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Abstract

The stability of power systems including the effects of automatic

voltage regulators is studied via Lyapunov's direct method. The multi-

variable Popov criterion developed by Moore and Anderson is employed in

constructing a Lure type function for a power system consisting of syn

chronous machines interconnected by a lossless transmission system. The

Lyapunov function constructed for the system with only flux decay is

regarded as a special case of the result obtained in this paper. The

effect of an automatic voltage regulator on power system stability is

illustrated by numerical examples, showing some shifts of equipotential

curves which are due to changes of voltage regulator gain.
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I. Introduction

In power system stability analysis, the direct method of Lyapunov

has been utilized by many authors over the last two decades. In their

work, several researchers [l]-[8] have discussed power systems, taking

into account the effects of control apparatus such as velocity governors

(GOV) or automatic voltage regulators (AVR)-. In spite of its important

role in stability, however, there have been comparatively few attempts

to consider the effects of AVRs while much of the literature has dealt with

GOV. Pai and Rai [6] have obtained a Lyapunov function for a power system

considering simple voltage regulator action. For the system including an

AVR in a feedback loop, another result has been reported in [8], However

these papers have dealt with single-machine systems. Multimachine systems

considering the effects of AVR dynamics have not been discussed.

More recently, Kakimoto et al. [9] have modified the Moore-Anderson

theorem [10] according to Desoer-Wu's condition [11] for the stability

criteria. The result was applied to a multimachine power system with

field flux decays, and a Lure* type Lyapunov function was constructed with

the method established by Willems [12] and other researchers [13] [14].

In their method, however, one has to choose the function V-,, which is an

integration of the nonlinear part of the system. The choice of this

function is somewhat intuitive and is not readily extended to systems

with AVR dynamics or to other more complex systems.

In this paper, the function V-j is uniquely obtained by determining

an arbitrary matrix Q first, namely, all elements of the matrix Q are

determined so that the curl equations may hold for the nonlinear components

of the system given [7]. Once (£ is determined, V-j will be given by a line

integral of the nonlinear components and is independent of the path of

integration. Thus a Lure type Lyapunov function is constructed for the
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multimachine power system with AVR. The linear part of the Lure* type

function is determined by the procedure developed by Willems [12].

We note the voltage regulator modifies the original behavior of the

system, hence, when we discuss the generator with AVR, we should pay

attention to the effect of installation of this control system on the

stability of the original system. A poor design will sometimes violate

the stability of the original system. The Moore-Anderson theorem yields

extra conditions for the stability of the system, in connection with

the installation of AVR.

The organization of the paper is as follows. In Section II, we

present the dynamic equations of the system, taking into account flux

decays and AVR. The AVR dynamics with feedback loop are approximated by

first-order responses. In Section III, the stability criteria are given

according to the Moore-Anderson theorem, including stability criteria

which are due to installations of AVR. The nonlinear part of the Lure*

type Lyapunov function, i.e., V^a), is also determined in this section,

being concerned with Desoer-Wu's condition. The linear part of the

Lyapunov function is derived in Section IV by solving matrix equations.

The procedure established by Willems is used for determining the unknown

matrices. In Section V, we discuss critical values of the Lyapunov

function. A discussion related to the choice of some coefficients

appearing in the Lyapunov function is also given. Section VI gives

examples to show the effect of an AVR on power system stability. The

final Section VII summarizes the main results of the paper and briefly

outlines several extensions to be developed in future work.

II. Dynamic Model of Power System

In this section, we consider a power system consisting of n synchronous
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machines including the effects of field flux decays and AVR action. The

synchronous machines are modeled by internal voltages which are connected

to the machine terminals via transient reactances. A simplifying assump

tion is that the quadrature reactances are equal to the transient reac

tances, in which case, neglecting resistances, a dynamic model of the ith

machine is given by [16]

d26

Mi-rr+DiTF=Pmi
d6.

l
n

I B,, E, E,. sin 64,
dt"

U i J U

dE,

Tdoi-ar--Eexi-Ei + txdrxdi)Idi

the AVR is modeled by a linear Ist-order response as follows

dE

^-IT'-^i-h^-^hi-^

In (1)

6i

5ij

Ei

exi

o

exi

v°."ti

Tdoi

Tvi

hi

Bij

and (2)

machine internal voltage phase

6.-6.
1 J

machine internal voltage magnitude

excitation voltage magnitude

E Y. at equilibrium

terminal voltage magnitude

V.. at equilibrium

open circuit time constant of machine

time constant of voltage regulating system

feedback gain of voltage regulating system

d-axis current

susceptance parameters of reduced system
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In this system, some of the machines may act as motors while the rest act

as generators. Despite this fact, we simplify by supposing each machine

has an AVR system. In addition, as the terminal voltage has a root square

form of direct and quadrature components, a feature which frustrates the

proposed analytical method of constructing Lyapunov functions, we assume

simply Vti - kiVt ., where ^ is a constant [8]. This assumption is

reasonable for a lightly loaded system.

Under these assumptions and taking into account the condition that

2 2d 6^/dt , d6../dt, dE^/dt and dEexi/dt are equal to zero at equilibrium,

the system dynamics (1) and (2) may be rewritten as

d26. d<5. n
Mi -JT +°i -W =X WEft sin 6°. -EiEj sin «„}

^ilf=-ai(Ei-E?)+8i(EexrEe°xi)

iiBij{Ej°cos6°.-Ejcos«.J.}
J'^i (3)

^^"-♦l^exrELlJ-^tEi-E?)

Ji'i

where the superscript "o" denotes the value at the equilibrium state and
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ai =*or*dT Bii •' *i~~^v

= doi

1 xdi"xdi

*1 = ii k x'uiKixdi

* n1 =*d7 +Y"

1 y.k.x*.

(4)

We define A6i AS^S?, ^ AA6., AEi AE^E? and AEgxi AEexi-E°xi for
i = l,2,*--,n, and A6. A A6..-A6 for i = l,2,**-,n-l, choosing the nth

machine as reference. Furthermore, we define a (4n-l) vector x , (m+n)

vector u and (m+n) vector F (o) as

X A

1(a) A

A6

U)

a£

Aiex

I,(a)

JEgtfl)

a A
*1

fi2

(5)

where g^ and f ^a) are m(=n(n-l)/2) vectors, o^ and f 2(<z) are n vectors

and

alk =A6ij'

a2k*= AEi
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Ik

2k

B.^E^OCE^sin^.^.) - E^sln^)

1 Bij{E° cos 6?. - (E^Jcos^+A^)}
J?M

Then the state model is given by

i =A x - BF(o)

a = CTx
where

A =

0

0

0

LO

-M* D

0

0

-Y a y 6

7-C 7-1"

CT =

T=

£ o o o
0 0 10

e

-I

0

T1

G =

K =

e

-I

B =

-e

I S.

0 G'

-1
M T

0

0

-1
I

-1
-C

(6)

(7)

(8)

in which A is a (4n-l )x(4n-l) matrix, B is a (4n-l)x(n+m) matrix, C is a

(4n-l)x(n+m) matrix, J< is a nx(n-l) matrix, T is a nxm matrix, G is a

(n-l)xm matrix, T' is a (n-1 )x(m-n+l) matrix, G' is a (n-2)x(m-n+l) matrix,

e is a (n-1) vector with unity entries and M, D, a, £, y> jn» ± and £ are

nxn diagonal matrices. We notice a relationship T - K G.

III. Stability Criteria of the System

The transfer functionof the linear part of the system (7) relating
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a to -£(a) is given by

W(s) = C1Wa)~1B

-1
7lT(s I+M^D)" M"]T

1 ftl1-^!1

where

"i - diag

(9)

(10)

^2 - diag

(s+-3.)(s+^) -L+-L
ni Yi

The nonlinearity £(a) is assumed to satisfy the following conditions [11]

(i) F(a) is continuous, and maps Rm+n into Rm+n

(ii) For some constant real symmetric matrix H,

FT(a) n o >0 for all a e R1"*1""

and

1(a) = 0 if a = 0

(iii) There is a scalar function V-j(a) such that V-,(a) >0 for all

a e R1"*", VWa) =0 for a =o_ and for some constant real matrix Q

jn+n7V1 (a) =QT £(a) for all a€ Rr

Using the above conditions in [11], we obtain a version of the Moore-

Anderson theorem as follows:
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Theorem

If there exist real matrices N^ and £ such that

Z(s) = (N+gs)W(s) (11)

is positive real, then, assuming there are no pole-zero cancellations,

(i) there exist real matrices f, L_, W« with £ positive definite and

symmetric, satisfying

PA +ATP =-LLT (12)

PB =CNT +ATCQT -L Wq (13)

wJWq =Si^B +BTC QT (14)

and

(II) these matrix relations along with (i), (ii) and (iii) may be used to

establish that the null solution of (7) is asymptotically stable in the

large. d

To establish this result we use the Lyapunov function

V(x) =JxTPx +V-, (a) (15)
with

V(x) =- ^(xVfTwJ)(LVWo£) - xWf (16)

Note that under the conditions stated we obtain a global stability

result. For our application, however, (ii) and (iii) are not satisfied

globally and we will use V(x) to estimate a region of asymptotic

stability.

In this paper, £,which is required to satisfy Desoer-Wu's condition

(iii), is specified so that VV-. (a) = Q£(a) satisfies the curl equations
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aCfetellj _aQ^feJij
3a. 3a. (17)

In our case (17) implies the result

Q = q I (18)

where q is an arbitrary constant. Thus we can obtain V,(a) by a line

integral which is independent of the path as

* rnTV^a) =
JO

E.' L(o)Tda

= q

al a2

Jo 4 d£i +qf 4 *J
n-1 n

q I I B^NEj+AEJtE^Hcos 6° -cos(6?.+A6.1.)}
•j=i i=i+i ^ J v ^ ** J

Or-0- AE.AE. cos 6" - A6. .EVEV sin 6?.]
i j ij ij l j ij

Now let us define N with a scalar constant n as

N =

0 0

(19)

(20)

Desoer-Wu's condition (ii) with this Nimplies naj f-j(a) ^ 0. In this
particular problem, however, the term a! fi(a) can have negative values

around the origin as pointed out by Pat and Rai [6]. Hence it is desirable

to remove this condition, letting n=0. On the other hand, however, this

selection of n may lead to a pole-zero cancellation between (l+5.s) and

W(s). In order to avoid the pole-zero cancellation, we give n a nonzero
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value in constructing the Lyapunov function, and after the function is

obtained we let n=0, according to the procedure given in*[9]. Substituting

(18) and (20) into (11) gives

Z(s) -
Z^s) 0

0 ^(s)

(n+qs) j TT(sI +M"]D) M"]T 0

0 qs(U ^-U^1)
(21)

The conditions for Z(s) to be positive real are:

(1) Z(s) has elements which are analytic for Re(s) > 0

(2) Z*(s) = z(s*) for Re(s) >0

(3) Z(s*) + Z.(s) is positive semi-definite for Re(s) > 0

The first two conditions clearly hold. In this case condition (3) will be

satisfied if both zj(s*) + Z^s) and z£(s*) + ^(s) are positive
semi-definite for Re(s) > 0.

We have

z{(s*) + ^(s) =2TT
rgDrnM.-»

dia9\sz)
•1W -i

lj(s*) + ^(s) =2q diag
2 2

2 2 2(^-0) ) +1|>3(D
where

1 *1
> % =

*3

a. <j>.

2- yft

a.A.+n.B-
1M 'lpl

'l^i
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Hence if there exist constants

for all i

and

Mi
<*>" D7

Y1 >0

(24)

B1C1
Vei >Y^?L(ai+ni) f0f d11 ] (25)

Z (s*) + Z(s) is positive semi-definite, which implies Z(s) is positive

real. This means the system is asymptotically stable under the conditions

(24) and (25). The extra condition (25) is due to the installation of

the AVR.

IV. Lyapunov Function

In our case, it is not enough to simply find conditions guaranteeing

the existence of a Lyapunov function. We need to find the function to

estimate the region of asymptotic stability. For this purpose we use the

Willems technique to find the matrix £ which satisfies (12), (13) and

(14).

Let £, I and W« be partitioned as

~*1 £•12 P-13 P-U Ml -12

£ =
^21

^31

^22 ^23

^•32 ^33

£24

-34

, k =
1=21 J=22

h\ t-32

> ^42 ^43 £44 _ _^41 ^2

>1 -12

«0 = w21 "22

-12-
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Then as a consequence (14) leads to

Wn =0 ,W21 =0 (27-1

WJ2W12 +W£2W22 =2q1*1 (27-2!

From (13), we have

P32=^3 =̂ £42=44 =2. (28-1

p.,31"1 - p14I 1=-(kn^+k^V (28-2!

klUl2 +1-22^22 °± (28"3;

P.jgM"1! =nG (28-4

PggM"1! =qK G (28-5

P33X"1 "h^ " "Id"1")1" (k31W12+k32W22) <28"6'

P43X"1 "P44S."1 =id"1!)1" (k41W12+L42W22) (28-7

Furthermore we obtain the following relations from

Ml - 0, k12 =0, P13 =pj, =0, PM =fj, =0 (29-1

P,,KT-P,2M~1D. =0 (29-2

KP12 - (IfVf^ +£3/ -P^D =-(L^+L,,,^) (29-3

-£331 V l3t£\- &\)\3 -^n)\3 =-(k31k3>k32k32) (29-4

-^"V£44! V +d"^7^" te'VPtf =-(k4ik51+k42k52) (29-5

P43X"1! -£44! V +(l"1!)^ - (L'\)\4 =-(k41j41+k42j42) (29-6
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We also have

T T

-3lkl + ^32^22 =-

XT
^41^21 +^=42^=22 =2. (2g.7)

^21-31 + ^2^32 =2-

T T

kl^41 + ^=22^42 " 2-

which may be satisfied with

k31 =0. k4! = 0, Lgg =£ (30)

Thus, the solution of (12), (13) and (14) reduces to the solution of

(27), (28), and (29).

Now, substituting (30) into (28-3) gives L^i^i? =0 which leads to

"12 -.o.

Solving (28-4), (28-5), and (29-2), we obtain well-known results

[14] [15] [16] .

£11;= PVllVl +n2n-l

£.123£niV1!l (31)

£22 = qM + uMl M

where EL •> is the matrix D with nth row and nth column deleted, p and y
—n-l —

are scalar constants and 1 is a matrix with all elements equal to 1.

Substituting (31) into (29-3), we have the matrix inequality

2(-D+^M) - u'(Ml D+D1 M) <0 (32)

where u' = (u-p)/q
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The determinant of the left side of (32) is a quadratic in u'. Hence

(32) will be satisfied if u' lies between the two roots of this quadratic

equation, given by [14]

,2? n-1 n (D..M.-D.M.)'
(u*> I I n3 J1-1 J=i+14(D.-^M.)(D.-^M.)

n D.M.

u' I 1n1 -1=0 (33)
1-1 D.-IlM.

Next we determine £33, £34, and f44, by solving (27-2), (28-6),

(28-7), (29-4)-(29-6).

Substituting (28-6) and (28-7) into (29-4) and (29-6), respectively,

we obtain the following equations:

(L32+aTl42)(L52+W22a) - (£34£"b(a+n) - (a+a)T(P34£ ])T - 0 (34)

and

(L42-£T42)(i-%2^ " (P44i"])(i-i) " (M)1^"1)1 =0 05)
In addition, substituting (28-6) and (28-7) into (29-5) pives

(k42-^2)(i=32+^22^ ' (P^Xs1*) ' (<>-£)V34£ V =£ (36)

In these derivations, one should remember that £ is a symmetric matrix and

2qx" =^22^22 wnicn is tne solution given by (27-2)
We define

Hi 4 L32 +aTvJ2

•lAJ^ST1

*2 i ^44i"]

-15-
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flow it is convenient to assume ^(a+n), I2(i-3) and HgjJ^(a+n)"1 (4-3) are
symmetric matrices. Then (34) and (35) reduce to

*i -yltiUqtsftl)"1

♦2 =\ HgH^ta-jg)"1
(38)

Substituting (38) into (36) gives

i [Hg - {(a+nJ"T(tB)}TH1][H2 - {(a+aJ'̂ i-i)}1!!!]1 =£ (39)

which leads to

Hg =Ua+n)"1 (£-£)> ^ (40)

The above equation gives the relationship between L,2 and L-2.

Next we derive the relationship between £44 and £3-, by substituting

(34) and."(40) into (35). Thus we obtain

$2 ={(a+a)"1^-!)}^ (41)

Substituting (34), (40), and (41) into (28-7), we can obtain the following

equation with respect to \U :

(^[HJta+nJ^f^^a+n)"1] - ^[H^a+n)"1]1^^^)"1]^^! ]

- 2(i-£)T[HJ(a+n)"1]\2.-£TW^2W22 =0 (42)

In order to solve (42) easily, we will assume L~2 and L-2 are diagonal

matrices which implies H, and H« are also diagonal matrices. Thus we have

L32 = diag{^lk}

L42 = diagU2k}
(43)

Hq = diag{hlk}

H^ = diag{h2k}
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Solving (42) with respect to hlk, we can obtain

'ik= STir '
Vnk \

(44)

for k = l,2,..«,n, where wk = /2q/-yv .

In order for h-|k to be a real number, it is required that

*k-6|. >6i.C|.(oik+n|.)/(i)>|.Y|.)- This requirement is identical to the

condition that the positive real matrix Z(s) exists for the system, as

shown in inequality (25). Although we have two solutions h,^ and hT^ in

(44), h7k =min|h,.| is chosen. The reason for this choice will be given

later.

From (34), we obtain

C,
k h?P.34 =2diag

V\ 1k

Using (37), (41), and (45), P.. is. given as

£44 =J d1a9
!ki*k^klh2

Th\k
(VV

Finally using (28-6), (37), (42) and (45), we can derive P„ as

P33 = r diag TrT hik+ Tv^y (WVkJ*k"Bk

(45)

(46)

(47)

On the other hand, hL which is related to L.„, is determined by substituting

H, into (40) as

' V6k _
Ho = diag ak+nk Ik (48)
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Thus, £, L^ and Wq are all determined.

Now;the Lyapunov function given in (21) with n=0 reduces to

V(x) -\ [A0T,o)T] -11 -12

£21 £22

A8

U)

2 A A.-8, Ati
i=l 1 Ti pi

- .x. <•£•>
5,-

Ve7 AEi + (a,^) AEexi
i=l

n-1 n

qX j=Ii B« [(E?+AEi)(E!K){cos 4rcos(6?j+A6ij)}

with

- AE.AE. cos 6?. - A6..«e9e9 sin 6?.l
1 j ij ij 1 j TJJ

V(x) = - IT, ,T
2 £ h±2^

l n

c i=l (AEi+^TAEexi)hli+/2^iAEi

(49)

-1 2

(50)

The extra terms, which are due to the AVR, are obvious in (49) and (50).

If one let 3.. be zero, i.e., h^. =0, in (49) the Lyapunov function

which includes only the effects of flux decays is obtained.

V. Critical Value

The reqion of asymptotic stability R is defined in terms of the

critical value V. as follows:
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R= (x|V(x) < Vc> (51)

The technique of determining V by evaluating V at the "closest" unstable

equilibrium point may be employed.

The unstable equilibrium points of the Lyapunov function may be

determined by solving

#"- 0
3x -

subject to the constraint V-j(a) >_ 0.

In case of p = 0, the critical value V is given by

n n jnn-B,-+<J)4a.. „;
v = 3. 7 /_LJ_LJL (AEU\
V 2 A \ <t>,-6, lAti;•S A (t>.-8.

1=1 1 M pl

n-1 n
O^cUwrO^r-Uw™ & /*0 ^^U+ q I I B.i[(E>E")(E>E"){cos 6"-cos(6"+A6" )}

•f=T i=i+l J ' J J 'J 'J 'J

-AEiAEj cos 4j *ASij •E?ES s1" 5^ (53)

where "u" denotes the closest equilibrium point to the origin. As found

in (53), VQ does not depends on h-.. (i = l,2,*«-,n), while V in (49)

depends on them. Hence, if one choose hn. so that its effect on V is

small, a wider stability region will be guaranteed. This is the reason why

we have chosen the minimum value of |h-,.| in (44).

VI. Example

Let us consider a three-machine system as shown in Fig. l. In this

system M, and M2 act as generators while M, acts as a load. We investigate

the effect of AVR action on power system stability from the standpoint

of modification of the equipotential curves with the gain parameter of

the AVR system. In order to clarify the effect, we impose the flux decay
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and AVR action on only the No. 1 machine. In this connection, the system

constants for the No. 1 machine including the AVR system are listed in

Table 1.

Figure 2 shows the equipotential curves for the system without the

AVR i.e.;-with only flux decay, under the constraints A6«3 =0 and AE, = 0.

Equipotential curves of the system including the AVR with u = 1.1 and u = 2.2

are given in Fig. 3 and Fig. 4, respectively, under the constraints

A623 = 0, AE-j =0 and AE .=0. While flux decay is seen to make the

stability region narrower,, voltage regulator action corrects this

situation. The degree of correction depends on p, the magnitude of the

feedback gain of the voltage regulating system. The comparison between

Fig. 3 and Fig. 4 shows how the AVR gradually changes the figures of

potential energy level of the system. For reference, the equipotential

curves of the system neglecting both flux decay and AVR action is also

given in Fig. 5. It is found that with the increase'in magnitude of u

the curves approach the situation shown in Fig. 5.

VII. Conclusions

This paper has given a Lyapunov function for a multimachine power

system taking automatic voltage regulator action into consideration.

The nonlinear function V,(a) has been obtained uniquely by determining

the matrix Q first. All the elements of the matrix were determined so

that the curl equations might hold for the nonlinear components of the

system equation. The Moore-Anderson theorem yielded extra conditions

on the power system, in connection with the installation of the AVR which

may have some implications on system design. The effect of AVR action on

power system stability was investigated from the standpoint of changes

in the equipotential curves.
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An inclusion of load characteristics, which also plays an important

role in power system stability, is currently investigated and will be

discussed on another occasion.
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Table 1. System constants (p.u.)

xdl = 1.15 , x^ = 0.3

Td01 =6-6Cs3». Tvl =0J tel* kl =1*021
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Fig. 5 Equipotential curves without flux decay and AVR
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