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ABSTRACT

The increasing complexity of integrated circuits has resulted in higher costs for the

simulation of those circuits. As a result, designers resort to abstract models to describe the cir

cuit behavior that are less expensive to evaluate than detailed models. This leads to the prob

lem of verifying that the abstract models are consistent with the detailed models they replace.

Mixed-mode simulators have been developed which allow the use of abstract and detailed

models in the same simulation program, providing faster simulation speeds and the ability to

verify the consistency of the abstract and detailed models.

In this dissertation, advanced algorithms and techniques for mixed-mode simulation are

presented. Mixed-mode simulation has been extended to allow simultaneous simulation of

models at the detailed electrical, logic, and register-transfer levels i^n those levels that can be

represented by schematic diagrams. This investigation shows that mixed-mode simulation of

widely differing models can be performed using a program architecture that facilitates the

addition of new simulation levels without sacrificing either simulation speed or accuracy.

One result of the investigation is the development of a new simulation program,

SPLICE2, which has been used to experiment with program architectures and simulation algo

rithms. New methods are presented for efficient scheduling of activity in an event-driven

selective-trace simulator which are called cached scheduling. A new technique for

accurate circuit level simulation called iterated timing analysis is also studied. Iterated timing

analysis can provide up to two orders of magnitude speed improvement over more conven

tional forms of circuit simulation.
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CHAPTER 1

Introduction

Simulation has long been used to verify the correctness of integrated circuit designs.

However, increasing size and complexity of circuit design problems has forced designers to

accept less and less detailed simulation. Large designs are too expensive to be simulated at the

most detailed electrical level such as with SPICE2 [4]. An estimate [5] of the CPU time and

memory that would be required by SPICE2 to simulate one 32-bit integer multiply instruc

tion of a recent 450,000 device microprocessor [6] shows that the resources required exceed the

capabilities of any computer that exists today. As a result, simulators have been developed to

span a wide spectrum of levels of modeling, including behavioral, register-transfer, logic, tim

ing, circuit, device and process simulation. Each simulation level can provide successively

more detailed information for more computing cost. It is a desirable extension, therefore, for

simulation programs to span more than one level so that models at different levels can be

cross-checked. Mixed-mode simulation refers to simulation where more than one model level

is used during simulation. The starting point for this work has been the SPLICE1 mixed-mode

simulation program [ll

In this dissertation, advanced algorithms and techniques for mixed-mode simulation are

presented. For reasons described later, only those types of simulation that can be represented

by a schematic diagram i-e., are structural, are examined in detail. The thrust of this work is

in two main areas. The first concerns techniques for combining effectively different kinds of

simulation into one simulator. This includes issues such as simulator architecture, the

representation of signals, and scheduling of activity. The second area is a new technique for

circuit level simulation called Iterated Timing Analysis (ITA) [5, 7l ITA is a relaxation based

form of electrical simulation that is faster than standard techniques for simulation of large



circuits. These ideas and techniques have been explored using a new simulation program

called SPLICE2. To summarize a few key results here, a speedup of one to two orders of mag

nitude in large electrical simulations is achieved without performance penalty for mixed

simulations. All levels of simulation from electrical through register-transfer level are

included. Scheduling of activity is done with a floating point time variable using a novel and

efficient scheduling technique.

The SPLICE2 program has been developed from a broad base of work [4, 8-14] most not

ably the SPUCE1 program (for more information on SPLICE1, see [l] and [3] ). One goal of

this effort has been to create a general-purpose program for the simulation of circuits that can

be used to test new algorithms. The algorithms used must work independently of underlying

circuit technology and must not be specific to just one technology, such as an n-channel

depletion-load MOS process. The specific problem to be solved is that of dc operating point and

nonlinear time domain transient simulation of the behavior of circuits at the electrical, logic,

and register levels of description.

In the remainder of this chapter some background on simulation methods is presented

and the mixed-level simulation problem is specified more fully. In Chapter 2 the issues for

the design and architecture of a mixed-mode simulator and the choices made for the SPLICE2

program are presented. In Chapter 3 the electrical simulation problem is introduced and a

tutorial example is used to illustrate the fundamental procedures. In Chapter 4 the Iterated

Timing Analysis (FTA) method in particular is developed and compared with other techniques.

In Chapter 5 discrete simulation at the Logic and Register-Transfer Level (RTL) is covered. In

Chapter 6 examples of simulation spanning all the levels are given. Finally, in Chapter 7

conclusions and discussion of directions for further work are presented.

1.1. Simulation

If appropriate electrical circuit models are available for circuit components, the electrical

behavior of a circuit can be predicted accurately using computer simulation. Usually, the



purpose of this prediction is to verify that a given network of devices will function correctly.

The only way to avoid the need to verify circuit function is to use a design method that pro

duces designs that are guaranteed to be correct by the techniques used to construct them

(often referred to as correctness-by-construction ). There is a large amount of active research

on this topic but correctness-by-construction is, as yet, only feasible with specialized or con

strained design styles. Other methods that are used for solving aspects of the verification

problem include timing verification [15,16] and fault analysis [17]. Timing verification is a

technique that is used to verify that clocked logic designs satisfy the constraint that the

delays of all paths from clocked elements, or registers, through combinational logic are less

than the proper clock phase width. Fault simulation is used to determine how effective a par

ticular input test pattern is at finding faults in the circuit. It is often based on an underlying

logic simulator. Testability analysis [18] is a statistical technique used to determine the con

trollability and observability of the nodes of a network. It gives an estimate of the difficulty

of finding a test pattern to detect faults at each node of a network. Simulation is also used as

a predictor for optimization-based design of circuits [19].

1.2. Mixed-Mode Simulation

Mixed-mode simulators allow the simulation of devices by combining fundamentally

different models and algorithms in the same simulation. The purpose of the following sections

is to show where the SPLICE2 program fits in a taxonomy of simulation levels.

1.2.1. Types of Simulation

In the course of design of electronic circuits, many types of simulation are used. Figure

1.1 lists seven kinds of simulation and indicates one typical use for each. Examples of process

level simulators are the SUPREM [20] and SAMPLE [21] programs. This type of simulator is

used by the process engineer to design or adjust the integrated circuit fabrication process. An

example of a device level simulator is the GEMINI program [22]. Device level simulators are



used by the process engineer to evaluate a process and develop models that predict the

behavior of integrated circuit devices. An example of a circuit level simulator is SPICE2 [4].

Circuit level simulators are used by electrical engineers to check the detailed performance of a

prospective circuit or possibly to experiment with new configurations. Timing simulation

refers to the approximate electrical analysis such as found in the MOTIS [23] or initial

SPLICE1 programs [l] and is used for the performance evaluation of large logic designs. An

example of a logic level simulator is the TEGAS program [17]. Logic simulators are used to

check the functional correctness of a logic circuit. Examples of RTL simulators are ISPS [24]

and ADLIB [25]. Register-transfer level simulation differs from behavioral simulation pri

marily in that it is more structural with information between blocks communicated on

busses. ISPS and ADLIB are RTL simulators as well as behavioral simulators. Examples of

behavioral simulators include simulation languages such as GASP [26] and SIMULA [27].

These types of simulators are used by designers to check the functional correctness of algo

rithms or system components. Sometimes they are used to simulate microcode or perform

operating system development.

1.2.2. Schematic Simulation

As stated earlier, the present work deals only with schematic simulation. Schematic

simulation is used here to mean simulation of electrical circuits at those model levels for

which the circuits can be considered connections of lumped elements, or schematics, where

Level Typical Use
Behavioral Algorithm Verification
RTL
. . Logic Verification
Logic 6

iming Performance Evaluation
Circuit

Device Device Model Development
Process Fabrication Process Development

Figure 1.1 : Simulation Levels



the communication between devices in the real circuit is implemented using wires. In partic

ular this includes circuit, logic, and RTL model levels. The analysis of devices and processes is

not easily represented strictly with lumped elements and wires and therefore is not

schematic. The high-level models of behavioral simulation often communicate using abstract

data types and via common variables and are also not schematic. The schematic levels of

simulation were chosen for the SPLICE2 program since they have a common set of charac

teristics, as is shown in Chapter 2. Thus, SPLICE2 is intended for use in design from detailed

electrical simulation up through simulation of building blocks at the register level.

1.2.3. Previous Work on Mixed-Mode Simulation

A number of mixed-mode simulators have been developed in the past decade

[l, 2,13,25,28-33]. The term mixed-mode simulator is used here to mean one which allows

the simulation of devices using fundamentally different models and algorithms in the same

simulation. Some researchers use the term multi-level simulation to mean the same thing.

The term multi-level is not used here to prevent confusion later since logic signal values have

multiple levels and multiple strengths. A possibly better term than either of these terms is

mixed-level simulation.

Figure 1.2 is a partial list of mixed-mode simulators that shows the choices of simulation

levels implemented. The simulation levels from register-transfer through circuit simulation

are grouped together as schematic levels of simulation. The last column indicates what

method is used in the program to exploit latency (or inactivity) in the circuit being simulated.

The bypass method refers to the technique of checking the input variables to a sub-block or

element and if they have not changed since the last iteration, the sub-block is not simulated

and the previous solution is used. The selective trace method refers to the technique of

scheduling a sub-block to be processed only when the input signals change and not even

checking it when they do not. Parentheses around the mark indicating that the simulation

level is present in the program mean either that the simulation level is not fully implemented



SIMULATOR
SIMULATION LEVEL LATENCY

METHODBHV RTL LOG TIM CIR DEV

MEDUSA (AachenX3l] X X BY

DIANA (LeuvenX2j*
SAMSON (CMUX13]
SPL1CE1 (UCBXl]
SPLICE2 (UCB)
M-M SIM. (BellX29l

XXX

(X) X
XXX

XX X

XXX

BY

ST/BY

ST

ST

ST

LNTSLM (TJ.X34]
ADUB(StanfordX25]
MIXS (NECX35]
Other Func.

X

X

X

X

X X

X (X)
X (X)

(X) (X)

ST

ST

ST

N/A

SHIELD (Hu*hesX30] X (X) (X) (X) (X) N/A

BHV Behavioral Simulation.
RTL Register-Transfer Simulation.
LOG Logic Simulation.
TIM Timing Simulation.
CIR Circuit Simulation.
DEV Device Simulation.
BY Bypass Method.
ST Selective Trace Method.

* The DIANA program has recently been partitioned into
two programs - DIANA-UP for bottom-up design and DIANA-DOWN
for top-down design [33].

Figure 1.2 : Mixed-Mode Simulators

or that the method of interfacing is such that the simulation level is not fully integrated into

one program.



CHAPTER 2

Architectures for Schematic Simulation

The architectural issues for mixed-mode simulation and the tradeoffs and choices made in

the SPLICE2 simulator are presented in this chapter. The topics that follow include such

issues as the goals used during the design of the SPUCE2 program, how the target computing

environment affects the design choices, which simulation levels should be implemented,

schematic simulation and signal representations, how different simulation levels communicate

signal values, and finally how to represent time and perform event scheduling for algorithms

of widely varying nature.

2.1. Goals

The first step in the design of a mixed-mode simulator is defining the scope of the simu

lator and its goals. The scope of this work deals with the dc and transient simulation problem

(DCTRAN). This type of simulation is applicable to a wide range of simulation levels that are

schematic in nature. The characteristics that link these levels are explored more fully below

in the section on schematic simulation. Briefly, the problem is to find the signal waveforms as

a function of time. Other possible types of analysis include small-signal AC, noise, distortion,

fault and timing verification. These other techniques are not applicable to as wide a range of

simulation levels as the DCTRAN problem is. The goals for the SPLICE2 program are:

(l) Speed of simulation. Some of the major points of this thesis concern speed. It is impor

tant that each simulation level of the mixed-mode simulator when used for only that

type of simulation not be significantly slower than a simulator of that type that is not

mixed-mode. Otherwise, the user will resort to using the individual simulators. The

overhead of translation between model levels should only be paid where necessary.
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(2) Technology independence. The algorithms chosen should not be limited to one technol

ogy. For example, logic simulation of TTL, ECL, NMOS or CMOS should all be possible.

At the electrical level, more than just MOS devices should be available. Again, these

should be available without speed tradeoff.

(3) Permit varying simulation methods. The simulator should not decide for the user how

he or she is to use it. It should provide primitive functions that are powerful enough to

be used to build higher level functionality. An example of this is higher level model

extraction and verification. A primitive function that takes a computed value from a

simulation and stores it in a parameter of the input circuit description is sufficient to

allow simulations that automatically extract relevant electrical information for higher

level models in a manner that is similar to the actual test jig setup that might be used in

the laboratory.

(4) Ease of adding new models. This is an important goal at all levels of simulation but is

especially important at the register-transfer level where the blocks are likely to have

functionality that is quite different from standard libraries of devices and gates. This is

accomplished in SPLICE2 by allowing models to be added at execution time and by using

automatically generated tables to allow device models to be read and initialized.

(5) User interface flexibility. The primitives available in the simulator should accommodate

powerful and flexible user interfaces, and, as much as possible, the mechanisms by

which the user interacts with the simulator should be regular and consistent.

(6) Machine transportability. Within limits, the simulator should be transportable to a

variety of computers and computer systems.

These sometimes competing goals are then weighed against one another.



2.2. Computing Environment

In the design of a large program, it is important to take some note of the computing

environment in which the program will be used. The stated goal of machine transportability

raises the usual questions about generality versus performance. A special purpose simulation

algorithm potentially can be made much faster than a general purpose algorithm. A text edi

tor that works with only one type of video terminal can take advantage of more of the

features than one that must work with many terminals. The question then arises about how

much the computing environment should be allowed to affect the design decisions.

The nature of computing is changing away from the large centralized batch computing

environment toward smaller, more distributed interactive computing environments. Com

puter and disk* memory costs are dropping rapidly and good floating point performance is com

mon. Most computing environments are becoming virtually extended so that programs have a

much larger addressing range than that of physical memory. These trends ease the task of

making a program more transportable since detailed knowledge of the underlying machine is

not needed. However, the trend toward better human interfaces and work stations with high

performance graphics pushes in the opposite direction.

The near-term future will continue to have lower prices for disk and main memory.

The use of personal work stations with substantial amounts of main memory will provide

more availability of computing but without increasing the peak performance of the comput

ing engine over that of a shared computer. Thus, even more than today, the speed/space per

formance tradeoff will be biased in favor of speed at the expense of space. Applications will

rely more heavily on high performance graphic interfaces for humans. The trend will be

toward local-area networks that connect work stations to mainframes for simulations that are

large, but the user will still want to interact with the mainframe via the work station.

Thus, it is important for time consuming applications, such as simulation, to be kept portable

to the large computer environment.



10

23. User Interface

To take advantage of advanced graphic interface packages, while still maintaining large

batch capability, the front and back ends of the simulator can be made separable so that they

communicate via a set of functions. In the SPLICE2 program, the simulator is viewed as a net

list processor (NLP) by the program that is the user front end interface. The set of functions

are defined in the NLP [37] specification and are used to transfer the information about models,

elements and their connectivity from the front end program to the simulator. Currently,

there are two implementations of NLP driver programs for SPLICE2, a textual driver (the

BLT program [38]) for compatibility with SPLICE1 and SPICE2, and a graphic editor program

used at UC Berkeley for integrated circuit design and schematic diagram generation (the

HAWK program [39]) Figure 2.1 shows how SPUCE2 communicates with the front end via

NLP. The simulation results are written using a waveform storage package (WAP) [40] that

can be monitored interactively.

Control and input for the SPLICE2simulator are merged by using special simulation ele

ments called control elements that cause specific control actions to occur when the element is

processed by the scheduler. This is similar to using object-oriented or data-flow programming

SQUID* *HAWK

BLT
NLP

-> SPLICE2

,4U»^SPLICE2

.WAVE
PACK

*WAVE
PACK

Figure 2.1: User Interface
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methods where the functional or data-flow program is the circuit that is made of control ele

ments. Control is accomplished by creating special elements and setting their parameters in

exactly the same way that ordinary elements are created. This results in an extremely uni

form interface between the front end program and the simulation engine. Thus, execution

time options are passed as parameters to an option control element and the end of simulation

occurs when the end control element is processed. In a similar fashion, interactive breakpoint

elements are available to suspend the simulation at specified times or on simulation generated

events. In this way, greater functionality can be added for the interactive environment

without affecting.the ability to run in a large batch environment.

2.4. Adding New Simulation Models

New simulation models are added to the SPUCE2 program by allowing the user to pro

gram the new element behavior in the C programming language, compile the new model

using the C compiler into machine executable object code, and then load (sometimes called

link) the new machine code with the SPLICE2 program. This technique of extending and

using an existing programming language for writing user generated model code is sometimes

called an embedded approach. The details of creating a model for the SPLICE2 program are

given in Appendix D. Briefly, the user must provide three types of information to the simula

tor for a new model: the topology (or net list information), the parameters, and the executable

code. The topology and parameters are specified in a table that is built by a preprocessor

which reads the C language data structure declaration for the element. The declaration has

some added keywords for indicating the name, simulation level, and direction for each termi

nal for the element. The keyword PARAMETERS is used to indicate which members of the

data structure are to be filled in as parameters by the user at run time. Thus, the member

name and type given in the declaration of the data structure are automatically used as the

name and type of the parameter for reading and initializing. In this way, there is very little

chance of error in naming and using the parameters. Thus, adding a model requires only the
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declaration of its C programming language data structures and the function which imple

ments the model. An optional initialization function can be provided if any pre-calculation of

values is needed for speed (such as the critical voltage for diodes [4]).

Dynamic loading is a technique for adding executable code to a running program and is

found commonly in LISP programming environments [41]. SPLICE2 has a dynamic loading

capability which, in combination with the table mechanism for model declaration presented

above, allows new models to be added easily to a simulation even after execution of the simu

lation program has begun. Dynamic loading is not machine transportable and usually needs to

be re-programmed for new computing environments and thus is at odds with the goal of

machine transportability. However, conditional compilation makes it possible to load models

statically and simulate when dynamic loading is not available. Libraries of models compiled

into the simulator are adequate for electrical and low-level logic simulation, but at the

register-transfer level (RTL), the user must be able to add new functions easily. RTLsimula

tion is described in more detail in Chapter 5.

2J5. Inter-Simulation Communication

One basic decision about the simulation architecture that must be made at the outset is

how the different levels of simulation communicate with each other and how much each

level of simulation must know about the other levels of simulation. Various approaches exist,

such as the SHIELD program [30] which runs each level of simulation separately with each

simulation algorithm advancing in time only so far as its inputs allow. This allows each

simulation program to be optimized for its type of simulation and keeps all the knowledge

about how to translate from one level to another isolated in the control program. The pri

mary difficulty with this approach is that the overhead is high when several levels are used

and components of differing type are intermingled arbitrarily. A copy of every interface sig

nal must be kept and transmitted through the supervisor program. Also the overhead of the

scheduler is incurred more than once for each simulation event since each simulator performs
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time control locally as well as in the supervisor and must check to see when to return control

to the supervisor.

The design choice for the SPUCE2 program has been to use one integrated scheduler

mechanism for all simulation levels. Algorithms have been chosen and developed that use sig

nals in a consistent way so that translation of a signal from a more detailed level to a less

detailed level results in a reduction of detail that preserves the maximum amount of informa

tion. The design of the scheduler and the signal representations are described more fuUy later

in this chapter.

2.6. Choice of Simulation Levels

Figure 2.2 gives an estimate of the CPU time and memory that would be required to

simulate one 32-bit integer multiply instruction of a recent 450,000 device microprocessor [6]

using four different levels of device models [5]. The multiply requires 1.8/is in 33 clock

cycles of 55ns each. These estimates are based on experience with the SPICE2 circuit analysis

program [4,42]and the SPUCE1 mixed-mode simulator [l, 3l The CPU times shown are nor

malized to the performance of an IBM 370/168 and ignore virtual machine overhead L&,

assumes uniform addressing and memory access times. The term circuit means accurate

analysis such as found in the SPICE2 program. Timing refers to the approximate electrical

analysis such as found in the MOTIS [23] or SPUCE1 version 1.3 programs [l]. For the pur

pose of this work, logic means discrete valued simulation of unidirectional elements and FTL

means register-transfer level where the elements may use complex internal models, such as

an arithmetic logic unit. These model levels differ mainly in the way that signals are

represented and combined, as is described later.

Figure 22 shows how reducing model complexity reduces the simulation cost. Two

effects are responsible for this reduction. The first is that simpler models require less CPU

time to evaluate. The second is that higher-level models represent the functionality of a

number of lower level models and therefore require less data storage and fewer evaluations.



LEVEL CPUTLME logio (CPU) MEMORY log 10 (MEM)

CIRCUIT 6 Months 7.2 250 MB 8.4

TIMING

ITA 12 Hours 4.6 60 MB 7.8

NTA 8 Hours 4.5 30 MB 7.5

LOGIC lOMin. 2.8 4MB 6.6

RTL «1 Min. 1.8 «.5MB 5.7

Figure 2.2 : Simulator Performance
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The logarithmic values for time and memory indicate about one order of magnitude reduction

in storage per level and about two orders of magnitude reduction in CPU time. The CPU time

reduction reflects the effect of both reduced device count and simplified models.

The levels of simulation chosen for implementation in the SPUCE2 program are circuit,

logic and RTL. The circuit simulation level uses a new method called iterated timing analysis

(ITA) [3,5] that is based on the non-iterated timing analysis (NTA) [l] from the SPLICE1.3

program with the relaxation iteration carried to convergence. ITA requires approximately

50% more CPU time than plain timing analysis but the actual requirements depend on the

characteristics of the circuit being analyzed. It provides dc operating point and voltage

waveforms with accuracy comparable to that of SPICE2. ITA is presented more fully in

Chapter 4.

The choice of circuit, logic and RTL is only one choice for a set of simulation model lev

els. More detailed simulation such as device modeling and more abstract simulation such as

behavioral simulation are not included in SPLICE2 because the algorithms are not similar

enough to be compatible with the other three. Circuit, logic and RTL are similar in that cir

cuits of those levels are represented by schematic diagrams. Figure 2.2 suggests that the choice

of ITA, logic and RTL spans the range of schematic simulation fairly evenly. The difference
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in run time between ITA and logic analysis suggests that another form of approximate electri

cal simulation between ITA and logic might be appropriate. The inclusion of each additional

model level adds more overhead in translating to other levels and makes the program bigger

and more complicated. This overhead and complexity must be offset either with improved

accuracy or faster overall simulation performance due to the hierarchy of model levels

(higher level models require less time to evaluate than lower level models). The large fixed

cost of adding a model level suggests that ITA, logic, and RTL are sufficient. In Chapter 5, it

will be seen that a more general logic model can be used in the same way as a simple logic

model and run with speed comparable to the simpler model. Some simulators allow the

simultaneous simulation of logic elements that have models that use different numbers of

logic states by allowing arbitrary numbers of translation routines. This approach can be

expensive both in CPU time and complexity of the program.

2.7. Schematic Simulation

Schematic blocks are modules that communicate along wires. Figure 2.3 illustrates the

structural relationship between blocks and wires. This partitioning suggests an architecture

where blocks are represented by routines that model their behavior and wires (nets or nodes)

are elements that understand how to transmit and translate the signals. This results in a sim

ple architecture of one data structure for topology and state and one model routine for each

element. The wires have model routines that implement each level of simulation. Thus there

are electrical, logic, and RTL net models and their corresponding signal types. Adding a new

level of simulation amounts to defining the new signal type, adding the new net model rou

tine, and updating the other net models to coerce to and from the new signal type. It is this

coercion overhead that limits the number of different simulation levels.

Figure 2.4 shows a situation where the net model translates from an electrical signal to

logic and register levels. As integrated circuit switching devices become faster and faster,

more of the total delay is due to the wires. Having an explicit net model allows these effects
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Figure 23 : Schematic View of Circuits

to be treated accurately. The representations of signals and the method of combining them is

critical for accurate simulation. The signal types in the SPLICE2 program are presented in the

next section and the mapping from one to another is shown.

2.8. Signal Representations

A consistent representation for signals over all model levels is critical for accurate mixed

simulation. The main difference between model levels is the level of detail used in the

models and signals. A high level model uses fewer bits of precision than a more detailed

model. This is not to say that the higher level model is less accurate. The fact that the vol

tage on a wire is 4.285 Volts adds no useful information if the question being asked is simply

whether the signal is true or false. Excess precision can easily get in the way when it is not

appropriate and data hiding is important in hierarchical abstraction.

Since the function of nets is to combine signals, signals must have not only a level, but

also a strength. For steady-state analysis, a Norton or Thevenin equivalent is needed for the
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Figure 2.4 : Net as an Element

contribution of each element [43]. Figure 2.5 shows a pair of open-collector drivers that are

connected to a bus. This wired-and function is a common example of how signals are com

bined. Since elements of all types can be connected together, information on how to combine

them all must be available through the strength. The difference is that the number of bits

used to represent the signal goes down as the detail decreases. The signal level represents the

current state of the wire. At the electrical level it is a floating point number for the voltage

while at the logic level the number becomes a small integer. Register signals are reduced to

binary values that may be collected into arrays in order to represent busses as a single

number. A strength bit-array is still necessary to indicate which bits are being driven.
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Figure 2JS : Signal Representations

2.9. Signal Mapping

Communication between models in a mixed simulation requires translation of signals.

At least one function to map signal types in each direction is needed with the addition of

every model level. Figure 2.6 shows an example of possible mappings to and from the circuit

level, or continuous domain, into the logic level, or discrete domain, and to and from logic into

register. The choice of thresholds need not be uniform, but must cover all possible values.

The same considerations apply to the discrete mappings. The number of states and the assign

ment of thresholds clearly depends on how much accuracy is desired and the technology being

simulated. More detail on signal mapping is presented in Chapter 5 where discrete simulation

is described.

2.10. Time Representation and Scheduling

One of the most challenging tasks in designing a mixed-mode simulator is how to recon

cile the divergent requirements of different algorithms for the representation and
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Figure 2.6 : Signal Mapping

advancement of time. The purpose of this section is to define event scheduling, outline some

existing event scheduling techniques, resolve the issue of how to represent time, and present

some results on a novel approach implemented in the SPLICE2 program called cached schedul

ing.

2.10.1. Event Scheduling

Discrete event simulation refers to computer simulations in which events occur at

discrete, arbitrary points in time. The management of time-flow consists of sequencing the

events and executing (or processing) the events and propagating their effects. Figure 2.7 illus

trates the principal activities of event scheduling. The event processor carries out whatever

action the event is intended to cause and the scheduler sequences the events and controls the

evolution of time. The two main functions are schedule an event at time t in the future,

sometimes called the hold function, and next event for finding the next action to perform.
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Depending on the simulator, there may also be an unschedule function to remove a pending

event from the queue.

In circuit level simulators such as the SPICE2 program [4], the current value of time is

represented by one floating point number that is the same for all of the equations. In logic

simulation, such as in the VOTE program [44,451 time is represented by an integer value and

all delays must be specified as a multiple of the unit of time. Scheduling is done via the time

mapping technique. A good description of the time wheel and the time mapping methods for

time control is given in [46]. A technique similar to time mapping is used in the SPL1CE1 pro

gram [ll General purpose simulation languages such as SIMSCRIPT [47], GPSS [48l GASP

[26l SIMULA [27l and others use a list of events ordered by a floating point time variable. A

method for speeding the insertion of events onto the list called the indexed list method is

presented in [49] which also gives a good comparison of scheduling techniques. Another vari

ant of the indexed list method is described in [50l The indexed list method with floating

point time is used in the SAMSON program [131 Floating point time is also used in the

Scheduler

Schedule

Event
at T ( 0

Next

Event

Event

Processor

Figure 2.7 : Event Scheduling
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ADUB/SABLE program [25l

In an electrical level algorithm, there is a relatively large amount of computation done

when a solution is obtained at a time-point and so the scheduling overhead is not very impor

tant. However in logic analysis, relatively little computation is done for each solution. Thus,

the scheduling method must be fast and robust in the presence of large numbers of events if

it is not going to limit the performance of the simulator.

2.10.2. Representation of Time

A mixed-mode simulation environment requires a large amount of range and precision

from the time representation. The time-steps required during the solution of electrical equa

tions may be considerably smaller than the smallest time-step of interest to the user. There

fore, the unit of time may be as small as 10~12 —10""15. The total simulation time can be ord

ers of magnitude larger than the rise and fall time of any particular logic gate. To be able to

represent total simulation times on the order of 1 second yet still resolve electrical events

requires a range of =*1015 or a«250. Thus the usual 32 bit integer with a range of ^lO9 is not

sufficient. A 64 bit integer has a range of ^lO19 and would allow simulations of over one

hour of simulated time with a resolution of 10~15 seconds. Unfortunately, common program

ming languages do not have intrinsic 64 bit integer data types (even though some computers

such as the VAX support it). Functions could be added to perform the extended arithmetic,

but the overhead of calling those functions would be quite large. A single precision floating

point number usually has a mantissa with a size less than 25 bits. Thus it has inadequate pre

cision to resolve small time-steps when the time becomes large. A double precision floating

point number usually has a mantissa of size greater than 50 bits and thus has the required

precision. On computers with floating point units, the overhead of using a double precision

number for time is likely to be less than the function call overhead of using an extended

integer. An argument can be made that extended integers have a place as a scalar type in

computer languages.
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One disadvantage of the floating point representation for time is that the finite mantissa

size causes arithmetic operations not to be commutative and associative. Thus, the exact result

of a calculation depends on the order in which the operations are carried out. An advantage

of the extended integer is that it can be used directly or bits extracted for use with the

scheduler index. Tom Quarles has pointed out [51] that if care is taken to prevent overflow of

the mantissa, then the floating point number can be used for exact calculations. This is similar

to using the floating point number as an integer of size equal to that of the mantissa and is

what is done in the SPUCE2 program. A double precision variable is used to represent time

and two C language macros are defined: TO_NORM__TIME() to convert simulation time to

normalized form and TO_WALL_TIME() to convert normalized time to simulation time.

Addition and subtraction of normalized times can be performed safely but computations

involving multiplications and divisions require re-normalization of the time variable. Because

of the use of a C language type definition for time, if a 64 bit integer were to become available

in the C language, only the type definition and the macros would need to be changed.

2.10.3. Indexed List Method

A simple organization for ordering all events by time is a linear linked list. If events are

likely to be canceled, a back link is useful for quick removal from the list. For sequences of

events with uniform distributions, the average number of scans for insertion on a linear list is

N
— where N is the number of events already on the list. Thus, the total number of scans to

insert N events is proportional to N 2. The indexed list method mentioned above reduces the

number of scans by dividing the list into smaller sub-lists each of which spans a sub-interval

of time. Figure 2.8 shows the data structure for the indexed list method. Dummy events are

created as time markers to head each sub-list. The sub-intervals usually span equal sized time

bins, although nonuniform spacing can be used. With uniform intervals, insertion of a new

event is done by computing the index into an array of pointers to the marker events and then

linear insertion of the event on that sub-list. The index interval size must be adjusted
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periodically so that the number of events in each sub-list is neither too few, which means

that excessive marker events are allocated and processed, nor too many, which means that

insertion will degenerate to the linear case. For large N and uniform event distributions, the

speedup of indexed list insertion over linear list insertion will be equal to the number of

index bins.

The indexed list method has been implemented in the SPLICE2 program and measure

ments made to determine the overhead of the marker events and the insertion time for linear

lists. These timings and all of the other performance figures quoted in this dissertation were

made on a Digital Equipment Corporation VAX 11/780 with floating point accelerator. Figure

2.9 is a plot of execution time versus the number of dummy events in the list. The intercept

Figure 2.8 : Indexed List Method
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at zero is labeled "b" on the graph and indicates an overhead of 39 jjlS per marker event.

This number is a lower bound and is made up mostly of the function call and return time

plus the time to increment the current index of the array. If a normal event execution time

were m times longer than the marker event execution time and the fraction of total events

which are marker events were / , then the execution overhead events would be

/ 1-7 ,'* x . For / •- and m = 4 the overhead would be 20%.

Figure 2.10 shows the time required to perform linear list insertion as a function of the

number of events already on the list with the slopes and intercepts of the curves labeled "bw

300 r

200 >

100 »

Figure 2.9 : Marker Event Overhead
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and "m", respectively. The upper curve is for the indexed list method using a single precision

floating point number and the lower curve is using a 32 bit integer number. The intercepts at

zero show.that floating point scheduling requires about 30% more time than integer schedul

ing however the slopes are the same to within the accuracy of the measurements. Thus the

increase in CPU time for using floating point numbers corresponds to slightly more than the

amount of CPU time to scan one extra event. As the number of events increases, this

difference becomes less important.

300 r

N

m - 18.7

b - 127.2

m - 20.2

b - 95.2

Figure 2.10 : List Insertion Time
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The indexed list approach has several disadvantages. First, the dummy events require

storage and, depending on details of the implementation, must be allocated and freed. Second,

the dummy events lengthen the linear event list by their presence and require CPU time to

be processed, thereby limiting the peak speed of the simulator. Third, schemes to re-compute

the index interval for the array are required which can lag behind changes in the distribu

tions of events and be fairly involved to carry out. Fourth, backing up simulation time is

difficult. This situation occurs in electrical analysis when a time-step is rejected and the inter

val must be re-simulated with a smaller step size.

2.10.4. Cached Scheduling

Cached scheduling is a new technique for indexing events which makes use of the sta

tistical properties of the time distribution of event scheduling operations. Both the indexed

list and the cached list methods use indices to find a good starting point in the linear list of

events from which to insert the event to be scheduled. The cached list method makes use of

the fact that the most recently scheduled event often is likely to be a good guess for the point

at which to insert the next event. This is similar to the least recently used (LRU) policy for

determining which memory buffer to invalidate in hardware cache memory management.

The method requires keeping one or more cache pointers to events. A cache pointer is

valid if it points to a scheduled event whose scheduled time is less than or equal to the time at

which the new event is to be scheduled. Before beginning insertion at the head of the list,

the cache pointer is checked for validity and if it is valid, it is used as the starting point for

the linear insertion. If the cache pointer is valid, then the event pointed to is at least as good a

starting point as the head of the list. After inserting the new event on the list, the cache

pointer is set to point to the new event.

Measurements have been made on a two element cache which has been implemented in

the SPLICE2 program. One of the cache pointers is reserved for events which are scheduled

at the current value of simulated time. When the current time cache pointer misses, then
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scheduling is performed using the other cache. The measurements are summarized in Figure

2.11. The peak performance is seen to be better than the peak performance of the indexed list

technique as compared with Figure 2.10. Note that time is represented as a double precision

floating point number for these measurements. The most important number for estimating

cache effectiveness is the hit ratio which is the ratio of the number of times that the cache is

found to be valid to the total number of schedules using that cache. This simple scheduling

method is adequate for electrical analysis and some logic analysis. The overhead becomes

fairly high in the Logic3 example indicating that the two element cache is overloaded.

A generalization of the cached list method is the cached indexed list method. The

cached indexed list method uses an array of cache pointers very similar to the array of

pointers to dummy events that is used in the indexed list method. The intention is to add

more cache pointers and use the indexing mechanism to make the loading more uniform in

order to increase the hit ratio. The algorithm proceeds as follows. When a new event is to be

scheduled, the time is used to index into the array of cache pointers. If the index is larger

than the array, then the remote event action, which is described later, is performed. If the

cache pointer is valid, then it is used as the starting point for linear insertion and the cache

pointer is updated to point to the new event just inserted. Otherwise, the cache pointer array

is searched backwards to find the first valid pointer and that is used as the starting point for

linear insertion. If none of the cache pointers are valid, the head of the list is used. The origi

nal cache pointer indicated by the indexing operation is updated to point to the new event just

inserted.

One observation is that the correct operation of the scheduling procedure does not depend

on the validity or efficiency of the cache. In fact, all of the entries could be set to a null value

(flushed) every scheduling operation and it would still work. Also, the efficiency of the cache

is increased as the loading is made uniform. A cache pointer becomes invalid by one of two

mechanisms first, the event becomes processed and passes into the past, or second, the event is



Example NEN NLN NRN %CPU CHR CAIT (fis)

Electl 169 0 0 5.0 0.931 157

Elect2 223 0 0 2.7 0.932 118

Elect3 169 0 0 8.0 0.919 271

Logic1 1 153 0 10.5 0.702 319

Logic2 1 61 0 5.2 0.596 205
Logic3 1 235 0 39.5 0.762 423

Mixed 1 289 61 0 7.1 0.923 227

Mixed2 1 118 4 28.3 0.691 292

Example
First Cache Current Time Cache

TNS HR ATT(ais) TNS HR AIT (fis)

Electl 107816 0.645 416 463524 0.998 96

Elect2 58033 0.804 162 127533 0.99 96

Elect3 801182 0.799 535 1253854 0.996 102

Logicl 6209 0.603 411 2869 0.918 94

Logic2 3801 0.487 234 1611 0.852 106

Logic3 270396 0.668 582 135211 0.95 113

Mixedl 123892 0.602 812 534643 0.997 90

Mixed2 87077 0.585 363 41220 0.914 115

NEN « Number of Electrical Nets
NLN - Number of Logic Nets
NRN = Number of Register Nets
%CPU = Percent of total time spent scheduling
CHR = Composite Hit Ratio
TNS = Total Number of Schedules
HR = Hit Ratio

ATT = Average Insertion Time
CAIT = Composite Average Insertion Time

Figure 2.11: Cache Performance Measurements
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un-scheduled. The first mechanism is not important since new events are not scheduled in

the past. Bther there are other events at the current time and the first entry of the cache

points to the last one of them, or the head of the list is the best starting point for insertion.

In steady-state operation with all of the cache pointers valid and a uniform distribution

of events in time, the number of linear scans for insertion is comparable to that for the

indexed list method. A uniform random distribution has no locality of reference and
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therefore is a difficult test example. With a uniform index interval and a uniform distribu

tion, the average number of events per sub-list is equal, say N . The indexed list method will

always start at the beginning of the interval and scan to the position of the new event which

N
will be — positions down the list en the average. With the cached indexed list method each

cache pointer will point to the middle of its interval on the average. The probability of a

1 Ncache hit will be —• and if it occurs the number of scans will be — on the average. If the
2 4

Ncache hit does not occur, then the number scans from the preceding cache pointer will be -—-

N
to get to the beginning of the current interval and —- to get to the location in the list in the

4

Ncurrent interval. Thus the average number of scans will be — which is the same as the

indexed list method for the uniform distribution.

The main advantage of the cached indexed list method is that there are no dummy

events to maintain and re-index. This makes it very simple to back up time which is occa

sionally necessary for electrical algorithms as has been pointed out. To change the index

interval, all that is necessary is to change the index interval variable to its new value. The

array of cache pointers need not be altered although it might be advantageous to null them or

copy some. The index will automatically achieve equilibrium as events are scheduled and the

cache pointers are faulted in.

The remote list is managed using a cache with an index interval ten times larger than

the main cache. Overflow from the remote index is handled with a final remote list pointer

similar to that used in the indexed list approach. The index interval is computed by choosing

a value that maintains the number of events in the near and remote sub-lists at some ratio.

Other schemes for computing the index interval could be used.

Both the indexed list method and cached indexed list method can have long insertion

times when the index is overloaded with events or for pathological event distributions. The



30

" )
technique describecl by Wyman [50] can be used to improve the worst case performance of the

scheduler for both- methods at the cost of adding more dummy events. Also, if the list is dou-
i

bly linked, as is the case in the SPUCE2 program, then insertion scans can also be done in the

reverse direction. This would avoid the need to scan events in the previous interval in order

to arrive at a position in the beginning of the current interval.

Another way to distribute the loading on the cache is to use auxiliary information about

the events such as whether they are.electrical or discrete. A separate set of cache pointers

could be used for the different types of events. A cache of size equal to the number of buffers

used in the windowed iterated timing analysis algorithm works perfectly since electrical

events are not scheduled at other times.



CHAPTER 3

Electrical Simulation

Electrical analysis of circuits is used to predict their accurate waveform behavior and is

the most detailed level of simulation in a schematic simulator. The present chapter provides

the background with which to compare the Iterated Timing Analysis (ITA) algorithm,

described in detail in Chapter 4, with other existing techniques. In Section 3.1, the nonlinear

dc and time-domain transient (DCTRAN) problem to be solved is defined. A specific circuit

example is used in Section 32 to show how the nonlinear time-varying circuit equations are

solved. In Section 3.3, a circuit interpretation for iterative processes is presented and some of

the stability properties are examined. In Section 3.4, the differences between existing tech

niques for detailed electrical simulation are outlined. Finally, error measures and potential

speedup factors are presented in Sections 3.5 and 3.6.

3.1. The DCTRAN Problem

The DCTRAN problem is defined as finding the voltages as a function of time on all of

the wires of a given network. Figure 3.1 illustrates this for an example of a chain of invert

ers. The problem then is to compute an approximate voltage waveform for all of the wires

that is close enough to the exact solution. The meaning of close enough is examined more

fully in section 3.5.

The elements of the network are modeled by mathematical equations called the Branch

Constitutive Equations (BCE). Together with KirchhofFs current and voltage laws, these

models result in a system of first order nonlinear, time-varying, ordinary differential equa

tions (ODE) which must be solved to predict the electrical behavior of the network. Most cir

cuit simulation programs solve this system of equations by slicing the waveforms into discrete

time intervals, or time-steps. Circuit elements, such as capacitors and inductors, whose branch
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Figure 3.1: DCTRAN waveforms

relations contain the time variable are said to have memory. Using a numerical integration

scheme, these elements are then modeled with equivalent companion models which, at any

given instant of time, are characterized by equations similar in form to the memoryless ele

ments [4, 52]. This leads to a sequence of equivalent problems which, when solved, result in

the desired waveforms. For practical numerical integration methods, these waveforms con

verge to the exact solutions of the ODE's as the time-steps are taken sufficiently small.

Another class of methods, known as waveform relaxation, [53] has recently been studied

which does not decompose the time behavior of the network into a sequence of dc-equivalent

problems. Instead, the solution to each equation is approximated for all time and the resulting
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waveforms are then iterated. In contrast to the waveform approach, the other way of iterat

ing is sometimes referred to as point at a time.

In the point at a time approach, each system of nonlinear equations is solved using an

iterative technique. In the next section these ideas are demonstrated using the specific example

of a resistor, a capacitor and a diode.

3.2. Resistor-Capacitor-Diode Example

Figure 32 shows a nonlinear circuit which will serve as a simple example to illustrate

the solution process. It consists of a capacitor, a resistor, and a diode with the initial condition

on the capacitor that it is positively charged to a voltage of 2 Volts. The procedure here will

be to simplify the example problem to the point where it can be solved and then show how

the more general solution is built up out of the lower level techniques.

The solution of the DCTRAN problem for this network results in the voltage

waveforms for nodes 1 and 2 which are shown in Figure 3.3. The waveforms have a fast and

a slow component. Figure 3.3a shows the fast initial transient which occurs when the diode

o-

OIF±

R=lii ®
-A/v\ O

V Is=le-,4A

V,(0) = 2Volts

Figure 3.2 : Simple Example
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is fully on and has a very high conductance. As the voltage on the diode reaches its critical

voltage, the conductance begins to drop quite rapidly, leading to the very slow tail shown in

Figure 3.3b.

This example contains most of the characteristics of more complex examples. It has a

strong nonlinear element (the diode), it has two nodes requiring a system of equations to be

solved, and the capacitor introduces an element with memory. The following subsections will

develop general DCTRAN analysis methods by first using this example to demonstrate nodal

analysis of nonlinear dc circuits and then showing how integration techniques are used to

obtain the time evolution.

3.2.1. DC Solution

The problem as denned here is to find the voltages on all of the nodes of the circuit for

the simulated time interval. As mentioned above, this is usually accomplished by breaking

time into intervals, or time-steps, and solving a series of dc-equivalent problems which result

in the desired solution. In turn, the nonlinear dc problem is solved using an iterative tech

nique (usually Newton Raphson) in which the circuit is approximated by a linear equivalent

circuit. In this section, the problem is reduced to one equation in one unknown and tech

niques for solving it are explored. The generalization to systems of equations can be carried

out in different ways and will be examined more fully in Section 3.4 when existing tech

niques are compared.

Nodal analysis is commonly used for the solution and makes use of the Branch Consti

tutive Equations (BCE or sometimes just branch equations), KirchofFs Voltage Law (KVL) and

KirchofFs Current Law (KCL). This is often written in matrix form as

Yv - i

where Y is the nodal admittance matrix, v is the vector of node voltages and i is a vector of

the independent source currents [54].
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Figure 33 : Example Circuit DCTRAN Waveforms

The branch relations for the three branches for this example are

(3.1)
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R
(3.2)

dV xIc - C -j-i- (3.3)

where V, = =26mV at 300iT . Kirchoff's Current Laws for the two nodes are
q

Ic +Ir =0 (3.4)

I* -Id - 0 (3.5)

Combining these equations gives

C -J-1 + ———- - 0 (3.6)
dt R

LlZXj. -/f(/Vv.-i)-o (3.7)
Ji

Equations 3.6 and 3.7 are a system of nonlinear ordinary differential equations. Before going

on to solve this system of equations, the dc case where there is no time dependence is first

examined.

A good treatment of the solution of systems of nonlinear equations using iterative

methods is given in Chapter 7 of [55] and the application of these techniques to circuit

analysis problems is given in [52]. At this point the system of equations will be reduced to

one equation in order to contrast different solution methods.

The dc equivalent of this example is shown in Figure 3.4. Here the capacitor is replaced

with a voltage source in order to reduce the problem to the solution of only the voltage on

node 2. Equation 3.6 can now be replaced with

Vi - 2 (3.8)

Equation 3.7 is now one nonlinear equation in one unknown. All iterative methods for solv

ing nonlinear equations involve a scheme for finding an equation for the variable in terms of

itself. In general, these are called fixed-point methods since at convergence the solution is sta

tionary. Rearranging Equation 3.7 in the simplest way to solve for the single unknown, V $
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Vx-R Is (eV2/V< -1) (3.9)

Using values of /, = 10"14 and Vr « 26mV , if m is the iteration number index, then using a

starting guess for V 2 of 0 Volts results in the following sequence.

m 0 1 2 3 4 5

v? 0 2.0 -2X1019 2.0 -2X1019 2.0

Obviously, the sequence oscillates quite quickly for this formulation. Figure 3.5 shows the

linearized circuit equivalent for this equation where the diode is being modeled with a

current source with a value given by Equation 3.1. This corresponds to a flat load line as

shown in Figure 3.6.

Equation 3.9 could be rewritten by rearranging and taking the logarithm of both sides to

give

V2«=Vr ln(V^"".V2 +1) (3.10)
This corresponds to solving for the branch voltage across the diode given the current through

it. Equation 3.10 converges extremely rapidly as seen in the following table.

m 0 1 2 3 4

v? 0 0.85616 0.84164 0.84196 0.84196

Nodal analysis is commonly used in the automatic generation of the circuit equations

since it is easy to use element templates when loading the matrix. The nodal formulation of

Equation 3.9 can be improved by using a first-order (Norton) model for the diode as shown in

Figure 3.7 which corresponds to the load line in Figure 3.8. This results in a Newton-Raphson

iteration. The nodal form of the equations can be written down directly from the circuit.

V2-Vi
+ Vfid +cN = 0

where

and

dld

dV2

(3.11)

(3.12)
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GN -Id -GdV2 (3.13)
Substituting Equations 3.12 and 3.13 into Equation 3.11 and rearranging Equation 3.11 to pro

duce V 2 in terms of itself gives

© r- \a ©

v, =2V©

Figure 3.4 : DC Example
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Figure 33 : Constant Source Approximation for Diode

DA

Figure 3.6 : Zero Order Load Line

V,
/5 + — /5C * '(1 - -=r—)

*2 f
2 = ,

1 , Is vyv,
— + ——e
R Vt

The iteration now converges as shown in the following table and in Figure 3.9.

m 0 1 2 3 5 10 20 40 50

y? 0 2.0 1.974 1.948 1.896 1.766 1306 0.986 0.84196

39

(3.13)
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To summarize the points about nonlinear equations, in general, a fixed-point iteration is

not guaranteed to converge. "Zeroth-order" models for nonlinear devices may be made to con

verge but "first-order" models which result in a Newton-Raphson iteration converge more

quickly. Higher order models in principle could be used, but this results in a system of poly

nomial equations which itself is not linear and must be solved. Even though it can be shown

© R=l ©
™—3- vv-tov;

V=2 (t 9d ^arVVte^

T
T

Figure 3.7 : First Order Approximation for Diode

Figure 3.8 : First Order Load Line
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a

v

Figure 3.9: Convergence Rate of Newton Raphson

that a Newton-Raphson iteration converges quadratically near a point of contraction, Figure

3.9 demonstrates that the Newton-Raphson iteration may not converge quadratically in

regions which are far from the solution.

This example can be understood by analogy with feedback amplifiers if the iteration

number is treated as a discrete time and the sequence of voltage iterates is a transient

waveform. Using this view, one can see that the current source and conductance of the

linearized model are no longer independent and now depend on the previous iterate value of

the voltage. The current source becomes a controlled current source and the conductance

becomes a controlled conductance. The oscillation of the iteration when the diode is modeled
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only by a (constant) current source is now understood to result from the gain of the con

trolled current source coupled with the controlling voltage time lag from the previous itera

tion. The conductance in the first order model serves to add local feedback to stabilize the gain

in much the same way as emitter degeneration is used in emitter followers to reduce the gain.

This type of circuit analogy may prove useful in finding ways of improving simulation algo

rithms and is a topic for further study.

3.2.2. Transient Solution

The focus of the previous section was on solving a set of nonlinear equations by various

ways of linearizing and iterating. The next step is to make use of these techniques to solve

the original differential equation as defined in Equations 3.6 and 3.7

C —r1- + ———- = 0 (3.6)
dt R

ZiZli _ /.(/VV. _!)_<> (3.7)

The most common technique used for circuit simulation is the method of finite differences.

Basically, differential equations become difference equations by noting that

T1 ~*r- ".14)dt At

The smaller Af , the better the approximation becomes. All of the various integration methods

correspond to different ways of making this approximation to the derivative. Figure 3.10

shows an arbitrary waveform and a possible choice for the discrete time-points at which solu

tions are computed. If the solution about to be computed is V 3 as shown, and the derivative is

approximated by

^!-Il=!i (3.15)
dt t 2 - t,

then the integration method is called Forward Euler (FE). Forward Euler is alsosaid to be an

explicit method since the estimate of the derivative can be computed explicitly prior to begin

ning the calculation of V > Explicit methods suffer from stability problems. The simplest
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implicit method is called Backward Euler (BE) and corresponds to the approximation

dV3 _V3-V
(3.16)

dt t 3 - t 2

Note that since the right hand side of Equation 3.16 references V 3, the derivative estimate is

linear in the unknown variable. The Trapezoidal integration method is the most accurate of

the second order methods [54] and may be viewed as the average of Forward and Backward

Euler:

dt ~~ 2
V,-V

'3~'2 t2-ti

These approximate derivatives are then used in branch equations for elements such as

capacitors:

V,-V2 v 2
+ (3.17)

7 - c £LIc -c dt' (3.18)

In order to build on the nonlinear equation solving techniques developed in the previous sec

tion, the capacitor must be replaced by some collection of dc elements which, when used in a

dc calculation, will result in the proper voltage at this time. For example, since all of the

terms in the Forward Euler approximation are independent of the unknown variable, the

Figure 3.10: Discretizing Time



44

capacitor can be replaced by a current source of constant value

v2-v,
/ - c -r—r-- (3.i9)

'2*1

Similarly, since Backward Euler is linear in the unknown voltage, the capacitance can be

replaced by a parallel combination of a constant current source and a conductance with values

/ - ~C V2
'3-'2

r (3.20)
G = —- .

Trapezoidal integration likewise results in a current source and a conductance but with

values

-C

2'3-*2 ' * ' 2t2~tx
I = - " v2+ " , V2

c (3.21)
Q « .

2r3-r2

Figure 3.11 illustrates the capacitor companion models using Forward and Backward Euler

integration.

Some way of choosing where to place solution points (or what time-steps to use) is

needed in order to complete an algorithm for solving differential equations. A discussion of

time-step and error control will be deferred to Section 3.4 where error measures will be

examined more fully.

33. Summary of Existing Techniques

The important algorithmic choices made in various circuit simulators are highlighted in

this section. For more detailed information on these programs, for SPICE2 see [4l for MOTIS-

C see [91 for SPLICE1 see [l] and [3], for RELAX see [53], and for SAMSON see [13]. For a

current introduction to computer aided circuit analysis techniques see [52]. A broad survey of

decomposition techniques for the simulation of large-scale integrated circuits can be found in

[56]. For a review of timing analysis methods and relaxation techniques applied to circuit

simulation see [57].
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Figure 3.11 : Capacitor Companion Models

The differences among the simulators lie mainly in how the elementary techniques

described in the preceding sections are combined. In particular, one point of departure is how

the systems of nonlinear equations are solved. In timing simulators such as MOTIS and the

original SPLICE1, only one iteration of the linearized equations is performed. To achieve accu

racy, the time-step is made small enough that the grounded capacitor that is required at every

node effectively decouples the equations and the coupling between them is performed through

time. In conventional circuit simulators such as SPICE2, the nonlinear equations are linear

ized, the linear equations are solved using LU factorization, and the procedure is iterated until

convergence is attained. Waveform relaxation is used in RELAX, where a decoupled analysis
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is performed on waveforms which are solved for the whole simulation period and then

relaxed together. Iterated timing analysis (ITA)is a new technique [5] in which the nonlinear

equations are solved by a decoupled analysis where each equation is linearized and solved once

and the system of nonlinear equations is iterated to convergence. ITA is described in

Chapter 4.

3.4. Error Measures

Error measures are used by the simulator to judge the quality of the the computed

results. Specifying the limits on these error measures is the primary way that the user has of

indicating what accuracy is needed. The ways of expressing error constraints need to be

sufficiently flexible in order to prevent excessive time spent calculating results which are

more accurate than needed. Further, an increased understanding of convergence criteria can

improve the reliability and quality of the results. In the next section, methods for specifying

error tolerances are described. An extension of the backward difference formula (BDF)

method of Brayton, et al [58] is presented in the following section which extends the idea of

truncation error to take into account time tolerances.

3.4.1. Specifying DC Error

The objective of error specifications is to express the user's desired level of accuracy for

the computed solution. This error specification is translated by the simulation program into a

criterion for when to terminate the iteration of the nonlinear system of equations. The goal is

to perform just the necessary amount of computation to guarantee the answer to the degree of

accuracy required by the user. This may or may not be achieved, depending on the ability of

the user to express the characteristics that are important, and the ability of the simulation

algorithm to solve the problem circuit.

Most circuits simulator provide three variables for specifying accuracy: absolute voltage

tolerance, absolute current tolerance and relative tolerance. Relative tolerance indicates the
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acceptable error as a fraction of the correct solution. The purpose of the absolute tolerances is

to prevent excessive computation of a result that tends toward zero, since a relative error

tolerance goes to zero as the result goes to zero. Since the relative tolerance indicates the

number of significant figures for the calculations, it should be larger than the minimum reso

lution of the machine so that numerical noise from roundoff errors does not cause excess com

putation. The tolerance used in calculations is then the maximum of the relative tolerance

times the variable and the absolute tolerance for that variable. Convergence occurs when the

error is less than the tolerance. The error is usually approximated by the change in voltage

and current from one iteration to the next. If the iteration-count is considered as a discrete

time variable, then the iterative process can be viewed in a way similar to the transient prob

lem. The convergence criterion then translates into a condition that the "convergence

waveform" is flat enough. Figure 3.12 shows that the criterion can be visualized asa require

ment that the convergence waveform enter and leave the box delimited by a vertical distance

equal to the tolerance and a horizontal distance equal to one iteration. This criterion also can

be stated as the condition that the locus of points on the convergence waveform in the inter

val from the preceding iteration to the current iteration all lie inside the closed n-ball with

radius equal to the max norm of the tolerances. False convergence can occur when the con

vergence waveform is flat enough to satisfy the convergence criterion but still has not

attained the desired accuracy. Proofs about the rate of convergence of algorithms are res

tricted to asymptotic results in open n-balls about the point of contraction [55]. One way of

decreasing the likelihood of false convergence when far from the point of contraction is to

require the convergence tolerances to be satisfied for more than just one iteration. This

corresponds to increasing the length of the box in Figure 3.12 holding the other dimensions

constant.

The usual method of halting iteration when the per-iteration change in the solution

variable drops below the tolerance implies that the per-iteration change is a good estimate of

the remaining error from the true solution. This may not be correct if the computed solution
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Figure 3.12 : Convergence Criterion

is not close enough to the answer to be in the asymptotic convergence region or if the asymp

totic rate of convergence is low. Figure 3.9 has already demonstrated that even though the

Newton-Raphson method can be shown to be quadratically convergent in some non-zero inter

val around the solution, the convergence rate can be much less than quadratic when far from

the solution. Asymptotic convergence rates are defined in terms of the remaining error from

the true solution and, for quadratic convergence, can be written:

€;+1 <* ej2 (3.22)

where €y, €y+i, ey+2 *i* the errors (difference between the computed solution and the true

solution) at iterations j, j +1 and j + 2, respectively. A linear convergence rate is written:

€y+1 <* ej . (3.23)
Figure 3.13 shows the sequence of diode voltage and current iterates just before convergence

for the resistor-diode example of Figure 3.9. The diode current values decrease linearly (not

quadratically) by a factor of 2.718 per iteration (which corresponds to a k of .37) until a

region close to the final answer where the current values decrease quadratically. The voltage

values decrease by a constant amount per iteration which can be shown to be

AV « Vf ln(* ) » .026V due to the logarithmic relationship between voltage and current for
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diodes. This observation demonstrates that it is not sufficient to use only voltage or current as

the variable for convergence tests when iterating using nonlinear devices. Further, the per-

iteration change in the variable can be a very bad approximation to the remaining error in the

computed solution. Under different circuit conditions and looser error tolerances, the sequence

of voltages shown in Figure 3.13 might be considered stationary even though it is not

approaching an asymptote.

A better estimate of the distance remaining to the asymptotic value can be made by sav

ing information about previous iterations. Figure 3.14 illustrates a linearly convergent

sequence of iterates that converges with a constant k » — to a value of zero. The values d i

and d 2 are defined to be: d j - 6y —€ j +1 and <f 2" €/+i "~ €y+2- If <* i and d 2are measured

during iteration, an estimate of €y can be made using the equality condition in Equations 322

and 3.23 which is the worst case:

<*, = €,-€ j+i

=» € j —k €j - (1 —k )ej

iter voltace current

36 1.09000 1.61055X104
37 1.06400 5.92523X103
38 1.03800 2.18012X103
39 1.01201 8.02387X102
40 0.98605 2.95555X102
41 0.96014 1.09111X102
42 0.93439 4.05339X10

43 0.90909 1.53183X10

44 0.88498 6.06080

45 0.86386 2.68934

46 0.84899 1.51783
47 0.84281 1.19683

48 0.84196 1.15865

49 0.84195 1.15804

50 0.84195 1.15804

Figure 3.13 : R-Diode Convergence Values

(324)
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<*2 = €; +1-€,+2 (3.25)

=* €j -*2€y **k (l-*/€,
so that

£2
d

and

dt d>2

, * (3.26)
d 1

*v 1 1 "j v" (3-27>J 1 — * <f J — <f 2

Equation 327 indicates that using the per-iteration change in the variable as an estimate of

the distance to the asymptotic solution can be arbitrarily bad as k approaches 1. For a value

of k = —, d i is only half of the error distance to the asymptote.

Equation 3.27 can be applied to the data of Figure 3.13 as an example. Using iteration 36

as j , d i » 1.02X104 and d 2= 3.74X103 for the current variable. This gives k =.368 and

€j" 1.610119X104. Clearly €y is larger than d {. Further, €y can be used to predict the

asymptote to be 1.19 which is not far from the true answer of 1.15804. This prediction capa

bility might lead to techniques to reduce the total number of iterations to achieve the solution

and is worth further investigation. The use of Equation 327 with the voltage variable yields

an infinite estimate of €y since the change in voltage is constant and results in k = 1. This is

an important result since it provides a simple way of detecting false convergence even when

the change per iteration satisfies the simple tolerance condition. Equation 3.27 can be used as

part of a more reliable convergence criterion.

The same estimate of error can be made with quadratically convergent sequences but

with a slightly more complicated answer. Using d , and d 2 as defined above, we have using

Equation 3.22:

di-ej -€y+, »€y -k €j2 (3.28)
and
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Figure 3.14 : Linearly Convergent Sequence

^20€^,-6;+2«6;+1-* €y+l2=* €y2-*3€y4. (329)
Solving these equations for € j gives:

2
3dl2±dl2 7(4^2 + dJ (3.30)

J 2d 2 - 4<f j
which can be seen to have a form similar to that of Equation 3.27.

3.4.2. Specifying Waveform Error

The elements in the network that have memory, such as capacitors, are approximated at

each solution time point by equivalent linear companion models. These models are chosen to

be consistent so that as the time-steps approach zero, the approximation becomes exact. The

error incurred during each solution that is caused by using a finite time-step is called local

truncation error (LTE) [52]. The LTE is estimated by comparing a higher-order method with

the one actually used. One way of estimating the higher-order derivatives is the divided

differences technique [4]. A better technique is the backward differentiation formula (BDF)

method of Brayton et. al. [58] which uses the difference between a prediction step and the

converged value as an estimate of LTE.
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By using a particular order of integration method, the waveform is being approximated

with a polynomial of corresponding degree. This implies that when values are needed for the

waveform at points between those that were computed, an interpolating polynomial of the

proper order is needed. For example, Backward-Euler integration (BE) is a first order method

for which a linear interpolation polynomial is appropriate. The polynomials used in BE

integration for prediction-correction are illustrated in Figure 3.15. The line segments between

calculated points are straight. The difference between the predicted value and the final value

after iteration is a measure of the local truncation error made with this time-step. If equal

sized time-steps are being taken, then the LTE estimate is one half of the difference between

the predicted and corrected values [58].

One problem with this method of time step size control is that if the solution waveform

changes rapidly, then the step size may be chosen extremely small in order to follow the

waveform within the specified tolerance. The user of the simulator may not care to get that

much accuracy for the time behavior of the waveform, but has no way to specify that to the

simulator. This problem is illustrated in Figure 3.16 which shows that a small error in time

between two waveforms may result in large errors in the waveform variable (voltage in this

Voltage

'Predicted

/
* }LTE Estimate

\ Corrected

Time

Figure 3.15 : Backward-Euler Predictor-Corrector
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case). The BDF method for estimating LTE has been extended to allow the estimation of the

error in the time variable in the SPLICE2 program. Figure 3.16 suggests that the condition for

acceptance of a time step is that the distance between the computed waveform and the true

waveform is less than the user supplied tolerances. Thus a new measure, the waveform local

truncation error is made up of both the usual LTE and the local truncation error estimate for

time. The distance measure used here is the max norm rather than the Euclidean norm.

Specifically, for Backward-Euler integration of voltage, let n + 1 be the next solution

point where the previous solutions (v„ j„ ) and (vn_„i„ _,) are taken to be on the true

waveform. The relationships between the quantities in these calculations are illustrated in

Figure 3.17. The LTE for voltage is:

LTEV
*n + 1 -f,

*n * 1 ~* *n -1

and the LTE for time is then:

Voltage

(vn+1-v/;ef) (3.31)

Time

Figure 3.16 : Waveform Error
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Figure 3.17: Waveform Local Truncation Error

v„ +1 ~ v„

v„ +, - v„ _,

A given pair of voltage and time tolerances corresponds to a slew rate above which the time

tolerance will be the constraining criterion and below which, the voltage tolerance will be

the constraining criterion.

The waveform local truncation error criterion has been implemented in the SPLICE2

program. It has been found that the addition of the time tolerance reduces the number of

solution rejections significantly. Setting the time tolerance to zero reverts to the old method of

(r^i-r/^).

54

(3.32)
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using only local truncation error on the dependent variable. An example showing the effect

of using a time tolerance is summarized in Figure 3.18 and the waveforms are compared in

Figure 3.19. This example is a chain of 7 n-channel MOS depletion load inverters with each

output loaded by a 0.01pF capacitor to ground except for the fourth output which is loaded

only by 0.0001pF. The CPU time for simulation is reduced by 10% and the number of solu

tions rejected due to truncation error is reduced by 40%. The waveforms shown in Figure

3.19 all differ in time by much less than the 0.5ns that was specified.

3.4.3. Optimal Choice of Time-step

Using the error measures introduced above, the problem specification is reduced to that of

finding a solution waveform that is everywhere close enough to the true waveform. It is

then possible to define the optimum choice for the placement in time of the solution points.

First, to define close enough it is useful to introduce a distance waveform which is computed

as follows. Let / j(jc , t ) and / £x, t ) be two waveforms in IR" *" which are single-

valued on t Le„ not relations, and have the same range of t. The distance waveform,

d(x , r ), between / fa , t ) and / /* 11) is computed:

d(x,*) = min(min( 11/ ,(*,*)- / fa ,•)!! Xmin( 11/ fa,m)- / fa ,r )ll) )(3.33)

where the norm used is a max norm. Note that the use of the norm implies that time has

been scaled so that a unit distance in time is the same as a unit distance in x. The error cri

terion can now be written compactly as:

Variable
Time Tolerance

Ons 0.5ns

CPU Time
Rejected Solutions
Total Iterations
% Useful Iterations

Number Windows Used

91.4 82.4

154 93

22824 20319

85.3 89.9

325 270

Figure 3.18 : Example Using Time Tolerance
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V

Figure 3.19: Waveforms for Example

d (x , t ) ^ tolerance, W t . (3.34)

Figure 3.20 shows two pairs of example waveforms and the simple difference waveform

along with the distance waveform. Note in Figure 3.20a that a slight time delay leads to a

very large simple difference but the distance waveform remains fairly constant. Figure 3.20b

demonstrates the filtering effect of the time tolerance and that glitch pulses tend to be
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smoothed out.

For a given waveform accuracy, integration method, and corresponding interpolation

polynomial, the optimum number of solution points can be defined as the minimum number

necessary such that the locus of points described by the solutions and the line segments which

are created from them using the interpolation polynomial all lie within the specified

wraveform accuracy of the true waveform. An example using a linear interpolation polyno

mial is shown in Figure 3.21.

Figure 3.20 : Waveform Distance Examples
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t

Figure 3.21: Optimum Time-Steps

3.5. Speedup Factors

There are several properties of circuits that are used to speed the computation of the

solution waveforms [13]. The first property is that electrical networks are spatially sparse.

Spatial sparsity means that there tend to be only a few electrical elements connected to any

given wire so that the matrices representing the circuit equations are sparse. Conventional

circuit simulators take advantage of this fact by using sparse matrix techniques [59]. Another

property of electrical networks which perform logic functions is that they tend to be tem

porally latent. Temporal latency occurs in logic networks because the time required for a

logic state change is small compared to the total clock time. This is illustrated in Figure 3.22

in which the upper waveform is a logic signal and the lower waveform is an abstraction of

the logic waveform that is a logical one while the waveform is switching and logical zero

otherwise. Conventional circuit simulators take advantage of temporal latency by employing

a variable time-step, as mentioned previously, to perform computation mainly when the signal

is changing. Another property of logic networks is spatial latency. Spatial latency is due to

the fact that only a small fraction of all signals switch at any given instant of time and

represents the non-coherence of the signals. Conventional circuit simulators calculate all of

the signals at every time point chosen for solution and thus are not able to take advantage of
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this latency. The solutions of the signals must be decoupled in order to exploit this property.

Temporal latency and spatial latency are usually considered using the term latency for both.

Logic simulators and electrical simulators which allow decoupled analysis [l, 3,13,29] can

exploit the latency in the electrical analysis of logic networks to the fullest.

Decoupled analysis of electrical networks requires some form of time-step control to

choose when each signal is computed. If a first-order integration method, such as Backward-

Euler, and a corresponding first-order interpolation polynomial are used, then the spacing

between solutions for each signal will be proportional to the second derivative of the signal.

d2 f (t)If the spacing between solutions is t and the waveform is / (t) then roc—J ., . There
dt -

is

a different t for every signal in the network which results in a distribution of time-steps for

the network that varies with simulated time. The ability of the time-step control algorithm

to allow each solution to select its own optimum solution points while still computing the

correct solution is the key to computational efficiency. When solving for one signal at a time

point that depends on another signal which happens to be latent at this time point, the latent

f(t)

A(t)

Figure 3.22 : Temporal Latency in Logic
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signal is extrapolated or interpolated to determine its present value. If the latent signal is sub

sequently solved and found to be significantly different from what was assumed at the previ

ous time, then it may be necessary to reject previously accepted solutions. This corresponds to

backing up simulated time and re-solving for at least a portion of the electrical network.

Thus, there must be some mechanism for recalling data values from the output buffer and

replacing them with new values. This can require a large amount of data to be retrieved, as

will be shown shortly, unless some limit is placed on the maximum number of points the

simulator is permitted to back up. This corresponds to a maximum ratio between the longest

time-step and the shortest time-step being taken at any instant of simulated time. What fol

lows is a description of the windowing mechanism for buffering and time-step control that has

been implemented in the SPLICE2 program.

The windowing mechanism described here uses an in-memory buffer to hold solution

points before writing them to the disk mass storage device. This buffer size limits the ratio of

the longest time-step to the shortest time-step allowed at any particular time. The choice of

the next time-step for a signal is usually based on the estimate of the truncation error made

for the time-step just completed. As such, it may grossly overestimate the actual time-step

that will be required to satisfy all of the error criteria that have been described previously. If

no limit is placed on the largest time-step, then a fast changing signal that depends on a latent

signal with a large time-step could be computed at an arbitrarily large number of time points

which must then be rejected when the time-step for the latent signal is rejected. This results

in both the waste of those solutions already computed and logistical complexity for retrieving

those solutions.

An idealized bimodal distribution of time-steps is shown in Figure 3.23. The fast com

ponent has an optimum time-step of r and a fraction, / , of the total signals have this time-

step while the slow component has an optimum time-step of k t and a fraction 1—/ of the

total signals. For a typical logic network, the fraction of active signals, / , is somewhere
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between 5-20%. With a given distribution, it is possible to evaluate how much the restriction

on the maximum time-step affects the CPU time usage. If the buffer size in use allows a max

imum time-step of B t, as shown in Figure 3.23, and if the solution of each signal is assumed

to require the same amount of computer effort, then the minimum amount of work per unit

time needed to solve the circuit is:

best =-£- + *" f (3.35)
r k t

l+(* -1) /
k r

and the actual amount required by the windowing method if A: ^ B is:

actual =-•£- + 1~ f (3.36)
T B T

1+{B - l) /
B T

The ratio between the actual work and best work is:

/ +1^L
^ T^-T' (3.37)best f 1- /

J k
If 1 < k ^B then the buffer is large enough that it doesn't constrain the time-step and the

ratio is 1, which means no extra work is performed. For a given / , the worst-case behavior

1 — fis when k •» oo and the ratio becomes simply 1 + ——~. For / =10% and a buffer size

5=9, the ratio is 2 and as B is increased, the ratio approaches 1 hyperbolically. For a given

fraction of latent signals, the buffer can be chosen so that the computation speed is as close as

desired to the optimum at the expense of storage. For a latency of 20%, a buffer size B = 8

gives a speed within 1.5 of optimum. When k < cq the situation is even better than stated.

These results suggest that only modest buffering requirements are needed for efficient opera

tion of the method with latencies that occur in practice.
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CHAPTER 4

Iterated Timing Analysis

The implementation of the iterated timing analysis (ITA)algorithm in the SPLICE2 pro

gram is described in this chapter along with some background information. An excellent

review of current research on relaxation-based electrical simulation and a comparison with

more conventional approaches is given in [57], The development in that paper is not repeated

here, except for specific points that relate to work reported in this dissertation.

4.1. Problem. Formulation

Although ITA can be applied to a wide variety of technologies, it is particularly suited

to the analysis of large digital integrated circuits. To help clarify the problem formulation,

the following simplifying assumptions are made:

• All resistive elements, including active devices, are characterized by constitutive equa

tions where voltages are the controlling variables and currents are the controlled vari

ables.

• All energy storage elements are two-terminal, possibly nonlinear, voltage-controlled

capacitors.

• All independent voltage sources have one terminal connected to ground or can be

transformed into independent current sources with the use of the Norton transforma

tion.

Using these assumptions, one can formulate the circuit equations in terms of a nodal analysis

that yields N equations in N unknown node voltages [60], where there are N +1 nodes in

the circuit and node N +1 is the reference node, or ground.
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The important assumption required by relaxation-based electrical simulators that a two-

terminal capacitor be connected from each node of the circuit to the reference node is satisfied

easily for circuits that have lumped, parasitic capacitances between circuit interconnect and

ground or on the terminals of active circuit elements. The nodal equations then can be writ

ten in the form:

C(v(fXii(*))v(!)--/(v(fXtt&)).0<* ^T (4.1)

v (0) - V.

where v (r ) 6 IRn is the vector of node voltages at time t, v (t) € IR" is the vector of time

derivatives of v (r), u (t) € F" is the input vector at time t, C (•): R" HR" *" represents

the nodal capacitance matrix, / : IR" XlR" HR" , and:

/ (v(f ),*(*)) = [/ ,(v(tU(t)),/ rfvfcXuCOX •••,/,v(v(0,«(£))R4.2)

where /,- ( v (t ),u (t ) ) is the sum of the currents charging the capacitors connected to node

i. Hereafter, Equation (4.2) will be referred to in a simplified form where the time dependen

cies are expressed implicitly:

C(vtu)v - - / (v,«) (4.3)

The differential equation (Eqn. 4.3 ) is next converted to a difference equation, as has

been illustrated in Chapter 3, by discretizing the term v with an appropriate integration

method. The terms on the right-hand side of Equation 4.3 can now be moved to the left-hand

side and rearranged to give a new vector of nonlinear equations:

g (x ) - 0 . (4.4)

In conventional circuit simulation, these nonlinear equations are then linearized to give

A x ~b (4.5)

which then is solved directly using LU decomposition or Gaussian Elimination. Linearization

followed by solution of the equations corresponds to the use of the Newton-Raphson algo

rithm. The Newton-Raphson method is usually modified using limiting algorithms in the non

linear device models and this results in a damped Newton-Raphson algorithm. The

linearization/solution process is repeated until the solution converges to within some user
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specified tolerance of a stationary value.

In the iterated timing analysis (ITA) method, a nonlinear Gauss-Seidel or Gauss-Jacobi

relaxation iteration is applied directly to Equation 4.4. The Gauss-Jacobi algorithm can be

summarized:

Nonlinear Gauss-Jacobi Algorithm:

repeat {
f oreach (i in N ) {

solve *, (x{, •••tx/+l, •••,x.v) =Oforx/+l;

} until( llx*+1-x* II <€ )

that is, until convergence is obtained. The Gauss-Seidel algorithm can be summarized:

Nonlinear Gauss-Seidel Algorithm:

repeat {
f oreach (i in N ) {

solve gi(x\+l, •••.x/*\ •••,x£) = 0forx/+1;

} untiH llx*+1-x* II <€).

The difference between the Gauss-Jacobi and Gauss-Seidel algorithms is that with Gauss-

Seidel, the new values computed during the iterative process are used immediately whereas

with Gauss-Jacobi, the new values are used only after a complete sweep through all of the

equations. Relaxing the nonlinear equations directly avoids solving the linear system of equa

tions which, for large networks, can require a substantial amount of time [57].

4.2. Relaxation of Systems of Equations

In the system of nonlinear equations in Equation 4.4, the time variable has been absorbed

into constant factors by the application of an integration method. This means that at a given

point in time of the transient simulation, the system of equations is equivalent to a system of

equations for a purely dc problem. Thus, it is of interest to look more closely at the dc part of

the DCTRAN problem. In the rest of this section, the solution of linear and then nonlinear

systems of equations by relaxation methods is explored.
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4.2.1. Linear Equations

If the problem in Equation 4.4 happens to be linear, then the equations can be rewritten

as

A x ~b . (4.6)

The nonlinear Gauss-Jacobi and Gauss-Seidel algorithms can be applied to the linear case and

are expressed in matrix form as follows [61]. Let A be split into L + D + U , where

L € R" is strictly lower triangular, D 6R" is diagonal, and U € IR" is strictly upper tri

angular. Then the two methods have the following form:

Gauss-Jacobi:

Dx'+i = -Q, +u)x* + * (4.7a)

or

jc*+i = -d-»((l + t/)x* -b) s MCJxk + D~lb (4.7b)
and

Gauss-Seidel:

(L + £>)x*+l » -I/x* +* (4.8a)

or

x*+i «= -a +z>ria/x* -b) = mC5x* +a+£>rl6, (4.8b)

where xk is the value of x at the *-th iteration and MCJ and MCs are "iteration

matrices". A modification to the basic Gauss-Seidel method which can improve the conver

gence rate dramatically is the point successive over-relaxation (SOR) iterative metlod [61]

which results from using a computed value for the variable that is different from the one cal

culated during the iteration:

£*+«, - xks +l„Cx*+i. -x*,-) (4.9)

and can be written in matrix form:

x*+l - (£> +WL)-1 ((l-<j)Z> - oXJ)xk +o>* . (4.10)
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If the value of a> is equal to one, the method is equivalent to the normal Gauss-Seidel method.

A value of o> greater than one corresponds to over-relaxation and a value of cu less than one

corresponds to under-relaxation.

In order to compare the convergence properties of these methods, it is useful to summar

ize here some definitions and theoretical results from the study of matrix iterative techniques

[61]. In the following definitions, A is an arbitrary n Xn complex matrix that corresponds to

some iterative process

x* =Amx*"m (4.11)

where x is a vector in IR" . The iteration matrices Mcs and MCJ are typical examples of

such a matrix. The spectral radius of a matrix is equal to the magnitude of the eigenvalue

with the largest magnitude:

P(A }=JR ' X' ' (4.12)
and the spectral norm is

Further,

IIA II >p(A). (4.14)

If, for some positive integer m , IIA II < 1, then

R(Am) s -ln[ IIAm II1'm ] - mlL4,W " (4.15)
m

is the average rate of convergence for m iterations of the matrix A. For m sufficiently large,

tim*{Am) - -lnp(A)=*j:A) (4.16)

is the asymptotic rate of convergence of A . If A is convergent, then

RjA)>R(Am) (4.17)

for any positive integer m for which IIA m II < 1.

It is now possible to compare the rates of convergence of the Gauss-Jacobi and Gauss-

Seidel iterative methods. The Stein-Rosenberg theorem states that for non-negative matrices,
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Gauss-Jacobi and Gauss-Seidel methods are either both convergent or both divergent and, if

convergent, then the asymptotic rate of convergence of the Gauss-Seidel method is iteratively

faster than that of the Gauss-Jacobi method. Another advantage of the Gauss-Seidel method

of Equation 4.8b is that the new values (xk +1) can be stored over the old values (x * ) as they

are computed whereas with the Gauss-Jacobi method of Equation 4.7b, the old values must be

saved.

A series of experiments using resistor arrays and Gauss-Seidel iteration of the equations

have been performed using the SPLICE2 program to test the theory and develop new ways of

speeding convergence. The test networks are resistor arrays of variable order and dimension

as is illustrated in Figure 4.1. An order of 1 corresponds to a linear array of resistors and an

order of 2 corresponds to a square matrix of resistors. Appendix C contains tables of results on

the number of iterations required to solve these networks for arrays of order one through

three. Theoretical estimates of the number of iterations (N <J needed to solve the equations to

a tolerance of 0.001% for the linear array case assuming that the asymptotic rate of conver

gence applies throughout the iterative process are summarized in Figure 4.2 for both the

Gauss-Jacobi iterative method and the Gauss-Seidel iterative method. The estimates of the

number of iterations for convergence (N «J are based on the asymptotic rate of convergence

(-R<») by noting that 1/ £«, is the number of iterations required for the error to be reduced by

a factor of 1/ e . Thus, if the relative tolerance is € and IX^ I is the magnitude of the larg

est eigenvalue, then the estimate of the number of iterations for convergence within that

tolerance is

Also shown in Figure 4.2 are the magnitudes of the largest eigenvalues (I A,^ I) of the

corresponding iteration matrices (AfCj aiJd MCs ) with a value of <a - 1 and an estimate of

the best value of the over-relaxation parameter (<ab ) for use in the Gauss-Seidel SOR iteration.

The optimum relaxation parameter (o>6 ) is computed using [62]
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Figure 4.1 : Resistor Arrays



Gauss-Seidel

N U,l Nloo IX* 1 Nboo <»b
Nleo

Nbeo

3 0 0 0 0 1 1

4 0.25 5.0 0.07179 2.6 1.0718 1.9
5 0.5 10.0 0.17177 3.9 1.1715 2.5

6 0.65450 16.3 0.25961 5.1 1.2596 3.2
7 0.75000 24.0 0.33333 63 1.3333 3.8

8 0.81174 33.1 0.39481 7.4 1.3948 4.5
9 0.85355 43.6 0.44646 8.6 1.4464 5.1

10 0.88302 55.5 0.49029 9.7 1.4902 5.7
11 0.90451 68.8 0.52786 10.8 1.5278 6.4

12 0.92062 83.5 0.56075 11.9 1.5603 7.0

13 0.93301 99.6 0.58879 13.0 1.5887 7.6
14 0.94272 117.1 0.61379 14.2 1.6138 8.3

15 0.95048 136.0 0.63596 15.3 1.6359 8.9
16 0.95677 156.3 0.65575 16.4 1.6557 9.5
17 0.96194 178.0 0.67351 17.5 1.6735 10.2

18 0.96623 201.1 0.68955 18.6 1.6895 10.8

19 0.96984 225.6 0.70409 19.7 1.7041 11.5
20 0.97291 251.5 0.71734 20.8 1.7173 12.1

a) Gauss-Seidel

Gauss-Jacobi

N IXI Nco

3 0 0

4 0.5 9.9

5 0.70710 19.9

6 0.80901 32.5
7 0.86602 48.0

8 0.90097 66.2

9 0.92388 87.2

10 0.93969 111.0

11 0.95105 137.7

12 0.95949 167.1

13 0.96592 199.3

14 0.97094 234.3

15 0.97492 272.1

16 0.97814 312.7

17 0.98078 356.1

18 0.98297 402.3

19 0.98480 4513

20 0.98636 503.1

b) Gauss-Jacobi

Figure 4.2 : Eigenvalues and <o for Linear Array
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1 + V1- IX^ I

which is valid for certain classes of matrices. Carre also gives a formula and procedure for

estimating the largest eigenvalue and predicting the best relaxation factor during iteration

[62]. He also points out that it is important not to exceed the optimum value of o> since

violent oscillations of the solution can occur due to complex eigenvalues of the resulting itera

tion matrix.

The results for the linear arrays of resistors are summarized in Figure 4.3 which shows

the theoretical and measured values for the optimum SOR factor along with the iteration

reduction ratios. The measured values of (ab are fairly close to the predicted ones. The

speedup ratios are less than predicted primarily due to the difference between the average and

asymptotic convergence rates.

Gauss-Seidel

N <»b (Db (meas)
Nloo

Nboe>
N loo , .
—— (meas)
Nboo

3 1 1.05 1 1.0

4 1.0718 1.09 1.9 1.4

5 1.1715 1.20 2.5 1.7

6 1.2596 1.30 32 1.8

7 1.3333 1.39 3.8 2.1

8 1.3948 1.4 4.5 2

9 1.4464 1.5 5.1 2.4

10 1.4902 1.52 5.8 2.5
11 1.5278 1.57 6.4 2.5

12 1.5603 1.61 7.0 3.1

13 1.5887 1.62 7.6 2.8

14 1.6138 1.69 8.3 3.1

15 1.6359 1.70 8.9 3.1

16 1.6557 1.70 9.5 3.3
17 1.6735 1.74 10.2 3.4

18 1.6895 1.72 10.8 3.2
19 1.7041 1.75 11.5 3.4

20 1.7173 1.75 12.1 3.3

Figure A3 : Linear Array Results
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The successive over-relaxation method can be effective for improving the convergence

rate of linear systems of equations but it is shown in the next section to be of limited use for

nonlinear systems of equations. A new technique for improving the convergence rate of

relaxed systems of equations which has been found to be useful for nonlinear as well as

linear systems of equations has been implemented in the SPLICE2 program. The method is

heuristic and is based on an attempt to improve the estimate of the true Norton contribution

of a branch of a circuit element to the node to which it is connected. During the iterative

solution outlined above for the nonlinear Gauss-Seidel method,

solve: gi (x \ +!, •••*? +l, •••.xjj ) - 0 for xf +1, (4.20)

all of the variables except xk +1 are held constant during the solution of the linearized equa

tion. In physical terms, this corresponds to assuming during the solution that all of the neigh

boring nodes that affect the node whose voltage is being computed (have terms in the equa

tion) are constant voltage sources with no resistance. However, in common situations in the

network, the neighboring node may actually have a Thevenin equivalent with a very large

equivalent resistance. If the sum of all of the conductances contributed by each branch

incident on a given node is stored and used as an estimate of the Thevenin/Norton conductance

to ground, it can be used to improve the estimate of the conductance contributions to neighbor

ing nodes of branches that connect them. The standard approach corresponds to using a zeroth

order model for the contribution of neighboring nets whereas the new method corresponds to

using a first order model for the contribution.

For networks of resistors and current sources, if v, is the voltage at node i, gt] is the

conductance of the branch connecting node i and node j, and btJ is the current source

between node i and node j , then Kirchoffs Current Law for node i can be written:

I(g„(v, -vj) + bu ) =0. (4.21)
;=o

or
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.v ,v

v< I gij = I Cft; vj ~ *<7 > (4.22)
j=0 > =0

where node 0 is the reference node (ground) and associated reference directions are used for

btJ so that a positive value for b,j corresponds to current leaving node i. The terms on the

right-hand side of Equation 4.22 are constant with respect to v, and therefore can be thought

of as current sources while the sum of conductances multiplying v, on the left-hand side is

the equivalent conductance. Equation 4.22 can be rewritten to solve for v,

A*

ZtgijVj -bij )
v, = /=° s . (4.23)

Lgij

The new first order methods (hereafter referred to as coupling methods) involve storing the

x

equivalent conductance, £ gtj, at each node and then subsequently using that value to
y=0

modify the values of gjy and bti in a consistent way that improves the rate of convergence.

The condition for consistency of the algorithm is that at the point of convergence, the solution

of the equivalent network with modified gtJ and btJ must give the same solution for the

node voltages as the original network. If the modified conductances and currents are respec

tively gij and b^, and gtJ > 0 whenever gtj > 0, then this condition is satisfied if:

bij =btj +(v.- * - Vj Xgij - gij ) . (4.24)
In terms of b and g , Equation 4.23 becomes:

-v

v. t +i =2z2_ . (4.25)

j=0

Note that £ly in Equation 4.25 is a function of v, *. Thus, Equation 4.25 is true only if the

sequence v, * converges to some constant value. To show that Equation 4.25 is equivalent to

Equation 4.23, first expand btJ in Equation 4.25 to give:
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.v

I ( gij vj - ^j - (v, * - Vj Xgij - gij ) )
v/*»-^2 (4.26)

I gij
j=0

and rearranging gives

*ik Zgij +(v/+I-v/)££iy =i(gtJVj -bij ). (4.27)
j =0 y =0 j =0

Setting V; * =v^ *+1 =V;, cancelling terms and rearranging yields Equation 4.23.

The consistency condition given above yields the interesting result that as long as the

iteration sequence converges, any value of giy > 0 is acceptable as a replacement for gij. This

leaves a great deal of freedom in designing algorithms that are coupling methods. The goal is

to reduce the total number of iterations required to achieve convergence. Physical intuition

suggests that using a better approximation for the nonzero Thevenin resistance to ground at

neighboring nodes should improve the direction gradient for iteration. Thus, gu should be

reduced by some amount compared to g/y. One heuristic method which will be referred to as

Coupling Method A, uses the sum of the branch conductances as an estimate of the equivalent

conductance to ground. If g, = Lhj»tnen Coupling Method A prescribes a gij while solving
j

for v,- of

1

8iJ * J_ + f J_ (*28)
gij gj

where / is a heuristically chosen coupling factor and gj has been computed at node j dur

ing a previous step. Note that the value of gj used in Equation 4.28 is not the same as g, and

therefore giy **gjf

A comparison of four acceleration methods is given in Figure 4.4 for the resistor arrays

where "GS" stands for the simple Gauss-Seidel iterative method, "sor" stands for the <a in

Gauss-Seidel with over-relaxation, "coup" stands for the coupling factor / used in Coupling

Method A, and "excoup" stands for the coupling factor / used in Coupling Method B, to be

described later. Figure 4.4 indicates that all three acceleration methods are effective for the
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*' w (4-29)
w^here Qb, is denned to be an infinitesimal injection of current from the reference node to

node i. It is possible to find a value for git such that, at convergence, the value g, =T.hj is

exact if the branch associated with g,j between nodes i and j is a cut-set branch Le., there

are no other paths between the nodes. The formula for finding a value for J/y which is the

correct Norton equivalent conductance for branch ij is derived as follows. If

Sid m gi "~ gij and gjd • gj —gfi are the values of equivalent conductance to ground

with the branch i j deleted, then, g,v and g^ are computed as follows:

1
(4.30a)

gij

gij gjd

and

A

sx
1

Sfi 1 1

g ji gid

Substituting for gtJ and gfi and noting that gtJ « gj gives

(4.30b)

gid = gi ~~ J_ + _1_ (4.31a)
gij gjd

and

gjd "gj - -1. + JL ' (431b)
gij gid

Equations 4.31a and 4.31b can be solved to find

2 -r
ft ^ * f 2 . 4gjgjj ^ (4 32a)

and

gum*L. - g.. ±l(e.2+4LLiljl)1 (4.32b)

The plus sign in Equation 4.32 is used since if g,j is zero, deleting the branch has no effect

and gu - gi. Heuristic Coupling Method B is then completed by setting
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gj <b

Figure 43 : Norton Equivalents at Nodes

gij

gij gjd

(4.33)

where / is the coupling factor and g^ is computed from Equation 4.32. A coupling factor

of / = 1 corresponds to using "exact" coupling. Note that Equation 4.32 contains a square

root which requires significantly more computation time than simple arithmetic operations.

Since the method is heuristic, there may be a simple way of improving the estimate in Cou

pling Method A so that it is comparable to Coupling Method B while still not requiring the

computation of a square root.

A sequence of plots is shown in Figure 4.6 which illustrates the convergence to a solu

tion of the relaxation process. The plots are three-dimensional plots of voltage on the vertical

Z-axis, iteration number on the horizontal Y-axis, and node number on X-axis which extends

out of the paper. This style of plot will be used many times in this section to illustrate the

nature of the convergence behavior of various algorithms. It is important to note that the axes

have been normalized so that the maximum value of all three dimensions is one. Thus, if the
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number of iterations in a modified algorithm is reduced by half, this fact must be ascertained

from the plot legend, not the plot. The results shown in Figure 4.6 are for a linear array of

seven 1fl resistors connected between a fixed voltage source of 10V and ground. In Figure

4.6a, no acceleration of any kind is used and convergence requires 26 iterations. In Figures

4.6b-d, Coupling Method A is illustrated with a varying coupling factor. The optimum

acceleration is achieved with a coupling factor of 0.7 which requires 11 iterations for conver

gence and is shown in Figure 4.6b. When the coupling factor is increased beyond the

optimum value of 0.7, the iteration matrix acquires complex eigenvalues as can be seen by the

peaking in Figure 4.6c (coupling factor 0.8) and the ringing in Figure 4.6d (coupling factor

1.0). In the tables of Appendix C, non-convergence is indicated with an iteration number of

-1. Non-convergence occurs when at least one eigenvalue of the modified system of equations

lies on or outside the unit circle.

The simple example of Figure 4.6 is uniform and presents no difficulties to solution.

Using a value of 1A for the center resistor and a value of 100 fl for the other six resistors

results in a much more difficult example illustrated in Figure 4.7. This difficult example

requires 294 iterations to converge without the use of acceleration methods. This slow con

vergence rate can be understood by considering the third node from the voltage source, which

is connected to both a 1 fl and 100 A resistor. Before the first iteration, all of the node voltage

values are zero. As the voltage at the second node rises, it drives current into the node 3

through the 100 fl resistor. However, during the solution of node 3, node 4 is still at OV and,

with a zero coupling factor, is approximated by a voltage source with no resistance (when in

fact it has approximately 300fl of resistance to ground). Thus, the current injected into

node 3 is extremely ineffective at raising the voltage on node 3 since it appears to be connected

to ground through a 1 fl resistor. The use of a coupling factor greater than zero improves the

approximation of the resistance to ground at node 4 so that the current from node 2 is more

effective at raising the voltage of node 3.
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«) b)

A^-

(V-—

c) d)

Figure 4.6 : Iterate Plots for Resistors
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4) b) c)

*) e) 0

Figure 4.7 : Difficult Resistor Example
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The optimum coupling factor for this problem is 0.5 as shown in Figure 4.7c and

requires 64 iterations for convergence which is approximately a five-fold improvement over

no coupling. The iteration "waveform" can be seen in Figure 4.7c to exhibit the effect of com

plex eigenvalues. Coupling factors of 0.6 and larger are unstable for this example. Also

shown in Figures 4.7d-f are the iteration "waveforms" for this example using the SOR

acceleration method. The optimum value of w for this example is 1.8 which is shown in Fig

ure 4.7f. The fast ringing in the plot of Figure 4.7f suggests that a value of o> that is a func

tion of iteration could yet improve the convergence rate. The Chebyshev semi-iterative

method [61] is an example of a non-stationary algorithm (one that changes during iteration)

where the SOR factor (a>) is variable.

Convergence data for the difficult example of Figure 4.7 are summarized in Figure 4.8

for SOR, Coupling Method A, and Coupling Method B algorithms where "iter" is the number

of iterations until convergence is attained and "maxerr" is the maximum of the errors from

the true solution after the last iteration. The difficult example also exhibits the false conver

gence problem that is described in Chapter 3, where the per-iteration change in the voltage

SOR Coupling Method A Coupling Method B
(!) iter maxerr f iter maxerr f iter maxerr

1.0 294 0.77V 0.0 294 0.77V 0.0 294 0.77V

1.1 262 0.65V 0.1 260 0.64V 0.1 233 0.54V

1.2 232 0.54V 0.2 221 0.50V 0.2 144 0.27V

1.3 204 0.44V 0.3 173 0.34V 0.3 -1

1.4 176 0.35V 0.4 113 0.18V

1.5 149 0.27V 0.5 64 0.13V

1.6 122 0.20V 0.6 -1

1.7 94 0.14V

1.8 64 0.07V

Figure 4.8 : Data for Difficult Example
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falls below the tolerance before reaching the asymptotic value within the specified accuracy.

This can be seen in Figure 4.7a where the upper iteration curve stops short compared to the

other curves. Figure 4.8 shows that as the convergence rate is increased, there is a concomi

tant increase in the accuracy. None of the errors reported in Figure 4.8 is less than 0.1% as

specified. Clearly more work is needed to combine acceleration methods and convergence

detection methods.

4.2.2. Nonlinear Equations

The solutions of systems of nonlinear equations using relaxation have different proper

ties from the solution of nonlinear equations using the conventional technique of linearization

(Newton-Raphson) followed by direct solution of the resulting linear equations. Even with

conventional methods, there is some variation on how the linearization is performed. The pro

cess of linearizing Equation 4.4 to Equation 4.5,

£(x) =0-Ax=&, (4.34)

is usually damped using a limiting algorithm [4\ Limiting algorithms help to prevent numer

ical over- or under-flow and keep the state of the system of equations from ending up at

extremely non-physical values. The Newton-Raphson algorithm corresponds to the use of the

best linear model for the nonlinear devices, but other methods, such as the Secant Method,

Line-Through-Origin Method, and the Chord Method, use different ways of approximating the

nonlinearity [63]. All of these methods must obey the consistency condition from Sec

tion 4.2.1 that, when the terminal voltages have converged, the modified model must give the

same terminal branch currents as the exact model. It can be shown that Newton-Raphson has

the highest asymptotic rate of convergence of all of these methods. Model approximations

such as the Secant Method or Line-Through-Origin Method could be used with Iterated Timing

Analysis, however the fast convergence rate of the Newton-Raphson method is even more

important for relaxation. It is shown below that the new coupling techniques given in the

previous section for linear problems can also be used to provide considerable speedup of the
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convergence rate for nonlinear problems.

A nonlinear example made up of an array of six diodes connected at one end to a 10 V

constant voltage source through a 1A resistor and at the other end connected to ground is

shown in Figure 4.9. This example is used to compare the effectiveness of different conver

gence acceleration methods for nonlinear problems. In particular, two limiting algorithms for

the diodes (branch current limiting), a node voltage limiting algorithm, and the coupling

method from the last section are compared separately and in combination with each other.

The coupling method is Coupling Method A described above and is applied in the diode to the

linearized conductance as if it were an ordinary resistor. For the diode branch current limit-

IOV <b

©

©

©

©

©

©

T

V io-,4a

Figure 4.9 : Diode Nonlinear Example
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ing, if vnew is the new terminal voltage for the diode, void is the last terminal voltage that

was used after limiting was applied, vt is the thermal voltage (kT I q ), and vcrit is defined as

the voltage at which the diode characteristic has the most curvature (the knee of the curve),

then the diode limiting algorithm referred to as "old" can be written:

if ( vnew > vcrit) {
vlim = 2 * vt;
delv = vnew - void;
if ( ABS(delv) >vlim){

if (void <0.0){
vnew = vt * log( vnew/vt \

else if ((1.0 + delv/vt) > 0.0 ) {
vnew = void + vt * log( 1.0+ delv/vt);

else {
vnew « vcrit;

}
}

}

and the diode limiting algorithm referred to as "new" can be written:

if ( vnew > vcrit) {
vlim • 2 * vt;
delv = vnew - void;
if ( ABS(delv) >vlim){

if (void <0.0){
vnew = vt * log( vnew/vt \

}
else if ( void < vcrit ) {

vnew = vcrit;
}
else if ((1.0 + delv/vt) > 0.0) {

vnew = void + vt * log( 1.0+ delv/vt);

else {
vnew = vcrit;

}
}

}.

The difference between the two algorithms is small, but the difference in performance in

some situations can be substantial, as will be seen later. The node voltage limiting algorithm

is based on [64]. If delta__v is the difference between the node voltage computed at the

current iteration and the previous iteration, delviterlimit is the value of the change in voltage
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above which node voltage limiting will be used, and void is the voltage for the node at the

previous iteration, then the node voltage limiting algorithm can be written

if ( uselimiting ) {
if ( ABS(delta_v) > delviterlimit) {

vnew » void + SIGN(delta_v) *
(delviterlimit + logl0( ABS(delra_v) / delviterlimit )>,

}
I.

The results of a series of 20 experiments performed using the SPLICE2 program with the

diode example are summarized in Figure 4.10 and the "convergence waveform" plots are

given in Figure 4.11. The individual experiments are labelled EO through E20. These labels

are used below to refer *o the data in Figure 4.10 and the corresponding plots in Figure 4.11.

The diode array example is a difficult one due to the exponential nonlinearity of the diodes

and the resulting tight coupling between the nodes. At the operating point, when each diode

is conducting, the diodes closely resemble floating voltage sources with a voltage drop equal to

the on" voltage of each diode. Experiment El has been performed without any damping or

convergence acceleration methods. Two distinct regions can be identified in the plot for El.

The first is the slow linear convergence of voltage that was observed for the single diode with

resistor in Chapter 3. The second isa slow asymptotic convergence region which is fairly flat.

The limiting algorithm for diodes from SPICE2 is used in E2, where it is seen that the number

of iterations is reduced substantially and now more of the iterations are spent in the asymp

totic region. Simple node limiting is used in E3 but instead of converging slowly from above,

Node 1 converges slowly from below, thus, node limiting alone is not effective at getting the

solution into the asymptotic region. However, Experiment E4 shows that node limiting in

combination with diode branch limiting is effective at bringing the solution quickly to the

asymptotic region. The new diode branch limiting algorithm is compared to the old algorithm

in E5 and E6 which correspond to E2 and E4, respectively. It is seen that node limiting alone

does not help the new algorithm as much as the old algorithm. So far, none of the methods

have significantly improved the rate of convergence in the asymptotic region. In Experiments
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E7, E8, E9, and E10, the effect of coupling on the convergence rate with and without node

limiting is shown. These experiments show that the addition of the coupling method

significantly improves the rate of convergence. Further, E9 compared with Ell shows that

the new limiting algorithm is significantly more damped than the old one by the absence in

E9 of the extra peaks that appear in Ell. Experiments E12-E20 show various combinations of

the three methods. The best results are for E16 which requires only 30 iterations and makes

use of all three acceleration methods. This is close to a factor of 10 fewer iterations than

without any acceleration methods at all.

plot

El
E2

E3
E4

E5
E6
E7

E8
E9

E10

Ell
E12

El 3
E14

E15

E16
E17

E18
E19

E20

Diode Chain (6) Convergence Rate
node

limiting

no

no

yes 0.5V
yes 0.5V
no

yes 0.5V
no

yes 0.5V
no

yes 0.5V
no

yes 0.5V
yes 0.5V
yes 0.2V
ves0.5V

yes 0.8V
yes 1.1V
yes 1.1V
yes 0.8V
yes 0.8V

diode

limiting

no

old

no

old

new

new

new

new

new

new

old

old

old

old

new

new

new

new

new

old

couple
factor

0.0

0.0

0.0

0.0

0.0

0.0

03

0.3
0.7

0.7

0.7

0.7

0.8
0.7

0.8
0.7

0.7

0.8
0.8
0.7

iter

249
141

240

96

131

166

99
97
58

56
84

56
60

111

54

30

52
47

46

69

Figure 4.10 : Convergence Data for Diode Example
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ZIO

The results from above clearly indicate that convergence acceleration methods can make

a very large difference in the number of iterations required for convergence of nonlinear

equations. For the diode array example, combinations of methods are more powerful than any

single method applied by itself. The results also show that limiting algorithms are useful for

helping the solution to reach the asymptotic convergence region more quickly. Coupling

methods further accelerate the convergence rate in the asymptotic region. It is unlikely that

the speedups observed for an arbitrary network found in practice would be as large as found

for this example, since the optimum parameters are likely to be circuit and technology depen

dent, however the average network would not likely be as difficult as this chaing of diodes.

There is likely to be some relationship between the fact that the best node limiting occurs

with a value of 0.8V which is close to the diode "on" (or "critical") voltage. This dependence

is accentuated by the way the diodes are connected in series, and an arbitrary network of

MOS transistors would probably behave differently. Nevertheless, further work on how these
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methods interact and on new acceleration methods is likely to be fruitful. Further, tech

niques such as node limiting, improved diode branch limiting, and coupling methods could be

applied to standard circuit simulators such as the SPICE2 program.

At this point, it is worth noting again the similarity between the "iteration waveform"

and a time-domain transient waveform where the iteration number is considered to be

discrete time. The primary goal of convergence acceleration methods is to speed the response

of the iteration waveform without regard for the actual path that the waveform traces out.

Occasionally, the iteration sequence does not converge. One way of improving the stability of

the dc convergence process is to include the capacitor elements for the transient simulation

and perform a pseudo-transient simulation with the independent voltage sources held constant

to find the operating point This is similar to the method used in the ASTAP program [65].

The truncation error of this pseudo-transient simulation need not be controlled since the

details of the iteration waveform are of no concern, so long as it converges. Algorithms that

modify the iteration sequence can be represented by pseudo-elements in the iteration domain.

Voltage limiting algorithms correspond to pseudo-elements which are capacitive in nature

since they tend to oppose changes in voltage. The successive over-relaxation (SOR) method

also is capacitive in nature where an SOR factor greater than one corresponds to a negative

capacitance and an SOR factor less than one corresponds to a positive capacitance. An SOR fac

tor less than one is similar to "lag compensation" and can stabilize the iteration sequence, as

will be shown in the next section.

Figure 4.12 shows three iteration waveforms for the NMOS depletion-load operational

amplifier, that is described more fully in Chapter 6, with three different values of SOR factor,

to. The opamp is connected in a unity-gain feedback configuration. Figure 4.12a corresponds

to o> » 1, or no under- or over-relaxation and is seen not to converge in the dc iteration. Fig

ure 4.12b corresponds to &> » 0.5 which has an effect similar to lag compensation and the

waveform shows a longer oscillation period compared to Figure 4d2b. With a value for o> of
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0.33, the iteration waveform is stabilized and requires 59 iterations for solution as is seen in

Figure 4.12c.

«>

Figure 4.12 : Convergence Plots for Opamp Example
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4.2.3. Under-Relaxation

The results of Figure 4.12 suggest that under-relaxation is an effective tool for enlarging

the domain of convergence of iterative methods. It is shown in this section under what condi

tions under-relaxation will stabilize a sequence of iterations along with some ways of estimat

ing the under-relaxation factor. The starting point is with the Gauss-Jacobi iteration method

for the solution of linear equations since an explicit upper bound for (a can be calculated

easily. Applying under-relaxation to the iteration matrix of Equation 4.7b yields

MCJ w = - <*D~K (L +V )+(1 - a))/ ) . (4.35)
If MCJ j = —D"KL +U ) then Equation 4.35 becomes

MCj w- uMCj !+(l - o>)7 . (4.36)
If the eigenvalues of the unmodified iteration matrix, MCj i, *« * and tne eigenvalues of the

modified iteration matrix, MCju, are Aw, then the effect of under-relaxation on the eigenvalues

can be computed as follows: Let x be an eigenvector of MCj wwi*h corresponding eigenvalue

Aw so that

MCj*x -Awx . (4.37)
Using Equation 4.36 this becomes

{wMcj i +(1 - 0))I )x - A„x (4.38)
and rearranging

•* \M - (1 —ft>) r4 39)

Thus, the modified eigenvalues are related to the original eigenvalues by

A.-l +oiCA-l). <4-4l)
Using Equation 4.41 it is now possible to prove that under-relaxation enlarges the domain of

convergence.
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Theorem 4.1: If MCju> and MCj i are defined as above and if magnitudes of the origi

nal eigenvalues. A, are all bounded and if the real parts of the original eigenvalues are all

strictly less than one, then there exists an <u > 0 such that the modified eigenvalues, Aw, are all

inside the unit circle i.e., the modified iteration matrix is contractive.

Proof: The proof proceeds constructively to find a value for u> for which the magnitudes of

the eigenvalues are less than one. From Equation 4.41 the magnitudes of the eigenvalues Aw

are

I Au I m KA^Af^J

1

- [ (1 +6>(A - D) (1 +o>(A - D) ]2 (4-43)

=[ 1+2w(Re(A) - 1) +a^AA - 2Re(A) - l) ]2 . (4'44)
Now let C = 1 — Re(A) and write AA as IA I 2 so that

IAJ <1 (4.45)

becomes

[1-2ojC +o>2(IAI2+2C -l)]2 <1 UM)
and squaring both sides

0 <( 1 - 2o>C + »K IA I 2 + 2C - 1) ) < 1. (4.47)

The condition that the real part of the unmodified eigenvalues is strictly less than one implies

that C >0. In the case IA I < 1, the original matrix is contractive and therefore a value of

o> = l yields the desired result of IAWI <1. In the case IAI ^1, the term

(IAI2 + 2C —1) ^0 and so the condition of Equation 4.47 becomes

o>K IAI2+ 2C - 1) <2o»C (4.48)

and since co^O

. 2C , x0) < . (4 4Q)
IAI2+ 2C - 1 ^ W

Let L = max IA, I < oo be the magnitude of the largest eigenvalue of the unmodified matrix.

Set
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2C
2L* + 2C - 1

(4.50)

and choose the value of under-relaxation factor

0 <to <o>min (4.51)

This choice of o> is sufficient to guarantee that all of the eigenvalues lie inside the unit circle,

thus completing the proof.

Note that if the value of the largest eigenvalue is real, then Equation 4.51 reduces to

The effect of under-relaxation on eigenvalues is illustrated in Figure 4.13 where it is

seen that as the under-relaxation factor approaches zero, all of the eigenvalues converge on a

value of one. If the real part of the eigenvalue is less than one, then it approaches a value of

one from the left and thus passes inside the unit circle. If the real part of the eigenvalue is

greater than one, then it approaches a value of one from the right and thus remains unstable.

The calculation of the point of intersection of the parametric curve for the eigenvalue with

the unit circle yields the value of under-relaxation factor which is the strict upper bound for

convergence. The constructive proof of Theorem 4.1 calculated the bound for the case of

Gauss-Jacobi iteration. The corresponding bound for Gauss-Seidel iteration has not been com

puted, although the Stein-Rosenberg theorem suggests that a Gauss-Seidel iteration should

require a smaller upper bound than for the Gauss-Jacobi iteration since the spectral radius is

larger for Gauss-Seidel than Gauss-Jacobi when the spectral radius for the Gauss-Jacobi itera

tion is larger than one. Thus, Gauss-Seidel diverges more quickly when Gauss-Jacobi diverges

and converges more quickly when Gauss-Jacobi converges. This yields the important observa

tion that Gauss-Jacobi iteration should be used when using under-relaxation and Gauss-Seidel

should be used when using over-relaxation.

The extension of these techniques to nonlinear systems of equations requires the follow

ing definition of the Gauss-Jacobi and Gauss-Seidel iteration matrices [57]. Let gXx) denote

the Jacobian of g computed at x . Let g be continuously differentiable in an open



94

aWX)

Re(X)=l

Figure 4.13 : Eigenvalues and Under-Relaxation

neighborhood S0 of x* for which g(x*) =0. Let g'(x*) be split as

L (x* ) + D (x* ) + U (x* ) where L (x* ), D (x* ) and 1/ (x* ) are respectively the strictly

lower triangular part, the diagonal part and the strictly upper triangular part of g '(x ). Let

MCj (x ) and MCs (x ) be defined as follows:

MCJ (x* ) = - D (x* )"'( L (x* ) +U (x* ) ) (4.53)

and

Mcs Cc* ) - - ( Z> Cx* ) + L (£• ) r1^ (x* ) (4.54)

Assume that D (x* ) is nonsingular and that all the eigenvalues of MCj (x* ) and MCs (** )

are inside the unit circle. Then there exists an open ball S CS0 such that the nonlinear

Gauss-Jacobi and the Gauss-Seidel iterations are well-defined and for any x 0 € S, the

sequence generated by the iterations converges to x* .
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Under-relaxation is shown in Theorem 4.1 and Figure 4.13 to be useful for enlarging the

domain of convergence for linear systems of equations. Under-relaxation is also useful for

enlarging the domain of convergence of nonlinear systems of equations, although proofs of

global convergence for nonlinear systems of equations are more difficult. It is possible to prove

a result for the case of a one-dimensional nonlinear equation with conditions and bounds simi

lar to those in Theorem 4.1.

Lemma 4.2: Let g : ORHR) be a function for which the following inequality holds in

R:

g(x) - g(x')^L (x -xO where -co<L <1 (4.55)

Define g (x ) as follows:

g (x ) = (ag (x ) + (1 - to)x (4.56)

Then there exists an to : 0 < to < 1 such that

l£(x)-g(x')l ^y\x -x'l where y <\ . (4.57)

Proof: The proof proceeds by construction. First note that Equation 4.57 states that g (x ) is

contractive. If —1 < L < 1, then Equation 4.55 becomes

Ig (x ) - g (x') I < IL (x - x 0 I (4.58)

< \L I l(x -x')l

which indicates that g (x ) is contractive and thus a value for o> of one is suitable to make

g (x ) contractive. For the case that —oo < L < —1, the left hand side of Equation 4.57 can

be rewritten

lS(x)-£(x')l - lto(g(x)-g(x')) + (l-toXx -x')l . (4.59)
Further, since g (x ) — g (x 0 < L (x —x 0, let

g(x) - g(x') = a(x -xO where -oo<« <L <-l (4.60)
so that Equation 4.57 becomes

1g (x ) - g (x ') I - I(1 - to + atoXx - x') I (4.61)

- 11 - to(l - a) I Ix - x ' I
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since all of the quantities are real. If to is chosen small enough:

to <« 2 (4.62)
1 — a

then

ll-tod -a) I <1. (4.63)

Noting that

11 - to(l - L) I < 11 - to(l - a) I (4.64)

indicates that if

to <Y^Y (4.65)
then

y » 11 - to(l - L ) I < 1 (4.66)

and therefore g (x ) is contractive which completes the proof.

Note that the continuity condition of Equation 4.55 is more strict than the condition for

Lipschitz continuity and that g (x ) is also Lipschitz continuouswith Lipschitz constant ILL

The similarity between the two suggests the term left Lipschitz continuous to denote that the

condition of Equation 4.55 is satisfied. Another way of stating the result of Lemma 4.2 is that

if a function, g (x ), is everywhere left Lipschitz continuous, then for some to >0, g (x ) is

globally contractive using a fixed point iteration. The constraint on L can be weakened to

allow L ^ 1 if there exists an attractive solution and g (x ) is left Lipschitz continuous in a

closed ball about the point of contraction and containing the starting guess. In this case, the

2
choice of to < , _ , will still guarantee that the attractive solution will be found where

1 + \L I

L is the left Lipschitz constant for the closed ball.

The physical interpretation of this result is that under-relaxation has the effect of damp

ing out the growing oscillations of a solution that is overly-attracted to the fixed-point. This

procedure of using under-relaxation on a system of equations amounts to a rotation of the

intercept of the function hyper-plane with the hyper-plane g (x ) = 1 until it is guaranteed to
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intercept everywhere with a slope with magnitude less than one. Figure 4.14 illustrates

fixed-point iteration for a linear function, g (x ), that is overly-attractive. The fixed-point

iteration procedure uses the equation to calculate the variable in terms of itself and then uses

that value as the next guess. This is represented in Figure 4.14 as a projection onto a line

through the origin with unit slope. Figure 4.14a shows that the overly-attractive function

results in an oscillation of increasing amplitude and Figure 4.14b illustrates the use of under-

relaxation with a value for to of approximately 0.4. It is clear from the diagram of Figure

4.14b that under-relaxation corresponds to a rotation of the of the fixed-point function so that

it intercepts the line through the origin with a smaller angle. In higher dimensions, the line

with unit slope becomes a hyper-plane.

The resistor/diode fixed-point iteration example from Section 3.2.1 that used the "zeroth-

order" current source model for the diode shown in Figure 3.5 can be used to illustrate the

use of under-relaxation for stabilization and also to show that the condition of Lemma 4.2 can

be relaxed somewhat. Repeating Equation 3.9 for the fixed-point iteration here

V/+1 =Vt-R Is {eV*,Vi -1) <4-67)
and taking the derivative of the right hand side of Equation 4.67 gives

_Rli_ev2',v, (46g)

Figure 4.15 shows a plot of Equation 4.67 and its intersection with a line of unit slope using

values of /, •» 10~i4A , Vt = 26mV , R = Id, and V , = 2V . The intersection occurs at the

point where V 2= 0.841956 and the slope is —44.54. The magnitude of the single eigenvalue

for this equation at the fixed-point is therefore 44.54 »1 and it can be easily verified from

Figure 4.15 that the fixed-point iteration does not converge. In fact, even choosing the starting

guess very close to the solution cannot make the iteration stable. Equation 4.68 shows that

the magnitude of the derivative grows without bound and so the condition of Lemma 4.2 is

not met. However, if the starting guess is OV, then the derivative is bounded over an inter

val. Equation 4.65 implies that the upper bound on the under-relaxation factor (to) such that
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^Vy=

\y=g(z)

a) Overlv-Attractive

b) Damped Iteration (to - 0.4)

Figure 4.14 : Stability of Fixed-Point Iteration

there is some contractive interval about the solution is
44.54+ 1

plot of the number of iterations required to give a value within 0.1% of the correct answer as

a function of to where non-convergence is indicated with an iteration count of -1 and a start

ing guess of OV is used. It can be seen from Figure 4.16 that the fixed-point iteration is stable

= 0.0439. Figure 4.16 is a
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for to - 0.043 and unstable for to =0.044 as predicted. Let the critically damped point be

defined to be when the real parts of all eigenvalues are zero. All of the eigenvalues will have

a non-negative real part when to ^ ——, which is 0.022 for this problem. At the critically

damped point, there will be no "overshoot" in the sequence of iterates and plots of the

sequence of iterates demonstrate that there is ringing for to = 0.043 that decreases to become

overshoot as o> is decreased to 0.022 whereafter the overshoot disappears. Figure 4.16 also

shows that values of to which are smaller than necessary increase the number of iterations

hyperbolically.

v k+1

v k

Figure 4.15 : Fixed-Point Iteration of R/Diode
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Figure 4.16 : Iterations vs. SOR Factor

43. Transient Analysis

The final topic that completes the method of solution of the systems of ordinary partial

differential equations is how to control the integration time-step. The method of taking

differential equations and obtaining equivalent difference equations by approximating the time

derivatives has been presented in Chapter 3. This section gives the details of time-step control

as implemented in the SPLICE2 program along with those aspects of integration methods that

are of special interest for iterated timing analysis.
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In Section 4.2.1, it is mentioned that the condition for stability of convergence of a

matrix is that all of the eigenvalues of the matrix have a magnitude less than one (lie inside

the unit circle in the complex plane). From the properties of matrix norms, it can be shown

that a sufficient condition for all of the eigenvalues of a matrix to have a magnitude less than

one is that the matrix be strictly diagonally dominant, where strictly diagonally dominant is

defined for a matrix, A,

I«* I < I I<*i; I fondl i € [IJN ]. (469)
j*i

It can be proven that under the conditions stated in Section 4.1 that the Gauss-Seidel and

Gauss-Jacobi iteration matrices become stable for some time-step greater than zero [53]. The

reason is that the capacitance matrix derived from Equation 4.3 is strictly diagonally dominant

since the contribution of floating capacitors to the matrix adds equally to the diagonal element

and an element off the diagonal but the grounded capacitor at every node adds only to the

diagonal elements. As the time-step is made smaller, the contribution of the capacitance

matrix to the iteration matrix makes the iteration matrix strictly diagonally dominant and

therefore stable. Another way of looking at this fact is that as the time-step is reduced, capa

citors become more like voltage sources since they tend to resist a change in voltage across

their terminals. Thus, a grounded capacitor at every node will tend to decouple the equations

as the time-step is reduced and neighboring nodes begin to appear more like voltage sources.

Because of the grounded capacitors, each transient time-point iteration matrix is more

likely to be stable than the iteration matrix for the corresponding purely dc problem.

Further, since a good starting guess is easily extrapolated from past values, the trajectory of

the solution vector during iteration is likely to be in the asymptotic region of convergence for

most of the iterations. For these reasons, obtaining a solution for the transient problem is

simpler than obtaining a solution for the dc operating point. The primary problem in the

transient domain is how to integrate the elements with memory and choose time-steps such

that accuracy and stability are maintained without performing computation that could be
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avoided.

4.4. ITAinSPLICE2

As pointed out in Section 3.5, iterated timing analysis achieves large speedups due to the

presence of latency in circuit activity. However, time-step control must be done carefully in

order to maintain speed while providing accuracy. An excellent description of the implemen

tation of iterated timing analysis in the SPLICE1 program is given in [3] and is not repeated >

here. The primary differences between the implementation of the iterated timing analysis

algorithm in the SPUCE1 and SPUCE2 programs are:

(1) In the SPLICE1 program, the minimum resolvable time (MRT) is the numerically smallest

interval by which the time variable can change and is specified by the user. The

SPLICE2 program allows the value of the minimum resolvable time to be very small in

order to achieve accuracy and uses a variable value local minimum resolvable time for

efficiency.

(2) Time-steps are computed using truncation error estimates and solutions may be rejected.

A solution for a time-point that has previously been accepted can be rejected on the basis

of truncation error estimates.

(3) The number of previous solutions buffered at each node is specified as a parameter at exe

cution time in the SPLICE2 program. This allows the user to select the window size for

the time-step algorithm.

(4) The SPLICE2 program uses a double precision floating point number for the representa

tion of simulation time whereas the SPUCE1 program uses an integer.

(5) In the SPLICE2 program, the nodes are scheduled to be processed whereas in the

SPLICE1 program, the lists of nodes to which each element fans out are scheduled.

(6) In the SPLICE2 program, nodes have models in the same fashion that elements have

models.
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The ITA algorithm is carried out through the execution of the model associated with the

electrical-level net. The electrical net model routine is found in the file "elcnetx" in

Appendix A. An iteration of the equation associated with a given net is carried out by one

execution of that net's model routine. The rest of this section gives the details of the electrical

net model routine. The basic flow of the electrical net routine is:

Step 1 Initialize.
Step 2 Compute Norton equivalent of all fanin branches.
Step 3 Compute new voltage.
Step 4 Check iteration tolerance.
Step 5 If not converged, schedule at current time and return.
Step 6 Compute truncation error time-step.
Step 7 If time-step too large, reject step,

backup time, schedule and return.
Step 8 Schedule at computed time-step in the future and return.

The initialization of Step 1 consists of checking to see if this is the first iteration at the current

time point. If so, then the number of iterations is set to zero and a predictor is used to com

pute the starting guess for this time and is pushed onto the solution buffer. If the solution

buffer is full, the oldest solution is flushed to disk if the plot flag is set for this net. Step 2

consists of looping over all the fanin branches and setting a signal structure to all zeroes, cal

ling the element model routine associated with each branch, and accumulating the sum of all

the currents, absolute value of the sum of all the currents, conductances, and capacitances for

all fanin branches. The new voltage is calculated in Step 3 by applying an integration

method to the capacitance and solving for the voltage

V_. =4*- . (4.70)new g-

In Steps 4 and 5, the iteration is considered not converged if the per-iteration change in vol

tage is greater than the voltage tolerance, if the per-iteration change in absolute value of the

sum of all the currents is greater than the current tolerance, or if the minimum number of dc

or transient iterations have not been taken. If the iteration has not converged, then the values

on the net are updated, the net is scheduled to be processed again at the current time, and con

trol returns to the scheduler. Otherwise, the truncation error time-step is computed in Step 6
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using either the backward differentiation formula or the divided differences method. In

Step 7, the computed time-step is compared with the time-step actually taken and if it is too

large or if the number of iterations taken at the current time point is too large then solution

at this time is rejected, simulation time is backed up to a time which results in a smaller

time-step, the net is scheduled at that time and control returns to the scheduler. Otherwise,

in Step 8, the solution is accepted, the time-step window control variables are updated, and the

net is scheduled at the current time plus the truncation error time-step in the future.

The time-step window is managed by two control elements called NetElcPreNewStep

and NetElcNew Step. Associated with each time window is a minimum time-step stored in

ElcMinTimeStep and a maximum time-step stored in ElcMaxTimeStep. At the beginning of

simulation the user supplies a value for the number of buffers to be used per window and

that value is stored in ElcBufSize. The number of time-step intervals per window is stored in

ElcNumlntervals and is smaller than ElcBufSize since integration methods require saving pre

vious state to compute a new state and the solutions back to the beginning of the window

might be rejected.

The window mechanism is initialized by setting the ElcMinTimeStep variable to a start

ing guess provided by the user through the "starttimestep" parameter on the option element

and, for the first window, using a window size of 1. The NetElcPreNewStep element is

scheduled to be processed before all other physical elements and the NetElcNewStep element is

scheduled to be processed after all other physical elements by use of a sorting key for schedul

ing. The window control elements both are scheduled to be processed at the end of the

current time window. The NetElcPreNewStep element calls ElcAdjustNextTimeStep to adjust

the time-steps for the next window. The ElcNextMinTimeStep variable is set in the electrical

net model to the minimum of itself and the truncation error estimate for that net's time-step.

The ElcNextMinTimeStep variable is then used as the value for the ElcMinTimeStep (or

"local" minimum resolvable time) for the next window. A smaller time-step for the next
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window may be used if a break point occurs in that window due to a piece-wise linear vol

tage source. The electrical nets are then iterated after the NetElcPreNewStep element returns

until convergence. The NetElcNewStep element is then processed and it checks to see if the

value of the ElcNextMinTimeStep variable decreased during convergence. If it did, the time-

step for the next window is readjusted and the nets are realigned to the new local minimum

resolvable time "grid". At this point, the new window is begun and the time parameters for

the new window are copied into the current window time parameters, the NetElcPreNewStep

and NetElcNewStep elements are scheduled at the end of the new window, and the

ElcNextMinTimeStep variable is set to the full width of the new window so that the window

size can grow.

When a time-step for a net is rejected, the new time-step chosen for that net may be

smaller than the current local minimum resolvable time. If the new time-step is greater than

or equal to the current local minimum resolvable time, then the net and its fanouts are re

scheduled to the largest integral multiple of the local minimum resolvable time that is not

greater than the new time-step. If the new time-step is less than the current local minimum

resolvable time, then the window parameters need to be recomputed and the nets realigned to

the new time grid. It should be pointed out that simulators that cannot reject time-steps are

not as good at controlling the error of the solution. The need to be able to backup time and

re-index events puts strong demands on the scheduler. The cached indexing methods described

in Chapter 2 are uniquely suited to simple time backup and re-indexing.



CHAPTER 5

Discrete Simulation

The implementation of the discrete levels of simulation in the SPLICE2 program is

described in this chapter along with some background information. Logic simulation has been

the subject of active research for many years [66]. Only those aspects of logic simulation that

are different from more conventional logic simulation are dealt with in this chapter. Back

ground on logic signals and models is presented in the first section. The details of logic simula

tion as implemented in the SPLICE2 program are described in the next section and the

approach taken for the register transfer level (RTL) of simulation is presented in the last sec

tion.

5.1. Logic Signals and Models

Historically, logic simulation was first implemented with only two logic states [67], true

and false, and the time behavior of the circuits modeled was synchronous so that no time

delay information was used. The unknown state was added so that circuit hazard and race

conditions could be detected during simulation [68,69]. Open-collector logic gates presented a

modeling problem for the logic simulator that was solved at first by adding a new gate,

known as an implicit wire-or, that was inferred whenever the output of more than one open-

collector device was connected to one wire. However, when tri-state gates and MOS switch

logic became common, it was necessary to add more logic states to represent the possible drive

characteristics at the outputs of the gates. As technology progressed and bi-directional switch

simulation [70] became more widely used, more logic states were added to the basic three.

Nine logic states are shown spread out on a plane in Figure 5.1 where the horizontal avis is

the signal level, which corresponds to voltage, and the vertical axis is the signal strength,

which corresponds to resistance, as has been described in Chapter 2.
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Figure 5.1: Nine-State Logic System

5.1.1. How Many States Are Enough

The nine state logic system arises from the need to model transistors more accurately

than fewer states will allow. Two examples are shown in Figure 5.2 that cannot be modeled

adequately with only nine logic states. The first example, shown in Figure 5.2a, is a two-

phase regenerative latch driving a bus and requires more than three resistance levels for

proper simulation. The depletion transistor is used as a resistor to provide positive feedback

from the output to the input of the buffer. When signal A is high, the output of the deple

tion transistor is overcome by the output of the transistor with input marked A and when

signal A is low, the depletion transistor must prevail. Thus, three strengths are needed to

model the contributions at node X. A fourth strength is needed for the output of the buffer so

that when signal B is high, the buffer prevails over the on transistor and drives the bus value.

The second example, shown in Figure 5.2b, is a fragment of pass-transistor logic that is prob

ably the result of an error in design since the gate of transistor D is driven by a voltage that

may be unsuitably low. The maximum voltage at C will be one threshold voltage drop below
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the voltage at B which in turn will be one threshold voltage drop below the voltage at A.

Thus if A is already below the supply voltage, then signal C may be three threshold voltage

drops below the supply voltage. If it is desired to detect this type of error, five logic voltage

levels are needed. For proper simulation of a circuit containing both of these examples,

20 logic states would be needed as shown in Figure 5.2c. Note that since the threshold voltage

is a function of the source voltage, the levels might be chosen to be nonuniform. The purpose

here is not to propose 20 state simulation, but rather to illustrate how an electrical basis can

be used to decide how many states are needed to simulate circuits of a given technology.

STRENGTH
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D>

R

B
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H

T
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0 C B A 1
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-&>V

Figure 5.2 : Nine-State Counter-Examples
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As stated in Chapter 2, signals are pairs of level and strength that are stored separately.

This works out well for logic gates since outputs are typically computed from only the logic

levels and the logic strengths are used separately to determine how to combine them. When

tables are used to compute logic functions, their dimensions are reduced considerably by

separation of level and strength, thus permitting more states for greater accuracy. Ideally, the

number of logic signal levels and strengths, and their corresponding electrical levels should be

defined in tables given by the user or stored in a technology library.

5.1.2. Logic-Electrical Interface

In the electrical domain, signals have values which are continuous, not discrete. The

problem of interfacing logic and electrical simulation then is one of how to make an effective

translation between the two levels so as to lose as little information as possible and to remain

electrically consistent. The approach taken in the SPUCE1 program is illustrated in Figure

5.3a which shows a logic-to-voltage converter element. The logic-to-voltage element takes

logic ones and zeros as input and converts them to specified voltages using a given rise and fall

time. A logic-to-current converter element is used when a high impedance drive capability is

needed. These two elements provide drive resistances of either zero or infinity. The DIANA

program [28] uses a technique illustrated in Figure 5.3b, called the boolean controlled switch

(BCS), that allows finite values of drive resistance to be used. The logic (or boolean) signal is

used to control a switch that connects one of two voltage sources to the output node through

one of two resistors. The choice of values for the voltages and resistances used to represent

the logic signal is a modeling issue. In some cases, the small-signal Thevenin equivalent resis

tance may be appropriate and in others, the large-signal equivalent resistance may give a

better fit. The signals for the logic-to-voltage, logic-to-current, and boolean controlled switch

looking into the output terminal are shown in Figure 5.4. as trajectories in the resistance-

voltage plane. The logic-to-voltage (LTV) and logic-to-current (LTI) converters are shown

schematically as lines at zero and infinite resistance respectively that ramp smoothly from the
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low voltage to the high voltage. The boolean controlled switch (BCS) is shown as a pair of

points and switching is discontinuous between them. The boolean controlled switch requires

a grounded capacitor at its output terminal to give a finite switching time and the trajectory

then becomes a rectangle containing the two points.

To answer the question of how well these two methods represent logic in the electrical

domain, the Thevenin equivalent to ground is plotted parametrically in Figure 5.5 for an n-

channel MOS inverter with a pass transistor connected to its output. This data was obtained

SPLICE 1

Logic—to—Voltage Converter:

00110111...

Logic—to—Current Converter:

DIANA

Boolean—Controlled Switch

00111010100... o

Figure S3 : Logic to Electrical Mapping
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by running the SPICE program and requesting a DC transfer function calculation while vary

ing the input voltage to the inverter. The upper curve corresponds to the output through the

pass transistor and can be seen to be a constant resistance larger than that of the output node

of the inverter, shown in the lower curve, until around 2V when the gate to source voltage

becomes less than the threshold voltage and the channel begins to turn off. Note that both

curves are quite nonlinear. These curves are appropriate in a DC situation or when the out

put voltage on the inverter is able to adjust rapidly to the changing input voltage. At the

other extreme, the output voltage is not allowed to change at all while the input voltage

switches completely. This situation corresponds to an infinite capacitance at the output, and is
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illustrated in Figure 5.6 for the output of the inverter. The trajectory now splits, showing

hysteresis that depends on the direction of the input voltage change. The upper curve results

from the input voltage switching off, thus causing the drive transistor to switch completely

off and allowing the depletion pull-up transistor to charge the capacitor. The lower curve

results from the input voltage switching on and is the composite of the load curve and the

driver curve. Note that all of the possible trajectories for the Thevenin output contribution

lie inside the pair of curves shown in Figure 5.6 assuming that there are no bootstrap effects

that cause the voltage to exceed the power supplies.

A boolean controlled switch can follow only a rectagonal path that represents a

compromise between the "fast" and "slow" trajectories. To answer the question of how well

a boolean controlled switch models the inverter, the pair of points for a boolean controlled

switch that were chosen to best fit the waveforms of a chain of these inverters, each of which

drives a lOfF load, is shown in Figure 5.6. The resistance values calculated were 18KHand

35KQ The grounded capacitance at one of the inverter outputs was then increased to 200fF

without readjusting the boolean controlled switch model. This resulted in a 40% error in the

delay through that stage [5]. This implies that more than two states are required to describe

the output contribution of the inverter adequately over this range of values. Further, the

output contribution of the inverter depends not only on the input voltage but also on the

present voltage at the output node.

These results suggest that in order to make discrete simulation technology independent,

more levels than just 0 and 1 are needed in voltage and a number of strengths as well.

Further, the interaction of elements and wires via signals should be based on electrical algo

rithms. Some work has been performed in the SPUCE2 program on an electrically-based

discrete simulation method called ELOGIC (Electrical LOGIC simulation). The results have

been encouraging, but more work is needed.



113

200K

150K

R

50K

Figure 5.5 : Thevenin DC Curves for Inverter



113/4

1C0K

50K -

R

$OK -

Figure 5.5: Thevenin Hysteresis for C=oo



114

5.1.3. Logic Delay Models

Logic simulators that allow gates to have assignable delays usually use inertial delay

models [l]. This means that only one logic state change can propagate through a gate during a

signal transition period and the output of the gate must attain its new value before another

input change can be accepted. If the input changes before the output reaches its new value,

this is said to be a spike. Spikes are a result of the presence of topological circuit hazards.

Spikes may or may not be allowed to propagate to fanout gates depending on the particular

logic simulator implementation. However, the meaning of spikes changes for many-valued

logic simulation where there are more than two logic levels that represent legal states of the

logic system. In this situation, it is likely that the inputs will change before the outputs

finish changing under circumstances that are electrically meaningful.

Figure 5.7 shows a pair of inverters that have different rise and fall times. The falling

input waveform to the second inverter can pass through several states on its way from high

to low before the output of the second inverter has responded. The inertial delay model has

been extended [5] to allow proper modeling of signal delays in this situation. All of the states

between the present output state and the eventual output state must be visited during the

transition, which makes sense physically. This rule implies that each of the logic level and

logic strength may not change value by more than ±1. Spikes, or "runt" pulses, can still be

detected as an output change that passes one logic threshold twice without passing the next

one. If the user requests spike detection, net models can check for this case or other cases

easily.

5.2. Logic Implementation in SPLICE2

The present implementation of logic simulation in the SPLICE2 program is a unidirec

tional logic gate capability using six logic levels and five logic strengths. The switch Simula-



®

®

©

Figure 5.7 : Inertial Delays and Multiple States
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tion capability from the SPLICEl program [3] has not yet been incorporated in the SPUCE2

program. The six logic levels are:

1

F

X

True or high.
Falling.
Unknown or error condition

DC Initial unknown.

R

0

Rising.
False or low.

and the five logic strengths are:

S Input source.
D Driving output.
W Weak output.
H High impedance.
IH Initial high impedance.

Note that using the mixed-mode simulation concept for a signal that separates the signal level

from the signal strength allows a large number of states without the need for large tables
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when compared to a more conventional but equivalent approach. To represent all of the possi

ble states above using a conventional approach would require 30 logic states. A table-driven

element routine that has two inputs and uses a two-dimensional table would need 900 entries

in its table. By separating out the strengths, the table using the logic levels listed above only

requires 36 entries. The signal strengths are used by the logic net model when deciding how

to combine multiple fanin signals.

Logic gates are implemented in the SPLICE2 program using table-driven models that can

be found in Appendix A in the files "loggates.mod" and "logtablesx". The present logic tables

do not actually produce the rising (R) or falling (F) logic levels on output and treat them as

0 and 1 respectively on input. The rising and falling sutes are intended for use with more

advanced hazard detection and waveform modeling. By choosing whether or not to use those

two logic levels, the simulation can be made more or less precise at the expense of CPU over

head. The user also has a choice of tables that treat the initial unknown level (IX)

differently. The strict set of tables, which are the default, treat the initial unknown level in

the same way as the normal unknown level. The other set allows inputs that are at the ini

tial unknown level to be treated as if they were missing, or ignored [43]. This allows

configurations of gates such as shown in Figure 5.8 to be initialized to some state where, with

the strict interpretation of the initial unknown level, it would not be possible to initialize the

outputs. The initial unknown level is useful also for detecting which signals in a circuit

were never set to a valid state during the course of simulation.

The tables for the AND logic gate are given here as an example. For the complete set of

tables, see Appendix A.
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Figure 5.8 : Logic Example for Initial Unknown

/*

* This version of the tables ignores the R and F states on input
* and treats them as 0 and 1 respectively.
*/

/*

* Tables for AND, OR, and XOR logic functions.
* NAND, NOR and XNOR are constructed by using a post invert step.
*/

LogLevType
/*

/*

/*LOG_0 */
/*LOG__l */
/*LOG_JC */
/* LOG_IX V
/*LOG_R V
/*LOG_F */
} ;

LogAndTablet LOG_NUM_J.EVELS ][ LOG_NUM_LEVELS ]= {
LOG_0 LOG_l LOG_X LOG_D£ LOG_R LOG_F V

LOG__0, LOG_0, LOG_0, LOG_0, LOG_0, LOG_0,
LOG__0, LOG_l, LOG_X, LOG_Dt, LOG_0, LOG_l,
LOG_0, LOG_X, LOG_X, LOG_DC, LOG_0, LOG_X,
LOG_0, LOG_JX, LOGJK, LOG_IX, LOG_0, LOG_IX,
LOG_0, LOG_0, LOG_0. LOG_0, LOG_0, LOG_0,
LOG_0, LOG_l, LOG_X, LOG_IX, LOG_0, LOG_l,

*/
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/*

* These logic tables are for use when the user wants to be able
* to allow the logic gate to ignore the initial unknowns that are
* on an input. i.e. LOG_IX acts as a "
*

V

LogLevType
/*

/*

/*LOG_0 •/
/*LOG_l */
/*LOG_X V
/* LOG_JX */
/*LOG_R V
/*LOG_F */

} ;

LogAndTableLX[
LOG_0 LOG.

missing input.
The sufiix "IX" is appended to the table names to mean Ignore X.

LOG_NUM_LEVELS ] [ LOG_>TUM_LEVELS ]
.1 LOG_X LOG_K LOG_R LOG_F V

LOG_0, LOG_0, LOG_0, LOG_0, LOG_0, LOG_0,
LOG__0, LOG_l,
LOG_0, LOG_JX,
LOG_0, LOG_l,
LOG_0, LOG_0,
LOG_0, LOG_l,

LOG_X, LOG_l, LOG__0,
LOG_X, LOG_X, LOG_0,
LOG_X, LOG_IX, LOG_0,
LOG_0, LOG_0, LOG_0,
LOG_X, LOG_l, LOG_0,

LOG_l,
LOG_X,
LOG_l.
LOG_0,
LOG_l,
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The AND, OR, and XOR functions are implemented using two-dimensional tables since

multiple lookups can be used for these functions to compute larger fanin cases Le„ these func

tions are associative. The NAND, NOR, and XNOR functions are implemented by using the

corresponding positive logic table and then adding a post-invert table lookup. This is used

even for the positive logic functions to get the technology-specific drive characteristics of the

gate. The gate technology drive type is specified as a parameter on the gate model.

/*

* These tables are used to represent the output drive characteristics
* of different logic families. A parameter on the gate model selects
* which of these output types the gate has.
*/

Log^Sig LogOpenCollectorOutTable[ LOG_NUMJLEVELS ]={
/* LOG_0 V { LOG__0, LOG_D },

LOG_H },
LOGJD },
LOGJH },
LOGJti },
LOGJD },

/* LOG_l V { LOG_l,
/* LOG_X V { LOG_JC,
/* LOG_JX V { LOG_JX,
/* LOG_R */ { LOG_K,
/* LOG_F V { LOG_F,
I

Log^Sig LogInvOpenCollectorOutTable[ LOG_NUM_LEVELS ]
/* LOG_0 V { LOG_l, LOG_H }.

LOG_D },
LOGJD },
LOGJH},
LOG_X> },
LOG_H I,

/* LOG_l */ { LOG_0,
/* LOG_X */ { LOG_X,
/* LOG.JX */ { LOG_JX,
/* LOG_R */ { LOG_J,
/* LOG_F V { LOGJfc,



};

Log_Sig
/*LOGJDV
/*LOG_l*/
/*LOG_X*/
/*LOGJX*/
/*LOG_R*/
/*LOG_J*/

Log_Sig
/*LOG_0*/
/*LOG_l*/
/*LOG_JC*/
/*LOG_IXV
/*LOG_£V
/*LOG_F*/
I;

LogjSig
/♦LOGJO*/
/*LOG__l*/
/*LOG_JC*/
/*LOG.JX*/
/*LOG_R*/
/*LOG_F*/

Log__Sig
/*LOGJ)*/
/*LOG_lV
/*LOG_X*/
/*LOG_JX*/
/*LOG_R*/
/*LOG_F*/

LogNmosOutTabletLOG_NUM_LEVELS]={
LOGJ),

{LOG_l,
{LOG_X,
{LOGJX,
{LOGJ*,
{LOGJ%

LOGJD
LOG_W
LOGJD
LOGJH
LOG_W
LOGJD

LogInvNmosOutTable[LOG_NUM_LEVELS]={
{LOG_l,LOG_W},
{LOG_0,LOGJD},
{LOG_X,LOGJD},
{LOG_JX,LOG_IH},
{LOG^F,LOG_JD},
{LOGJt,LOG_W},

LogCmosOutTable[LOGJSIUM_LEVELS]=
{LOGJ),
{LOG_l,
{LOG_X,
{LOGJX,
{LOGJl,
{LOGJ,

LOGJD},
LOGJD},
LOG_D},
LOGJH},
LOG_D},
LOGJD},

LoglnvCmosOutTablefLOGJOJM_LEVELS]={
{LOG_l,
{LOGJ),
{LOG_X,
{LOGJX,
{LOG^F,
{LOGJ*,

LOGJD
LOGJD},
LOGJD},
LOGJH},
LOGJD},
LOG_D},
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S3,Register-TransferLevel

Signalsattheregister-transferlevelofsimulationarerepresentedwithabinaryvalue

forboththesignallevelandsignalstrength.Further,thesignalsformorethanoneactual

wirecanbeclusteredintoonelogicalsignal.Thus,thesignalisstoredasapairofarraysof

bits,oneforthesignalleveloneachwireandanotherforthesignalstrengthoneachwire.

Thisseparationofsignallevelandstrengthisconsistentwiththerepresentationofsignalsat

allsimulationlevels.Further,itisveryefficientforthesimulationofcertaintypesof
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register level models since the arithmetic and logical bit operations denned in the C program

ming language can be used directly.

The signal strength bit-array is necessary to be able to model wires or busses with more

than one element driving them. The meaning of the signal strength at this level reduces to

whether or not the element producing the signal is attempting to drive the bus or not. This

allows a fast check that all of the inputs to an element are valid by testing that all of the bits

are true. Also, those models for which it is possible to propagate valid outputs for some of the

output bits even in the presence of some invalid inputs can do so. An example of this is a

register latch since it only needs to invalidate the output bits for which there are invalid

inputs. Other models, such as multiplexors, might invalidate ail of their output bits.

The unknown logic level is not representable directly at the register level since there

are only two possibilities, 0 and 1. However, since the meaning of the signal strength at the

register level is whether the signal is driven or not i.e., valid, the unknown logic level can be

translated to the register level by invalidating the register signal strength. There is still the

problem of telling the difference between a truly undriven signal and an unknown one and

also how to produce a logic unknown level from a register model. Both of these problems can

be overcome if, when the register signal strength indicates that the signal is not driven, the

signal level is used to indicate the difference between unknown and undriven. Thus, the fol

lowing map is used to translate from logic signals to register signals:

struct {
unsigned char level, stren;

} LogElmLogToRTU LOGJ*UM_LEVELS ][ LOGJWJM_STRENGTHS ]= {
/* LOGJH LOGJH LOG_W LOGJD LOGJS ♦/
/* ss==3=sa=s=BaBa=sms=^ */

/*LOGJ) */
/♦LOG_l */
/♦LOGJK ♦/

/♦ LOGJK */
/♦LOGJ* ♦/

/♦LOG_F ♦/

{0,0}, {0,0}, {0,1}, {0,1}, {0,1} }
{0,0}, {0,0}, {1,1}, {1.1}, {1,1} }
{1,0}, {1,0}, {1,0}, {1,0}, {1,0} }
{1,0}, {1,0}, {1,0}, {1,0}, {1,0} }
{0,0}, {0,0}, {0,1}, {0,1}, {0,1} }
{0,0}, {0,0}, {1,1}, {1,1}, {1,U }

From the table, it can be seen that the unknown level causes the strength of the register
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signal to be undriven. In translating from the register simulation level to the logic simulation

level, the signal strength translates to a driving (D) or high impedance (H) logic strength

when the register strength is 1 or0, respectively. The register signal level translates directly

to the corresponding logic level when the register signal strength is 1 and translates to logic

level unknown (X) and false (0) when the register signal level and strength are (1,0) and

(0,0) respectively. The mapping from register to logic signals is shown in the following table.

Level

Strength
1 0

1

0

1, D X, H
0. D 0, H

The register level net model computes its new signal state by evaluating all of its fanins

and if none of them have a driving strength, sets its signal to (0,0). If some of the fanins have

a driving strength and all of them have the same signal level, the output is set to that level

with a strength of 1. If there is a conflict between two driving signals, the signal is set to

(1,0) to indicate the conflict and sothat logic fanouts will get a logic level unknown. The fol

lowing program fragment from the file rtlnetx: illustrates how this is achieved for a 32 bit

signal. If the signal bit-array size does not fit into one word of storage, the algorithm must be

repeated for each signal word.

/♦ For now, assume 32 bits or less. ♦/

strength • level - invalid = 0;
for (i = 0; i < numFanins; i++ ) {

invalid I=( strength & sig[ilstren & (level " sig[i]Jevel) )
I( sig[i].level &"" (sigfristren));

level I=sigti]Jevel &sig[iistren;
strength I= sigfilstren;

/♦

♦ Invalidate any strengths for bits driven both directions.
♦/

level 1= invalid;
strength &- " invalid;

At the end of the algorithm, the level and strength variables contain the proper values to

indicate contention, if necessary, and the driven value otherwise.
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The following program fragment contains the data structure declaration and model rou

tine for a 74181 arithmetic logic unit (ALU) for use in the SPLICE2 program. A description

of the important parts of the model appears at the end of the fragment.

1 /♦ BEGL\_HEADER_DECLARATION V
2 struct ElmRTL74181 { /♦ ATTRIBUTES = ELMOBJECT V
3 struct ElmBasic bas;
4 SigElmRegister lastValue;
5 }
6 typedef struct ElmRTL74181 ElmRTL74181;
7 struct ModRTL74181 { /♦ ATTRIBUTES = MODOBJECT ♦/

8 struct ModBasic bas;
9 /♦ PARAMETERS V

10 /♦ NETS f REGISTER OUTPUT
11 s REGISTER INPUT

12 m REGISTER INPUT

13 a REGISTER INPUT

14 b REGISTER INPUT V
15 } ;
16 typedef struct ModRTL74181 ModRTL74181;
17 /♦ E\D_HEADER_JDECLARATION V
18

19 /♦

20 ♦ ElmRTL74181 - 7400 series ALU.
21 ♦/

22 ELM_EVAL_DECLARE(RTL74181)
23 {
24 ElmNetBasic ♦♦lis;

25 SigStruct aSig, bSig, sSig, mSig;
26 BitArray level, strength;
27

28 /♦

29 ♦ Evaluate the input nets.
30 ♦/

31 DASSERTX elm->ba&fanjiumln — 4 >,
32 DASSERTX elm->bas.fanjiumOut = 1 );
33 lis » elm->bas.faniniis;
34 NET_EVAL_FUNC( lis[0], SIG_NET_REGISTER, & sSig, SplCurTime );
35 NET__EVAL_FUNC( lis[ll S1G_NET_REGISTER, & mSig, SplCurTime >,
36 NETJEVAL_FUNC( lis{2], SIG_NET_REGISTER, & aSig, SplCurTime >,
37 NET__EVAL_FUNC( lis{3], SIG_NET_REGISTER, & bSig, SplCurTime );
38 /♦

39 ♦ Check for validity of input drive states. Propagate unknown
40 ♦ if no good.
41 ♦/

42 strength.bits « sSig.netRTL.cur.stren.bits
43 & aSig.netRTLxur.stren.bits & bSig.netRTLxur.stren.bits;
44 if ( strength.bits !•» Oxf ImSig.netRTLxur.stren.bits != 1 ) {
45 level.bits - Oxf;
46 strength.bits «• 0;
47 }
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48 else {
49 switch ((mSig.netRTLxurJevel.bits«4) +sSig.netRTLxurJevel.bits ) {
50 define ALUFUNC(m,s3,s2,sl,s0) m ♦ 0x10 + s3 * 0x8 + s2 ♦ 0x4 + si ♦ 0x2 + sO

51 # define F level.bits

52 # define A aSig.netRTLxur.level.bits
53 # define B bSig.netRTLxur.level.bits
54 # define carry 0
55 /*

56
57

58

♦ Calculate new function value.
*/

case ALUFUNC(0,0,0,0,0): F = A + carry; break;

59 case ALUFUNC(0,0,0,0,1): F «(A 1B) + carry; break;

60 case ALUFUNC(0,0,0,1,0): F »(A r B) + carry; break;

61 case ALUFUNC(0,0,0,1,1): F - -1 + carry; break;

62 case ALUFUNC(0,0,1,0,0): F » A + (A & " B) + carry; break;

63 case ALUFUNC(0,0,1,0,1): F - (A 1B) + (A & " B) + carry; break;

64 case ALUFUNC(0,0,1,1,0): F = A-B-1 + carry; break;

65 case ALUFUNC(0,0,1,1,1): F = (A&~B)-1+ carry; break;

66 case ALUFUNC(0,1,0,0,0>. F = A + (A & B) + carry; break;

67 case ALUFUNC(0,1,0,0,1): F - A + B + carry; break;

68 case ALUFUNC(0,1,0,1,0): F - (A 1" B) + (A & B) + carry; break;

69 case ALUFUNC(0,1,0,1,1): F - (A & B) - 1 + carry; break;

70 case ALUFUNC(0,1,1,0,0): F°A + A + carry; break;

71 case ALUFUNC(0,1,1,0,1>. F •» (A 1B) + A + carry; break;

72 case ALUFUNao.1,1,1,0): F = (A 1" B) + A + carry; break;

73 case ALUFUNC(0,1,1,1,1): F = A - 1 + carry; break;
74 /* Logic functions ♦/

75 case ALUFUNC(1,0,0,0,0): F = "A; break;
76 case ALUFUNC(1,0,0,0,1): F «= " (A 1B>, break;
77 case ALUFUNC(l,0,0,l,0): F - ~ A & B; break;

78 case ALUFUNC(1,0,0,1,1): F = 0; break;

79 case ALUFUNC(1,0,1,0,0>. F = " (A & B>, break;
80 case ALUFUNC(1,0,1,0,1): F = ~B; break;

81 case ALUFUNC(1,0,U,0): F - A * B; break;

82 case ALUFUNa1,0,1,1,1 >. F - (A & " B); break;

83 case ALUFUNC(1,1,0,0,0): F - " A 1B; break;
84 case ALUFUNC(1,1,0,0,1): F - " (A * B>t break;

85 case ALUFUNC(1,1,0,1,0): F = B; break;

86 case ALUFUNC(1,1,0,1,1): F = A & B; break;
87 case ALUFUNC(1,1,1,0,0): F-l; break;

88 case ALUFUNC(1,1,1,0,1): F = AI"B; break:

89 case ALUFUNa1,1,1,1,0): F = A 1B; break;

90 case ALUFUNCd.1,1,1,1): F-A; break;
91 default:

92 Error( INTERNAL, "ElmRTL74181: Impossible state." >,
93 break;
94 }
95 }
96 result->elmRTLsig.level • level;
97 result->elmRTLsig.stren -strength;
98 result- >elmRTL^ig.time.val = SplCurTime;
99 result- >elmRTL.numBits = 4;

100 return( SIG ELM_REGISTER >,
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101 }

The model for the 74181 ALU shown above is written in the C programming language

using some text substitution macros to improve readability. Macro definitions could be used to

shield a designer from the specifics the underlying syntax of the C programming language.

For example, the logical operations on lines 80-84 could be made more familiar to a designer

by use of the macros AND, OR, NOT, and XOR to indicate the corresponding logical operations:

80 case ALUFUNa1,0,1,0,1): F = NOT(B>, break;
81 case ALUFUNai,0,l,1.0): F»XOR(A,B); break;
82 case ALUFUNC(l,0,M.l): F - AND( A, NOTtB) >t break;
83 case ALUFUNa1,1,0,0,0): F - OR( NOT(A), B ); break;
84 case ALUFUNa1,1,0,0,1>. F - NOTX XOR(A, B) >, break;

This process could be carried further by supplying a preprocessor program that reads user-

supplied model functions and translates them into C functions.

Specifying a new register level model involves declaring two data structures and pro

viding one function for use in evaluating the model. For the 74181 ALU model above, the

data structure declarations are between line 1 and line 17. These lines are used to delimit the

element and model data structure declarations and signal that information about the model

will be passed in the comments. One element data structure is allocated and associated with

each instance of the ALU model. One model data structure is allocated and associated with

each model declaration in the input data. On lines 3 and 8, the basic element and model infor

mation is included for these data structures. The signal lastValue that is declared on line 4 is

a storage location used by the model to store the last value output for each instance of the

ALU model. There are no parameters for either the element or model data structures. If

there were any, they would appear as members of the structure after the keyword PARAM

ETERS such as shown on line 9. The topological information about fanins and fanouts is

declared on lines 10-14 by using the keyword NETS and then listing all of the wires

expected for the element. Three pieces of information are provided for each wire: the name of

the input or output, the level expected by it (which is one of REGISTER, LOGIC, and
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CIRCUIT), and the direction of the signal flow (which is one of INPUT, OUTPUT, and INAN-

DOUT). On line 22, the evaluation function for this element is declared using a macro expan

sion in order to guarantee that all of the types and arguments for the function are declared

correctly. The macro prepends the prefix "Ele" (which means element evaluation function) to

the model name and indicates that the return value of the function is an enumerated type for

the signal level called "Sig__Level". Three arguments are automatically declared. The first is

a pointer to the element instance that is to be evaluated with this routine (called "elm"), the

second is a pointer to the net that is requesting the evaluation (called "net"), and the third is a

pointer to a buffer for the resulting signal (called "result"). Signal buffers that are unions of

the possible signal types are declared on line 25 for use when evaluating the input nets. Bit-

arrays are declared on line 26 to hold the resulting output level and strength that are com

puted for the model. The input buffers are filled in lines 34-37 by invoking a each input net's

evaluation function. In lines 42-46, the validity of the input signal strengths is checked, and

if any inputs are invalid, the output for the element is set to invalid. Otherwise, a function

code for the ALU is computed on line 49 and used in the switch on lines 58-93 to decide

which function is being requested of the ALU. The purpose of the definitions on lines 51-54

is to abbreviate the program code and allow the form to appear the same as that which

appears in the tables of the 74181 part data sheet. The computed signal is stored into the

result buffer provided by the calling routine on lines 96-100. It is interesting to note how the

ALU functions in the switch are implemented using the intrinsic arithmetic and logic opera

tions of the C programming language. Thus on a VAX, the model is capable of representing

an ALU of up to 32 bits in width with exactly the same CPU time costs.

Register-transfer level simulation such as described above is not the same as a behavioral

level of simulation. However, since the models for the elements are written in a high-level

programming language (C), a behavioral level of simulation could be layered onto the register

level of simulation. The key is that the primitives of the simulator are available through

macro calls and that the high-level models can communicate with the lower-level models by
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using the established coercions. However, inside the model, the model code can perform any

sort of algorithm that can be implemented in a programming language. As an example, say

that it is desired to simulate the behavior of a packet switched data communication network

protocol with varying packet sizes. The bit-array abstraction allows arbitrary data types to be

layered on top of the existing signal data types. The packet header could be defined with the

appropriate number of bits and transmitted along with the data on wires specified to the simu

lator. In this scenario, the mixed-level simulator merely provides the framework within

which the high-level simulation is embedded. At the present time, behavioral level simula

tion is not supported by the SPUCE2 program.



CHAPTER 6

Examples

The purpose of this chapter is to characterize and demonstrate the use of different simu

lation methods in the SPUCE2 mixed-mode simulation program. Program statistics and other

measurements from the SPLICEl and SPICE2 programs are presented, where appropriate, for

the purpose of comparison. The example circuits used are described briefly in the next section

and measurements are presented in the section following. An excellent set of measurements

for the SPLICEl program which covers a wide range of circuit types is given in [3l

6.1. Description of Example Circuits

Figure 6.1 contains a list of abbreviated names for the example circuits along with a

description of each one. The names for each example are constructed from a short root that is

descriptive of the experiment and a suffix indicating information such as the levels of simula

tion used and types of logic gates used to implement the logic. The simulation levels are

identified with "R", "L", "E", and "E2", for register, logic, iterated timing analysis imple

mented in the SPLICE2 program in a way similar to the way it is implemented in the

SPLICEl program (ITA), and iterated timing analysis using the variable window mechanism

described in Chapter 4 (ITA2), respectively. Further, some of the examples are a series of

logic circuits taken from the TTL Data Book [71] and implemented with elementary logic

gates. For these examples, there is also a letter "A" or "O" that stands for whether or not

AMD gates were used. The letter "A" implies that AND and NAND gates were allowed

where MOS transistors are connected in series and that the circuits were implemented as close

to the TTL gate descriptions as possible. The letter "O" implies that AND and NAND gates

were implemented using OR and NOR gates with inverters to provide logical equivalence and

have only transistors that have at least one of the drain or source nodes connected to a power
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supply node. The all NOR gate circuits provide examples for iterated timing analysis that do

not have strong bilateral coupling between nets and are unidirectional while the NAND gate

circuits have strong bilateral coupling due to the bidirectional transistors. As an example,

"dffOL" means a description of a 7474 D-type flip-flop implemented with logic gates that are

all OR and NOR gates.

Each measurement reported in this chapter has an abbreviated name for use in tables

that is shown in Figure 6.2 along with a short description of the meaning of that measure

ment. Also, the non-proprietary circuit example input files can be found in Appendix B along

with files containing the raw measurements. Hierarchical run-time execution profile statistics

[72] are also given in Appendix B for selected examples. For ease of reference, the names of

the files in which the raw results can be found in Appendix B are given for each example in

Figure 6.3.

Experiment Description

aluRL 74181 RTL ALU with three 74163 logic counters.
biglogL Sixteen bit counter made from four 4-bit counters.
cdeAE Counter-Decoder-Encoder all electrical (NAND gates).
cdeAE2 Counter-Decoder-Encoder all ITA-2 (NAND gates).
cdeL Counter-Decoder-Encoder with logic gates.
cdeLE Counter-Decoder-Encoder with logic counter, rest electrical.
cdeOE Counter-Decoder-Encoder all electrical (NOR gates).
cdeOE2 Counter-Decoder-Encoder all ITA-2 (NOR gates).
countAE Four bit binary counter (74163) all electrical.
countAE2 Four bit binary counter (74163)all ITA-2 (NAND gates).
countL Four bit binary counter (74163) all logic gates.
countOE Four bit binary counter (74163) all electrical (NOR gates).
countOE2 Four bit binary counter (74163)all ITA-2 (NOR gates).
dffAE D type flip flop. ITA (NAND gates).
dffAE2 D type flip flop. ITA-2 (NAND gates).
dffL D type flip flop. Logic gates.
dffOE D type flip flop. ITA (NOR gates).
dffOE2 D type flip flop. ITA-2 (NOR gates).
nandAE Two-input nand gate. ITA (NAND gate implementation).
nandAE2 Two-input nand gate. ITA-2 (NAND gate implementation).
nandL Two-input nand gate. Logic gate.
nandOE Two-input nand gate. ITA (NOR gate implementation).

Figure 6.1 : Example Circuit Descriptions



Measurement

GOMP.HR
CPU.ANAL
CPU.ANAL.SYS
CPU_READ
CPU.READ.SYS
ELC.BUF
FI.MEAN
FO.MEAN
MEM.BLT
MEM.NET
NEN

NEXE

NLN

NRESCH

NRN

NSCHED
NSCH.HIT
NSCH_MI
NSCH.TT.HIT
NSCH.TT_MI
NTBU

NUNSCH

N_ACC_S
N.ELMS
NJFL.S
N_IT_REJ
N_MODELS
N.NET.ELMS
N.PR.S
N_REJ_S
N.SYNC
N.TOT.EV
N.WINDOW
SCH_HR
SCH.TT.HR
TOT.ITER
USE ITER

Description

Composite Scheduler Hit Ratio
CPU Analysis User Time
CPU Analysis System Time
CPU Readin and" Setup User Time
CPU Readin and Setup System Time
Number of Buffers Used for ITA
Mean Number of Fanins to Nets
Mean Number of Fanouts from Nets
Memory (bytes) used by BLT
Net Memory Exclusive of BLT
Number of Electrical Nets

Number of Net-Executions

Number of Logic Nets
Number of Re-Schedules

Number of Register Nets
Number of Schedules
Number of SchedCache Hits

Number of SchedCache Misses
Number of SchedAtThisTimeCache Hits
Number of SchedAtThisTimeCache Misses

Number of Time Backups
Number of Un-Schedules

Number of Accepted Solutions
Number of Non-Net Elements Allocated

Number Solutions Flushed

Number of Iteration Limit Rejections
Number of Models Allocated

Number of Net Elements Allocated

Number of Solutions Written to Output
Number of Rejected Solutions
Number of ITA Synchronizations
Total Number of Net and Element Evaluations

Number of ITA Windows Used

SchedCache Hit Ratio

SchedAtThisTimeCache Hit Ratio
Total Number of Iterations

Number of TJseful* Iterations

Figure 6.2 : Measurement Descriptions
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Experiment File Name

aluRL rtl/testrtl.sp2.out
biglogL logic/biglog.sp2.out
cdeAE ita/nandgates/cde.sp2.out
cdeAE2 ita2/nandgates/cde.sp2.out
cdeL logic/cde.sp2.out
cdeLE mixed/cde.sp2.out
cdeOE ita/norgates/cde.sp2.out
cdeOE2 ita2/norgates/cde^p2.out
countAE ita/nandgates/counter^p2.out
countAE2 ita2/nandgates/cou nter.sp2.out
countL logic/counter.sp2.out
countOE ita/norgates/counter.sp2.out
countOE2 ita2/norgates/counter.sp2.out
dffAE ita/nandgates/dff.sp2.out
dffAE2 ita2/nandgates/dfi\sp2.out
dffL logic/dff.sp2.out
dffOE ita/norgates/dff.sp2.out
dffOE2 ita2/norgates/dft\sp2.out
nandAE ita/nandgates/nand.sp2.out
nandAE2 ita2/nandgates/nand.sp2.out
nandL logic/nancLsp2.out
nandOE ita/norgates/nand.sp2.out
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Figure 63 : Raw Result File Names

Some statistics about each circuit example are listed in Figure 6.4 and include the

number of electrical, logic, and register nets along with the mean number of fanins and

fanouts at each net. The examples that are completely logic simulation are seen to have one

fanin to each net and about 23 fanouts from each net. The NOR-gate implementation of the

circuits can be seen to have substantially more fanins and fanouts per net than the NAND-

gate equivalent circuits. The electrical examples also have a large number of grounded capaci

tors which increase the number of fanins to each net.

6.2. Measurements

This section contains a summary of statistical data gathered on the circuit examples

presented above. Where appropriate, comparisons are made with the SPLICEl and SPICE2

programs. The CPU times required for the dc-transient simulation of the examples are given

in Figure 6.5 along with values normalized to that of the simulation using the SPLICE2 pro-



Experiment Levels NEN NLN NRN FI_MEAN FO_MEAN

aluRL RL 3 120 6 0.954 2.305

biglogL L 3 237 0 0.975 2354

cdeAE E 453 0 0 8.818 4.695

cdeAE2 E2 453 0 0 8.818 4.695

cdeL L 3 155 0 0.963 2.385

cdeLE EL 291 63 0 7.363 4.242

cdeOE E 555 0 0 12.465 7.142

cdeOE2 E2 555 0 0 12.465 7.142

countAE E 171 0 0 8.468 4.491
countAE2 E2 171 0 0 8.468 4.491

countL L 3 63 0 0.913 2.072

countOE E 225 0 0 12.035 6.833
countOE2 E2 225 0 0 12.035 6.833

dffAE E 23 0 0 4.607 2.357

dffAE2 E2 23 0 0 4.607 2357

dffL L 5 8 0 0.611 0.889
dffOE E 35 0 0 8.925 4.950
dffOE2 E2 35 0 0 8.925 4.950
nandAE E 9 0 0 1.750 0.750
nandAE2 E2 9 0 0 1.750 0.750

nandL L 5 3 0 0.545 0.182

nandOE E 11 0 0 3.786 1.929

Figure 6.4 : Example Circuit Characteristics
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gram. Values which are marked "NA" imply that the simulation of that example with the

corresponding simulator has not been done because it is not appropriate. Comparisons of ITA

in the SPUCE2 program with the SPICE2 program show a CPU speedup of from about a fac

tor of 10 to a factor of 100 increase in the simulation speed. Comparisons of ITA in the

SPLICE2 program with the SPLICEl program show a simulation speed that is roughly com

parable. The ITA2 algorithm in the SPLICE2 program is seen in Figure 6\5 to require less

time than that of the SPICE2 program, but significantly more time than that of ITA in the

SPLICE2 program. This is due to two differences between the algorithms. First, the ITA2

algorithm allows very small time-steps to be taken depending on the estimate of the trunca

tion error whereas the SPLICEl program uses a fixed value for the minimum time-step.

Second, the windowing mechanism prevents the ratio of time-step between slowly changing

nets and quickly changing nets from being as large as it could be^ Improvements to the win-
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dowing mechanism would likely improve the speed of the ITA2 method greatly. It can also

be seen from Figure 63 that the run times for the "OR" gate implementations are worse for

ITA2 versus ITA than the run times for the "AND" implementations. This is the result of a

higher average fanout at each net as shown in Figure 6.4. Thus, since a non-converged net

causes its fanouts to be scheduled in addition to itself, considerably more work is done when

the average number of fanouts is higher. The numbers for fanin and fanout at a net in Fig

ure 6.4 do not accentuate the differences between the "OR" and "AND" implementations since

more of the fanouts in the "OR" implementation are voltage source nets.

The logic/electrical example labeled "cdeLE" is the same as the all electrical example

labeled "cdeAE" except that the four-bit counter is replaced with a logic gate version. It can

be seen from "Figure 63 that the analysis time for the "cdeLE" example is about equal to the

SPUCE2 SPLICEl SPICE2
Experiment

CPU NORM CPU NORM CPU NORM

aluRL 92.1 1 NA NA NA NA

biglogL 339 1 180 033 NA NA

cdeAE 3183 1 2005 0.63 73562 23

cdeAE2 19946 6.3
N N

cdeL 7.3 1 9.8 1.3 NA NA

cdeLE 1765 1 1078 0.61 NA NA

cdeOE 1211 1 1225 1.0 125681 104

cdeOE2 26695 22
m w

countAE 1401 1 950 0.68 18714 13

countAE2 5816 4.2
M II

countL 33 1 4.6 1.3 NA NA

countOE 613 1 584 0.95 39012 64
91

countOE2 9235 15
H

dffAE 71.2 1 66.1 0.93 472 6.6

dffAE2 143 2.0
M N

dffL 0.4 1 2.4 6 NA NA

dffOE 36.6 1 43.7 12 1644 45
If

dffOE2 208 5.7
m M

nandAE 0.6 1 1.0 1.7 12.4 21

nandAE2 1.3 22
M N

nandL 0.0 - 0.2 - NA NA

nandOE 1.0 - 1.7 - 39.0 -

Figure 63 : CPU Time Summary
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difference between the analysis times of the "cdeAE" and "countAE" examples. This demon

strates that mixed-mode simulation achieves the goal of concentrating the computational effort

only where it is desired.

Figure 6.6 shows the CPU time per iteration for the examples in Figure 63. The

number of iterations is printed in the SPLICE2 program as the number of net "executions"

and, in the SPLICEl program', as the number of "analyses". For the SPICE2 program, the

equivalent number of iterations is taken to be the number of Newton iterations for the tran

sient analysis times the number of nodes in the circuit. It can be seen from Figure 6.6 and

Figure 63 that the CPU time per iteration for the SPLICE2 program and the SPLICEl pro

gram is relatively constant (approximately lmS to 4mS) for both electrical and logic analyses

whereas the ratio of total CPU time between electrical and logic analyses is quite large

(approximately 400). This suggests that the primary reason for the difference in simulation

speed between logic and electrical analyses is the number of iterations needed to calculate the

behavior, not the fundamental model evaluation speed. This is related to the fact that logic

waveforms have far fewer points than electrical waveforms for the same simulation and that

logic solutions generally do not require iteration to convergence. Figure 6.6 also shows that

the SPICE2 program performs substantially more computation for each solution at a net.

The logic simulation speed of the SPL1CE2 program is seen in Figure 6.6 to be compar

able to that of the SPLICEl program. The major difference between the SPUCE2 program and

the SPLICEl program is that in the SPLICE2 program, each net is scheduled separately

whereas in the SPLICEl program, the fanout list of nets for each element is scheduled. This

difference means that nets can be scheduled at more than one time by the scheduling of the

fanout lists of the elements that fanin to the net. As a result, the logic net may be processed

more times in the SPUCE2 program than in the SPLICEl program. Most of the speedup of

this effect could be achieved in the SPLICE2 program by treating schedules at the current

value of simulated time as special cases and not unscheduling the net at its future value of
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CPU Time per Iteration (ms)
Experiment SPLICE2 SPLICEl SPICE2

aluRL 1.10 NA NA
biglogL 1.28 1.32 NA

cdeAE 2.93 1.67 16.3
cdeAE2 3.89

M M

cdeL 1.25 2.86 NA

cdeLE 3.04 1.70 NA

cdeOE 3.67 1.87 22.1

cdeOE2 4.03
N N

countAE 2.72 1.66 13.8

countAE2 3.67
N H

countL 1.00 2.43 NA

countOE 3.48 1.67 20.3
countOE2 3.89

N m

dffAE 2.49 2.25 13.8

dffAE2 3.41
M N

dffL 1.03 6.76 NA

dffOE 322 2.20 24.0

dffOE2 3.93
H M

Figure 6.6 : CPU Time Per Iteration
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Another way of speeding the logic simulation would be to treat logic nets that have

only one fanin from a gate as special cases. Most logic simulators treat nets by default as hav

ing only one fanin and when more than one fanin is present, an impttdt-vnred-or element is

created to model the multiple fanins. In the mixed-mode environment, it is more convenient

to assume that each net (or wire) has more than one fanin possibly with different signal

types. The special case is then the situation where there is only one fanin and the extra ele

ment that is the net can be collapsed with the logic gate driving it. This optimization should

result in about a factor of 2 improvement in the gate level simulation speed since the effective

number of gates is cut approximately in half.

Some statistics about memory usage in the SPLICE2 program are shown in Figure 6.7

along with the numbers of elements, nets, and models. Statistics for memory usage and other

measurements are summarized in Figure 6.8 and Figure 6.9 for the SPLICEl program and the

SPICE2 program, respectively. The amount of storage required per element is computed by
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taking the difference between the total memory used for all elements for two large examples

and dividing by the difference in the number of elements. For the electrical examples, the

SPUCE2 program requires 88 bytes of storage per element, the SPLICEl program requires

98bytes of storage per element, and the SPICE2 program requires 108 bytes of storage per ele

ment. However, the SPLICEl program lumps all grounded capacitor elements onto the

appropriate net and is able to achieve a much smaller number of elements. The SPLICE2 pro

gram and the SPICE2 program could treat grounded capacitors as a special case and achieve

both execution speedup and storage savings. For the logic examples, the SPLICE2 program

requires 160 bytes of storage per element while the SPLICEl program requires 110 bytes of

storage per element. The difference is primarily attributable to the more compact data struc

ture for the net in the SPLICEl program. The ratio of the number of nets to elements can be

seen from Figure 6.7 to be ^ 1 for the logic examples.

Experiment MEM_BLT MEM NET N ELMS N_NET_ELMS N_MODELS

aluRL 14772 39120 125 151 46

biglogL 15028 46264 237 262 41

cdeAE 77752 297928 3300 475 42

cdeAE2 78208 393872 3300 475 41

cdeL 22624 32984 154 180 43

cdeLE 69996 205972 2160 376 61

cdeOE 113348 456408 5617 577 28

cdeOE2 113804 574384 5617 577 27

countAE 47208 114556 1206 193 39

countAE2 47664 149588 1206 193 38

countL 13644 17508 62 88 38

countOE 61852 184796 2215 247 28

countOE2 62308 231492 2215 247 30

dffAE 31672 18436 107 47 33

dffAE2 32128 21932 107 47 32

dffL 10336 8560 11 37 23

dffOE 33848 31380 291 59 28

dffOE2 34304 37468 291 59 27

nandAE 28792 9160 18 29 28

nandAE2 29248 9632 18 29 27

nandL 8536 6844 5 28 19

nandOE 28796 10988 44 31 26

Figure 6.7 : Memory Usage Summary



Experiment NEXE N_SCHED N_UNSCH NJEUECT MEM_TOT
biglogL 135592 59211 612 0 36496
cdeAE 1198599 354768 112959 203931 79000
cdeOE 655506 186333 57461 123517 118272
cdeL 3429 1442 64 0 27360
cdeLE 635530 189387 59822 96228 62200
countAE 570577 175263 56132 98209 34776
countOE 349511 104632 33480 65453 52080
countL 1881 875 14 0 16032
dffAE 29419 9858 3216 5166 12272
dffOE 19892 6280 1879 4065 15424
dffL 355 205 2 107 10256
nandAE 371 147 42 94 9624
nandOE 879 295 68 150 10080

nandL 31 18 0 10 8976

Figure 6.8 : SPLICEl Statistics Summary
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Experiment NUMEL MFETS NUMTTP NUMRTP NUMNTT MEM_T0T

cdeAE 3307 712 2322 547 9972 357640
cdeOE 5624 1326 2970 736 10274 611312
countAE 1213 259 1877 414 7970 132056

countOE 2222 517 2539 615 8573 241176
dffAE 115 22 391 59 1362 13492
dffOE 299 66 569 114 1848 32652

nandAE 24 3 74 2 162 3012

nandOE 50 9 86 9 227 5632

Figure 6.9: SPICE2 Statistics Summary

Performance statistics for the ITA and ITA2 algorithms in the SPLICE2 program are

given in Figure 6.10. The data in the column labeled N.ACC.S give the number of solutions

accepted at each electrical net for the ITA2 algorithm. These solutions may be recomputed

even after being accepted already due to the non-convergence of a fanin net and therefore it is

possible for the number of accepted solutions to be higher than the number of solutions actu

ally found. The data in the column labeled N.FL.S give the number of unique solutions

actually flushed from the solution buffer. Figure 6.10 shows that the ratio between accepted

and flushed solutions for the ITA2 algorithm is less than two, indicating that the speed disad

vantage of the ITA2 algorithm compared to the ITA algorithm is not due to unconverged nets

re-scheduling their fanouts that have already converged. This is consistent since there is a
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comparable mechanism in the ITA algorithm and the tolerance criteria are as close as possible.

The data in Figure 6.11 in the column labeled TOT.ITER give the total number of iterations

for all electrical nets and the data in the column labeled USE/TOT give the fraction of itera

tions that actually contributed to solutions that were flushed i.e., were useful. Iterations are

wasted when the solution on a net is rejected either by excessive truncation error or a fanin

that must cut its time-step. The fraction of useful iterations is also not small enough to

explain the performance disadvantage of the ITA2 algorithm. The ratio of total iterations for

ITA2 and ITA algorithms does mirror the ratio of computation times and the difference is due

to the time-step control algorithms. The ITA2 algorithm allows time-steps to be computed

based on truncation error whereas the ITA time-step control uses a minimum time-step. Thus,

the ITA2 algorithm is potentially more accurate and robust to changes in circuit properties at

the expense of computation overhead. The key however, lies in the number of synchroniza

tions (N.SYNC in Figure 6.11) that occur asa result of rejected solutions(N.REJ.S in Figure

6.10). Note that most of the rejected solutions force a time-step which is too small to

represent with the current time grid (or local minimum resolvable time) and this causes a

synchronization whereby all of the nets are scheduled at the new time point. This is neces

sary, as has been described in Chapter 4, to guarantee that the ratio of the longest to shortest

time-step is bounded by the buffer size and that all solutions can be iterated together. This

means that a small fraction of the nets are determining the minimum time-step and the rest

of the nets are not fully able, due to the synchronizations, to take advantage of the solution

buffer to achieve a longer time-step than the fast changing nets. There is wide latitude in the

design of the window time-step control algorithm and it should be possible to reduce the

number of synchronizations significantly.

Figure 6.12 shows a pair of histograms for the number of iterations taken by all nets of

a D flip-flop (dffAE2) as a function of the time-steps actually taken normalized to the local

minimum resolvable time in effect when the solution was obtained and the ideal time-step

calculated from the truncation error estimate of the time-step required for the solution at the



Experiment N_ACC_S N_REJ_S N_IT_REJ N_FL_S

cdeAE 0 0 0 222667

cdeAE2 2700486 2625 406 1430613

cdeLE 0 0 0 95010

cdeOE 0 0 0 128547

cdeOE2 3230480 3513 0 2020790

countAE 0 0 0 103517

countAE2 787447 1593 175 420588

countOE 0 0 0 66212

countOE2 1136873 2548 0 711365

dffAE 0 0 0 4675

dffAE2 18660 114 13 8633

dffOE 0 0 0 3630

dffOE2 23811 215 0 17609

nandAE 0 0 0 56

nandAE2 168 5 0 112

nandOE 0 0 0 112

Figure 6.10: Electrical Statistics for Solutions

Experiment N.SYNC N.WINDOW TOT_ITER USE/TOT

cdeAE 0 4000 1075979 0.999

cdeAE2 1684 2171 5113677 0.671

cdeLE 0 4000 568770 0.999

cdeOE 0 4000 320900 0.997

cdeOE2 2121 2602 6606831 0.665

countAE 0 4000 506002 0.999

countAE2 955 1440 1578167 0.738

countOE 0 4000 167378 0.998

countOE2 1781 2236 2365764 0.679

dffAE 0 1000 26435 0.998

dffAE2 71 211 41309 0.862

dffOE 0 1000 9215 0.995

dffOE2 132 275 52135 0.845

nandAE 0 30 193 0.979

nandAE2 2 16 409 0.905

nandOE 0 30 307 0.974

Figure 6.11: Electrical Statistics for Time-Steps
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net also normalized to the local minimum resolvable time. The ideal time-step is an upper

bound on the required time-step since breakpoints or other changes at fanin nets can force a

smaller time-step to be necessary. It can be seen from Figure 6.12 that most of the time-steps

taken are at the value of the local minimum resolvable time while the ideal time-steps are

much larger. This indicates that quite a bit of improvement is possible in the window control
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algorithm.

The OR gate versions of the examples are seen in Figure 63 to require relatively more

CPU time for ITA2 than the AND gate versions of the examples. This is attributable to the

fact that the circuits are more unidirectional and therefore the fraction of nets that are chang

ing is fewer. The internal nets of a NAND gate all need to be iterated together when any

input changes, however a NOR gate of arbitrary size has only one internal net to be iterated.

The data in the column labeled N_ITJiEJ in Figure 6.10 give the number of rejected solu-

5000

Figure 6.12 : Actual vs. Ideal Time-Step Histogram



Experiment NEXE N_TOT_EV NSCHED NRESCH

aluRL 83400 250901 124748 41220

biglogL 263447 806249 398898 135211

cdeAE 1084255 13917454 1205344 121075

cdeAE2 5118187 69935592 6651414 1532775

cdeL 5816 19317 8843 2869

cdeLE 580267 7290543 656874 76539

cdeOE 329176 6041251 345949 16765

cdeOE2 6612155 115755096 8192673 1579964

countAE 514278 6555817 570223 55931

countAE2 1581180 21105136 2049977 468627

countL 3496 10046 5173 1611

countOE 175654 3043370 184251 8589

countOE2 2370336 40759740 2948791 578231

dffAE 28566 320399 31646 3071

dffAE2 41777 500411 54331 12529

dffL 388 709 517 114

dffOE 11346 166174 11896 541

dffOE2 52738 893851 63055 10280

nandAE 274 2131 292 10

nandAE2 457 4505 550 84

nandL 45 21 56 3

nandOE 388 4624 414 15

Figure 6.13 : Scheduler Operation Statistics
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tions that were rejected due to a maximum iteration count being exceeded. The number of

iteration limit rejections is non-zero only for the AND gate versions of the examples. This is

consistent with the fact that the strong bilateral coupling present in the AND gate versions

leads to off-diagonal terms in the iteration matrices and therefore larger eigenvalues. The

iteration matrices for the OR gate versions which are unidirectional are more diagonally dom

inant and therefore have smaller eigenvalues and do not require as many iterations for solu

tion. It may be possible that, for some circuits, stability requirements rather than truncation

error estimates dictate the minimum time-steps required.

Figure 6.13 and Figure 6.14 are summaries of statistics gathered about the operation of

the event scheduler in the SPLICE2 program. Some of these results are presented in a

different form in Chapter 2 in the description of the design of the event scheduler. The data
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Experiment NSCH^HIT SCH_HR NSCH_TT_HIT SCH_TT_HR COMP_HR

aluRL 50943 0385 37671 0.914 0.691

biglogL 180739 0.668 128502 0.95 0.762

cdeAE 147784 0.683 988945 0.999 0.942

cdeAE2 2443830 0.896 3923920 0.998 0.956

cdeL 3741 0.603 2634 0.918 0.702

cdeLE 74606 0.602 532982 0.997 0.923

cdeOE 88884 0.882 245138 0.994 0.961

cdeOE2 3204247 0.96 4853323 0.998 0.983

countAE 69550 0.645 462407 0.998 0.931

countAE2 640437 0.799 1248795 0.996 0.919

countL 1851 0.487 1372 0.852 0396

countOE 46675 0.804 126218 0.99 0.932

countOE2 1100568 0.93 1765607 0.997 0.97

dffAE 2918 0.381 23980 0.982 0.838

dffAE2 10256 0312 34282 0.98 0.809

dffL 72 0.154 50 0.439 0.21

dffOE 2455 0.46 6556 0.944 0.733
dffOE2 18559 0.716 37124 0.973 0.869

nandAE 40 0.22 110 0.688 0.439

nandAE2 53 0.172 242 0.752 0.468

nandL 11 0.196 0 0 0.186

nandOE 102 0.464 194 0.907 0.682

Figure 6.14 : Scheduler Performance Statistics

in the column labeled NEXE give the number of times that a net element was processed by

the scheduler next event mechanism. This means the number of times that the schedule

functions associated with all net models were called. The data in the column labeled

NJTOT.EV give the total number of times that net and element evaluation functions were

called. The data in the column labeled NSCHED give the number of times that the scheduler

was asked to put an event into the schedule queue and the data in the column labeled

NRESCH give the number of times that the events were removed from the schedule queue

and re-scheduled. The data in the column labeled NSCH.HIT give the number of times that

a call to the scheduler occurred and the schedule cache pointer was valid (a hit is when the

cache pointer was used as the starting point for the linear list insertion of the event). The

data in the column labeled NSCH.HR give the ratio of times that there was a cache hit to the
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total number of schedules for the schedule cache pointer. The data in the column labeled

NSCH_TT_HIT give the number of times that the there was a cache hit for the "This Time"

(or zero delay schedule) cache pointer. The data in the column labeled NSCH.TT.HR give

the ratio of times that there was a cache hit to the total number of schedules for the "This

Time" schedule cache pointer. The data in the column labeled COMP.HR give the composite

hit ratio for both of the schedule cache pointers. The hit ratios show that the two element

schedule cache works quite adequately for electrical simulation but begins to be inefficient for

the larger logic simulation examples. The cached indexed list scheduling method described in

Chapter 2 should restore the performance for these cases.



CHAPTER 7

Conclusions

A software program architecture for the simultaneous simulation of circuits at levels

ranging from detailed, accurate, electrical simulation to high-level register-transfer models has

been described and demonstrated to be effective in the SPL1CE2 mixed-mode simulation pro

gram. The program architecture accommodates simulation levels that are schematic in nature

where the elements to be modeled communicate via signals transmitted along wires. Simula

tion levels for electrical, logic, and register-transfer levels of simulation have been imple

mented and demonstrated to work effectively in the SPLICE2 program. Fundamental to these

models is the definition of a small number of signal types with the property that each has not

only a signal level but also a signal strength. The signal strengths are then used for combin

ing signals at a wire in a uniform way. Other types of simulation can be added easily by

defining the signal type, coercions to other levels, and adding the net and element models. One

example of another type of simulation that the SPLICE2 program has been used to explore is a

discrete electrical simulation method named ELOGIC (for Electrical LOGIC simulation).

Each type of simulation makes different demands on how time is represented and

activity in the simulator is scheduled and in a mixed-mode simulator, all of the different types

of simulation are carried out simultaneously. In the SPLICE2 program, a representation for

time and a scheduling technique is used that is capable of accommodating the different simula

tion levels. At the electrical level of simulation, the iterated timing analysis algorithm pro

vides a completely decoupled algorithm for the dc-transient simulation problem that is up to

two orders of magnitude faster than found with the SPICE2 program. At the logic and regis

ter levels of simulation, the performance is around 1000 net solutions per second which, since

the current implementation treats all wires as wired-or gates, corresponds to about 2000 gate

143
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evaluations per second. This is comparable to the performance of the SPLICEl program.

Thus, the SPUCE2 program has demonstrated that it is possible to perform widely different

types of simulation simultaneously in a single program. This is achieved using a program

architecture that facilitates the addition of new simulation types without sacrificing either

simulation speed or accuracy.

The cached indexed list method for event scheduling appears promising and deserves to

be studied more closely. The application of cache-like techniques to algorithms is an impor

tant way to improve the efficiency of the algorithm while making its design more simple.

This technique should find wider application for general purpose event-driven simulation.

The iterated timing analysis algorithm and other issues for event driven circuit simula

tion also deser.ve further work. A number of techniques fall under the heading of improve

ments to the rate of convergence to a solution of the iteration of a system of equations. A fas

ter rate of convergence usually also results in a more accurate result. The coupling method

described in Chapter 4 is a new technique that requires further study of its properties and

may also have wider application to structural engineering or other problems that use relaxa

tion of systems of equations.

A number of techniques such as successive over-relaxation (sor) and the coupling method

described in Chapter 4 may benefit from a variation of the controlling variables of the algo

rithm as a function of circuit properties. This kind of variation of the algorithm results in

non-stationary or semi-iterative methods, such as the Chebyshev semi-iterative method for the

solution of linear systems of equations. The idea is that as the solution variable gets closer to

the point of contraction, the properties of the iterative process can be measured and the itera

tion algorithm can be adjusted accordingly.

Over- and under-relaxation can be used to accelerate or stabilize an iterative process,

respectively. Further work is required to explore the choice of the largest factor that results

in a stable iteration in the context of electrical simulation. Further, estimation of asymptotic
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values may improve significantly the convergence rate and accuracy for some problems.

The order in which the equations are iterated can have a dramatic effect on the rate of

convergence of a system of equations and ways of re-ordering the solution sequence are worth

examining. Local properties such as signal level or strength variation may be useful for con

trolling the equation ordering.

During iteration to convergence, the system of equations being solved behaves like the

transient simulation in discrete time, or the z domain, of an equivalent circuit. This observa

tion allows one to evaluate changes to algorithms using circuit intuition about stability and

slew rate to obtain the fastest convergence rate.

Currently, the solution of equations in the SPUCE2 program is completely decoupled

and there are no matrices explicitly represented in the program. It is likely to be advanta

geous to cluster equations into sub-matrices such as in the original SPLICEl [ll SAMSON, [13]

and RELAX [53] programs. This technique could be used for nets which are so tightly cou

pled that the iteration sequence is either unstable or converges slowly using the completely

decoupled algorithm. How to partition the circuit into these sub-blocks then becomes an

important issue as well.

Other areas for further work include extending iterated timing analysis to handle induc

tors and other "non-nodal" elements such as floating voltage sources. It is clear that

relaxation-based circuit analysis techniques can be applied to the problems of AC, noise, and

sensitivity calculations. Finally, special purpose hardware for mixed-mode simulation will

have a major impact on this field of study.
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APPENDIX A

Splice2 Listing

This appendix contains the C language source code for all of the SPLICE2 program. To

obtain this program contact Deborah Dunster at the following address:

EECS Industrial Liason Program
437 Cory Hall
University of California
Berkeley, CA 94720
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APPENDIX B

Example Inputs and Outputs

This appendix contains input examples and their outputs from the SPL1CE2 and

SPLICEl programs. In addition, selected examples also have hierarchical call graph profiling

statistics and some examples have the statistics from the SPICE2 program. To obtain these pro

grams contact Deborah Dunster at the following address:

EECS Industrial Liason Program
437 Cory Hall
University of California
Berkeley, CA 94720
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APPENDIX C

Tables of SOR Results

This appendix contains tables of results on the convergence rates for the arrays of

resistors described in Chapter 4. In the tables that follow, sot refers to the successive-over-

relaxation parameter and couple factor refers to the heuristic coupling factor both of which

are described in more detail in Chapter 4. A negative value for the number of iterations

means that convergence was not achieved. The maximum and total numbers of iterations are

reported for each combination of sor parameter and coupling factor. The maximum number of

iterations refers to largest number of iterations required for the solution of any electrical net.

The total number of iterations refers to the sum of the number of iterations required for the

solution of all electrical nets.
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Maximum DC Iterations

N
SORFactor (coupling"5 0)

\.o 1.1 U 1.3 1.4 13 1.6 J.7 1.8 1.?
1,3 1 5 6 7 9 11 15 21 32 67

1.4 7 5 7 8 10 12 15 22 34 68

13 12 10 7 9 11 14 18 23 38 65

1,6 18 15 12 10 11 13 16 25 39 83

U 25 21 17 14 12 15 19 27 39 83

1,8 30 26 22 18 15 17 19 23 40 90

1,9 39 31 27 22 19 16 20 27 42 89

1,10 47 39 32 28 23 19 20 26 40 71

1,11 54 44 37 32 27 23 22 27 37 87
1,12 62 48 42 35 31 25 20 23 36 66

1,13 67 59 46 39 34 28 24 25 38 86
1,14 75 62 52 46 38 33 27 24 37 82

1,15 83 68 57 47 40 36 31 27 37 78
1,16 90 73 64 54 48 39 34 27 36 66
1,17 98 82 68 58 48 42 37 31 34 80
1,18 104 88 70 60 50 44 40 33 39 72
1,19 113 92 76 62 54 46 42 36 37 69
1,20 119 99 78 70 56 49 45 39 40 74

2a 11 9 6 8 10 12 16 21 31 63
23 41 34 29 24 19 13 16 22 32 62
2,4 82 71 58 49 41 34 26 21 32 61
23 130 107 93 80 67 55 45 34 36 64
2,6 153 134 112 91 78 64 51 35 59 184
2,7 237 204 173 137 116 99 82 67 49 65
2,8 288 245 215 181 144 121 101 83 64 63
2,9 335 286 230 209 168 143 116 97 75 53
2,10 382 338 276 221 189 164 146 114 90 55
3,2 25 21 18 14 9 12 16 19 30 64
3,3 99 83 70 59 50 41 32 22 32 65
3,4 210 175 152 126 105 90 73 57 38 55
33 341 287 243 208 175 146 123 98 72 55
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Total DC Iterations

N
SOR Factor (coupling* 0)

1.5 1.6 1.7 1.9 1.9

U 11 15 21 32 67

1,4 23 30 42 66 133

13 38 48 65 100 187

1,6 48 62 88 131 271

1,7 63 79 111 164 311

1,8 83 96 123 189 375

1,9 101 123 157 225 428

1,10 139 140 182 261 480

1,11 186 166 208 299 553

1,12 227 183 216 322 560

1,13 281 232 257 347 667

1,14 361 288 276 381 712

1,15 432 364 314 396 756

1,16 502 428 349 433 771

1.17 579 497 408 475 856

1,18 641 568 461 549 906

1,19 719 643 526 580 970

1,20 814 722 612 603 1029

2,2 36 44 61 89 183

2,3 97 107 150 234 470

2,4 468 360 296 442 879

23 1252 1024 766 744 1370

2,6 2134 1693 1135 1899 6231
2,7 4611 3783 3069 2210 2475

2,8 7381 6107 5021 3775 3285

2,9 11142 9026 7513 5770 3684
2,10 15736 13922 10743 8409 4738

32 75 107 130 202 426

33 1013 782 493 750 1414

3.4 5499 4459 3487 2238 3132

33 17689 14918 11879 8640 5826
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Maximum DC Iterations (sor=1.0)

N
Coupling Factor

1^

0.0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.?

1,3 1 1 1 1 1 1 1 1 1

1,4 7 7 6 6 5 6 6 5 7

13 12 12 11 10 8 7 9 7 11

1,6 18 17 16 14 13 11 10 10 12

1,7 25 23 21 19 17 15 11 12 14

1,8 30 28 26 23 21 18 16 13 12

1.9 39 38 33 28 26 22 19 15 19

1,10 47 42 38 35 32 27 23 20 22

1,11 54 48 45 41 36 30 27 22 23

1,12 62 57 51 46 42 36 29 24 20

1,13 67 66 61 53 47 41 35 27 24

1,14 75 69 65 58 52 46 37 31 28

1,15 83 77 70 66 59 49 41 35 27

1,16 90 83 78 71 64 54 47 39 32

1,17 98 90 83 76 69 59 51 43 35

1,18 104 96 90 82 74 66 55 46 37

1,19 113 104 98 88 81 71 59 48 39

1,20 119 114 102 94 84 78 61 51 42

22 11 11 10 9 8 6 7 7 8

2,3 41 37 35 33 31 29 26 23 21

2,4 82 80 73 70 65 63 56 53 47

23 130 125 119 112 109 100 93 87 80

2,6 184 175 170 162 151 145 137 128 117

2,7 237 224 222 202 202 191 173 163 158

2,8 288 282 269 251 252 231 225 213 202

2,9 335 325 320 305 293 287 271 256 243

2.10 382 354 354 354 341 329 309 295 285

32 25 24 22 21 20 18 17 15 14

3,3 99 96 92 89 83 81 78 73 69

3,4 210 201 197 191 183 178 169 161 155

33 341 326 320 310 298 291 281 271 263
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Total DC Iterations

vr
Coupling Factor (sor=1.0)

IS
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1,3 1 1 1 1 1 1 1 1 1

1,4 13 13 11 11 10 11 11 10 13

13 33 34 31 27 23 18 26 20 30

1,6 67 63 58 51 47 38 34 35 44

1,7 117 107 95 85 76 66 49 52 59

1,8 173 157 145 132 116 99 86 67 67

1,9 259 243 218 184 169 147 123 97 117

1,10 351 320 288 253 234 201 169 146 151

1,11 454 398 378 346 295 253 224 182 168

1,12 573 523 468 428 383 325 269 219 169

1,13 693 665 609 543 478 409 344 277 229

1,14 851 767 740 651 575 507 413 346 276

1,15 1002 946 861 802 701 579 502 419 323

1,16 1188 1082 1038 927 831 698 603 488 395

1,17 1377 1278 1168 1052 977 815 679 577 459

1,18 1558 1446 1357 1237 1119 959 781 660 521

1,19 1797 1636 1573 1415 1298 1108 891 737 587

120 2000 1912 1716 1592 1431 1269 1003 830 656

22 31 31 28 25 22 16 21 19 24

2,3 315 288 272 256 237 220 199 179 154

2,4 1200 1152 1065 1008 941 910 813 753 681

23 3026 2910 2777 2595 2521 2318 2165 2013 1867

2,6 6231 5991 5773 5542 5105 4922 4623 4313 3950

2,7 11140 10436 10412 9454 9441 8863 8118 7638 7408

2,8 17669 17175 16599 15448 15523 14188 13703 12960 12323

2,9 26189 25520 25106 23839 22880 22132 21287 20021 18877

2,10 37044 34330 33795 34239 32341 31356 29284 28574 27274

32 170 162 154 138 131 126 110 102 89

3,3 2495 2427 2321 2230 2093 2055 1978 1816 1732

3,4 12887 12401 12158 11805 11303 10880 10430 9859 9600

33 41338 39710 39067 37808 36430 35488 34388 33135 32126



Maximum DC Iterations

N
Coupling factor ("exact coupling" SOR=1.0)

0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.? 0.9
1,3 1 1 1 1 1 1 1 1 1 1

1,4 7 7 6 6 6 7 7 8 8 8

13 12 11 10 8 8 12 11 13 18 19

1,6 18 16 14 12 9 11 14 19 29 90

1,7 25 22 19 16 11 13 20 36 -1 -1

1,8 30 27 23 20 16 14 22 82 -1 -1

1,9 39 34 28 24 19 17 26 -1 -1 -1

1,10 47 41 35 28 23 17 34 -1 -1 -1

1,11 54 48 42 33 27 18 36 -1 -1 -1

1.12 62 52 46 39 29 22 40 -1 -1 -1

1,13 67 61 52 42 33 25 43 -1 -1 -1

1,14 75 68 61 49 37 26 49 -1 -1 -1

1,15 83 74 65 54 42 29 47 -1 -1 -1

1,16 90 82 71 62 45 33 67 -1 -1 -1

1,17 98 89 78 65 49 36 68 -1 -1 -1

1,18 104 96 83 71 54 39 42 -1 -1 -1

1,19 113 99 88 76 55 43 57 -1 -1 -1

1,20 119 109 93 79 67 46 64 -1 -1 -1

22 11 10 9 7 7 8 8 14 19 25

2,3 41 38 34 30 27 23 18 11 20 29

2,4 82 78 71 66 60 53 45 38 28 26

23 130 124 116 108 99 88 80 68 56 43

2,6 184 175 164 154 143 128 118 102 87 71

2,7 237 228 208 197 184 168 156 140 124 102

2,8 288 280 254 250 235 218 199 180 156 133

2,9 335 326 308 293 270 262 244 221 191 163

2r10 382 387 360 343 326 301 285 256 229 198

32 25 23 22 20 18 16 13 10 11 13

3,3 99 94 90 87 82 75 69 64 57 52

3,4 210 200 193 182 178 168 157 146 139 127

3,5 341 324 312 307 292 279 265 256 239 226
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Total DC Iterations

N
Coupling factor (" exact coupling" SOR-1.0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1,3 1 1 1 1 1 1 1 1 1

1.4 13 11 11 11 13 13 15 15 16

13 30 27 21 21 31 28 36 49 53

1,6 59 50 42 33 41 51 73 108 349

1.7 100 86 71 48 57 89 169 -1 -1

1.8 151 132 109 86 69 119 461 -1 -1

1.9 225 184 157 123 106 161 -1 -1 -1

1,10 306 262 210 168 122 244 -1 -1 -1

1.11 402 352 280 224 152 301 -1 -1 -1

1.12 481 435 353 269 198 341 -1 -1 -1

1.13 632 530 428 339 248 430 -1 -1 -1

1.14 773 664 522 414 284 536 -1 -1 -1

1,15 898 795 647 496 341 459 -1 -1 -1

1,16 1085 936 786 569 405 627 -1 -1 -1

1.17 1237 1102 900 676 481 719 -1 -1 -1

1,18 1449 1255 1074 778 554 609 -1 -1 -1

1.19 1573 1419 1212 866 632 848 -1 -1 -1

1,20 1824 1572 1320 1058 721 940 -1 -1 -1

22 28 25 19 21 24 24 36 49 65

2,3 291 261 232 205 170 137 81 145 223

2,4 1126 1023 953 877 753 652 532 407 327

23 2877 2702 2499 2293 2044 1835 1583 1288 977

2.6 5974 5562 5251 4850 4344 4031 3430 2932 2405
2.7 10666 9693 9286 8552 7843 7277 6531 5652 4578

2.8 17215 15717 15300 14437 13342 12190 10927 9479 7928

2,9 25377 24205 22945 21175 20411 18965 17194 14812 12644

2,10 36578 34637 32906 31270 28571 27211 24555 21905 18789

32 152 148 131 117 103 88 64 70 86

3,3 2360 2270 2193 2061 1869 1733 1605 1433 1273
3,4 12412 11884 11301 10952 10240 9681 9043 8514 7864

33 39607 38311 37492 35630 34089 32409 31211 29089 27533



Maximum DC Iterations

N
SOR Factor (coupling"3 0.3)

1.0 1.1 1.2 1-3 1.4 13 1.6 1.7 1.9
1,3 1 5 6 7 9 11 15 21 32

1,4 6 7 8 10 13 17 25 40 115

13 10 8 11 12 16 22 33 70 -1

1,6 14 10 10 11 17 25 40 119 -1

1,7 19 15 11 13 18 28 46 163 -1

1,8 23 19 15 15 21 28 46 233 -1

1,9 28 23 19 17 21 25 43 292 -1

1,10 35 27 23 18 20 30 49 367 -1

1,11 41 32 27 22 25 29 52 482 -1

1,12 46 36 30 24 22 30 52 -1 -1

1,13 53 41 33 27 21 28 50 -1 -1

1,14 58 47 37 31 24 26 50 -1 -1

1,15 66 50 41 34 27 28 53 -1 -1

1,16 71 54 46 38 31 36 50 -1 -1

1,17 76 66 51 41 34 30 46 -1 -1

1,18 82 69 55 43 37 31 53 -1 -1

1.19 88 72 59 46 39 32 49 -1 -1

1,20 94 73 62 49 41 35 52 -1 -1

22 9 7 9 10 14 21 31 66 -1

2,3 33 28 22 16 15 18 29 60 -1

2,4 70 57 47 38 30 21 29 53 -1

23 112 93 78 63 50 39 28 50 -1

2,6 162 138 112 88 74 58 43 52 239

2,7 202 170 140 122 95 77 58 47 219

2,8 251 214 182 145 115 96 74 46 209

2,9 305 264 216 177 138 115 87 60 154

2,10 354 298 234 208 172 129 104 73 205

32 21 17 13 11 13 16 26 54 253

3,3 89 72 60 50 40 30 24 37 101

3,4 191 159 130 110 90 72 55 36 81

33 310 264 217 191 147 123 97 68 75
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Total DC Iterations

N
SOR Factor (coupling* 0.3)

1.0 1.1 1.2 1.3 1.4 13 1.6 1.7 1.8

1,3 1 5 6 7 9 11 15 21 32

1,4 11 13 15 19 24 32 48 78 221

13 27 21 29 33 44 61 89 200 -1

1.6 51 37 36 42 61 89 144 430 -1

1.7 85 65 46 59 80 118 206 771 -1

1.8 132 105 80 77 102 135 239 1303 -1

1.9 184 149 121 100 126 156 279 1930 -1

1,10 253 205 168 129 147 207 354 2784 -1

1.11 346 266 225 176 189 238 403 4106 -1

1,12 428 334 272 218 192 245 443 -1 -1

1.13 543 430 339 268 216 277 500 -1 -1

1.14 651 536 405 332 260 297 540 -1 -1

1,15 802 589 490 404 313 339 589 -1 -1

1,16 927 691 604 479 380 429 593 -1 -1

1.17 1052 881 716 555 446 407 647 -1 -1

1,18 1237 1019 799 629 513 451 727 -1 -1

1.19 1415 1125 912 718 583 476 740 -1 -1

1,20 1592 1236 1029 802 656 537 836 -1 -1

22 25 21 25 30 40 59 89 194 -1

2,3 256 208 165 121 111 132 218 447 -1

2,4 1008 821 667 543 420 271 378 691 -1

23 2595 2147 1811 1443 1150 892 622 1108 -1

2,6 5542 4683 3854 3001 2508 1941 1403 1478 7370

2,7 9454 7991 6624 5714 4398 3525 2636 1840 8259

2,8 15448 13086 11197 8892 6999 5862 4443 2704 10122

2,9 23839 20459 16760 13869 10790 8940 6729 4549 10783
2,10 34239 28864 22447 20059 16464 12265 9769 6803 13076

3,2 138 110 88 74 90 109 174 315 1728

3,3 2230 1824 1485 1222 987 741 563 850 2345
3,4 11805 9840 8016 6735 5499 4426 3323 1945 4413

33 37808 32300 26568 23300 17925 14918 11743 8151 7309



Maximum DC Iterations

N
SOR Factor (coupling* 03)

1.0 1.1 1.2 1.3 1.4 13 1.6 1.7 1.8 1.9

1,3 1 5 6 7 9 11 15 21 32 67

1,4 6 7 9 12 16 22 34 81 -1 -1

13 7 9 11 16 24 37 97 -1 -1 -1

1,6 11 10 14 17 30 58 -1 -1 -1 -1

1.7 15 12 15 22 33 82 -1 -1 -1 -1

1.8 18 13 16 22 34 104 -1 -1 -1 -1

1.9 22 17 17 23 37 145 -1 -1 -1 -1

1.10 27 21 18 24 39 180 -1 -1 -1 -1

1,11 30 24 19 27 43 204 -1 -1 -1 -1

1,12 36 27 21 24 42 257 -1 -1 -1 -1

1,13 41 32 24 28 45 312 -1 -1 -1 -1

1,14 46 34 27 28 47 371 -1 -1 -1 -1

1,15 49 38 30 27 44 -1 -1 -1 -1 -1

1,16 54 42 34 29 38 -1 -1 -1 -1 -1

1,17 59 48 38 30 45 -1 -1 -1 -1 -1

1,18 66 50 41 32 49 -1 -1 -1 -1 -1

1,19 71 53 43 33 38 -1 -1 -1 -1 -1

1,20 78 56 45 35 40 -1 -1 -1 -1 -1

22 6 9 10 14 25 34 94 -1 -1 -1

2,3 29 23 17 15 20 38 87 -1 -1 -1

2,4 63 50 39 30 20 31 65 -1 -1 -1

23 100 81 65 51 39 32 61 -1 -1 -1

2,6 145 120 95 75 60 42 57 -1 -1 -1

2,7 191 155 128 99 79 58 52 -1 -1 -1

2,8 231 195 159 129 98 75 55 -1 -1 -1

2,9 287 232 193 162 119 91 59 301 -1 -1

2,10 329 276 222 178 151 107 74 -1 -1 -1

32 18 14 9 13 16 26 52 -1 -1 -1

3,3 81 68 53 43 33 21 33 85 -1 -1

3,4 178 147 119 98 78 59 38 66 -1 -1

33 291 240 204 168 132 105 76 59 -1 -1
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Total DC Iterations

N
SORFactor (coupling* 03)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1,3 1 5 6 7 9 11 15 21 32 67

1,4 11 13 17 23 30 42 66 157 -1 -1

13 18 24 30 44 64 101 283 -1 -1 -1

1,6 38 35 50 64 107 216 -1 -1 -1 -1

1.7 66 54 65 92 153 375 -1 -1 -1 -1

1,8 99 72 80 111 177 582 -1 -1 -1 -1

1,9 147 111 107 143 241 948 -1 -1 -1I -1

1,10 201 154 126 180 290 1371 -1 -1 -1 -1

1,11 253 199 153 201 352 1781 -1 -1 -'. -1

1,12 325 249 184 209 379 2470 -1 -1 -1 -1

1,13 409 324 237 272 402 3279 -1 -1 -'. -1

1.14 507 379 295 308 470 4246 -1 -1 -'.I -1

1.15 579 457 351 316 491 -1 -1 -1 -1L -1

1.16 698 550 428 339 462 -1 -1 -1 -1L -1

1.17 815 665 517 387 571 -1 -1 -1 -1L -1

1.18 959 732 582 440 615 -1 -1 -1 -1I -1

1.19 1108 816 660 484 622 -1 -1 -1 I -1

1,20 1269 922 735 551 671 -1 -1 -1 i -1

22 16 25 30 40 67 98 279 -1 i -1

2,3 220 173 122 111 136 248 660 -1 -1[ -1

2,4 910 725 555 420 269 424 894 -1 -1L -1

23 2318 1877 1498 1184 891 669 1340 -1 I -1

2,6 4922 4068 3245 2533 2012 1395 1693 -1 I -1

2,7 8863 7212 5949 4614 3651 2633 2024 -1 L -1

2,8 14188 11953 9571 7812 5990 4480 2634 -1 I -1

2,9 22132 18139 15009 12373 9258 6995 4452 21632 - I -1

2,10 31356 26453 20665 16960 14223 10123 6790 -1 I -1

32 126 95 57 88 109 176 343 -1 I -1

33 2055 1691 1345 1065 803 484 774 2096 - L -1

3.4 10880 9115 7379 6054 4750 3619 2265 3655 -I -1

33 35488 29344 24950 20464 16025 12746 9188 5804 -1 -1



Maximum DC Iterations

N
SOR Factor (coupling* 0.7)

1.0 1.1 1.2 1.3 1.4 13 1.6 1.7 1.8 1.9

1.3 1 5 6 7 9 11 15 21 32 67

1,4 5 8 9 12 19 28 59 -1 -1 -1

13 7 11 15 21 39 136 -1 -1 -1 -1

1,6 10 14 19 32 93 -1 -1 -1 -1 -1

1,7 12 16 25 46 -1 -1 -1 -1 -1 -1

1,8 13 17 27 60 -1 -1 -1 -1 -1 -1

1,9 15 18 28 75 -1 -1 -1 -1 -1 -1

1,10 20 24 32 101 -1 -1 -1 -1 -1 -1

1,11 22 22 31 152 -1 -1 -1 -1 -1 -1

1,12 24 28 33 141 -1 -1 -1 -1 -1 -1

1,13 27 22 32 174 -1 -1 -1 -1 -1 -1

1,14 31 23 32 -1 -1 -1 -1 -1 -1 -1

1,15 35 25 39 227 -1 -1 -1 -1 -1 -1

1,16 39 30 34 249 -1 -1 -1 -1 -1 -1

1,17 43 32 45 -1 -1 -1 -1 -1 -1 -1

1,18 46 35 45 353 -1 -1 -1 -1 -1 -1

1,19 48 38 38 -1 -1 -1 -1 -1 -1 -1

1,20 51 39 48 464 -1 -1 -1 -1 -1 -1

22 7 10 14 27 36 -1 -1 -1 -1 -1

2,3 23 17 15 21 43 172 -1 -1 -1 -1

2,4 53 41 30 19 33 84 -1 -1 -1 -1

23 87 70 55 39 33 79 -1 -1 -1 -1

2,6 128 103 81 61 42 66 -1 -1 -1 -1

2,7 163 133 106 80 58 69 -1 -1 -1 -1

2,8 213 172 136 104 80 55 -1 -1 -1 -1

2,9 256 202 169 129 92 58 -1 -1 -1 -1

2,10 295 244 202 141 109 72 -1 -1 -1 -1

3,2 15 10 13 16 26 57 -1 -1 -1 -1

3,3 73 57 46 35 22 32 87 -1 -1 -1

3,4 161 133 105 86 64 44 55 -1 -1 -1

33 1271 228 186 150 114 85 54 -1 -1 -1
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Total DC Iterations

N
SOR Factor (coupling* 0.7)

1.1 1.2 1.3 1.4 13 1.6 1.7 1.8 1.9

1,3 1 6 7 9 11 15 21 32 67

1,4 15 18 24 36 54 113 -1 -1 -1

13 30 42 57 107 392 -1 -1 -1 -1

1,6 50 70 122 358 -1 -1 -1 -1 -1

1,7 74 113 209 -1 -1 -1 -1 -1 -1

1,8 84 144 334 -1 -1 -1 -1 -1 -1

1,9 116 186 488 -1 -1 -1 -1 -1 -1

1,10 173 230 746 -1 -1 -1 -1 -1 -1

1,11 179 264 1150 -1 -1 -1 -1 -1 -1

1,12 229 282 1360 -1 -1 -1 -1 -1 -1

1,13 210 328 1842 -1 -1 -1 -1 -1 -1

1,14 242 370 -1 -1 -1 -1 -1 -1 -1

1,15 287 447 2845 -1 -1 -1 -1 -1 -1

1,16 363 407 3328 -1 -1 -1 -1 -1 -1

1,17 425 525 -1 -1 -1 -1 -1 -1 -1

1,18 487 601 4485 -1 -1 -1 -1 -1 -1

1,19 566 613 -1 -1 -1 -1 -1 -1 -1

120 \ 622 705 6712 -1 -1 -1 -1 -1 -1

22 30 40 71 104 -1 -1 -1 -1 -1

23 122 106 160 288 1327 -1 -1 -1 -1

2,4 589 428 263 432 1170 -1 -1 -1 -1

23 1634 1257 896 723 1668 -1 -1 -1 -1

2.6 3397 2741 2045 1373 1935 -1 -1 -1 -1

2.7 6207 4981 3691 2658 2255 -1 -1 -1 -1

2,8 10439 8189 6263 4783 2751 -1 -1 -1 -1

2,9 15794 13108 9796 7072 4353 -1 -1 -1 -1

2,10 23488 19263 13539 10370 6633 -1 -1 -1 -1

32 67 73 109 175 366 -1 -1 -1 -1

3,3 1436 1143 865 528 749 1928 -1 -1 -1

3,4 8189 6475 5272 3936 2624 3126 -1 -1 -1

33 27772 22804 18215 13766 10210 5445 -1 -1 -1
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APPENDIX D

Adding Models to SPLICE2

The purpose of this appendix is to show how a model is added to the SPUCE2 program.

The procedure will be explained by showing how the electrical diode model would be added

if it were not already one of the elements in the model library. The diode model is a good

example for demonstration since it is small enough to fit conveniently in this appendix yet

complicated enough to have examples of all of the features used in modeling devices.

The usual way to create a new model is to copy an existing model with the proper

number of terminals and then edit the contents of that model to become the new model. This

description will assume that the splice2 files are in a directory named "splice2". The first step

is to change your working directory into the directory that contains the models for the

SPLICE2 program. This is done by typing "cd splice2/src/dev". This directory is the easiest

one in which to create new device models. The goal will be to produce a compiled object for

the model that can then be used with the simulator.

Model files are created with file names that are descriptive of the models in them and

with a suffix ".mod" to indicate that the file is a model file. The file is made up of three parts.

The first part is the include directives and external variable declarations required for the

proper compilation of the C program text of the model. The second part is a data structure

declaration for the element and model data structures. Information is included with the data

structure declarations that is used to build a table describing this device to the SPLICE2

program routines that allocate and initialize the elements and models that are read in from the

user. The third part is the function that is used by the net element models to evaluate the

signal contribution of this element to the net and an optional initialization function that is

applied to all models and elements created. These parts are described below for the diode
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model.

The electrical diode model is a two-terminal device that has been copied from the

SPICE2 program diode model and is already available in this directory. The C language source

code for this model follows:

1

2

/*

* diodeonod - Diode models

3 * Copyright (C) 1983 James Kleckner
4 * All rights reserved.
5 */

6 #ifndef lint
7 static char SccsIdQ:s

8 "Sccsld @(#)diodejnod 2.1 (Splice2/Berkeley) 1/11/84";
9 #endif not lint

10

11 include <nathJi>
12 include "spl2type&h"
13 include "spliceJi"
14 include "elminfoJi"
15 include "signalsJi"
16 include "modinfah"
17 include "stinfch"
18 include "sched&h"
19 include "spltimch"
20 include "electa"
21

22 double ElcPnJuncLimitlO;
23 extern Boolean SetNoGo;
24

25 /* BEGIN_HEADER_DECLARATION */
26 struct ElmElcDiode I /* ATTRIBUTES » ELMOBJECT */
27 struct ElmBasicbas;
28 float lastV;
29 /* PARAMETERS */
30 float area;

31 } ;
32 typedef struct ElmElcDiode ElmElcDiode;
33 struct ModElcDiode { /* ATTRIBUTES = MODOBJECT V
34 /* INTTFUNC */
35 /* NETS from CIRCUIT INANDOUT
36 to CIRCUIT INANDOUT V
37 struct ModBasic bas;
38 float vtherm;
39 float vcrit;
40 float fl;
41 float f2;
42 float f3;
43 /* PARAMETERS */
44 float area; /* RANGE (0,>) V



45 float is; /* RANGE (0,>)V
46 float n; /♦RANGE(0,10)*/
47 float tt; /* RANGE [0,>)V
48 float cjo; /* RANGE [0,>)V
49 float vj; /* RANGE (0,>)V
50 float m; /* RANGE (0„9]V
51 float eg; /* RANGE [.13] */
52 float xti; /•RANGE (0,10] V
53 float fc; /* RANGE [0,95]*/
54 float bv; /* RANGE [0,>]*/
55 float ibv; /* RANGE [0,>]*/
56 float couplefactor; /♦RANGE [0,100]*/
57 float uselimiting;
58 /* Not implemented: */
59 /* float rs; /* RANGE (0,>]V
60 /* float kf; /* RANGE (0,>]V
61 /* float af; /* RANGE (0,>]V
62 1 ;
63 typedef struct ModElcDiode ModBcDiode;

64 /* END_HEADERJDECLARATION[*/

65

66 /*

67 * ElmElcDiode - Diode model.

68 */

69 ELM_£VAL_DECLARE(ElcDiode)
70 {
71 union SigStruct sigO, sigl;
72 struct ModElcDiode *diode;

73 int ioff;
74 double area, arg, bv, capd, cd;
75 double csat, czero;

76 double czof2, evd, evrev;

77 double f2, f3, fcpb, gd;
78 double pb, sarg. tau;

79 double vcrit, vd, vdtemp, vte;
80

81

82

double xm, vt, cdeq;

#ifdef DEBUG

83 IFDEBUCX ELECTDEBUG ) {
84 STRUCTASSERT(elm,F1mF1cDiode>
85 }
86 tfendif DEBUG

87 diode * (struct ModElcDiode *) elm->basjnod;
88 /*

89 * dc model parameters
90 */

91 ioff -0;
92 area -elm->area;
93 csat - diode->is * area;
94 vt - diode->vtherm;
95 vte » diode->n * vt;
96 bv * diode->bv;
97 vcrit - diode->vcrit;
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98 /*

99 * Compute branch voltage.
100 */

101 if (ioff N 0 ) {
102 vd - 0.0;
103 }
104 else {
105 NET_£VAL_FUNC(elm- >bas^anin.lis[OlSIGJsTTJELECTRIC^sigO,SplCurTime>,
106 NETJ£VALJFUNC(elm->bas.faniniis[lisiGJsTT^LECrRIC^sigl,SplCurTime>,
107 vd = sigO-netElcv - sigljietElcv;
108 /*

109 * Compute new nonlinear branch voltage, (bypass not implemented)
110 * If limiting, use it.
111 */

112 if ( diode->uselimiting != 0 ) {
113 if ( bv — 0.0 I vd >= MIN(0.0, -bv + 10.0 * vte) ) {
114 vdtemp = ElcPnJuncLimitl( vd, elm->lastV, vte, vcrit >,
115 }
116 else {
117 vdtemp = -( vd + bv );
118 vdtemp =ElcPnJuncLimitl(vdtemp, -<elm->lastV + bv), vte, vcrit);
119 vdtemp = -i vdtemp + bv );
120 }
121 if ( vdtemp!» vd ) {
122 ElcNoCbnvergence - 1;
123 vd = vdtemp;
124 }
125 }
126 }
127 /*

128 * Compute dc current and derivatives
129 */

130 if ( vd >=-5.0 * vte ) {
131 evd = exp( vd / vte );
132 cd » csat * ( evd - 1.0 );
133 gd » csat * evd / vte;
134 }
135 else {
136 if ( bv — 0.0 I vd >=-bv) {
137 gd *» -csat / vd;
138 cd - gd * vd;
139 }
140 else {
141 evrev - exp( -(bv + vd) / vt );
142 cd = -csat * ( evrev - 1.0 + bv/vt );
143 gd » csat * evrev / vt;
144 }
145 }
146 /*

147 * Charge storage elements
148 */

149 tau = diode- >tt;
150 czero « diode->cjo * area;



151 pb - diode- >vj
152 xm = diode- >m;
153 fcpb = diode->fc;
154 if ( vd <fcpb){
155 arg = 1.0 - vd / pb;
156 sarg = exp( -xm * log(arg));
157 capd = tau * gd + czero * sarg;
158 }
159 else {
160 f2 = diode->f2;
161 f3 = diode->f3;
162 czof2 = czero/f2;
163 capd =tau * gd +czof2 * (f3 + xm * vd/pb>,
164 }
165 elm->lastV = vd;
166 /*

167 * Store result.

168 */

169 cdeq = cd - gd * vd;
170 if ( net = elm->bas.fan.in.lis[0]) {
171 cd = cdeq - gd * sigLnetElc.v - capd * sigl.netElc.vdot;
172 }
173 else {
174 DASSERTt net = elm->bas.faninJis[l] >,
175 cd = -cdeq - gd * sigOjietElcv - capd * sigO.netElc.vdot;
176 }
177 result->elmElc.g = gd;
178 result- >elmElci = cd;
179 resuIt- >elmElc.cap - capd;
180 return( SIG_ELM_ELECTRIC >,
181 }
182 /*

183 * Initialize the Diode model by precalculating the thermal voltage.
184 */

185 MOD_LNTT_DECLARE(ElcDiode,elm)
186 {
187 struct ModElcDiode *diode;
188 int i;
189 double pb,
190 double bv,
191 double cbv,
192

193 if ( StType(elm) = StNamTypCModElcDiode") ) {
194 diode - (struct ModElcDiode *) elm;
195 /*

196 * Precompute the thermal voltage as k*T/q
197 V

198 vt = 1.38e-23 * 300 / 1.602e-l9;
199 diode->vtherm = vt;
200 pb •» diode- >vj;
201 xm = diode->m;
202 fc «diode->fc;
203 diode->fc - fc * pb;

xm, fc, xfc;
vte, vt, csat;

xbv, xcbv, tol;
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204 xfc »logO.O - fc);
205 diode->fl = pb * (1.0 - exp((1.0 - xm) * xfc))/(1.0 - xm);
206 diode->f2 = exp((1.0+xm) * xfc);
207 diode->f3 - 1.0 - fc * (1.0 + xm>,
208 csat =» diode- >is;
209 vte = diode->n * vt;
210 diode->vcrit • vte * log( vte/(sqrt(2.0) * csat) );
211 bv «= diode- >bv;
212 if ( bv = 0.0 ) {
213 return;
214 }
215 cbv = diode- >ibv;
216 if ( cbv <csat * bv / vt ) {
217 cbv « csat * bv / vt;
218 Errort NONFATAL, "EliElcDiode: %s%g%s",
219 "warning - ibv increased to ", cbv,
220 "to resolve incompatibility with specified isat" );
221 xbv = bv;
222 }
223 else {
224 . tol =0.0001* cbv;
225 xbv = bv - vt * log( 1.0+ cbv / csat );
226 for (i » 0; i < 25; i++ ) {
227 xbv «= bv - vt * log( cbv/csat + 1.0- xbv/vt );
228 xcbv =csat *( expt( bv - xbv )/vt) - 1.0 +xbv/vt);
229 if ( ABS(xcbv - cbv) <= tol ) {
230 break;
231 }
232 }
233 if (i >- 25 ) {
234 SetNoGo = TRUE;
235 ErroK NONFATAL," EliElcDiode: warning: %s\ nbv=%g ibv=%g"
236 "unable to match forward and reverse diode regions ,
237 xbv, xcbv >,
238 }
239 }
240 diode->bv - xbv;
241 }
242 }
243

244 /*

245 * ElcPnJuncLimitl - this routine limits the change-per-iteration
246 * of device pn-junction voltages.
247 * New method.

248 */

249 double

250 ElcPnJuncLimitl( vnew, void, vt, vcrit )
251 double vnew, void, vt, vcrit;
252 {
253 double delv, vlim, arg;
254

255 if ( vnew > vcrit ) {
256 vlim - vt + vt;
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257 delv « vnew - void;
258 if ( ABS(delv) > vlim ) {
259 if (void <= 0.0) {
260 vnew - vt * log( vnew/vt );
261 }
262 else if ( void < vcrit ) {
263 vnew «= vcrit;
264 }
265 else if ((arg = 1.0+delv/vt) >0.0 ) {
266 vnew «= void + vt * log( arg );
267 }
268 else {
269 vnew «• vcrit;
270 }
271 }
272 }
273 return( vnew);
274 }

The first part of the model on lines 11-20 is a set of include directives that gather all of

the external type declarations necessary for the compilation of the model by the C compiler.

The file "mathii" is included since exponential and logarithm functions are used for this

model. The files "spl2typesJi", "spliceJi", "elminfoii", "signalsJi", "modinfoJi", "stinfch",

"sched&h", and "spltime-h" are required for definition of data structures, constants, and macro

definitions that are used when writing models. The file "electii" is included to access the

electrical analysis variable, "ElcNoConvergence", that tells the electrical net that convergence

has not been achieved. This occurs when the limiting algorithm for the diode nonlinearity is

used to improve the convergence rate. The declaration for the function "ElcPnJuncLimitl" on

line 22 allows the diode routine to use the limiting function that is declared further down in

the file. The declaration on line 23 of the "SetNoGo" variable is to allow the diode

initialization routine to flag the setup pass of the simulator that there has been an error

reading in a diode element or model and that execution should not be begun.

The data structure declarations for the electrical diode appear on lines 25-64. These

declarations are read by the "stmake" program to build a table describing this model to the

read routines. The characters on line 25 form a pattern that is used to signal the "stmake"

progtam that information should begin to be collected and the pattern on line 64 indicates
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that information should cease being gathered. These patterns must be given exactly as shown

to work properly. The element data structure declaration is begun on line 26 and the model

data structure declaration is begun on line 33. The element data structure name must begin

with the prefix "Elm" and the model data structure name must begin with the prefix "Mod".

The rest of the name of the data structure is the name that the user requests and is used by

the read routines. Thus the name of this model is "ElcDiode". There are some naming

conventions for model names to help control the complexity of managing the different models.

By convention, electrical model names begin with the prefix "Elc", logic model names begin

with the prefix "Log", and RTL model names begin with the prefix "RTL". Further, if an

element model is a net element, then the characters "Net" precede the prefix.

The information for the device table is passed in the comments of the data structure

declaration so that the same text can be used as input to the compiler. The general form of

the information is a keyword followed by an optional equal sign followed by the text

associated with the keyword up to the closing comment characters. The keyword

ATTRIBUTES must be present for both the element and model data structures and may take

on the values ELMOBJECT, MODOBJECT, NETELEMENT, or NETMODEL to indicate that the

data structure types is an element, model, net element, or net model, respectively. Every

element and model data structure must include a reference to the proper basic structure as the

first member of the declaration which must be named "bas". This is done on lines 27 and 37

for the diode element and model. The basic structure types are ElmBasic, ModBasic,

ElmNetBasic, and ModNetBasic for element, model, net element, and net model basic

structures, respectively. The inclusion of the basic structure guarantees that all of the

information that must be common to all data structures of that type is included

automatically. This information includes such things as fanin and fanout lists and hash table

links.
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Static data storage that must be allocated for elements or models follows the basic

structure member. For the diode example, line 28 declares that a floating point variable called

"lastV" is available for every diode and lines 38-42 allocate storage for every diode model that

is created. The storage for parameters is allocated after the keyword PARAMETERS. Each

parameter is declared by giving the C language type, the name of the member, and an optional

range string. The member name is picked directly out of the declaration by the "stmake"

program and used as the name for the parameter during the input and setup process. This

makes it difficult to make an error in connecting the data supplied by the user with the data

actually used in the model routine. The convention for element parameters is that all

parameters on elements must also be parameters on the corresponding model. The model's

value for that parameter is then written into the element parameter member to initialize it.

Then if the user specifies a value for the element parameter, that value is written over the

initialized value. The parameters on the model may have an optional range string identified

by the keyword RANGE The characters following the keyword are interpreted as intervals

where the format is the lower bound followed by a comma followed by the upper bound.

The lower bound is inclusive if preceded by a square open bracket and is exclusive if preceded

by an open parenthesis. The upper bound is inclusive if followed by a square close bracket

and is exclusive if followed by a close parenthesis. The bound can be specified in the format

of a signed floating point number with the extension that the character " >" is treated as

positive infinity and the character "<? is treated as a very small positive number. The

characters " >" and " ^ may also be preceded by a minus sign. These range specifications are

then used to check that what the user supplies is a reasonable value for the model. Default

values for the parameters are not specified on the model data structure because the author

believes that defaults should not be compiled into the executable code. Instead, the convention

is used that when a model data structure is created, all of the parameters must be specified.

The implementation of the routines that read in the circuit description allows models to

reference other models and inherit their parameters. This makes it convenient to create
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libraries with default parameter values that are not compiled into the simulator.

If the keyword INITFUNC is present on the model data structure declaration, then the

read routines will call the user-supplied optional initialization function. The keyword NETS

indicates that the topological information for this device follows. The terminals of the device

each have three pieces of information, the name of the terminal, the type of the terminal, and

the directions of signal drive. The name of the terminal is used when elements are bound to

wires by name, otherwise the position in the list of each terminal declaration corresponds to

the position of that terminal on the input line. The type of the terminal is one of CIRCUIT,

ELOGIC, LOGIC, or RTL. The direction of the signal drive is specified as one of INPUT,

OUTPUT, and INANDOUT to indicate that the terminal only receives signals from the net,

only drives signals onto the net, or is bidirectional, respectively.

The next part of the model is the evaluation function and optionally the initialization

function. The electrical diode model evaluation function is declared on line 69 using the

ELM__EVAL_JDECLARE macro. This macro automatically declares the function to have the

name of the model prefixed by the characters "Ele" and to return a value indicating the type

of the signal driven. It also declares three arguments to the function the first of which is

named "elm" and is a pointer to the element structure (struct ElmElcDiode in this case). The

second argument is named "net" and is a pointer to the net that is requesting evaluation of the

element and the third argument is named "result" and is a pointer to a signal union in which

the result should be placed. The reader is directed to the file "signals.h" in Appendix A for

the specific C language declarations of the signal types.

The variables "sigO" and "sigl" declared on line 71 are signal unions that will be used as

buffers on lines 105 and 106 when the fanin nets are evaluated. The variable "diode"

declared on line 72 is cast on line 87 to the pointer to the model for this element. The rest of

the declared variables are used in the calculation of the device model of the diode. The lines

82-86 are used when debugging is enabled to perform run-time type checking using the type
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table that the type of the element evaluated is the one expected by this model. The lines 88-

97 are used to set some of the local variables from the diode parameters. The lines 105 and

106 are where the fanin nets are evaluated. The macro NET_EVAL_FUNC is used to call

the net evaluation routine with the proper arguments. The indices of the fanin and fanout

lists are taken to be the order in which the corresponding terminals appear in the table of the

model data structure declaration. In this case the first pointer (or zeroth index) is the terminal

named "from" and the second pointer is the terminal named "to". The second argument of

the macro is a compile-time constant that tells the net what type of signal is desired. The list

of signal types is given in the file "signal&h". The third argument to the macro is the address

of the signal union that is to hold the result that the net computes and the last argument to

the macro is the time at which the net is requested to evaluate itself. The variable

"SplCurTime" holds the current value of simulated time. Thus the voltage across the diode,

vd, is computed on line 107 as the difference between to the values of the two terminal

signals.

On lines 108 through 165, the linearization of the diode is performed as well as the

calculation of the linearized capacitance. On lines 169-176, the Norton equivalent for the

contribution of this element is computed. Note the statement on line 170 compares the net

requesting evaluation with the nets on the fanin list to determine the sign of the branch

current. On lines 177-179 the signal buffer of the net requesting evaluation of the diode is

filled with the Norton equivalent for the diode and the type of the signal is returned on line

180.

The optional initialization function is declared using the MOD_INIT_JDECLARE macro

which declares one function argument with the name of the second macro argument to be a

pointer to an element structure for the device indicated in the first macro argument. This

function will be called for all elements and models of the device type. The name is

constructed to be the prefix "Eli" followed by the name of the device being initialized. The
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variable named "diode" is declared on line 187 to permit convenient access to the model

parameters later. The variables declared on lines 188-191 are specific to the calculations

performed for the diode initialization. On line 193, the type of the argument is tested to see if

it is the diode model type and if it is, the model pointer is initialized on line 194 and the code

on lines 195-240 are executed to precalculate some of the variables used in the device model

such as the critical voltage. Since no initialization is needed for the diode elements, there is no

code outside the if statement range. The initialization function does not return a value,

rather, the status of the routine is passed through the variable named "SetNoGo" which is set

to TRUE on line 234 to indicate that the diode parameters are inconsistent.

The next step in producing the object code for the new model is to be sure that the

"lint" program produces no errors for the model code. This can be done for the diode example

by typing: "lint -u -Uh diode.mod". After the model code is "lint free", it is ready to be

compiled. Be sure that there is a copy of the make file that is available in the

"splice2/src/sys" directory named"makefile" in the current directory. That file has rules in it

for creating the type tables by running the "stmake" program. After you are sure that there

is a copy of that file or one with the same rules, type "make diodco". This will run the

"stmake" program and then the C compiler to produce the object code. You are now ready to

use the new model for simulation. An example of a reference to the diode device would be:

model dmod ElcDiode : area=l, is=le-14, n=l, tt=0, cjo=0, vj=l, m=3, eg~l.ll, $
xti=3.0, fc=3, bv=0, ibv=le-3, couplefactor=0, uselimiting=l

dl out GND dmod : area=2

To bind the model functions into the simulator, type:

splice2 -load diodco <£>ther options>

The option named "-load" will cause the program to run the loader and add your new
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function to the program when it executes.

®

1



APPENDIX E

Static Program Statistics

This appendix contains some statistics on the SPLICE2 program and its development. The

following table summarizes the sizes of the program source code for SPLICE2.

Purpose Lines Semicolons

Include Files 2470 1067

Front End 11403 4802

Algorithmic Code 10579 5392

All of SPUCE2 29925 14992

Misc. Support Code =4000 =2000

Include files typically contain data structure declarations and compile-time constant defines

along with global function and variable declarations. The "front end" code consists of

functions to read in and set up the data structures for simulation. Algorithmic code includes

modeling and scheduling functions. Support code consists of the table generator program

called "stmake" and other programs to read and write waveforms. The object code size of the

SPLICE2 program with all of the default models loaded is:

Instructions

Data

133120 Bytes
147872 Bytes

182



APPENDIX

Table 3.1 Simple horizontal lines detector : Typical input file for circuit simulator

PWLSPICE. The indices of nodes are coded as follow : the first number from the left

stands for the type of the nodes in a cell, 1 for the state voltage node, 2 for the output

voltage node; the second number from the left stands for the layer number; the third

and fourth numbers stand for the rows and the fifth and sixth numbers stand for the

columns, for instances, v(l 10102) means vxl2, and v(210304) means v>34, and so on.

C110101 110101 0
R110101 110101 0
G1101010101 0 110101 210101 0
G1101010102 0 110101 210102 0
P210101 110101 210101 0
R210101 210101 0
C110102 110102 0
R110102 110102 0
G1101020101 0 110102 210101 0
G1101020102 0 110102 210102 0
G1101020103 0 110102 210103 0
P210102 110102 210102 0
R210102 210102 0
C110103 110103 0
R110103 110103 0
G1101030102 0 110103 210102 0
G1101030103 0 110103 210103 0
G1101030104 0 110103 210104 0
P210103 110103 210103 0
R210103 210103 0
C110104 110104 0
R110104 110104 0
G1101040103 0 110104 210103 0
G1101040104 0 110104 210104 0
P210104 110104 210104 0
R210104 210104 0
C110201 110201 0
R110201 110201 0
G1102010201 0 110201 210201 0
G1102010202 0 110201 210202 0
P210201 110201 210201 0
R210201 210201 0
C110202 110202 0
R110202 110202 0
G1102020201 0 110202 210201 0

0.002

0.001

0.001

0.002

0.001

0.001

0.002

0.001

0.001

0.002

0.002

0.001

0.001

le-09

1000

modpwll
1

le-09

1000

modpwll
1

le-09

1000

modpwll
1

le-09

1000

modpwll
1

le-09

1000

modpwll
1

le-09

1000



Table 3.1 continue

G1102020202 0 110202 210202 0
G1102020203 0 110202 210203 0
P210202

R210202

C110203

R110203

G1102030202

G1102030203
G1102030204
P210203
R210203

C110204

R110204

G1102040203
G1102040204
P210204

R210204

C110301

R110301

G1103010301
G1103010302
P210301

R210301

C110302

R110302

G1103020301

G1103020302
G1103020303
P210302

R210302

C110303

R110303

G1103030302

G1103030303
G1103030304
P210303

R210303
C110304

R110304

G1103040303
G1103040304
P210304

R210304

C110401

R110401

G1104010401

G1104010402
P210401

R210401

C110402

R110402

G1104020401

G1104020402

G1104020403
P210402

R210402

110202 210202
210202

110203

110203

110203 210202 0
110203 210203 0
110203 210204 0

110203 210203
210203

110204

110204

110204 210203 0
110204 210204 0

110204 210204
210204

110301

110301

110301 210301 0
110301 210302 0

110301 210301
210301

110302

110302

110302 210301 0
110302 210302 0
110302 210303 0

110302 210302
210302

110303

110303

110303 210302 0
110303 210303 0
110303 210304 0

110303 210303
210303
110304

110304

110304 210303 0
110304 210304 0

110304 210304
210304

110401

110401

110401 210401 0
110401 210402 0

110401 210401
210401

110402

110402

110402 210401 0
110402 210402 0
110402 210403 0

110402 210402
210402

0.002

0.001
0

0
modpwll
1

0 le-09
0

0.001

0.002

0.001

1000

0

0
modpwll
1

0 le-09
0

0.001

0.002

1000

0

0
modpwll
1

0 le-09
0

0.002

0.001

1000

0

0
modpwll
1

0 le-09
0

0.001

0.002

0.001

1000

0

0
modpwll
1

0 le-09
0

0.001

0.002

0.001

1000

0

0
modpwll
1

0 le-09
0

0.001

0.002

1000

0

0
modpwll
1

0 le-09
0

0.002

0.001

1000

0

0
modpwll
1

0 le-09
0

0.001

0.002

0.001

1000

0 modpwll



Table 3.1 continue

110403 o
110403 o

110403 210402 0
110403 210403 0
110403 210404 0

110403 210403 0
210403 o
110404 o
110404 o

110404 210403 0
110404 210404 0
110404 210404 0
210404 o

PWL V

pwl term «= 3 nseg = 3
,0,0,0 cp= 0,0,-0.5,0.5 alphap= 1,0,1,0 betap—1 1
-1 v<110102>-0.4 v<110103)=-0.8 4fil01oJT--l
TV v(110202)=-l v(110203)—0.8 v(U0204)=-0 6
0.8 v(110302)=-0.4 v(110303)=0.8 v 110304 -1
5us V(1^02)"-°-6 v(110403,=-0.8 v(110404)=-l

(210101) v(210102) v(210103) v(210104)
v(210202) v(210203) v(210204)
v(210302) v(210303) v(210304)
v(210402) v(210403) v(210404)

C110403

R110403

G1104030402 0
G1104030403 0
G1104030404 0
P210403

R210403

C110404

R110404

G1104040403 0
G1104040404 0
P210404

R210404

• This is a

.model modpwll
+ ap= 0,0 bp= 0
•ic v(HOlOl)
+ v(110201)
+ v(110301)
+ v(110401)
.tran O.lus

.print tran v
•print tran v
.print tran v
.print tran v
•end

(210201)
(210301)
(210401)

001

002

001

le-09

1000

modpwll
1

le-09

1000

0.001

0.002

modpwll
1

CCS model with a common node



Table 3.2

Index TIME

(TheSindices°of2th"al-lineS detector: Transient analysii-_™!!!.!f Clr<=uit nodes are the same as those in Table 3.1)

v(210104)

O.OOOOOOE+OO
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1. OOOOOOE+00
-1.000000E+00
-1.OOOO00E+00
-1.OOOOOOE+00
-1.OOO0O0E+00
-1.O0O0O0E+0O
-1.000000E+00
-1.OOO0O0E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.0000C0E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1 .OO0O00E+O0
-1.0000COE+00
-1.O0CC00E+00
-1.000000E+0C
-1.00C000E+0C
-1.00000GE+0C
-l.ooooocE+or
-1.00CC0CE-CC
-1.00000CE-CO
-1.0000CCE+0C
-1.000000E+0C
-1.000000E+0C
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.000000E+00
-1 .OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.000000E+0C
-1.000000E+0C

-1.000000E+00
-1.OOOOOOE+00
-1.OOOOOOE+00

-1 -OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.OOOOOOE+OO

-1.OOOOOOE+00

-1.OOOOOOE+00

0 0.000000E400
1 1.000000E-09
2 2.000000E-09
3 4.000000E-09
4 *8.000000E-09
5 1.600000E-08
6 3.200000E-08
7 6.400000E-08
8 1.280000E-07
9 2.280000E-07
10 3.280000E-07
11 4.280000E-07
12 5.280000E-07
13 6.280000E-07
14 7.280000E-07
15 8.280000E-07
16 9.280000E-07
17 1.028000E-06
18 1.128000E-06
19 1.228000E-06
20 1.328000E-06
21 1.428000E-06
22 1.528000E-06
23 1.628000E-06
24 1.728000E-06
25 1.828000E-06
26 1.928000E-06
27 2.028000E-06
28 2.128000E-06
29 2.228000E-06
30 2.328000E-06
31 2.428000E-06
32 2.528000E-06
33 2.628000E-06
34 2.728000E-06
35 2.828000E-06
36 2.928000E-06
37 3.028000E-06
38 3.128000E-06
39 3.228000E-06
40 3.328000E-06
41 3.428000E-06
42 3.528000E-06
43 3.628000E-06
44 3.728000E-06
45 3.828000E-06
46 3.928000E-06
47 4.028000E-06
48 4.128000E-06
49 4.228000E-06
50 4.328000E-06
51 4.428000E-06
52 4.528000E-06
53 4.628000E-06
54 4.728000E-06
55 4.828000E-06
56 4.928000E-06
57 5.000000E-06

v(210101)

0.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

v(210102)

0.000000E+00
3.985972E-01
3.971916E-01
3.943747E-01
3.887070E-01
3.772346E-01
3.537300E-01
3.043898E-01
1.957343E-01
5.811578E-03
-2.041030E-01
-4.361138E-01
-6.925469E-01
-9.759729E-01

000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
OOOOOOE+00
000000E+00
.000000E+00
.000000E+00
.000000E+00
.000O00E+OO
.000000E+00
.00OOO0E+00
.000000E+00
•OOOOOOE+00
•000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
•000000E+00
.000000E+00
.000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
OOOOOOE+00
000000E+00

v(210103)

0.000000E+00
-8.014028E-01
-8.028084E-01
-8.056253E-01
-8.112930E-01
-8.227654E-01
-8.462700E-01
-8.956102E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.0000O0E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.0O0O00E+0O
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
•1.000000E+00



Index TIME

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2S

21

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

0.000000E+00
1.000000E-09
2.000000E-09

.4.000000E-09
8.000000E-09
1.600000E-08
3.200000E-08
6.400000E-08
1.280000E-07
2.280000E-07
3.280000E-07
4.280000E-07
5.280000E-07
6.280000E-07
7.280000E-07
8.280000E-07
9.280000E-07
1.028000E-06
1.128000E-06
1.228000E-06
1.328000E-06
1.428000E-06
1.528000E-06
1.628000E-06
1.728000E-06
1.828000E-06
1.928000E-06
2.028000E-06
2.128000E-06
2.228000E-06
2.328000E-06
2.428000E-06
2.528000E-06
2.628000E-06
2.728000E-06
2.828000E-06
2.928000E-06
3.028000E-06
3.128000E-06
3.228000E-06
3.328000E-06
3.428000E-06
3.528000E-06
3.628000E-06
3.728000E-06
3.828000E-06
3.928000E-06
4.028000E-06
4.128000E-06
4.228000E-06
4.328000E-06
4.428000E-06
4.528000E-06
4.628000E-06
4.728000E-06
4.828000E-06
4.928000E-06
5.000000E-06

Table 3.2 continue

v(210201)

0.000000E+00
-4.014014E-01
-4.028042E-01
-4.056126E-01
-4.112463E-01
-4.225817E-01
-4.455265E-01
-4.925355E-01
-5.912155E-01
-7.587119E-01
-9.438395E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1. O00O00E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.O00000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1 -OOOOOOE+00
-1.OOOOOOE+00

v(210202)

0.000000E+00
-1.000000E+00
-1-000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+0O
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.0O0OO0E+00
-1.000000E+00
-1.000000E+00
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Index TIME

0 0.000000E+00
1 1.000000E-09
2 2.000000E-09
3 .4.000000E-09
4 8.000000E-09
5 1.600000E-08
6 3.200000E-08
7 6.400000E-08
8 1.280000E-07
9 2.280000E-07
10 3.280000E-07
11 4.280000E-07
12 5.280000E-07
13 6.280000E-07
14 7.280000E-07
15 8.280000E-07
16 9.280000E-07
17 1.028000E-06
18 1-128000E-06
19 1.228000E-06
20 1.328000E-06
21 1-428000E-06
22 1-528000E-06
23 1-628000E-06
24 1-728000E-06
25 1-828000E-06
26 1-928000E-06
27 2.028000E-06
28 2.128000E-06
29 2.228000E-06
30 2.328000E-06
31 2.428000E-06
32 2.528C00E-06
33 2.628000E-06
34 2.728000E-06
35 2.828000E-06
36 2.928000E-06
37 3.028000E-06
38 3.128000E-06
39 3.228000E-06
40 3.328000E-06
41 3.428000E-06
42 3.528000E-06
43 3.628000E-06
44 3.728000E-06
45 3.828000E-06
46 3.928000E-06
47 4.028000E-06
48 4.128000E-06
49 4.228000E-06
50 4.328000E-06
51 4.428000E-06
52 4.528000E-06
53 4.628000E-06
54 4.728000E-06
55 4.828000E-06
56 4.928000E-06
57 5.000000E-06

Table 3.2 continue

v(210401)

0.000000E+00
-8.014036E-01
-8.028108E-01
-8.056326E-01
-6.113198E-01
-8.228717E-01
-8.467047E-01
-8.974488E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.0O0O00E+O0
-1.000000E+00
-1.000000E+00
-1-OOOOOOE+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

v(210402)

0.000000E+00
-6.022060E-01
-6.044181E-01
-6.088542E-01
-6.177994E-01
-6.359847E-01
-6.735635E-01
-7.537920E-01
-9.312657E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1. 000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-1.OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
•1.000000E+00
l.OOOOOOE+OO

v(210403)

0.000000E+00
-8.024046E-01
-8.048138E-01
-8.096416E-01
-8.193529E-01
-8.390014E-01
-8.792236E-01
-9.635456E-01

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00

.000000E+00
•OOOOOOE+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
•OOOOOOE+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
•OOOOOOE+00
.000000E+00
.000000E+00
•OOOOOOE+00
.000000E+00
•OOOOOOE+00
.000000E+00
.000000E+00
.000000E+00
OOOOOOE+00
000000E+00

000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
000000E+00
OOOOOOE+00
OOOOOOE+00
000000E+00
OOOOOOE+00
300000E+00
300000E+00
)00000E+00
)00000E+00

v(210404)

0.OOOOOOE+00
-1.0C0000E+00
-1.000000E+CO
-1.000000E+00
-l.OOOOOOE+OO
-1.000CGCE+0C
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OOOOOOE+00
-l.OOCOOCE+00
-1.00000CE-00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-l.OOOOOOE+OO
-l.OOOOOOE+OO
-l.OOOOOOE+OO
-l.OOOOOCE+OG
-l.OOOOOOE+OC
-l.OOOOOOE+OO
-l.OOOOOOE+OO
-l.OOOOOOE+OC
-l.OOOOOCE+CO
-l.OOOCCCE+CO
-l.OOOOOOE-CO
-l.OOOCCOE-CC
-i.oooocce-c:
-l.OOOCCCE-CC
-I.OOOC'CCEtCC
-l.ooooccE+c:
-i.oooocoe+c:
-1.0000CCE+CC
-l.OOOOOOE+GO
-l.OOOOOOE+OO
-l.OOOOOOE+OO
-l.OOOOOOE+CC
-l.OOOOOOE+CC
-l.OOOOOOE+OC
-i.ooooooe+c:
-l.OOOOOOE+OO
-l.OOOOOOE+CC
-l.OOOOOCE+CO
-l.OOOOOCE+CO
-1. OOOOOC'E+OO
-1.OOOOOOE+00
-l.OOOOOOE+OC
-l.OOOOOOE+OO
-l.OOOOOOE+OO
-1 .OOOOOOE+00
-l.OOOOOOE+OO
-1.OOOOOOE+00
-l.OOOOOOE+OO
-1.OOOOOOE+00
-l.OOOOOOE+OO



FIGURE CAPTIONS:

Fig. 2.1: A two-dimensional cellular neural network. The circuit size is 4x4. The
squares are the circuit units called cells. The links between the cells
indicate that there are interactions between the linked cells.

Fig. 2.2: The neighborhood of cell C(iJ) defined by (2.1) for r =1, r =2 and
r = 3 respectively.

Fig. 2.3: An example of acell circuit. Cis alinear capacitor; RxyRu and Ry are
linear resistors; / is an independent voltage source; Ixu(iJ;k,l) and
/xy('J;*.0 are linear voltage controlled current sources with the charac
teristics Ixy«J*J) =A(iJ;k,l)VykI and Ixu{iJ',k1l)=B{iJ^kyl)vuJd
for all C{iJ) €7V(/, j); Iyx =-±-f(yxij) is apiecewise-linear voltage

Ky

controlled current source with its characteristic /(•) as shown in Fig.
2.4; Eij is an independent voltage source.

Fig. 2.4: The characteristic of the nonlinear controlled source.

Fig. 2.5: The characteristic of the nonlinear resistor in the equivalent cell circuit.

Fig. 2.6: The steady state equivalent circuit of acell in cellular neural networks.

Fig. 2.7: Dynamic routes and equilibrium points of the equivalent circuit for
different values of g (t).

Fig. 3.1: Input and output images for the simple example, (a) The input image
to be processed; (b) the output image of the horizontal line detector; (c)
the output image of the vertical line detector.



Fig. 3.2: A typical templet of an interactive cell operator. The unit used here is
lO"3*}"1.

Fig. 3.3: The cellular neural network description file of the simple horizontal line
detector for the circuit simulation preprocessor CELL.

Fig. 3.4: The data file ofCELL for the image in Fig. 3.1a.

Fig. 3.5: Templets for various interactive cell operators for noise removing cellu
lar neural networks. The unit used here is 10~3Q_1.

Fig. 3.6: The simulation result of anoise removing cellular neural network. Here
a=0.2 and the interactive cell operator is defined by the templet in Fig.
3.5(a). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image). (The color in this picture and all the following
pictures is designed to stand for the gray levels of the pixels in the pic
tures, where

background = light blue;

=greenish blue; (-2 -J- ]=blue green;[-1.0,-|

1 8' 8

(.1 .1
1 8' 8

Kr 8

=bluish green; (-1 -j]= green;

=yellowish green; (-2 -2 ]=green yellow;
8* 8

=greenish yellow; (-2 0.0 ]=yellow;

(0.0, -- ]=orangish yellow; (2 2 j=yellow orange;



-3-

3 4(?' J 1•= yellowish orange; (-, -] =orange;
8' 8

45 5 6(J. J 1=reddish orange; (-, j ]=orange red;

(j* J ]=orangish red; (j, 1.0 ]=red. )

Fig. 3.7: Simulation results of anoise removing cellular neural network. Here
a=0.4 and the interactive cell operator is defined by the templet in Fig.
3.5(a). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.8: Simulation results of anoise removing cellular neural network. Here
a=0.2 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.9: Simulation results of anoise removing cellular neural network. Here
a=0.4 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.10: Simulation results of anoise removing cellular neural network. Here
a=0.2 and the interactive cell operator is defined by the templet in Fig.
3.5(c). (a) the upper left picture, is the input image; (b) the upper mid
dle picture, is the image at time step 10; (c) the upper right picture, is
the image at time step 20; (d) the lower left picture, is the image at time



step 30; (e) the lower middle picture, is the image at time step 40; (f)
the lower right picture, is the image at time step 57 (output image).

Fig. 3.11: Simulation results of a noise removing cellular neural network. Here
a=0.4 and the interactive cell operator is defined by the templet in Fig.
3.5(c). (a) the upper left picture, is the input image; (b) the upper mid
dle picture, is the image at time step 10; (c) the upper right picture, is
the image at time step 20; (d) the lower left picture, is the image at time
step 30; (e) the lower middle picture, is the image at time step 40; (f)
the lower right picture, is the image at time step 58 (output image).

Fig. 3.12: Simulation results of anoise removing cellular neural network. Here
the interactive cell operator is defined by the templet in Fig. 3.5(a). (a)
the upper left picture, is the input image; (b) the upper middle picture, is
the image at time step 10; (c) the upper right picture, is the image at
time step 20; (d) the lower left picture, is the image at time step 30; (e)
the lower middle picture, is the image at time step 40; (f) the lower
right picture, is the image at time step 57 (output image).

Fig. 3.13: Simulation results of anoise removing cellular neural network. Here
the interactive cell operator is defined by the templet in Fig. 3.5(d). (a)
the upper left picture, is the input image; (b) the upper middle picture, is
the image at time step 10; (c) the upper right picture, is the image at
time step 20; (d) the lower left picture, is the image at time step 30; (e)
the lower middle picture, is the image at time step 40; (f) the lower
right picture, is the image at time step 57 (output image).

Fig. 3.14: Simulation results of anoise removing cellular neural network. Here
a=0.6 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time



step 30 (output image).

Fig. 3.15: Simulation results of a noise removing cellular neural network. Here
a=1.0 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.16: The templet defining the Laplacian operator.

Fig. 3.17: Simulation results of the cellular neural network for extracting the edges
of a diamond. ( / =-1.75xl0~3i4 )

Fig. 3.18: Simulation results of the cellular neural network for extracting the edges
of a diamond. ( / = -1.5xl0~3/i )

Fig. 3.19: Simulation results of the cellular neural network for extracting the edges
of a diamond. ( / = -2.0x10~3i4 )

Fig. 3.20: Simulation results of the cellular neural network for extracting the
corners of a square.

Fig. 3.21: Six relationships for the cells with their neighbors.

Fig. 3.22: Templet defining the Laplacian operator. The unit used here is lO"3^1.

Fig. 3.23: Simulation results of the cellular neural network for extracting the edges
of a square.
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Fig. 3.24: (a) Templet of the feedback operator for the edge detector; (b) templet
of the feed-forward operator for the edge detector.

Fig. 3.25: Simulation results of the cellular neural network for extracting the edges
ofadiamond, (a) the upper left picture, is the input image; (b) the upper
right picture, is the image at time step 10; (c) the lower left picture, is
the image at time step 15; (d) the lower right picture, is the image at
time step 57 (output image).

Fig. 3.26: Simulation results of the cellular neural network for extracting the edges
of asquare, (a) the upper left picture, is the input image; (b) the upper
right picture, is the image at time step 10; (c) the lower left picture, is
the image at time step 15; (d) the lower right picture, is the image at
time step 57 (output image).

Fig. 3.27: Simulation results of the cellular neural network for extracting the
corners of adiamond, (a) the upper left picture, is the input image; (b)
the upper right picture, is the image at time step 10; (c) the lower left
picture, is the image at time step 15; (d) the lower right picture, is the
image at time step 57 (output image).

Fig. 3.28: Simulation results of the cellular neural network for extracting the
corners ofa square, (a) the upper left picture, is the input image; (b) the
upper right picture, is the image at time step 10; (c) the lower left pic
ture, is the image at time step 15; (d) the lower right picture, is the
image at time step 57 (output image).

Fig. 3.29 - 3.35: Simulation results of the cellular neural network for feature

extraction of the Chinese characters, (a) the upper left picture, is the
input image; (b) the upper right picture, is the image at time step 10; (c)
the lower left picture, is the image at time step 15; (d) the lower right
picture, is the image at time step 57 (output image).
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Fig. 2.7 (a, b, c)
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Fig. 2.7 (d, e, f, g)
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**********
*************************************************************

coZ^^t^*1** th°ri-"ta! lines detector"
circuit_size JT* *°f the aPPlic"ion of analog cellular circuits."
vector__dimension l
cl 1.0E-9
rl 1000

yl "pwl term = 3 nseg = 3»

11 siH 3°'° bP= °'°'0'0 <*= 0-0,-0.5,0.5 alphap= !,0,1,0 b.t.p~ifl.
templet 0.0 0.0 0 0

0.001 0.002 0.*001
°-° 0.0 0.0

data__type xl
transient "O.lus 5us uic»
output yl xc

a

*********************************************************ilr
*************

Fig. 3.3

***********************************************************************.

This is the initial state of the horizontal line detector
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APPENDIX

Table 3.1 Simple horizontal lines detector : Typical input file for circuit simulator

PWLSPICE. The indices of nodes are coded as follow : the first number from the left

stands for the type of the nodes in a cell, 1 for the state voltage node, 2 for the output

voltage node; the second number from the left stands for the layer number; the third

and fourth numbers stand for the rows and the fifth and sixth numbers stand for the

columns, for instances, v(l 10102) means vxl2, and v(210304) means v 34, and so on.

C110101

R110101

G1101010101 0

G1101010102 0

P210101

R210101

C110102

R110102

G1101020101 0

G1101020102 0

G1101020103 0

P210102

R210102

C110103

R110103

G1101030102 0

G1101030103 0

G1101030104 0

P210103

R210103

C110104

R110104

G1101040103 0

G1101040104 0

P210104

R210104

C110201

R110201

G1102010201 0

G1102010202 0

P210201

R210201

C110202

R110202

G1102020201 0

110101

110101

110101 2

110101 2

110101

210101
lim no

11

1101

1101

1101

11

21

11

11

1101

1101

1101'

111

21i

111

IK

110K

110K

IK

21(

HOzui

110201

110201 210201 0

110201 210202 0

110201 210201
210201

110202

110202

110202 210201 0

10101 0

10102 0

210101

0.002

0.001

le-09

1000

• ' • \

• i r v • \&

0.002

0.001

0.001

le-09

1000

modpwll
1

le-09

1000



Table 3.1 continue

G1102020202 0 110202 210202 0 n 002
G1102020203 0 110202 210203 0 n 001
P210202 110202 210202 0 mnHnul1
R210202 210202 n ^dpwll
C110203 H0203
R110203 110203
G1102030202 0 110203 210202 0 n 001
G1102030203 0 110203 210203 0 '
G1102030204 0 110203 210204 0 '
P210203 H0203 210203 0 morlnul,
R210203 210203 n modpwll
C110204 110204
R110204 110204
G1102040203 0 110204 210203 0 n nni
G1102040204 0 110204 2in?n4 n """"i

0 le-09
0 1000

0 1
0 le-09

G1102040203 0 110204 210203 0 0 —
„ 110204 210204 0 n 002

P210204 H0204 210204 0 mftH n
R210204 210204 n ™>dpwll
C110301 U0301 o i no
RH0301 H0301 o ]Zn
G1103010301 0 110301 210301 0 0 002
G1103010302 0 110301 210302 0 n 00?
P210301 H0301 210301 0 mH n
R210301 210301 n modpwll
C110302 H0302 o ] ftQ
R110302 H0302 0 ^n*
G1103020301 0 110302 210301 0 0 001
G1103020302 0 110302 210302 0 n nal
G1103020303 0 110302 210303 0 o'oSl
P210302 no302 210302 0 „ „
R210302 210302 n modpwll
C110303 H0303 o J
R110303 U0303 0 ^7°9
G1103030302 0 110303 210302 0 n nni
G1103030303 0 110303 210303 0 0 002
G1103030304 0 110303 210304 0 n'nn?
P210303 U0303 210303 0R210303 210303 ° modpwll
C110304 H0304 o J rtft
R110304 n0304 2 °9
G1103040303 0 110304 210303 0 0 001
G1103040304 0 110304 210304 0 o*002
P210304 110304 210304 0R210304 210304 ° modpwll
CH0401 iio4oi o J
riio4oi no4oi n le~09
G1104010401 0 110401 210401 0 n nn, 10°°
G1104010402 0 110401 210402 0 00Q2
P210401 110401 210401 0R210401 210401 ° modpwll
C110402 no4o2 o 1
R110402 HQ402 o le~°9
G1104020401 0 110402 210401 0 n nni 10°°
G 104020402 0 110402 210402 0 0 002
G1104020403 0 110402 210403 n 2'2°2
P210402 110402 210402 0 °'°01
R210402 210402 q modpwll



Table 3.1 continue

C110403 110403 0 ie-oa
R110403 H0403 0 1000
G1104030402 0 110403 210402 0 0 001
G1104030403 0 110403 210403 0 0*002
G1104030404 0 110403 210404 0 0*001
P210403 110403 210403 0 * modowllR210403 210403 o modpwll
CH0404 H0404 o ie-09
RH0404 U0404 o 1000
G1104040403 0 110404 210403 0 0 001
G1104040404 0 110404 210404 0 0*002
P210404 110404 210404 0 ' modnwllR210404 210404 <J modpwll
*mol5i? "! n , PWL V ccs m°del with a common node•model modpwll pwl term = 3 nseg = 3 «»•»«« noae
+ ap= 0,0 bp= 0,0,0,0 cp= 0,0,-0.5,0.5 alphap= 1,0,1,0 betan—1 i
I10 VJJSJ01^"1 v<110^2)=0.4 v(11010?)=-0.8 v(U0104)^l
+ v(U0201)=-0.4 v(U0202)=-l v(110203)=-0 8 v(110204)- o *
+ v(U0301)=0.8 v(110302)=-0.4 v(110303) =0 *8 vlliolot )~'l
+ v(110401)=-0 8 v(110402)-0.6 v(110403) ^0.8 %i0404)=-l
-tran O.lus 5us UIC

•print tran v(210101) v(210102) v(210103) v(210104)
•print tran v(210201) v(210202) v(210203) v(210204)
•print tran v(210301) v(210302) v(210303) v(210304)
.print tran v(210401) v(210402) v(210403) v(210404



Table 3.2 Simple horizontal lines detector: Tr
(The indices of the circuit nodes are theansient analysis,

same as those in Table 3.1)
Index TIME

0 0.000000E+00
1 1.000000E-09
2 2.000000E-09
3 4.000000E-09
4 '8.000000E-09
5 1.600000E-08
6 3.200000E-08
7 6.400000E-08
8 1.280000E-07
9 2.280000E-07
10 3.280000E-07
11 4.280000E-07
12 5.280000E-07
13 6.280000E-07
14 7.280000E-07
15 8.280000E-07
16 9.280000E-07
17 1.028000E-06
18 1.128000E-06
19 1.228000E-06
20 1.328000E-06
21 1.428000E-06
22 1.528000E-06
23 1.628000E-06
24 1.728000E-06
25 1.828000E-06
26 1.928000E-06
27 2.028000E-06
28 2.128000E-06
29 2.228000E-06
30 2.328000E-06
31 2.428000E-06
32 2.528000E-06
33 2.628000E-06
34 2.728000E-06
35 2.828000E-06
36 2.928000E-06
37 3.028000E-06
38 3.128000E-06
39 3.228000E-06
40 3.328000E-06
41 3.428000E-06
42 3.528000E-06
43 3.628000E-06
44 3.728000E-06
45 3.828000E-06
46 3.928000E-06
47 4.028000E-06
48 4.128000E-06
49 4.228000E-06
50 4.328000E-06
51 4.428000E-06
52 4.528000E-06
53 4.628000E-06
54 4.728000E-06
55 4.828000E-06
56 4.928000E-06
57 5.000000E-06

v^lOioi) v<210102) v(210103) v^IoioT
0.000000E+00

-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.OO0O0OE+0O
-1.000000E+00

0.000000E+00
3.985972E-01
3.971916E-01
3.943747E-01
3.887070E-01
3.772346E-01

3.537300E-01
3.043898E-01
1.957343E-01

5.811578E-03
-2.041030E-01
-4.361138E-01
-6.925469E-01
-9.759729E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

O.O00000E+O0

-8.014028E-01

-8.028084E-01

-8.056253E-01
-8.112930E-01
-8.227654E-01

-8.462700E-01

-8.956102E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

O.O0O0O0E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00

-1.000000E+00
-1.000000E+00



Index TIME

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

0.000000E+00
1.000000E-09
2.000000E-09

. 4.000000E-09
8.000000E-09
1.600000E-08
3.200000E-08
6.400000E-08
1.280000E-07
2.280000E-07
3.280000E-07

4.280000E-07
5.280000E-07
6.280000E-07
7.280000E-07
8.280000E-07
9.280000E-07

1.028000E-06
1.128000E-06
1.228000E-06
1.328000E-06
1.428000E-06
1.528000E-06
1.628000E-06
1.728000E-06
1.828000E-06
1.928000E-06
2.028000E-06
2.128000E-06
2.228000E-06
2.328000E-06
2.428000E-06
2.528000E-06
2.628000E-06
2.728000E-06
2.828000E-06
2.928000E-06
3.028000E-06
3.128000E-06
3.228000E-06
3.328000E-06
3.428000E-06
3.528000E-06
3.628000E-06
3.728000E-06
3.828000E-06
3.928000E-06
4.028000E-06
4.128000E-06
4.228000E-06
4.328000E-06
4.428000E-06
4.528000E-06
4.628000E-06
4.728000E-06
4.828000E-06
4.928000E-06
5.000000E-06

Table 3.2 continue

v(210201) v(210202) v(210203)

0.000000E+00
-4.014014E-01
-4.028042E-01
-4.056126E-01
-4.112463E-01
-4.225817E-01

-4.455265E-01

-4.925355E-01

-5.912155E-01
-7.587119E-01
-9.438395E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

0.000000E+00

-1.000000E+00

-1.000000E+00

-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

0.000000E+00

-8.024038E-01

-8.048114E-01

-8.096343E-01
-8.193262E-01
-8.388959E-01
-8.787950E-01
-9.617566E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

v(210204)

O.O0O0O0E+00
-6.014038E-01
-6.028114E-01
-6.056343E-01
-6.113262E-01
-6.228959E-01
-6.467950E-01
-6.977566E-01
-8.087408E-01
-9.991345E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00



Index TIME

0 O.OOOOOOE+OO
1 1.000000E-09
2 2.000000E-09
3 #4.000000E-09
4 8.000000E-09
5 1.600000E-08
6 3.200000E-08
7 6.400000E-08
8 1.280000E-07
9 2.280000E-07
10 3.280000E-07
11 4.280000E-07
12 5.280000E-07
13 6.280000E-07
14 7.280000E-07
15 8.280000E-07
16 9.280000E-07
17 1.028000E-06
18 1.128000E-06
19 1.228000E-06
20 1.328000E-06
21 1.428000E-06
22 1.528000E-06
23 1.628000E-06
24 1.728000E-06
25 1.828000E-06
26 1.928000E-06
27 2.028000E-06
28 2.128000E-06
29 2.228000E-06
30 2.328000E-06
31 2.428000E-06
32 2.528000E-06
33 2.628000E-06
34 2.728000E-06
35 2.828000E-06
36 2.928000E-06
37 3.028000E-06
38 3.128000E-06
39 3.228000E-06
40 3.328000E-06
41 3.428000E-06
42 3.528000E-06
43 3.628000E-06
44 3.728000E-06
45 3.828000E-06
46 3.928000E-06
47 4.028000E-06
48 4.128000E-06
49 4.228000E-06
50 4.328000E-06
51 4.428000E-06
52 4.528000E-06
53 4.628000E-06
54 4.728000E-06
55 4.828000E-06
56 4.928000E-06
57 5.000000E-06

Table 3.2 continue

v(210301) v(210302) v(210303)

0.000000E+00

8.004016E-01

8.008048E-01

8.016145E-01

8.032533E-01

8.066099E-01

8.136486E-01

8.291051E-01

8.662148E-01

9.436895E-01
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

0.000000E+00

-3.987970E-01

-3.975910E-01

-3.951729E-01

-3.903003E-01

-3.804076E-01

-3.600176E-01

-3.166991E-01

-2.189430E-01

-4.146832E-02

1.617292E-01

3.892796E-01

6.407828E-01

9.187599E-01

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

0.000000E+00

8.014026E-01

8.028078E-01

8.056235E-01

8.112864E-01

8.227396E-01

8.461675E-01

8.952019E-01

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

v(210304)

0.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+CO
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00
1.000000E+00
1.000000E+00

1.000000E+00

1.000000E+00
1.000000E+00

1.00O00OE+O0

l.OOOOOOE+00



Index TIME

1 1.000000E-09
2 2.000000E-09
3 . 4.000000E-09
4 8.000000E-09
5 1.600000E-08
6 3.200000E-08
7 6.400000E-08
8 1.280000E-07
9 2.280000E-07
10 3.280000E-07
11 4.280000E-07
12 5.280000E-07
13 6.280000E-07
14 7.280000E-07
15 8.280000E-07
16 9.280000E-07
17 1.028000E-06
18 1.128000E-06
19 1.228000E-06
20 1.328000E-06
21 1.428000E-06
22 1.528000E-06
23 1.628000E-06
24 1.728000E-06
25 1.828000E-06
26 1.928000E-06
27 2.028000E-06
28 2.128000E-06
29 2.228000E-06
30 2.328000E-06
31 2.428000E-06
32 2.528000E-06
33 2.628000E-06
34 2.728000E-06
35 2.828000E-06
36 2.928000E-06
37 3.028000E-06
38 3.128000E-06
39 3.228000E-06
40 3.328000E-06
41 3.428000E-06
42 3.528000E-06
43 3.628000E-06
44 3.728000E-06
45 3.828000E-06
46 3.928000E-06
47 4.028000E-06
48 4.128000E-06
49 4.228000E-06
50 4.328000E-06
51 4.428000E-06
52 4.528000E-06
53 4.628000E-06
54 4.728000E-06
55 4.828000E-06
56 4.928000E-06
57 5.000000E-06

Table 3.2 continue

v(210401) v(210402) v(210403)

O.O00000E+00
-8.014036E-01

-8.028108E-01
-8.056326E-01
-8.113198E-01
-8.228717E-01
-8.467047E-01

-8.974488E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-l-OOOOOOE+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

0.000000E+00
-6.022060E-01
-6.044181E-01

-6.088542E-01
-6.177994E-01
-6.359847E-01

-6.735635E-01
-7.537920E-01
-9.312657E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

0.000000E+00
-8.024046E-01
-8.048138E-01
-8.096416E-01
-8.193529E-01
-8.390014E-01
-8.792236E-01
-9.635456E-01
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00

v(210404)

0.000000E+00

-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+C0
-1.000000E+00
-1.000000E+OC
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1.000000E+00
-1 .000000E+00

-1.000000E+00
-1 .OOOOOOE+00
-1.000000E+00



FIGURE CAPTIONS:

Fig. 2.1: A two-dimensional cellular neural network. The circuit size is 4x4. The

squares are the circuit units called cells. The links between the cells

indicate that there are interactions between the linked cells.

Fig. 2.2: The neighborhood of cell C(iJ) defined by (2.1) for r = 1, r = 2 and
r - 3 respectively.

Fig. 2.3: An example of a cell circuit. C is alinear capacitor; Rx, Ru and R are
linear resistors; / is an independent voltage source; Ixu(iJ;kJ) and
AcyO' J&,1) are linear voltage controlled current sources with the charac

teristics IxyVJW^AQJfijyvyu and Ixu(iJ;kJ)=B(iJ;k,l)vukl
for all C(iJ)e 7V(/, ;); Iyx =—/(v^) is a piecewise-linear voltage

controlled current source with its characteristic /(•) as shown in Fig.
2.4; Eij is an independent voltage source.

Fig. 2.4: The characteristic of the nonlinear controlled source.

Fig. 2.5: The characteristic of the nonlinear resistor in the equivalent cell circuit.

Fig. 2.6: The steady state equivalent circuit of a cell in cellular neural networks.

Fig. 2.7: Dynamic routes and equilibrium points of the equivalent circuit for
different values of g (t).

Fig. 3.1: Input and output images for the simple example, (a) The input image
to be processed; (b) the output image of the horizontal line detector; (c)
the output image of the vertical line detector.
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Fig. 3.2: A typical templet of an interactive cell operator. The unit used here is

Fig. 3.3: The cellular neural network description file of the simple horizontal line
detector for the circuit simulation preprocessor CELL.

Fig. 3.4: The data file of CELL for the image in Fig. 3.1a.

Fig. 3.5: Templets for various interactive cell operators for noise removing cellu
lar neural networks. The unit used here is 10"3Q_1.

Fig. 3.6: The simulation result of anoise removing cellular neural network. Here
a =0.2 and the interactive cell operator is defined by the templet in Fig.
3.5(a). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image). ( The color in this picture and all the following
pictures is designed to stand for the gray levels of the pixels in the pic
tures, where

background = light blue;

=greenish blue; (~, --| ]=blue green;[-1.0, - |

^ 8' 8

(.1 .1
K8' 8

(-2 .1
1 8' 8

8 J ~ "*""6MI1 j^"vw> Vg, —

=bluish green; (--|, -j]= green;

=yellowish green; (-J-, --| ]=green yellow;
= greenish yellow; (~, 0.0 ] = yellow;

=orangish yellow; (-^-, -| ]=yellow orange;



2 3 ""* a
(•g- J ]=yellowish orange; (— —]=orange;

45 5 6
(~8' ¥ ]=oddish orange; (—, —]=orange red;

f\ 7 "7

(j> J J=orangish red; (—, 1.0 ]=red. )

Fig. 3.7: Simulation results of a noise removing cellular neural network. Here
c =0.4 and the interactive cell operator is defined by the templet in Fig.
3.5(a). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.8: Simulation results of a noise removing cellular neural network. Here
a=0.2 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.9: Simulation results of a noise removing cellular neural network. Here
a=0.4 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.10: Simulation results of a noise removing cellular neural network. Here
a=0.2 and the interactive cell operator is defined by the templet in Fig.
3.5(c). (a) the upper left picture, is the input image; (b) the upper mid
dle picture, is the image at time step 10; (c) the upper right picture, is
the image at time step 20; (d) the lower left picture, is the image at time



step 30; (e) the lower middle picture, is the image at time step 40; (f)
the lower right picture, is the image at time step 57 (output image).

Fig. 3.11: Simulation results of a noise removing cellular neural network. Here
a =0.4 and the interactive cell operator is defined by the templet in Fig.
3.5(c). (a) the upper left picture, is the input image; (b) the upper mid
dle picture, is the image at time step 10; (c) the upper right picture, is
the image at time step 20; (d) the lower left picture, is the image at time
step 30; (e) the lower middle picture, is the image at time step 40; (f)
the lower right picture, is the image at time step 58 (output image).

Fig. 3.12: Simulation results of a noise removing cellular neural network. Here
the interactive cell operator is defined by the templet in Fig. 3.5(a). (a)
the upper left picture, is the input image; (b) the upper middle picture, is
the image at time step 10; (c) the upper right picture, is the image at
time step 20; (d) the lower left picture, is the image at time step 30; (e)
the lower middle picture, is the image at time step 40; (f) the lower
right picture, is the image at time step 57 (output image).

Fig. 3.13: Simulation results of a noise removing cellular neural network. Here
the interactive cell operator is defined by the templet in Fig. 3.5(d). (a)
the upper left picture, is the input image; (b) the upper middle picture, is
the image at time step 10; (c) the upper right picture, is the image at
time step 20; (d) the lower left picture, is the image at time step 30; (e)
the lower middle picture, is the image at time step 40; (f) the lower
right picture, is the image at time step 57 (output image).

Fig. 3.14: Simulation results of a noise removing cellular neural network. Here
a=0.6 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
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step 30 (output image).

Fig. 3.15: Simulation results of a noise removing cellular neural network. Here

a = 1.0 and the interactive cell operator is defined by the templet in Fig.
3.5(b). (a) the upper left picture, is the input image; (b) the upper right
picture, is the image at time step 10; (c) the lower left picture, is the
image at time step 20; (d) the lower right picture, is the image at time
step 30 (output image).

Fig. 3.16: The templet defining the Laplacian operator.

Fig. 3.17: Simulation results of the cellular neural network for extracting the edges
of a diamond. ( / = -1.75xl0~3i4 )

Fig. 3.18: Simulation results of the cellular neural network for extracting the edges
of a diamond. ( / = -1.5xl0"3i4 )

Fig. 3.19: Simulation results of the cellular neural network for extracting the edges
of a diamond. ( / = -2.0x10~3A )

Fig. 3.20: Simulation results of the cellular neural network for extracting the
corners of a square.

Fig. 3.21: Six relationships for the cells with their neighbors.

Fig. 3.22: Templet defining the Laplacian operator. The unit used here is lO"3^1.

Fig. 3.23: Simulation results of the cellular neural network for extracting the edges
of a square.
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Fig. 3.24: (a) Templet of the feedback operator for the edge detector; (b) templet
of the feed-forward operator for the edge detector.

Fig. 3.25: Simulation results of the cellular neural network for extracting the edges
of adiamond, (a) the upper left picture, is the input image; (b) the upper
right picture, is the image at time step 10; (c) the lower left picture, is
the image at time step 15; (d) the lower right picture, is the image at
time step 57 (output image).

Fig. 3.26: Simulation results of the cellular neural network for extracting the edges
of a square, (a) the upper left picture, is the input image; (b) the upper
right picture, is the image at time step 10; (c) the lower left picture, is
the image at time step 15; (d) the lower right picture, is the image at
time step 57 (output image).

Fig. 3.27: Simulation results of the cellular neural network for extracting the
corners of a diamond, (a) the upper left picture, is the input image; (b)
the upper right picture, is the image at time step 10; (c) the lower left
picture, is the image at time step 15; (d) the lower right picture, is the
image at time step 57 (output image).

Fig. 3.28: Simulation results of the cellular neural network for extracting the
corners ofa square, (a) the upper left picture, is the input image; (b) the
upper right picture, is the image at time step 10; (c) the lower left pic
ture, is the image at time step 15; (d) the lower right picture, is the
image at time step 57 (output image).

Fig. 3.29 - 3.35: Simulation results of the cellular neural network for feature

extraction of the Chinese characters, (a) the upper left picture, is the
input image; (b) the upper right picture, is the image at time step 10; (c)
the lower left picture, is the image at time step 15; (d) the lower right
picture, is the image at time step 57 (output image).
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***********************************************************************

name_of_circuit "simple horizontal lines detector"
0^%^ Tt^ °f the <P»«e.t±o.%?££ oellular circuits...
vector_dimension l
cl 1.0E-9
rl 1000

yl "pwl term = 3 nseg =3"

an llTe °'° bP= °'°'0'0 CP= 0-0,-0.5,0.5 alphap- 1,0,1,0 b.t«p~l,i"
templet 0.0 0.0 0.0

0.001 0.002 O.'OOI
0-0 0.0 0.0

data_type xl
transient "O.lus 5us UIC"
output yl

*********************************************************************,

Fig. 3.3

************************************************************************

This is the initial state of the horizontal line detector.
Where

**************

II II

: -1.0
111 H

: -0.8
ii 2 •»

: -0.6
•• 3 ii

: -0.4
•14ii

: -0.2,
M 5 ii

0.0,
"6" : 0.2,
»• 7 ii . 0.4;
"8" : 0.6;
" 9 " : 0.8;
»• * ii .

1.0.

.71.

3.12

939*

121.

**************************
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