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ABSTRACT

Recent experiments on the TMX-U device at LLNL have indicated the

possibility of a drift wave being driven unstable by the injection of neutral

beams in the thermal barrier region. A review of linear theory is presented in

the local approximation. In addition, particle simulations are used to understand

the nonlinear characteristics of this instability. The particle simulations are per

formed using Id - 3v and 2d - 3v electrostatic particle simulation codes. The

instability is shown to saturate by beam trapping, nonlinear electron effects, and

nonlinear motion parallel to the density gradient. Resonant ExB motion is a

significant process for some of the beam particles. This process is closely asso-



ciated with the trapping of beam ions. Harmonic generation is also observed, as

appears in some of the experimental data. Qualitative nonlinear theory is

presented in support of the particle simulations.
i
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1. Introduction

The theoretical study of collisionless drift waves was begun a number of years ago1. In

particular, stability boundaries were given for the electrostatic electron drift wave in that origi

nal paper. The instability mechanism given in that paper was inverse Landau damping on the

Maxwellian electron component. The Maxwellian ion component served to Landau damp the

waves. The overall stability was then governed by the difference in the effects from the

resonant electrons and resonant ions. Particle simulations have also been performed for this

instability as in Ref. 2 and Ref. 3.

In this paper the analysis is extended to include the effects of injected ion beams as might

occur in the thermal barrier cells of a tandem mirror device . For this case there is extra free

energy associated with the ions which can cause instability . This ion-beam-driven drift



instability is a likely candidate for explaining some of the early experimental results on TMX-U

at LLNL. It is in this context that the instability is of practical interest. This paper concentrates

upon the instability for parameters similar to that of present day thermal barrier cells.

Section 2 reviews the linear theory using the electrostatic local approximation. Of partic

ular interest is the dependence of growth rates and wavelengths on the relative density of the

beam to the background plasma, the thermal spread of the beam along the magnetic field, and

the zero order beam velocity perpendicular to the magnetic field.

Section 3 presents the simulation models and linear simulation results. Section 4 includes

the qualitative nonlinear theory and the nonlinear results from the simulations. The characteris

tic nonlinear behavior includes nonlinear electron effects, mode coupling, ion beam trapping,

and enhanced cross field motion of trapped beam ions. Section 5 includes a short discussion of

the effects of axial inhomogeneity on the linear and nonlinear characteristics of the instability.

A summary and conclusions are given in Section 6. Appendix A. presents a discussion of the

field solves used in the particle simulation codes.

2. Linear Theory

In this section linear theory is examined in slab geometry using the local approximation.

The effects of the various parameters of the problem are noted and the most unstable

configurations are identified. Stabilizing effects are also presented.

A. Theoretical Model

The frequency regime of interest for this problem is o> « nc/. In addition, it is assumed

that kj>e « 1 and a>/ks « vte. Only the electrostatic response is kept which is valid if the

ion beam velocity Ub ( along z ) is much lower than the Alfven velocity. Variation of only the

plasma density is considered and the magnetic field is assumed to be uniform in space. Under

these conditions the dispersion relation may be written4

D(k,cu,x)- J>, -0 (1)
s
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<ops is the unperturbed plasma frequency evaluated at a location x0, *l = (1/2)vf, /"jCY^v.)

is the unperturbed guiding center distribution function with X —x+vy/(le , the argument of

the Bessel function is kj>s, and

*, 3

The plasma inhomogeneities are in the x direction which is perpendicular to the uniform mag

netic field in the z direction. For consistency with the local approximation it is required that

(vj/nc)8/OAT) « 1 and that ky » B/(BX).

For this parameter regime the electron response reduces to Debye shielding. The ion

beam and background ion susceptibilities are more complicated. The distribution function for

the beam or background ions may be taken as

2ir(vl)0 V2irv„

(3)

(4)

where a is aconstant, vu = yflT-lm^) being the ion parallel thermal speed, v0 - 0 for the back

ground ions and v0 - ± Ub for the counter streaming beam ions. This model allows finite kjp,

effects and thermal effects. The model also makes it possible to consider the case where the

zero order vx and v. are comparable, which is a case of considerable practical interest.

For the moment, however, consideration will be given to the case where the ion beams

and the background ions are completely cold and the beam ions have zero gyroradius. In this

cold limit the physics is especially clear and the dispersion relation becomes
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where 8 is the ratio of the beam density to the total ion density, and
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represents the inverse scale length of the background ion population evaluated at the location

x - xQ where the local approximation is being employed. ( Kb - \/Lb represents the inverse

scale length in the ion beam density) The terms proportional to 8 are from the ion beams. The

terms with the frequency dependence of 1/w2 represent the parallel inertial response, the terms

with the frequency dependence of l/o> represent the ExB response. The other ion derived term

in the equation is from the polarization drift, which in this approximation of zero gyroradius is

the same for both species of ions. Finally, only Debye shielding is retained for the electrons.

When 8 is an infinitesimal quantity and the beam spatial gradients may be neglected the

solutions to Eq. (5) are the drift wave branch

tobean

kjPsCsK

and the beam modes

Ub ±VT|)CS k: . (8)

Here cs is the sound speed and p, = cs/Clci. The solutions given in Eq. (7) and .Eq. (8)

assume that the system is quasineutral. The solutions given in Eq. (7) and Eq. (8) are shown in

Fig. 1. Notice that when Ub > cs and Ub < cs/(fc22IJ the beam modes and the fast branch

of the drift wave intersect, indicating that the the two modes are strongly coupled and instabil

ity may result. In Fig. 2. a numerical solution to the dispersion relation for a beam with finite

density. Only the real portion of the frequency is plotted.

The approximate scaling for the parameters of this system can be obtained from Fig. 1.

Specifically, utr =* Ubk.y kj>s - 1, and k.L„^ cs/(2Ub). The quasineutral approximation is

good in the limit (lcl « <opi , which corresponds to the case of interest for thermal barrier

cells. Note that the value for kLL„ remains unspecified. For consistency with the local approxi

mation it is required that kLL„ » 1, which is valid in the limit a> « Clci.

Note that the usual field-aligned electrostatic ion-ion two-stream instability is unstable

under the opposite conditions in the cold limit; namely Ub < cs. Since the drift wave is merely

an extension of the sound wave for a situation where there is a density gradient, there is a close



connection between these instabilities. In some limits there will not be a unique way to name

the instability since it may exist both with and without the density gradient.

B. Variation ofParameters

Variation of the characteristic parameters is expected to change the situation considerably

from the cold limit. Some parameter variations are considered in this section. The most impor

tant of these parameters are the thermal spread of the ion beam parallel to the magnetic field ,

finite gyroradius effects, the beam fraction, the electron temperature, and the density gradients

( which need not be the same for the different species ). Attempting to vary all of the parame

ters is intractable and so only variation of one beam parameter at a time is considered. In

addition, the background component is always assumed to be cold.

The plots of real and imaginary frequency will be scaled to the quantity a>4,x «= .5cs/L„,

which frequency represents the maximum drift frequency for cold ions and vanishing k.. It

should be remembered however, that the analysis presented in this paper is valid only for

o» « n„.

The general susceptibility for the ion beams including all of the parameters of the model

is given by

a>2 Kl <u
(b)
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where Z is the usual plasma dispersion function , Kl = 2JQ(OJi(Oi—f"» £ •• i i0» and

to,'« {kiv£)l(£lciLn). The set of parameters that are being used as a reference case are given

in Fig. 2 and will be fixed unless otherwise noted.

Starting with a given set of parameters, it is desired to vary a given parameter and to fol

low the most unstable root. The equations that must be solved to find the most unstable root

are

(9)

£>(cu,k)-0 (10)
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where k is taken to be a real quantity and the equations are solved for complex a*. The two

equations given in Eq. (10) and Eq(ll) constitute four nonlinear equations for the four unk

nowns kL, k. , the real part of the frequency o>r and the growth rate y. Efficient mathematical

routines exist for solving such systems of equations5. These routines are used in a computer

program written by one of us ( Y.-J. Chen ) and were very valuable in determining the

behavior of the linear dispersion relation. Figures (3)-(7) were generated by this computer pro

gram.

One of the most striking effects is shown in Fig. 3, which demonstrates the effect of hav

ing the ion beam gradient not equal to the gradient of the background plasma. In particular, the

growth rate is highest when the spatial gradients for the two species are in opposite directions.

This is not a small effect. This effect is also possible to realize in experiments since the ion

beam is created by external sources. For example when the optical depth of the neutral beam is

short compared to the width of the system, the density gradients for the two ion species will be

in opposite direction. In all of the following plots the ion beam gradient is set equal to zero so

as to give an estimate of the more unstable situations which may occur. The qualitative effects

of changing the other parameters are the same regardless of the value of the beam density gra

dient.

The effect of finite k&i for the beam ions is most clearly seen from the susceptibility

given in Eq. (9). There it is seen that the destabilizing parallel drift terms are multiplied by

Jjikj),) and so as kj>, becomes on the order of unity the effective beam density decreases.

Since v^ could be at least comparable to as Ub, the interesting values of kj>, are could also

be of order unity. A more complete description of finite gyroradius effects is given in Fig. 4 for

a typical example. As the gyroradius of the beam ions is increased the growth rate decreases,

the value of kj>s decreases, and the real frequency also increases. All of these effects are con

sistent.

Variation of the beam parallel energy spread also reduces the growth rate of the most

unstable mode. This is seen in Fig. 5. where the most unstable mode for a given case is



followed as the thermal spread is increased. The presence of resonant ions also forces the phase

velocity of the wave along the field lines to decrease. The growth rate does not become nega

tive, however. It is worth mentioning that the thermal spread is a slight destabilizing factor for

one root which is otherwise stable.

In order to understand the electron effects more completely it is necessary to include the

imaginary portion of the electron susceptibility. This is done by using

1

k2k2De

\(o — ft>» J
1 + — -Z(<o/(k.ae))

Ksae
(12)

k T
where Z is the usual plasma dispersion function , ae = V([2r./me),and o>/ *= TT~Ke wit"

me 42ce

Ke the inverse scale length of the electron population. Consider the addition of a small popula

tion of cool electrons For these electrons a> ^ (o^,, and the most unstable mode is stabilized.

Again as in the case of the ion thermal spread a mode which is stable with no cool electrons

may made slightly unstable by the addition of the cool electrons.

Now consider the electrons consisting of a single hot species. Then <o < a*/ and the most

unstable mode is slightly destabilized. This effect is one effect which may cause the destabiliza-

tion of drift waves with no free energy in the ion velocity space. The effect is, however, very

small when <a/(k:ae) « 1 which corresponds to the cases of interest here. It should be noted

that this discussion of the electron effects has assumed that the electron density gradient is in

the same direction as that of the background ions. This assumption need not be true for the

energetic electron component since their spatial distribution is greatly influenced by external

factors ( such as external heating ). Therefore the electrons may serve to increase or decrease

the growth rate of the most unstable mode, but in general cause only a small correction.

Figure 6 shows the effect of variation of the relative beam to background density. Notice

that the maximum growth rate occurs for a value of 8 less than one half. Also notice the other

variables presented in Fig. 6. First of all , as the beam fraction approaches zero the real fre

quency approaches Ubk: as is expected. In this weak beam limit the growth rate y is propor

tional to the square root of the beam density and the growth rate does not become zero (in the
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cold limit ) until the beam density itself becomes zero. In this weak beam limit the quantity

k.L„ has its maximum value.

As the beam fraction increases the real frequency becomes lower for two reasons. First

the beam modes begin to be split from the bounce frequency as in Fig. 2. Secondly, the max

imum drift frequency propagating on the background plasma becomes smaller as the back

ground density becomes smaller. Thus there would be no intersection of the beam modes with

the drift wave branch unless the frequency of the beam mode was lowered. This is clearly seen

in Fig. 6. where the real frequency, the growth rate and the value for k.L„ are all decreasing.

As the background beam density goes to zero, the interaction between the beam modes

themselves needs to be considered since the beam modes may have some of the properties of

the drift waves. When the background ion density does go to zero and the ion beams have

their density gradients in the same direction ( as in our case ), no instability is present in any

parameter regime.

Finally, the quantity Ub/cs is allowed to vary and the results are shown in Fig. 7. The ins

tability becomes more and more severe as the streaming velocity approaches the sound speed.

As this happens the real frequency and k. both increase very rapidly and the value for kj>s

goes to zero. In this limit the instability reduces to the field-aligned ion-ion two-stream instabil

ity6-7 which has frequencies and growth rates on the order of atpi and the original approximation

of keeping only the low frequency response is not valid. For those cases where the beam velo

city is very close to the sound velocity the temperature of the beam and of the background

become very important. Severe instabilities for cold beams may prove to be stable for more

realistic distribution functions7.

3. Simulation Model and Linear Results

This section describes the simulation techniques and the linear behavior of the instability

as recovered from our particle simulations.

A. Simulation Model



The simulation geometry is presented in Fig. 8. The uniformity of the magnetic field is a

consequence of the low beta approximation. As in Sec. 2, the electrostatic approximation is

used and is valid if the beam velocity Ub is much less than the Alfven speed VA. The simula

tion codes use nonlinear Boltzmann electrons and particle ions to solve Poissons equation ( or

quasineutrality ) in the y-z plane with a constant magnetic field in the z direction. The

quasineutral approximation is valid in the limit (d2 » ft* , which is a realistic limit. The

time step constraint is determined by stability of ion cyclotron waves. However, this does not

mean that ftr, A/ « 1 if only the particle guiding center motion is desired. The stability con

straint due to the ion cyclotron waves can be removed by schemes using a biased, first order

accurate time integration scheme8, although this was not done for this paper. For the 1-d 3-v

code only one direction is kept in the y-z plane and periodic boundary conditions are used for

both the particles and the fields. The boundary conditions applied to the fields for the 2-d 3-v

code are periodic in the y direction and E„ - 0 at z •» 0 and z -Z.z. The particles are periodic

in the y direction and specularly reflected in the z direction. Therefore this 2-d 3-v simulation

model is a type of square - well model for the thermal barrier region. Only those Fourier

modes which are important for the instability are kept self-consistently in the codes.

The density variation is in the x direction and is implemented using the " ghost particle "

technique from Cohen9. The ghost particle technique assumes a fixed density profile for the

various species and has the drawback that the density profile cannot be self-consistently

updated. Thus, final saturation levels from the simulations can be expected to retain only quali

tative information. This ghost particle technique is useful when velocity-space relaxation may

saturate the instability, as for the instability being studied in this paper. The exact form of the

density variation may be specified arbitrarily. For our simulations we have found it convenient

to use nix) « n0( 1+ rx/(l+[rx\)) where rx -x/L„ is the displacement relative to the local

density scale length. In order to restrict the parameter space, the beam scale length was taken

to be infinite, which represents the more unstable possibilities as seen in Fig. 3. Since the ions

must have a x coordinate associated with them, the 2-d 3-v code has six phase space variables
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and the 1-d 3-v code has five phase space variables.

B. Linear Simulation Results

In this section representative linear code behavior is presented. Excellent agreement with

theory is obtained for the simplified distribution functions used in the simulations.

Initially we consider the case of parallel injection only; that is vx - 0. A series of test runs

was conducted in order to compare the theoretical growth rates and those given by the 2-d 3-v

simulation code. The simulations parameters were 8 - 0.2, Ub/cs = 3.0, nc/A/ = 0.5 - 1.0,

<»max/fic/ - .03 and only one Fourier mode was kept. The normalized parallel drift velocity,

v,,/Ub, was varied and the system lengths were changed so that the most unstable mode was

retained. There were Ny - 65 grid cells in they direction and N: - 32 grid cells in the z direc

tion. Approximately 25,000 particles were used. For these parameters the kLL„ ^ 10 and the

local approximation can be expected to retain some validity, at least in the linear regime. The

parallel velocities were chosen by bit-reversing technique as in Birdsall and Langdon10. This

allowed much cleaner results than from a random initialization.

An example is given in Fig. 9 of the square of the mode amplitude as a function of time.

Note that the line is not perfect. This is to be expected since for this simulation resonant parti

cles play a large role in the determination of the growth rate. Also, the simulation could be

started without initial excitation in which case the total growth in field amplitude would be

about double what it is here. The characteristics of the results are the same when this is done.

Finally, the five test cases are given in Fig. 10 along with the calculated growth rates from Sec.

2. The boundary conditions used by the 2-d 3-v code do not change the growth rate from

infinite medium theory. Agreement is very good. The error is on the order of the error made

in the theoretical treatment; that is the error is on the order of <o/(lc,.

The injection angle of the neutral beams relative to the magnetic field in the thermal bar

rier cell is designed to be approximately forty five degrees11. Therefore the zero order v± should

be approximately equal to the zero order streaming motion along the magnetic field. This can

be and has been added to the simulation model. However the additional noise associated with
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the ion cyclotron waves requires a very large number of particles to suppress. Thus the particle

simulations become prohibitively expensive. One could try to use a guiding center mover12 or a

gyrokinetic approach13 in order to eliminate ion cyclotron modes and still retain finite gyrora

dius effects. However, because the instability characteristics are insensitive to finite gyroradius,

finite gyroradius effects will be ignored for numerical efficacy. Specifically, the linear characteris

tics are insensitive to finite kj>, corresponding to the most unstable mode. Similarly, quasil-

inear effects are only modified by a multiplicative factor J%(kj>i) from the case with zero

gyroradius4.

4. Nonlinear Behavior

This section describes the nonlinear phenomena as observed from the simulations and

presents a qualitative discussion of their importance. The nonlinear phenomena include (1)

nonlinear electron effects , (2) nonlinear motion in the density gradient direction, (3) mode

coupling, and (4) trapping of the beam ions. The relative importance of these effects depends

upon the (1) the linear growth rate , (2) the parallel thermal spread in the ion beams and (3)

the relative density of the ion beams to the background plasma.

A. Motion in a Single Wave

The unstable modes that are present have their phase velocities lower in absolute values

than the beam velocity as seen in Fig. (2). The qualitative condition for trapping depends upon

whether the ion beam is warm or cold. Here the beam would be labeled as warm if many beam

particles were resonant with the parallel phase velocity of the unstable wave. If the beam is

thermal in that sense, then saturation could be due to the nonlinearities associated with

resonant particles. If this happens, then saturation occurs within about an e-folding time of

when the growth rate is equal to the bounce frequency of the resonant particles in the wave.

Estimation of the perturbed potential at saturation by this method yields the scaling law

^ =^3 (13)
*e **b

where Ub - acs and atb = k. Ub and the factor 3 represents the " e-folding " of the amplitude



12

after the onset of nonlinear behavior. Typically this predicts values for (e8<f>)/Te < 1 which

restricts the choice for the electron model. In particular, a linearized electron response cannot

always be expected to yield correct results.

However, if the beam fraction is large enough and the beam temperature is low enough so

that the phase velocity lies substantially outside the ion distribution function, then the per

turbed saturation potential at saturation must be larger than predicted by Eq. (13). It is for

these cases of a cold and strong beam that ion trapping is not the only significant saturation

mechanism. The nonlinear electron response and displacements of the background ions of

x/L„ < 1 play major roles in limiting the perturbed potential. Under these conditions where the

background displacement becomes nonlinear, the local approximation becomes more tenuous.

A more complete nonlocal treatmentwill be considered separately in a later publication.

Closely associated with particle trapping in a single wave is an enhancedcross-field motion

of the particle guiding center parallel to the equilibrium density gradient. As shown by Nevins14

this guiding center constant may be expressed as

vr ~ Ux/Aylnc-Jc - constant (14)

where the field has the form <f> - <f>0(x)sin(kyy + kzz - wt). Therefore large changes in v. are

accompanied by large excursions parallel to the equilibrium density gradient. This effect is most

prominent for resonant particles since resonant particles suffer the largest changes in v..

The electrostatic field is polarized almost perpendicular to the magnetic field and so it is

natural to consider the possibility that the instability may be saturated by perpendicular trap

ping, that is that the perturbed electric force should be comparable to the magnetic force. Set

ting those two forces equal gives

e8<t> _ «2Ac, no

Comparing Eq. (13) and Eq. (15) suggests that perpendicular trapping should dominate over

parallel trapping when

y* k.
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is satisfied. This condition is very difficult to satisfy as kj>s = 1and y < 0.\ksUb make it pos

sible to rewrite Eq(15) as

"T" > 100 • (17)

B. Motion with Several Waves

The presence of several waves complicates the analysis. First of all, even for a single

value of kL there exist two unstable waves. One wave has positive phase velocity along the

magnetic field ( positive k. ) and the other wave has negative phase velocity ( negative k: )

along the magnetic field. The wave with positive phase velocity is associated with instability in

the beam with positive velocity and similarly the wave with negative phase velocity is associated

with instability in the beam with negative velocity.

However, the presence of two waves ( one with a negative phase velocity along the mag

netic field and the othe with a positive phase velocity along the magnetic field ) causes no.

significant change over the case of a single wave. The reason is that in the frame of one of the

beams, the two phase velocities of the unstable waves are vastly different. The wave in approx

imate resonance with a given beam is responsible for nonadiabatic change of that beam. The

other wave is of very high frequency and only causes high frequency adiabatic motion of the

particles in that beam.

Next, we consider the case of multiple values of k. Frequently, it is claimed that multiple

waves lead to quasilinear diffusion. However, this is subject to two constraints; (1) that the

wave autocorrelation time is short compared to the trapping frequency and (2) that the number

of unstable waves present is large. Both of these requirements may not be met for experimen

tal or for the simulations. One reason for this is that all of the unstable waves have parallel

phase velocities of = ± Ub as seen in Fig. 11. Thus the wave autocorrelation time is very

long. In addition both in experiment and in simulation the k spectrum is discrete. The discrete

nature of the k spectrum is an important consideration in most simulations. Typically, in a

simulation, a single mode dominates the saturation process.
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A more complete treatment would have to include both axial and radial inhomogeneities.

These two effects may alter the picture given in the preceding paragraph using the infinite

medium model. The complete radial problem is a boundary value problem and as such may

have a number of unstable eigenfrequencies for a given value of ky and ks. In particular, for

those cases where the local approximation is satisfied the eigenfrequencies are closely spaced.

Thus the complete radial problem may have many more waves with comparable growth rates

than local analysis yields. This fact should tend to increase quasilinear effects.

Axial inhomogeneities change the problem by causing the normal modes to be composed

of many values for k. rather than one value as for the homogeneous case. Thus, axial variation

of equilibrium parameters may assist is making quasilinear diffusion a more important mechan

ism than predicted by infinite medium theory.

C. Weak.Mode Coupling

Experimentally it was seen that for weak cold beams there were peaks in the spectrum of

the noise at harmonics of the ion bounce frequency in the magnetic well. The number of har

monics seen was much larger than the likely number of unstable modes. This implies a possi

ble mode coupling mechanism.

The theoretical treatment is outlined below. The treatment of Sagdeev and Galeev4 is fol

lowed. The particle distribution function is expanded in a series in the small parameter -q as

/-£/('V (18)
i-0

and

4> - £ *{iV (19)
j-0

The series for the distribution function may be calculated by using

J. a r(s-\)
»/(,,-nJ*V*"S*gj— (20)

where the integration is over the unperturbed particle trajectory. Poisson's equation then closes

the system of equations for each order in 17.
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The equation giving the second order behavior for a mode (k,o>) which is linearly stable is

given by

{ x €(2)\k\k\(o'cA
(21)

where the sum is over all modes which satisfy the conditions k + k" - k and w + a>"= a>.

This expression contains a very complicated function c<2) and the linear response given by €(1>.

Equation (21) actually assumes that modes (k',a>) and (k",<u") are marginally stable. However,

it does represent the correct first order expansion in y/at and so retains qualitative justification

even for finite growth rate. One relevant fact is that the linear response may become small.

This is realistic if both the beam density and the beam thermal spread are both small. Under

these conditions harmonic generation is possible.

D. Simulation Results in the NonlinearRegime

As indicated above, there exist several nonlinear mechanisms associated with the satura

tion of the instability. These nonlinear effects will be demonstrated be using the results for the

one dimensional code and the two dimensional code. In addition to the saturation mechanisms,

the appearance of ion phase space at saturation is important and therefore will be described.

The 1-d 3-v model allows only one of the beams to be unstable since only one sign of it-

relative to kL is allowed. Nevertheless, this model is a useful starting point for examining non

linear effects. For example Fig. 12 shows particle trapping and enhanced cross field motion near

saturation of the instability. The existence of the guiding center constant of motion dictates the

symmetry seen in the two plots. This simulation was of a cold strong ( 8 » 0.2 ) beam with the

parameters of Sec. 3B. and as a result nonlinear electron effects and nonlinear motion of the

background ions ( x/L„ < 1 ) were also important factors in saturation of the instability.

A more complete model of the instability is obtained with the 2-d 3-v simulation code,

since for this code both beams are unstable in the simulation. This code was used to generate a

series of simulations with varying thermal spread. The thermal spread plays a large role in

determining the magnitude of (e84>/Te) , at saturation and the appearance of/(v.) at satura-
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tion.

The simulation parameters are the same as used in Sec. 3B. Table 1 gives the amplitude of

the perturbed potential at field energy saturation. Notice that the Boltzmann electron response

is important since eb<t>/Te is not neccesarrily a small parameter. Simulations were performed

using a linearized electron response and the saturation levels for the cold beam cases were

significantly ( and unphysically ) enhanced.

The distribution function at saturation is also useful for demonstration of nonlinear

effects. These distribution functions are given in Fig. 13. For the cooler cases the entire beams

become nonlinear and resonant particle trapping is not seen. As the beam thermal spread

becomes larger and larger, obvious trapping effects are seen. This trapping is confined to the

resonant particles and the bulk of the distribution function remains linear as shown in Fig. 14.

Finally, several multimode simulations were studied to examine the effects of retaining

additional stable and unstable wavevectors. Keeping additional unstable wavevectors caused

only slight differences in the single mode cases mentioned above. This is due to the discrete

nature of the simulation k space; only a small number of modes have comparable growth rates.

For example, Fig. 15 shows the dominant nonlinear behavior for a simulation in which many

modes were linearly unstable. As can be seen ( Fig. 15 ) the constant of motion given in Eq.

(14) is still very useful.

Keeping additional stable wavevectors at multiples of the unstable wavevectors does lead

to mode coupling. This effect is most prominent for weak cold beams as mentioned in Section

4B. One example is given in Fig. 16. The extent of coupling obtained in this matter can not be

compared quantitatively to the experiments, since the experimental results depend on many

more parameters than included here.

The nonlinear effects are summarized in Table 2. For the case most relevant to experi

mental operation, that of a strong thermal beam, the saturation is by beam trapping and weakly

nonlinear electrons. For beams with very large thermal spreads parallel to the magnetic field,

the growth rate becomes very small and the electrons remain linear.
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5. Axially Inhomogeneous Simulations

This section is a preliminary study of the effects of axial inhomogeneity on both the linear

and nonlinear evolution of the instability. It is shown that considerable shortening of the axial

length is necessary for significant decrease of the field amplitude at saturation.

In order to relax the square well approximation of the previous section an axially non

uniform electron response was used. The model electron response is given by

ne (z) - /loexpletf/r,,, (z)l (22)

where the function T[ie(z) represents the parallel electron temperature and is a function chosen

to model the thermal barrier cell. The most important feature that the model must retain is that

the effective electron temperature increases toward the middle of the thermal barrier cell.

The model used is not entirely self-consistent because the magnetic field is assumed to be

axially uniform for pushing the ions. In reality, the reason for the effective electron tempera

ture to vary axially is that energetic electrons are trapped in an axial magnetic well. The effect

of the axially varying magnetic field can be neglected for the ions in the center of the magnetic

well if the mirror ratio is large and the ions are injected near the mirror throat. The ion motion

in the stable regions then just gives a time delay and the details of that motion are irrelevant.

This approach makes it possible to examine qualitatively new physics as compared to the

square well model. Unstable regions are now limited to the region in the center of the cell

where the instability condition Ubk. = cs/(2L„) can be satisfied. Further away from the well

center cs is much smaller and unstable values of kz are not able to fit into the system. A com

plete theoretical treatment of the problem must include all of the bounce resonances in the well

as in Sharp15. This will not be attempted in this paper.

In order to perform simulations a choice must be made for the function Tne(z). Several

different functions were tried; the qualitative effects were found to be independent of the exact

functional form employed. For the simulations presented here the functional form was chosen

(1) to be symmetric about the center of the simulation region, (2) to be constant near the

edges of the simulation region, (3) to be parabolically increasing near the center of the
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simulation region, and (4) to be a continuous function. The simulations used Ns - 65 with the

parabolic region confined to the girds larger than grid number 8 and smaller than grid number

57. The other simulation parameters were Ny - 32, 8 - 0.2 w^ilci - 0.03, vti/Ub « 0.13

and Ub/cs - 3.0where cs is evaluated at the center of the simulation region. Only one Fourier

mode was kept in the v direction. Approximately 25,000 particles were used. The system

length was varied.

Figure 17 shows the effect of axial inhomogeneity on a typical potential profile. (case 2 of

Table 3.) The perturbed potential is substantially limited to the center of the simulation region

where the electron Debye shielding is the weakest. However, the potential need not be sym

metric about the simulation midplane even though the electron response is symmetric. Also,

the general case will have more than one normal mode present at the same time if the excita

tion is random as in the simulation presented here. This is seen to be the case from Fig. 18

where a time history of the real part of the potential is given for a location near the center of

the system.

The saturation of the instability is very similar to that of the square well simulations. This

can be seen from the test particle trajectories presented in Fig. 19. Again the qualitative

behavior is similar to that dictated by the adiabatic constant of motion. Table 3 shows the

-values of the perturbed potential at saturation as the system length is varied. Notice that a

dramatic decrease is not attained except when the most unstable wavelength is longer than

about twice the length of the unstable region.

6. Conclusions

In this paper a simulation model has been used to examine a drift wave instability which

has been observed in some experiments. Qualitative nonlinear behavior demonstrates the

importance of beam trapping, cross-field diffusion, and nonlinear electron effects. In addition

the importance of the thermal spread in determining the saturation behavior has been shown.
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Appendix A.

The electrostatic field solver used in the simulations is described in this appendix. The

field solve uses either (a) linear electron Debye shielding in conjunction with Poissorfs equa

tion (b) quasineutral Boltzmann electrons or (c) Boltzmann electrons in conjunction with

Poisson's equation. For the parameters of the paper, the second option was quite adequate.

The field solve using completely nonlinear Boltzmann electrons is solved for in a manner

using techniques given in Hockney and Eastwood16. Given an initial approximation to Poisson's

equation <M, Poisson's equation is linearized with respect to that approximate solution yielding

«?(<^+i-<^)
vV+1

enoexp
etf

1 +
Te

-en, (Al)

where <t>p+l is the next approximation for the potential. Subtracting V2<f>p from both sides of

the equation yields an equation for the small quantity W = <^+1-<^ gjven by

V2W « -en, - VV + en0exp

To solve this equation the iterative method of Concus and Golub17 is used. This consists of

removing ( approximately ) the W depend of the right hand side of Eq. (A2). This yields

(v2 - k) W"+l - (-«, - VV - KWtt] +y-Wntfixp
Here K is a parameter which may be varied to improve convergence. The optimum value is

that value which approximately removes the W dependence of the rhs. Given the updated

potential, the entire procedure is started again.

e4f
T

+ WenQQxp etf

Te

etf

Te
+ enoexp

(A2)

etf

Te
(A3)
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TABLE 1. Variation of saturation with the parallel thermal spread of the ion beams. For

larger thermal spreads the saturation levels should decrease very quickly since for those

cases trapping is the sole saturation mechanism.
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saturation cnaracteristics

ym

small

ion beam trapping; enhanced

cross-field motion of trapped

ions; coherent mode coupling

nonlinear electrons; non

linear motion parallel to the

density gradient; ion beam

trapping; enhanced cross field

motion of trapped beam ions

large

trapping of resonant ions;

enhanced cross-field motion

of trapped ions

trapping of resonant ions;

enhanced cross-field motion

of trapped ions; weakly non

linear electrons

TABLE 2. Nonlinear properties as a function of parameter space.
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saturation Levels as a function of system Lengtn

* (eS<t>/Te)e/saturation

TOtr

TOTm

TS tar

TABLE 3. Saturation levels as a function of system length. The parameter ^ is the sys

tem length divided by half of the most unstable wavelength evaluated locally at the center

of the system. The parameter Te represents the electron temperature in the center of

the simulation region.



FIG. 1. Schematic solutions to the dispersion relation in the weak beam limit.
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