

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EVALUATION AND OPTIMIZATION OF MOS DEVICE DRAIN

CONDUCTANCE MODELING IN THE SPICE LEVEL 2 MODEL

by

Gregory D. Anderson

Memorandum No. UCB/ERL M84/3

6 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

EVALUATION AND OPTIMIZATION OF MOS DEVICE DRAIN

CONDUCTANCE MODELING IN THE SPICE LEVEL 2 MODEL

by

G. D. Anderson

Memorandum No. UCB/ERL M84/3

6 January 1984

EVALUATION AND OPTIMIZATION OF MOS DEVICE DRAIN

CONDUCTANCE MODELING IN THE SPICE LEVEL 2 MODEL

by

Gregory D. Anderson

Memorandum No, UCB/ERL M84/3

6 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Evaluation and Optimization of MOS Device Drain
Conductance Modeling in the SPICE Level 2 Model

by Gregory D. Anderson

Department of Electrical Engineering
and Computer Sciences

University of California, Berkeley

ABSTRACT

This report addresses output conductance modeling in SPICE in
the near-saturation region. /* vs V& characteristics for MOS
transistors fabricated in the Microelectronics Laboratory at the
University of California, Berkeley were measured, and output con
ductance information taken from these measurements. Then, a
set of optimal SPICE MOS Level 2 model parameters was extracted
from the data in such a way as to minimize the error between the
measured and simulated Id~v& data, and differences between the
two were quantified. In addition, the use of the TECAP2* transistor
measurement system as a tool for measurement, parameter
extraction and model development is discussed.

October 7, 1983

•The TECAP2 Measurement System is a product of the Engineering Productivity Divisionof
Hewlett- Packard Co., Cupertino, CA

_ ^e9

ACKNOWLEDGEMENT

Many people have contributed to the work which has culminated in
this report. The support and encouragement provided by my research
advisor, Professor P. R. Gray is greatly appreciated.

In addition, the assistance provided by Dr. E. Khalily and Mr. P. H.
Decher of Hewlett-Packard with the TECAP2 system was invaluable to
the completion of this project.

I would also like to thank Mr. P. W. Li for supplying the devices
measured for this project, and last but not least, Bell Laboratories for
continuing patience and financial support.

tv i

Table of Contents

L Introduction

II. Project Objective

m. Data Collection and Reduction Procedure

A. The TECAP2 Measurement System

B. Measurements at Berkeley

C. Measurements Taken Using the TECAP2System

D. Numerical Differentiation and Data Smoothing

IV. SPICE Model Parameter Extraction

A. Introduction

B. Experimental Procedure

C. Comparison of Measured Data and SPICE Model Using

Extracted Parameters

V. Optimal Parameter Extraction Using TECAP2

A. Practical Considerations

B. The TECAP2 Optimizer

"VL Model Development Using TECAP2

A. Writing the Model Subroutine

B. Testing the New Model

VH. Conclusion

Vm. Appendix

A. List of Measured Data Files

B. Listing of Program POLYSMOOTH

C. SPICE Level 2 Model Parameters

D. List of TECAP2 Program Files

E Listing of the TECAP2 User Module Containing the SPICE Level

2 MOS Model

DC References

I. Introduction.

As MOS circuits continue to play an increasing role in analog cir

cuit design, proper modeling of MOS transistor characteristics

becomes more important in circuit simulation. Much research has

been devoted to modeling short channel effects [refs] such as thres

hold voltage shift, but less attention has been paid to modeling output

conductance in the saturation and near saturation regions. Output

conductance is an important parameter in analog and digital circuit

design because it is one of the factors which determines the gain of an

actively loaded inverter stage.

Consider the gain stage with cascode active load shown in Figure

1. Neglecting the output resistance of M3, the voltage gain Av of this

stage is

9dMt
1+^

9da2

where gmz is the transconductance of MZl gm^ is the transconductance

of M3, and gd3l and g^ are the small signal output conductances of Mt

and Mq, respectively. When the cascode load is correctly designed, Mi

is biased so that it is operating with Kb**Kb* in order to achieve max

imum output voltage swing for the circuit while keeping all transistors

biased in the saturation region to maintain linearity.

A typical /d vs 7^ characteristic is shown in Figure 2. Recalling

dld
the definition of g^ = , it is seen that g^ is relatively constant in

tlVda

the region where Vds»Vdsait where J^ is the saturation voltage and is

indicated approximately on the graph. In the region where ttto^Kfeo*.

the output conductance becomes a strong function of V&. Since Mi is

_ lb' b

-2-

biased so that Kfr^Kfeatj* tne H81"1 of tnis example circuit is a function

of Vftj. Proper modeling of the output conductance of MOS transistors

operating in this region is essential to accurate simulation of such cir

cuits.

bias

circuitry

«to

fr

fr

IE*

1iout

V-

figure 1: Cascode-ioaded CMOS Gain Stage

~Zii

-3-

n. Project Objective

In this paper, /« vs 7^ characteristics for MOS transistors pro

duced in the Microelectronics Laboratory at the University of

California/Berkeley are measured, and output conductance data is

taken from these measurements. Then, optimal SPICE MOS Level 2 [2]

model parameters are extracted from the data in such a way as to

minimize the error between the measured and simulated id—Kb

curves. Finally, derivative go, data is taken from the measured and the

simulated i*—Kb characteristics, and differences between the two are

shown. Particular emphasis is placed on the transition region where

Kb te %rat- In addition, the use of the TECAP2 transistor measurement

system as a tool for measurement, parameter extraction and model

development is discussed.

-4-

m. Data Collection and Reduction Procedure

A set of test devices produced in the Microelectronics Laboratory

at Berkeley were obtained. These devices consisted of secondary test

patterns on an experimental analog circuit wafer. NMOS and PMOS

devices of varying geometries were available. N channel devices with

W-100/i, jL=10/L6were chosen primarily because they produced the

most consistent results from device to device.

A. The TECAP2 Measurement System

The TECAP2 measurement system consists of the configuration

shown schematically in Figure 3. The HP4145a semiconductor analyzer

contains programmable voltage sources and voltage and current

meters. Using the 9B36 desktop computer, the 4145a can be pro

grammed to take a series of current and voltage measurements, which

the computer can then display graphically or store on disk. Initial

measurements using this system were done at Hewlett Packard in

Cupertino, Ca. Unfortunately, hardware problems with the probe sta

tion rendered useless the data taken at this time.

B. Measurements at Berkeley.

The transistor measurement system in the Solid State Laboratory

at Berkeley is much more primitive than the TECAP2 system, and won't

be described here. Measurements taken using this system were very

noisy, and data smoothing was required to obtain useful results. See

the discussion of data smoothing in section D.

-5-

C. Measurements Taken Using the TECAP2 System.

Because the measurement system at Berkeley was slow, noisy, and

relatively hard to use, a return to HP to repair the prober was deter

mined to be worthwhile. This was done, and measurements were taken.

Comparison of data taken at Berkeley with measurements of the same

device done at HP proved that the system at HP was indeed in working

order. /(jvsKb was measured over a variety of ranges for each of the

devices tested:

(1) Kb 0 to 8 volts in 0.2 volt increments.

Vg, 0 to 5 volts in 1 volt steps.

This measurement yields a high voltage I-V characteristic which is

typical of those used for model parameter extraction for circuit simu

lation. An example of the result of this measurement is shown in Fig

ure 4.

(2) Kb 0 to 500mV in lOmvincrements.

Vg, 750mV to 1.25Vin25mV steps.

This measurement focuses on the area of interest in this paper:

Ida for Kb in the region around saturation. The small (lOmV) V& incre

ments were necessary in order obtain a good approximation to the

derivative g&. This measurement was done in two parts because

TECAP2 can only store 500 measured data points at a time. An exam

ple of the result of this measurement is shown in Figures 5a and 5b.

All data was recorded on disk and later transferred to the ucbcad

VAX computer. A listing of all data files appears in Appendix A.

-8-

D. Numerical Differentiation and Data Smoothing

A function f(x) can be expanded about the point x=x0 using the

Taylor series:

(i) /(xt+teWM+f'Mte+Kf-Mite)** • •.

Similarly,

(2) /(aro-ArJ^Cz^-Z^JAx+^-'CxoKAr)2

subtracting (2) from (1) and dividing by 2Ax yields

(3)/^)=/(g°+to^fe-to)+--
which is the so-called centered difference scheme for approximating

the derivative /'(x0). This is the method which was used to numeri

cally differentiate the measured Id vs Kb curves here.

Because the derivative data was of primary importance here, it

was imperative that the measured Id vs Kb data contain as little noise

as possible. The following steps were taken to reduce random error in

those measurements:

(1) The probe station was well isolated; shielded probes and cables

were used to minimize electrical interference.

(2) Measurements taken using the TECAP2 measurement system are

actually made by the 4145a Semiconductor Analyzer. This device

contains precision voltage sources, digital current meters and

digital voltmeters for maximum accuracy. In addition, the 4145a

has a user selectable "integration time"—short, medium, and

long— which means that the user may choose to have the instru

ment display for each data point the average of 8, 16, or 256 indi

vidual measurements, respectively. Statistically, the amount of

random error in a measurement of this type is reduced by a

factor of -yF=-. where n is the number of individual measurements.

This means that a data point obtained using the HP 4145a will have

inherently less random error than a single measurement taken

using voltage sources and meters of comparable accuracy. All

data used here was taken using the "medium integration time"

(average of 16 measurements.)

(3) Polynomial interpolation was employed to smooth the data along

each 1^ vs Kb curve using the following algorithm:

i) For each point h on a given 1$ vs Kb curve a least squares

cubic polynomial was fit through five data points - the point of

interest, plus the two points before it and after it.

ii) Using the polynomial thus obtained, a corrected value Iq. for

this data point is computed and recorded.

iii) Move to the next point Ii+i and begin again. The FORTRAN

program POLYSMOOTH listed in Appendix B was written to

perform this process. Using this technique the first two

points and the last two points of each Id vs Kb curve remain

unchanged.

This technique made a remarkable difference when applied to the

data taken at Berkeley, but had almost no impact on the data taken

using TECAP2. The TECAP2 data was used in all succeeding analysis.

L c

-8-

IV. SPICE Model Parameter Extraction

A. Introduction

Comparison of the measured data with SPICE simulation proved

difficult. First, all of the measured data was analyzed and a data set

for one device was selected whose characteristics were typical of the

group. The measured /d vs 7^ plots for this device are shown in Fig

ures 4 and 5.

From this data, sets of parameters for the MOS level 2 model were

extracted. It was very important to obtain a set of optimal model

parameters at this point, because errors in the model itself were

sought, not errors in the choice of parameters. To accomplish this

task, the TECAP2 system was again used, this time to perform parame

ter extraction using its built-in optimization routines. In order to use

TECAP2 for this purpose, it was necessary to write a PASCAL subroutine

implementing the SPICE level 2 MOS model in a form compatible with

TECAP2. Optimal parameter extraction and model development using

TECAP2 are discussed in the next chapter.

The procedure used was the following:

1. Optimal parameters were obtained.

2. Id vs Vda curves for KbwKba< were generated.

3. Both measured and simulated data were differentiated to obtain

conductance information.

4. The two were compared.

-9-

B. Experimental Procedure

The extraction of model parameters for the test device was per

formed by using the TECAP2 optimizer. Ideally, one would like to be

able to find a single set of parameters which are suitable for use over

all ranges of terminal voltages, but this was not feasible. Because this

investigation was concerned primarily with dc current-voltage relation

ships and low frequency, small signal output conductance, the following

SPICE parameters were optimized for: VTO. KP, NSUB, and LAMBDA. By

adjusting these four parameters, the entire behavior of the dc transfer

characteristics for the MOSFET as modeled by SPICE can be adjusted.

All other parameters used in the SPICE model for this experiment are

listed in Appendix C. The parameters for this device were obtained in

the following manner:

1) Using the high voltage-high current curves as a basis for

optimization, a set of parameters was chosen such that the

error between the measured data points and the simulated

values of Id for Id>l mA was minimized. The result of simula

tion using these parameters is shown in Figure 6; the parame

ter values themselves are given in Table 1. These parameters

were abandoned, however, because they proved to be inaccu

rate when used to model the behavior of the MOSFET for lower

ranges of voltages and currents. Figure 7 shows how far in

error the simulated results were compared with the meas

ured data using these parameters over lower voltage ranges.

The problem here is that the best choice of threshold voltage

VTO for matching the level 2 model to higher voltage and

current ranges is too low to give proper results at lower

-10-

voltages; the simulated drain current in this case is too high

2) The high voltage-high current characteristics were again

used, but this time the choice of model parameters was

optimized for I*<1 mA. The results are shown in Figure 8 and

the parameters given in Table 2. When these model parame

ters were used for low voltage-low current simulation, the

results were as shown in Figure 9.

3) Model parameters were optimized for the low voltage-low

current region in question. The results are shown in figure

10 and parameters are given in Table 3. These parameters

were not used for the following reasons:

a) The improvement in the accuracy of the model com

pared with results using the parameters obtained in part

2 was not significant.

b) When these parameters were used in the model to simu

late behavior at higher voltages, very wrong answers

resulted due to the unnaturally high value for LAMBDA

which was optimal for the lower regions. The result of

applying these parameters to the high voltage region is

shown in Figure 11.

The best set of general-purpose model parameters was the second

set; these parameters were used in all succeeding SPICE simulations.

Gc

-11-

C. Comparison of Measured Data and SPICE Model Using Extracted

Parameters

The /d vs Kb data shown in Figures 8 and 9 was differentiated to

yield g^a information. The result of differentiating the high voltage

data is shown in Figure 12. As expected, SPICE does a reasonably good

job of modeling the output conductance for this voltage and current

range. Neglecting narrow width effects, the SPICE level 2 model equa

tions for Id are:

l)For(^>Kfc)and7d8<7dw<

/d=? V -Ik-- — v«-&'

Z)Tor(Vga>Vth)aRdVda>Vd8at

/*=/* fS.-H*~

where

'dsat 2

3'" lVdut—zrrs

S 9

(2^+4-Kte)M2^-^)?

for* Kb* -H.)z -tor-TtrnJ^

W

By differentiating the above equations, the following expressions for gds

are obtained:

l)For(lJ8>7Wl)and7d8<7dw<

T6S

-12-

2) For {Vg8>Vth) and VdM>VdKt

9<ta- X-Wd,

As shown in Figure 12, the measured g^ data shows reasonably

good agreement with that predicted by the model equations for the

high-voltage, high current region; g^ shows a negative linear depen

dence on Vda for Kb<Kbo*» and is relatively constant when the device is

operating in the saturation region (Kb^Kbo*)-

In the region where Kb^Kfoo* tne situation is not well modeled,

particularly for small Vga-lfa. The result of differentiating the low vol

tage Id vs Vda data is shown in Figure 13. Inspection of these graphs

shows that the SPICE model is clearly in error in several respects:

1) A negative linear dependence of gda on Kb is predicted for

Kb<Kbot> whereas the measured data shows more curvature. In

fact, the measured data shows that gda is approximately inversely

proportional to Kb-

2) Predicted 0* values for V^-Vtt^t t^ computed by SPICE, are

factors of 3 to 12 lower than the measured values. This would

result in very optimistic gain predictions from SPICE simulations

for analog circuits biased in this region.

3) SPICE predicts values for Kbot which are clearly too low for each

curve shown; this results in SPICE predicting linear behavior

where such behavior may not be present in the actual circuit.

To quantify this difference, the following procedure was employed:

a) The value of gdsat=9da Ivda=vdvU was computed for each simulated

gda vs Kb curve.

-13-

b) The value of Kb^,,, (>Vjnt) for which the measured value of gda

equals gtsot was found.

c) The difference between these two voltages was computed. This

process is illustrated graphically in Figure 14.

A plot of AKbo* vs Vdmi is given in Figure 15; the least squares line

has the equation

&Vd„t=aVda+bt

where a =0.065580659 and 6=0.110841748.

_ £69

-14-

V. Optimal Parameter Extraction Using TECAP2

The software organization of the TECAP2 system when used as a

tool for parameter extraction can be thought of as shown in Figure 16.

This system will iteratively solve for a set of model parameters for

which the simulated results are optimally close to the measured result

in the following way:

1) Using the most recent model parameters, the optimizer

invokes the simulator using the user-selected model to obtain

a set of simulated transistor characteristics.

2) The optimizer then compares the simulated results with the

measured data and computes the relative error between the

two.

3) If the error between the simulated and measured data is not

significantly better than the error in the previous iteration

(greater than a user-defined tolerance) the algorithm quits;

otherwise the model parameters the user has specified are

changed using the Levenberg-Marquardt algorithm and the

process is repeated.

In this way, the optimizer changes the parameters until no further

improvement is possible. For a further discussion of the optimizer, see

section B.

A. Practical Considerations

At present TECAP2 is only available at Berkeley on an HP 9836

desktop computer belonging to the BIAS research group. Since no HP

4145a was available at the time of this writing, TECAP2 at Berkeley can

only be used to process data taken using other TECAP2systems and for

__trsg

-15-

device simulation and model development. In this discussion a basic

familiarity with the 9836 computer and the PASCAL 2.0 operating sys

tem is assumed.

In order to run TECAP2, the 9836 computer must be equipped with

the PASCAL 2.0 operating system and must have available a minimum

of 1 Megabyte of random access memory. In addition, the computer

must be enhanced by the addition of some sort of external mass

storage device, since all of TECAP2's executable code cannot be stored

on a standard 5—1' floppy disk. At Berkeley this is accomplished with

an HP 7912 hard disk belonging to the BIAS group; all of the relevant

software is stored on system volume 33.

To run TECAP2 on the 9836, the user must first execute the file

TECAP2.C0DE. TECAP2 will then start up and prompt the user for a

command. TECAP2 uses a menu driven user interface. The user inputs

a series of instructions selected from the currently displayed menu as

prompted by the program. The main menu is shown in Figure 17.

A general discussion of TECAP2's abilities is best left to the

TECAP8 Reference Manual[6]; the intent of this section is to guide the

user through the single process of obtaining a set of optimal model

parameters for an 4, vs 7^ data set which is available on disk. To

accomplish this task, the following steps should be taken:

1) Read in the measured data set. To do this, first press <M> to get

the measurements menu. The screen will now show another menu

with a selection of measurement related options. Press <4> and

then <enter>; you will then be prompted for the name of the data

file you wish to read in. A complete list of measured data files for

devices characterized for this project is given in Appendix A. Once

— * c a

-16-

the data is read in, it may be graphed or printed out by pressing

<M7> or <M9> respectively, and then <enter>. As the measured

data file is read in, measurement information such as voltage

ranges and step sizes is also read, as is device data such as device

type and geometry; this information was specified when the meas

urements were taken. For the purpose of parameter extraction in

this section this is sufficient. Changing the

measurement/simulation voltage step sizes and output variables

is discussed in the next chapter.

2) Select the modeL Since TECAP2 is. after all. an Hewlett Packard

product, the default transistor model is the HPSPICE MOSFET

model. To change from the default model to the SPICE Level 2

model which has been implemented in this project, press <E> (for

extract), then <1> and <enter>. You will be asked to select one of

6 models by number; the correct answer is 4. The sub-menu which

is displayed whe <E> is pressed is shown in Figure 18.

3) Set initial parameter values and decide which ones are to be

optimized for. By pressing <E2> <enter>, the user is presented

with a table listing all model parameters, their present values,

minimum and maximum values(for optimization), and a flag "P"

for the optimizer program. An example of this table is shown in

figure 19. To change the value of any number in the table, simply

use the cursor control keys to position the cursor to the beginning

ot the value to be changed, type the new value, and press <enter>.

The numbers under Value are the current values of the

parameters; in this case they are at their default values. The

numbers under Minimum and Maximum are hard constraints for

—" b j

-17-

the optimizer; during the optimization process the optimizer will

vary specified parameters as it tries to minimize the error

between measured and simulated results. The minimum and max

imum values are limits beyond which the optimizer is not allowed

to change a parameter. The value of "P" for each parameter is a

flag which tells the optimizer whether or not to optimize that par

ticular parameter; 1 means yes, 0 means no. For this project, KP,

VTO, NSUBand LAMBDA were optimized.

The careful user will note that not all parameters for the

Level 2 SPICE model are present in this parameter table. This is

because not all effects modeled in the Level 2 SPICE model are

included in the TECAP2 version. Specifically, the following effects

are not included:

a) Subthreshold current.

b) Velocity saturation.

c) Narrow channel effects.

d) Thin oxide capacitance model.

The Level 2 MOS model in TECAP2 is discussed more fully in the next

chapter.

4. Set optimizer options. By pressing <E3> <enter>, the user may

set various options for the optimizer. The most important options

to set are the upper and lower limits for optimization. These

options govern the range on the y (Id) axis of the graph over which

the optimizer is to try and match the measured and simulated

curves. For this project, the parameters which were finally used

were obtained by optimizing over the InA to 1mA range on the Id

— *- O -

-18-

vs Vda hi voltage curves. It is a good idea to limit the range of

optimization for two main reasons:

a) Limiting the range over which the optimizer must work

reduces the number of data points which must be computed

by the simulator and compared with measured values by the

optimizer. Using too many points slows down considerably

this already time consuming process, and may cause memory

overflow problems.

b) If too wide a range of data is considered, or too many points

are considered, mysterious system execution errors may

result TECAP2 recovers gracefully from such errors (gen

erally divide by zero), but no parameters are obtained.

Other options may be set, but are best left at default values for

now.

5) Optimize. Pressing <E> <enter> initiates the optimization pro

cess. Hie optimizer iterates to a solution, providing the user with

intermediate results as it goes. Once it is finished, the parame

ters are stored internally unless the user specifies that he does

not want to keep them. To see what the simulated device charac

teristics look like, press <S1S7> (S is for simulate), and <enter>.

To plot the simulated results using a dashed line on the same

graph as the measured data, press <M7S1P6S8> and <enter>.

The new parameters can be inspected by pressing <E2> <enter>

as before. However, if a comparison with SPICE is desired, the user

should instead get a parameter listing by pressing <E9> <enter>. This

is because the parameters shown when <E2> is pressed are truncated

to 4 significant digits in order to fit in the table. The listing given by

JZc c

-19-

pressing <E9> gives all values to their full precision as stored in the

9836 computer; these parameters should be specified to their full pre

cision on the .MODEL card in the SPICE input deck if it is desired that

SPICE agree exactly with TECAP2.

B. The TECAP2Optimizer[5]

The optimization package used in TECAP2 implements the

Levenberg-Marquardt algorithm. This algorithm combines the method

of steepest descent and the Gauss-Newton method as described below:

Given a real valued function /(s): Rn-*Rt where xsRn is the vec

tor of model parameters, n is the number of parameters to be optim

ized, and / (x), the cost function to be minimized, is the sum of the

squares of the difference between measured and simulated values of

the specified output variables (7«j in our case) normalized to the meas

ured variable, Le.:

,fW*.*i.O -/„«.(*.k«.k)w
/(*)=2

Imaaa\x* Vd% Vg)

The problem is to find the vector Xmin. i-e. a set of model parame

ters, which minimizes / (x).

Method of Steepest Descent:

The method of steepest descent is an iterative method for finding

zmin. the minimizer of the function f(x). The method works by

taking the gradient of the function, V/. The gradient points in the

direction of greatest increase of the function f; the steepest des

cent method moves in opposite direction so that a new value of x

is defined by

_ 669

-20-

**+l ~Xjg -OfcV/fc

where V/* is the value of the gradient at the point xk, and 0*^0 is

a scalar which determines the size of the step taken in the direc

tion of steepest descent at the &t* iteration.

The three main problems with this method are:

1) Selection of a good starting point xQ. Hopefully the user will

monitor the optimization process and make sure that the ini

tial selection of parameters does not lead to an erroneous

local minimum.

2) The gradient Vfk must be evaluated at each step. TECAP2

performs this operation using the forward difference approxi

mation

n„ _/(gfe+&g)-/(gfc)
Vft~ fe

This requires n+1 evaluations of the function / at each itera

tion point Xjg. To reduce computation time, TECAP2 does not

calculate the gradient at each iteration point. Instead, the

gradient computed at iteration k is modified using a tech

nique called Broyden's rank one correction for use as an

approximation to the gradient in succeeding iterations. The

actual gradient is recomputed after every n iterations or

when X, the marquardt parameter (described below), is

increased.

Newton's Method:

Newton's method works on the assumption that in a neighborhood

around ^min- the minimizer of the function /, f(x) is well approxi

mated by a truncated Taylor series:

009

-21-

f(xk+6xk) = f(xk) + (6xk)TVfk + (6xk)THk6xk

where Hk is Hessian or second gradient of / at the point xk. It

can be shown that the value of 6xk which minimizes the above

expression is

fob = -vtar1.

Thus.

+!= -V/Jffc"1.

The Gauss-Newton method is a modified form of Newton's method

in which the Hessian Hk is approximated by

Hk = WfTVf,

whereV/ Tis the transpose of the gradientof f.

Levenberg - Marquardt Method:

The Levenberg - Marquardt method combines the two above

approaches by generating a sequence of points \xk \ converging to

3?min in the following way:

where

P* = -(V/rV/+X/)-lV/ Tf (xk),

I is the identity matrix, and X is the marquardt parameter, chosen

from a sequence of non-negative real constants. For X large rela

tive to |V/TVf|,

p.« -\f-¥\m.

U »J 3

-22

and the algorithm behaves like the steepest descent algorithm

/(**)with step size a*= —-—: During initial iterations when the error

is large, X is chosen large so that the method steepest descent,

giving large improvement. In successive iterations, X is reduced

so that the method looks like the Gauss-Newton method. This

gives nearly second order convergence near the minimum.

7 :"• nG 'w* 3

-23-

VI. Model Development Using TECAP2

Because TECAP2 is a Hewlett-Packard product, its standard model

selection corresponds to the models available to users of HPSPICE.

However, it is possible for users to install their own models, as was

done with the SPICE level 2 MOS model for this project. This capability

was intended to allow users to extract parameters for their own

models. However, the fact that the TECAP2 has its own built-in circuit

simulator capable of calling a user defined model routine makes it an

ideal tool for developing new models and trying out changes in old

ones; it is considerably easier to make a change in a TECAP2 model

subroutine and see how it affects model performance than it is to make

a similar change in SPICE 2G.6.

The process of installing a new MOS model in TECAP2 is described

below. For additional information the interested reader is directed to

the TECAP2 System. Designer's Manual [5].

A complete listing of all program files relevant to TECAPS is given

in Appendix D. The main files of interest when installing a new model in

TECAP2 are TJJB&CODE, TJFCP2S.C0DE, STARTUP.M. TJJSER.TEXT.

which is also called the User Module, and UNKTEXT. The only PASCAL

source code available to the user is TJJSERTEXT; it is in this file that

the user may install his own transistor model as described below.

Once a model subroutine has been written, the user then makes

his own version of TECAP2, including the new model, in the following

manner:

1) Compile the (modified) PASCAL source file TJJSERTEXT. The

resulting code file must be named TJJSER.CODE, which is the

default name.

t» w *->

-24-

2) Stream the text file UNKTEXT. This file invokes a set of system

commands that link all of the compiled subroutines in the two

object code libraries and the newly compiled User Module into a

new version of TECAP2.C0DE. Once this is done, TECAP2 is ready

to be executed.

Writing the Model Subroutine

The TECAP2 User Module TJJSER.TEXT is listed in Appendix E and

will be referred to throughout the remainder of this section.

TECAP2 is set up to implement a total of 6 different models;

models 1, 2, and 6 are HPSPICE models. Models 3, 4, and 5 are avail

able for use by the user. Model 3 is a simple, classical MOS model

intended to serve as an example for users wishing to install their own

model. The MOS level 2 model written for this project resides in model

4 of the listing in Appendix E.

To install a new model, the user may either (l) modify one of the

existing models, or (2) start from scratch. Modifying an existing model

is generally much easier than starting completely from scratch. When

modifying the User Module, none of the procedure declarations preced

ing the IMPLEMENT statement should be changed, as these declara

tions allow the model subroutines to interact with other routines in the

program and access common data. Procedures D10-D14 and C10-C14

are included to allow the user to add commands to TECAP2 and will not

be discussed here. The set_gonstants procedure can be left as is or

changed as needed.

Referring again to the User Module, the procedure modeljthree,

which implements the classical MOSFET model, follows set^constants.

—" >- w'

-25-

It will be used here to illustrate how one goes about writing a model

subroutine. First of all, the parameter list for the model procedure

call is given; these are already in place in the User Module for models

3, 4, and 5 and should not be changed by the user. The purpose of each

of the parameters passed to and from the procedure is fairly well

explained by the comments, p is a data structure which includes all

model parameter data. The initial VAR declaration should include all

model parameters, both external and internal, as well as variables to

be used for terminal voltages and currents.

The procedure model^vnfo is used to set the model parameter

names and their default values. The subprocedure set_da£a should be

left exactly as given in the User Module. This procedure is called to set

the model parameter names, default values, default minimum and

maximum values (for the optimizer), and the units for the parameters;

all of the information in the parameter table TECAP2 displays when

<E2> <enter> is pressed appears exactly as given to the procedure

set_data. When each of the external parameters has been set, the total

number of external parameters should be stored in the variable

p.mimber. External ac parameters such as CJO or MJSW in the level 2

model should be set next in the same manner, with the number of

external ac parameters stored in the variable p.acnumber. Next, set

the names of all internal parameters— variable names which which will

actually be used in model equations— and record the number of inter

nal parameters in the variables p.internal and p. acinternal as before.

Be sure to increment the value of the pointer n as shown in the exam

ple so that no parameter information is overwritten. Notice that no ac

parameters are specified in model.Jhree.

- S C 9

-26-

Procedure get_extjpax is used to assign values from the external

parameter table to the internal parameter variables; when writing or

modifying this procedure be sure to match the internal parameters

with the correct value. Device parameters should also be assigned to

internal parameters at this time; specifically the assignments xl:=dev.l

and xw:=dev.w must be made to get gate length and width information.

Source and drain areas and perimeters for ac calculations are also

assigned in this way, as is done in the Level 2 MOS modeL Node assign

ments for the simulator are also made in this procedure. The device

nodes are specified in the model by assigning appropriate locations to

each node as shown in the diagram below:

NN
MN

WWMW MEEE

MS
ss

TECAP2 allows the terminal resistances (Rs, Rd) to be included by using

two sets of nodes—internal and external. External node locations are

set to NN, WW, SS, and EE, while the internal node locations

corresponding to terminals of an ideal device are assigned to MN, MW,

MS, and ME. Unused nodes are set to XX; the reader is referred to

model 4 (level 2 model) for an example.

The procedure getjnt^par gets the intermediate parameters from

the data structure as shown in the example.

Procedure calculate_mit calculates the intermediate model

parameters and stores them in the data structure. Again, care must

be taken to match the correct parameter with its corresponding loca

tion in the data structure p. Procedure caicuLaieJd is the main pro

cedure which distinguishes one model from another, because this

Qr, o
" U C3

-27-

where the equations governing drain current as a function of terminal

voltages and model parameters are implemented. In this procedure

equations for device currents and and derivatives are implemented. As

is shown in the example, the derivatives need only be calculated when

the flag dflag is true; this flag is set by the simulator when Rs and Rd

are non-zero and iteration must be performed to simulate the device.

Procedure device calculates device related data such as mode of

operation and determining whether or not a junction is forward biased.

In addition, all capacitances and node charges should be calculated in

this procedure. This procedure should be the calling routine for

calcvlatejid. The current and charge vectors are also loaded in this

procedure; the subscripts correspond to the device nodes specified in

procedure get^xtjpar, In addition, the conductance and susceptance

matrices are loaded here as shown in the example.

Now that all necessary subprocedures have been defined, the main

procedure of the model can be executed. The main procedure'should

have the following format:

BEGIN {main part of the model}
IF infoflag THEN modeljnfo

ELSE BEGIN
IF initflag THEN BEGIN

get_ext_j>ar;
calculate_init;
END

ELSE BEGIN

getjnt_par;
(Calculate values of voltage j
{variables needed for model j
{equations from the voltages j
(in the vpin vector.)
device;
END;

END;
END; {end of model j

„ LOS

-28-

In the main routine it should be remembered that all of the vol

tages in the vector vpin are measured with respect to an external

ground—even the body of the MOSFET. This means that such quantities

as Vda and Kb must be calculated from the values in the voltage vector

if they are desired. Do not forget to define the voltage across Rd and

Rs as is done with the variables vdxd and vsxs in the example.

Other Remarks

As was mentioned earlier, the most efficient way to implement a

new model is to modify the equations of an existing one, using as many

of the old variable names as possible. The level 2 MOS model used for

this project was written by changing some of the model equations in

the HPSPICE modeL This will simplify such things as loading the con

ductance and susceptance matrices. In particular, it is advisable to

assign the device nodes as is done in the MOS level 2 model, because

this configuration corresponds to the default configuration the system

when measurements of MOSFETs are made. The sense of this orienta

tion may be changed by the user, but this will not be discussed here for

the sake of simplicity.

B. Testing the New Model

The new model in the User Module should be compiled and linked

as discussed earlier. Once this is done, the new version TECAP2 can be

executed. The model can be tested as follows:

l) Select the model. The model is selected by pressing <El>

<enter>, then selecting the number of the model to be tested.

_8 0 9

-29-

2) Select model parameters. By pressing <E2> <enter>, the model

parameter table for the new model is displayed. All parameter

names and default values are set according to the procedure

Tnodeljjifo in the User Module. The values of the parameters may

be changed from their default values by moving the cursor to the

appropriate position in the table with the cursor control keys and

entering new values.

3) Set up the simulation conditions. The conditions governing meas

urements and device simulations are specified in the current

Setup table. Such things as body bias, ranges for drain and gate

voltage sweeps and the choice of output variables are specified

here. There are two default setup tables provided by TECAP2;

these may be accessed by pressing <U#> <enter>, where U stands

for Use setup and # is the number of the desired setup table. The

default table may be changed or a new one created by pressing

<U#B> <enter>, where U and # have the same meanings as before

and B stands for build setup.

4) Run the Simulation. After selecting a setup table the device may

be simulated by pressing <SlXenter>. The results may be

viewed graphically by pressing <S7> <enter>, or the numerical

results viewed by pressing <S9> <enter>. All parameter values,

including internal parameters, may be viewed by pressing <E9>

<enter>— this is useful in debugging. Numerical output may be

directed to the printer by pressing <06> prior to one of the other

commands. Other output control options are explained by the

menu displayed when <0> is pressed.

609

-30-

Once the model is fully tested and debugged, it may be used with

the optimizer and a measured data set as described in the section on

Optimal Parameter Extraction. At this time it is not possible to test

the ac sections of any model with TECAP2 because ac simulation and

measurement has not yet been implemented in TECAP2. Until this

feature becomes available, there is probably no reason to include ac

parameters in the model procedure or to calculate susceptance

parameters.

019

-31-

VII. Conclusion

The output conductance of MOS transistors has been measured

and compared with the output conductance predicted by the SPICE

Level 2 modeL The model has been found to be in error in the region

near the saturation point where Jfc*^ for small values of JJ»-lfo. In

general, SPICE predicts a value for gda in this region which is too low,

resulting in optimistic predictions when MOS circuits are simulated.

Specifically:

1) SPICE predicts a value of V^ which is too low when compared

with the measured data.

2) SPICE does not show the correct functional relationship between

gds and Vda for Vd3<Vdsat.

To obtain optimal model parameters for the simulations per

formed, a subroutine implementing the SPICE Level 2 MOS model has

been written for the TECAP2 parameter optimizer. The fact that velo

city saturation effects were not included in the TECAP2 version of the

model proved to be of no consequence because inclusion of this effect

would have caused an even lower value of Vdnt to be predicted by the

model.

In addition, the use of the TECAP2 system for optimal parameter

extraction and for model development has been discussed.

In the future, the TECAP2 system could be used to test new models

for SPICE and to modify existing ones. For example, the Frohman-

Grove [7] model for channel length modulation could easily be imple

mented in the SPICE Level 2 model now running on the TECAP2 system

in the following manner:

TT9

-32-

In the model subroutine, if LAMBDA = 0, the effective channel

length is calculated using the equation

*L=XD
V*-^+V 1 +

Xito^Ktatf
t*

Instead of this equation, the Frohman-Grove formulation could be

used:

1 _ 1 q« ALPHAjVda'Vga) + BETAiVn-Vdagt)
M> XDy/Vda-Vdaat ««* (Vda-Vdaat)

This implementation would require the introduction of 2 new external

parameters, ALPHA and BETA, but then these parameters would be

available for optimization by the TECAP2 system.

Until a new model for output conductance is implemented in

SPICE, the problems discussed in this paper will continue to be

present. At this time, a stop-gap solution to the problem is to model

MOS transistors which are biased such that T£gwt<fe«tf by specifying a

value for the parameter LAMBDA which is artificially high. This will

have the effect of increasing the output conductance predicted by

SPICE to a level which is closer to reality for transistors biased on the

edge of saturation, but which is grossly in error for conditions where

Vda»VdvU.

C t.

SPICE PARAMETERS

Parameter Value Unit

KP 38.61 MA/V8

VTO 0.4374 Volts

NSUB 1.021E16 On"3

LAMBDA .01477 V1

Table 1: Level 2 MOS Model Parameters Obtained by Optimizing for
Id>lmA

SPICE PARAMETERS

Parameter Value Unit

KP 43.64 uA/V*

VTO 0.7613 Volts

NSUB 2.209E15 Cm-*

LAMBDA .01646 V1

Table 2: Level 2 MOS Model Parameters Obtained by Optimizing for
/d<lmA

SPICE PARAMETERS

Parameter Value Unit

KP 31.01 jliA/V8
VTO 0.6861 Volts

NSUB 1.841E16 Cm'*

LAMBDA .09524 V1

Table 3: Level 2 MOS model parameters obtained by optimizing for Low
Voltage/Current Ranges.

Vda

Figure 2: Typical Id vs V& Characteristic

User

9636
Computer

4145a

Semiconductor
Analyzer

Device
Under
Test

X

Printer

figure & TECAP2 Hardware Setup

Id v^ Vd
4.3

•; ". ——y

B 2.B

fEUH* IB.0B

4.B

vn [voits i

h *n mmiiw m^:

»»n>nxww:

£.a 8.a

vc = B.em v to s.m v

figure 4: High Voltage/Current /*-*£, Characteristic

12.8

58.8

o^o^yopopooopp^ >

oppo ooo pop 00*00 o°ao<>* >

oooooooooooooooooo1 •

^oopopoooooooooooqoo

q-oqpooo ppoooo opopo-popop*.)

poppoooeoopooeoooooop***"*6**

T4lttQQM(ll»1'^^"""l'""'"'"""""<
ebppp<»obobobobobobobooopoo«opooo*
00000OOPOPOOPOPpoooopooooopooooo*

•ooppoooooooooooooooooeooooo oooeooeoo

1 • • I I I • I ' I I I I • » » ' I

2BB.0 3Bfl.fl

VD C mlliVolts 1

4BB B 5BB.B

YG = T^w.WB nV TO «J75.Mi •¥

figure Sbu First Half of LowVoltage/Current /«•-!£, Characteristic

^HII1•^TTT•"^TWW^>TT1'^^•^^^^

t-tiiiiit

imiiinr-

HEIlillll

utii

»niiin g-t-

iiiniiir-fr

• null in

iiiiiin

tiiiniinnnrTT fr

i i i i I I I

B 18B.B 2BB.0 3BB.B

VD [m Hi Volts 1
TECfFS <B.W VG - 1 «» Y "> 1.23 ••

figure 5b: Second Half of Low Voltage/Current I4-V* Characteristic

4BB.B SfiB.B

Id v^ v::
4.8

::»uiteci Measured
- - - — o ••» 0

;5 6~o*5 o"o eTo~b 5"o~ ff*i"tr n~T ? ff A *" ""^ " " ' n"n n p • To o • ' >

qlrSgni t»-t> ptq-b iraTirBi-r-»r>"i rmriTW
B ?.B 4.B * a Q.B

vb l Vo'-.s :
TECH? B.-7I? •*, = 3 WO V TO 5.Hi V

figure 6: Measured and Simulated High Voltage J«~K» Characteristics

UsingParameters Optimizedfor U > 1mA.

4
0

o
ro&
.

oe

ia
.a

ia
.a

Hffi
v

-

t
-V

in
t

•-:rot*
v
te

d
M

e
a

su
re

d

w
m

|
M

M
M

»
1

w
<

m
M

M
1

K
H

W
W

H
II

w

«
••

M
M

W
W

•
»

»
»

»
«

W
W

W
W

W
lH

llW
W

M
M

W
W

M
ii

W
•

•«
•*

*
»

'
•
K

X
W

iiW
W

K
W

M
W

fK
M

W
il»

«
im

W
H

W
B

W
llW

W
I
tK

W
W

iia
iim

iW
W

K
M

K
W

ll

W
M

K
K

M
W

H
l
f
w

M
t
W

I
t
W

J
t
l

I
jI

M
I
lM

I
I
I
I
I

•
W

W
W

W
•

•
W

W

m
m

m
w

ii
m

m
m

»
m

ii
ii

•
ii

h
n

n
•

a
w

w

•
X

B.W
W

W
M

B
'

m
m

i
m

n
i
w

n
K
W
X
W
t
W
K
X
W
W
-

W
W
W
*
W
W

H
U
M

«
i
«

m
m

w
w

>
:

•
i
m

m
i
w

a
M

i
f

1
*

'
'

'
'

'
'

'
'

'
'

'
•

'
i

»'
.

.
•

.
JBB.B

2B
B

.0
380.8

40B
B

5
B

B
.B

V
D

C
n

tlliV
o

lts
3

*5
=

753
-H

«
v

ro
9

7
5

.w
p

j
sy

T
E

C
F

P
7

1
B

.0
9

figure
7i

M
easured

and
Sm

ulated
Low

Voltage
I^-V*

Characteristics
U

sing
P

aram
eters

O
ptim

ized
for

I4
>

1m
A.

Id vs Vd
4.a

Simulated Measured
_ _ _ _ jfr n. M*T "V

^4^...--- u!—s—:—

4.B

VD C Volts 1
v&* ^«> '•* '<> S.I

8.0

figure B: Measured and Simulated High Voltage U'V^ Characteristics

Using Parameters Optimized for I4 < 1mA.

15

10

u

MA

• • • Measured

SPICE

(/
• •

/^....

1J / lx

*

. • •

.

lllf/./\' •

figure 8a: Measured and Simulated Low Voltage /<*-!£, Characteristics

Using Parameters Optimized for Id < 1mA. JJ, from 0.75V to 0.975V.

r<fe

.5

figure 0b: Measured and Simulated Low Voltage U'Vda Characters tics

Using Parameters Optimized for Id < 1mA. JJ, from 1.00V to 1.225V.

12.a
- - - X—i 3.

iiit3iitiiiJiti*a»t««_

Xili JL 1J. '.£U»JUUUUUU

iHitmn iniinoan-irtitrrr

-- "r&jTurLttrmrinririTiTiYiTm 1 ilr

X1T1? '"E ti »~3 »~l fS fi fl fi ft f"fc 11 i~i rk i"i i~i t"r'

ij^niiTttiTiTrrrinnnnriii rafafB r^n
hi Mil 1 inn 1 niMfmi 1111111 iififiwi

J—I—»—I—t—I—i—I—L-J » I • « • . i . . . •
2B0.0 3BB.0 40B.B 5BB.B

VD [millivolts 3
*G = 7W.BW! »v rt) ?7S.BB aV '

figure 10: Measured and Simulated Low Voltage Id-V* Characteristics

Using Parameters Optimized for the Data Shown.

2 4 6

figure 11: Measured and Simulated High Voltage /<*-*&, Characteristics

Using Parameters Optimized for Low Voltage/Current Ranges.

1.5

gda

mS

0.5

\
\\

\ *\

\

• • • Measured

SPICE

\ \ . ^
* 4 8

figure 12:0d» vs Ife* For the High Voltage/Current Range.

<ds
8

100

• • • Measured

— SPICE

*^*B*l

.1 .2 .3 .4

figure 13a: Measured and Simulated Values of gda vs t£» for JJ, from

0.75V to 0.975V

.5

figure 13b: Measured and Simulated Values of j* vs 1^ for JJ. from

1.00V to 1.225V

Via* Wda* *hm*

Figure 14: Graphical Interpretation of AV^.

0.14

0.12

0.10

Ydwat

08

0.06

0.2 0.4
Figure 15: AV^ vs Vdaat

Vdtat

0.6

Measured
Data *o

—i

Optimizer

Model

Model
••* Parameters

figure 16: Parameter Optimization With TECAP2.

I TECAP2
I

Mat n Menu

ID) Device data
IC) Connections
III) Use setup
IM) Measure
IE) Extract
IS) Simulate
I
10) Output control
IP) Plot control
IF) Filer

IB)
II)

}Q>
m>
i_

Build setup
Input seauence
use seOuence
Action control <==

Subset
1 1

IA) Ai I
IAD Interactive I
IA2) Batch mode I
IA3) Repeat I

IA5) Exit TECAP2. I

IA9) News I

Type a sequence, of commands'

Figure 17:TECAP2 Main Menu

States:

I 0: 2 AM
I

IDevice:

Sep 22.1983

Test [NMOSJ

ISetup: 1 = Lid vs Vdl
IModei: 1 = [HPSPICE-M0S1

IPlot output:
IText output:

IPlot type
ILine type
IPen color
IGrids

GRAPHIC_CRT
ALPHA_CRT

LIN vs LIN
SOLID
*1

TRUE

IPrefix volume = [TECAP:3
I Last seauence:

I TECAP2 Mam Menu t I SuosetL
I
IE)
IE1)
IE2)
IE3)
IE4)
IE5)
IE6)
I
I
IE9) Print par.
IE10) Ext levelO
IE11) Ext levell
IE12) Ext level2
IE13) Ext level3

I Status < < v e r %ior. 1B.00>>

I
I
ID)
IC)
IU)
IM)

IE)
IS)
I
IQ)
IP)
IF)
I
IB)
II)
10)
IA)

Device data
Connections
Use setup
Measure
Extract
Simulate

Output control
Plot control
Filer

Build setup
Input sequence
use seQuence
Action control

I

Optimize par.
Select model
Enter/Select par
Optimizer Option
Read par.
Save par.
Read par flags

par

par

par

par

I 0: 2 AM Sep 22,1983

IDevice:

Setup:
Model:

Test CNMOS]

[Id vs Vd]
[HPSPICE-MOS]

GRAPHIC_CRT
ALPHA_CRT

LIN vs LIN
SOLID
#1
TRUE

Plot output;
Text output:

Plot type
Line type
Pen color
Grids

Prefix volume
Last sequence:

f [18.3

[TECAP:]

•Type a seQuence of comrianas

Figure 18: TECAP2 Extract Sub-menu

nGS LEVEL 2 moael parameters

I Name

I
IU0
IKP
IVTO
INSS
ITPG
I
ITOX
INSUB
IGAMMA
IPHI
I
I
lUCRIT
IUEXP
IUTRA
ILAMBDA

I Value
I

I Minimum I Maximum I
I

l*7.000E+002l
I 4.364E-005I
I 7.613E-0Q1I
I O.OOOE+OOOI
I 1.000E+000I
I O.OOOE+OOOI
I 5.000E-008I
I 2.209E+015I
I O.OOOE+OOOI
I O.OOOE+OOOI
I O.OOOE+OOOI
I O.OOOE+OOOI
I 1.000E+Q04I
I O.OOOE+OOOI
I O.OOOE+OOOI
I 1.646E-002I
I I

I
1.000E+002I
1.000E-006I
-1.00E+001I
O.OOOE+OOOI
-1.0GE+000I
O.OOOE+OOOI
1.000E-009I
1.000E+013I
O.OOOE+OOOI
4.000E-001I
O.OOOE+OOOI
O.OOOE+OOOI
1.000E+002I
O.OOOE+OOOI
O.OOOE+OOOI
O.OOOE+OOOI

2.000E+003I
1.000E-003I
1.000E+001I
1.000E+012I
1.000E+000I
O.OOOE+OOOI
t.000E-005l
1.000E+019I
5.000E+000I
1.000E+000I
O.OOOE+OOOI
O.OOOE+OOOI
1.000E+006I
2.000E+000I
1.000E+O00I
1.O00E-001I

new value+ENTER,
TE to exit

Use KNOB/ARROWS, Type
/ to Daoe, EXECU

figure 19: SPICE Level 2 Model Parameter Table

PI
_J
01
11
II

01
01

01
01
11
01
01
01
01
01
01
01
11

Unit

Cm2/V.S
A/V2
Volt
1/Cm2

Meter
1/Cm3
V\5
Volt

V/Cm

1/V

Appendix A: listing of TECAP2 Data Files in Directory

/pa/users/gregory/project/hpdata

README gdgrph.f gdgrph measgr measgr.f
nl0a2a nl0a2b nl0a2c nl0b2a n 10b2b
nl0b2c n 10cla nlOclb nlOclc nl0d4a
nl0d4b nl0d4c nlOela nlOelb nlOelc
nlOfla nlOflb nlOflc n4a2a n4a2b
n4a2c n4b2a n4b2b n4b2b2 n4b2c

• n4b2c2 n4ela n4elb n4elb2 n4elc
n4elc2 pl0a4a pl0a4b pl0a4c polysmooth
polysmoothf

This directory contains files of measured data taken using the
TECAP2 measurement system. The key to the filenames is as
follows:

example: nlOfla

The n indicates an NMOS device: p means PMOS.
The 10 indicates that the drawn channel length was
10 microns (channel width is 100 microns in all cases.)
fl refers to the location of the device on the test wafer.
The last letter in the filename (a, b, or c) refers to the
range of terminal voltages over which the device was tested.

a: Vds 0 to Bv in 0.2v increments
Ygs 0 to 5v in lv increments

b: Vds 0.01 to 0.50V in 0.0lv increments
Vgs 0.75 to 0.975 in 0.025V increments

c: Vds 0.01 to 0.50V in O.Olv increments
Vgs 1.00 to 1.225 in 0.025V increments

The program measgr accepts as input a TECAP2 data file
such as the one in this directory and outputs a file
which contains the data in a simple x-y format suitable
for use in conjunction with the UNIX graph and plot
commands.

The program polysmooth accepts as input a TECAP2 data file
and performs numerical smoothing on the data, outputting a
TECAP2-like file which can be input to measgr if desired.

The program gdgrph accepts as input a TECAP2 data file and
differentiates it numerically to obtain gds information
and outputs it in a form suitable for graphing via the
UNIX graph and plot commands.

JVS

Appendix B:Program POLYSMOOTH

ft***

c This program reads an HP TECAP data file and smooths the data using polynomial
c regression. The output is in a format suitable far differentiation using
c program gdgrph
*•******••*****•♦#••••*****•»#****»******•**#••********•••*•***•**»«*

program polysm
integer i,j,v<Uim,vglim,lim,left,right,point
doubleprecision a(1000),y(1000)
doubleprecision vdstrt,vdstop,vdinc,vgstrt,vgstop,vginc
doubleprecision h(4,4),coef(4),sum(6),b(4),x
character dummy*40

c

c The dummy variable picks off the first several lines of text in the
c TECAP data file
c

read*,dummy
print'.dummy
read*.dummy
print*,dummy
read*,dummy
print*,dummy
read*,x
print*,x
read*,x
print*,x
read*,dummy
print*,dummy
read'dummy.dummy.dummy.dummy.vdstrt.vdstop.vdlim
print* dummy,dmnmy,dunimy,duinmy,vdstrt>vdstop,vdlim

c print* dummy,vdstrt,vdstop,vdlim
read*,dummy,dunimy,dummy,duinmy,vgstrt,vgstop,vglim
prjnt*.dummy,dunimy,dunimy.dummytvgstrt,vgstop,vgIim

c print* dummy.vgstrt.vgstop.vglim
read*,dummy
print*,dummy
read*,dummy
print*,dummy
read*,dummy
print*,dummy
read*,dummy
print*dummy
read*.dummy
print*,dummy
read*,dummy
print*,dummy
read*,dummy
print*,dummy
read*,x
print*x
read*,dummy
print*,dummy
vdinc = Jvdstop-vdstrt)/(vdlim—1)
vginc = (vgstop—vgstrt)/(vglim—1)
lim=vglim*vdlim

c print*,vglim,vdlim, lim
read* (a(j), j=l,lim)
do 1 j=l,lim

if (aG).lt.0.0) aQ)=0.0
1 cantinne
c

c Now smooth the data picking 5 points at a time and fitting a least-
c squares polynomial through the data points.
c

left=l

ULV

right=5
point=3

10 if (right.gt.lim) go to 60
y(left)=a(left)
y(left+l)=a(left+l)

15 continue
do 30 i=l,4

sum(i)=0.
b(i)=0.

30 contmnp
sum(5)=0.
sum(6)=0.

do 40 i=left,right
x=vdstrt+mod(i—l.vdlim)*vdinc
sumf l)=sum(11+x
sum(2i=sum(2j+x**2
sumi3):=sum(3)+x**3
sum(4)=sum(4)+x**4
sum(5)=sumi5i+x**5
sum(6)=sum(6)+x**6
b(l)=b(l)+a(i)
b(2)=b(2)+a(i)*x
b(3)=b(3)+a(i)*x*x
b(4)=b(4)+a(i)*x**3

40 continue
h(l.l)=5.
Ml,2)=sum(l)
h(l,3)=sum(2)
h(l,4)=sum(3)
h(2,lj=sumilj
h(2,2j=sum(2)
h(2,3)=sum(3)
hi2,4}=sum(4)
hl3,l)=sum(2)
h(3,2)=sum(3)
h(3,3)=sum(4)
h(3,4)=sum(5)
h(4,l)=sum(3)
h(4,2)=sum(4)
h(4,3j=sum(5i
h(4,4)=sum(6)
call soive(h,coef,b,4)
x=vdstrt + mod(pomt—l,vdlim)*vdinc
y(point)=coef(l)+coef(2)*x+coef(3W**2 +coef(4)*x**3
if (int(right/vdlim)*vdlhn.eq.right) go to 50
left=left+l
right=right+l
point=point+l
go to 15

50 continue
y(right-l)=a(right-l)
y(right)=a(right)
right=right+5
{>oint=point+5
eft=left+5

go to 10
60 continue

do 100 j=l,lim
print*,y(j)

100 «wn«iini»
stop
end

c Subroutine to solve Ax=b, where A is an n by n non-singular matrix.

Ufr

c subroutine does not check for singularities, so it will blow up!!!

subroutine solve(a,x,b,n)
integer n
doubleprecision a(l:n, l:n),x(l:n),b(l:n)

c

doubleprecision q,temp
do 8 tel,n-l

c

c perform partial pivoting (row swap only)
c

do 3 j=i,n
if (tabs(a(j,i)).le.abs(a(i,i))) go to 3

do 2 k=i,n
temp=a(i,k)

».k)a(i,k}=a(j,__,
a(j,k)=temp

2 continue
temp=b(i)
b(i)=bQ)
b(j)=temp

3 —Wlti^Wg.

c

c perform elimination
c

do 7 k=i+l.n
q=-a(k,i)/a(i.i)
a(k,i)=0.
b(k)=q*b(i)+b(k)
do 6 j=i+l,n

a(k,j)=q*a(i,j)+a(k,j)
6 continue
7 continue
6 continue
c

c now do back substitution
c

do 10 ten, 1,-1
do 9 j=i+l,n

b(i)=b(i)-a(i,j)*x(j)
9 fwiKwiw

x(i)=b(i)/a(i,i)
10 —1«wra»

return
end

ZZ17

Appendix C.

The Level 2 MOS model parameters in the table below were used in

all SPICE simulations, but were not adjusted during the optimization

process.

SPICE PARAMETERS

Parameter Value Unit

TJO 700 Q»V(7-s)

TOX 0.05 liM

XJ 0.4 [tM

LD 0.2 piM

W 100 pM

L 10 ptM

All other parameters were left at their default values; no ac

parameters were specified.

Appendix D: TECAP2 Program Files.

The following files are necessary to the use of the TECAP2 system:

TJJBBS. CODE

TJfCPCS.CODE

STARTUP.M

UNKTEXT

TJJSER.TEXT

TJJSER.CODE

TJIBS2.C0DE and TJFCPCS.CODE are library modules containing

compiled TECAP2 routines.

STARTUP.M is a file containing initial conditions for which the pro

gram searches when it begins execution.

LINK. TEXT is a file of commands which are to be executed on the

HP 9838 desktop computer via the stream command. When this file is

"streamed", the library modules and the User Module (see below) are

linked together to form an executable file. TECAP2 which is then the

new version of TECAP2.

TJJSER. TEXT is the User Module which contains the user-defined

transistor models as discussed in section VI.

TJJSER.CODE is the compiled version of the TJJSER.TEXT PAS

CAL code. This file is linked with the other libraries to form the TECAP2

program.

-0 2 9

Appendix R TECAP2 Users Module listing (contains SPICE Level 2 Model).

******************** TECAP 2 USER'S MODULE ********************

This file contains the procedures for TECAP2 which may be modefied
by user in order to enhance the capabilities of the released program.

This modifications should be only done by P^P^^J^HvcTc^nrcTrMFR'c:
9836 PASCAL system as well as TECAP2 concepts. TECAP2 SYSTEM DESIGNER S
MANUAL contains information on how these modification may be done.
It is the user's responsiblity to follow the instruction carefully.
HPDA does not intend to provide any support for user s modifications.

Procedures D10 through D14 and C1Q..C14 are the dummy procedures, for
the implemented commands. Procedure USER.INIT should supply the command
names to be included in the menu. Procedure MODELJTHREE is the MDS
classical model which is supplied here as an example. g*nJr *??elf n
may be implemented in procedures M0DEL_F0UR and MODEL_FIVE following
the same structure.

$ref 40$
SucsdS
SsysprogS
MODULE user_module;

{ ****** IHR Version: 1B.00 Date: 7-28-83 ****** >
{ ****** Prototype Version: 1A.00 Date: 5-03-83 ****** }

IMPORT { access global data and a few useful1 functions >

Ssearch 'T_LIB2S'$ tecap_data_base ,
Ssearch 'T_LIB2S'$ tecap_utility ;

EXPORT { don't touch procedures declarations in here }

TYPE menu_array = ARRAYM..10] OF STRING[201;

PROCEDURE user_init<VAR m : menu_array>;
PROCEDURE D10
PROCEDURE D11
PROCEDURE D12
PROCEDURE D13
PROCEDURE D14
PROCEDURE C10
PROCEDURE C11
PROCEDURE C12
PROCEDURE C13
PROCEDURE C14;
PROCEDURE model_three<VAR p : par_type:

VAR vpin : arTay8;
VAR ipin : array8:
VAR qpin : array8;

BOOLEAN)

PROCEDURE modeIfour

VAR
VAR
VAR

<VAR
VAR
VAR

VAR
VAR
VAR
VAR

(VAR
VAR
VAR
VAR
VAR
VAR
VAR

gmat : array88:
xmat : array88;
nod : arraynn;
infoflag,initflag,dflag.acflag.areaflag
P

vpin
ipin

qpin
gmat
xmat

nod

par_type;
array8;
array8;
array8;
array88;
array88:
arraynn;

PROCEDURE model five

IMPLEMENT

VAR , charge ♦

epsox « pi

infoflag,initfiag,dflag.acflag,areaflag : BOOLEAN)
P

vpin
ipin
qpin
gmat
xmat

nod

par_type:
array8;
array8;
array8;
array88:
array88;
arraynn:

infoflag,initfiagtdflag,acflag,areaflag : BOOLEAN)

ctok , epsO
, ref_temp

boltz
epssil t
nom_temp
ref_yt ♦

debug
ref_eg ♦ ref_ni REAL;

BOOLEAN;

PROCEDURE
BEGIN

user__init<VAR m : menu_array);

mC1]
m[21
m[31
ra£4]
mE53
m[6I
m[73
mt8]

mE9]
rnCIOI
END;

D10>
D11)
D12)
D13)
D14)
C10)
C11)
C12)
C13>
C14)

{ remove braces and add command names in here

PROCEDURE D10: (command D10 >
BEGIN
IF questionflag THEN BEGIN

{ add your code here for required data from user /
END:

IF executionflag THEN BEGIN ^ .
{ add your code here for execution part /
END;

array of parameters >
node voltages >
node currents >
node charges >
real part of Y matrix
imag part of Y matrix
node names }

PROCEDURE model_three<VAR P : par_type;
VAR vpin : array8;
VAR ipin : array8;
VAR qpin : array8;
VAR gmat : array88:
VAR xmat : array88:
VAR nod : arraynn;

infoflag,initflag,dflag.acflag.areaflag : BOOLEAN)

VAR vdb,vsb,vgb,vdxd*vsxst
lambda.x1♦xw,devtype♦
uo,vto,tox,nsubycox,phi♦gamma.vfb,beta»idrain,
vt,eg,ni : REAL:
n : INTEGER:

PROCEDURE model_info; (setup model parameters)

VAR n:INTEGER;

PROCEDURE set_data<n:INTEGER;name.unit:string_80;value,min.max:REAL);
BEGIN
P.name[nI:=name;
p.unittn]:=unit:
p.valueCn]:=value;
p.min[n] :=min:
p.maxCnl
p.priCn]
END;

:=max;

:=0;

BEGIN
P.title:='CLASSIC-MOS'

'Cm2/V.S'.700set_data<1,'UO',
set_data<2,'VT0\
set_data(3,'NSUB',
=et_data(4,'LAMBDA'
set_data.<5,'T0X't
p.number:=5;
n:=p.number:
p.acnumber:=0;
n:=n+p.acnumber;
p.nameEn+1]
p.nameEn+23
p.nameEn+33
p.nameEn+43
p.nameEn+53
p.nameEn+63
p.nameEn+7 3
p.nameEn+83
p. internal:=8;
p.acinternal:=0;
END:

100.2000);
-10.10):
1E13.1E19);
0.1E-5);
1E-9JE-5);

'Volt'.
'1/Cm3;
'Meter'
'Meter'

xl':
xw' :
cox' ;
vfb':
Phi';^
gamma';
beta';
lambda'

0,
1E15,

1E-7f

{ ac intermediate

PROCEDURE get_ext_par: (get model parameters from array/
BEGIN
uo:=p.valueC13:
vto:=p.value[23:
nsub;=p.value"3 3;
lambda:=p.va 'j.eE43;
tox:=p.value. i>3:
xl :=dev.1:

END:

PROCEDURE D11:
BEGIN
END:

PROCEDURE D12;
BEGIN
END;

PROCEDURE D13;
BEGIN
END;

PROCEDURE D14;
BEGIN
END;

PROCEDURE C10:
BEGIN
END;

PROCEDURE Clt:
BEGIN
END;

PROCEDURE CI2;
BEGIN
END:

PROCEDURE C13;
BEGIN.
END;

PROCEDURE C14;
BEGIN
END;

PROCEDURE set constants;

BEGIN
boltz
charge
ctoic
epsO
epssil
epsox

Pi
nom_temp
ref_temp
ref_vt
ref_eg
ref_ni
END:

1.3806226e-23:
1.6021918e-19:
273.15;
8.854214871e-14;
11.7* epsO:
3.9 * epsO:
3.141592654;
25 + ctok;
27 + ctok;
boltz * ref_temp
1.1151;
1,45e10;

/ charge;

J/K }
C >
Centigrade ;o Kelvin j

F/Cm }
Silicon peimittivi ty }

Si02 permi ctivity }

nominal temperaturek in K

reference temperaturek in K

kT/q >
enrgy gap for Si >
intrinsic carrier in Cm-3>

CLASSICAL MOSFET model, don't touch this model, thi? is just an example

xw :=dev.w;

nodE13:=XX
nodE23:=WW
nodE33:=XX
nodE43:=EE
nodC53:=NN
nodE63:=SS

END;

{ not used
{ gate
{ not used
{ bulk
{ drain
{ source

PROCEDURE get_int_par;
BEGIN
n:sp.number+p.acnumber:
xl := p.valueCn+13
xw := p.valueEn+21
cox := p.valueEn+33
vfb := p.valueEn+43
phi := p.valueEn+53
gamma := p.valueEn+63
beta := p.valueEn+73
lambda:= p.valueEn+83
END;

PROCEDURE calculate_init; (find intermediate parameters)
{this combines MMFIX and MOSMDL in hpspice)

VAR n : INTEGER;

BEGIN
set_constants;
IF-dev.typ=nmos

vt

eg
ni

= ref_vt;
= ref_eg;
= ref_ni;

THEN devtype:=1
ELSE devtype:=-1

cox:=epsox/tox/100;
phi:=2*vt*ln<nsub/ni);
gamma:=sqrt(2*epssil*charge*nsub)/cox;
IF phi»0 THEN phi:=0.6;

(convert to CM)

lambda: = lambda*100;
tox:=tox*100:
xl:=xl*100;
xw:=xw*100;

vfb:=sdevtype*vto-gamma*sqrt<phi)-phi;
beta:=uo*cox*xw/xl;

n:=p.number+p.acnumber;
{load intermediate parameters

p.valueEn+13
p.valueEn+23
p.valueEn+33
p.valueEn+43
p.valueEn+53
p.valueEn+63
p.valueEn+7 3

xl;
xw:

cox:

vfb;
phi;
gamma;

beta;

in the parameter array)

P.valueEn+83 := lambda;

END;

PROCEDURE calculate_id<vdb,vsb,vgb:REAL; {same as CALCQ in hpspice*
VAR idrain,

didvg,didvd,didvs :REAL;
dflagtacflag : BOOLEAN);

{ dflag : derivatives are calculated when true)
{ acflag : charges and capacitances are calculated when true)

VAR vd,vs,vg,ve.
vs2,vs3,vs5,vsp5,vs1p5,vs2p5,
ve2,ve31ve5,vep5,ve1p5,ve2p5,
arg,argi,arg2,arg3,argip5.arg2p5.sqarg,
vth,gamma2,vsat,didve,
dvedvd,dvedvg.xlfact,clfact : REAL;

BEGIN
vd
vs

vg

vsp5
vth

phi+vdb;
phi+vsb;
vgb-vfb;
sqrt(vs);
gamma*vsp5+vs;

IF vg>=vth THEN

'BEGIN { 'on' region (linear and saturated)

gamma2: =gamma*0.5;
sqarg:=sqrt<gamma2*gamma2+vg);
vsat:=<sqarg-gamma2)*(sqarg-gamma2);
vs2:=vs*vs:
vs3:=vs2*vs;
vs5:=vs3*vs2;
vs1p5:=vs*vsp5;
vs2p5:=vs1p5*vs;

IF vd<=vsat THEN

ELSE

ve2:=ve*ve:
ve3:=ve2*ve;
ve5:=ve3*ve2;
vep5:=sqrt(ve);
ve1p5:=ve*vep5:

BEGIN
ve:-vd:
dvedvd:=1
dvedvg:=0
END
BEGIN
ve:=vsat:

dvedvd:=0
dvedvg:=0
END;

{.. linear region)

{.. saturated region)

{ dvedvg:=l.0d0-gamma2/sqarg)

ve2p5:=ve1p5*ve;
arg2:=0.5*(ve2-vs2);
arg1p5:=gamma*<veIp5-vs1p5)/1.5:
idrain:=vg*<ve-vs)-argip5-arg2:
IF dflag THEN BEGIN

didve:=vg-gamma*vep5-ve;
didvg:=ve-vs+d idve*dvedvg;
didvs:=-vg+gamma*vsp5+vs:
END;

IF dflag THEN didvd:=didve*dvedvd;

{.. channel length modulation)
IF lambda>0 THEN

BEGIN {.. simple (1+vds*lambda/l> formulation >
xlfact:=lambda/xl;
clfact:=1+xlfact*<vd-vs);
IF dflag THEN

BEGIN
didvd:=clfact*didvd+idrain*x1fact:
didvs:=clfact*didvs-idrain*xlfact;
didvg:=clfact*didvg;
END;

idrain:=idrain*cIfact:
END;

END

ELSE (.. cut-off region <vg<vth>)
BEGIN
idrain:=0;
didvg:=0;
didvd:=0:
didvs:=0;
END;

END; { END of calcuiate_id (calcq))

PROCEDURE device; {same as MOSMDL in hpspice)

VAR gccdd,gccbd.gccss,gccbs.igate.devmod,
didvg,didvd,didvs.
gccgg,gccgd,gccgs,gccbg,gccdg.gccds,gccsd,gccsg : REAL :

BEGIN

IF dev.typ=nmos THEN devtype:=1
ELSE BEGIN

devtype:=-1;
vdb := -vdb;
vsb := -vsb;
vgb := -vgb:
END;

{ compute drain current and derivatives)

IF vdb>=vsb THEN
BEGIN {.. normal operation J
devmod: =1 ;
calculate_id<vdb,vsb.vgb.

idrain.
didvg,didvd.didvs,
dflag.acflag):

END
ELSE

BEGIN {. .
devmod:=-1;
calculate_id (vsb,vdb.vgb♦

idrain,
d idvg,didvd,didvs,
dflag,acflag);

idrain:=-idrain;
END;

idrain:=beta*idrain;
IF dflag THEN BEGIN

didvg:ssdevmod*beta*didvg;
d idvd: s3devmod*beta*didvd;
didvs:=devmod*beta*didvs;
END;

IF dflag THEN BEGIN
gccbd
gccbs
gccss

gccdd
gccdg
gccdd
gccds
gccsg

gccsd
gccss

END;

{
{ dx

{ g
{ sx

dx
1

13
9
14

sx

=0;
'0;
'0;
'0;
:didvg;
:gccdd+didvd;
edidvs:
;-didvg;
:-didvd;
=gccss-didvs:

10
15

d
2
5

11

16

6
8
12
17

18 19 20 21 22)

load conductance matrix)

IF dflag
BEGIN
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE
gmatE

THEN

1.13:=0
1.23:=0
1,33:=0
1,43:=0
1,53:=0
1,63:=0
2,13:=0
2,23:=0
2,33:=0
2,43:=0
2.53:=0
2,63:=0
3,13:=0
3.23:=0
3,33:=0

inverted operation

gmatE3,43:=0
gmatE3,5]:=0<
gmatE3,63:=0
gmatE4,13:=0j
gmatE4,23:=0
gmatE4,33:=0
gmat E4,4 3:=-gccbd-gccbs:
gmat E4,5 3:=gccbd;
gmat E4,6 3:=gccbs;
gmatE5,13:=0;
gmat E5,2 3:=gccdg:
gmatE5,33:=0;
gmat E5,4 3:=-gccdd-gccdg-gccds;
gmat E5,5 3:=gccdd;
gmat[5,63:=gccds;
gmatE6,13:=0;
gmat E6,2 3:=gccsg;
gmatE6,33:=0;
gmatE6,43:=-gccsd-gccsg-gccss;
gmat [6,53:-gccsd:
gmat[6,63:=gccss;
END:

load pin currents)

ipinEI3:=0;
ipinE23:=0:
ipinE33:=0;
ipinE43:=0;
ipinE53:=idrain*devtype -ipinEI! ;
ipinE63:=-ipinE13-ipinE23-ipinE33-ipinE43-ipinE53:

END;

BEGIN {main part of model3)
IF mfoflag THEN model_info

ELSE BEGIN
IF initflag THEN BEGIN

get_ext_par;
calculate_init:
END

ELSE BEGIN
get_int_par;

vpinE33:=vpinE63:
vpinEI3:=vpinE53;

vdb:svpinE53-vpinE43;
vsb:=vpinE63-vpinE43;
vgb:°vp inE23-vpinE4 3;
vdxd:=vpinE13-vpinE53
vsxs:=vpinC33-vpinE63
device;
END:

END; {end of
END:

model three)

{ THE BERKELEY SPICE LEVEL 2 MOSFET MODEL

{ AT PRESENT THIS MODEL INCLUDES ONLY DC PARAMTERS;

{ AC PARAMETERS ARE AS IN THE HP SPICE MOSFET MODEL
* THE FOLLOWING EFFECTS ARE NOT(!) MODELED AS IN
{ THE SPICE2G.6 LEVEL2 MODEL:
{ 1) Subthreshold current(no weak inversion)
{ 2) Velocity saturation

3) Narrow channel effects
4) No thin oxide capacitance model
5) No Temperature updating—all simulations are

performed at 27C

{*** Version: 1X.01 Date: 9/01 By: G.Anderson

{ SPICE LEVEL 2 MOS model)

PROCEDURE model_four (VAR p
VAR vpin
VAR ipin
VAR qpin
VAR gmat
VAR xmat
VAR nod

par_type;
array8;
array8;
array8;
array88?
array88;

infofiag!initfIag,dflag,acflag,areaflag :BOOLEAN);

CONST gmin - 1e-12; i minimum conductance >

VAR vbs,vbd,vdb,vsb,vgb,vdxd,vsxs,
kp,tpg,nss,lambda,js,
xj,xd.ld.xl,xw.
:.od. cbs, cj,cjsw, cgs, cgd, cgb, fc,
mj,mjsw,
f1,f2,f3,f4,f5.f6,fcpb,xfc,
rd,rs,gd,gs,
devtype.ucrit,
uo.vto,tox,nsub,
cox,phi,gamma,vfb,beta,idrain,
von,vdsat,uexp,utra,vbp,
dclfct,pb,
ad,as,pd,ps,cdsat,cssat,

n^eg»ni !INTEGER:
PROCEDURE model_info; {setup model parameters)

VAR n: IN^GER;

PROCEDURE set_data(n:INTEGER;name,unit:string_80:value,min.max:REAL);
BEGIN
p.nameEnl:=name;
p.unit En3:=unit;
p.valueEn3:=value;
p.minEnl :=min;
p.maxEn3 :=max;
p.oriEn3 :=0:
END;

BEGIN
FOR n:=1 TO 29 DO
set_data(n,".",0,0,0):

P.title:='MOS LEVEL 2':
'Cm2/V.S'
'A/V2\
'Volt'.
'1/Cm2\

set_data(1 ,
set_data(2,
set_data(3,
set_data(4,
set_data(5,
set_data(7,
set_data(8,
set_data(9,
set_data(10
set_data(13
set_data(14
set_data(15
set_data(16
set_data(19
set_data(20
set_data(21
set_data(22
set_data(28
set_data(29
p. number:=29;
n:=p.number
set_data(n+
set_data(n+2,' MJ',
set_data(n+3,'CJSW',
set_data(n+4,'MJSW'.
set_data(n+5,'CGS',
set_data(n+6,'CGD',
set_data(n+7,'CGB',
set_data(n+8,'CBD'.
set_data(n+9,'CBS',
set_data(n+10,'FC',
p.acnumber:=10;
n:=n+p.acnumbeT;
p.nameEn+l3 := ' xl';
p.nameEn+23 := ' xw';
p.nameEn+33 := ' cox'
p.nameEn+43 := ' vfb'
p.nameEn+53 := ' phi'
p.nameEn+63 := ' gamma';
p.nameEn+103 := ' beta':
p.nameEn+113 := ' vbp';
p.nameEn+123 := ' lambda'
p.nameEn+133 := ' js'
p.nameEn+143 := ' xd'
p.nameEn+153 := ' xj'
p.nameEn+163 := ' Id'
p.nameEn+183 := ' gd'
p.nameEn+193 := ' gs'
p.nameEn+203 := ' vt'
p.nameEn+213 := ' pb'
p.nameEn+223 := ' ad'
P.nameEn+23 3 := ' as'
p.nameEn+243 := ' pd'
p.nameEn+253 := ' ps'
p.internal:=25:
n:=n+p.internal;
p.nameEn+13 := ' cgs'
p.nameEn+23 := ' cgd'
P.nameEn+33 := ' cgb'

UO',
KP'.
VTO'
NSS\
TPG',
TOX',
NSUB',
GAMMA',
'PHI',
'UCRIT\
'UEXP',
'UTRA',
'LAMBDA'
'RS'.
'RD'
'XJ'
'LD'
'PB'
'JS'

'CJ'

'Meter'
'1/Cm3'
'V\5\
'Volt',

'V/Cm'

'1/V
'Ohm'.
'Ohm',
'Meter'
'Meter'
'Volt*
'A/m2'

'F/m2
r r

'F/m'
f r

'F/m'
'F/m'
'F/m'
'F/m2
'F/m2

700. 100.200f.»
0. 1E-6.1E-3);
0. -10.10):
0, 0.1E12);
1. -1,1):
1E-7, 1E-9.1E-5):
1E15, 1E13.1E19):
0. 0,5.0):
0. 0.4.1.0):
1E4. 100.1E6);
0, 0,2):
0, 0,1):
0, 0,1E-1):
0, 0.1E6);'
0, 0,1E6);
0, 0.IE-5):
0, 0.1E-5):
0.8, 0,5>:
1E-4, 0,1E-9):

0, 0,1):
0.5. 0,0.99):
0. 0J);
0.33, 0,0.99);
0. 0,1);
0, 0,1):
0. 0,1);
0, 0,1>;
0, 0.1);
0.5, 0,0.95);

p.nameCn+4 3 : = ' cbd'
p.nameEn+53 := ' cbs'
p.nameEn+63 »*» ' cjsw
p.nameEn+73 != ' mj';
p.nameEn+83 1= ' mjsw
p.nameEn+93 ;= ' fcpb
p.nameEn+103 := ' ft'
p,nameEn+113 := ' f2'
p.nameEn+123 := ' f3'
p.nameEn+133 := ' f4'
p.nameEn+143 := ' f5'
p.nameEn+153 :- ' f6'
p.acinternal : = 15:

END;

{ ac intermediate)

PROCEDURE get_ext_par; {get model parameters from array)
BEGIN
uo:=p.valueE13;
kp:=p.valueE23;
vto:=p.valueE33;
nss:=p.valueE43:
tpg:=p.valueE53:
tox:=p.valueE73 ?
nsub:=p.value E8 3;
gamma :=p.value E9 3;
phi:=p.valueE103;
ucr i t:=p.value E13 3;
lambda:=p.valueE163:
rs:=p.valueE 193;
rd:=p.valueE203;
xj:=p.valueE213;
ldv=p.valueE223
Pb
js
xl
xw

ad
as

Pd
ps

=p.valueE283;
=p.valueE293;
=dev.1;
=dev.w;
=dev.ad;
=dev.as;
=dev.pd;
=dev.ps;

n:=p.number:

cj:=p.valueEn+13;
mj:=p.valueEn+23:
cjsw:=p.valueEn+33:
mjsw:=p.valueEn+43;
cgs:=p.valueEn+53;
cgd:=p.value En+6 3;
cgb:=p.value En+7 3;
cbd:=p.value En+8 3:
cbs:=p.value En+9 3;
fc:=p.valueEn+10 3;

nodE13:=NN; { ext dram)
nodE23:=WW { gate >
nodE33:=SS; { ext source

nodE43:=EE { bulk)
nodE53:=MN { int drain
nodE63:=MS { int source

nodE73:=XX

nodE83:=XX:

IF rs=CI THEN BEGIN nodE63:=SS: nodE33:=XX; END:
IF rd=0 THEN BEGIN nodE53:=NN; nodE13:=XX; END:

END:

PROCEDURE get_int_par;
BEGIN
uexp:=p.valueE143;
utra:=p.valueE 153;

n:=p.number+p.acnumber;
xl :• p.valueEn+13 ;
xw := p.valueEn+23 ;
cox :=» p.valueEn+33 \
vfb :° p.valueEn+43 ;
phi := p.valueEn+53
gamma :.= p.valueEn+63 ;
beta >= p.valueEn+103 ;
vbp = p.valueEn+113 ;
lambda ;= p.valueEn+123 ;
js : = p.valueEn+133
xd : • p.valueEn+143
xj : • p.valueEn+153
gd : = p.valueEn+183
gs : = p.valueEn+193
vt : = p.valueEn+20 3
rfL : s p.valueEn+213;
ad : = p.valueEn+223:
as : = p.valueEn+233:
Pd : = p.valueEn+243;
ps. : = p.valueEn+253;

n := n+25;
cgs:= p.valueEn+13 ;
cgd:= p.valueEn+23 :
cgb:= p.valueEn+33 ;
cbd:= p.valueEn+43 ;
cbs:- p.valueEn+53 ;
cjsw := p.valueEn+63 ;
mj := p.valueEn+73 ;
mjsw := p.valueEn+83 ;
fcpb := p.valueEn+93 :
f1 := p.valueEn+103 ;
f2:= p.valueEn+113 :
f3:= p.valueEn+123 ;
f4:= p.valueEn+133 ;
f5:= p.valueEn+143 ;
f6:= p.valueEn+153 ;
END;

PROCEDURE calculate_init; {find intermediate parameters)

VAR n : INTEGER;
fermis.wkfng.fermig,wkfngs,factor,
new_temp,kt,ratio,ratio1p5,arg,pbfact.vstrip,
oldgat.gatnew,oldpb,pb__ratio,pb_ratio__p5 : REAL;

BEGIN

set_constants:
IF dev.typ=nmos

vt := ref_vt;

THEN
ELSE

devtype:=1
devtype:=-1

eg := ref_eg;
ni := ref__ni:

cox:=epsox/tox/100;
IF kp=0 THEN kp:=uo*cox;
IF nsub>0 THEN BEGIN

IF nsub<=ni THEN writeln('ERROR nsub < ni');
IF phi<=0 THEN phi:=2*vt*ln(nsub/ni):
IF gamma<=0 THEN gamma:=sqrt(2*epssil*charge*nsub)/cox;
fermis:-devtype*0.5*phi;
wkfng:=»3.2;

{poly gate work FUNCTION)
IF tpgOO THEN BEGIN

fermi g:=devtype*tpg*eg*0.5:
wkfng:=3.25+0.5*eg-fermig;
END;

wkfngs:=wkfng-(3.25+0.5*eg+fermis);
IF vto=0 THEN

vto:=wkfngs-nss*charge/cox+devtype*(phi+gamma*sqrt(phi));
END;

IF phi=0 THEN phi:=0.66;
IF Phi<0.1 THEN Phi:=0.1:
tox:=tox*100;
js:=js*0.0001;
xj:=xj*100:
ld:=ld*100;

IF acflag THEN BEGIN
IF cbd=0 THEN cbd:=cj:
IF cbs=0 THEN cbs:=cj:
cgs:=cgs*0.01;
cgd:=cgd*0.01:
cgb:=cgb*0.01:
cbd:=cbd*0.0001:
cbs:=cbs*0.0001;
cj:=cj*0.0001:
cjsw:=rcjsw*0.01:
IF fc>0.95 THEN fc:=0.95:
IF mj=1 THEN mj:=0.99;
IF mjsw=1 THEN mjsw:=0.99;
END;

IF rd=0 THEN gd:=0
ELSE gd:=1/rd;

IF rs=0 THEN gs:=0
ELSE gs:=1/rs:

vfb:=devtype*vto-gamma*sqrt(phi)-phi ;
vbp:=ucrit*epssil/cox;
IF nsub>0 THEN xd:=sqrt(2*epssil/charge/nsub)

ELSE xd:=0;
{device parameters/

IF areaflag THEN BEGIN
fcpb:=fc*pb;
xfc:=ln(1-fc):
f1:=pb*d-exp((1-mj)*xfc))/(1-mj):

f2: =
f3
f4
f5
f6.
END

2:=exp((1+mj)*xfc);
3:=1-fc*(1+mj):
4:=pb*(1-exp((1-mjsw)*xfc))/(1-mjsw):
5:=exp((1+mjsw)*xfc);
B:=1-fc*(1+mjsw);
ND;

{This temperature updating code is ummi v«rudLtiin trum tne nron^L n
{model, and does not seem to work. Since temperature variations are
{not part of my investigation, this (erroneous) section is ignored.

taken verbatim from the HPSPICE MOS)

new_temp := temperature + ctok;
{kt :=boltz*new_temp;)
{vt :=kt/charge;)
{writeln('vt=',vt);)
{ratio := new__temp/nom_temp;)
{ratio1p5 := ratio*sqrt(ratio):)

{temperature update)

{eg
{arg
{ni

= 1.16-(7.02e-4*new_temp*new_temp)/(new_temp+1108.0):)
= -eg/(kt+kt)+ref_eg/(boltz*(ref_temp+ref_temp));)
= ref_ni*sqrt(new_temp/ref_temp)*(new_temp/ref_temp)*exp(charge*arg);)

{pbfact :=(vt+vt)*ln(ref_ni/ni);)

{kp := kp / ratio1p5;)
{uo := uo / ratio1p5;)
{vstrip := vfb+Q.5*devtype*phi;)
{phi := ratio*phi+pbfact;)
{vfb := vstrip-0.5*devtype*phi;)
{vto := devtype*(vfb+gamma*sqrt(phi)+phi);)
{js := js*exp(-eg/vt+ref_eg/ref_vt);)
IF acflag THEN BEGIN

oldpb := pb;
pb := ratio*oldpb+pbfact;
pb_ratio := oldpb/pb;
pb_ratio_p5 := sqrt(pb_ratio)

pb_ratio__p5;
pb_ratio_p5;
/ pb_ratio;
/ pb_ratio:
/ pb_ratio;

cbd := cbd *

cbs := cbs *
fcpb := fcpb
fl := fl
f4 := f4
END;

pd:=pd*10000;
ps:=ps*t0000;
ad:=ad*100;
as:=as*100;
xl:=xl*100;
xw:=xw*100;
xl:=xl-2*ld;
vto:=devtype*vto;
beta:=kp*xw/xl;
cssat := js*ad;
cdsat := js*as;

n:=p.number+p.acnumber:
{load intermediate parameters in the parameter array

p.valueEn+1 3
P.valueEn+23
p.valueEn+33
P.valueEn+43

= xl;
= xw;

= cox:

= vfb;

p.valueEn+53 :=• phi:
P.valueEn+63 :=: gamma;

P.valueEn+103 : = beta:
p.valueEn+113 : = vbp;
P.valueEn+123 : = lambda;
p.valueEn+133 : = js;
p.valueEn+143 J= xd:
p.valueEn+153 : = xj;
p.valueEn+163 : = Id:
p.valueEn+183 ; = gd;
p.valueEn+193 <:= gs;
p.valueEn+20 3 : = vt;
p.valueEn+213 i= Pb;
p.valueEn+223 {- ad;
p,valueEn+233 :° as;

p.valueEn+243 := Pd;
p.valueEn+253 := ps;

n := n+25;
IF acflag THEN BEGIN

p.valueEn+13 : c cgs;

p.valueEn+23 : = cgd;
P.valueEn+33 : = cgb;
p.valueEn+43 : = cbd;
p.valueEn+53 : = cbs;
p.valueEn+63 : = cjsw;
p.valueEn+73 : = mj;

p.valueEn+83 : = mjsw;
p.valueEn+93 : = fcpb;
P.valueEn+103 := f1
p.valueEn+113 := f2;
P.valueEn+123 := f3<

. P.valueEn+133 := f4
p.valueEn+143 := f5
p.valueEn+153 := f6
END;

END;

PROCEDURE calculate__id(vdb,vsb,vgb:REAL; VAR idrain,qg.qcqb,
ccgg,ccgd,ccgs,ccbg,ccbd♦ccbs,
didvg,didvd,didvs :REAL;
dflag,acflag : BOOLEAN):

VAR

{ dflag
{ acflag

derivatives are calculated when true /
charges and capacitances are calculated when true

vd,vs,vg,ve,vb i,v1,
vs2,vs3,vs5,vsp5,vs1p5,vs2p5,
vdp5,args,argd♦gfacts,gfactd,cIfact2.
ve2,ve3,ve5,vep5,ve1p5,ve2p5,
arg,arg1,arg2,arg3,arg1p5, arg2p5,varg,
gammad,gamma2,gfact,vth,sqarg,vsat,
didve,d2idve,delv,trafac.dtrdve,
dvedvd,dvedvg,dqgdve,dqbdve,vdenom,
ufact,dcoef,dufact.xlfact,clfact,dclfac t,
xleff,xwb,xk1,temp REAL;

didvg:=ve-vs+didve*dvedvg;
didvs:=-vg+gammad*vsp5+vs;
END;

IF acflag THEN { here trust that hpspice and spice2g.6 are the same
BEGIN { calculate charge and C's)
IF abs(idrain)<le-5 THEN

BEGIN { special CASE ve ~ vs >
qg:=cox*(vg-vs);
ccgg:=cox:

ccgd:»-0.5*cox;
ccgs:=ccgd;
qb:=-cox*gammad*vsp5;
ccbg:=0;
ccbd:=-cox*0.25*gammad/max(vsp5,0.01);
ccbs:accbd;
END

ELSE { normal CASE)
BEGIN
arg2p5:=gammad*0.4*(ve2p5-vs2p5):
varg:=(vg*arg2-arg2p5-(ve3-vs3)/3)/idrain;
qg:=cox*(vg-varg);
dqgdve:=cox/idrain*(varg-ve)*didve;
ccgg:=cox*(1-(arg2-varg*(ve-vs))/idrain)+dqgdve*dvedvg:
ccgd:=dqgdve*dvedvd;
ccgs:=cox/idrain*(varg-vs)*d idvs;
qb:=-cox/idrain*(vg*arg1p5-gammad*gammad*arg2-arg2p5);
dqbdve:=-cox/idrain*(gammad*vep5+qb/cox)*didve;
ccbd:=dqbdve*dvedvd;
ccbs:=-cox/idrain*(gammad*vsp5+qb/cox)*didvs;
ccbg:=-cox/idrain*(arg1p5+qb/cox*(ve-vs)>+dqbdve*dvedvg;
END;

END;

IF uexpOO THEN
BEGIN {.. mobility factor (a-la bdm))
vdenom:=vg-vth-utra*(ve-vs);
IF vdenom>vbp THEN

BEGIN
arg:=vbp/vdenom;
ufact:=exp(uexp*ln(arg));
IF dflag THEN

BEGIN
dcoef:=-uexp*ufact*arg/vbp:

{ didvg:=ufact*didvg+idrain*dcoef)
didvg:=ufact*didvg+idrain*dcoef*(1-utra*dvedvg);
didvs:=ufact*didvs-idrain*dcoef*(0.5*gammad/vsp5+1-utra);
didve:=ufact*didve-idrain*dcoef*utra:
END;

idrain:=idrain*ufact;
END;

END;

{ •. done with 've', use it)

IF dflag THEN didvd:=didve*dvedvd:

{.. channel length modulation)
IF (lambda>0) or (nsub=0) THEN

BEGIN {.. simple 1/(1-vds*lambda) formulation
clfact:=1/(1-lambda*(vd-vs));
IF dflag THEN

BEGIN
vd := max(phi+vdb,1e-8);
vs := max(phi+vsb,1e-8);
vg:=vgb-vfb;
vsp5:=sqrt(vs);
vdp5:a,sqrt(vd);
IF (gamma=0) or (xj=0) THEN gammad:=gamma
ELSE

BEGIN
args:=sqrt(1+xd*2*vsp5/xj);
argd:^sqrt(1+xd*2*vdp5/xj);
gfacts:=0.5*xj/xl*(args-1);
gfactd:=0.5*xj/xl*(argd-1);
gfact:=1-gfacts-gfactd;
gammad:=gamma*gfact;
END;

vth:=gammad*vsp5+vs;
1 narrow channel effect is ignored here)
{ von is threshold voltage referenced TO source

reference here, but I'm not thrilled about it
von:=vth+vfb-vsb;
{ I'll keep hp's
vdsat:=0;
IF vg>vth THEN

BEGIN

{ vg>=vth)

{ 'on' region (linear and saturated)

)

gamma2:=gammad*0.5;
sqarg:=sqrt(gamma2*gamma2+vg);
vsat:=(sqarg-gamma2)*(sqarg-gamma2);
vs2:=vs*vs;
vs3:=vs2*vs;
vs5:=vs3*vs2;
vs1p5:=vs*vsp5;
vs2p5:=vs1p5*vs;
vdsat:-vsat-vs; { .. vdsat is referenced TO vds for printing only)

IF vd<=vsat THEN BEGIN
ve:=vd;
dvedvd:=1
dvedvg:=0
END

ELSE BEGIN
ve:=vsat;
dvedvd:=0
dvedvg:=0
END;

{.. linear region)

{.. saturated region)

{ dvedvg:=1.0d0-gamma2/sqarg)

ve2:=ve*ve;
ve3:=ve2*ve:
ve5:=ve3*ve2:
vep5:=sqrt(ve);
ve1p5:=ve*vep5;
ve2p5:=ve1p5*ve;
arg2:=0.5*(ve2-vs2):
arg1p5:=gammad*(ve1p5-vs1p5)/1.5;
idrain:=vg*(ve-vs)-arg1p5-arg2;
IF dflag THEN BEGIN

didve:=vg-gammad*vep5-ve;

BEGIN
elfact2:=clfact*clfact;
didvd:=clfact*didvd-idrain*lambda*clfact2;
didvs:=clfact*didvs+idrain*lambda*clfact2;
didvg:=clfact*didvg;
END:

idrain:=idrain*cIfact;
END

ELSE

BEGIN {..(lousy) frohman-grove modified a-la newton)
argi:=(vd-vsat)/4;
arg2:=sqrt(1+arg1*argt);
arg3:*sqrt(arg1+arg2);
clfact:=1/(1-xd/xl*arg3):
IF dflag THEN dclfct:=0.125*clfact*clfact*xd/xl*(1+arg1/arg2)/arg3;
xleff:=xl/clfact;
xwb:=xd*sqrt(pb);
IF (xleff<xwb) THEN

BEGIN {.. limit channel shortening at punch-through)
clfact:=xl/xwb/xwb*(2*xwb-xl/clfact):
IF dflag THEN dclfct:=0.125*xl/xwb/xwb*xd*(1+arg1/arg2)/arg3;
END;

IF dflag THEN
BEGIN
didvd:=cIfact*didvd+idrain*dclfct:
didvg:=clfact*didvg-idrain*dclfct*dvedvg;
d idvs:=c1fact*d idvs;
END;

idrain: =idrain*clfact;
END;

END

ELSE {.. cut-off region (vg<vth))
BEGIN { at this point do not model subthreshold current)
idrain:=0;
didvg:=0;
didvd:=0;
didvs:=0:
IF acflag THEN

BEGIN
IF vg<0 THEN

BEGIN
qg:=cox*vg;

ccgg:=cox;

END
ELSE

BEGIN
gamma2:=gammad*0.5;
sqarg:=sqr t(gamma2*gamma2+vg);
qg:=gammad*cox*(sqarg-gamma2);
ccgg:=0.5*cox*gammad/sqarg:
END;

qb:=-qg;
ccbg: =-ccgg
ccgd: =0
cegs: =0
ccbd: =0
cebs: =0,
END;

END?

IF acflag THEN qc:=-(qg+qb);
END; { END of calculate_id (calcq))

PROCEDURE device; {same as MOSMDL in hpspice)

VAR fivevt,geqbs,1bulk,evbs,ibd,evbd♦geqbd,
gccdd.gccbd♦gccss,gccbs,igate,devmod,
didvg,didvd,didvs,
capbs,capbd,qbst qbd,c zbd.czbs,
czbdsw,czbssw,twopb,fcpb2,czbsf2,czbdf2.
cbssw5.cbdsw5,sarg1,sarg2,
xtemp1,xtemp2,xtemp3,
covlgs,covlgd,covlgb,mj.rnjsw,
xccg2,xccd2,xccs2,xccdg,xccdd,xccds,xccss.
xccgg,xccgd,xccgs,xccbg,xccbd,xccbs♦xccsg,xccsd,
cssat,cdsat,sarg,
gccgg,gccgd,gccgs,gccbg,gccdg,gccds,gccsd,gccsg,
ccgg,ccgd,ccgs,ccbg,ccbd,ccbs,
qgd,qgs,qgb,qgate,qchan,qbulk : REAL ;

BEGIN

IF dev.typ=nmos THEN devtype:=1
ELSE BEGIN

devtype:=-1;
vdb := -vdb;
vsb := -vsb;
vgb := -vgb;
END;

vbd := -vdb;
vbs-:= -vsb;

{ determine bulk-drain and bulk-source diode terms)

IF areaflag THEN
BEGIN
fivevt:=—5*vt;
IF vbs<=fivevt THEN BEGIN

geqbs:=-cssat/vbs+gmin:
ibulk:=geqbs*vbs;
END

ELSE BEGIN
evbs:=exp(vbs/vt):
geqbs:=cssat*evbs/vt+gm in;
ibulk:=cssat*(evbs-1)+gmin*vbs;
END:

IF vbd<=fivevt THEN BEGIN
geqbd:=-cdsat/vbd+gmin:
ibd:=geqbd*vbd;
ibulk:=ibulk+ibd;
END

ELSE BEGIN
evbd:=exp(vbd/vt);
geqbd:=cdsat*evbd/vt+gmin;
ibd:=cdsat*(evbd-l)+gmin*vbd;
ibulk:=ibulk+ibd:
END:

{.. ibd must also be subtracted from drain current
IF dflag THEN BEGIN

gccdd:=geqbd;
gccbd:=-geqbd;
gccss:=geqbs;
gccbs:=-geqbs;
END:

END
ELSE

BEGIN
ibd^O;
ibulk
igate
gccgg

gccgd
gccgs

gccbg

zero out some conductances and igate)

=0
=0
=0
=0
=0
=0

gccdd:=0;
gccbd:=0:
gccss:=0;
gccbs:=0:
END;

compute drain current and derivatives

cox:=cox*xl*xw;
IF vbd<=vbs THEN

BEGIN {
devmod:=1;
calculate_id(vdb,vsb,vgb,

idrain,qgate,qchan,qbulk,
ccgg,ccgd,ccgs,ccbg,ccbd,ccbs,
didvg,didvd,didvs,
dflag,acflag);

END
ELSE

BEGIN {.. inverted operation
devmod:=-1;
calculate_id(vsb,vdb,vgb,

idrain.qgate,qchan,qbulk,
ccgg,ccgd,ccgs♦ccbg,ccbd,ccbs,
didvg,didvd.didvs,
dflag,acflag);

idrain:=-idrain;
END;

idrain:=beta*idrain-ibd;
IF dflag THEN BEGIN

didvg:=devmod*beta*didvg;
didvd:=devmod*beta*didvd;
d idvs:=devmod*beta*didvs:
END;

IF dflag THEN BEGIN
gccdg:=didvg;
gccdd:=gccdd+d idvd:
gccds:=didvs;
gccsg:=-didvg:
gccsd:=-didvd;
gccss:=gccss-didvs:
END;

normal operation)

IF acflag and areaflag THEN
BEGIN

{ charge storage elements)

{.. bulk-drain and bulk-source depletion capacitances >
{ bottom and side wall junction)

capbs:°0;
capbd:=0;
qbs:=0;
qbd:=0:
czbd:scbd*ad;
czbs:=cbs*as;

IF (czbdOO) or (czbsOO) or (cjswOO) THEN
BEGIN
czbdsw:=cjsw*pd;
czbssw:=cjsw*ps;
twopb:=pb+pb;
IF (vbs>=fcpb) or (vbd>=fcpb) THEN

BEGIN
fcpb2:=fcpb*fcpb;
czbsf2:=czbs/f2;
czbdf2:=czbd/f2;
cbssw5:=czbssw/f5:
cbdsw5:=czbdsw/f5:
END;

{ bulk TO source junction)

IF vbs<=fcpb THEN
BEGIN { vbs < fcpb)
sarg:=1-vbs/pb;
IF czbsOO THEN BEGIN

sargl:=exp(mj*ln(sarg));
capbs:=czbs/sarg1;
qbs:=czbs*(1-sarg/sarg1)*pb/(1-mj);
END:

IF czbsswOO THEN BEGIN
sarg2:=exp(mjsw*ln(sarg));
capbs:=capbs+czbssw/sarg2;
qbs:=qbs+czbssw*(1-sarg/sarg2)*pb/(1-mjsw);
END;

END
ELSE

BEGIN { vbs >:= fcpb /
xtempl:=vbs/pb;
xtemp2:=vbs-fcpb;
xtemp3:=(vbs*vbs-fcpb2)/twoob;
IF czbsOO THEN BEGIN

capbs:=czbsf2*(f3+xtempt*mj):
qbs:=czbs*f1+czbsf2*(f3*xtemp2+xtemp3*mj):
END;

IF czbsswOO THEN BEGIN
capbs:=capbs+cbssu5*(f6+xtemp1*mjsw):
qbs:=qbs+czbssw*f4+cbssw5*(f6*xtemp2+xtemp3*mjsw);
END;

END;

xdcopE4):=geqbd:

idrain is used in printing as well as noise calculation

xdcopE
xdcopE
xdcopE

53:=idrain;
63:=ibulk;
73:=geqbs:

{.. this is the 'gm' term used in the noise calculation)
{

xdcopE83:=didvg;
xdcopE
xdcopE
xdcopE
xdcopE
xdcopE
xdcopE
xdcopE
xdcopE

93
103
113
123
133
143
153
163

ccgg;

=ccgd;
'"ccgs;

=ccbg;
accbd;
=ccbs;
=capbd;
=capbs;

{ transient analysis

{.. divide up the channel charge 50/50 TO source and drain)
{.. note that symmetry also precludes need for 'devmod' decisions

IF acflag
BEGIN
{
xccg2::
xccd2::
xccs2:s
xccdgr
xccddr
xccdsr
xccsg:

xccsd:

xccss::

xccgg::

xccgd:
xccgs:

xccbgr
xccbd:
xccbs:
)

THEN

-0.5*(ccgg+ccbg);
-0.5*(ccgd+ccbd);
-0.5*(ccgs+ccbs):
sxccg2-covlgd;
xccd2+capbd+covIgd;
!xccs2;
:xccg2-covlgs;
sxccd2;
fxccs2+capbs+cov1gs:
Bccgg+covlgd+covlgs+covlgb;
6ccgd-covlgd;
:ccgs-covlgs;
sccbg-covlgb;
sccbd-capbd:
sccbs-capbs;

{ load susceptance matrix)

dx

g
sx

b
d

dx
1

13
9
14

sx

10
15

d
2
5

11
16

6
8
12
17

18 19 20 21 22)

{
xmatEl,13:=0;
xmatEl ,23:=0:
xmatE1,33:=0;
xmatEl ,43:=0:

{ bulk TO drain junction)

IF vbd<=fcpb THEN
BEGIN { vbd < fcpb)
sarg:=1-vbd/pb;
IF czbdOO THEN BEGIN

sargl:=exp(mj*ln(sarg));
capbd:=czbd/sarg1 ;
qbd:=czbd*(1-sarg/sarg1)*pb/(1-mj);
END;

IF czbdswOO THEN BEGIN
sarg2:=exp(mjsw*ln(sarg));
capbd:=capbd+czbdsw/sarg2;
qbd:=qbd+czbdsw*(1-sarg/sarg2)*pb/(1-mjsw);
END;

END
ELSE

BEGIN { vbd >:= fcpb)
xtempl:=vbd/pb;
xtemp2:=vbd-fcpb;
xtemp3:=(vbd*vbd-fcpb2)/twopb;
IF czbdOO THEN BEGIN

capbd:=czbdf2*(f3+xtemp1*mj);
qbd:=czbd*f1+czbdf2*(f3*xtemp2+xtemp3*mj);
END;

IF czbdswOO THEN BEGIN
capbd:=capbd+cbdsw5*(f6+xtemp1*mjsw);
qbd:=qbd+czbdsw*f4+cbdsw5*(f6*xtemp2+x temp3*mjsw);
END:

END;
END;

END;

{.. bulk and channel charge (plus overlaps))

IF acflag THEN
BEGIN
{
covlgs:=cgs*xw;
covlgd:=cgd*xw;
covlgb:=cgb*xl;

qgd:=covlgd*(vgb-vdb);
qgs:=covlgs*(vgb-vsb);
qgb:=covlgb*vgb;
qpinE13 :=0;
qpinE23:=qgate+qgb+qgd+qgs;
qpinE33:=0;
qpinE43:=qbulk+qbd+qbs-qgb;
qp inE5 3:=qchan*0.5-qgd-qbd;
qpinE63:=-qpinE23-qpinE43-qpinE53;

END;

{ store small-signal parameters)

{
xdcopE13:=didvg:
xdcopE23:=didvd:
xdcopE33:=didvs;

gmatE4,43:
gmat E4,5 3:
gmat E4,6 3:
gmat E5,13:
gmat E5,2 3:
gmatE5,33:
gmatE5,43:
gmat E5,5 3:
gmat E5,6 3:
gmat E6,13:
gmat E6,2 3:
gmatE6,33:
gmatE6,43:
gmatL6,53:
gmat E6,6 3:
END;

=-gccbd-gccbs;
=gccbd;
=gccbs;
=-gd;
=gccdg:
=0;
=-gccdd-gccdg-gccds;
=gccdd+gd;
=gccds;
=0;
^gccsg:

=-gs;

--gccsd-gccsg-gccss:
=gccsd;
=gccss+gs;

{ load pin currents)

ipinEI3
ipinE23
ipinE33
ipinE43
ipinE53
ipinE63

END;

=gd*vdxd;
=igate*devtype;
«gs*vsxs;

=ibulk*devtype;
=idrain*devtype-ipinE13;
=-ipinEI3-ipinE23-ipinE33-ipinE43-ipinE53;

BEGIN {main part of model-f)
IF infoflag THEN model_info

ELSE BEGIN
IF initflag THEN BEGIN

get_ext_par;
calculate_init;
END

ELSE BEGIN
get_int_par;

END:
END; { model four)

IF gd=0 THEN vpinE13:=vpinC53:
IF gs=0 THEN vpinE33:=vpinE63:

vdb:=vpinE53-vpinE43;
vsb:=vpinE63-vpinE43;
vgb:=vpinE23-vpinC43;
vdxd:=vpinE13-vpinE53;
vsxs:=vpinE33-vpinE63;
device;
END:

xmatE
xmatE
xrnatC

xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
xmatE
•)

END;

1,53:=0;
1,63:=0;
2.13:=0;
2,23:=xccgg;
2,33:=0;
2.43:=-xccgd-xccgg-xccgs;
2,53:=xccgd;
2,63:=xccgs;
3,13:=0;
3,23:=Q;
3.33:=0;
3,43:=0;
3,53:»0;
3,63:=0;
4,13:=0?
4,23:=xccbg;
4,33:=0;
4,43:=-xccbd-xccbg-xccbs;
4,53:=sxccbd;
4,63:=xccbs;
5,13:=0;
5,23:=xccdg:
5,33:=0;
5,43:=-xccdd-xccdg-xccds;
5,53:=xccdd;
5.63:=xccds;
6,13:=0;
6,23:=xccsg;
6,33:=0;
6,43:=-xccsd-xccsg-xccss;
6,53:=xccsd;
6,63:=xccss:

{ load conductance matrix)

IF dflag
BEGIN
gmat E1
gmat E1
gmat E1
gmat E1
gmat E1
gmat E1
gmatE2
gmat E2
gmatE 2
gmat E2
gmat E2
gmatE2
gmat E3
gmat E3
gmatE3
gmat E3
gmat E3
gmat E3
gmatC4
gmat E4
gmatE4

THEN

,13:=gd:
,23:=0
,33:=0
,43:=0
,53:=-<
,63:=0
,13:=0
,23:=0
,33:=0
,43:=0
,53:=0
,63:=0
,13:=0
,23:=0,
,33:=gs
,43:=0
,53:=0
,63:=-gs;
,13:=0
,23:=0
.33:=0

gd;

DC References

General Short Channel Device Modeling
[1] L D. Yau, MA Simple Theory to Predict the Threshold Voltage of

Short-Channel lGFET's", Solid State Electronics, Volume 17, pp.
1059-1063, (1974).

[2] F. Van de Weile, W. L. Engle, and P. G. Jespers, Eds. Process and
Device Modeling for ICDesign, Noordhoff, Leyden, 1977.

[3] F. M. Klaassen and W. D. J de Groot, "Modelling of Scaled Down MOS
Transistors", Solid State Electronics, Volume 23, pp. 237-242
(1980).

SPICE Models

[4] A Vladimirescu and S. Liu, "The Simulation of MOS Integrated Cir
cuits Using SPICE2", Memo No. UCB/ERL M80/7, Electronics
Research Laboratory, University of California, Berkeley, Feb. 1980.

TECAP2

[5] E. Khalily, P. Decher, A. Tamer, I. Klein, TECAP2 SystemDesigner's
Manual, Version 1A.33, Engineering Productivity Division, Hewlett-
Packard Co., Cupertino CA, 1982.

[6] E. Khalily, P. Decher, A Tamer, I. Klein, TECAP2 Reference
Manual, Part # DA 355, Engineering Productivity Division, Hewlett-
Packard Co., Cupertino, CA.

Output Conductance Modeling
[7] D. Frohman-Bentchkowsky. A S. Grove, "Conductance of MOS

Transistors in Saturation", IEEE Transactions on Electron Devtee,
Volume ED-16, No. 1, pp. 108-113. January. 1989.

c, ' c

PROCEDURE* model_five (VAR

VAR
VAR

. VAR
VAR
VAR
VAR

P

vpin

ipin

qpin

gmat
xmat

nod

par_tyc><?:
arrayo;

array8;
array8:
array88:
array88:
arraynn:

infoflag.initflag,dflag.acflag,areaflag : BOOLEAN)

BEGIN
p.title:='
p.number:=0:
p.acnumber:=0;
{ add model equations
END; { end of model

as in model,
five)

three)

END. { end of user module)

. \

	Copyright notice 1984
	ERL-84-3

