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ABSTRACT

Constants of motion are derived for particles moving in a single, circularly-polarized
electromagnetic wave of arbitrary time-dependence propagating parallel to a uniform
background magnetic field. The constant associated with helical symmetry is shown
to restrict the particle motion to a very narrow region of velocity space. Features of
the slow time-scale motion of fixed points associated with the existence of a fourth
adiabatic invariant are described for the case of a slowly varying wave. Characteristics
of the particle motion thus derived are applied to the analysis of ld-3v simulations
of the saturation of the AlfVen-ion-cyclotron (AIC) instability for a single wave. In
particular, an explanation is offered for the appearence of a sharp edge in the velocity
distribution function observed in the simulation.
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I. INTRODUCTION

We have been considering in somedetail the nonlinear behavior of particles in a single
electromagnetic wave as part of our investigation of the single-wave saturation properties
of the Alfven-ion-cyclotron (AIC) instability. The system of fields used in this study are

n, = 0 = const, (la)

Qx = Qx(t) cos{kz - ?(*)), (lb)

ny = n1(t)sin(fc2-?(t)), (lc)

a x — = ——, (Id)
az c at

rJxo

Eg = 0, (le)

zo+2n/k

Edz = 0, (If)

where flx,j,,z = qBXiy,z/mc, z0 is arbitrary, and fti(*) and f(t) are entirely arbitrary func
tions of t. These fields are characteristic of a single circularly-polarized, purely transverse
electromagnetic wave propagating parallel to a uniform magnetic field. In the analysis, we
first find constants of the particle motion in fields described by Eqs. (1) (Sec. II) and show
these constants do much to characterize the nature of the particle orbits (Sec. HI). Results
of the analysis are then compared with, and applied to, self-consistent, single-wave particle
simulations of the AIC instability (Sec. IV). Finally, conclusions are presented (Sec. V).
Deserving of some emphasis is the fact that no assumptions will be made with respect to
the magnitude or time-variation of the functions Oi(t) and f(i) for many of the results
presented. In particular, the wave amplitude need not be small and the time-variation of
either the amplitude or the frequency of the wave need not be slow compared to a wave
period. Thus application of the results is not limited to the study of the AIC instability;
the theory will be valid for any wave satisfying Eqs. (1). The analysis should be relevant
to monochromatic whistlers for example, on which much of the previous work on this wave
structure has focused.1""5

n. THE CONSTANTS OF MOTION

We first show that, in spite of the generality of the fields' specifications, three exact
constants of the particle motion exist. The constants are a direct consequence of the
spatial symmetries of the system; specifically, (1) the system is invariant with respect to
spatial translation ineither the x- or y-directions, and (2) the system is also left unchanged
under the combination of spatial translation along, and spatial rotation about, the z-axis,
corresponding to the helical structure of the circularly-polarized wave.
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With these symmetries in hand, standard Hamiltonian formulation easily reveals the
corresponding constants. The Hamiltonian for this system is

*=Kp--A(x'°)2' (2)

where p = v 4- gA(x,t)/mc, v is the particle velocity, A(x,*) is the vector potential, and
the usual scalar potential 0(x, t) is chosen here to be identically zero.

Choosing as the vector potential

^ =-gn-"'(z't), **i.-0«M, a, =o, (3)
mc k mc k

where Clx(z,t) and Qy(z,t) are given by Eqs. (lb) and (lc), we observe that H does not
depend on x; consequently, the conjugate momentum px = vx —yCl —nz(z,t)/fc is a
conserved quantity. A constant of the motion may then be defined:

which reduces to the y-coordi1121*6 of*ne gyrocenter in the absence of the wave. Similarly,
using for the vector potential

2A£ =_nf(flt) «di =In_0»M, A, =o, (5)
mc k mc k

we now find H cyclic in y. This leads to the other gyrocenter-like constant of motion

i^n^) ()

The constant of motion corresponding to the spatial helical symmetry of the system
may be derived by writing the vector potential as

*k =_ij,n - OsM, idv =iin_0«M, x,=o, (7)
mc * k mc * k

and substituting these expressions into the Hamiltonian Eq. (2):

H-T +2\px +T +~k~) +2\p" T +^T7 •
A canonical transformation is then defined via the generating function.6

(8)

F»(x,y,z,P„P*,Pz) =(iJ +ff2)1/3P, +(tan"11 - fczjP«0 +zPz. (9)

Taking partial derivatives of F2 with respect to the new momenta Pp, P$0, and Pz yields
the spatial part of the transformation:

p=(x2 + y2)1/2, (10a)

0O =tan"1 ^ - kz, (10b)
x

Z = z. (10c)
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For reference, we give the inversions of Eqs. (10):

x = pcoa(0o + kZ),

y = psin(0o + kZ\

z = Z.

(11a)

(lib)

(He)

Equations (10) define a helical coordinate system depicted schematically in Fig. 1. The
coordinate system labels each point in space according to which helix passes through it
(labeled by p and 9Q) and where along the helix it is located (labeled by Z). Each helix is
labeled according to its point of intersection with the z = 0 plane. The polar coordinate

z=0 planed

FIG. 1. Illustration of the (p, 0O, Z) coordinate system. All points along a given
helix have the same p- anddo-coordinates as determined by the intersection of the
helix with the z = 0 plane, while the Z-coordinate of a given point is simply its
height above the plane.
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pair (p, ^o) is used in describing this point as shown in Fig. 1. The location Z of a point
along a given helix (p,0o) is specified simply by its old z-coordinate. By taking partial
derivatives of F2 with respect to the old coordinates x, y, and z and using Eqs. (11), we
obtain the momentum portion of the transformation:

px =Pp cos(0o +kZ) - ^2- sin(0o +kZ), (12a)

py =Pp sin(0o +kZ) +^2. cos(0o +kZ), (12b)
ps = Pz-kP$0. (12c)

Equations (12) are easily inverted:

pPp = xpx + ypy, (13a)

P&o = Wy ~ yPsi (i3b)
Pz = Pz + fc(*Py - yP*)- (i3c)

The canonical transformation may npw be applied to the Hamiltonian H using Eqs. (11)
and (12). Substituting explicit expressions for Qx(z, t) and fly(z, t) from Eqs. (1), we obtain

^=i(^-^o)2+i(^-^n) +i^
+P,-^cos(«o +rfO) - (^ - J/**) ^ sm(*> +fW). (14)

Since Z does not appear in H in Eq. (14), we conclude that Pz given by Eq. (13c) is the
constant of motion corresponding to the helical symmetry of the system. We might refer
to the constancy of px + k(xpy —ypx) as conservation of canonical "helical momentum,"
in analogy to canonical angular momentum, which is conserved in cylindrically symmetric
systems. Using the definition of p and our choice of A given by Eqs. (7), we find

, / xQ fiyCMA r / y& n*(*>0\ n*\Pz =v, +kx[vy +T - -iLlij - ky[vx - \ - -V-2]- <15)
Elimination of x and y in favor of the other two constants X and Y yields

W- (v,-2*M)2] +i[ysf- (,,,-OeM)2]. (16)
Equation (16) then allows us to write the constant corresponding to helical symmetry in
the following useful form, independent of the trivally ignorable coordinates x and y:

cs-2*+An'pc*+y) =-^+i(* -2=1*2)*+*(„„ -toil)*. (17)
This constant in various approximations has been discovered previously by several re
searchers ll"5l; however the full generality of systems for which this quantity is exactly
conserved and its connection with helical symmetry are generally not recognized.
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While the Hamiltonian in Eq. (14) reflects areduction ofthe dimensionality ofthe prob
lem by one canonical pair, it does not lend itself conveniently to further analysis due to its
continued dependence on transverse coordinates, which we know to be trivially ignorable.
To construct a Hamiltonian formally independent of X, Y, C, and C's canonical conjugate,
qCl it is easiest to return toEq. (8). Using aprocedure suggested by G. R.Smith7'8 we per
form a canonical transformation on the transverse coordinates: (x, y,px, py) —• (X, Y, p$, <j>)
defined by:

(2fip*)1/2 cos <t> = py - £xfl, (18a)

(2fip^)x/2 sin <f> = Px + lyQ, (18b)
nx = py + £xn, (i8c)

-nY=px-£yn. (18d)
The transformation may beverified to becanonical bytaking Poisson brackets: [^p*] = 1,
n[Y, X] = 1, with all other Poisson brackets among the new coordinates vanishing. Note
that the expressions for X and Y coincide with earlier definitions given byEqs. (6) and (4).
The new Hamiltonian under this transformation is

B=\p\+(1ft +i*5j9 +(2nP«)1^ 2lfi> 3in(*2 +*- tit))- (»)
As expected X and Y fail to appear, implying as before that both are constants of the
motion. A final transformation, suggested by the Hamiltonian^ dependence on z and <j>
only through the combination kz + <f>- $(t), is defined by the generating function

where w(i) = d$/dt. The new generalized coordinates are given by

,=2+l(*-fW+|), (21a)
p=px.'^t±, (21b)

c =-0£i +np*, (2W)
where (q,p) and («c> C) are the conjugate pairs. Again note that C agrees with its previous
definition (Eq. (17)). The new Hamiltonian under this transformation is

K = H+ W
1/2

_ 1„2 sfMf(~!^Hr-*'+£+o *
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in which terms depending only t, having no effect on the dynamics, have been dropped.
The coordinate qc does not appear in K verifying that C is a constant of the motion.
The particle motion is thus seen to be described by a one-dimensional, time-dependent
Hamiltonian K(q, p, t) and depends only parametrically on C.

In addition to the three constants X, Y, and C, which always exist in the system
described by Eqs. (1), a fourth constantmay also be present, depending on initialconditions
and specific time-dependence of the system fields.

The fourth conserved quantity exists, for example, for the important class of systems
for which both Hi and w are time-independent. Then the Hamiltonian K itself, having no
dependence on t, is the conserved quantity. By writing Eq. (22) in terms of rectangular
coordinates and velocities and using Eqs. (1), we find the constant may be expressed as

2

+ ±(tg+«*) = # +const. (23)-H-j)
Thus the particle kinetic energy in the wave frame is conserved, a well-known result. Phys
ically, the particle energy is conserved because the electric field vanishes in the frame of
reference moving with the phase velocity of a constant amplitude, purely electromagnetic
wave of fixed frequency.

We also find that an adiabatic invariant still exists when our assumptions are relaxed
slightly to allow the field amplitude fli(i) to be a slowlyvarying function of time. Consider
for example those particle trajectories for which p/Po < 1, kq -C 1, and UQ2du%/dt <C wo
where

. u/-fl kC tt%. .
*>s—+ TP (24a)

u}it)sk>m(™>y\ (24b)
We will see shortly that these assumptions correspond to a deeply trapped particle moving
in a wave whose amplitude varies slowly compared to the particle's trapping frequency w0.
In terms of Eqs. (24), the Hamiltonian K may be expressed as

^=^-e-^(l+f),/2cos(^?).+££^, (25)
where e may be considered a small parameter reflecting the ordering of our assumptions
and will eventually be set equal to unity. (The additive constant C has been dropped from
K for sake of clarity.) From the generating function

*(*,*<)= (p +if>, (26)
we obtain the canonical transformation

Q =?, (27b)
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and the new Hamiltonian:

dF2

"K*-d

-»('*A),-r,*hA('+A)]'"-*w"»

Expanding in powers of e:

v-I pa + iJ^Lp + ^*-V +2A.2^0^-t-8fc4^2

=^1€-1 + ^0€° + O(£). , (29)

Since #_i depends only on t, the effective Hamiltonian is given by #o to lowest order.
Dropping terms depending only on J, we find

which isjusttheHamiltonian for a simple harmonic oscillator with slowly varying frequency
u0(et). As with any such oscillator, the action defined by #0(Q, -P, 0 » an adiabatic invariant
to order e°. We are thus led to a fourth constant ofthe motion, existingwithin the adiabatic
approximation, given to order c° by

'-a-iK'-*)'"*']- M
for particles whose orbits satisfy kq <£ 1, p/Po <. 1.

HI. FEATURES OF THE PARTICLE MOTION

The existence of the constants of motion derived here has a number of implications
as regards the particle motion. Here we discuss : (1) accessible regions ofvelocity space,
(2) particle trapping, and (3) slow time-scale motion of fixed points. Other features which
should be explainable within our theory appeared in simulations; these are examined in
Sec. IV.

The constant Cgiven inEq. (17) imposes severe restrictions on the motion of particles
in v±.-vz space. This is easily seen by expanding the quadratic terms in Eq. (17) and using
the fact that nj(*,t) + njfot) = fl?(t) from Eqs. (1). We obtain

C-J£ +H-^~*+*^. (32)
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V2 =VZ0"ikVlo/^

cos ty - +1
^ cos\// = +1/2

^ cos ^ =0
cos \j/= -1/2

cos \\f = -1

FIG. 2. Diagram depicting the region accessible to a particle with initial condi
tions v±o and vz0 for a given wave amplitude Qi and the region forbidden for any
value of Hi. Also shown is the correspondence of points in the accessible region
to selected values of cos^, iff being the angle between Vj. and Oj..

where if; is defined as the angle between v± = (vx, vy) and Oj. = (Hs,Qy), i.e., vj. •Q± =
v±Qi(t)coatf).

Since it is often the case that the wave is vanishingly small as t —• —oo, (in particular,
this is true of our AIC simulations) we find it convenient to express C in terms of initial
conditions:

o=Mo - J*«o. (33)
where vj_o = v±(t —• —oo) and Vao = vz(t —• —oo). These definitions, but not the theory
itself, make the assumption that Qi(t —> —oo) = 0.

Since —1 < cos j> < 1 it is immediately evident that a particle with initial velocities
v±o and vz0 will always satisfy:

(34)

This "accessible region" as a subset of v±~vg space is shown in Fig. 2. The particle will
never leave this region irrespective of the wave's amplitude or time-dependence.
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We note however that the location and extent of the region itself depends on the
wave amplitude Qi(t). In the weak wave-field limit, particles are constrained to move on
parabolas of the form

vz =t>*o +2n(t>i-i/i0). (35)
This constraint is somewhat of a curiosity in view of the fact that in the many-wave counter
part ofour system, quasilinear theory instead predicts transport along constant-^ contours.
In the presence of appreciable wave amplitudes Oi(i), the region exhibits some width and
also moves to higher vz due to the term quadratic in fli(i) in Eq. (34). This motion of
both the region and also its point of contact with the vz-axis (i.e., t/x = 0) suggests that,
with increasing wave amplitude, particles trapped in the region may also on average be
transported to more positive values of vg. A numerical study of particle orbits would likely
be required to investigate the validity of this notion.

Also noteworthy is the fact that although the different regions of v±-vz space are
accessible depending on the value of fti(i), there exists a forbidden region which is never
accessible irrespective of the magnitude of the wave amplitude. This result follows easily
from Eq. (17):

-SpSC-M.-^. (36)
Thus the region vz < vz0 - ^kv^JQ, shown in Fig. 2, will never be occupied by a particle
withinitial conditions (vj.o, «*o). Notice that the accessible region always maintains a point
of tangency with the forbidden region. A particle occupying the point of tangency must
have vx = Qx{z,t)/k, vy = Qy(z,t)/k, and vz = vzQ - \kv\JSl, or equivalent^, must have
cos^> = 1, v± = fli/fc, and vz = v,o —?kv^0/U.

The simple dependence of C on rf) in Eq. (32) allows us to associate with various
curves in the accessible region different values of cos ^. A few of these curves are shown
in Fig. 2. The implication drawn is that a particle instantaneously found on a given
curve must simultaneously exhibit the corresponding value of cos 0. This construct has an
obvious realization in v±-vz-tl> space. The curves map into themselves in the larger space
on constant-^ sub-planes according to Eq. (32). The surface created by the union of these
curves in v±-vz-ij> space is a constant-C surface on which particles with the appropriate
value of C will forever be resident (although, again, the positioning of the surface is a
function of fti(t)). The image of the projection of this surface into v±rvz space is, of
course, the accessible region just described. A typical constant-C surface along with its
projection are shown in Fig. 3.

The problem is thus reduced to the task of describing the particle motion on this
constant-C surface. Discussion of this problem is facilitated by an examination of the struc
ture of constant-^ contours on the constant-C surface. In the case of a constant-amplitude,
fixed-frequency wave, the role ofthe contours isobvious, since theymust coincide with par
ticle trajectories owing to the conservation of £. They are also useful in describing particle
motion in wave fields whose amplitude is slowly-varying, since in this case, it maybe shown
that the contours are level curves of the adiabatic invariant J to order e°. To the extent
that the adiabatic assumption holds, the topology of these contours then characterizes
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Const-C surface

Const -$ contours

v//=2tt

FIG. 3. Drawing of a typical constant-C surface in v±-vz-ij> space and its pro
jection into v±-vz space (shaded region). Typical constant-^ contours near the
principal stable fixed point are also shown.

the behavior of the particles. Details of the particle orbits and the location, existence,
and stability of fixed points have been described for a constant-amplitude wave by Bell.9
Qualitative features of the arrangement of the contours on the constant-C surface may be
determined geometrically as illustrated in Fig. 4. As an example, the point of tangency of
a constant-£ circle with a boundary of the accessible region and neighboring constant-£
circles inside the region shown in Fig. 4 correspond respectively to a stable fixed point and
its associated trapped particle contours as shown in Fig. 3.

While often as many as three fixed points exist on a constant-C surface, we will be
primarily interested in the one residingon the cos if? = —1 boundary of the accessible region
which will be referred to as the "principal" fixed point. We now detail the slow-time-scale
motion of this fixed point and show that it is always stable.

For small wave amplitudes, vz of the principal fixed point is approximately (w —ft)/fc,
which is generally thought of as the resonant velocity of the wave. However, as some authors
have observed^3"5], in the presence of a finite amplitude wave, vz of the fixed point shifts.
The effect of this shift in the resonant velocity resembles that of a nonlinear frequency shift
although in our case, the shift occurs even when the wave frequency u remains constant.
We can demonstrate the existence of the shift using three different approaches. The first
has already been presented; from Eqs. (27) and (30) it is evident that the location of the
bottom of the effective potential well is given by
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Pfp~2k*P0'
q/P =o,

as long as p/p <. Pq. It is easily shown from previous definitions that:

„ fc \( , n,(t)\* 2 .2. 2n( u-n\]
Pa =2n[(v-LC0S^—fc J +4«8*-T^.——JJ-

F= fc [rxC0S*-fc j +»i3m^-T^ £-)j ,
w-n

p=vz-

cos kq = —
vxcos^-ni(*)/&

((vx cos tf - fliM/fc)2 +4 sin2 ^)1/2'
Equations (37b) and (41) immediately give the ^-coordinate of the principal fixed point
(assuming v± > Cli/k),

if>fp =* (mod 2ir), (42)

whereupon Eq. (37a) is easily evaluated :

w-n ni(i)ft

where in addition to p/p < Pq it has also been assumed that (li/k(v±)fp < 1.

ACCESSIBLE REGION

Const. -$ circles
stable fixed point

cu/k

(37a)

(37b)

(38)

(39)

(40)

(41)

(43)

FIG. 4. Location of constant-^ contours in the vicinity of a stable fixed point
relative to a typical accessible region.
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(cos uV =-I)
•Tp

(C0S^fp= +l) (COS^«*l)v

FIG. 5. Loci of fixed points for a fixed wave amplitude flj. Fixed points having
costj)fp = —1 lie along the solid curve; those with cosV>/p = +1 reside on the
dashed curves. Also shown are the fixed points (•'s) and "accessible region"
(shaded) for a typical value of the constant C.

The dependence of the location of the fixed point on the wave amplitude is also easily
obtained directly from the equations of motion for a constant-amplitude single-frequency
wave:

vz =fti«xsin0,

v± =flif--t/,Jsin^,
fli /w \

if) =fcv- —CJ + 0 ^ ( - Vz\ COS iff.
v±\k J

From vz = 0 and v'x = 0 we recover ^/p = it, which, combined with tff = 0 yields

( \ -u Q 1

which reduces to Eq. (43) for fli/fc(t>x)/p < 1- ^fP = 0 is also a solution to vz = 0 and
v'± = 0; in this case we find

( \ = u Q 1{Vz)fp k ki-ni/k(v±)fp'
The loci of fixed points described by these expressions are illustrated in Fig. 5.

(44a)

(44b)

(44c)

(45)

(46)
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A third perspective of the fixed point motion is suggested by Fig. 4. We expect the
fixed points for a given value of C to appear as points of tangency between the constant-
l circles and the cos^ = —1 boundary of the accessible region. The equation for this
boundary is given by the right-hand equality in Eq. (34):

?(«•-•->-5[("J-+ t) ~vlo\'
which may be differentiated to yield its slope:

ndv±

dvz c,(*=») kv±+ Q1/kt
Similarly, the slope of a constant-£ circle, obtained from Eq. (23), is

dv±

dvz

vz —w/fc

(47)

(48)

(49)

Equating the two slopes, weimmediately obtain Eq. (45). Wemay also examine the stability
of these fixed points by extending this method to the second derivatives:

d?v±
dv\

n2

C\(tf=ir)

V± + (Vz - tt/fc)2

(50a)

d?vx
dvl

(50b)

Equations (50a) and (50b) may be rearranged to yield

d?v±
dv2z

<Pv±
dvl (-fe)hS(-^)"].

at the point of tangency. Since the factor on the right-hand side is always greater than
unity and both second derivatives are negative definite, we may conclude that

<Pv±
dvl

<Pv±
S< dvl 1>,c

(52)

at the fixed point on the cos 0 = —1 boundary, for any value of C. As illustrated in Fig. 4,
this condition implies that constant-^ circles in the vicinity of the fixed point situated
inside the accessible region must intersect the cos^ = -1 boundary on either side of the
fixed point. This identifies the fixed point as stable; thus we have shown that any fixed
point on the cos^ = —1 boundary is stable for any value of C.

The value of the vx-coordinate of the fixed point (vx)/p also depends on Qi and is
found by substituting Eq. (45) in Eq. (47):

n/w _ n

k \k k i + ni/k(v±)fP -*.) =\ [(<*>*+t0'-5- (53)
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In the vanishing wave limit, we find

m% - «io+x(nr "v-°) =nr s(rao)'' (as "l "*0)> (54)
Pa being defined in Eq. (24a). This expression is only valid for Pq > 0; when Pq < 0,
(vxo)/p = 0, as suggested by Fig. 5. Using this value of (t>x)/p in the terms involving fli,
we obtain for small wave amplitudes and (vxo)/p "> fli/&

(»x)W»xo),p-£^(l-p(£^)- (55)
It is clear that the principal fixed point may move to either lower or higher values of vx
with increasing wave amplitude fli. An exact expression for the direction of motion of
(ux)/p may be obtained by differentiating Eq. (53) by fli:

fr<*(*±)/p _ n2k(v±)fP-(k(v±)fp +ni)z m
dnx " n^ + WvxJ/p + no3 * v

Thus {v±)/p increases with increasing fli when

k{v±)fP >fk(v±)fp +Qi\Z ^

Solutions to this inequality always lie in an interval subset of 0 < kv±/Q < 1. As fli —• 0,
the solution set approaches (0,1). For large enough flt, (fli > 2/(3\/3)fl = 0.3849A), the
condition is never satisfied, and the value of v± decreases with increasing wave amplitude
for all fixed points on the cos^ = -1 boundary of the accessible region.

IV. COMPARISON WITH AIC SIMULATIONS

Results ofour single-wave theorywere checked against data obtainedfrom the particle-
ion fluid-electron 1-d electromagnetic computersimulation code TRACY described in Ap
pendix A. A single circularly-polarized spatial component of the wave fields was kept,
with the time-dependence of the field allowed to be arbitrary. For ease of comparison, a
simplified initial ion distribution was used.. A small number of values of Vgo were chosen
to represent a Maxwellian distribution in v2, with all particles being loaded initially with
the same value of vxo- For each (v*o» vxo) pafr» particles were loaded so as to uniformly
fill both z-space and gyrophase space. This somewhat artificial distribution was chosen
because both the fixed point motion, which is observed to depend on vxo» and features of
the particle motion are more cleanly illustrated for this case. Meanwhile, the behavior of
the wave-amplitude is identical in the linear growth stage, and qualitatively the same in
the nonlinear stage, as the case of a full bimaxwellian distribution with the same values of
Ti|| and Ti±.

Several runs were conducted using various initial values of t/xo an<^ ^t||» wi*n *ne T}1JX
described here beingtypical. Parameters for this run were: flAi = 0.038, vaA*/Az = 0.31,
Np = 12032, Nb = 64, Ng = 256, 0i± = 2.0, 2Vj./2i|| = 4.0, and kvA/Q = 0.795. Here A*
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is the timestep size, Az is the grid spacing, Np is the number of simulation ion-particles,
Nf, is the number of values of vs0 loaded, Ng is the number of grid-points in the simulation
system, and va is the Alfven velocity BoKiirnomi)1^.

The code verified the invariance of C for particle motion in a single circularly-polarized
wave field, conserving C to one part in 400 for several particles (Fig. 6) despite the rapid
linear growth and nonlinear time-variation ofthewave (Fig. 7). Existence ofthe "accessible
region," a direct consequence of the invariance ofC as explained in Sec. IH, is also verified.
Test particles initialized with identical values of vxo and vsq (i.e., identical values of C)
but with different initial gyrophases Vo remained within the "accessible region" through
all stages of the simulation (Fig. 8).

The simulation also exhibited fixed point motion in good agreement with theory. As
shown in Fig. 9, the behavior of the principal fixed point as determined by the cyclotron
resonance condition bears qualitative resemblance to the simulation result when effects due
to the nonlinear shift in the wave frequency are included (curve (b)). However, when the
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FIG. 6. Plot of C vs. time for particles withvarious initial conditions in atypical
single-wave simulation.
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FIG. 7. Wave amplitude vs. time for a typical single-wave, single-vxo AIC sim
ulation run.

finite-wave correction is added (Eq. (43)), the resulting estimate (curve (c)) is considerably
improved, tracking unexpectedly well with the simulation fixed point motion even though
the underlying approximation, the adiabatic assumption, is at best only marginally satis
fied. Thus our concepts of fixed points, trapping, action, etc. still appear to be meaningful
in this regime, although in general we would not expect strict quantitative agreement with
theory.

With the assumption that our understanding of fixed point characteristics is at least
qualitatively correct, we next examine a striking effect observed in our single-wave, single-
v±0 AIC simulations. The effect is illustrated in the series of snapshots displayed in Fig. 10.
Figures 10(a) through 10(d) show the behavior of ion-particles as wave-saturation occurs
(cf. Fig. 7). Comparison of Figs. 10(a) and 10(c) shows particle trapping by the wave
and displacement of the va-coordinate of the fixed point (v2)/p to more positive values
(see also Fig. 9). Simultaneously, a very sharp "ridge" of high phase-space density forms
"above" {vz > (vz)fp) the fixed point and is clearly visible by the end of wave saturation
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FIG. 9. Motion of the v*-coordinate of the fixed point ((v,)/p) as observed in
simulation and as calculated from two estimates : (a) simulated {vz)/p/va vs.
time, (b) (u(t) - n)/kvA vs. time, (c) (u(t) - n)/kvA+ fli(t)fl/ft2(vx)/pi>A vs-
time. Values for (vx)/P ( = vxo independent of time), w(i), and fli(t) in (b) and
(c) were obtained from the simulation.

(Fig. 10(c)). As the wave breaks, the ridge is swept to the underside of the fixed point
(Fig. 10(e)) creating a density "edge" in velocity space most clearly seen in vx-vz (or vy-vz)
space (Fig. 10(f)). After the wave has broken, the ridge structure is broken up by phase
mixing (Fig. 10(g)) and the edge in velocity space loses definition (Fig. 10(h)).

Since the ridge appears only on one side of the fixed point (Fig. 10(c)), the cause must
involve some factor asymmetric about the fixed point. This means that, for example, the
standard comparison to particle trapping in the troughs of an electrostatic sinusoidal plane
wave will not be sufficient to explain the effect, since phase space particle orbits in that case
are symmetric with respect to the fixed point. We speculate that the formation of the ridge
may be due to the motion of the fixed point to less negative values of vz consistent with
Eq. (43) and as seen in the simulation. Trapped particles in the path (i.e., vz > (vz)/p)
of the fixed point motion, attempting to conserve the action invariant J, may be piling up
against particles less affected by the wave, producing the "ridge." Ridges might also be
formed in the same manner simply because the wave is growing, since conservation of J
demands that Mo increase as flj' , displacing particles away from the fixed point. In this
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case a ridge below the fixed point may also be visible, but likely less pronounced, than
the ridge on top. Assuming this mechanism is operative, the density "edge" could result
from the combined action of two effects: (1) particles trapped about the fixed point are
transported with it to more positive vz, leaving behind a lower density region below the
eventual "ridge" location, and (2) half of a trapping libration brings the "ridge" around
to the underside of the fixed point, where it coincides with the density "edge" boundary.
This explanation needs further testing, but is consistent simulation data and is supported
by the observed behavior of particles in a simulation movie of vz-if) phase space.

Finally, it is worth mentioning that, although all analysis conducted herein concerns
the single-wave problem, some of our multiwave AIC simulations also show the formation
of a less distinct, but unmistakable, edge in the velocity distribution. It may be the case
that, although the quantity C is no longer conserved, the particle motion may retain some
of the features of constant-C motion. In particular, particles may continue to exhibit a
tendency to move to higher values of vz with increasing wave amplitude, since both the
accessible regions and the principal fixed points corresponding to each of the individual
waves all move in the same direction. Again, definitive conclusions regarding the particle
behavior in the multiwave case await further investigation.

V. CONCLUSIONS

Three exact constants of the motion have been found for particles moving in a single,
circularly-polarized wave propagating along a uniform background magnetic field. The
constant corresponding to the helical symmetry of the system fields, C, is of particular
interest because it permanently restricts each particle to a relatively small region of v±-vz
space which generally moves to higher vz with increasing wave amplitude. Confinement
of particles to one of these regions was verified in single-wave computer simulations of the
AlfVen-ion-cyclotron instability. Existence of the three constants of motion reduces the
problem to motion of the particle on a two-dimensional surface in v±-vz-if> space. When
the wave amplitude is slowly varying, the motion on this surface is characterized by the
existence and slow time-scale motion of fixed points. At least one stable fixed point always
exists and its deeply trapped particles exhibit an adiabatic invariant, namely, the action J.
It is hypothesized that particle trapping, fixed point motion, and the existence of J may
be responsible for the appearence of an edge in the ^-distribution function shortly after
wave saturation. The edge in the distribution function is also observed in some multiwave
simulations, suggesting that some of the single-wave features of the particle motion may
still be present even though the principal basis for the analysis, the conservation of C, is
no longer valid.
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APPENDDC A: THE SIMULATION ALGORITHM

Computer simulations for this study are based ona 1-d, periodic electromagnetic model
employing particle ions immersed in an electron fluid. The algorithm used is similar, but
not identical, to one described in Byers et aL10 Each timestep ion velocities are advanced
with the Boris method11 using fields linearly weighted from a grid:

vn+l/2 _ n-1/2
i i

At =£!>(*- *v (E?+hy<+l/i+vr1/S) xB?)• (A1)
where n, i, and j are the timestep, particle, and grid indices respectively, At is the timestep
size, m is the ion mass, and S(z) is the usual particle-in-cell shape factor. Ion positions are
then advanced one-half timestep :

zrl/3 =*? +iW7+1/2*t, (A2)
and the ion current collected :

tr^ri/2=es^ - *ri/2)viti/a, (as)
»

where vx = v —v • zz, z being the direction of the uniform background magnetic field
Bo. The ion current and old vector potential are then Fourier-transformed in space:
(J»on)y+1/2 -* (J«on)J+1/!\ AJ -+ AJ assuming periodic boundary conditions k=2*1/L
where I is an integer and L is the system length. The new Fourier-transformed vector
potential AJ+1 is found from Ampere's Law using for the electrons a linear E XB fluid.
Similarity of this form of Ampere's Law to Eq. (Al) suggests that we again make use of
the Boris method:

WAf'-Ag x, _** A„+l +iB) _f£(3fai)^, (A4)
BqC At Z c

thus inheriting the desirable properties of time-reversibility and exact mode-by-mode con
servation of the wave energy in the absence of ion sources. The new wave magnetic field
Fourier components are calculated next:

BJ+1 = -ifcAj+1 x z, (A5)

and, after inverse Fourier transforming BJ+l -♦ B*+1, A£+1 -+ A?+1, the new electric
field is found :

*(E7+1 +E?) =-^(A?+I - AJ). (A6)
Finally, the ion positions are advanced the other half-timestep,

2»+i =z^l*+i(»z),"+l/2At, (A7)

completing the timestep loop.
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We have found this algorithm conserves the total energy,

E^+EJB£i (Ag)
» 3

to better than one part in 104 in the simulations presented.
In addition to the usual ion-cyclotron and whistler modes, the algorithm also exhibits

an unphysical odd-even mode with frequency u in the range tan(u;A*/2) = (flAt/2)"1.
Both theory and simulation show the mode to be stable in a cold plasmawhen vAAt/Az is
appreciably less than 1. We have found that the stable version of the mode is easily killed
by setting En+1 equal to (En+1 + En)/2 for some timestep n early in the run. While used
in the code, this timestep-averaging procedure is not generally required, since the mode
is never important once the AlC-unstable wave has grown appreciably compared to initial
wave amplitudes.
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