Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

ADDITIONS TO THE IMAGING CAPABILITY OF SAMPLE

by

Mark D. Prouty

Memorandum No. UCB/ERL M84/111
10 December 1984

ADDITIONS TO THE IMAGING CAPABILITY OF SAMPLE

by
Mark D. Prouty

Memorandum No. UCB/ERL M84/111
10 December 1984

ELECTRONICS RESEARCH LABORATORY
 College of Engineering
 University of California, Berkeley
 94720

Table of Contents

Table of Contents 1
List of Figures 2
1 Introduction 3
2 Calculating Images of Phase Shift Masks 3
2.1 Introduction 3
2.2 Mathematical Methods 5
2.3 Implementation 6
3 Results using the Fnhanced Program 7
3.1 Introduction 7
3.2 Results 7
3.3 Conclusion 10
4 2-D User's Manual 11
4.1 Introduction 11
4.2 Running the Image Program 11
4.3 How the Program Works 12
Appendix 1 Comparison of New and Old Versions of SAMPLE 14
Appendix 2 2-D Example 15
Appendix 3 Defect Printability in 2-D Goodman vs. Subramanian 17
References 18

List of Figures

Figure 1. Region of integration for equation (7)
Figure 2. Region of integration for equation (7)
Figure 3. Region of integration for equation (7)
Figure 4. Region of integration for equation (7)
Figure 5. Image intensity for a periodic series of lines and spaces $0.75 \mu \mathrm{~m}$ wide, for no phase shift (B) and 180° phase shift (A).

Figure 6. Contrast vs. Defocus for series of lines and spaces.
Figure 7. Contrast vs. Defocus for series of lines and spaces.
Figure 8. Contrast vs. Feature size for series of lines and spaces.
Figure 9. Contrast vs. Feature size for series of lines and spaces.
Figure 10. Intensity profile for $0.2 \mu \mathrm{~m}$ wide phase shift line defect.
Figure 11. Intensity minimum vs. size for phase shift line defects.
Figure 12. Intensity minimum vs size for phase shift line defects.
Figure 13. Phase angle for necessary feature contrast and defect minimum as a function of size. $\sigma=0.3$.

Figure 14. Minimum intensity for clear field phase transition.
Figure 15. Image profile for clear field phase transition. Phase shifting material is on the right hand side.

Figure 16. Image profiles for smooth 180° transition over a distance of 0.6 (A), 0.9 (B), and 1.2 (C) $\mu \mathrm{m}$.

Figure 17. Image profiles for $0.62 \mu \mathrm{~m}$ line with $0.3 \mu \mathrm{~m}$ (A), $0.2 \mu \mathrm{~m}$ (B), $0.1 \mu \mathrm{~m}$ (C), and no (D) 180° phase shifted proximity feature. Center to center distance is $1.15 \mu \mathrm{~m}$ in all cases.

Additions to the Imaging Capability of SAMPLE

Elerk D. Prouty

1. Introduction

As feature sizes decrease in optical lithography, becoming smaller than the ratio of wavelength to numerical aperture, the faithfulness of imaging is significantly reduced. This makes computer simulations of optical lithography more difficult. first of all because more general techniques, such as phase shift masks, are being used to improve the image and secondly because the differences between 1 dimensional and 2 dimensional patterns, such as line end shortening and rounding of square apertures, are more important. Therefore, the capabilities of imaging phase shifting masks and 2 dimensional masks have been added to the processing simulation program SAMPLE.

The second chapter of this paper outlines the details of the changes this author made in the program to calculate images of phase shift masks. The next chapter outlines some results obtained using the new program. The fourth chapter outlines the use of the 2 -D code written by Shankar Subramanian. Since this work was never documented or implemented in the SAMPLE program this chapter will serve as a user's manual for 2-D imaging.

2. Calculating Images of Fhase Shirt Masks.

21. Introduction

The resolution in optical lithography is limited by proximity effects, that is, the spillover of diffracted light between adjacent features. In conventional lithography, light from each feature arrives in phase between them, causing a slightly lightened area where a dark one is desired. However, if the light coming from one of the features is delayed by a coating so that it arrives 180° out of
phase, the two diffracted beams will cancel, and the desired dark area will be obtained.

A mask using this technique, first proposed by Levenson, et al.(1), has been dubbed a phase shift mask. Levenson, using the basic case of a 180° phase shift, predicted theoretically and verified experimentally a much increased contrast. The success of this phase mask approach has raised many conceptual and practical questions. Therefore, we decided to enhance the capabilites of the SAMPLE program.

The SAMPLE program calculates images using Hopkins(2) theory of partially coherent imaging. Briefly, the image intensity is given as the convolution of the Fourier transform of the mask intensity distribution with a function known as the transmission cross-coefficient (TCC). The TCC is in turn the convolution of two functions, one over the condenser aperture and the other over the objective pupil. More details of this theory will be given later.

Previously, the SAMPLE program calculated images of real masks which only required calculating the real part of the TCC. We have modified the program to calculate complex coefficients for the Fourier series of the mask and to also calculate the imaginary part of the TCC. This is a more complicated procedure, but many symmetries could be exploited to shorten the numerical integration. In addition, the program will accept masks with up to 33 different regions with arbitrary amplitude transmission and phase shift. This method requires slightly more CPU time than the previous SAMPLE version, up to twice as long. This time is from 2 to 12 CPU seconds on a VAX $11 / 780$ with UNIX, depending on the size of the image. For an image period of 2 microns, for example, 4 seconds are required.

2.2. Mathematical Methods.

Kintner(3) gives details of the partial coherence theory, and Subramanian(4) shows how the theory is used in the SAMPLE program. There it is shown that the transform of the image intensity may be given as

$$
I(f)=\sum_{i=1}^{\infty}\left\{a_{n} a_{0}^{\bullet} T\left(n f_{p}, 0\right)+\sum_{m=1}^{\infty} a_{n+m} a_{m}^{0} T\left((n+m) f_{p}, m f\right)+a_{n-m} a_{n}^{\bullet} T\left((n-m) f_{p},-m f_{p}\right)\right\} \delta\left(n f_{p}-f\right)
$$

where f_{P} equals the reciprocal of the period.
$T\left(f^{\prime}, f^{\prime \prime}\right)$ is known as the transmission cross coefficient and is given by

$$
\begin{equation*}
T\left(f^{\prime}, f^{\prime \prime}\right)=\iint J(f, g) K\left(f+f^{\prime}, g\right) K^{0}\left(f+f^{\prime \prime}, g\right) d f d g \tag{2}
\end{equation*}
$$

where J, the Fourier transform of the mutual intensity function at the object is

$$
J=\left\{\begin{array}{ll}
1 & f^{2}+g^{2}<s \tag{3}\\
0 & f^{2}+g^{2} \geq s
\end{array}\right\}
$$

where s is the partial coherence factor and K, the objective pupil function is

$$
K=\left\{\begin{array}{cc}
\exp -2 \pi i \frac{\mu}{4}\left(f^{2}+g^{2}\right) & f^{2}+g^{2}<1 \tag{4}\\
0 & f^{2}+g^{2} \geq 1
\end{array}\right\}
$$

Here, μ is related to the defocus in microns by

$$
\begin{equation*}
\mu=d \frac{N A^{2}}{\lambda} \tag{5}
\end{equation*}
$$

The a_{n} 's are the fourier coefficients of the mask transmission, so that $F(x)$, the intensity and phase of the light at the mask is

$$
\begin{equation*}
F(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos 2 \pi n f_{p} x \tag{6}
\end{equation*}
$$

For masks without phase shifts the a_{n} 's are real. Here, however, they may be complex.

These equations lead to a more specific expression for the TCC

$$
\begin{equation*}
T\left(f^{\prime}, f^{\prime \prime}\right)=\iint_{0} \exp -2 \pi \mu i\left[f^{\prime 2}-f^{\prime 2}+2 f\left(f^{\prime}-f^{\prime \prime}\right)\right] d f d g \tag{7}
\end{equation*}
$$

where Ω is the region of intersection of 3 circles, C, C^{\prime}, and $C^{\prime \prime} . C$ is the region where $J(f, g)$ is non-zero, viz. a circle of radius s centered at the origin. C^{\prime} is
the region where $; K\left(f+f^{\prime}, g\right)$ is non-zero, viz. a circle of radius 1 centered at $\left(-f^{\prime}, 0\right)$ and $C^{\prime \prime}$ is the region where $\mathbb{K}^{\circ}\left(f+f^{\prime \prime}, g\right)$ is non-zero, viz. a circle of radius 1 centered at $\left(-f^{\prime \prime}, 0\right)$. Several cases of these intersections are shown in Agures 1-4.

23. Implementation

The speciffc formulas used in the program to integrate equation (7) are dependent upon the geometry of the circles $C, C^{\prime}, C^{\prime \prime}$. For the case shown in Figure 1

$$
\begin{align*}
\operatorname{Re} T\left(f^{\prime}, f^{\prime \prime}\right) & =\iint \cos -2 \pi \mu\left\{f^{\prime 2}-f^{\prime \prime 2}+2 f\left(f^{\prime}-f^{\prime \prime}\right)\right\} d f d g \\
& =\int_{-1-f^{\prime}}^{f_{1}} \sqrt{1-\left(f+f^{\prime}\right)^{2}} \cos -2 \pi \mu\left\{f^{\prime 2}-f^{\prime \prime 2}+2 f\left(f^{\prime}-f^{\prime \prime}\right)\right\} d f \\
& +\int_{f_{1}}^{f_{2}} \sqrt{s^{2}-f^{2}} \cos -2 \pi \mu\left\{f^{\prime 2}-f^{\prime \prime 2}+2 f\left(f^{\prime}-f^{\prime \prime}\right)\right\} d f \\
& +\int_{f_{2}}^{1-f^{\prime \prime}} \sqrt{1-\left(f+f^{\prime \prime}\right)^{2}} \cos -2 \pi \mu\left\{f^{\prime 2}-f^{\prime \prime 2}+2 f\left(f^{\prime}-f^{\prime \prime}\right)\right\} d f \tag{8}
\end{align*}
$$

$\operatorname{lm} T$ is identical, except cos is replaced by \sin.
These integrands all contain radicals unsuitable for Gaussian quadrature. Therefore, a transformation of the form $f=s \cos x$ or $f+f^{\prime}=\cos x$ is made. Then the first integral becomes

$$
\begin{equation*}
\int_{\cos ^{-1}\left(f_{1}+f^{\prime}\right)}^{\pi} \sin ^{2} x \cos -2 \pi \mu\left\{f^{\prime 2}-f^{\prime \prime 2}+2\left(\cos x-f^{\prime}\right)\left(f^{\prime}-f^{\prime \prime}\right)\right\} d x \tag{9}
\end{equation*}
$$

With the further changes $\sin ^{2} x \rightarrow(1-\cos 2 x) / 2, f^{\prime} \rightarrow-f$, and $\cos x \rightarrow \cos (\pi-x)$ (which just changes the limits of integration), these integrals are encoded in the program as functions gt1 and gt1i (gt1 calculates the real part and gt1i calculates the imaginary part). The second integral becomes functions gt2 and gt2i. The functions gt1 and gtli are also used to integrate the third expression.

When the geometry is as in figure 2, gc1 and gcii are used to integrate (7). Further, for the case where $s>1$, ft2(i) and ft3(i) are used for :cases shown in figure 3 and 4, respectively.

3. Results Using the Fhhanced Program

3.1. Introduction

Here, we explore a number of the phase mask imaging issues raised by Levenson's work. The first question raised is how much the contrast of periodic features depends upon defocus and the amount of phase shift used, and how this dependence changes with feature size. The second issue is what size defects in the phase shifting material may be tolerated. We also explore the possibility of making clear field transitions between phases without causing printable defects. The final issue is whether unprintable proximity features may be used to enhance the image of isolated features.

3.2. Results

Image calculations of the new extension to SAMPLE indicate the marked improvement in image quality possible in using phase-shift masks. Figure 5 shows the intensity profile for a periodic series of lines and spaces $0.75 \mu \mathrm{~m}$ in width (in all simulations throughout this chapter the wavelength used is 0.4353 $\mu \mathrm{m}$. the lens has a numerical aperture of 0.28 and the defocus is $1.5 \mu \mathrm{~m}$). Curve B is the image obtained with no phase shifting, and curve A is that obtained with every other space phase shifted 180°. The large improvement in contrast is due both to a decrease in the minimum intensity, as well as to an increase in the maximum intensity. This increase is due to the extra path differencerinvolved in the light from both images. The beams that arrived out of phase in conventional lithography now arrive in phase.

This improvement is quantified more fully in figures 6 through 9. In figure 6 we plot contrast $\left(\left(I_{\max }-I_{\operatorname{man}}\right) /\left(I_{\max }+I_{\min }\right)\right.$) vs. defocus for a partial coherence factor (sigma) of 0.7. Figure 7 shows the same thing for a sigma of 0.3. In both cases contrast is improved. The improvement is much greater for the lower sigma values, which is what we would expect from the mutual coherence function (MCF). This function gives the degree of correlation of the incident light as a function of distance across the mask. The width of its central lobe is equal to $1.22 N$ NAc. Since phase changes are significant only for phase related beams, the langer the central lobe of the MCF (caused by a smaller sigma), the greater we would expect to be the effect of phase shifts.

Examining figure 7 more closely, we see how the phase shifting not only increases the level of contrast, but also makes the contrast more focus tolerant. This graph clearly shows the steady improvement possible by increasing the phase shift up to 180°. However, we shall see later that we must pay a price for this.

In figures B and 9 we now plot contrast vs. size, still for periodic sequences of lines and spaces. These curves show that for widths of less than 1 $\mu \mathrm{m}$, steady contrast improvement may be obtained by increasing the phase shift. Above $1 \mu \mathrm{~m}$ proximity effects are lessened, and the two features are further apart than the diameter of the MCF. Therefore, little improvement is possible for features larger than $1 \mu \mathrm{~m}$.

Improvement in image quality, unfortunately, comes at the price of an improvement in defect:printability. In figure 10 we plot the image intensity for $0.2 \mu \mathrm{~m}$ wide 180° and 90° phase shift material defects on clear areas. This produces surprisingly large ripples in the intensity, which may leave resist remaining on the wafer in what was supposed to be a clear area. For features this small, however, the assumption of uniform intensity across the opening in the
mask, made by the image calculation algorithm, is not exactiy true and these results only give an approximate indication of the problem for a 1 X system.

Defect printability may be reduced:by using phase shifts of less than 180°. This is shown in flgures 11 and 12 where we plot, for sigmas of 0.7 and 0.3 respectively, image intensity minimum vs. defect size. Thus, by lowering the phase angle, defect printability may also be lowered. For comparison, the contrast of an opaque defect is also shown in these figures.

The tradeoff between defect printability and contrast improvement is summarized in figure 13. There we have plotted, vs. defect size, the phase which gives an intensity minimum of 0.5 , which is the minimum tolerable intensity. We have also plotted the phase angle which gives periodic features a contrast of 0.85, which we have taken as the minimum allowable feature contrast. As an example, if we wanted periodic features $0.75 \mu \mathrm{~m}$ wide, we need at least a phase shift of 90°. Moving to the left until we-hit the defect line, then dropping down we see that the largest allowable defect at that phase angle is $0.2 \mu \mathrm{~m}$.

In a 2-dimensional mask, it would be desirable for all adjacent features to be out of phase with respect to each other. This is similar to the problem of coloring a map with only 2 or 3 colors. Thus, it might be desirable to switch the phase of different parts of the same opening, that is, to color parts of the same country different colors. This type of phase transition, however, will cause a printable glitch as seen in figure 14. This figure plots the phase shift dependence of the image intensity minimum of a large clear region next to a large. clear, phase shifted region. We see profiles for a 180° and 90° phase transition in figure 15. Obviously, this type of phase shift will cause a defect to print.

We may reduce the contrast of this type of transition be making a smooth change in phase over a small length. Figure 16 shows profiles for a 180° phase shift made smoothly (by making 12 steps of 15° each) over a length of $0.6,0.9$.
and $1.2 \mu \mathrm{~m}$. This reduces the contrast, but separating the 0° and 180° regions by more than $1.0 \mu \mathrm{~m}$ defeats the purpose of having the phase transition. Thus even this smooth phase transition method is no good.

The discussion of printing features up to now has involved periodic sequences of lines and spaces. Another use of the phase mask is to add nonprintable features next to an isolated feature to enhance its image. Figure 17 shows an attempt to improve the image of a $.62 \mu \mathrm{~m}$ wide isolated line (this size was chosen :because the intensity peak of the unenhanced image drops to one half the clear field value). Curves A through C are for the line with a $0.3,0.2$, and $0.1 \mu \mathrm{~m}$ wide 180° phase shifted proximity feature on each side, respectively. Curve D is for the line by itself. The center to center distance between the line and the proximity feature is $1.15 \mu \mathrm{~m}$ in all cases. The maximum intensity of the line increases as the proximity linewidth increases, and the peak becomes slightly narrower, making this a potentially useful technique.

3.3. Conclusion

WHe see, then, that phase masks may improve both periodic and isolated features. The size of periodic features may be reduced from $1.2 \mu \mathrm{~m}$ to $0.5 \mu \mathrm{~m}$ and still have a contrast of 0.85 by using phase shifts. This improvement is robust with respect to phase shift angle; 120° gives nearly as good results as 180°. Below 120°, however, improvement does drop off. The peak intensity of isolated features may be increased 30 percent by using unprintable proximity features. This improvement decreases for phase shifts of less than 120°.

We have also seen that phase transitions above 90° will produce defects. Thus, clear held transitions are not viable even when the transition is relatively smooth Another key problem is the printability of small defects. We have shown that a 90° defect prints about the same as an opaque defect, and shifts of 120° and 180° cause defects twice as small to print. With the limitations of no
clear field transitions and proper defect control very significant improvements in aerial image quality are possible with phase masks.

4. 2-D User's Manual

4.1. Introduction

Not included within the SAMPLE program, but related to it, are a set of programs written by Shankar Subramanian for calculating 2 dimensional images. Programs for plotting contour plots and profiles of the images, written by this author, are also included. This chapter will outline the use of these programs.

4.2. Ronning the Image Program

Two versions of Shankar's imaging program exist. The program image.out calculates images with arbitrary defocus, while nodef.out calculates images with no defocus. Both programs assume $\lambda=.436 \mu \mathrm{~m}, N A=0.28$, and have the same 1/O format.

Each program reads 6 parameters, $x s, x l, y s, y l, s$, def. in free format from a file named linez. The first four parameters specify the mask intensity in the following way. The mask intensity is assumed to be a separable function of x and y, i.e.

$$
\begin{equation*}
I(x, y)=X(x) Y(y) \tag{10}
\end{equation*}
$$

$X(x)$ has period $x s+x l$, and $Y(y)$ has period $y s+y l$. The program defines $X(x)$ in the first period as follows

$$
X(x)=\left\{\begin{array}{cc}
0 & -(x s+x l) / 2 \leq x \leq-x s / 2 \tag{11}\\
1 & -x s / 2 \leq x \leq x s / 2 \\
0 & x s / 2 \leq x \leq(x s+x l) / 2
\end{array}\right\}
$$

$Y(x)$ is defined similarly. The parameter s is the partial coherence factor, and ulef is the defocus in $\mu \mathrm{m}$. The program nodef.out ignores def.

The output of the programs is written to an unformatted file called rint, which contains a 100 by 100 array of intensities, followed by the two parameters
$d x$ and $d y$. These two parameters are the spacings between x and y points, respectively, inunits:of $i / N A$

$$
\begin{equation*}
d x=\left(\frac{N A}{\lambda}\right)\left(\frac{x s+x l}{198}\right) \tag{12}
\end{equation*}
$$

rint contains intensities for wene :quadrant of one period of the image, which, because of the x and y symmetry, contains all the information of the entire image. rint $(1,1)$ is the intensity at the origin, $\operatorname{rint}(1,100)$ is the intensity at (0,99 dy $\sim N A$) . $\operatorname{rint}(100,1)$ is the intensity at $(99 d y \lambda / N A, 0)$. The interactive programs profile and contour sets up a file of points called f77punch7 suitable for plotting with the SAMPLE plotting programs.

4.3. How the Program Works

The 2-D program uses the same partial coherence formulas as the 1-D case, except, of course, in two dimensions. This makes the geometry more complicated, since the circles $C^{\prime \prime}$, and C^{\prime} are no longer centered on the x axis.

The main program calculates the Fourier coefficients of the mask. Currently, the method used is a specific one for the separable function of x and y assumed. The rest of the program, however, does not require that simplification. Therefore, a more general routine for calculating Fourier coefficients could be added. The only requirement is that the intensity transmission be real, and.periodic and symmetric in both x and y directions.

After computing the Fourier coefficients, main calls spect, the subroutine which calculates the transform of the image intensity, performing many summations similar to the 1-D case. The transmission cross-coefficients, now functions of four variables, are calculated by the function t, two versions of which exist. The file cross1.f contains the version for the no defocus case, while the general case is located in crossZo.f, each of which requires several functions. The required modules are main.f, crós1.f (cross2o.f), are.f, rsect.f.inside.f, int.f.
and speci.f.
The run time for these programs varies roughly proportionally to the area of the image period. The program image.out requires about 20 CPU seconds on a VAX 11/780 with UNIX per square micron, while nodef.out requires about half that.

5. Acknowledgement

This work was supported by the National Science Foundation under grant ECS-8106234 and industrial contributions under the MICRO program (83-14).

Appendix 1

Comparison of old and new SAMPLE images.
The following table shows a comparison of the output for a periodic series of $0.75 \mu \mathrm{~m}$ lines and spaces calculated three different ways. First, using SAMPLE 1.5 b and input A. second using SAMPLE 1.5 c and input A, and third using SAMPLE 1.5 c and input B. All images are identical, as.expected.

distance	intensity		
$\mu \mathrm{m}$	1.5 b input A	1.5 c input A	1.5 c inputB
0.000	.220	.220	.220
0.031	.221	.221	.221
0.061	.225	.225	.225
0.092	.231	.231	.231
0.122	.240	.240	.240
0.153	.251	.251	.251
0.184	.264	.264	.264
0.214	.280	.280	.280
0.245	.298	.298	.298
0.276	.319	.319	.319
0.306	.342	.342	.342
0.337	.367	.367	.367
0.387	.393	.393	.393
0.398	.420	.420	.420
0.429	.449	.449	.449
0.459	.477	.477	.477
0.490	.505	.505	.505
0.520	.533	.533	.533
0.551	.558	.558	.558
0.582	.582	.582	.582
0.612	.602	.602	.602
0.643	.619	.619	.619
0.673	.633	.633	.633
0.704	.642	.642	.642
0.750	.647	.647	.647

input A: proj. 6
lambda. 5
trial 3101
linespace .75.75
run 1
end
input B: proj 6
lambda .5
trial 3101
trial 1900.7510 .75
run 1
end
-14a-

Invoking the new SAMPLE routines

The new routines are invoked through the 'trial 19' statement. Its form is:

$$
\text { trial } 19 \text { (amp1, phase 1, dist1), (ampN, phaseN, distN) }
$$

where amp, phase, and dist specify the amplitude and phase (in degrees) transmission for a region of length dist. Up to 33 regions may be specified.

The program then makes an even, periodic extension of this function It does so by first halving the length of the first and last regions. This now forms one half-period of the function. The other half-period is the mirror image of the first.

For example, the statement,
trial 191180.7500 .510 .75005
produces:

Appendix 2

The following is an input example for image.out. The file lines contains the one line: 1.01 .01 .01 .0 .31 .5 . Running image.out then contour, and plotting the file fr7punch7 produces:

These routines are currently located in the directory,
/od/sample/prouty/Twodim.

Running profile, and plotting f'TPpunch7 produces:

CPU time for calculating this image was 20 seconds.

Appendix 3

Comparison of Goodman and Subramanian

The following table compares the intensity at the center of small isolated squares of different sizes. Goodman's program was run by this author while working at IBM Watson Research Center. As shown, Subramanian's program gives identical results.

zize \boldsymbol{N} NA	Goodman	Subramanian
1.0	$1.10 \dagger$	1.165
0.8	$.94 \dagger$.954
0.7	$.77 \dagger$.762
0.6	$.57 \dagger$.547
0.5	$.34 \dagger$.338
0.4	$.16 \dagger$.171
0.3	.064	.064

These numbers were extrapolated from a graph and are accurate only to
The following figure plots the intensity at the center of small opaque and small open squares and, for comparison, lines.

References

[1] M.D. Levenson, N.S. Viswanathan, R.A. Simpson, "Improving Resolution in Photolithography with a Phase-Shifting Mask," IEEE Trans. Elect. Dev., vol ED-29 No. 12, p1828, 1982.
[2] H.H. Hopkins, Proc. R. Soc. London Ser A, vol 217, p408, 1953.
[3] E.C. Kintner, "Method for the Calculation of Partially Coherent Imagery," Appl. Opt., vol 17, p2747, 1978.
[4] S. Subramanian, "Rapid Calculation of Defocused Partially Coherent Images," Appl. Opt., vol 20, p1854, 1981.
[5] M. Prouty, A. Neureuther, "Optical lmaging With Phase Shift Masks," SPIE conference on Microlithography, 470-26, March 1984.

Figure 1. Region of integration for equation (7)

Figure 2. Region of integration for equation (7)

Figure 3. Region of integration for equation (7)

Figure 4. Region of integration for equativa (i)

Figure 16. Image profiles for smooth 180° transition over a distance of 0.6 (A), 0.9 (B), and 1.2 (C) $\mu \mathrm{m}$.

complex fsamsi (41), fsaimg(41)
com:n.m /cbwini/ window, euge, undorg
commer, /fouseri mxinfif, nmfrcp, fsamsk(41), feaimg(41)
comisn /horimit delta, monpts, nmhpts, horint(so)
comm:n /imgien/f rna, mxnutf, rimutfe, rmtfut(4i)
commes. /ims 3prlinincoh, iparco,ifulco, icoher, sigma, dfdist
comern/iol i itermi, ibulk, iprout, iresvi,iin.iprint,ipunch
cominen /ob, mski mline, mapace, mlnspa, mirreg, maskty
commiri /objnsél rlw, rsw, rjurit, rswz
comirr:: /optic ; culiul, vl, vmax, thorin(s)
commin /spectri mnlmbd, nmlmbs, rlambd(10), relint(10)
comiren 'cmask/ numieg, am(100), phi(100), dsize(100), zperid
100 deliz = windawifloat (nmhpts-1)
undore $=$. 5×1 lu-edap
nmfic: $=$ mixnisiol
$v 1=$: innx/fl(liei(inxnmfr-1)
rsu: 1./Vl rlw
cali :mgnsg(i)
E
ćGO deltx = windnw/float(nnhpts-1)
wndare $=.5 \div$ eu-edge
nmfrep $=m \times n$ n.:.t.
v1 = vimax/flnat (mxnmfr-1)
rlu: $1 . / v i$ - su
cali $\operatorname{singmsg(ナ)}$
/* Ceiculate the fourier coejfficents far the pattern
cald (ourcf(.false., rsw, rlwe, rsw2, rlw, fsamsk,mxnmfr, nmfrep-1).
got.s igif

2
c
300 deltx $=$ windowifloat（nmhpts－1）
undjaig＝ $5 x i \cdot 3 u$－edge
c $/$ tind the fundamental frequency for the linespace case

c $/$＊find the number of frequency components that need to be taken itert；＝int（vir！：•x／V1）
nmfint．$=j t_{t ? T i r}+1$
$i f((v i l a x / v 1-f 10 a t(i t e m p)) . g e . .95)$ call imgmsg（\％）
if（：：！frcp．lt．mxnmfr）guto jho
cali $\ddagger m g n s g(i s)$
nmfict $=m \times n \cdot n i=1$
c
c
350 call fourcif．true．，rsur rlwá，rswe，rlw，fsamsk，mxnmfr，imfrep－1） got．：‘‘プ’
c

deltr ：$=$ windruffloat（nohpts－1）

c $/ *$ ：alculate the fourier coeifficents for the pattern
450 cail fourcf（．t．rue．，rsw，rlwír rsw2，rlw，fsamsk，mxnmfr，nmfrep－1） got：：‘「「゙ノ
c
t．00 pers：i＝＜periat
deltr $=$ Uindousifloat（nmhpts－1）
undera＝Skricize（1）－edge
$/ *$ risod the furidameutal frequency for the linespace case V1－．；／perii．d
c \quad finid the nuinber of frequency componets that need to be taken itert；＝int（vil：r－x／V1）
nmfirg＝itemin＋ 1
if（！Yis．ax／v1－ridat（itemp））．ge．．95）call imgnsg（r）
if（nnfrcp．lt．n：xnmfr）goto bら（）
call ：mgmsg（「」）

c
c \quad＊raiculate ine fourier corifficents for the pattern
L50 call cfour（feritsk，rimferp－1）
1
rafry retil：！
end

```
    &
C
    1 0
c
c
C
C
20
c
    aimo=?..
    reg=0.
    do 30 i=1, numreg
    reo=reotam(i) #x(i)*cos(ang(i))#2/p
30 aimo=simotam(i)*x(i)*sin(ang(i))*2/p
    zcoeff(1)=cmpl`(rea, aimo)
C
c
            do 10iNO n=1, numcof
            x 1=0.
            x 2=0.
            Teo=0.
            aimo=0.
            do 40 i=1, numreg
            x 2=xこ+x(i)
```



```
            reo=reo+rel*cos(ang(i))
            aimo=aimotrel*sin(ang(i))
            x1=x年
                    continue
            zcoeff(n+1)=cmplx(reo, uimo)
c
1000 continue
            return
            end
```

c
2
cs. Subreutine fourcf(lext, rsi, rlás, rsa, ril, ai, n, nuincof)
c

```
        com:jcx ai(n)
```

 log': r.l lext
 pi=: \(:\) J4 J593

ai(l) $=$ (rsi + こ. 0 * rsél) /rper
if (J:xt)gnto j50
or $100 \mathrm{~J}=1$, inumicof
$\left.\operatorname{ai}(\mathrm{d}+1)=(i)^{2} 0 /(f 1 \operatorname{rat}(\mathrm{~J}) * \mathrm{pi})\right) *$

j00 critinue
\therefore rto gly
150 do $\because \because, \mathrm{J}=1$, mume of
a: $(J+1)=(-i c .0 /(f 1 n a t(1) * p i)) *$
8
\& isin(float(J)*ni\#rli/rper)
品 $\quad \sin (f l o a t(j) * p i *(r l i+2.0 *(r l e r r s 2)) / r p e r)$ -
:00 coniti:ue
'fgry retr!!
end
c
c

[^0]```
compjex fsamsk(41), fsaimg(41)
```

comolex ai(41), spec(ti)
cominesri /cbuiridi winisow, edge, windorg
cominis /fouser/ mxnmfr, nmfrcp, fsamsk(41), fsaimg(41)
comman /harimni deltx, mnhpts. nmhpts, horint(bO)
comvirn /ingf!qi imgfl(5)
comin.n /imáépr/frna, mxnwtf, nmutfc, rmifut(41)
comring /img 3prif iincoh, iparco, ifulco, icoher, sigma,dfdist
comrion /iol i itermi, ibulk, iprout, iresvi,iin,iprint, ipunch
commi:n /optic i curwl, vi, vmax, thorin(5())
cominen /spectri nnimbd, ninlmid, rlambd (10), rejint(10)
comin:ıni/trans i s,ll, p,df, ai(41), spec (U1)
comirnh /ob, frsk/ mline, mspace, mlnspa. mirreg, maskty
comr:o: /objméc!/ rlw, rsw, rlurf, rswe
commait /cmask/ numrea, am(10: ), phi(100), dsize(100), iperid
6
$s=5 i \therefore i_{i: a}^{a}$
if (ir:gfl(4).en. 1) urite (iurint, 1111)
1111 formst (///,9x, 43hno diagnostics are available for shankar-s.

* 27hpartial cohfrence routines.)
c

```
pi : : 14159%゙\:5358
rper = rsw+rlut2. O#(r.swerrylwoin)
if (m. skty.en. %) rper = zperid
p = T1ambd(i&mlid)/(rnakrper)
df = c. *pi*dfdist*rna*rna/rlämbd(ilmbd)
n=!:\t((1.tr)ip)
if (1: . It. 4,l) goto 100
 :\therefore.: 0
```

```
s
c. /* (u:iy is there no check for ne=0? mareh e5, 1981)
c /* the Fourier coefficients for the mask amplitude transmission
c /# i.r. now criculatced.
100 if (a.:skty.ez. &) call cfour(ai, n)
```



```
 call fourcf(. ialse.,rsw, rlm, reswa, rlw, ai, 41, n)
fol call crass
 ori7!ו:=(-rsu/\sigma' -edqe)/rper
 if(m:*=kty. eq.mspace) origin=(1.sw/E. -edge)/rper
 if(n%,<kty. eq.mirreg)origin=((rper+rlw)/2. O-edye)/rper
 if(m;ekty.eq. S) origin=(dsize(1)/2\cdotsedge)/rper
```



```
 n2 - K!;
 delty:uindow/(immhpts-1)*rper)
c
C
C
C
|&!í
C
6
:
```



```
 t::", in(J):=r:!Ec(1)
 d:s:00 k:=1, i:r
 :s.eg=real(spec(k+1))
 t!orin(J): ihorin(J)+2ma4*cos(2. *pi*k*x+zphas)
 cou c.ilimue
 x-i=delty
 :00 con:% ue
c /* recumulate ihe intensity jir horint.
 do f.!'ihpt=1, nmhpts
 h`rint(ihpt) = horint(ihpt) + relint(ilmbd)*thorin(inpt)
 400 conri:ue
c
 ret:1:%
 end
C
c
```

subroutine cross:
common/iapfl/iapert,isquar,icipe
common /trans/s, $n, p, d f, a i(41)$, spec(E1)
common/fig/f,g
complex ai(41), spec(81)
compiex fac
external gel.gt1, gt2, ft2,ft3
external gcii, gtii, gt2i, ft2i, ft3i
c
$c$
/* set all elements of spec to zero
do $1 . \quad .=1,81$
$\operatorname{sp=c}(J)=(0.0 .0 .0)$
1 contimue
spec (i)=ai(1)*conjg(ai(1))
pi=3. 14159265358
pi2=pi/2.
c /* circular and square pupils are handled separately
c? $/$ * the following line was present in a previous version.
c?? $/ *$ why? (march 31, 1981).
c?? if (n.eq. O) return
if (iapert.eq.isquar) goto 66
if (iepert. ne.icitc) return
c $/ *$ sec amax, the max. area of overlap
amax $=s * s * p i$
if (s.gt.1.) amax=pi
c
/* for circular pupils $5>1$ and $s<1$ are handled separately
if (s.gt. 1.) goto 41
c $/ *$ for circular pupils: $C$ is a circle of radius s at the origin.
c $\quad / * C^{\prime}$ and $C^{\prime \prime}$ arecircles of unit radius. C' is centred at f. For
c $/ * t,^{n}$ is ceritred at 0 , for $t 1$ at $-g$ and for $t 2$ at $t g$. The
c $/ *$ reqion of integration is the intersection of these circles.
do $3 \mathrm{~J}=1, n$
$f=j^{4} 3$
$t=0$.
$t i=0$.
c
ノ卷 for t: centre c" at 0 by setting g=0
g=0.
c $\quad / *$ set the liaits of integration over $C$ and over $C \cdot$
$a 1=f-1$.
$a 2=((s * s-1) / f+f) /$.2 .
$a 3=5$
if(f.gt. (1.-s)) goto 21
c
c if C isn't inside C' goto 21, if it is inside integrate over conly
call gauss(gci, 0.ppi2, t)
c /* normalise $t$ by dividing by amax
$t=2$. Kt/anax
call gauss(gcii, 0., pi2, ti)
time ti/amax
goto 5
$c$ the integrand has been transformed by $u=c o s(x)$. Transform the limits $21-c 1=\operatorname{acos}(p-a 1)$
$a c 2=\operatorname{acos}(f-\dot{2} 2)$
$a c 3=\operatorname{acos}(a 3 / s)$
/* why doesn't the stant for ac3 have the bias of 0.0001 ? $\operatorname{act}=\operatorname{acos}(a 2 /(s+0.0001))$
call gauss(gt1, aci, ac2, alt)
call gauss(gt2. ac3, ac4, alt)
$t=$ (a1t +a2t)*2. /amax
call gauss(gtli, aci, ac2, alti)
call gauss(gt2i, ac3, ac4, a2ti)
$t_{i}=(a l t i \quad+a 2 t i) * 2$. /amax
$5 \operatorname{spec}(1+j)=\operatorname{confg}(a i(1)) * a i(j+1) * 2$. \#cmplai $(t, t i)$
3 continue
/* the nested do loops that follow make aingle sum series out
/* of the double sum series
do $4:=1, n$
$f=J^{*} \mathrm{~B}$
do $4 k=1, \mathrm{~J}$
$g=k \times ?$
$t 1=0$
t2 $=$.
t1i $=0$.
$t 2 i=3$.
/* calculate $t 1$ and $t 2$. in general integrate over three
/* circles. in some cases the limits of integration are
/* are the same for an integral. this is because the
/* ragion of integration does not include that area.
/* this depends on the values of $f$ and $g$.
/* forst t1
alti $=0$.
a2t1 $=0$.
$a 3 t 1=0$.
a1t11 $=0$.
$a 2+1 i=0$.
$a 3 t 1 i=0$.
/*if (f+g). ge $2 C^{\prime}$ and $C^{\prime \prime}$ don't intersect and $t 1=0$.
if( $(f+g) . g e .2$ ) goto és
/* set the limits for integrating over $C^{\prime \prime}, C$ and $C "$ for $t 1$
$a 1=t-1$.
$a 2=((s * s-1) / f+f) /$.2 .
if(f.qt. (1. -s)) goto 22
/* if f. le. (1-s) there's no integration over $C \prime$ ehange limits and
/* out almaz so that the integral over $C^{\prime}$ is zero
$a 1=-s$
$a 2=-5$
$22 \mathrm{a}=-((5 * s-1) / \mathrm{g}+\mathrm{g}) /$.2 .
$a 4=1 .-g$
if(g. ot. (1. -s)) goto 23
/* if g. le. ( $1 .-5$ ) there's no integration over $C^{n}$, change limits
/* and put a3=a4 so that the integral over $C^{*}$ will be zero
$a 3=8$
$24=$
/* if $C$ is inside $C^{\prime} \& C^{\prime \prime}$ integrate over $C$ only. Ooto $2 B$ for that. if(ff. 1e. (1. -s)). and. (g. le. (1. -s) ))goto 28
23 if((1. $-f * g) . g t$. s*s)goto 24
/*if ( 1 -f*g). le. s*s the intersection of $C^{\prime}$ \& $C^{\prime \prime}$ is inside $C$.
c

C
24. aci $=\operatorname{acog}(f-a 1)$
$\operatorname{ach}=\operatorname{acos}(f-a c)$
$\operatorname{ac3}=\operatorname{acos}(a 3 / 5)$
/* 5 is increased by 0.0001 to keep the argument to acos. Ie. 1.
5
/* be zero
$a 2=(f-g) / 2$.
$a 3=32$
/* transform Jimits
24. aci $=\operatorname{acos}(f-a 1)$
/* (march 31, 1981) why does the bbove stmt for acs not have it?
$a c 4=\operatorname{acos}(a 2 /(s+0.0001))$
$\operatorname{acs}=\operatorname{acos}(a t+g)$
$\operatorname{acs}=\operatorname{acos}(a 3+g)$
/* integrate over $C^{\prime}, C$ \& $C^{\infty}$
gti calculates the integral over $C$ '. The real part of the
integral over $C^{\prime \prime}$ uses the same function, but the
imaginary part uses the negation. "Hence the suitching
of the limits of integration in calculating the imaginary
part of the integral over $C^{\prime \prime}$ :
MDP

## 25 if(if-g).ge. 2 ) goto 10

```
 call causs(gt1, ací,ac2,alt1)
 call oauss(gt2. ac3,ac4, e2t1)
 cali acuss(gt1, ac5, act,a3t1)
 t1 =ifit1 + actt1 +a3t1)/amax
 call causs(gt1i,aci,ac2,alt1i)
 call gauss(gtcic;ac3,ac4,a2t1i)
 call Qauss(gtij;act,ac5, a3t1i)
 t1i = (alt1i +a2t1i + a3t1i)/amax
 gota %.5
 28 call oauss(gci,0.,pi2,t1)
 t1 = t1/amax
 call oauss(gcli,0.,pi2,t1i)
 t1i = t1i/amex
 /* here calculate t2
 /* if (f-g).ge 2 C'& C' don't intersect.
 /* L' is centred at f, CN at g. S.le.f so if f.le.(1.-s) C is
 /* inside both C'& C". In all cases there's no integral over C'.
 if (f.le.(1.-s)) goto 29
/* if f.le.(1.--s) C is insideC'& C*.
 a1tc=9.
 a2t2-0.
 a3t2=0.
 alt天i=0.
 a2t2i=0.
 a3tこi=0.
 a1=f-1.
 22=((s*g-1.)/f+f)/2.
 if(f.gt. (1.-s))goto 26
 A1 = -s
 a2=-s
```

$a 3=5$
$\operatorname{aci}=\operatorname{acos}(f-a i)$
$\operatorname{acz}=\operatorname{acos}(f-\cos )$
$\mathrm{g}=\mathrm{-p}$
call oussigci, 0., pi2, t2)
t2 $=$ t2/amax
call causs(gcli, 0., pi2, t2i)
t2i $=$ t2i/amax
$\mathrm{g}=-\mathrm{F}$
10 fac=ai( $j+1) * \operatorname{con} j g(a i(k+1)) / 2$.
t1 $=$ *t1

t1i = 2 . $t 1 i$
t2i $=$ 2.*2 H
$m 1=1+k$
m2 $=1-k$
if (me. eq. O) goto 113
t1二? ktl
$t 2=\mathrm{r}$. 2
t1i=\%*t1i
t2i-:
$113 \operatorname{spec}(1+m 1)=\operatorname{spec}(1+m 1)+$ fac*cmplx(t1, t1i)
spec $\left(1+m{ }^{2}\right)=\operatorname{spec}(1+m 2)+f a c *(m p l \times(t 2, t 2 i)$
4 contirue
returin
41 do $2 \mathrm{j}=1$, $n$
f피*p
$\mathrm{g}=0$.
$t=0$.
$t i=0$.
if(f.op.2.)goto 2
/* integrate over $C^{\prime}$ int $C^{\prime \prime} C^{\prime \prime}$ centred at 0 .
$\operatorname{aci}=\operatorname{acos}(f / 2)$
call gauss(gt1, O., ac1, t)
$t=4$. $\# t / p i$
call gauss(gtii, 0., aci,ti)
$t i=4$. $t i / p i$
$\operatorname{spec}(1+j)=c o n j g(a i(1)) * a i(j+1) * 2 . \operatorname{cmply}(t, t i)$
2 continue
do $14 \mathrm{j}=1, \mathrm{n}$
$f=\jmath^{\text {\# }} p$
do 14 k=1,d
g=k*D
i* finding t1 and t2
$t 1=0$.
t2 $=0$.
alt2 $=0$.
a2t2 $=0$.
$a 3 t 2=0$.
t1i $=0$.
$t 2 i=0$.
altei $=0$.
$a 2 t \geq i=0$.
a3t2i $=0$.
if ( (f+g).ge: 2.) goto-11-
/* checked to see if $C^{\prime}$ and $C^{\prime \prime}$ intersects if not goto 11 and
c $\quad$ /* ceiculate te
$\operatorname{act}=\operatorname{acos}((f+g) / 2$.
call gauss(gt1, O.,ac1, t1)
$t 1=2 . * t 1 / p i$
$t 1 i=0$.
$C$
11 if( $(f-g) . g e .2)$ goto 100
if(? g+1.).gt. s)goto 12
/* jot C' C" is inside C
aci=acos( $(f-q) / 2$ )
call causs(fte, 0 ., ac1, t2)
t2 $=$ c. *t $2 / \mathrm{pi}$
$t 2 i=0$.
goto 100
/* int C' C" is not all inside C
$12 \mathrm{az}=(f+g) / 2$.
$a 3=((5 * s-1) / g+g) / 2.$.
if(ec lt.a3)aoto 13
$a 2=(f s * s-1$ ) $/ f+f$ )/2.
$a 3=-2$
13 act $=\operatorname{acos}(f-\operatorname{ec}$ )
act $=\operatorname{acos}\left(a a_{2}-g\right)$
c? (march 31, 1431) again why no bias of 0.0001 to g for ac3 ? ac3 $=\operatorname{acos}(\mathrm{a} .3-\mathrm{g})$
act $=\operatorname{acos}(a 3 /(s+0.0001))$
call ousss(fté 0., aci, alté)
call gauss (fté, ac3, ac2, a2t2)
call ousss(ft3, 0., ac4, a3te)
$t 2=(a 1 t 2+a 2 t 2+a 3 t 2) / p i$
call gauss (ftči, 0., acl, alt2i)
call gauss (ft2i, ac2, ac3, a2t2i)
call gauss(ft3i, 0., ac4, a3t2i)
$t 2 i=(a 1 t 2 i+a 2 t 2 i+a 3 t 2 i) / p i$
100 faczai( $\jmath+1) * \operatorname{conjg(ai(k+1))/2.~}$
t1 $=2$ *t1
$t 2=$ 2. *t2
$t 1 i=2$. $t 1 i$
t2i $=2$. $\mathrm{H}_{2} \mathrm{I} \mathrm{i}$
$m 1=j+k$
$m 2=j-k$
if(me eq. O)goto 114
t1 $=$. tl
$t 2=2$. t2
tli=2 tli
$t 2 i=2$. $t 2 i$
$114 \operatorname{spec}(1+$ mi $)=\operatorname{spec}(1+$ m 1$)+$ factemplx(ti, $t i i)$
$\operatorname{spec}(1+\operatorname{R2})=\operatorname{spec}(1+m 2)+$ fac*emplx $(t 2, t 2 i)$
14. continue
return

$50 t=$ ? Nstan(a2-a1)/amax
$51 \operatorname{spec}(1+j)=a i(1) * a i(j+1) * 2$. *t
Br contirue
do $37 j=1, n$
$f=\mathrm{J} \boldsymbol{0}$
do $84 k=1, \mathrm{~J}$
$g=k * p$
c /* at 52 find t 2
$a_{1}=f-1$.
$a 2=1 .-9$
if (s.ge.1.) qoto 53
if (f. le. (1. - 5 )) al=-s
if (g.le. (1.-5)) a2= $s$
53 if (df.ne. 0.) $t 1=2 . * s 2 *(\sin (d f *(f+g) *(2 . * a 2-f+g) / 2)$.

* $-\sin (d f *(f+g) *(2 . * a 1-f+g) / 2$. ) ) / (df* (f+g)*amax)
if (df.eq. O.) t1 =2. *s2*(a2-a1)/amax
c /* calculate te
$52 t 2=0$.
if( (f-g).ge. 2.) goto 54
$a 1=f-1$.
if( (f. 1t. (1. -s)). and. (s. 1t. 1.) ) al=-s
a2 $=3+1$.
if(a2 gt.s)a2 $=5$
if(s. 1t. 1.) a2 $=s$

* $-\sin (d f *(f-g) *(2$. \#ai-f-g)/2. ) )/(df*(f-g)*amax)
if((df. eq. 0.). or. (f.eq.g))t2 = 2. \#s2*(a2-a1)/amax
$i f((f+g) . g e .2) t 1=$.0 .
54 facmai( $j+1)$ \#ai $(k+1) / 4$.
$m 1=j+1$
an $2=1-1$
if(n2 eq. O)goto 143
$t 1=2$. $t 1$
t2m? $=t 2$

```
 143 spec(1+m1)=spec(1+m1)+fact2. #t
 spec(1+mR)=spec(1+m2)+fac*2.*t?
 t1=0.
 t2=?
 84 continue
 return
 end
 function ft2(x)
cf
 common/fig/f,g
 comman /trans/s,n,p,df,ai(41),spec(81)
 comolex ai(41), spec(81)
c
 ft2 = 0.5*(1.-cos(2*x))*cos(df*(f-g)*(2.*\operatorname{cos}(x)-f+g)/2.)
 retura
 end
 funetzon ft3(x)
cf
comroon/fig/f,g
 common /trans/s,n,p,df,ai(41),spec(81)
 complex aj(41), spec(81)
c
 cf comman /transis,n,p,df,ai(41),spec(B1)
 comman ffigff,g
 compjex ai(41), spec(81)

```

    return
    end
    function gei(x)
    C
* cos(x))
return
end
function gt1(x)
common/trans/s,n,p,df,ai(41), spec(81)
common /fig/f,g
complex ai(41), spec(81)
C
gt1 = 0. 5*(1. - cos(2. \#x)) \#cos(0. 5*df*(f+g)\#(2. \#cos(x)-f-g))
return
end

```
 common/trans/s, n, p,df, ai(41), spec(81)
 common/fig/f,g
 complex ai(41), spec(81)
 c
 common /trans/s, nop,df, ei(41), spec(E1)
 comrion/fig/f,g
 complex ai(41), spec(81)
 cf
-
 \(f t 21=0.5 *(1 .-\cos (2 . * x)) * \sin (d f *(f-g) *(2 . * \cos (x)-f+g) / 2\).
 return
 end
 function ft3i \((x)\)
 comriun /fig/f,g
 comusn /transis, n, p,df, di(41), spec(81.)
 compiex ai(41), spec(31)
 returi
 end
 function geid \((x)\)
 comain (transis, n, p, df, ai(41), spec(81)
 comsion /fig/f,g
 compiex ai(41), spec(G1)
 * \(\cos (x))\)
 return
 end
 function gtij(x)
 combun /trans/s, \(n, p, d f, a i(41), \operatorname{spec}(81)\)
 comrtin/fig/f,g
 compiex ai(41), spec(81)
 \(g t 1 i=0.5 *(1 .-\cos (2 . * x)) * \sin (0.5 * d f *(f+g) *(2 . * \cos (x)-f-g))\)
 return
 end
 function gt2i \((x)\)
cf
 function gteロスJ
 \(f t 3 i=0.5 * s * s *(1 .-\cos (2 . * x)) * \sin (d f *(-f+g) *(2 . * \operatorname{stcos}(x)-f-g) / 2\).
 \(g \operatorname{ci1}=5 * \operatorname{s*}(1 .-\cos (2 . * x)) * \sin (.5 * d f *(f * f-g * g)) * \cos (d f *(f+g) * s *\)
 \(g t 2 i=0.5 * s * s *(1 .-\cos (2 . * x)) * \sin (-0.5 * d f *(f+g) *(2 . * s * \cos (x)-f+g))\)
 return
 end```

[^0]: subi:utine percoc(ilmbd)

