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ABSTRACT

This paper presents a survey of the basic aspects involved in the design of

linear multi-variable control systems via semi-infinite optimization. Specific

topics treated are (i) data-base and simulation requirements, (ii) techniques for

the transcription of design specifications into semi-infinite inequalites, and (iii)

semi-infinite optimization algorithms for control system design.

1. INTRODUCTION.

Parametric optimization is a powerful tool for the selection of favorable

values for design variables. At the present time, its use in many areas of

engineering design is expanding rapidly (see e.g., [Pol.5]). As design

specifications became more complex and computing tools more advanced,

attempts to use parametric optimization in control system design, became inev

itable. Early interpretations of control system design as an optimization prob

lem, can be found in [Dav.l, Kar.l, PoLl, Zak.l]. In fact, even the linear-

quadratic regulator problem [Ath.l, Kwa.1] can be viewed as a parametric

optimization problem: the optimal gain matrix for the linear-quadratic regulator

problem is a solution to an unconstrained parametric optimization problem of

the form
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min f(K), n t\

where / (K) is the largest eigenvalue of a symmetric matrix of the form

fexpltiA+BK^iQ+J^BJOexpltiA-i-BK)]^ (1.2)
o

with Q symmetric and positive semi-definite and R symmetric and positive

definite.

The parametric optimization algorithms of the sixties and early seventies

(see, e.g., [Lue.l], [PoL4]) were only able to deal with optimization problems of

the form

mm{f(x)\gS(x)<U,j = 1,2 m; hk{x) = 0. k = 1.2 £} (1.3)

in which the cost function / :JRn -* JR% and the constraint functions

gt, hk:JHn -»IR, are continuously diflerentiable and in which there are only a

finite nvanber of equality and inequality constraints. Now, in the design of

single-input single-output (SISO) control systems, specifications on quantities

such as phase and gain margins, in the frequency domain, and step response

rise time, settling time and overshoot, in the time domain, are commonplace

(see, e.g., [Hor.l]). With the development of modern multi-input multi-output

(MIMO) control system design theory, these SISO frequency domain

specifications have been generalized in terms of norm (e.g., largest singular

value) bounds on various transfer function matrices (see, e.g., [Doy.l]). In addi

tion to these "obvious" extensions of SISO requirements, in the frequency

domain, a number of multivariable control system specific requirements, such

as decoupling and integrity [Ros.l], have also been introduced. It takes very lit

tle time to come to the conclusion that all these requirements do not lead to a

classical, diflerentiable, finitely constrained optimization problem of the form

(1.3). but rather to a nondifferentiable, infinitely constrained optimization
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problem in the finite dvmensioTial design parameter x which represents the free

compensator coefficients. Problems of this kind are referred to as semi-infinite

optimization problems (or semi-infinite optimization programs, i.e., SIP's).

Thus, the appropriate canonical optimization problem for which codes are writ

ten and into which control system design problems must be transcribed has the

form

mmlf(x)\gt(x)*ZO, j = l,2,...,m; <pk {x%yk)<kQt ykeYkt k = 1,2,...,* j , (1.4)

where the Yk are finite time or frequency intervals.

The realization that existing optimization algorithms were inadequate for

solving many engineering design problems has stimulated much research. In

[Pol.2, Gon.l, Gon.2] we find described a new generation of optimization algo

rithms which were developed specifically for the solution of optimization prob

lems of the form (1.4) under assumptions commonly true in engineering situa

tions, while in [PoL3] we find an algorithm for the specific case of (1.4) that

corresponds to control system design. To date the design experience using

these algorithms is still very limited, though quite promising. One can expect

that a steady sequence of small improvements and innovations will make the use

of semi-infinite optimization in control system design progressively more

effective.

This paper is a survey of techniques involved in control system design via

semi-infinite optimization. The paper is organized as follows.

In Section 2 we establish a data base for control system specification and

response evaluation, to be used in optimization-based design. In Section 3 we

will show how a typical control system design problem is transcribed into a

semi-infinite optimization problem. Finally, in Section 4, we present an exposi

tion of semi-infinite optimization algorithms for computer-aided control system

design.
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2. CONTROL SYSTEM SPECIFICATION AND RESPONSE EVALUATION.

We assume that the designer has selected a control system configuration,

e.g., as in Fig. 1, and that semi-infinite optimization is to be used to compute

compensator parameter values so as to satisfy design specifications and to

minimize some cost function. Semi-infinite optimization can be used both for

computing a nominal design and a worst case design. In the case of a nominal

design, a mathematical model of a single plant is used and the mathematical

model of the overall control system is adjusted so that the design specifications

are met. In the case of worst case design, the mathematical model of the plant

contains a mechanism for expressing modelling uncertainty and the overall con

trol system is adjusted so that the design specifications are met over the entire

plant uncertainty range. In either case, the mathematical models used for the

plant and compensators must be such as to facilitate the computations required

by the optimization algorithms as well as being compatible with various metho

dological and system theoretical considerations.

We begin with the simpler case of nominal design. In this case, we assume

that the control system to be designed consists of interconnected subsystems.

The free, or designable, parameters of the subsystems form the finite dimen

sional design vector x€.]Rn. The manner in which subsystems are represented

depends partly on whether both time and frequency domain specifications are to

be met and partly on the method of parametrization used for the compensators.

When the subsystems are represented in state space form, as

f zt = 4(x)zt + Biixfa

they define (assuming there are N subsystems) an assembly of subsystems S of

the form
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z = A(x)z +B(x)u (22x
y = C(a:)2f + D(x)u

where i4(x) = diag(A1(x)tAz(x),...AN(x))t B(x) = dbv(£i(v).£e(B )•-•--&*(*))•

C(x) = tUag(Ci(x),C2(x) CN(x)), D(x) = dmg(Di(x),Dz(x),...,DN(x)). Note

that although all matrices were shown to depend on the design parameter x,

some of them may, in fact be constant, as in the case of the ones in the plant

representation. The interconnections between the subsystems are expressed

algebraically:

u-Ey + Jr (2.3)

where r is a vector of external inputs and E and / are matrices whose elements

are zeros and ones.

In control system design, the design vector x can have very large dimen

sion, a fact that leads to a considerable computational burden in the evaluation

of gradients with respect to x. The dimension of the design vector x can be

somewhat reduced by using minimal forms for the designable system matrices.

For example, the system matrices Ai corresponding to compensator blocks may

be specified in block diagonal form

Ai =diag(i4ii, 4w, .... A&, \(ab+i)i, .... A(jv4)<) (2.4)

where the X,i are real (some may be frozen at zero for integral action), while

Aji = 0 1

alji a0ji (2.5)

This allows design of both real and complex compensator poles. Some structural

simplification of the B matrix is also possible. The interconnection equation

(2.3) can be eliminated to produce a reduced description of the form

Jz =Ae(x)z +Bc(x)r
\y = G*(x)z +£>Gix)r K• ;
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where ^.(x) = A(x) + B(x)[I - ED(x)]-lEC(x), Bc(x) = B(x)J + B(x)\I -

ED(x)]-lED(x), Q,(x) = [I-ED(x)]-lC{x), and £>c(a:) = D(x)[I -ED{x)YlJ, in

terms of the matrices in (2.2) and (2.3). Since the closed loop system (2.6)

always has distinct eigenvalues (at least with probability 1), the computation of

responses can be considerably simplified by diagonalization (more robust tech

niques, based on Schur decomposition, are also being contemplated). Thus,

rewriting (2.6) with the parameters made explicit, we get

*(ttx) =Ac(x)z(t,x) + Bc(x)r(t) (2.7a)

y(t,x) = Cc(x)z(t,x) + Dc(x)r(t) . (2.7b)

We begin with the time responses to inputs r(t). With W(x) a matrix of eigen

vectors of Ac(x), we obtain,

t

z(ttx) = W(x)eA&' ^(a:)-1*^) +fw(x)e^x^t'8>W(x)-1r(s)ds (2.8)
o

where A(x) is a diagonal matrix of eigenvalues of Ac(x) The output y(t,x) is then

computed according to (2.6). When the input r(t) is a polynomial, as is often the

case, the integral in (2.8) can be and is evaluated analytically [Bed]. Next,

optimization algorithms require derivatives of responses with respect to design

parameters. The derivatives of the time responses with respect to x of z(t,x)

and y(t,x) in (2.6) can be computed by solving

~(dz(t,x)/dx) = Ac{x){dz{ttx)/dx)

+ (dAc(x)/dx)z(t,x) + (dBc(x)/dx)r(t) (2.9)

dy(t,x)/dx = Q.(x)(dz(x,t)/dx) + (dCc(x)/dx)z(ttx)

+ (pDG{x)/dx)r(t) . (2.10)

The diagonalization matrix W(x) can be used again to produce fairly simple for

mulas for the derivatives dz(t,x)/dx and dy(t,x)/dx. Next we turn to the fre

quency response of the interconnected system. The input-output transfer func-
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tion of the interconnected system is given by

G(ja,x) = Ca{x)\jvl - A0(x)YlB9{x) + DG{x) . (2.11)

Since the derivative of G with respect to x is not a matrix, it is easiest to obtain

componentwise expressions for it, viz.,

dG(ju,x)/dxi = {dC0{x)/dxi)\JoI-Ac{x)Yl Bc(x)

+ Cc(x)[jul 'AB(x)]'l(dAB(x)/dxi)[JaI -4.(a:)]"1

+ Cc(x)[jul 'Ac(x)]-\dBc{x)/dxi) + (dDc^/dx*) (2.12)

Assuming that the time response derivatives are computed first, the only major

computation left in the evaluation of the frequency responses and their deriva

tives as specified by (2.11),(2.12) is the evaluation of the matrix [jol -Ao(x)]~l.

Since a diagonalization for Ao(x) is already available, this computation can be

considerably simplified by making use of the formula

[jol -^O*)]"1 = W(x)\JoI -Mx)'l]W(x)'1 . (2.13)

A recent approach to two degrees of freedom control system design [Des.l,

Per.l, Per.2], see Fig. 2, uses polynomial matrix descriptions for the plant and

controllers, with the controllers expressed in terms of parametrized transfer

function matrices M(x,s)andY(x,s). This requires that the plant be factored

into left and right factorizations which are co-prime relative to a prespecified

stability region S which is symmetric about the real axis in the complex plane.

In this case, denoting the plant transfer function by P(s), we have

P(a) = AOO-Ws) = Nr(s)Br(s)'1 (2.14)

with A(s). <Nt(s), Dr(s), Nr(s) rational matrices which have no poles in S. In the

process, two rational matrices U(s)tV(s) are constructed which have no poles in

S and which satisfy the relation

-7-
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U(s)Nr(s) + V(s)Dr(s) = /. (2.15)

It was shown in [Per.l, Per.2, Vid.l] that all the 5-stable closed loop transfer

functions that can be realized by our two degree of freedom system have the

form

&vu(s) = Nr(s)M(x,s). (2.16)

Hy*(s) = I-Nr(s)[U(s) + r(*,s)A(s)] . (2.17)

where M(x,s) and Y(x,s) are arbitrary, proper, rational matrices with ^-stable

elements. The free coefficients of the elements of M and Y make up the design

vector x. The closed loop transfer functions in (2.16), (2.17) are realized by the

controller configuration

Cw(a; ,s) = M(x ,s) (2.18a)

Ca(x,s) = Vr(s) - Yix^N^s) (2.18b)

Cf(x,s) = Ur(s) + r(a:,s)A(s) (2.18c)

As we shall see later, the parametrization (2.18) has the advantage of allowing

closed loop stability to be easily ensured and of allowing easy modification of the

transient behavior. However, it gives the designer very little control over the

complexity of the controller.

Once uncertainty is introduced into the plant model, worst case design

becomes essentially restricted to the frequency domain either because the

specification of uncertainty is such as to provide inadequate information for

time domain response evaluations, or because the computaional complexity of

the totality of time domain evaluations needed for worst case design appears to

make such designs practically impossible. Hence, uncertainty is usually

specified in terms of transfer functions. There are basically two approaches.

The first is to assume a nominal plant transfer function P(s), whose elements

are proper rational functions and then to consider in the design all transfer

-a-
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functions of the form

P(s)[I + L(s)], (2.19)

where £()e 1% a family of complex valued functions which is assumed to have

the following properties:

Assumption 2.1: (a) There is a continous real valued function b(o) such that

| \L(jo)\ \2^b(o) V o >= 0 . (2.20)

(Usually, the function b(o) grows as o goes to «>)

(b) The transfer function P(s)[I + L(s)] has the same number of unstable (ff+ )

poles (counting multiplicities) as P(s). •

Plant model uncertainty which is specified only to the extent assumed in

Assumption 2.1 is called unstructured uncertainty. It is particularly useful for

modelling high frequency discrepancies between the behavior predicted by the

nominal plant and that of the actual plant. Typically, bounds such as (2.20) are

used to ensure that the unstructured uncertainty does not destabilize the

closed loop system. When the unstructured uncertainty is significant at frequen

cies in the bandwidth of the closed loop system, it may be necessary to take

unstructured uncertainty into account in formulating other design require

ments as well.

Once one admits that there is uncertainty in the plant model, one must also

admit that there is also uncertainty in the specification of the transfer function

of the nominal plant which suggests that one should also introduce parametric

(i.e., structured) uncertainty into the coefficients of the nominal plant. The

effect of this is to tremendously increase the computational complexity of the

resulting semi-infinite optimization problem. So far, there are effective tech-
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niques for overcoming this difficulty for single-input, single-output plants

specified in the form

n •' ms+pj) (2-22)

where a denotes a vector whose components are the gain K, the zeros z* and

the poles p*. The gain K, the zeros z* and the poles pi are assumed to lie in

confidence intervals, i.e.t

K*\£%K\% **€[**•**]. P1^4;?*] . (2.23)

For the complex zeros and poles, which must occur in complex conjugate pairs,

we assume that that the "intervals" of uncertainty are, in fact rectangles in (T

defined by

[zi'zi]kl(u1v)^IR2\Re(z,i)^u^Be(zi)i Im&fav^Imiz*) j (2.24)

and similarly for the poles. The product of all the uncertainty intervals in (2.23)

will be denoted by A and is a compact subset of IR71*. For the design problem to

be well posed, we shall need the following hypothesis to hold.

Assumption 2.2. (i) The plant transfer function P(-,ot) has the same number of

poles (counting multiplicities) in (int S)G, the complement of the interior of S,

for all oteA. (ii) No (int S)G pole of P(',a) is cancelled by a zero of P(,a) for

anyacA •

Next we shall turn to the generation of semi-infinite inequalities from con

trol system design requirements.

3. TRANSCRIPTION OF SPECIFICATIONS INTO SEHHNK1N1TK INEQUALITIES.

We shall illustrate the process of transcribing control system design

specifications into semi-infinite inequalities by considering a typical example:

-10-
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the design of a two degrees of freedom control system of the form shown in Fig.

2. We assume that the plant is linear and finite dimensional, with a nominal,

mxm proper rational transfer function matrix P(s). We assume that we are

required to design three compensator transfer function matrices C„(x,s),

Q(x,s), and Cf(x,s)t with elements that are rational functions. The free

coefficients of the compensator transfer function matrices make up the design

vector x^.JRn. We shall consider time and frequency domain specifications both

on the nominal closed loop system as well as on the family of closed loop sys

tems resulting from multiplicative perturbations of the plant transfer function,

Le., for plant transfer functions of the form P(s)(I + L(s)), introduced in the

preceeding section (see (2.19). Towards the end of this section we shall consider

the special case of design in the presence of both structured and unstructured

uncertainty for SISO plants.

In formulating design specifications as semi-infinite inequalities one must

take care to ensure that the resulting functions satisfy certain miiiimum con

tinuity requirements and that the implied computations are reasonably well

conditioned. In particular, in order to develop rigorously algorithms for optimi

zation problems involving nondifferentiable functions, it is necessary that these

functions be at least locally Upschitz continuous [Cla.l]. In this respect, control

system design presents particular difficulties which stem from the fact that

transfer functions are discontinuous at their poles and hence any functions

defined as functions of transfer functions are also likely to be discontinuous. We

shall comment on ways of coping with this difficulty as we progress.

We break up the presentation to follow into two parts. The first one deals

with nominal and worst case design in the presence of unstructured uncertainty.

The second part deals with worst case design in the presence of both structured

and unstructured uncertainty and is restricted to SISO systems.

-11-
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3.1. Designin the Presence of Unstructured Uncertainty.

We begin with a basic nominal design requirement.

(i) S-Stability for the Nominal System.

We begin with the requirement of confining the closed loop poles to a

prespecified region 5 C <£. We shall say that the. closed loop system is S-stable if

all the roots of its characteristic polynomial are in S. For example, one may

wish to design a control system with a minimum bandwith, while at the same

time ensuring that all closed loop complex poles have a minimum damping ratio.

Crudely, this can be accomplished by letting the region S be as shown in Pig. 3,

i.e., to the left of the boundary defined by

Re(s) = -ic\Im(s)\ -7, (3.1)

where Re denotes the real part, Im denotes the imaginary part and ic,y> 0. We

must consider two possibilities: (i) the compensators are defined as in (2.18) and

(ii) the compensators are defined as in (2.4) and (2.5).

First, let us consider the easier case when the compensator structure is as

in (2.18a) - (2.18c). In this case, the plant transfer function matrix must be fac

tored into left and right co-prime factors which have no poles in 5. Hence, refer

ring to [Des. 1], we see that the closed loop system is 5-stable if and only if the

matrices M(x,s), and Y(x,s) are 5-stable. Hence, if M(x,s) is specified, com

ponentwise, as

U.t,x SK = jfrl^S +V)

with similar expressions for Y(xts), then S-stability for the nominal closed loop

system is ensured by the following finite set of inequalities:

-12-
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tiSq»vq >= * -(&?)2]2<V +% if «V)*^1.
l

(VW >= «¥[(?*•*-!] 2 +7. if (^?)2 > 1

with similar inequalities imposed on the elements of Y(xts). The inequalities

(3.3a) and (3.3b) can also be used to ensure minimum bandwidth.

Now, referring to Fig. 2, suppose that the plant and compensators are

specified in state space form:

921?

(3.3a)

(3.3b)

(3.3c)

(3.4a)

(3.4b)

dt*f = Apzp +BpUp

Vp = CpZp + DpVv

d

It*" = Anz* + £wuff

2/n = CnP-n + Al*ir

dt*8 = A3ZS + 3^

ys = Caza + DsUs

d

(3.4c)

Ot2/ = Afzf +Bfuf

yf = Cfzf + Dfuf (3.4d)

with the interconnection specified by

u* = r.Us = y^-y/Up = ysu, = d+yp . (3.4e)

As can be easily verified, the system matrix for the closed loop of the system

(not including the precompensator) is given by

Ap'Bpd + DcDpy'DcCp -BP(I+DCDPT1CC
A^ " [Be(I +£>p£>c)-lCp Ac-BcV +DpDc^DpG. (3.5)

Let the eigenvalues of A(x) be denoted by \*[A(x)]. Then the simplest way to

ensure 5-stability for the example under consideration is to require that these

eigenvalues satisfy the system of inequalities

-13-
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Im[\f[A(x)]] + K[Ke\3[A(x)]] +t<0 for j = 1,2 Nc , (3.6)

(where Nc is the dirnension of the state vector) with similar inequalities imposed

on the eigenvalues of A„. Note that in (3.6) we are exploiting the fact that com

plex eigenvalues must come in conjugate pairs.

There are two objections to this approach. The first is that eigenvalues can

be extremely sensitive to parameter variations, resulting in severe computa

tional ill conditioning. The second is that eigenvalues are differentiable only

when they are distinct. Now, while one can generally expect closed loop eigen

values to be distinct, it is possible in the course of an optimization computation

to approach a point of eigenvalue multiplicity with dire effects on the behavior of

an optimization algorithm.

An alternative approach is to use a modification of the Nyquist stability cri

terion described in [Pol.6], which leads to a well conditioned semi-infinite ine

quality. First we shall explain the modified Nyquist criterion for the simplest

case, when the nominal plant transfer functions P(s) is scalar valued. Let us

write the loop gain in the form of a quotient of two polynomials, as follows:

C8(xts)Cf(x,s)P(s) = n(xts)/d(x,s) . (3.7)

The nominal closed loop system will be 5-stable if C„(x,s) is 5-stable and all the

zeros of the characteristic polynomial

c(x,s) =n(x,s) + d(xts) (3.8)

are in 5. The simplest extension of the Nyquist stability criterion for determin

ing whether or not the zeros of c(x,s) are in 5, with 5 defined as in (3.1), con

sists of plotting

c(x,s)/d(x,s) (3.9)

for s = -/c|«| -7 + ja, with we(—«>,*») and observe whether the number of coun-

-14r
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terclockwise encirclements of the origin is equal to the number of zeros of

d(x,s) which are not in 5. Thus, instead of using the usual Nyquist contour, one

uses one which replaces the jo-axis by the boundary of 5. Intrinsically, this

approach implies that an integer valued function is used in the stability determi

nation. Hence such a function is not continuous in the design vector x, since a

small change in x can cause an integer change in the number of encirclements.

Our first observation is that a major source of our difficulty is attributable

to the denominator polynomial, d(x,s)t which may have roots outside of 5. Now

the main function of this polynomial in the stability test is to provide scaling, so

that the graph one is drawing remains confined to one's sheet of paper. However,

because it may have roots outside of 5, the use of d(x,s) imposes the need to

count encirclements. This suggests that one way of eliminating the need of

counting encirclements is to replace the polynomial d(x,s) by one that does not

have roots outside of 5. Let d(s) be a polynomial of the same degree as d(x,s)

and let all the zeros of d(s) be in the interior of 5. Let

t(x,s) k c(x,s)/d(s) . (3.10a)

5-stability can now be ensured by requiring that the plot of t(x,—k\ o\ - y + jo),

for - oo < o < oo, does not encircle the origin. The easiest way to express this

fact as a semi-infinite inequality is to encase the origin in a parabolic region,

with boundary defined by Im(s) = ki(Re(s))2 - kZl with kxkz > 0, see Fig. 4,

and require that the locus of t(x,—tc\o\ -y + jo) stay out of this region. This

leads to the following sufficient condition of stability:

Im[t(xt-ic\o\ -y + jo)]-ki\Re[t(xt-ic\o\ -y + jo)]]2 + Ar^sO ,

Vue[w',w"] (3.10b)

where [o/.w"] is a critical interval of frequencies. Note that (3.10b) is only a

sufficient and not a necessary and sufficient condition of bibo stability.

-15-
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Referring to the Nyquist stability criterion for the multivariable case, as

stated in [Che.l] we see that, for the systemin Fig. 2, with C„(s) s /, Cf(s) a /,

the appropriate definition of the rational function t(x,s) becomes

t(xs) =dst(sl -As(x))det(sl •Ap)dBt(I -^ qt(s)Gc(xts)C^(xts))
d{s)

where Ca(x,s) and Q>(s) are the plant and compensator transfer functions and

d(s) is a polynomial with roots in the interior of 5, of the same degree as the

characteristic polynomial of the loop.

(ii) Stability Robustness.

Next, we turn to the problem of ensuring closed loop system stability in the

presence of unstructured plant uncertainty, as is required in worst case design.

Referring to [Che.2, Doy.l, San.l], we see that if the nominal design, for the

plant model P(s), is bounded -input -bounded -output (bibo) stable, then the

closed loop system will remain bibo stable for all plant transfer functions of the

form P(s)(I + L(s)), with L(s) as defined in (2.20), if the nominal feedback sys

tem satisfies

oC#yu(^ja)]^l/&(<i>). V w€[&>',w"], (3.12)

where [d>',a>"] is a critical range of frequencies.

(Hi) Disturbance Suppression.

The effect of the output disturbance on the output of the nominal closed

loop system can be suppressed by making the closed loop system output-to-

disturbance transfer function Hyi(x,jo) "small" in a critical frequency range.

This is usually accomplished by imposing bounds on the norm of the transfer

function Hyt(xjo) . When the induced Lz norm of a matrix is used, the Lz norm

can be computed by making use of the fact that it is equal to the maximum

singular value o%HVfi(x,j«)]. Typically, these bounds have the form:
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^[^(xjo^b^o), V &>e[w',w"] . (3.13)

(iv) Plant Saturation Avoidance.

To avoid plant saturation by, say, output disturbances, it may be necessary

to impose constraints on the norm (maximum singular value ff[H«(t(z,;«)])) of

the transfer function #«* over a range of frequencies. This can be done con

veniently only for the nominal design, as follows:

^.H>d(xtjo)])) < bs(o) V o^[o',o"]. (3.14)

(v) Input Signal Tracking.

Satisfactory input signal tracking, for a class of inputs fw/J;e/> can be

ensured only for the nominal design. Tracking is specified by semi-inifnite ine

qualities of the form (see Fig. 5)

b^(t)^yk(x,ttUj)<, 5*(t)V feCO.r]. V ;e/, V A: = 1,2 m . ((3.15))

Above, y* denotes the j-th component of the output y.

3.2. Design in the Presence of Structured and Unstructured Uncertainty.

As we have already mentioned, semi-infinite inequalities which arise from

worst case design of multi-input multi-output systems, with both structured and

unstructured uncertainty are not tractable at the present time. Hence, we res

trict ourselves to SISO systems in this subsection. In particular, we shall show

how one can transcribe into semi-infinite inequalities the design requirements

for a SISO feedback system in which the plant model contains both structured

and unstructured uncertainty. In this case, the plant transfer function to be

considered in a worst case design has the form

Pw(s,atL(s)) = P(s.a)(l + L(s)) aeA (3.16)

where P(s,a) and Aare defined by (2.22) and (2.23), (2.24), respectively, and the
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function L : (D -* Wsatisfies (2.20). The structured uncertainty is introduced to

take account of variations in plant parameters (such as those arising when com

ponents are manufactured to tolerances) or to account for errors in the model-

fitting process. When both amplitude and phase bounds are available for the

unstructured uncertainty, it is possible to remove the conservatism inherent in

the approach taken in the preceeding section, where worst case stability was

ensured by means of two inequalities, one guaranteeing the stability of the nomi

nal system (3.10a) and (3.10b) and the second one ensuring robustness under

expected multiplicative perturbations (3.12), by combining both of these

requirements into a single semi-infinite inequality.

Assumption 3.1: There exist continuously differentiable functions,

III* Ih>1a> La ' -ff?+ ~* IR such that the multiplicative perturbations in (3.16) are

bounded as follows:

0 <Jji(o)£ 11 + L(Jo) | s%(w) V oeIR+ (3.17a)

JU(u)2Sarg(l + L(ju))<ZA(o) V o€i]R+ (3.17b)

and these bound functions satisfy

0 <J>u(o)<l£lIi(o) Vw€jff?+ (3.18a)

l^(o)^Q^TA(o) Vwei7?+. • (3.18b)

Definition 3.2: We denote by L the set of functions, L(), which satisfy (3.17a) and

(3.17b).

In what follows, we shall consider some of the requirements described in

Subsection 3.1.

(i) Worst Case Stability

We shall consider only the case in which the closed loop poles are to lie in

Q?(i.e., 5 = (F). Next, we must add to Assumption 2.2, the following hypothesis.
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Assumption 3.2: For all XeL , the transfer function Pw(,a,L()) has the same

number of <T+ poles (counting multiplicities) as P(',a) where, P(,ot) satisfies

Assumption 2.2. •

Proceeding analogously to (3.7) and (3.10), we decompose the loop gain as fol

lows

Cs(x,s)Cf(xts)Pw(s,atL(s)) =n(x,s,a)(l + L(s))/d(x,s,a) . (3.19)

Stability can be ensured by making use of the locus of the function

t(x,sa,L(s)) k [n(x,s,a)(l +L(s)) +d(x,s,a)]/d(s) (3.20)

where d() is a polynomial of degree equal to the maximum degree' of d(x,s,a)

over A. The zeros of d(-) are all in <F\ Again, using a parabolic exclusion region,

as in (3.11), a sufficient condition for stability is given by

lm[t(x,jo,a%L(jo))] -kl[Re[t(x,jo,a,L(jo)))]]2 + kgzQ ,

V ae[w\w"], V aeAand Vi€L, (3.21)

where [a'.w"] is the critical interval of frequencies. Observe that (3.21) differs

from (3.11) in that the former inequality is parametrized not only by an interval

of frequencies but also by the uncertainty in the plant model. To determine

whether a given design vector x satisfies the worst case stability test, one must

evaluate

max hm[t(x,s,jo,a,L(jo))] -k1\Re[t(x,jota,L(jo))]\z +kz • (3 22)
XcL

which is an extremely difficult maximization problem since, typically, A is a mul

tidimensional hyperectangle and the objective function in (3.22) is non-convex

and so appears to allow no simplification of the problem. Since an evaluation of

' Since there may be pole-zero cancellations for some a&A in forming the ratio
n(x,s,a)/ d(x,s ,a), we preserve the scaling feature of the formulation (3.10) by using the max
imumdegreeofd(x,s ,a) overaCA
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the max in (3.22) would be required at least once during each iteration of a

semi-infinite optimization algorithm, some modification of this maximization

problem seems essential for our optimization-based design procedure to remain

computationally tractable. A procedure for systematically modifying inequalities

such as (3.21) into more tractable, though somewhat more conservative forms,

will be presented in Section 3.3.

(ii) Bounds on Transfer Function Magnitudes

We shall consider only one of the possible design requirements of this form

since other constraints on transfer function magnitudes may be formulated

analogously.

By analogy to the the formulation of disturbance suppression for a nominal

plant model in Subsection 3.1 (iii), one obtains the worst case disturbance

suppresion requirement (c.f. (3.11))

IEyd(xJu,atL(jo))| ^6d(w) V wetu'.tt"], V aeA and V L£L. (3.23)

As in worst case stability, c.f. (3.21), verification of worst case disturbance

suppression amounts to an evaluation of

JM^IH*(*Jtt«JiO»))l' (3.24)

which is extremely difficult because of the complexity of the plant uncertainty.

3.3 Complexity Reduction via Majorization

We now present a set of majorization techniques [Pol.9, Pol. 10]. These tech

niques yield computationally tractable inequalities as a replacement for intract

able design inequalities, such as (3.21) and (3.23), which arise when the plant

model includes structured uncertainty. The computational simplification is

achieved at the expense of an added amount of conservatism expressed by the
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inequality. We begin by defining what we mean by majorization.

Definition 3.2: Let p,p:JRnxd:-*IR and b:(C->]R be given functions and let B be a

subset of C. If

p(x,s)*Zp(x,s) \/xelRn and Vse5, (3.25a)

then we say that the inequality

p(x,s) - b (s)<;0, Vse5 (3.25b)

majorizes the inequality

p(a:,s) -b(s)-sO, Vse5. • (3.25c)

Design constraints for a SISO system such as (3.21) and (3.23) are of the form,

$(x,jo,a,L(s))^0 VweaVaeAandVIeL (3.26)

where QcR is compact. Since the uncertainty vector, (a,L()), enters (3.26)

only as an argument of the plant transfer function, we may show that there exist

n : CxKnaxL->]R2fc, withk = 1 or 2, and £: ]Rnx CxlR8*-^such that

$(x,s,a,L(s)) = t(x,a,Ti(s.a,L(s))) . (3.27)

For example, if

$(x,s,a,L(s)) = Hyd(xts,atL(s)) (3.28a)

we may take

t(x,stn) = 11+ 7}C(x,s)\-1 (3.28b)

and

77(s,a,Z,(s)) = Pw(s,a,L(s))). (3.28c)

Let

77(s,AL) k \r}(s,atL(s))\*eA,L eL). (3.29)

Our majorization techniques are based on the following results [Pol.9, PoLlO].
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Theorem 3.3: Suppose that £,£ and n satisfy (3.27). Let NiC^Z*** be a set-

valued map such that N(s) is a closed subset of R2* with k = 1 or 2 for all s € C

and

rj(s.AX) c N(s) (3.30)
Then

^,s,a,i;(s))^^(^^)vS€C. - (331)

Corollary 3.4: Let B c C, 6: C-»R and

<p(x,s) 4s^(*,s,a.Z,(s)) (3 32a)
It £1*

fa**) =^f^/ '̂5'7?) • (3.32b)

Then the inequality,

p(ar,s)-&(s)sS0 \/stB (3.33a)

majorizes the inequality,

<p(x,s)-b(s)*z0 \/seB. • (3.33b)

The advantage of specifying a design requirement in the form (3.33a) rather

than (3.33b) is that p(x,s) is potentially far simpler to evaluate because

N(s) C IR2* with k = 1 or 2 while A C JRn<\ with, typically, na»l. The disadvan

tage of this majorization is that the set of x e]R? which satisfies (3.33a) is, in

general, smaller than the one which satisfies (3.33b). To keep the resulting con

servatism small, the set N(s) satisfying (3.30) should be a "tight" approximation

to n(s,AL). To further simplify the evaluation of (3.32b), the set N(s) is con

structed to be a polyhedral convex subset* of3R8 (see [Pol.9]).

In constructing majorizing inequalities for constraints defined in terms of

closed loop transfer functions, we shall make use of a polyhedral convex set,

*Apolyhedral convex set is one which is the intersection offinitely many closed half spaces.
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RjyQw), which contains the set (c.f. (3.29)),

PO'".A.L) 4 f(m,p)elR2|m =mP(jo,a,L(jo)), <p =<pp(jo,a,L(jo)),

a SLA,L €L) (3.34)

where mp and <pp are defined by

P»(jo.a,L(jo)) =mp(jo,*,L(jo))ei9p{5a«J'Vo)) (3>35)

Clearly, PQcj.AL) is the set of gain-phase variations of all plants described by

the structured and unstructured uncertainty, (3.16). The simplest polyhedral

convex set Rj/Ow). containing P(jw,AL) that we can construct is a rectangle in

R2. It has been shown in [Poi.9. Pol. 10] that for any x e]Rn and for all welR+, the

following maxima and minima may be readily computed by making use of

mathematical programming decomposition results:

&(ja) kmax mP(jo,a,L(jo)) (3.36a)
Le)

v »

M(jo) i mm mP(jo,aL(jo)) (3.36b)

$(?'") =max <pP(jo,*tL(jo)) (3.36c)
L El«

$(jo) £ min ?p(jo.<xL(jo)) . (3.36d)
OS;

For each oelR+, we define the rectangle,

RH(Jo) k [M(jo),ti(jo)]x[i(ju)$Uu)] • (3.37)

It then follows that for all o € M+,

P(;<y,AH) c R#0'a>) <= R2 (3.38)

and that each side of the rectangle touches P(j'w,AL) (see Fig. 6). Hence the

disturbance rejection constraint (3.23), which may be written as
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max\Hyd(x,jo,CL,L(jo))\ -bd(o)^0 V u€[g/,g>"], (339a)
Let \ ' J

is majorized by the constraint,

0» jje%tt»)f** '̂U'™"?) ' b<*(") ^ 0 Voe[u',u"] (3.39b)

and £yd is obtained from jHj^ by expressing the plant transfer function in polar

coordinates.

It has been shown in [Pol.9] that, provided ^yd is not a constant,

tyd(x*3&*'*') can have no stationary points in the interior of Rh(jo) for each

ue]R+. This makes the evaluation of the max in (3.39b) particularly straightfor

ward since the maximization need only be performed over the boundary of

Kff(J «) which consists of four straight line segments.

The majorization of the stability constraint (3.21) which employs the

"Extended Nyquist Criterion" is less straightforward. It is shown in [Pol.9, Pol. 10]

that (3.21) is majorized by an inequality of the form

in*1$%iMl:'{X'ia,n'V*)*0 Vuei??+, (3.40a)

where

B*(jo) k[I <j»).*i.(J»)M* (jo)$z(jo)-\ (3.40b)

is an easily computed rectangle of possible phase values. To reduce the conser

vatism induced by the use of sets R# and 1^ which are rectangles, more compli

cated polyhedral convex sets may be used, though their construction is compu

tationally not as straightforward as the construction of a rectangle.

3.4 Differentiability Properties of the Majorizing Functions

Before we can exploit the computational simplicity of the majorizing ine

qualities that have been constructed in Subsection 3.3, we must verify that the
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majorizing functions are locally Lipschitz continuous, and that their generalized

gradients can be computed easily (see Section 4 for definitions) as required by

the semi-infinite optimization algorithms to be presented in Section 4. In the

forms stated in Subsection 3.3, this is not true, because the rectangles R used in

the majorizing inequalities are not constant, compact sets, and because the rec

tangles Rff may be unbounded.

These difficulties can be removed by various transformations. First, to

make the rectangles R# always bounded, see [Pol.9, Pol. 10], we introduce a

change of variables in (3.39b):

and replace m by m' according to the rule

m'm =Tr^r. (3.41b)

This also necessitates the definition of approriate maxima and minima ffifjo)
V

and M'(Jo) defined by replacing rnp in (3.36a) and (3.36b) my m'P. The result

ing lit(jo) and M'(jo) are bounded and continuous and hence so are the rectan

gles R'h(jvj) which they define (by substitution in (3.37)). To distinguish the

resulting new inequalities from the old ones (for example (3.39b)) we replace £

by f to obtain

vemaxu)£'yd(x,;u,i/) -bd(o) ^ 0, V Qefc'.w"] (3.42a)
where v k (m\<p) and

KH(jo) k co\vHX(jo)\i efl.2,3.4}! (3.42b)

and the v^R^lR2! e j1,2,3,4} are differentiable, except on a set of finite cardi

nality, on which Rjy(-) is not even continuous. For the stability constraint we do

not need a tranformation for m. It is shown in [PoLlO] that the points of discon-
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tinuity of the vertices of R# and 19^, {o>2 eRjJ e£J, correspond to certain jo-

axis poles and zeros of the extremizers phase of P(s,a,L(s)) at which the phase

of the corresponding rational function is discontinuous.

Because the sets TKh(jo) and Bs(jo) are polyhedral convex for each welR*.

any v eR#(j «) can be represented in terms of the vertices of "Rff(jo), i.e.,

v = 2lniVB.i(ju) (3.43)

where 2p> =1,/la* >= 0 Vi e j1,2,3,4). and similarly for v eR^(jf<y). Hence we
i=i

obtain that

vl^of^'i0^ =™ff»(*••?'"•/*) (3-44a)

where

fa(*.; w.M) =Cff(*.; a. 2 //*v#ti0'")) (3.44b)
t=i

and S C IR4 is a simplex defined by

E4 {/i£R4| £p* =l./z* >= 0 ViGil.2,3,4}) . (3.44c)

Similarly, we define

SB(x,jo,/j) k^(xJo^fJv^i^o)). (3.44d)
i=l

Now let

fe<x) - SSg«»<* J*«») (3.45a)
and

*(«>A5Hgf.(*J<*M) (345b)

where Qjy, Ck are the critical ranges of frequency.

-26-



U V V

If we assume, to simplify the exposition, that. the system has a unity

precompensator, Cff, in Fig. 2, we find that stability is ensured if

%(x) < 0 . (3.46)

Let

xk (x <ERn \fs(x) ss 0) . (3.47)

It was shown in [Pol. 10] that ^s:EnxR+xR4-»IR and tff-.XxM+xTR^TR are continu

ously differentiable except at finitely many frequencies, at which these functions

are bounded but discontinuous.

Because of the discontinuities, we must must replace the max by a sup in

our definitions of V'j/ and Vs. i-e., we define

**<*>* J3£fa<*J«W*> (3.49a)

f.(z)A«Sg&(*.Mp). (349b)

The algorithm in Section 4 assumes that the functions £s and £# are continuous

on the constraint intervals Qg and Off. When these functions have discontinuities

in Qs or Qjy, respectively, the algorithm in Section 4 can still be used provided

that a minor, rather technical modification (see [Pol. 11]) is introduced.

We have thus completed the transcription of the constraints on scalar

transfer function magnitudes, | H(jo) \, as well as the requirement of robust sta

bility, in the presence of both structured and unstructured uncertainty, into a

form that is compatible with the algorithm to be presented in the next section.

4. SEMI-INFINITE OPTIMIZATION ALGORITHMS FOR CONTROL SYSTEM DESIGN.

We shall now describe a family of algorithms for solving semi-infinite optimi

zation problems of the form
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mm\f(x)\gi(x)*0.j = 1,2 m; <pk(x,yk)<zO,yk<zYk,

k = 1.2 lixzX]. (4.1a)

These algorithms were developed over the years by Polak and Mayne [PoL2],

Gonzaga. Polak and Trahan [Gon.l], Polak, Trahan and Mayne [PoL7], Polak and

Wardi [Pol.3] and Polak and Stimler [Pol.11]. The algorithms in [Pol.2, Gon.l,

PoL7, Pol.11] were constructed with broad engineering applications in mind,

while the Polak-Wardi and Polak-Stimler algorithms [Pol.3, Pol. 11] were

specifically conceived for control system design.

The above mentioned algorithms can be used whenever the following condi

tions are satisfied:

Assumption 4.1: '

(i) The sets Yk in (4.1a) are closed and max£(a; ,j o,u);

(ii) For every x€.IRn, the functions y>k(xt) have only a finite number of local

maximizers in Yk;

(iii) The cost function /(•) is continuously differentiable;

(iv) The constraint functions p*(v) are either continuously differentiable on X

or the pointwise maxima over a fixed compact set of functions which are con

tinuously differentiable on X (this includes functions of the form (3.49a,b) and

functions defined in terms of the square of the maximum singular value of a con

tinuously differentiable (in x) mxm transfer function matrix H(x,s), whose ele

ments are proper rational functions whose elements are continuously

differentiable on X);

(v) The set XcJR" is defined by

Xk jxe^l^OO^Oj (4.1b)

where ifailRn -* IR is defined by
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i/a(x) k max \gsi(x)*&, j = 1,2 m'; <pak(x,yk)^Ot ykzYStk,

k = 1.2 1'] , (4.1c)

with all the functions in (4.1c) continuously differentiable, so that the Danskin

formula (4.9b) can be used to evaluate the directional derivatives of %. •

The set X is introduced to account for two phenomena. The first is the fact

that functions <pk(x,yk) in (4.1a), defined in terms of transfer functions, may

have poles on the j o axis (y = o) for some values of x and hence are not even

continuous at such x. The second phenomenon is that the time responses of

unstable systems may blow up within the time intervals under consideration.

The functions defining isa() are those described in the preceeding section under

the subtitle S-stabUity.

From now on, without loss of generality, we shall consider only the simplest

case of problem (4.1), which includes only one semi-infinite constraint and no

ordinary, differentiable constraints, so as to avoid much cumbersome notation.

Thus, we shall explain algorithms for solving (4.1) in terms of the problem

mm\f(x)\<p(x,y)^0, yzY, x<z.X\ , (4.2)

which retains all the important features of (4.1).

A mathematically elegant exposition of algorithms for solving (4.2) requires

the use of concepts of nondiflerentiable analysis [Cla.1] The interested reader

will find such a presentation in [PoL8]. In this paper we will attempt to give a

more elementary exposition which makes use only of the concept of directional

derivative and e-directional derivative of a max functions.

Let

y(x)k max <p(x,y) . (4.3)

We can now rephrase (4.2) in the alternative form
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min{/(x)|#r)<;0, xsJC\ . (4.4)

When <p(x,y) is defined by an expression of the form

<p(x,y) = a[H(x,jy)f -b(y), (4.5)

where o[H(x,jy)] is the maximum singular value of a differentiable (in x)

transfer function matrix H(x,jy), ip(x) can be expressed as

1>(x) = max\\\H(x,jy)z\\2\ \\z\\ = 1, y^Y] . (4.6)

Hence, whether <p arises from a time domain constraint, a differentiable fre

quency domain constraint, or from a singular value frequency domain con

straint, the function if/ defined by (4.3) is a max function of the type that has

directional derivatives for which formulas can be found in [Cla.1, Dan.l]. We shall

state these formulas as it becomes necessary.

Since the constraint function in (4.2) may not be continuous outside of the

set X, the solution of problem (4.2) must begin with the computation of an initial

design x°€X. Under fairly weak assumptions such an x° can be computed in a

finite number of iterations by a subprocedure which we shall call phase 0 of our

algorithm. Once an x°€.X has been computed, the simplest approach to solving

problem (4.4), is to proceed in two additional phases which are analogous to the

ones used in linear programming. In phase I one computes a sequence [xIk]t

such that xJQ = x° and Tfr8(xJk)^0 for all k. Hopefully, this sequence is finite and

terminates in a feasible design vector xIk = x0, i.e., one that satisfies all the

constraints in (4.4). In phase II, one constructs a sequence (xijiso" . with first

element Xq, along which the cost sequence, \f(xi)li=cT. decreases monotoni-

cally, while the constraints ^(x^O.^fe^O are satisfied for all i. Usually, the

sequence Jx* Ji=o~ converges to a local minimizer x* of (4.4).

In phase I - phase II algorithms, the two separate operations are combined,

with the advantage that the construction of a feasible point is carried out taking
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into account the need for eventually decreasing the cost. Normally, phase I -

phase II methods construct a feasible point xk in a finite number of iterations.

When the construction of a feasible point x takes an infinite number of itera

tions, the point x turns out to be a local minimizer for (4.4).

Phase I - phase II algorithms consist of three blocks: (i) a block which com

putes the search direction, (ii) a block which computes the step size, and (iii) an

update block which combines the results of the preceeding two operations to

obtain the new design vector Xi+1 from the old design vector xt. The most impor

tant of these blocks is the search direction finding block. However, before we

can proceed, we must digress to discuss methods for computing directional

derivatives of max functions.

4.1. Directional Derivatives of Max Functions.

We recall that the directional derivative of a function nJ/:IRn -* IR at a point

x, in the direction h is given by

<**(**) 4Aft** +*> ' **> . (4.7)

When $(•) is continuously differentiable, its directional derivative at x, in

the direction h is given by

diff(x\h) =(yf(x),h) . (4.8)

When

1>(x) =™*x<p(x,y) , (4>9a)

it does not have a gradient everywhere and hence fomula (4.8) does not always

apply. Nevertheless, it is still possible to obtain useful formulas for the direc

tional derivative d^(x;/i). We shall consider the two cases that concern us most.
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When p(v) is continuously differentiable in x, the directional derivative

i>() at x, in the direction /i is given by the Danskin formula (see [Dan.1])

dy(x;h) = max <Vxp(x,y),/i> (4.9b)

where

Y(x) k\y*LY\ <p(x.y) =y(x)] . (4.9c)

It follows from (4.9b) that f() is differentiable at all x such that Y(x) is a single

ton, fa/(x)j, in which case VV(x) = Va.^(x,i/(x)).

The above results can be extended to the case where if/ is denned by

f(x)kmaxfi(x), (4.10a)

where / is a finite index set and

fi(x) =max (pl(x,yi) (4.10b)

with the <pi(-,) continuously differentiable and the Yt compact. In this case, the

formula for the directional derivative of ^ becomes

df(x;h) = max d^(x\h) , (4.10c)

where

I(x) k |ie/|<fc(x) = f(x)\ . (4.10d)

An alternative way of writing (4.9b) is

"*(**)s ,335, <*•*> • (4-H)

where

df(x) k co\V<p(x,y)\yeY(x)l (4.12)

is the Clarke generalized gradient of ^(-) at x (see [Q.a.1]) and co denotes the

convex hull of the set enclosed in the braces.

-32-



977

The Clarke generalized gradient of if/(-) at x is equal to Vip(x) when the gra

dient exists at x. When the gradient of ip() does not exist at x, it can be shown

to satisfy the following relationship to gradients at nearby points x', where the

gradient exists:

of(x) = co {lim*+xV^(x')I . (4.13a)

i.e., it consists of limits of gradients at points x' converging to x.

Formula (4.13a) can be used to define the Clarke generalized gradient for

arbitrary locally Lipschitz continuous functions V(') [Cia.1].

Definition 4.1: A function ipiIR" -»IR is said to be locally Lipschitz continuous at

x if there exists an Ze(O.oo) and ap > 0 such that

|i/(x>) - f (x") I^Llx1 -x" || V x* ,x" €B(x,p) . (4.13b)

^(•) is locally LLpschitz continuous if it is locally lipschitz continuous at all

x<z.IRn.*

In general, the expression (4.11), with 3^(x) the Clarke generalized gra

dient of tf/(')t yields not the directional derivative of i>(-)t but the generalized

directional derivative [Cla. 1], which is defined by

g^Afiarty +y-**), (4.130)

It can be shown that in general, d°if/(x;h) >= dif/(x;h). However, in the case of

the max functions that we are considering, the ordinary and generalized direc

tional derivatives coincide and hence (4.11) can be used to evaluate the direc

tional derivative provided the correct expression for &t//(x) is used.

When <p(x,y) k a[H(x,jy)]2-b(y), with a[H(x,jy)] the maximum singular

value of a proper, rational transfer function matrix H(xjy), whose coefficients

are continuously differentiable inx, and b(y) is continuous, Vx<p(xty) exists only

when a[H(xJy)] is a distinct singular value. In that case, the gradient of p(v) is
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given by

V*9(z &)=(<?,[dQ(xty)/axl]v), ,<y,[dQ(x,y)/dxn]v))T , (4.14)

where v is the corresponding unit eigenvector of the matrix

Q(x,y) kH(x,jy)*H(x,jy). Assuming that (4.14) is valid for all ye7(z), formula

(4.12) for dif/(x) remains valid for this case also. When the maximum singular

value is multiple for some y£.Y(x), which happens over a set of measure 0 in

IRnt the Clarke generalized gradient assumes the slightly more complex form

8#r) = co jf | J* = (vtdQ(x,y)/<£&*», i = l,2....,n,

v = U(x,y)z,\ \z\\- ltyeY(x)l , (4.15)

where U(xty) is any matrix of orthogonal unit eigenvectors spanning the eigen-

space corresponding to the largest eigenvalue <*[H(x,jy)]2 of Q(x,y).

We are now ready to proceed with an explanation of the search direction

computation rules.

4.2. Primitive Search Direction Computations.

Given a design vector xt the search direction for problem (4.4) is computed

according to four distinct rules, depending on whether i*a(x) < 0, ^(x) > 0,

^(x) < 0 or ^(x) = 0, where

$(x) k max 0>(x),%(x)i . (4.16a)

The first case corresponds to phase 0, the second case corresponds to phase I,

while the last two cases correspond to phase II. We begin by describing a set of

primitive search direction finding rules. These are simple to explain, but they

have the disadvantage that they yield search directions that behave discontinu-

ously near "corners" of the level sets

F9 k \x€jRn |f (x)^6j . (4.16b)

This discontinuous behavior is known to cause algorithm jamming and hence the
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primitive search direction rules have to be modified so as to "smear out" this

discontinuous behavior by anticipating the possible presence of a "corner" in the

vicinity of the current design vector x. We shall present a "corner" anticipation

technique after we have explained the primitive search direction finding pro

cedures.

Phase 0 (primitive): When ^«(x) > 0, i*a(x) can be decreased along the steepest

descent direction

hJ(x) k orgmmlh \h\\2 +dfa(x;h)i , (4.17a)

provided that ©°(x) < 0, where @°(x) is defined by

8°(x)A miniii|/i||2 +d^(x;/i)j. (4.17b)

Note that the term <g\ \h\ |2 in (4.17a) serves the purpose of limiting the size of

the soLutionvector hJ(x).

We note that ®°(x) = 0 must hold at all local mininiizers x of ^s(). Hence, to

be certain that our algorithms does not hang up at an infeasible point we will

need

Assumption 4.2: For all x such that f(x) > 0, ®°(x) < 0. •

When i*a(x) = max <p(x,y) and p(v) is continuously differentiable in x, as is
yey

the case when it expresses the stability test (3.22), we can substitute for the

directional derivative in (4.17a) from (4.9), (4.10), to obtain

h°(x) =ar^min maxjhhf +<Vp(x.y)./i>} . (4.I8)

It should now be apparent why the primitive phase 0 search direction h°(x)

can behave discontinuously. The reason is that the cardinality of the set Y(x)

(i.e., the number of points it contains) can change abruptly.
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Substituting for df(x;h) from (4.12) into (4.17a), we obtain the alternative

formula

h%x) =•,nto|3gj)jii |h| |« +<f,A)j . (4.19)

By making use of the Von Neumann minimax theorem [Ber. 1] it can be shown

that (4.19) can be converted to

*•(*)» -"W^jKP (4.20)
Because by Assumption 4.1 the set Y(x) has finite cardinality, the minimi

zation problem in (4.20) is a finite quadratic prograrnming problem which can be

solved in a finite number of iterations by means of special algorithms, see e.g.,

[PoL4]. The min max problem in (4.18) can also be transformed into a finite qua

dratic program, but that program is more difficult to solve than the one in

(4.20). Hence (4.20) is the one that is usually implemented in optimization

codes.

Phase la (primitive): Suppose that i/a(x) < 0. In this case there is a ball B(x,p),

centered on x such that for all x*€f?, ^(x')«s0 . Hence the cost can be

decreased, without incurring a constraint violation, along the steepest descent

direction

hIa(x) k argmm{^] \h\\2 +df(x;h)]

=argmui max \h \h\ \2 +<£./i)j . (4.21)

Again making use of the Von Neumann minimax theorem, we obtain from (4.21)

that

hIa(x) =s -argmSjjj.ffp . (4.22)
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We note that when <p(x,y) k o[H(x,jy)]2 - b(y), with o[H(x,jy)\ the max

imum singular value of a proper, rational transfer function matrix H(x,jy),

whose coefficients are continuously differentiable in x, and b(y) is continuous,

we use (4.15) to define dijf(x). Unfortunately, in this case, (4.21) is no longer a

finite quadratic program and hence the evaluation of the search direction by

means of formula (4.21) requires the use of a "nearest point" or "proximity"

algorithm, see e.g., [PoL4]. Proximity algorithms do not converge finitely and

hence a truncation rule must always be included in any algorithm using a prox

imity algorithm as a subprocedure.

Phase lb (primitive): Next, suppose that %(x) = 0. In this case, one can

decrease the cost, without violating constraints, along the direction

h*>(x) karflfmini^-| \h | |2 +max{d^(x;/i),d^s(x;Ai)}j . (4.23)
heJRn *Z

whenever ©*(x) < 0, where

&(x) kargmmlh 1^112 +max^(x;/i),dfs(x;/i)jj (4.24)
heMn *

since in that case both dij/(x;h) and d^9(x\h) are negative.

Now we must not allow the computation to get hung up at a point x such

that i?(x) > 0 and hene we impose the following requirement on the problem for

mulation.

Assumption 4.3: For all x such that ^(x) >= 0, ©/(x) < 0. square

Phase Da (primitive): Suppose that ^(x) < 0. In this case there is a ball B(x,p)t

centered on x such that for all x* el?, ^(x' )^0 . Hence the cost can be

decreased, without incurring a constraint violation, along the steepest descent

direction
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h*'(x) kargminj^ \h\ |2 +df(x;h)\ (4.25a)

where the directional derivative of/ at x, in the direction h is given by

df (x;h) = <V/(x),/i) . (4.25b)

Making use of (4.25a)f (4.25b), we obtain the explicit answer: hHa(x) = - V/(x).

Clearly, no first order reduction can be obtained when Vf (x) = 0, since x is a

stationary point for problem (4.4) in that case.

Phase lib (primitive): Next, suppose that if(x) = 0. In this case, one can

decrease the cost, without violating constraints, along the direction

hJ*>(x) korgminffl \h\ \2 +maxid/(x;/i),d^(x;/i)jj . (4.26a)

whenever ®o(x) < 0, where

&o(x)kargmm\h \h\ \2 +max{df(x;h),df(x;h)\l (4.28b)
hemn &

since in that case both df (x\h) and dif/(x\h) are negative.

This leaves us with the question as to what happens when ®o(x) = 0 (since

0o(x)^O must always hold). The answer to this question is given by the following

result.

Theorem 4.1: Suppose that x is solves problem (4.4). If ^(x) < 0, then Vf (x) = 0.

If ^(x) = 0, then 0o(x) = 0. •

Thus, if x is a point such that ^(x) = 0 and %(x) = 0, then x is stationary for the

problem (4.4) and it is not possible to dislodge oneself from x by means of a first

order algorithm.

4.3. Convergent Phase 0, Phase I - Phase II Search direction Computations.
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We shall first show how the discontinuous behavior of the search directions

defined in the preceeding subsection can be tempered by anticipating corners in

the level sets F$ and how the phase I and phase II computations can be com

bined into a single one. The anticipation of corners is achieved by e-smearing

(augmentation) of the sets 3^8(x), 9^(x), see Fig. 8. The augmented set

correspond to a possible generalized gradient 9^8(x'), or S^x*) at a nearby

"corner" of a level set. The smearing parameter B> 0 is driven to zero adap-

tively. The combination of the phase I and phase II computations into a single

one will be achieved by means of a cross-over mechanism.

Let

ifa(x)¥ k max \ifa(x),Q\ (4.27a)

1>(x)+ k max Mx),Oj (4.27b)

f(x)+ k max Ws(x).^(x),Oj . (4.27c)

Then, for e > 0, let

YSte(x) k lyzYa\<ps(x,y) >=^,(x)+-e ,

and y is a local maximizer of i(t(x, •) in Ya { (4.28a)

Ye(x) k {y<zY\ <p(x,y) >= f(x)+ - e,

and y is a local maximizer of tf/(x,•) in Yj (4.28b)

Next, we define

d^a(x) k \d<p(x,y)\y<LYa*(x)\ . (4.29a)

When p(v) is differentiable in x, we define

6tf(x) k \d<p(x,y) \yere(x)j . (4.29b)

When p(v) is defined in terms of the maximum singular value aH[(xjy)], we

define

def(x) k co{y \yl =Kv.dQfr.yydxiyu^ i =1,2 n, v =Ue(x,y)z,
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IMl = 1. y*Ye(x)l . (4.29c)

In (4.29c) Ue(x,y) is a matrix whose columns are a maximal set of orthonormal

eigenvectors corresponding to all the eigenvalues \k(x,y), fce(l,2,...,mj, of the

mxm matrix Q(x,y) k H(xtjy)*H(xJy\ such that

o\.H(zJy)f ' hc(x.y)^ . (4.29d)

where these eigenvalues are ordered so that

oWx,jy)]2 = \1(x,y) >= \z(x,y) >= .... >= \m(x,y).

Finally we define

dsf(x) k co\di/a(x),df(x)l tf\i>a(x) -f(x)\^z ,

= d%(x), i£1/a(x)-f(x) >= e,

= df(x). if&(x) - ijf(x)£s . (4.30)

Next, we define

dBnf/a(x;h)k max <$,h>, whenfa(x) >= -s;

= - oo, otherwise. (4.31a)

def(x;h)k max < |,A>, when^(x) >= -e;

- - oo, otherwise. (4.31b)

We now define

©°c(x) kminS|H |W I|2 +de1,a(x;h') j (4.32a)

and with y >= 0 , we define

©c(x) 4 mini^H |tt | | .2 +maxid/(x:/i') -^(x)+.dc^(x;7i')Ji (4.32b)

Correspondingly, we define
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h%(x) =argminih \K ||2 +de%(x;h') }. (4.32c)
hemn 2

ht(x) =ar^minf ^-| \h! | |2 +max$d/(x;/i') -y^(x)+tds^(x;h')]l . (4.32d)
hemn 2

Note that when^(x)^0, the search direction hs(x) is a phase II search direction.

When ^(x) > 0, the term yf(x)+t in (4.32b) and (4.32d), effectively suppresses

the contribution of the derivative of the cost function when the constraint viola

tion is large. This suppression is reduced in a continuous manner as a feasible

design is approached and the algorithm makes an attempt to decrease, or at

least not to increase the cost as the the constraint violation is reduced, see Fig.

7.

Next we must define a mechanism for reducing the "smearing" parameter s

as a solution to (4.4) is approached. Let <5e(0,1) and let

E^(0,l,d\<52-<53,... j. (4.33)

We then define the smearing functions

e°(x) = max JeeE 10°e(x)«£ - £j, (4.34a)

s(x)kmax $E€E| ©e(x)< - ej . (4.34b)

Finally, we define the combined phase I - phase II search direction at x by

h(x) =hs{x)(x) . (4.35)

Note that the computation of h(x) involves a loop. This loop can be made quite

efficient in an algorithm which computes a sequence {x^J, by searching E for

sfa) not starting from 1, but from the preceeding value B(xi^i).

4w4. Step Size Computation.

The step size computation is also broken up into a phase 0, phase I and a

phase II rule. The step size rules that we find most eflicent are derived from one
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proposed by Armijo [Arm.l] for unconstrained differentiable optimization. This

step size rule makes use of three parameters: a,0e(O,l) and K > 0.

Phase 0 Step Size: Suppose that xe27?n is such that fa(x) > 0. It can then be

shown that e(x) > 0 because of Assumption 4.2 and hence

d$a(x\h(x)) < 0°c(jc)(x):S - e(x) < 0. The phase 0 step size s(x) is denned to be

the largest number s in \KtKp%KfP—\ such that, see Fig. 9,

tjfa(x + sh(x)) -i/a(x)^sae°(x) . (4.36a)

Phase I Step Size: Next, suppose that x eff?* is such that if/8(x)^Q, and ^(x)<;0. It

can then be shown that e(x) > 0 because of Assumption 4.3 and hence

d^(x;h(x)) < 0e(s)(x)^ - e(x) < 0. The phase I step size s(x) is defined to be the

largest number s in \KtKp,Kfi2-\ such that, see Fig. 9,

^(x + sh(x)) - y(x )«£ - s ae(x) . (4.36b)

Phase II Step Size: Now suppose that xeIRn is such that ^(x)<0 and ©oOO < 0. It

can then be shown that e(x) > 0 and hence that df(x;h(x))^Se^(x)^ -

e(x) < 0), and if ^(x) > -e(x), then we also have df(x;h(x)) < Qe(s)(x)^ -

s(x) < 0. The phase II step size s(x) is defined to be the largest number s in

[KiKfrKfP--] such that

f(x +sh(x))-f(x)^-sae(x) , (4.36c)

and

ip(x + sh(x))<ZO . (4.36d)

4.5 The Algorithm.

We are now ready to collect all of our blocks into a phase 0, phase I phase II

algorithm for solving the specific forms of problem (4.2) that we have been dis

cussing.

Algorithm 4.1:
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Parameters: a, 0, <5e(0,l). K, y > 0.

Data: x0.

Sfep a* Set i = 0.

S£ep i: If ifa(xi) > 0, compute e°(xt) and fy = f^fo). Else, compute t(xi) and

^ Ah(Xi).

Step S:]iifa(xi) > 0, compute the largest step size Si€\KtKptKfPt...\ such that

fa(xi + xj/ii) -^-s^fo) (4.37a)

If ^(x^O and ipfe) > 0, compute the largest step size si€{ZJT,iif/3,A'/32,...j such

that

^(x* + Si/ii)^0 (4.37b)

If ^(x)^0, compute the largest step size siz\KtKf},K@Pt...\ such that

f(xi + Siht) -/(xi)^-sias(xi)

$(xt + Si^^O . (4.37c)

Step 3: Set

Xt+1 = X* + Sihi , (4.38)

set i = i + 1, and go to Step 1. •

The convergence properties of the above algorithm can be stated as follows.

Theorem 4.2: If (x^^, with / an infinite subset of [0,1,2,3,...j, is any infinite

subsequence of a sequence (x^00 constructed by Algorithm 4.1, which con

verges to a point x, then ^(x)^0 and ©o(£) = 0, Le., x is feasible and satisfies a

standard first order optimality condition. •

5. CONCLUSION
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Since one cannot successfully use semi-infinite optimization algorithms in a

batch mode and since, in any event, engineering design involves a great deal of

trade off, the implementation of the control system design techniques described

in this paper is best carried out in a highly flexible and highly interactive com

puting environment. DEUGHT.MIMO [Con.l, Nye.l, Nye.2, Pol. 12] is an experi

mental, interactive, optimization-based control system design package which is

currently being developed at the University of California, Berkeley and Imperial

College, London. Because this system is still undergoing considerable evolution,

there is little up-to-date documentation available on this research.

The use of semi-infinite optimization in control system design is still in its

infancy. This is partly due to the fact that present day control theory was not

developed with an awareness of the full power of semi-infinite optimization, and

partly to the lack of easily utilizable, semi-infinite optimization software tools.

Hopefully, DEUGHT.MIMO will alleviate this problem.

A great deal of research remains to be done in (i) the construction of con

trol theoretic results which take into account the availability of semi-infinite

optimization tools, in particular in the areas of formulation of uncertainty and

computational tests for ensuring closed loop system stability; (ii) the develop

ment of systematic techniques for transcribing physical requirements into

numerically well conditioned semi-infinite inequalities, and (iii) software imple

mentations.

Initial experimentation with semi-infinite optimization in control system

design is certainly very encouraging, though, clearly, there remains a great deal

to be done. Hence, we would like to encourage our readers to experiment with

semi-infinite optimization in control system design, since it is only out of a large

collective experience with a design tool that intuition and folk wisdom emerge,

which fuel further research efforts.
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Figure Captions

Pig. 1. Two Degrees of Freedom Control System.

Fig. 2. Three Controller Feeback Structure.

Fig. 3. S-stability Region.

Fig. 4. Exclusion Region for Stability Test.

Pig. 5. Envelope Constraint for Time Responses

Pig. 6. Construction of Rectangular Approximation for the Set of Plant Variations.

Pig. 7. Trajectory of Successive Iterates in Phase I-Phase II Algorithm

Pig. 8. Illustrating the Smoothing Effect of e-Smearing.

Fig. 9. Step Size Computations.
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