristics in Fig. 1(b) with prescribed breakpoints

and slopes. Although the canonical circuit in Fig. 2 contains 7 resistors, no

more than 4 are needed in each case. Consequently, the simplified circuits in

Section 2 are all special cases of the canonical circuit. Explicit formulas for

calculating the resistances and battery voltages are given for each simplified

canonical circuit. To demonstrate the accuracy of these circuits in realizing

a prescribed v-i characteristic, examples with experimentally measured v-i

characteristics are given for comparison purposes.
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Some practical aspects of the circuits presented in Section 2 are discussed

in Section 3.

Section 4 is devoted to the design of several practical circuits using the

simplified canonical circuits from Section 2 as building blocks.

The canonical circuit in Fig. 2 is derived via a circuit - theoretic

approach in Section 5. The concept of a paramount matrix [8] plays a crucial

role in the conception of this circuit. Indeed, our approach represents one of

the very few instances in electronic circuit design where a circuit configuration

is derived systematically rather than through an ad hoc or intuitive approach.

2. Design Formulas and Examples

Each v-i characteristic in Fig. 1 can be synthesized by a simplified version

of the canonical circuit in Fig. 2. In the following we consider one v-i charac

teristic at a time (in the order listed) and give the corresponding circuit along

with the formulas for calculating the element values. Note that since we retain

the resistor label in the canonical circuit, the resistors in the following

circuits are not numbered consecutively since only 3 or 4 (out of 7) resistors

are needed in each case. Except for E , and E which denote the positive and

negative saturation voltages of the op amp being used, all other parameters are

labelled in the associated v-i characteristics. In order to guarantee that all

resistors are positive, it is both necessary and sufficient that these parameters

must satisfy the following standing assumptions:

Slope-breakpoint inequality

m0 LB2 bBl

EB2"EB1
< 1 (lb)

for all cases except (iv) and (viii) where (la) and (lb) are replaced by

m - IB2"IB1 m
m° ^sTT (2)

For improved accuracy in our design we do not assume the op amp saturation
voltages to be equal in magnitude. Of course, if an odd-symmetric v-i charac
teristic is required, then an op amp with |E +| =|E | must be chosen.

-3-



The standing assumption will be derived in Section 4. It is a weak assumption

that is satisfied by most v-i characteristics of practical interest.

Two design examples will be given for each simplified canonical circuit.

The first example is an odd-symmetric characteristic taken directly from Fig. 1.

The second example is a translated version of the corresponding characteristic

from Fig. 1. For comparison purposes we have used the same op amp (national/

8035 741 CN) in all these examples. This op amp was measured to have a positive

saturation voltage E +=15 V and a negative saturation voltage E =-13 V. Had
another op amp with an identical saturation voltages been chosen, then no bat

teries will be needed in realizing each odd-symmetric characteristic in the

following examples: 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1 and 10.1.

v-i characteristic (i)

Consider the v-i characteristic in Fig. 3(a). This is identical to the v-i

characteristic (i) in Fig. 1(b) except for a translation of the origin to Q.

This characteristic can be synthesized by the circuit in Fig. 3(b).

Example 1.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 4(a) using an op amp with

Es+=15 V and E$_ =-13 V. Here m0 =2, m] =1, Egl =-1 V, EB2 =1 V and Igl =-1 mA.
Substituting these parameters into (1), we found

.2-1, „ 15+13

' 1+1 • < 1
15+13

Hence, the slope-breakpoint condition is satisfied and we know only positive

resistors are needed. The element values calculated from the design algorithm

in Fig. 3(b) are:

R3 =1 Kfl, R4 =13 Kfl, R6 =518.5 ft

Ry =14 Kfl, E] =- .77 V, E2 =- .37 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

4(b).1"

fAn v-i curves in this paper are traced with a specially designed negative-
resistance curve tracer [9].
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Example 1.2

Synthesize the v-i characteristic shown in Fig. 5(a) using an op amp with

Es+=15 V and Es_ =- 13 V. Here mQ * 3, m1 =1, Egl =- 3 V, EB2 =1 V and
Ig, =- 2 mA. The slope-breakpoint condition is satisfied and only positive
resistors are needed. The element values calculated from the design algorithm

in Fig. 3(b) are:

R3 =1 KG, R4 =6 KG, R6 = 368 G

R7 =3.5 KG, E1 =- 1.33 V, L^ =- 1.21 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

5(b).

v-i characteristic (ii)

Consider the v-i characteristic in Fig. 6(a). This is identical to the v-i

characteristic (ii) in Fig. 1(b) except for a translation of the origin to Q.

This characteristic can be synthesized by the circuit in Fig. 6(b).

Example 2.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 7(a) using an op amp with

Es+=15 V and Eg_ =- 13 V. Here m0 =l, m1 =2, Egl =- 2 V, Eg2 =2 V and
I„, =- 4 mA. It is easily verified that condition (1) is satisfied and only

positive resistors are needed. The element values calculated from the design

algorithm in Fig. 6(b) are:

R1 = 500 G, R3 = 583 G, R^ = 3.5 KG

E] =- .17 V, E2 =0

The v-i characteristic measured fromthe resulting circuit is shown in Fig. 7(b).

Example 2.2

Synthesize the v-i characteristic shown in Fig. 8(a) using an op amp with

Es+=15 V and E - =- 13 V. Here mQ =1, m-, =2, Egl =- 2 V, Eg2 = 4 V and
Ig, =1 mA. Since condition (1) is satisfied, only positive resistors are
needed. The element values calculated fromthe design algorithm in Fig. 6(b) are:

R1 = 500 G, R3 = 633 G, R4 =2.33 KG

E1 = - 7.91 V, E2 = - 2.5 V
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The v-i characteristic measured from the resulting circuit is shown in Fig.
8(b).

v-i characteristic (iii)

Consider the v-i characteristic in Fig. 9(a). This is identical to the

v-i characteristic (iii) in Fig. 1(b) except for a translation of the origin to
Q. This characteristic can be synthesized by the circuit in Fig. 9(b).

Example 3.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 10(a) using an op amp with

Es+=15 V and Eg_ =- 13 V. Here mQ =2, m] =0, Eg] =- 2 V, Eg2=2 V and Ig] =0.
Condition (1) is satisfied and only positive resistors are needed. The element

values calculated from the design algorithm in Fig. 9(b) are:

R3 =1 KG, R4 =6 KG, Rg =583 G

R7 = 3.5 KG, E] = - .17 mV, E2 =- .17 mV

The v-i characteristic measured from the resulting circuit is shown in Fig. 10(b).

Example 3.2

Synthesize the v-i characteristic shown in Fig. 11(a) using an op amp with

Es+=15 V and Es_ =-13 V. Here mQ =2, n^ =0, Eg] =- 1 V, Eg2 =3 V and Igl =4 mA.
The slope-breakpoint condition (1) is satisfied and only positive resistors are

needed. The element values cadculated from the design algorithm in Fig. 9(b)

are:

R3 = 1 KG, R4 =6 KG, Rg =583 G

R? = 3.5 KG, E1 = IV, E2 =- 1.33 V

The v-i characteristic measured from the resulting circuit is shown in Fig. 11(b)

v-i characteristic (iv)

Consider the v-i characteristic in Fig. 12(a). This is identical to the

v-i characteristic (iv) in Fig. 1(b) except for a translation of the origin to

Q. This characteristic can be synthesized by the circuit in Fig. 12(b).

Example 4.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 13(a) using an op amp with

Es+=15 Vand Es_ =- 13 V. Here mQ =|, m-j =°°, Igl =- 3mA, IB2 =3mA and
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Egl =0. Substituting these parameters into (2), we found:

1 > 3+3
4 15+13

Hence, the slope-breakpoint inequality is satisfied and we know only positive

resistors are needed. The element values calculated from the design algorithm

in Fig. 12(b) are:

R4 =4.7 KG, R5 = 18 KG, Rg = 10 KG

E2 =0, E3 = - 1 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

13(b).

Example 4.2

Synthesize the v-i characteristic shown in Fig. 14(a) using an op amp with

Es+= 15 Vand Es_ =-13 V. Here mQ =-^, m, =«, Ig, =- 1mA, Ig2 =3mA and
Eg, =4 V. The slope-breakpoint condition (2) is satisfied. The element values
calculated from the design algorithm in Fig. 12(b) are:

R4 =7 KG, R5 = 1 KG, Rg =8.33 kG

E2 =4 V, E3 = - 2 V

The v-i characteristic measured from the resulting circuit is shown in Fig. 14(b)

v-i characteristic (v)

Consider the v-i characteristic in Fig. 15(a). This is identical to the v-i

characteristic (v) in Fig. 1(b) except for a translation of the origin to Q.

This characteristic can be synthesized by the circuit in Fig. 15(b).

Example 5.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 16(a) using an op amp with

Es+=15 V and Es_ =-13 V. Here mQ =2, m] =- j, Egl =- 2 V, Eg2 =2 V and
Ig, = 1 mA. Since the slope-breakpoint condition (1) is satisfied, only posi
tive resistors are needed. The element values calculated from the design algo

rithm in Fig. 15(b) are:

R3 =1 KG, R4 =6 KG, Rg =608.7 G

R? = 2.8 KG, E] = - .167 V, Eg = - .217 V
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The v-i characteristic measured from the resulting circuit is shown in

Fig. 16(b).

Example 5.2

Synthesize the v-i characteristic shown in Fig. 17(a) using an op amp with

Es+=15 Vand Eg_ =-13 V. Here mQ =1, m] =- ^, Egl =1V, Eg2=2 Vand Ig] =1 mA.
The slope-breakpoint condition (1) is satisfied and only positive resistors are

needed. The element values calculated from the design algorithm in Fig. 15(b)
are:

R3 =l K , R4 =26 K , R6 =1.06 K

R? =18 K , E] =1.54 V, E2 = .765 V

The v-i characteristic measured from the resulting circuitis shown in Fig. 17(b).

v-i characteristic (vi)

Consider the v-i characteristic in Fig. 18(a). This is identical to the

v-i characteristic (vi) in Fig. 1(b) except for a translation of the origin to Q.

This characteristic can be synthesized by the circuit in Fig. 18(b).

Example 6.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 19(a) using an op amp with

Es+=15 V and Eg_ =-13 V. Here mQ =1, m^ =- 2, Eg] =- 3V, Eg2 =3 V and
Ig, =6 mA. Since the slope-breakpoint condition (1) is satisfied, only positive
resistors are needed. The element values calculated from the design algorithm in

Fig. 18(b) are:

R3 = 2.8 KG, R4 = 1.56 KG, Rg = 3 KG

R? = 11 KG, E1 =-1.8 V, E2 =- .273 V

The v-i characteristic measured from the resulting circuit is shown in

Fig. 19(b).

Example 6.2

Synthesize the v-i characteristic shown in Fig. 20(a) using an op amp with

E$+=15 Vand Eg_=-13 V. Here mQ =1, m] =- \> Eg] =1V, Eg2 =3Vand lgl =4 mA.
Condition (1) is satisfied and we know only positive resistors are needed. The

element values calculated from the design algorithm, in Fig. 18(b) are:
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R3 =1.12 KG, R4 =9 KG, Rg =2 KG

R7 =25 KG, E1 =- 1.75 V, E2 =2.12 V

The v-i characteristic measurement from the resulting circuit is shown in Fig.

20(b).

v-i characteristic (vii)

Consider the v-i characteristic in Fig. 21(a). This is identical to the

v-i characteristic (vii) in Fig. 1(b) except for a translation of the origin to

Q. This characteristic can be synthesized by the circuit in Fig. 21(b).

Example 7.1 (Odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 22(a) using an op amp with

Es+=15 V and Es_ =-13 V. Here mQ =1, m1 =0, Egl =- 2 V, Eg2=2 V and Igl =0.
The slope-breakpoint condition (1) is satisfied and only posiqive resistors are

needed. The element values calculated from the design algorithm in Fig. 21(b)

are:

R3 = 1.17 KG, R4 =7 KG, Rg =1 KG

R? =6 KG, E1 = - .17 V, E2 =- .17 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

22(b). Note that since this characteristic is multivalued (i.e. neither voltage-

controlled nor current-controlled), we were able to trace only two segments of

the v-i characteristic.

Example 7.2

Synthesize the v-i characteristic shown in Fig. 23(a) using an op amp with

Es+ =15 V and Eg_ =- 13 V. Here mQ =1, m] =0, Eg] =- 2 V, Eg2 =4 V and Igl =4 mA.
The slope-breakpoint condition is satisfied and only positive resistors are

needed. The element values calculated from the design algorithm in Fig. 21(b)

are:

R3 = 1.27 KG, R4 =4.67 KG, Rg =3 KG

R7 = 11 KG, E1 =- 4.09 V, E2 = 1 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

23(b). Again only two segments are shown because the characteristic is multi

valued.
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v-i characteristic (viii)

Consider the v-i characteristic in Fig. 24(a). This is identical to the

v-i characteristic (viii) in Fig. 1(b) except for a translation of the origin
to Q. This characteristic can be synthesized by the circuit in Fig. 24(b).

Example 8.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 25(a) using an op amp with

Es+ =+ 15 V and Es_ =- 13 V. Here mQ =1, m] =«, Igl =- 2 mA, Ig2 =2 mA and
Egl=0. The siope-breakpoint inequality (2) is satisfied and only positive
resistors are needed. The element values calculated from the design algorithm

in Fig. 24(b) are:

R3 = 167 G, R5 = 1 KG, Ry =7 KG

Eg =0, E3 =- 1 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

25(b). Note that since this characteristic is multivalued only two segments of

the v-i characteristic are shown.

Example 8.2

Synthesize the v-i characteristic shown in Fig. 26(a) using an op amp with

Es+=15 V, Es_ =- 13 V. Here mQ =1, Igl =- 1 mA, Ig2 =3 mA and Egl =6 V. Since
condition (2) is satisfied only positive resistors are needed. The element

values calculated from the design algorithm in Fig. 24(b) are:

R3 = 167 G, Rg = 1 KG, Ry =7 KG

E2 = 6 V, E3 =- 2 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

26(b). Again only two segments are shown because the characteristic is multi

valued.

v-i characteristic (ix)

Consider the v-i characteristic in Fig. 27(a). This is identical to the

v-i characteristic (ix) in Fig. 1(b) except for a translation of the origin to

Q. This characteristic can be synthesized by the circuit in Fig. 27(b).
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Example 9.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 28(a) using an op amp with

Es+=15 V and Eg_ =- 13 V. Here mQ=1, m] =2, Eg] =- 3 V, Eg2 =3 V and
Ig1=- 6 mA. Condition (1) is therefore satisfied and only positive resistors
are needed. The element values calculated from the design algorithm in Fig.

27(b) are:

R2 = 500 G, R4 =2.33 KG, Rg =636.4 G

E1 =- .273 V, E2 =0

The v-i characteristic measured from the resulting circuit is shown in Fig.

28(b). Note that since this characteristic is multivalued only two segments

are shown.

Example 9.2

Synthesize the v-i characteristic shown in Fig. 29(a) using an op amp with

Es+=15 V and Eg_ =- 13 V. Here mQ =1, m] =2, Egl =2 V, Eg2 =4 V and
Ig1 =-3 mA. Since condition (1) is satisfied, only positive resistors are
needed. The element values calculated from the design algorithm in Fig. 27(b)

are:

R2 = 500 G, R4 =7 KG, Rg =588.5 G

Eg =4.23 V, E3 = 3.5 V

The v-i characteristic measured from the resulting circuit is shown in Fig.

29(b). Again only two segments are shown because the characteristic is multi

valued.

v-i characteristic (x)

Consider the v-i characteristic in Fig. 30(a). This is identical to the

v-i characteristic (x) in Fig. 1(b) except for a translation of the origin to

Q. This characteristic can be synthesized by the circuit in Fig. 30(b).

Example 10.1 (odd-symmetric characteristic)

Synthesize the v-i characteristic shown in Fig. 31(a) using an op amp

with E$+ =15 V and E$_ =- 13 V. Here mQ =2, m] =1, Egl =-4 V, Eg2 =4 V and
Ig, =-4 mA. Condition (1) is therefore satisfied and only positive resistors
are needed. The element values calculated from the design algorithm in Fig.

30(b) are:
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R3 = 583 G, R4 = 3.5 KG, Rg =2 KG

R? = 5 K , E1 = - .17 V, E2 =- .4 V

The v-i characteristic measured fromthe resulting circuit is shown in Fig.

31(b). Since this characteristic is multivalued, only two segments are shown.

Example 10.2

Synthesize the v-i characteristic shown in Fig. 32(a) using an op amp with

E$+=15 V and Es_ =- 13 V. Here mQ =2, m1 =1, Eg] =- 4 V, Eg2 =- 2 V and
Ig, =- 4 mA. The slope-breakpoint condition (1) is satisfied and only positive
resistors are needed. The element values calculated from the design algorithm

in Fig. 3(b) are:

R3 =518.5 G, R4 = 14 KG, Rg = 1 KG

Ry = 13 KG, E1 = - 1.59 V, Eg =- 3.31 V

The v-i characteristic measured fromthe resulting circuit is shown in Fig. 32(b),

Since this characteristic is multivalued, only two segments are shown.

3. Practical Considerations

In this section we discuss two practical aspects of the circuits presented

in Section 2. First, we show that by using an op amp with identical saturation

voltages no batteries will be needed in realizing any odd-symmetric characteris

tic in Fig. 1(b). Next, we present alternative circuits, for cases where

batteries are needed, in which the needed batteries are realized using the power

supply voltage.

A. Realization of odd-symmetric characteristic with circuits containing
no batteries

Using an op amp with identical saturation voltages any odd-symmetric char
acteristic in Fig. 1(b) can be realized with circuits containing no batteries.

This is easily verified by substituting Eg+= |E$J and Eg2 =- Egl in design
formulas of Section 2.

In general the saturation voltages of any op amp depend on the power supply
voltages v . and v required for the op amp operation. In the case of the
741 op amp the positive saturation voltage E$+=vcc+ but the negative satura
tion voltage is considerably lower (up to 2 volts) than vcc_ [10]. However,
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by adjusting v the two saturation voltages can be made identical. Recall

all the examples in Section 2 were obtained by using v +=15 V, v =- 15 V
which correspond to E+=15 V and E =- 13 V. However, using v = 13 V and
vcc_ =- 15 Vwe were able to obtain E+= |E |=13 V. This op amp was then used
to realize the same odd-symmetric characteristics presented as examples in Sec

tion 2. These measured characteristics along with the resistor values are

exhibited in Fig. 33 through Fig. 42.

B. Alternative circuits

In order to measure the v-i characteristic of any circuit shown in Section

2, four power supplies are needed. Two power supplies v +, v for op amp
operation and the other two as batteries. From a practical point of view this

is sometimes undesirable. Hence, in what follows alternative circuits are pre

sented in which the two batteries are realized by direct use of the op amp power

supplies. The only restriction is that the battery voltages |E, | and |E«| must

be less than the power supply voltages.

First, consider the circuit in Fig. 43. This circuit can be used to

realize any battery E, less than the supply voltage Es by choosing appropriate
values for R« and Rg.

Figure 44 shows the circuit modification needed to realize a series combina

tion of a resistor and a battery, as in the circuits from Section 2, using the

power supply.

The circuit modification needed to realize a battery which is directly

connected to input terminals of an op amp using the power supply is shown in

Fig. 45.

4. Applications

This section is devoted to the design of several practical circuits using

the simplified canonical circuits from Section 2 as building blocks.

(a) A soft oscillator

Consider the circuit in Fig. 46(a) where the non-linear resistor has a vol

tage controlled v-i characteristic as in Fig. 46(b). The dynamic route in

Fig. 46(b) shows that regardless of the initial flux on the inductor the

circuit exhibits oscillations. The measured v-i characteristic and the

measured oscillations are shown in Fig. 47.

-13-



(b) A hard oscillator

Consider the circuit in Fig. 48(a) where the parallel combination of R, and

Rg has a v-i characteristic es shown in Fig. 48(b). The dynamic route in
Fig. 48(b) reveals that the origin is astable equilibrium point. Therefore,
in order to obtain oscillations an initial current of i,(0) >imA must be
imposed on the inductor. The measured characteristic for R, and Rg are shown
in Fig. 49(a)-(b), the parallel combination of these two is shown in Fig.
49(c) and the measured oscillation is exhibited in Fig. 49(d).

(c) A 3-state circuit

Consider the circuit in Fig. 50(a) where the parallel combination of the two

non-linear resistors results in a v-i characteristic as shown in Fig. 50(b).

From the associated dynamic route we see that Q,, Q2 and Q3 are all stable
equilibrium points. Therefore, depending on the initial charge on the

capacitor one of three states will be reached. The measured v-i characteris

tic along with the circuit used in the realization is shown in Fig. 51.

(d) A chaotic circuit

Roughly speaking, a circuit is chaotic iff its solution is neither a periodic

(possibly constant) nor an almost periodic function. It is now widely

believed that a large class of practical nonlinear circuits can become

chaotic if the circuit parameters are appropriately chosen.

The circuit in Fig. 52(a) has recently been shown to exhibit chaotic

behavior [11]. The non-linear resistor in this circuit must have a v-i

characteristic as in Fig. 52(b). In the following we present the design

procedure for obtaining such a characteristic. A parallel combination of

two odd-symmetric voltage-controlled characteristics is needed in the syn

thesis. Consider the characteristics in Fig. 53; in order for the parallel

combination of these two characteristics to result in a characteristic as in

Fig. 52(b) we need:

m01 +m02 =m0 (3)

mo2 +mn =mi ^
m, -I + m,« = m« (5)

To solve these equations choose m,g >m^ such that (5) is satisfied. Then,
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mQ2 = mi - mn

mQ1 =mQ - mi +mu

Hence, to realize the characteristic in Fig. 52(b) we have to realize R, with

parameters (mQ,, m,,, Eg,) and Rg with parameters (mQ2, m,2, Eg2) using the
design algorithms from Section 2.

Remark

We choose m,2 >m,, in order to satisfy condition (1) of Section 2. This
is due to the fact that Eg, is quite large and we need a small m,, in order to
satisfy the slope-breakpoint inequality.

Example

Realize the characteristic shown in Fig. 52(b) with mQ = 5, m, =- .1,
m2 =- 4, Eg.| =11 and Eg2 =+ 1. Substituting these parameters into equations
(3)-(5) we get

mQ1 + mQ2 =5

mQ1 +m12 =- .1

Choose m,,=- .5,m,2 =- 3.5. Then,

m01 = 3-4» mQ2 = 1#6

Therefore, we have to realize R, with (mQ, =3.4, m,, =- .5, Eg, =11) and Rg with
(mQ2 = 1.6, m-|i=- 3.5, Egg =1). This was done using op amps with identical
saturation voltages E+= |E |=13. The measured characteristic for R, and Rg
is shown in Fig. 54(a)-(b). The measured characteristic resulting from the paral

lel combination of these two is shown in Fig. 54(c). Fig. 54(d) is the circuit

used in these realizations.

Connecting the one-port in Fig. 54(d) in place of R in Fig. 52(a), and using

appropriate values of R, L, C,, and Cg, an interesting chaotic attractor is
observed and will be reported in detail in a future paper. This is one example

where a prescribed piecewise-linear negative differential resistance charac

teristic must be precisely synthesized. The methods developed in this paper

could not have been more timely.
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5. Theory

In this section we present the circuit-theoretic approach from which the

canonocal circuit in Fig. 2 is derived. First, the problem of synthesizing op

amp circuits is reduced to that of synthesizing a 3x3 conductance matrix. Next,

the concept of a paramount matrix is introduced. Finally, the fact that a 3x3

conductance matrix is realizable using linear positive resistors iff it is para
mount, is used to derive the canonical circuit.

A. Circuit Formulation

Consider a general circuit containing one op amp, linear positive resistors

and independent voltage sources as shown in Fig. 55. Next, replace the op amp

by its piecewise-linear model as in Fig. 56(a), where the 2-terminal nonlinear

resistor is characterized by Fig. 56(b). The resulting circuit is shown in

Fig. 57. Note that for simplicity we use an op amp model with saturation

voltages E + and E of equal magnitude. The following results apply equally
well, mutatis mutandis, when E + f |E-J. Since the 3-port N in Fig. 57 contains
only 2-terminal resistors and independent sources, it is reciprocal. Let N

be described by the following voltage-controlled representation.

V

h
=

J3.

911 912 913

912 922 923

913 923 933

vl V
v2

+ h

_v3_ h

(6)

where g.. = g.. because N is reciprocal. Next, consider the circuit in Fig. 58

which is obtained from Fig. 57 by pulling out the only nonlinear element.

Comparing the circuits in Fig. 57 and Fig. 58 and using (6) we obtain the

following transmission (chain) representation for the 2-port Nl (assuming

g12 t o).

i = (g

912 d

13

923

911923

912
+1

922
+ -==• v. -
g12 d g12

9n922
g12

1

-912>vd + (Ii g12 I2)
(7)

J

We are now ready to present explicit equations describing the driving point

characteristic of any circuit containing one op amp, linear positive resistors

and independent voltage sources.

-16-



Theorem 1

Hypotheses:

1. A •+ «> in Fig. 56(b), i.e., assume an ideal op amp model.

2. The 3-port N in Fig. 55 has a short-circuit conductance matrix G.

Conclusion:

The driving-point characteristic of the one op amp circuit in Fig. 55

consists of 3 connected piecewise-linear segments. If we label these

segments consecutively by 1, 2, and 3, then segments 1 and 3 are parallel

to each other. Each segment is described by the following linear equation

and interval of validity:

Segment 1

..(flll922'gl2> y+E ,912923-913922, +. .9]2 .
'22

where,

-00 <

g22 Li g22

i<M9n923;9i29i3) )if9n922-9i2>0^
g-j2

,if9l^-g12<0
g12

, if g12 > 0

, if g12 < 0

12

(8a)

Es(»p2!l3 )<A<
s g12

^23
912

)(8b)

Segment 2

-co < v < E

^23

912
< V < o°

i =(9ng23-9l29l3)v +
923 '

where,

923
(9a)

-17-



.
£
>

<
7
»

r
"

\
o

O

A
V

c
o

C
O

C
M

C
M

e
n

c
n

r
—

i
—
•

r
—
•

r
—
•

e
ni

C
M

c
n

|
C
M

i
—

i
—

O
o

C
O

c
n

C
O

c
n

r
—

r
-
«

A
V

c
n

c
n

C
M

C
M

c
o
l

C
M

C
O

C
M

r
—

r
~

C
M

r
—

C
M

f
—

c
n

c
n

c
n

|
c
n

c
n

c
n

C
O

C
M

c
n

c
nc
o

c
nC

M

c
n

c
o

C
M

c
n

c
n

cm
'

r
-

C
O

c
n

t—
c
nC

M

c
n

C
M

c
n

C
O

C
M

C
M

r
—

C
n

c
n

c
n

C
O

C
M

C
M

I
i—

c
n

(/>
L

UI

v
|

>v
|

v
|

tO

Ix
JI

V
|

•
r
-

V
|

>v
|

v
|

C
O

C
M

c
n

c
niC

O

c
nC

M
i—

»

c
n

C
M

c
n

t
o

L
U

C
O

C
M

C
O

C
M

C
O

C
M

r
—

C
M

r
—
•

C
M

c
n

c
n

c
n

c
n

c
n

c
niC

O

c
nC

M

c
n

C
M

c
n

C
OcC
D

Ec
n

|
<

D
t
o

C
O

o

C
M

i
—
i

C
M
l

C
M

r
—

C
M

c
n
|
c
n

1

1
—
1

+*
~

+
,

C
M
C
M

c
nC
O

f
^

c
n.

C
M

C
M

C
O

c
n

C
M

c
nC
M

r
"
~

c
n
^
M
*
»t
o

L
U1>

*
*
"
^
N

C
M

C
M
r
—

c
n1

C
M

C
M

C
M

c
n

C
M

c
nr
—

^
^

c
n

,
,
—
'

ii

•
r
—

J
3

O

f
^

o
o

A
V

C
M

C
M

C
M
i
—

r
—

c
n

c
n

i
C
M

1
C
M

o
o

C
M

r
—

C
M

r
—

C
M

c
n

C
M

c
n

A
V

c
n

c
n

r
—

n
—

C
M

C
M

f
—
•

1
—
»

r
—

r
-
"

c
n

c
n

e
n

c
n

s
-

3

C
O

C
M

c
n

c
nc
o

c
nC

M

c
n

C
M

c
n

8vv
|

t
o

L
U

c
o

c
m

C
M

r
—

cn
|c

nt
o

L
Uiv
|

>V

8v>v
|

C
O

l
C

M
C

M
r
-

c
n

c
n

c
o

C
M

c
n

e
niC

O
r
—

c
nC

M

c
n

C
M

c
n

OOs
-

•
acr
a

r*
»

c%
.

oc
n

c•
^
*

•P4
-»

•
r
—

4->t
o

X
>

c
o

L
U

><
o

a
)

V
to

tl)
L

U

J
3

*
+

•O
l-H

oM
-

II

c
n

c
>

ot
o

>V8i

C
M

C
Mt
o

C
M

C
M

J
*

S
-

3

I

C
O



. . g12g13-gn923 „ 9ng22-g12 T_. fu T
KH " g12 ' 12 g12 ' l - xl " g12 !2

k21 g12 ' k22 g12 • g12 J2

Solving for i in terms of v in (11) and letting A •»• » we obtain equations (8).

A similar procedure yields equations (9) and (10). o

Our next result characterizes the properties of the driving-point charac

teristics of the piecewise-linear resistive one port shown in Fig. 59. First,

we state the general case. The special case for op amp circuits will follow

as a Corollary.

Theorem 2

Consider the nonlinear resistor terminated one-port shown in Fig. 59. Let

R be an n-segment piecewise-linear voltage-controlled resistor described by the

canonical equation [4]:

i2 =aQ +aiv2 +c, |v2-Dl | + ... +cjv2-bn| (12)

Let N be the two-port containing linear resistors, independent sources and

linear controlled sources. Let N be described by the following transmission

representation:

i = k^ig + k12v2 + I

v = ^1^2 + k22v2 +V

Then, the v-i driving-point characteristic is

(a) Strictly monotone-increasing if and only if

k12k22+(kllk22+K12k21)(al+J1vJ+1c£)+knk21(al+ ^vj^ "° (13)
for all k =0, 1,, ..., n

(b) Current-control1ed if and only if

k n

k1o+k11(a1+ I r- I O >0 (or < 0) for all k = 0, 1, 2, ..., n (14)

(c) Voltage-controlled if and only if

-19-



k n

k22 + k21(a,+ I c - I c ) >0 (or <0) for all k =0, 1, 2, ..., n (15)

Furthermore, the driving-point characteristic is multivalued (i.e., neither
voltage-controlled nor current-controlled) if neither one of (13), (14) nor
(15) is satisfied.

Proof

An outline of the proof is as follows. First, using a similar procedure as

in the proof of Theorem 1 we derive the driving-point characteristic which con

sists of n different segments. Then, using the fact that for a characteristic

to be, for example, current-controlled, the range of the current for each seg

ment should not overlap, we obtain conditions (13)-(15).

Corollary 2

The driving-point characteristic of a single op amp circuit (i.e., (8)-

(10)) is

(a) Strictly monotone-increasing if and only if

g23<0

911g23 " g12913 <°

(b) Current-control1ed if and only if

g23>o

gllg23 - g12g13 <°

(c) Voltaqe-control1ed if and only if

g23<0

gll923 - g12g13 > °

(d) Multivalued if and only if

g23>0

gllg23 " g12g13 > °

Proof

The proof is a special case of the proof of Theorem 2.

(16)

(17)

(18)

(19)

-20-



B. Paramouncy

An nxn symmetric matrix G is said to be Paramount iff each principle minor

of order m is not less than the absolute value of any mth order minor built

from the same rows (or columns), where m = 1, 2, ..., n-1 [8]. In particular

for a 3x3 matrix we have the following conditions:

'11 '12 '13

G = 912 g22 g23

'13 y23 '33

conditions involving

first-order minors

conditions involving

second-order minors

where,

glli |g12l •gn± lg13
g22> |g12l .g22i lg23

g33^ lg13i •g33± lg23

Ani l*13l >An± |A12

*22± 1*211 , A^2 _> 1*23

A33± lA3ll ' A33^ 'A32

A.^ = determinant of the submatrix obtained by deleting row i and
J column j.

An example of a paramount matrix is shown below.

G =

3 2-2

2 2-1

•2 -1 2

All =3 h2l = |A21 = 2

'22

^33

= 2 |A,J = |A,, | = 2
J13 31

= 2 |A,J = |A„| = 1
'23 32

The inverse of a non-singular paramount matrix is also paramount. Paramouncy

is a weaker condition than diagonal dominancy but a stronger condition than

positive definitness.

C. Canonical Circuit

It has been shown [8] that a necessary and sufficient condition for a 3x3

matrix to be realizable as a short-circuit admittance of a 3-port resisitve

-21-



network made of positive linear resistances is that it be a paramount matrix.

In this subsection we use this fact to systematically derive the canonical cir
cuit in Fig. 2.

Consider any of the odd-symmetric driving-point characteristics in Fig.

1(b). Comparing equations (8)-(10) with any of these characteristics we obtain

the following equations. (Note that we are assuming no batteries, i.e.,

l} = I2 =0 in (8)-(10)).

m0 "m2 "!U?f?!£ <2°)
. 311*23-^13 (21)

23

EB "Vig> (22)
we are now ready to present the algorithm for synthesizing any of the charac

teristics in Fig. 1(b).

Step 1

Using (20)-(22) find a paramount G matrix. Two parameters can be chosen

arbitrarily. However, the above Corollary must also be taken into account,

i.e., G must satisfy the appropriate inequalities (16), (17), (18) or (19).

Step 2

Realize the G matrix from Step 1. An algorithm for accomplishing this

task is given in [8]. We need at most six positive linear resistors. The
3-port shown in Fig. 60 can be used to realize any 3x3 paramount conductance

matrix.

Step 3

Connect the 3-port obtained in Step 2 to an op amp and complete the syn

thesis procedure.

Example

For the characteristic shown in Fig. 61 we have

mQ =2, m1 =- 1, EB =- 5

Assume, E$ = 10 volts.
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Step 1. Choose g22 = g12 =2, then (20)-(22) yield

g23 =- .1, gn -4, g13 • -§
Hence,

G =

4 2 -5/2

2 2 -1

-5/2 -1 5/2

which is paramount. Also

g23 = - 1 <0

gng23 " g12g13 - - 4 + 5 = 1 >0

i.e., condition (18) of the above Corollary is also satisfied.

Step 2. Using the algorithm in [8], we find the 3-port in Fig. 62 realizing
the G matrix from Step 1.

Step 3. Connecting the 3-port in Step 2 to an op amp we get the circuit in

Fig. 63 which realizes the characteristic shown in Fig. 61.

The canonical circuit in Fig. 2 is then obtained by finding the "union"

of all the circuits which realize the characteristics in Fig. 1(b).

Let us now derive the slope-breakpoint inequality from Section 2. The

sufficiency of these inequalities follow directly from the design formulas given
in Section 2. We prove the necessity of these inequalities one case at a time.
Consider the design algorithm in Fig. 3(b), substituting for E-j in R4 we have:

*4 JEBl+lEs-l><Es++lEs-l+EB1-EB2>

EB2lEs-|-EBllEs-|-EB1+EBlEB2

(ebhIes-1>(es++1es.I+eb1-eb2)
" |Es-UEB2-EB1HEB1tE82-EB1J

^BT"! Es-1 >tEs+-| Es_ |h-Eb1-Eb2)
lEBl +lEs-l><EB2-EBl>

*4_Es++lEs>EBrEB2
R3 EB2"EB1

-23-
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R4To get d3 > 0 we need
R3

Es++lEs-l
T-E > ] <25>LB2 LB1

which is part of the siope-breakpoint inequality (1). Next, substitute for R7
into Rg to get:

R6 -1$ <26>
""i^o fq

substiting (24) into (26) we have:

EB2-EB1+ES++|ESJ+EB1-EB2
R6=m1(EB2-EB1)+mo(Es++|Es.|+EB1-EB2)

- ,Es++lEs-l {27)
-(mi-m0)(EB2-EBl)+m0(Es++|EsJ)

For Rg to be positive the demoninator in (27) must be positive, i.e.,

(mrm0)(EB2-EB1) >- m^+lEgJ)

or

JO 1 < s+ ' s-1 (28)
m0 EB2"EB1

which is the second part of the slope-breakpoint inequality (1).
To derive the necessity of (2) consider the design algorithm of Fig. 12

(b). Substituting for R4 into Rg+R6 we have:

or

VIE,
l5+K6 =^o^Es++lEs-l^IB2+IBl

For Rc + R<- to be positive we need the denominator in (29) to be positive, i.e.,
o o

•otEs++lEs-') > JB2 * !B1

Rc+p . ,y^s-;t _ ^ (29)
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which is condition (2) of Section 2.

A similar procedure can be used to derive these inequalities for all other

cases. These are presented in the Appendix.

6. Conclusions

In this paper the inherent saturation nonlinearity of the op amp was used

to design circuits with a wide variety of useful nonlinear v-i characteristics.

We have shown that under a rathermiId assumption, these circuits are made of

one op amp and 3 or 4 linear positive resistors. Explicit design formulas have

been presented for each prototype circuit and numerous examples have been given

and validated by actual measurements. Several useful applications have also

been presented. In particular, formulas for the design of a chaotic circuit

have been given. It should be noted that an interactive software package for

the design of these circuits has been developed.
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Appendix

Proof for Fig. 6(b)

Consider the design algorithm in Fig. 6(b). Substituting for R4 into R3
we have:

(m0'ml)+ EB2-EB1
(m-|-m0)

(Ee++l>U>m, x s+ ' s-

=(m0-m1)(EB2-EB1)4fflo(Es++|EsJ) <31>

For R3 to be positive the denominator in (31) must be positive, i.e.,

(mo-n^HE^-E^) >- m()(Es++|EsJ)

or

mTm0 <Es++lEs-l
m0 EB2"EB1

which is the slope-breakpoint inequality of Section 2.

Proof for Fig. 9(b)

Next, consider the design algorithm in Fig. 9(b). Substituting for E-j
into R* we have:

R4 _Es+*lEs>EBrEB2 (32)
R3 EB2"EB1

R4Since EB2 - Eg, >0, for W1 to be positive we need
W

Es++lEs-l+EBrEB2 >°

or

tB2 bBl

w hich is part of the slope-breakpoint inequality. Substituting for R7 into

-26-



Rc we have:
6

R6 iff- (33)

Substituting from (32) into (33) we get:

„ . EB2-EBl+Es^lEs-l+EBrEB2
6 " m0(ES++lES-l+EBTEB2»

Es+-'Es-t
"m0(Es++lEs-l+EBrEB2>

Since m- >0, for Rg to be positive we need

Es++lEs-l+EBrEB2>0
or

Es '̂Es-' >,
F -F
LB2 LB1

which is again the slope-breakpoint equality. Note that since m, = 0 for this

case, conditions (la) and (lb) are identical.

Proof for Fig. 15(b)

Next, consider the design algorithm in Fig. 15(b). Substituting for E,

into R- we have

h . VEs-l+EBrEB2 ....
R F -F {&*)
K3 bB2 hBl

R4since the demoninator in (34) is always positive, for -^- to be positive we
need: °

Es++lEs-l > EB2 " EB1

or

F -F
tB2 LB1

which is condition (lb). To derive (la), substitute for R7 into Rg to get

-27-



R4

R6 V (35)

substituting from (34) into (35) we have:

6"(mrm0)(EB2-EB1)+mo(Es++|Es.|) <36>

For Rg to be positive, the denominator in (36) must be positive, i.e.,

(mrm0)(EB2-EB1) >-m0(Es++|EsJ)

or

Vm1 ,Es++lEs-l
m0 EB2'EB1

which is condition (la).

Proof for Fig. 18(b)

Consider the design algorithm in Fig. 18(b). Substituting for E2 into Rg
we have:

^6 _ EB2"EB1 (37\
R7"Es++lEs-l+EBrEB2

RfiFor -5^ > 0 we need the denominator in (37) to be positive, i.e.,
R7

Es++lEs-l >EB2" EB1

or

v|E»-' >,
EB2"EB1

which is condition (lb). To derive (la), substitute for R4 into R3 to get

»>
Vl R^

-28-



substituting from (37) into (38) we have

R EB2"EB1
3 " ™olEs++|Es.l+EB1-EB2)-Hn1(EB2-EB1)

B2 Bl

=(mrm0HEB2-EB1)+mo(Es++|EsJ) (39)
since the numerator in (39) is always positive for R3 to be positive we need:

(mrm0)(EB2-EB1) >- mQ(Es++|Es_|)

or

Vml t Es++'Es-l
m0 EB2'EB1

which is condition (la).

Proof for Fig. 21(b)

Consider the design algorithm in Fig. 21(b). Substituting for E2 into Rg
we have:

6 B2 Bl

VEs++lEs-l+EBrEB2 (40)
R6

For-5- to be positive, the denominator in (40) must be positive, i.e.,
K7

Es++lEs-l >EB2" EB1
or

F -F
tB2 bBl

which is condition (lb). Note that since m, = 0 in this case, conditions (la)

and (lb) are identical.

Proof for Fig. 24(b)

Consider the design algorithm in Fig. 24(b). Substituting for Ry into

R3 + R5 we nave

R3 +R5=m()(Es^|EsJ)-IB2+IB1 <41>
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For R3 + Rg to be positive, the demoninator in (41) must be positive, i.e.,

m0(Es++lEs-l) > !B2 " XB1

or

or

m » IB2"IB1
m« >

0 ES+^T

which is condition (2).

Proof for Fig. 27(b)

Consider the circuit in Fig. 27(b). Substituting for R* into Rg we have:

(m,-m )

Rg -^(^1^1)
R4=W^¥P¥V^ (42)

R6
since m, >mQ >0 the numerator in (42) is positive. Therefore, for „- to be
positive we need

(mQ-ra^tEgg-E^) >- n>0(Es++|Es_|)

mrm0< Es++lEs-
m0 EB2"EB1

which is condition (la).

Proof for Fig. 30(b)

Consider the circuit in Fig. 30(b). Substituting for E2 into Rg we have

R6 _ EB2"EB1 (431
R7"Es++lEs-l+EBrEB2

Rfi
since EB2 - Eg, is always positive, for -^ to be positive we need the denomina

tor to be positive, i.e.,

Es++lEs-l >EB2" EB1

or

EB2'EB1

-30-



which is condition (lb). To derive condition (la), substitute for R- into R3
to get:

1+Rfi/R
R3 = 6 I (44)

Vl R^
Substituting from (43) into (44) we have:

B2 Bl

R3 =(mrmo)(EB2-EB1)^0(Es++|EsJ) <45>
Since the numerator in (45) is always positive, for R3 to be positive we need

(mrm0)(EB2-EBl) >-m0(Es++|EsJ)

or

V"1! ; Es++1ES-1
m0 EB2"EB1

which is condition (la).
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Figure Captions

Fig. 1. (a) Circuit configuration under study, (b) Possible v-i characteris

tics for the one-port in (a).

Fig. 2. Canonical circuit.

Fig. 3. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 4. (a) Odd-symmetric characteristic for example 1.1. (b) Measured v-i

characteristic. Scale, i : 2 ma/div, v : 2v/div.

Fig. 5. (a) v-i characteristic for example 1.2. (b) Measured v-i characteris-

tic. Scale, i : 2 ma/div. v : 2v/div.

Fig. 6. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 7. (a) Odd-symmetric characteristic for example 2.1. (b) Measured

v-i characteristic. Scale, i : 2 ma/div, v : 2v/div.

Fig. 8. (a) v-i characteristic for example 2.2. (b) Measured v-i characteris

tic. Scale, i : 5ma/div, v : 4 v/div.

Fig. 9. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 10. (a) Odd-symmetric characteristic for example 3.1. (b) Measured v-i

characteristic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 11. (a) v-i characteristic for example 3.2. (b) Measured v-i characteris

tic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 12. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 13. (a) Odd-symmetric characteristic for example 4.1. (b) Measured v-i

characteristic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 14. (a) v-i characteristic for example 4.2. (b) Measured v-i characteris

tic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 15. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 16. (a) Odd-symmetric characteristic for example 5.1. (b) Measured v-i

characteristic. Scale, i : 1 ma/div, v: 1 v/div.

Fig. 17. (a) v-i characteristic for example 5.2. (b) Measured v-i characteris

tic. Scale, i : 1 ma/div, v : 1/div.

Fig. 18. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.



Fig. 19. (a) Odd-symmetric characteristic for example 6.1. (b) Measured v-i

characteristic. Scale, i : 4 ma/div, v : 2 v/div.

Fig. 20. (a) v-i characteristic for example 6.2. (b) Measured v-i characteris

tic. Scale, i : 4 ma/div, v : 2 v/div.

Fig. 21. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 22. (a) Odd-symmetric characteristic for example 7.1. (b) Measured v-i

characteristic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 23. (a) v-i characteristic for example 7.2. (b) Measured v-i characteris

tic. Scale, i : 2 ma/div, v : 2v/div.

Fig. 24. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 25. (a) Odd-symmetric characteristic for example 8.1. (b) Measured v-i

characteristic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 26. (a) v-i characteristic for example 8.2. (b) Measured v-i characteris

tic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 27. (a) v-i characteristic to be synthesized, (b) Circuit configuration

and element values.

Fig. 28. (a) Odd-symmetric characteristic for example 9.1. (b) Measured v-i

characteristic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 29. (a) v-i characteristic for example 9.2. (b) Measured v-i characteris
tic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 30. (a) v-i characteristic to be synthesized, (b) Circuit configuration
and element values.'

Fig. 31. Odd-symmetric characteristic for example 10.1. (b) Measured i-v char
acteristic. Scale, i : 2 ma/div, v: 2 v/div.

Fig. 32. (a) v-i characteristic for example 10.2. (b) Measured i-v characteris
tic. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 33. Odd-symmetric characteristic from Example 1.1 realized using an op amp
with identical saturation voltage in Fig. 3(b) with R3 =1 kfi, R4 =12
kn, Rg =520 fl, and R? =13 kn. Scale, i :2 ma/div, v :2 v/div.

Fig. 34. Odd-symmetric characteristic from example 2.1 realized using an op amp
with identical saturation voltages in Fig. 6(b) with R1 = 500 ft,
R3 =590.9 Q, R4 =3.25 kfi. Scale, i : 4 ma/div, v : 4 v/div.

Fig. 35. Odd-symmetric characteristic from example 3.1 realized using an op
amp with identical saturation voltages in Fig. 9(b) with R3 = 1 kfl,



R4 =2.5 kft, Rg =590.9 ft, and R? =3.25 kft. Scale, i : 2 ma/div,
v : 2 v/div.

Fig. 36. Odd-symmetric characteristic from example 4.1 realized using an op amp

with identical saturation voltages in Fig. 12(b) with R^ =4.33 kft,
R5 = 26 kft, and Rg = 26 kft. Scale, i : 2 ma/div, v : 2 v/div.

Fig. 37. Odd-symmetric characteristic from example 5.1 realized using an op

amp with identical saturation voltages in Fig. 15(b) with R3 =1 kft,
R- =5.5 kft, Rg = 619 ft, and R7 =2.6 kft. Scale i : 2 ma/div,
v : 2v/div.

Fig. 38. Odd-symmetric characteristic from example 6.1 realized using an op

amp with identical saturation voltages in Fig. 18(b) with R3 =3.25
k , R4 = 1.44 k , Rg = 1 k , and R7 = 3.33 k . Scale, i : 5 ma/div,
v : 2 v/div.

Fig. 39. Odd-symmetric characteristic from example 7.1 realized using an op amp

with identical saturation voltages in Fig. 21(b) with R3 = 1.18 kft,
R* = 6.5 kft, Rg = 1 kft, and R7 = 5.5 kft. Scale, i : 2 ma/div,
v : 2v/div.

Fig. 40. Odd-smmetric characteristic from example 8.1 realized using an op amp

with identical saturation voltages in Fig. 24(b) with R3 =1 kft,
R5 =154 ft, and R7 = 6.5 kft. Scale, i : 2 ma/div, v : 2v/div.

Fig. 41. Odd-symmetric characteristic from example 9.1 realized using an op amp

with identical saturation voltages in Fig. 27(b) with R, = 500 ft,

R3 = 650 ft, and R^ = 2.167 kft. Scale, i : 4 ma/div, v : 2 v/div.
Fig. 42. Odd-symmetric characteristic from example 10.1 realized using an op

amp with identical saturation voltages in Fig. 30(b) with R3 = 590.9 ft,
R4 = 3.25 kft, Rg =1 kft, and R7 =2.25 kft. Scale i : 4 ma/div,
v : 4v/div.

Fig. 43. Circuit for realizing a battery using the power supply voltages.

Fig. 44. Circuit transformation to realize a series combination of a resistor

and a battery using the power supply voltage.

Fig. 45. Circuit transformation to realize a battery directly connected to

the op amp input terminal using the power supply voltage.

Fig. 46. (a) The circuit for a soft oscillator, (b) v-i characteristic for R.

Fig. 47. (a) Measured v-i characteristic for R realized using Fig. 15(b) with

R3 =1 kft, R4 =5.5 kft, Rg = 619 ft and R7 =2.6 kft. Scale i : 2 ma/div,
v: 2 v/div. (b) Measured voltage oscillations. Scale v : 2v/div,

t: 200 us/div.



Fig. 48. (a) Circuit for a hard oscillator, (b) v-i characteristic for the
parallel combination of R, and R2.

Fig. 49. (a) Measured v-i characteristic for R1 using Fig. 15(b) with R3 =1 kft,
R4 =13 k , Rg =6.22 k , R? =11.2 k , E] =- 2.23 V, and E2 =- 8.33
V. Scale i : 1 ma/div, v: 2 v/div. (b) Measured v-i characteristic

for R2 using Fig. 15(b) with R3 =1 kft, R4 =13 kft, Rg =6.22 kft,
R? =11. 2 kft,.E1 =2.07 v, and E2 =7.22 v. Scale i : 1 ma/div,
v : 2 v/div. (c) Measured v-i characteristic for the parallel combina-

tionof R-j and R2« Scale i : 1 ma/div, v : 2 v/div. (d) Measured oscil
lations. Scale v : 5 v/div, t: 500 us/div.

(a) A three-state circuit, (b) v-i characteristic for the parallel

combination of R-. and R2.
(a) Measured v-i characteristic for the parallel combination of R, and

R2. (b) Cricuit used to measure v-i characteristic in (a),
(a) A chaotic cirucit (b) v-i characteristic for R.

Two v-i characteristics needed to realize R in Fig. 52.

(a), (b) Measured v-i characteristics for R-j and R2 in the chaotic
circuit example. Scale i : 2 ma/div, v : 4v/div. (c) Measured v-i

characteristic for parallel combination of (a) and (b) representing

R in the chaotic circuit, (d) Circuit used in these measurements.

General circuit containing one op amp resistors and batteries.

Piecewise-linear circuit model for an op amp.

3-port obtained by replacing the op amp in Fig. 55 with the model in

Fig. 56.

2-port obtained by pulling out the only nonlinear element in Fig. 57.

Circuit for Theorem 2.

This 3-port can be used to realize any 3x3 paramount conductance

matrix with positive resistors.

v-i characteristic to be realized using the algorithm in Section 5.

A realization of the G matrix in the above example.

A circuit to realize the v-i characteristic in Fig. 61.

Fig. 50

Fig. 51

Fig. 52

Fig. 53

Fig. 54

Fig. 55,

Fig. 56,

Fig. 57,

Fig. 58

Fig. 59

Fig. 60

Fig. 61

Fig. 62

Fig. 63
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