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Abstract

This paper concerns nonlinear systems, defines a new concept of

stability and extends to nonlinear unity-feedback systems the technique

of Q-parametrization introduced by Zames and developed by Desoer, Chen

and Gustafson. We specify 1) a global parametrization of all controllers

that-^-stabilize agiven *J-stable plant; 2) aparametrization of a

class of controllers that stabilize an unstable plant; 3) necessary and

sufficient conditions for a nonlinear controller to simultaneously

stabilize two nonlinear plants.

'This is an improved version (i.e., better theorem statements and
streamlined proofs) of the paper with the same title to be published
in International Journal of Control in the summer of 1984. Research
sponsored by the National Science Foundation grant ECS-8119763,
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I. INTRODUCTION

•me purpose of this paper is to obtain the broadest generalization within the context

of nonlinear systems of a number of recent results pertaining to linear feedback

systems. For the unity feedback configuration and for a given linear stable plant,

Zames (1981) proposed a parametrization of the stabilizing linear controllers in terms

of a stable proper transfer function Q. This idea was further developed as. a design

procedure by Desoer and Chen (1981) and was used for computer aided design by Gustafson

and Desoer (1983). In this paper we use also a Q-parametrization but in a nonlinear

context. We first generalize the concept of finite-gain stability (incremental

stability) to that of >0-stability (incremental ,0-stability, resp.). In Theorem 1,

we establish for the nonlinear case, a global parametrization of all I/O maps and of

all compensators that result in an jo -stable configuration. This theorem generalizes

to the nonlinear case, the original linear results of Zames, and in view of the more

general stability concept, it also generalizes Desoer and Liu (1981).



•Hx-Hx'B <^(Ix-x'flT)

It can be shown that If the nonlinear causal maps ^ and H2 are A-stable, (incr.
J-stable), then H1+H2 and ^ oH2 are ^-stable, (incr. ^-stable, resp.). (For
simplicity, we drop in the following the symbol "o" denoting the composition of the

maps.)

A feedback system is said to be well-posed iff the relation from the exogenous inputs

Into each subsystem variable (i.e., subsystem input and subsystem output) is a well-

defined nonlinear causal map between the corresponding extended spaces. More

1 ni
precisely, the system S(P,C) of Fig. 1, where P :JC £ °, C:£ °

e ' e

nl
£ are causal
e

maps, is said to be well-posed iff H:(UpUg) "• (e1,e2,y1,y2) is well-defined and
causal. Note that XS(P,C) is well-posed implies that"1"1* (I+PC)-1 and (I+CP)"1 are
well-defined and causal. We say that a well-posed nonlinear feedback system is

^-stable (Incr. ^-stable) iff the map from the exogenous inputs to any subsystem
variable is -J-stable (lncre. jo -stable, resp.). For the system S(P,C), since

el =ul"y2' e2 ™u2+yls we see tnat Hyu :̂ ul'u2^ *"* ^1^2^ is -^-stajble lff
Heu :̂ i*1^) ^ (ei>®2^ ls ^"stable iff XS(P,C) is 2>-stable. The same equivalence
holds for Incr. «3-stability. Ihese concepts of J -stability and incr. ^-stability
are generalizations of finite-gain stability and incremental stability (Desoer and

Vidyasagar 1975); they are in spirit closer to Safonov's work (Safonov 1980). The

no no
map H :£ -*• £ is said to be an achievable I/O map of the nonlinear feedback system

^(PjC) iff by some appropriate choice of C:£° -JC ±, (i) H •, =H; (ii) ^(P.C)
o e e y?*-h

is ^-stable. x

A c
y> Jk,+e2.

• p
y2

i— +

Fig. 1. Shows the system S(P,C).

By subsystem we mean any block of the block diagram of the feedback system.

++ 1

The meaning of (I+PC) deserves clarification: the map C is composed with P then
the identity is added, and the resulting map is inverted. Although this formula has
the same form as the linear case, it has a completely different interpretation.



In Section IV we consider the case where the plant is unstable. For the linear case,

Zames established his "decomposition principle," i.e., stabilize the ^iven linear

plant P with a stable linear compensator F, and then proceed with the Q-parametrization

as above. Anantharam and Desoer (1982) established a nonlinear version of this result.

In Theorem 2 we establish a similar result in the more general concept of ^-stability
and we weaken the requirement on the stabilizing feedback F: it need not be itself

stable but need only lead to a stable feedback configuration of P and F. Note that

Theorem 2 generalizes our previous work, first it uses the more general stability

concept and, second, the method of proof is greatly improved (Desoer and Lin 1983a).

The problem of simultaneous stability has been formulated and solved in the linear

case by Saeks and Murray (1982). Vidyasagar and Viswanadham (1982) also have Interes

ting results along this line. In Section V we consider the nonlinear case: we are

given two (possibly unstable) nonlinear plants P, and P2 and we derive necessary and
sufficient conditions for the existence of a fixed compensator that stabilizes both

plants. Theorem 4 is a generalization for nonlinear plants and within the O-stability

concept of the linear results of Vidyasagar et al., and of our previous work (Desoer

and Lin 1983b).

II. DEFINITIONS AND NOTATIONS

Let (X,U-8) be a norroed space of "time functions": ZJ ~*2/ where 3 is the time set

(typically B+ or 3N), 2/ is anormed space (typically K,Bn, c", •••) and II-II is
the chosen norm in £. Let £ be the corresponding extended space (see e.g. Willems

1971, Desoer and Vidyasagar 1975, Vidyasagar' 1978).

A function $:K+ -* H + is said to belong to class K iff <J> is continuous and Increasing.
4> is said to belong to class KQ iff $e K and <J>(0) = 0. If <I>1 and <J>2 e KQ, then

ni _ "o<J>,+<J>2 and a *•+ <M<J>2(a)) e K • Anonlinear causal map H:X^ -*• £& is said to be

A -stable iff 3 <J> € Ks.t. Vx e j^1, VT e ^7,

HHxBT <4>(»xllT)

His said to be incrementally ^-stable (incr. <? -stable) Iff (i) His J-stable,

(ii) 3<j»6K s.t. vx, x' e £ x vr e 3,



Wc assume throughout this paper that all the nonlinear maps under consideration are
causal and that all the nonlinear feedback systems under consideration are well-posed,
we use "s.t." to abbreviate "such that," and "u.t.c." to abbreviate "under these

conditions."

III. GLOBAL PARAMETRIZATION OF NONLINEAR J-STABIE I/O MAPS

Consider the well-posed nonlinear unity feedback system S(P,C) shown in Fig. 1, where

P:jCx-*jC°, C:JC °-•£ xare nonlinear causal maps, and (u^i^), (y-^y^ and (e1,e2)
are the "input," "output," and "error" respectively. Theorem 1 is a generalization of
a result of Desoer and Liu (1981), it gives a global parametrization of all achievable

Input-output maps, and of all stabilizing compensators, under the assumption that
P is incr. ^-stable. This theorem is an extension to the nonlinear case, the well-
known linear (^parametrization result, proved by Zames (1981) in a very general

algebraic context.

Theorem 1. (Global parametrization of stable S(P,C)).

n. n n n, 0

Let ? :£ -*-£ , C :£ -* £ be nonlinear causal maps. Assume that P is incr. ad -
e e e e

stable. Under these conditions (U.t.c),

(a) H is jS-stable ~ 3 some A-stable Q:£ ° -* £ x s.t.

C = Q(I-PQ)"1 (3-D

(b) C=Q(I-PQ)"1 ~ Q= Cd+PC)""1 (3.2)

(c) With 1^ =0and with C=Q(I-PQ)"1, the partial map Hy u :(u^O) ^ y2 is given by

Vi= * (3,3)

Comments

(1) Equivalence (b) above requires only that S(P,C) be well-posed,
(ii) Equivalence (a) gives a global parametrization of <?(P), the family of all

compensators that result in an A -stable system S(P,C); more precisely:

£(P) ={C|C =Q(I-PQ)"1, Qis ^-stable) .



(ill) From (a) arid (c), ~J{ , the ula^o of all achievable 1/U map:; ±j &Lvun by
y2ul

Xvn (P) = {PQ|Q is xJ-stable} .
y2ul

(iv) Practical design considerations such as robustness of stability, disturbance

rejection, plant saturation, etc. impose additional restrictions on Q (see e.g.,

Desoer and Chen 1981, Gustafson and Desoer 1983).

(v) The equation (3.3), H = PQ, raises a number of new problems: given a non-
y2ul

linear map P, how can one describe the constraints imposed by P on the achievable I/O

map H ? If we have a desired I/O map H and a given P, how does one find a Q
y2Un y2^1

such that in some appropriate sense, P<3 = H ? Then having such a Q« how does one
y2ul

synthesize C?

Proof:

(I) Proof of (b).

We shall prove only the (->) implication, since the (<=) implication can be shown in the

same way. By assumption,

C = Q(I-PQ)"1 .

Composing with P and adding identity we obtain successively,

I+ PC = I+ PQ(I-PQ)"1 = (I-PQ)"1

By taking the inverse, and composing with C, we obtain

C(I+PC)"X = Q(I-PQ)"X(I-PQ) = Q

Hence, Q = C(I+PC)"X .

(II) Proof of (a).

M Set vu = 0, the map H ,, :u, •* y, is given by H
yl 1 ! yl%

assumption is ^-stable. Let Q := C(I+PC) ,then Q is ^-stable and from (b),
have C = Q(I-PQ)"1.

= Cd+PC)"1 which by

we

(«•) Refer to Fig. 1, write the summing node equations

el =ul*"Pe2 e2~u2+Ce1 (3.^4) (3-5)



Define

t^ := PC e^P^-K^) (3.6)

Using (3.5) and (3.6), rewrite (3.4) as

e, •u-+u1-PC e1 (3.7)

From equation (3.7)

e1 =(I+PC)"1(u14u1) (3.8)

yl =^l =c(I+pc)"1(ui+i:i1) =Q(u1+u1) (3-9)
0 - + nn niNow, since Pis incr. A-stable, 3 A € KQ s.t. VT(u1 Ug) e £q° x £ql, VT € J,

Bu1llT =IP(Ce1)-P(u2+Ce1)DT <^(Bu^) <^SV'SV (3.10)

Hence the map if :(u^Ug) •"* u-l is &-stable. Define the projection map ^ :(u-^Uj)
h-Ui, 1 » 1,2. From (3.9), the map H u :(i^,^) •* yx is given by

Hy u « QC^+ff) (3.1D

Since it, and if are o-stable, and by assumption Q is o-stable, the map H is

^-stable. From Fig. 1, we have

y2 = P(u2+y1) (3.12)

Hence the map H :(u^iu) h- y is given by

V - «vv (3"13)
Now ir2 and H are O-stable, and by assumption Pis ^-stable, it follows that H

is tf-stable. Therefore H is «S-stable.

(III) Proof of (c).

Since C = Q(I-PQ)-1, from (b) we have Q = C(I+PC)"X. With u0 = 0, H n = Ho
-1 yl 1 2 1= C(I+PC) x o Q. ± ± * i

Hence, H = PQ . °
.y2"l

n n

+For (u^.Up) e£ °x£ i, we define H(u1,u?)il := Bu^ +lu?0.



IV. Two-Step Stabilization of Nonlinear Plants

The equivalence (a) of Theorem 1 above requires that the plant be incr. ad-stable.
In practice, unstable plants do occur (e.g., chemical reactors, high performance

airplanes, etc.), it is important to extend this method to include unstable plants,

Theorem 2. (Two-step stabilization of nonlinear plants).

1 ft ft 1 1
Let P :£ x •+JC , F :£ ° -*£ be nonlinear causal maps such that the system S(P,F)

shown in Fig. 2 is incr. j& -stable. Let P1 := P[I-F(-P)] .

U.t.c, if

C:= F+Qd-P^)"1 for some J-stable Q:£Q° -+£Q1 ,n_ n,

then

(a) the system S(JP,C) is 4 -stable; and

(b) the system ^S(P,F,C-F) shown in Fig. 3 is o -stable.

•1

ez to • P
y2

~Y+

F
~JL

y* ^s +u3

Fig. 2. Shows the system S(P,F) in which F stabilizes P.

un._e,
1U2 i>

ya

ys e^-Tu3

Pig. 3. Shows the system 3S(P,F,C-F).

(1.1)



CuJIIlLfllLo .

(1) None of the maps P, C, F, C-F are required to be stable.

(ii) The key assumptions are (a) well-posedness, (b) S(P,F) is incr. ti-stable,
(c) C=F+Qd-PjQ)"1 where P][ =P[I-F(-P)r1 and Qis J-stable.
(ill) It can be easily checked (using the summing node equations) that the system

^S(P,F,C-F) is ,0-stable iff the map (u^iUjUj *-*• (y1,y2,yn) is £ -stable.
(iv) If P is incr. A -stable, then by choosing F the zero map, we have P-. = P,

C = Q(I-PQ) , and Theorem 2 reduces to Theorem 1.

(v) In the proof we show that (b) Implies (a), a simple example shows that (a) does

not imply (b). However, if F is incr. &-stable, then (a) and (b) are equivalent
(Anantharam and Desoer 1982, Thm. 3).

Proof:

(I) Proof of (b): '3S(P,F,C-F) is ^-stable.

Consider the system XS(P,F) of Fig. 2, let ij> = (t|>2,ij>3) :(e^,^) i-> ^2^3) be ^
map. Note that P1(«) := p[l-p(-p)]"1(.) =i//2(«,0). By (A.2), \\> is incr. £-

its I/O

stable,

hence P, is incr. ^(-stable, further from assumption (4.1), Q Is -o-stable and
C-F = Q(I-P1Q) ;hence, by Theorem 1, these three conclusions iinply that the system
1S(P1,C-F) shown in Fig. 4is <$-stable.

Next consider Fig. 3which shows the system 3S(P,F,C-F) with input (u-piUjoJ and
output (y-^y^e^y^). we claim that the map ^H:(ulsu2,u3) •* (y^v^e^y^ is
jO-stable. Let

Ay2 := ^(eg.Ug) - ^(eg.O) (4.2)

Drive the system JS(P,F,C-F) with input (u-j-Ay^u^O), call the corresponding output
(y1Jy2>e2,y-), and'note that y2 =P[I-F(-P)] e£ =P,^; thus if we i@iore y,the
system reduces to S(P1,C-F), (which has just been shown to be ^-stable), with input

"I ♦

> —

C-F ^b
"2 „

yz

Fig. t. Shows the system SCP-.C-F).



tiu-Ay^i-u) and output (y-i,y2,e!J). Hence, for J3(P,F,C-F), the partial nap (with
respect to -li), II :(u,-Ay2,u2,0) *+ (y19y2,e") is O-stable. Since \l>2 is incr.

J-stable, 3*2 eKo s,t* ^2* Vu3' VT,

aAy2BT =U^2(e2,u3)-^2(e^,0)llT <i2(flu3BT) <^(Bu^+flu^+Bu^) (4.3)

Hence the map (u-,,^,^) ** Ay2 is ,0-stable. Therefore, the map it :(u.,,^,^)
**• (u^-A^jiUjO) is q -stable. Considering the composition H if we see that, for
3S(P,F,C-F), the map (u.,,u2,uO ** (y^j^eU) is -o-stable.

Now, we claim that y, = y,, y2 = y2 +Ay2, e~ = e2, and hence the map (a^u^u-)
•"* (y1»y2»e^ ls ^-stable. To prove this, write the equations for %(P,F,C-F) with.
input (u,,u2,Uo) and with input (u,-AJL,Up,0), respectively:

yx = (C-PXt^-yg)

yp = ^2(e^,u3)

>§ - y1 + tu

(4.4a) y1 = (C-F)(u1-Ay2-y2) (4.5a)

(4.4b) y? = ^?(e?»,0) (4.5b)

(4.4c) 52 = yl +"2 (4.5c)

Using (4.2), rewrite the equations (4.4) as

yx = (C-F)[u1-Ay2-(y2-Ay2)]

y2 - Ay2 = ip2(e^,0)

e2 " yl + "2

(4.6a)

(4.6b)

(4.6c)

From Eqs. (4.5) and (4.6), we see that (y, ^-Ay^e'i) and (y.,,y2,e2) satisfy the same
equations, by the well-posedness assumption (A.3), Eqs. (4.5) and (4.6) both have a

unique solution, hence y-, = y-,, y2 = y2 +Ay2, e~ = e-. Since y^ = iMe2,u~) and ^3
is ^-stable, the map (ll,lu,Uo) ^ y^ isxJ-stable. Consequently, the map
ni :(u^jUpjU-J *~* (y1>y2>ep'y-5^ is ^-stable and (b) is established.

(II) Proof of (a): XS(P,C) is J-stable.

Write the summing node equations for -%(P,F,C-F) in terms, of e^, e2, e3, and e£:
(see Fig. 3),

el = "l " Pe2

e2 = "2 + ^°"F^el

e2 =e» + Fe3

(4.7a)

(4.7b)

(4.7c)



e^ = u^ - Pe2 (4.7d)

Let ux =u3, then, by (4.7a) and (4.7d), e± =e3; thus by adding (4.7c) and (4.7b)
we have

e-, = u, - Pe2

e2 " "2 ' ~1 •

The equations (4.8) describe S(P,C). Since %(P,F,C-F) is J-stable, the map
(upUg,^) -*• (e^e^ defined by (4.8) is £ -stable. Hence S(P,C) is 2-stable. °

+ Ce,

V. Simultaneous Stabilization of Nonlinear Plants

(4.8a)

(4.8b)

The main result is Theorem 4: a necessary and sufficient condition for given two

nonlinear plants be simultaneously stabilized by one compensator.

Theorem 3.

_ n. n n n. __ _ 1
LetP:£x-»-X0andC, F : £ ° -* £ x be nonlinear causal maps. Let P := P[I-F(-P)] .

e e e e

U.t.c, if F is incr. J$ -stable, then the system S(P,C+F) of Fig. 5 is ^-stable

the system S(P,C) is J)-stable.

ui+^ei

Fig. 5. Shows the system ^(PjC+F).



UollHttJllto.

(i) None of the maps P, P, and C are required to be stable,

(ii) The Theorem is false if F is not incr. •<)-stable. Consider the following

example: let F = (s-l)/(s+3) =: n/d, F= 3/(s-l), and C = 3/1 =: nc/dc. By calcu
lation, C+F=3s/(s-l) =: nc+fydc+f, and P=p[l-p(-P)]"x =(s-l)/(s+6) =: n/d.
The system S(P,C) is <0-stable, since its characteristic polynomial is nn + dd

•\ c c

s 4s + 3. However, the system S(F,C+i'') is unstable, since its characteristic

polynomial is nh +f + dd f» (s-l)(4s+3).
(iii) Traditionally the loop transformation theorem (see e.g., Desoer and

Vidyasagar 1975) requires that F be linear, so Theorem 3 is a generalization of the

usual stability results obtainable from the loop transformation theorem.

(iv) Rougjily speaking, Theorem 3 says given that F is incr. ,3-stable, and that
the system S(P,C) (S(P,C+F)) is Jj-stable, If we apply the feedback F (-F, resp.)
around the plant and apply the feedforward F (-F, resp.) in parallel with the com

pensator, then the resulting closed-loop system S(P,C+F) ( S(P,C), resp.) remains

Jh-stable. This is also the case when the roles of the plant and the compensator are
Interchanged. The precise statement is given in the following corollary, whose proof

can be constructed using the same techniques as those in the proof of Theorem 3.

n, n _ n n.
Corollary 3.1: Let P :£ ~* £ , and C, F :£ -* £ be nonlinear casual maps. Let

_^ •* e e e e
C := C(I+FC)"X.

U.t.c, if F is incr. ^-stable, then

XS(P+F,C) is ^-stable ~ XS(P,C) is J-stable.

In order to prove Theorem 3, it is convenient to start by exhibiting the following

lemma, whose proof is similar to that of (3.2).

Lemma: LetP:JCx~.C0andF:JC0 ^£ 1. if p := p[I-F(-P)rx, then P = P[I+F(-P)rx.
e e e e

Comments:

(1) By using relation P= PCI-P(-P)]"1, (P=PCl+F(-P)]"x), the system XS(P,C) of
Fig. 1 ( S(P,C+F) of Fig. 5, resp.) can be redrawn as the system of Fig. 6 (Fig. 7,

resp.).



ui+ei

3„,=Fig. 6. Shows the system S(P,F,C) with u~ = 0.

ui -k ei

Fig. 7. Shows the system ^(Pj-FjC+F) with a. = 0,

(ii) Note that the system in Fip;. 6 (Fir.. 7) nnd the system XS(P,C) (XS(P,C+F),

resp.) have the same I/O map i|/c :(i^,^) h- (e1,e2) (i|£+p :(u^i^) ++ (e1,e^), resp.)

Proof of Theorem 3:

(•*) We show that for the system S(P,C), the map i|>c :(u, jiu) !-*• (e,,e2) is ^-stable.
For the system shown in Fig. 6, write the equations defining e, and e2:

el = ul * Pe2

e^ = U2 + Ce1 + F(-Peg)

= Ug + Ce-L + F(e-,-u,)

Rewrite (5.1b) as

(5.1a)

(5.1b)



ei; = U2 + (C+lOe-L + LFte^-u^-R^J 0.;.^)

Let

u1 := u^ (5.3a)

U2 := U2 + [F(e1-u1)-Fe1] (5.3b)

Then, Eqs. (5.1) read

e± = t^ - Pe!J (5.4a)

e^u^ (C+F)e1 (5.4b)

Note that equations (5.1*) describe S(P,C+F) with input (u.,,lL); by assumption
l — 9 «•S(P,C+F) is -O-stable. Hence the map \\>C+F :(u^Ug) -" (e-^e^), specified by (5-4), is
J-stable. Since Fis incr. ^-stable, §<j>p €KQ, s.t. Vu,, Ve-^ VT,

»F(e1-u1)-Fe1BT <♦pdu^) <^(Bu^tlu^) (5-5)

Hence the map ir :(u-pi^) »•* (u^iig) defined by (5.1) and (5.3) is J^-stable. Define
^C =^C+F^' since ^^ ^c+F and *are ^-staole> so is W :̂ uljU2^ *"* ^ei>e2^> nence
for the system of Fig. 6 the map (u., ,iu) *•+ (e,,e2) is A-stable.

Now from Fig. 6,

e2 = e^ - F(e1-u1) (5.6)

Since i|fi and F are ^-stable, the map (u, ,u0) ••+ eQ is ^-stable. It then follows\j , 1 d d Q
that, for the system S(P,C), \\>c :(u^u^ »•* (e1,e2) is •o-stable.

(«•) We show that, for the system XS(P,C+F), the map ^+p :(1^,^) ** (e-^e^) is
O -stable.

Using the Lemma P = PCl+F(-P)]"x and redraw XS(P,C+F) as in Fig. 7. Write the

equations defining (e1,e2) in Fig. 7.

el =ul " Pe2 (5'?a)
e2 =U2 +(C+F)ei -F(-Pe2) }

= u2 + Pe-L - F(e1-u1) + Ce-

Let



u, := u, (5.8a)

u^ := ^ +^ - F(e1-u1) (5.8b)

Since F is incr. 10-stable, the map 7: (u,,u2)-*,(u~1,u2) defined by (5-7) and (5.8) is
^(-stable. Now, with (5.8), equations (5.7) read

e1 =i^ - Pe2 (5.9a)

e2 = l^ + Ce1 (5.9b)

Note that equations.. (5*9) describe S(P,C) with input (upL^). By assumption XS(P,C)
is &-stable, hence the map iF •(u-,,u2) -* (e-,,e2), specified by (5.9), is <3-stable.
Define i|^c+p = i^tT, since both iL, and tF are jtf -stable, so is ij>c+p :(u^uO -*• (e1,e2);
hence for the system of Fig. 7, the map (u-piu) -* (e,,e2) is ^-stable.

Now from Fig. 7,

e£ = e2 + F(e1-u1) (5.10)

Since ^c+p and Fare xf-stable, equation (5.10) implies that the map (u,,^) -* e" is
A-stable. Consequently, we have shown that for the system S(P,C+F), ip" p : (u-,,^)
-* (e^e^) is ^-stable. n

Theorem 4. (Simultaneous Stabilization)

- - ni no no niLet P,, P0 : £ x -+ JC and F : £ -*• £ be nonlinear causal maps. Assume that F is
xtf^ee ee_ __1 Q

incr. A-stable and is such that P, := P1[I-F(-P1)] is incr. *>-stable. Let

P2 :- PgCl-FC-^)]"1. For any C:£Q° •+£& x, let

Q:= CCI+P^)"1 (5.11)

U.t.c.

^(P-^C+F) and XS(P2,C+F) are J-stable

Qis j& -stable and SCPg-P^Q) is xfj-stable (see Fig. 8).



0

,u2
e2

P2-F>
y2

Pig. 8. Shows the system S(P2-P13Q).

Comments

,-1(1) 3y Theorem 1, Eq. (5.11) is equivalent to that C = Q(I-P.jQ)
(ii) None of the maps P,, Pp, P2, and C are required to be stable,

(ill) The meaning of the theorem is the following: piven two nonlinear, not neces

sarily stable, plants P, and P2, if by applying an incr. Jj-stable feedback Faround
^ x-,-1P, (see Fig. 6), the resulting closed-loop I/O map P1 := P1[I-F(-P1)] is Incr.

5-stable, then any compensator of the form Q(I-P1Q)~ + F, for some J!-stable Q such
that S(P2-P1,Q) is ji-stable, will stabilize both P, and P2»
(iv) If P, is incr. ad-stable, take F = 0, the zero map from £ then ?1 = ?l

and P2 = P2. The theorem shows, for this special case, that given two nonlinear plants
P., and Pp, with P, incr. C -stable, then the problem of finding a compensator to

stabilize both P, and P2 is equivalent to that of finding an jA -stable compensator to
stabilize Pp - P,. This result was proven for the linear case in (Vidyasagar and
Viswanadham 1982, Corollary 3.1.1).

(v) Suppose that we have n nonlinear plants Pn, P«, •••, P , then we may apply
__ 1 <- n 1 —

successively the theorem to the pairs (Pi,P1), i= 2, 3, ••• n, thus S(P1,C+F) is
^-stable for 1=1, 2, •••, niff Q:= Cd+P^)"1 is «?-stable, and ^(P^P-^Q) is
Jf-stable for 1 = 2, 3, ••', n.
(vi) To the best of the authors' knowledge, there are no known general conditions

under which a general nonlinear plant Is stabilizable by a compensator, incr.

-stable or not.

Proof:

Since by assumption Fis incr. j$ -stable, by Theorem 3we have S(P1,C+F) and
XS(P2,C+F) are 4 -stable

1S(P1,C) and XS(P2,C) are ^-stable.



Since P., is incr. J -stable and Q := Cd+l^C)"1, by Theorem 1we have

•^(PpC) is <J-stable ~ Qis ^-stable.

Using Corollary 3.1 with P replaced by P2~pi>p ^P1^^ by P-^ C replaced by C, and C
replaced by Q, we conclude that

XS(P2,C) is ^-stable ~ 1S(P2-P1,Q) is ^-stable.

The assertion follows. n

VI. SUMMARY

In this paper, we introduce a generalized concept of stability: jQ -stability and

incremental S> -stability, both applicable to nonlinear systems. Theorem 1 generalizes
to the nonlinear case the Q-parametrization results established by Zames (1981).

Theorem 2 extends Theorem 1 to include unstable plants. Finally, in Theorem 4, we

give a necessary and sufficient condition for the existence of a fixed compensator

that stabilizes two given nonlinear plants. It is surprising that these three

theorems generalize the linear theory to the nonlinear case and the general formulas

of the theory are almost unchanged in form.
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