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Additions to the Imaging Capability of SAMPLE
Mark D. Prouty

1. Introduction
As feature sizes decrease in optical lithography, becoming smaller than the
ratio of wavelength to numerical aperture, the faithfulness of imaging is
significantly reduced. This makes computer simulations of optical lithography
. more difficuilt, first of all because more general techniques, such as phase shift
masks, are’ being used to improve the image and secondly becausz.a the
differences between 1 dimensional and 2 dimensional patterns, such as line end
shortening and rounding of square apertures, are more important. Therefore,
the capabilities of imaging phase shifting masks and 2 dimensional masks have

been.added to the processing simulation program SAMPLE.

The second chapter of this paper outlines the details of the changes this
author made in the program to calculate images of phase shift masks. The next
chapter outlines some results obtaimed using the new program. The fourth
chapter outlines the use of the'2-D code written by Shankar Subramanian. Since
this work was never documented or implemented in the SAMPLE program this

chapter will serve as a user's manual for 2-D imaging.
2. Calculating Images of Phase Shift Masks.

2.1. Introduttion

The resolution in optical lithography is limited by proximity eflects, that
is, the spillover of diffracted light between adjacent features. In conventional
lithography, 'hght from each feature arrives in phase between them, causing a
slightly lightened area where a dark one is-desired. However, if the light coming

from one of the features is delayed by a coating so that il arrives 180° out of



4

phase, the two diffracted beams will cancel, and the desired dark area will be
obtained.

A mask using this technique, first proposed by Levenson, et al.(1), has
been dubbed a phase shift mask. Levenson, using the basic case of a 180° phase
shift, .predicted theoretically and verified experimentally a much increased con-
trast. The success of this phase mask approach has raised many conceptual and
practical questions. Therefore, we decided to ‘enhance the capabilites of the
SAMPLE program.

The SAMPLE program calculates images using Hopkins(2) theory of partially
coherent imaging. Briefly, the image intensity is given as tfxe convolution of the
Fourier transform of the mask intensity distribution with a function known as
the transmission cross-coeﬂ'icient (TCC). The TCC is in turn the convolution of
two functions, one over the condenser aperture and the other over the objective

pupil. More details of this theory will be given later.

Previously, the SAMPLE program calculated images of ;'eal masks whict;
only required calculating the real part of the TCC. We have modified the pro-
gram to calculate complex coefficients for the Fourier serigs of the mask and to
also calculate the imaginary part of the TCC. This is a more complicated pro-
cedure, but many symmetries could be exploited to shorten the numerical
integration. 'In addition, the program will accept masks with up to 33 different
regions with arbitrary amplitude transmission and phase shift. This method
requires slightly more CPU time than the previous SAMPLE version, up to twice
as long. This time is from 2 to 12 CPU seconds on a VAX 11/780 with UNIX,
depending on the size of the image. For an image period of 2 microns, for exam-

ple, 4 seconds are required.



2.2. Mathematical Methods

Kintner(3) gives details of the partial coherence theory, and
Subramanian(4) shows how the theory is used in the SAMPLE program. There it

is shown that the transform of the image intensity may be given as

n=$ {a,.a.:unf,. O+ 5, Bn i T(n 4y I Y40 () =7 )]aw, 1)

where f, equals the reciprocal of the period.

T(f'.J'"') is known as the transmission cross coefficient and is given by

T =SS 9) KF+1'.9) K'(f+1". 9) df dg @)
where J, the Fourier transform of the mutual intensity function at the object is
11 f3+9%s

where s is the partial coherence factor and K, the objective pupil function is

=2mi{f2+g? '
= P %(f ) Ji+gict (4)
0 Jetge=t1
Here, 4 is related to the defocus in microns by
NA?
b=d=— (5)

The a, 's are the fourier coeflicients of the mask transmission, so that F(z)

, the intensity and phase of the light at the mask is

Flz)=a, + f: a, cos2rnf,z (8)
n=1
For masks without phase :shifts the a, ‘s are real. Here, however, they may be

complex.

These equations lead to a more specific expression for the TCC

o= exp-2mudly 2~ %42f (£'~f")] df dg (7)

where () is the region of intersection of 3 circles, C, C’, and C" . Cis the region

where J(f.g) is non-zero, viz. a circle of radius s centered at the origin. C'is
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the region where ‘K(f +f', g) is non-zero, viz. a circle of radius 1 centered at
(=7'.0) and .C" is the region where X°(f +/", g) is non-zero, viz. a circle of
radius 1 centered at (=f", 0) . Several-cases of these intersections are shown in

figures 1-4.

2.3. Implementation

The specific formulas used in the program to integrate equétion (7) are
dependent upon the geometry of the circles C, C', C" . For the case shown in

Figure 1

ReT(f". f")= f f cos -ZWu{f’z-f"z+2f(f'-f")] df dg
= _ZVTW cos -m[r 2-1tees (7 '-f")] df
+ z VsT=J* cos -mp"—f"*wf (f'-/”)J af

1T '
+ f Vi-(f+/")? cos -2muif 2-f "Re2f (=S )} af (8)
Je

ImT is identical, except cos is replaced by sin.

These integrands all contain radicals unsuitzble for Gaussian quadrature.
Therefore, a transformation of the form J =scosz or f+f’=cosz is made.
Then the first integral becomes

i sin®z cos—21rp,{/ 2= f242(cosz—f N[ '-f")} dz ' (9)
cosi(r+17)

With the further changes sin?z - (1-cos2z)/2 , f’+~f, and
cos z - cos(n—z) ( which just changes the limits of integration), these integrals
are encoded in the program as functions gtl and gtli (gt1 calculates the real
part and gtli calculates the imaginary part). The second integral becomes func-
tions gt2 and gt2i. The functions gt1 and gtli are also used to integrate the

third expression.
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When the geometry is as in figure 2, gcl and gcli are used to integrate (7).
Further, for the case where s > 1, ft2(i) and ft3(i) are used for:cases shown in

figure 3 and 4, respectively.
S Results Using the Enhanced Program

3.1. Introduction

Here, we explore a number of the phase mask imaging issues raised by
Levenson’s work. The first question raised is how much the contrast :of periodic
features depends upon defocus and the amount of phase shift used, anc Low this
dependence changes with feature size. The second issue is what size defects in
the phase shifting material may be tolerated. We also explore t:he possibility of
making clear fleld transitions between phases without causing printable defects.
The final issue is whether unprintable proximity features may be used to

enhance the image of isolated features.

3.2. Results

Image calculations of the new extension to SAMPLE indicate the marked
improvement in image quality possible in using phase-shift masks. Figure 5
shows the intensity profile for a periodic series of lines and spaces D.75 um in
width (in all simulations throughout this chapter the wavelength used is 0.4353
um, the lens has a numerical aperture of 0.28 and the defocus is 1.5 um). Curve
B is the image obtained with no phase shifting, and curve A is that obtained with
every other space phase shifted 180°. The large improvement in contrast is due
both to a decrease in the minimum intensity, as well as to an increase in the
maximum intensity. This increase is due to the extra path differenceiinvolved in
the liéht from both images. The beams that arrived out of phase in conventional

lithography now arrive in phase.



This improvement is quantified more fully in figures 6 through 9. In
figure B we plot contrast ( (lem)/(lm-l-fm) ) vs. defocus for a partial
coherence factor (sigma) of 0.7. Figure 7 shows the same thing for a sigma of
0.3. In both cases contrast is improved. The improvement is much greater for
the lower sigma values, which is what we would expect from the mutual coher-
ence function (MCF). This function gives the degree of correlation of the
inéident light as a function of distance across the mask. The width of its central
lobe is equal to 1.22\/ NAo. Since phase changes are significant only for phase
related beams, the larger the central lobe of the MCF (caused by a smaller

sigma), the greater we would expect to'be the effect of phase shifts.

Examining figure 7 more closely, we see how the phase shifting not only
increases the level of contrast, but also makes the contrast more focus tolerant.
This graph clearly shows the steady improvement possible by increasing the
phase shift up to 180°. However, we shall see later that we must pay a price for
this.

In figures B and 9 we now plot rcontrast vs size, still for periodic
sequences of lines and spaces. These curves show that for widths of less than 1
pum, steady contrast improvement may be obtained by increasing the phase
shift. Above 1 um proximity effects are lessened, and the two features are
further apart than the diameter of the MCF. Therefore, little improvement is

possible for features larger than 1 um.

Improvement in image quality, unfortunately, comes at the price of an
improvement in defect.printability. In figure 10 we plot the image intensity for
0.2 um wide 180° and 80° phase shift material defects on clear areas. This pro-
duces surprisingly large ripples in the intensity, which may leave resist remain-
ing on the wafer in what was supposed to be a clear area. For features this

small, however, the assumption of uniform intensity across the opening in the
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mask, made by the image calculation =lgorithm, is not exactly true and these

results only give an approximate indication of the problem for a 1X system.

Defect printability may be reduced :by using phase shifts of less than
180°. This is shown in figures 11 and 12 where we plot, for sigmas of 0.7 and 0.3
respectively, image intensity minimum vs. defect size. Thus, by lowering the
phase angle, defect printability may also be lowered. For comparison, the con-

trast of an opaque defect is also shown in these figures.

The tradeofl between defect printability and contrast improvement is
summarized in figure 13. There we have plotted, vs. defect size, the phase which
gives an intensity minimum of 0.5, which is the minimum tolerable intensity. We
have also plotted the phase angle which gives periodic features a contrast of
0.85, which we have taken as the minimum allowable feature contrast. As an
example, if we wanted periodic features 0.75 um wide, we need at least a phase
shift of g0°. Moving to the left until we-hit the ciet‘ect line, then dropping down

we see that the largest allowable defect at that phase angle is 0.2 um.

In a 2-dimensional mask, it would be desirable for all adjacent features
to be out of phase with respect to each other. This is similar to the problem of
coloring a map with only 2 or 3 colors. Thus, it might be desirable to switch the
phase of different parts of the same opening, that is, to color parts of the same
country different colors. This type of phase transition, however, will cause a
printable glitch as seen in figure 14. This Hgure plots the phase shift depen-
dence of the image intensity minimum of a large clear region next to a large,
clear, phase shifted region. We see profiles for a 180° and 90° phase transition in
figure 15. Obviously, this type of phase-shift will cause a defect to print.

We may reduce the contrast of this type of transition be making a smooth

change in phase over a small length. Figure 16 shows profiles for a 180° phase

shift made smoothly (by making 12 steps of 15° each) over a length of 0.6, 0.9,
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and 1.2 um. This reduces the contrast, but separating the 0° énd, 180° regions
by more than 1.0 um defeats the purpose of having the phase transition. Thus

even this smoot.h' phase transition method is no good.

The discussion of printing features up to now has involved periodic
sequences of lines and spaces. Another use of the phase mask is to add non-
printable features next to an isolated feature to enhance its image. Figure 17
shows an attempt to improve the image of a .62 um wide' isolated line (this size
was chosen 'because the intensity peak of the unenhanced image drops to one
half the clear field value). Curves A through C are for the line with 2 0.3, 0.2, and
0.1 um wide 180° phase shifted proximity feature on each side, respectively.
Curve D is for the line by itself. The center to center distance between the line
and the proximity feature is 1.15 um in ail cases. The maximum intensity of the
line increases as the proximity linewidth increeses, and the peak becomes

slightly narrower, making this a potentially useful technique.

3.3. Conclusion

We see, then, that phase masks may improve both periodic and isolated
features. The size of periodic features may be reduced from 1.2 um to 0.5 um
and still have a contrast of 0.85 by using phase shifts. This improvement is
robust with respect to phase shift angle; 120° gives nearly as good results as
180°. Below 120°, however, improvement does drop ofl. The peak intensity of
isolated features may be increased 30 percent by using unprintable proximity

features. This improvement decreases for phase shifts of less than 120 °.

We have also seen that phase transitions above 90° will produce defects.
Thus, clear Held transitions are not viable even when the transition is relatively
smooth. Another key problem is the printability of small defects. We bhave
" shown that a 80° defect prints about the same as an opaque defect, and shifts of

120° end 180° cause defects twice as small to print. With the limitations of no
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clear field transitions and proper defect control very significant improvements

in aerial image quality are possible with phase masks.
4. 2DUser’s Manual

1.1, Introduction

Not included within the SAMPLE program, but related to it, are a set of pro-
grams -written by Shankar Subramanian for calculating 2 dimensional images.
Programs for plotting contour plots and profiles of the images, written by this

author, are also included. This chapter will outline the use of these programs.

4.2. Running the Image Program

Two versions of Shankar's imaging program exist. The program image.out
calculates images with arbitrary defocus, while nodef.out calculates images with
no defocus. Both programs assume A = .436 um , NA = 0.28, and have the same

1/0 format.

Each program reads 8 parameters, zs,zl,ys,yl.s.def, in free format from a
file named lines. The first four parameters specify the mask intensity in the fol-
lowing way. The mask intensity is assumed to be a separable function of = and Y
Le.

I(z.y) = X(z)Y(y) (10)
X(z) has period zs +zl, and Y(y) has period ys+yl. The program defines X(z)
in the first period as follows

X(z)=1{1 -rs/2 €2 < 2z5/2 (11)
0 zs/2 sz < (zs+zl)/2

Y(z).is defined similarly. The parameter s is the partial coherence factor, and

0 <—(zs+zl)/2szs< —zs/2]

def is the defocus in um. The program nodef.out ignores dej.

The output of the programs is written to an unformatted file called rint,

which contains a 100 by 100 array of intensities, foliowed by the two parameters
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dz and dy. These two parameters are the spacings between z and y points,

“= 3] =

Tint contains intensities for one :quadrant of one period of the image, which,

respectively, inunits:of A/ NA

‘because of the = and y symmetry, contains all the information of the entire
image. rint(1,1) is the intensity at the origin, rint(1,100) is the intensity at
(0, 89dyN/ NA) . Tint(100,1) is the intensity at ( 99dyA/ N4, 0). The interactive
programs profile and contour sets up a file of points called f77punch? suitable
for plotting with the SAMPLE plotting programs.

4.3. How the Program Works

The 2-D program uses the same partial coherence formulas as the 1-D case,
except, of course, in two dimensions. This makes the geometry more compli-

cated, since the circles C', and C' are no longer centered on the z axis.

The main program calculates the ¥Fourier coefficients of the mask.
Currently, the method used is a specific one 't‘or the separable function of z and
y assumed. The rest of the | program, however, does not require that
simplification. Therefore, a more general routine for calculating Fourier
coefficients could be added. The only requiremeﬁt is that the intensity

transmission be real, and periodic and symmetric in both z and y directions.

After computing the Fourier coefficients, main calls spect, the subroutine
which calculates the transform of the image intensity, performing many summa-
tions similar to the 1-D case. The transmission cross-coeflicients, now functions
of four variables, are calculated by the function t, two versions of which exist.
The file crossi.f contains the version for the no defocus case, while the general
case is located in crosd#2o.f, each of which requires several functions. The

required modules are inain.f, croes1.f (cress2o.1), arc.f, rsecl].inside.f, int.f,
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and specl.f.

The run time for these programs varies roughly proportionally to the area
of the image period. The .prograrn image.out requires about 20 CPU seconds on a
VAX 11/780 with UNIX per square micron, while nodef.out requires about half
that. .
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Appendix 1
Comparison of old and new SAMPLE images.

The following table shows a comparison of the output for a periodic series of
0.75 um lines and spaces calculated three different ways. First, using SAMPLE
1.5b and input A, second using SAMPLE 1.5c and input A, and third using SAMPLE
1.5c and input B. All images are identical, as expected.

distance : intensity
4m 1.5b input A | 1.5c input A | 1.5¢ inputB
0.000 .220 .220 .220
0.031 221 221 221
0.081 .225 .225 .225
0.092 231 .231 .231
0.122 .240 .240 .240
0.153 251 .251 .251
0.184 264 .264 264
0.214 .280 .280 .280
0.245 .298 .298 .298
0.276 .319 .319 319
0.308 .342 .342 342
0.337 .387 .367 .367
0.387 .393 .393 .393
0.398 420 .420 .420
0.429 .449 . .449 449
0.459 AT T4 AT7
0.490 .505 .505 .505
0.520 .533 .533 .533
0.551 .558 .558 .558
0.582 .582 .582 .582
0.612 .802 .802 .802
0.643 .619 .619 .819
0.873 .633 .633 .833
0.704 .842 .642 .642
0.750 647 847 .647
input A: proj.6 input B: proj .6 ,
lambda .5 lambda .5
trial 3101 trial 3101
linespace .75 .75 trial 1900.7510.75
run i runl

end end
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Invoking the new SAMPLE routines

The new routines are invoked through the ‘trial 19’ statement. Its form is:
trial 19 (ampl, phasel, distl), ... , {ampN, phaseN, distN )

where amp, phase, and dist specify the amplitude and phase (in degrees)
transmission for a region of length dist. Up to 33 regions may be specified.

The program then makes an even, periodic extension of this function It does
so by first halving the length of the first and last regions. This now forms one
half-period of the function. The other half-period is the mirror image of the
first.

For example, the statement,
trial 191 180.7500.510.75005

produces:

25 Sl 5 25

- e e e o el a—
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Appendix 2

The following is an inpuf. example for image.out The flle lines contains the
one line: 1.0 1.0 1.0 1.0 .3 1.5 . Running image.out, then contour, and plotting
the flle f'77punch? produces:

1.00 —

Distance (um)

+ t 4
0.688 0.880 1.80 Distance (um)

These routines are currently located in the directory,

/od/sample /prouty/Twodim.
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Running profile, and plotting f77punch? produces:

1.80 —

9.6080

8.400

Intensity

0.280

CPU time for calculating this image was 20 seconds.
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Intensity
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. Appendix 3
Comparison of Goodman and Subramanian
The following table compares the intensity at the center of small isolated
squares of different sizes. Goodman's program was run by this author while
working at IBM Watson Research Center. As shown, Subramanian’s program gives -
identical results. .
Bize A/ NA ~Goodman Subramanian
1.0 1.10 ¢ 1.165
0.8 94 1 -.954
0.7 7% .762
0.6 571% 547
0.5 3¢ .338
0.4 .16 A7
0.3 .064 .064
; These numbers were extrapolated from a graph and are accurate only to
£0.02.
The following figure plots the intensity at the center of small opaque and
small open squares and, for comparison, lines.
‘ Oz 1 ! 1
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F’1gﬁre 1. Region of integration for equation (7)

Figure 2. Region of integration for equation (7)
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Figure 3. Region of integration for equation (7)

Figure 4. Region of integration for equauui (7)
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Figure 8. Contrast vs. Feature size for series of lines and spaces.
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Figure 9. Contrast vs. Feature size for series of lines and spaces.
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m..mE.m 10. Intensity profile for 0.2 um wide phase shift line defect.
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Figure 14. Minimum intensity for clear field phase transition.
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Figure 15. Image profile for clear field phase transition. Phase shifting material
is on the right hand side.
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Figure 16. Image profiles for smooth 180° ‘t.ransition over a distance of 0.6 (A),
0.9 (B), and 1.2 (C) um.
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Figure 17. Image profiles for 0.82 um line with 0.3 um (A), 0.2 um (B), 0.1 um
(C). and no (D) 180° phase shifted proximity feature. Center to
center distance is 1.15 um in all cases.
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subl wvtine clmbtfi(ilmbd)

clmefr computes the diffraction limited fourier components for
the various rases. a maximum of 41 frequencies is taken for the
linespace and 41 frequencies are taken for line and for space.
note — each horizontal point is the center of a cell.
(prnjection cuyetem only.)

compiex Fesamsk(41), Pcaimg(al)

comn.an /chwind/ window, edge, wndorg

common /fouser/ mxnmfr, nmfrcp, fsamsk(41), fsaimg(4l)
comron /horima/ deltx, mnhpts, nmhpts, horint(50)

common /imq2pi/ Tna, minutf, nmutfc, rmtfwt(4l)

commuy /img3pr/ iincoh.iparco,ifulco, icoher,sigma, dfdist
commsn /iol / itermi.,ibulk, iprout, iresvl,iin.iprint,ipunch
comnnn /ob msk/ mline, mepace, mlnspa, mirreg, maskty
comery /objmed’/ rlw TSW, TIw, rsw2

comw:n /optic / curwl, vi,vmax, thorin(b0) -
commnn /spectr/ mnlmbd, nmlmbd, rlambd(10), relint(l0)
comrn Scmask/ numreg, am(100), phi(100),dsize(100), zperid

/4 set maximum frequency for-coherent, partially coherent,

/% 3¢ incohere::t case. -

if (icoher .e3. iincoh) wvmax = 2. #rna/rlambd{ilmbd)

if (1-oher .eq. iparco) vmax = (rna/rlambd(ilmbd))# (1. +sigma)
if ¢(1:oher .eq ifulco) vmax = rna/rlembd{ilmbd)

if (n skty .ea. mline) gote iCO
if (n-skty .oy, mspuce) goteo 00
if (m skty .euy. minepa) aoto (00
it (n skty .eq. mivreg) guto 400
it (noskty .oq 5 ) goto VOO
calu zmgmsy ()

/# a.. k is a Jline

delix = windrw s float{nmhpits-1)
wndore = . S%¥rlu-edge

nmETCE T manuiy

vl = vmax/flect {mxnmeér—1)

Tsw = 1. /vi T lw

calt zmymsg ()

/# cawcvulate the fourier corifficents For the pattern
cali tourcf(. true., rsw Tlwa, rsw2, rlw, fsamsk, mxnmér, nmfrcp—1)
got 77

/* mu=k is a space

deltx = window/float(nmhpts-}3)
wndorg = . 5% rw—edge

nmMErcp = mxninir

vl = vmax/float (mxnmfr-1)

Tlw s 1. /vy - 1sw

call :mamsg(3)

/# caiculate the fourier cocifficents for the pattern
call fourcf(. False.,rsuw Trluw2, rsw2, rlw, fsamsk, mxnmér, nmfrecp—1)
gots 97 .



n

/% m:k is g linespace

deltx = windew/float(nmhpts -1)

wnds7Te = | 5¥%vlw - edge

/# t#ind the Fundamental Ffrequency for the linespace case
vi:z 3. /(rlu + rsw)

/% find the number of frequency components that need to be taken
itewp = int{vie-x/vl)

nmfiit = itenp + 1

if((vaax/vi-Flocat(itemp)). ge..95) call imgmeg (7)
ifG:ufrep. 1t mxnmfr) goto 450

calt :mymsg(is)

nmfirce T mxn.a

/% caiculate the fourier coriFficents for the pattern
call Fourcf(.true..rsu:rlw?.rswa.rlw,Fsamsk;mxnm#r.nmfrcp—l)
th-‘ tetgty

/% T.;0k is a ivreqular pattern

periis = vswhkrlw+ Of(rswl+1-1w2)

deltx = windrwsFloat(nmhpts-1)

wndnis = | S#vlw - pdge

/# tind the Fundamental frequency for the linecpace case
vl - .. /perind

/7# find the number of frequency componets that need to be takin
itemrs = int(vwax/vl)

nmf: v = itenp + 1

iF((vmax/v1~Float(itemp)).ge..95) call imgmsg(7)

it (nufrcp. 1t. mxnmfr) goto 15D

calt :mqmsg (7))

nmfTcr = mxnniy

/% ~aiculate the fourier coeifficents for the pattern
cail Fourc?(.true..rsw;rlwe-rswa.rlm.Fsamsk.mxnm#r.nm?rcp-!)
gqot::

pers:ssi = zperid

deltx = windeow/float(nmhpte-1)

wndovu =  Drecize(l) -edge :

/# #¥ind the furdamental frequency for the linecpace case
vl - . /pericnd

/# Firnd the number of Frequeucy componets that need to be taken
itemp = int(vm-x2/vl)

nmficer = itemp + §

if(tvnax/vi-ricatl(itemp)). ge..95) call imgmeg (7)

if (rafrcp. 1t nanmfr) goto HHO

caly smgmsg ()

nmfrep = mxnmiy

/% caiculate the fourier corifficents for the pattern
call cfour(fermsk, nmfcrp-1)

Teta: -
end



subroutine cfour(zcoeff, nuacof)

complex z2coeff(4}1)

comaon /cmask/ numreg. am(100), phi(100), dsize(100), zperid’
dimension x(100), ang(100) L
x(numreg)=dsize (numreg)/2

x{1)=dsize(1)/2

do 10 i=2, numreg-1
10 x(i)=dsize(i)

c
p=zperid
pi=3. 1415924
w=2¥%¥pi/p
c
c convert degrees to radians
c

do 20 i=1,numreg
20 “ang({ii=phi(i)/360. »2%pi

aime=0. .

reo=0.

do 30 i=1, numreg )

Teo=Teo+am(i)#x(i)%cos({ang(i))»2/p
30 aimo=aimo+am(i)#x(i)#sin(ang(i))=2/p

zcoeff(1l)=cmplx(ren, aimo)

n

do 1000 n=1,numcof
x1=0.
x2=0.
Treo—D.
aimo=0.
do 40 i=1, numreg
x2=x2+x(1)
re1=2*am(1)*(51n(n*mle)ésin(n*u*:l))l(nipi)
Teo=reo+reiscos{ang(i))
aimo=aimo+rel#sin(ang(i))
x1=x2

40 continue
zcoeff(n+i)=cmplx(reo, aimo)

1000 continue
return
end
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subrTosutine Fourcf(lext.rsl.rl?.rsa.rll,ai.n.numco#)

the frcurier coefficients for the mask amplitude transmission are
cal. »*ated. '

Tsl\ = the first space specified for the pattern
Tl = the second line in the pattern

rs-. = the sec:nd space in the pattern

™11 = the last line specified for the pattern

*#% rs2 ard r12 are not need and should be zero for ordinary patterns
##%%® if lext is specified true, then the pattern is centered around a

lin: instead around the space in resist, therefore the
Fourier coefficients are calculated with abeolute zero the
cent:ir of 11}

comsricx ailn)
log®:e.l lext

pi= j41593
Tpes< TSI 4 ikl 4 0O % (1l + plD)
ai(l) = (rsl + 2.0 # rgp) / Tper
if {J:xt)goto iS50
3¢ 100 § = 1, numco#f
filyrl) = (2.0 /7 (floct(y) = pid)) =

& (sin(float( ixpie pgy 7 Tper) -
& sin(float(y)upiw(prgy + 2. 0r(rla+rs2)) 7/ rper) -
% sin(float( ) epis(rsl + 2. 0%r12) / rper))
teutinue
AN G9y

150 do -~ g = i, numcof

ar(y+1) «+ (-2.0 / (Floal(y) # pi)) =

& (sin(Float(J)ﬁni# rll / rper) +
& sin(float(y)#pin(rly + 2. 0#(r12¢rg2)) / rper) -
% sin(float(y)upin(ril + . O%¥rsZ) / rper))

00 contirue
797 retirp

end
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subiivtine pavco2(ilmbd)

this subr is a modified version of Mike O’loole’s subr parcoh.

It usrs the values of rlw and rsw calcvlated in subr image

to taiculate the Fourier coefficients for the mask amplitude
trancmrission (extended as an even periodic function if necessary)
and places them in the array ai(41). 1t then calls subr cross
which calculates the Fourier coefficients for the image intensity
pattern and lecves them in the array spec(31)

the common bilcocks /trans/ contains ai(41), spec(81l), s (siama),

n (the number of spatial Frequency companents (at most 40)),

and dF (normmlised defocus).

compiex fsamsk(41), fsaimg(al)

comeiex a3i(4l), spec(dly

comerun /chwind/ window, edge, wndorg

comns: /fousaer/ mxnmfr. nmfrcp, fsamsk(41), fcaimg(4l)
comman /horimn/ deltx:. mnhpte, nmhpts, horint(50)

comutn /imgfla/s imgf1(35)

comnan /ima2pv/ rna,mxnwtf, nmutfc, rmecfuwt(4l)

commt /img3py/ iincoh, iparco,ifulco,icoher,sigma, dfdist
comroa /iol / itermi, ibulk, iprout.iresvl,iin,iprint, ipunch
comman /optic / curwl,vl,vmax, thorin(H0)

comnun /spectr/ mAnimbd, nmlmdbd, rlambd(10), relint(10)
comnan /trans / s,u.p,df,3i(41), specl{ll)

comen /0b mek/ mline, mspace, mlinspa. mirreg, maskty
cem®oa /obimes/ Tlw, Tsw, Tluwd, Tsw

comnon /cmask/ numreg, am(100),phi(100),dsize(100), zperid

s=51%%a
if (10gfl(4). ea. 1) write (iurint, 1111)
formst(///,9x, 43hno diagnostics are available for shankar-s .,

27hpartial cnhfrence routines. )
pi - . 14159200358
rper = Tswerlwt2 O#(1-swa 1 1wd)

if (n-skty.eqa =) Tper = zperid
p = 1iamhd(ilmhd)/(rna*rper)
df = . #pizndfdistérnatrna/rloembd(ilmbd)
n = iat({1 +c)5p)
if &1 .1t 40) goto 100
10



- /#% (why is there no check for nd{=07 march 25, 1981)
/#%# the Faourier coefficients for the mask amplitude transmission
/# ~v- now caiculated.
o0 if (a.skty. ea. &) call cfourlai,n)
if (nu.skty. ez &) goto 10!
call fourcf(. false.,rsuw rlwd, vswa, rlw ai, 41, n)
10} call (roes
orirvi={(-rsw/¢ —edqge)/Tper
if(mo=kty. eq. mepacelorigin=(1rsw/2. —edge)/rper
if(mackty. eq. mirreglorigin=((rper+rlw)/2. O-edge)/rper
if{msckty. eq. b) origin = (deize(l)/2-edge)/vrper
XxX=gt 51N
na P -
deltuy- window/{{rnmhpts—-1)#rper)

i A 2 IR 2 B

4
L
<
c
do **>° J)=1,n¥
158 cGn:i° ue
¢
. .
L

do e y=l,nm':ints
thevin(y)=nnee(l)
div =00 k:=1, 5o
s2q4=realispec(k+l))
thorin(j)r thorin(j)+zmag#cos(2 #pitk#x+zphas)
¢'00 citinue

x- s~delty
400 canty- ue .
c /# accumulate the intensity in horint.

do ‘v ithpt=l,nmhpts
h~rint(ihpt) = horint(ihpt) + relint(ilmbd)#thorin(ihpt)
400 convi-ve .

rety:
end
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c??

n

nnnon

subroutine cross

common /iapfl / iapert,isquar,icire
common /trans/s,n, p.df, ai(41),spec(B8l)
comrmon /fig/f: g .

complex ai(41), spec(81)

compiex fac .

external gcl,gtl, gt2, ft2, £13

external gcli,atli,gt2i, ft2i, Ft31

/% sot all elements of spec to zero
do 1 1=1,81
spac(y)=¢0.0.0.0)
continve
spec(1)=ai(1)*con39(ai(1))
pi=3. 14159265338
pi2=pi/2.
/% circular and square pupils are handled separately
/% the following line was present in a previous version.
/% whu? (march 31, 1981).
if (n. eq.0) return
if (1apert. eq. isquar) goto &6
if tispert.ne. icirc) return
/# sey amax, the max. area of overlap
amax == s#gipi
if (s.gt.1.) awax=pi
/% Por circular pupils s>1 and s<i are handled separately
it (s .gt. 1.) goto 41
/% Por circular pupils: C is a circle of radius s at the erigin,.
/# C’ and C" are circles of unit radius. C’ is centred at # For
/% ¢t " is centred at 0, for t1 at -g and for t2 at +g. The
/# region of integration is the intersection of these circles.
da 3 3= 1L,n
#= g4
t=0. . -
£i=0. . .
/% for t: centre C* at O by setting g=0
g=0.
/% set the limits of integration over C and over c’.
al = f-1.
a2 = ((ses—1.)/¢& + $£)/2.
ad = s
if(f. gt. (1. -s))goto 21

c i# C isn’t inside C’ goto 21, if it is inside integrate over C only

c the
21

call gauss(gcl, 0.,pi2, t)

/% normalise t by dividing by amax

t=2. #t/amax

call gauss(gcli,O.,pi2,ti) _

ti=n2 «ti/amax

gaoto 5

integrand has been transformed by v = cos(z). Transform the limits
acl = acos(f—al) o

ac2 = ACOS{P—BR) | s i o

ac3 = acos(al3/s) Rt e N

~. " - e
o s i + ot =acte SaSE o= et - ———
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/% why doesn‘t the stmt for ac3 have the bias of 0. 0001 ?
ac4 = acos(a2/(s+0.0001))
call gauss(gtl, acl, ac2, ait)
call gauss(gt2. ac3, ac4d, a2t)
t = (alt +a22t)*2. /amax

call gauss(gtli,acl,ac2 alti)
call gauss(gt2i,ac3, ac4d a2ti)
ti = (alti +alti)#*2. /amax .
spec(1+J)=cnnjg(ai(l))*ai(;*l)lZ;*cmpli(toti)

continrue '
/% the nested do loops that follow make & single sum series out
/% of the double sum series

do 3 ;=Lin

f=)%0

do 3 k'—"’»J

9:}&9

t1 =3.

2 =0,

tii =C.

t2i =

/# calculate t1 and t2. in general integrate over three

/% circles. in some cases the limits of integration are

/% are the same for an integral. this is because the

/% region of integration does not include that area.

/% this depends on the values of # and g.

/% fixrst €1

alti =0.

a2t1 =0.

a3t =0.

altii =0.

a2%tli =0.

a3tii =0.

/% .if (f+g).qec. 2 C’ and C" don’t intersect and t1=0.

if({f+g). ge.2 dgoto &5

/# set the limits for integrating over C’.C and C" for t1

ar = t-1.

a2 = {(s#s=1.)/# + f£)/2.

. if(f. qt. (1. -s))goto 22

22

23

/% 1f #. le. (1-s) there’s no integration over C’,change limits and
/# sut al=a2 so that the integral over C’ is zero

at = -8

a2 = -s

a3 = —((sws—1.)/g +g)/2.
ad = 1. -g

if(g. at. (1. -s))gotao 23

/% if g. le. (1. -3) there’s no integration over C*,thange limits

/% and put a3=a4 so that the integral over C” will be zero

a3 = 8 .

ad4 = s

/% if C is inside C’ & C* integrate over C only.Goto 28 for that.
if((#. le. (1.-8)). and. (g. le. (1.-8)))goto 28

if((1. —~fug) gt. s#s)goto 24 -

/# if (1 -f2g). le. s#s the intersection of C’ & C" is inside C.

/% No integration over C. Set a2=ad so that integral over C will

R s S ———

Y T
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28

25

/% bt zero I,

a2 = (f~-g)/2.

al3 = a2

/% transform Jimits

acl = acos(f—al)

ac2 = acog{f-a)

ac3 = acos(al3’s)

/# 5 is increased by 0.0001 to keep the argument to acos .le. 1 .
/#+ (march 31, 1981) why does the above stmt for ac3 not have it?
ac4 = acos(a2/(s+0. 0001))

ac5 = acos{at +g)

acé = acos(al + g)

/% integrate ocver C’,C & C*

gtl cslculates the integral over C’. The real part of the
integral over C’’ uses the same function., but the
imaginary part uses the negation. Hence the switching
of the limits of integration in calculating the imaginatry
part of the integral over C’’:
MDP

call gauss(gtl, acl,ac2,al1¢l)

call causs(gt2. ac3, ac4, a2+1)

cali gauss(gtl, acS, acb, a3t1)

t1 ={altl + atl + altl)/amax

call causs(gtli,acl,ac2,altli)

call gauvss(gtzi,ac3, ac4d, a2tli)

call acauss(gtli, acé, acS, al3tii)

t1i =(altli + a2tli + a3tii)/amax

goto =5

call ogauss(gcl, 0.,pi2, t1)

t1 = tl/amax

call causs(gcli,O0.,pi2, t1i)

t1i = t1i/amax

/% here calculste t2

/% if (f-g).ge 2 C’ & C" don’t intersect.
if({f-g). ge.2 dgoto 10 .
/% C’ is centred at £, C*" at 9. g .le. £ so0o if #£ le. (1. -3) C is
/% inside both C’ & C". In all cases there’s no integral over C".
if (f.le. (1. -5)) goto 29

/% if f.le.(1.--8) C is inside C’ & C".
alta= 0.

a2tl=0,

adt2=90.

a1¢s:=0.

a2t2i=0.

a3t2i=0.

al = f-1.

a2 = ((s#g~1.)/# + #)/2

if(f. gt. (1. -s))goto 26

al = -s

ag = -$



. 26

c??
c
c
c
c
297
10
113
4
c
41
c
2

a3d =s
acl = acos{f-al)
ac2 = acos(f-ald)

/#* (march 31, 1981) again why no bdbias of O0.0001 to s for ac3 ?

ac3 =acos(ald’/s)
ac4d = acos{a2/{s+0. 0001)) . . . .

/% the same functions that were used as intogrands for t1 ere
/% used here. since C" is now centred at g and not at —-g put g=—g
/% before integrating and change g back to it’s previous value by

/% g=-g

9==3

call causs(gtl, acl, ac2, ait2)
call sauss(gta. ac3, ac4, a2t2)
call gauss(gtii,acl,ac2, a1t2i)
call gauss(gt2i, ac3, ac4, a2t2i)
—

t2 = (alt2 + «2t2)/amax

t2i = (al1t2i + a2t2i)/amax
goto 1O

g=-3

call ocausg(gcl, O.,pi2, t2)

t2 = (2/amax

call causs(gcli, 0. ,pi2, t2i)
t2i = t2i/amox

==3

Pac=az(J*i)*conjg(ax(k+1))/2

t1 =2 #ti

€2 = . #12

t1i = 2. %#tii

t2i = 2. #t2i

mi=q+ik

m2=i-k

if ‘ms.eq.0) goto 113
t1=2 rti

2= b2

t1i=2 #tii

t2i-2 w2 .

spec(i+ml)=gpec (1+mi)+fackcmplx(tl, t1i)
specl{i+tmzZ)=spec{l+m2)+facrxcmplx(t2, t2i)
continue

retuTi

/% what Follows is for a circular pupil with s>1
do 2 ngun

f= j¥p

g=0.

t=0.

ti=0.

if(f. ge. 2 )gote 2

/% integrate over C’ int C"; C" centred at O.
acl =acos(f#/2 )

call gauss(gtl, 0.,aci,t)

t=4. «t/pi

call gavuss(gtli,0.,acl, ti)

ti=4 «ti/pi ’
spec(l+j)=conjg(ai(1))*ai(+1)#2 wcmplx(t, ti)
continve

do 14 J-joﬂ

f-J!p

do 14 k=1, L y

q=k¥p » - - e RS




/% finding t1 and t2
t1 =0.

t2 =0.

alt2 =0,

a2t2 =0.

a3t2 =0.

t1i =0.

t2i =0.

att2i =0.

a2t2i =0.

adt2i =0,

“if ((f+g). ge.2. ) goto-11- T e - - - .
/% checked to see if C’ and C" intersect; if not goto 11 and
/# celculate t@

acl = acos{(f+qg)/2.)

call gauss(gtl, 0.,acl, tl)

t1 = 2. #%41/pi

tii = 0.

/% calculate t2 here

if((f~g).ge.2 )goto 100

if(ig+l. ). gt. s)goto 12

/# int'C’ C" is inside C

aci=zcos{($f-3)/2.)

call causs{(fta, 0., acl, t2)

t2 = 2. #t2/pi

t2i = 0.

goto 100

/# int C’ C" is not all inside C

a2 = (f+g)/2.

a3 = ((s#g=1.)/g +g)/2.

if(e2 1t. al3)aoto 13

a2=({asts—1 )/ +£)/2.

a3l = =2

acl = acos(f-ar)

ac2 = acos{ac—g)

(march 231, 1981) again why no bias of 0.0001 to s for ac3 ?
ac3 = acos(al3d-g)

ac4 = acos(a3/(s+0. 0001))

call gauss(fte. 0., acl, alt2)

call gaussg(fte. ac3, ac2, a2t2)

call qaus:(fta.o..ac4.33t2)

t2 =(alt2 + a2t2 + a3l3t2)/pi

call gauss(fteri, 0., acl, al1t2i)

call gauss{ft2i,ac, ac3, a2t2i)

call gauss(£t3i, 0., acsd, al3tz2i)

t2i =(alt2i + a2t2i + a3t2i)/pi
fachax(J*l)*:onjg(ax(k+1))/2

t1 =2 *t1

t2 = 2. #t2

t1i =2.§t11

t2i = 2. #£24

mi=j+k

m2=)--k

if(m2 eq.O)goto 114

t1=2. #t}

t2=2. st2- :
t1i=2 #t1i e e RS e demeret b ot ke 4B s e
tzizz. ’tai . ‘. P . N N ST - v.-,-T.,. A - ".‘,.-,-”-v‘ < . M




114-spoc(1+m1)-spoc(1+n1)+fac*caplx(t1.tli)
spoc(t*mZ)-spec(1*m2)+?ac&caplx(t2.t21)
14 continue :
return :
c /% the Trest is for square pupils
66 32 =s .
if(s.gt. 1.) s2 =1,
amaxr= 4. #g2#52
do 82 J=i,n

f= jdp
t=0.
. if(f. ge. 2. )goto 51

c /% set the limits of integration al and a2
al=f-1.
a2 = s2
if((s. 1. 1.). and. (£.1¢. (1. -s)))als~—g ,

c /% if df is zero the integral for t is different.

if(d+. eq. 0. )goto 50
t = & #s2u(sin{dfeéx(a22-£/2.)) -gin(dfefn(al-£/2. )))/(df=framax)
goto 51 . : ‘
50 ¢t = 2 ®#s2Z#(a2—a3l)/amax
51 spec(i+j)=ai(l)#ai( +1)#2 »¢
82 continve
do 33 J=i,n
f=y%p
do 8a k=1p"
gak*p
c /% caiculate t1 and t2
t1 = Q. )
if((f+g). ge. 2 )goto 52
c /% at 52 #ind t2
al = f-1.
- a2 =1l.-9
if (s.ge.1.) goto 53
if (f. le. (1. -s8)) al=-8
it 9. le. (1. —-5)) a2= s
53 if (df.ne.0.) t1 = 2 #s2#a(sin(df*(f+g) (2. wa2-f+g)/2.)

* —sin(df#(f+g)#(2. #al-F+g)/2, ))/(dfe(f+g)%amax)
if (df.eq. 0.) t1 = 2 #»s2%(a2-al)/amax
c /# calculate t2
52 t2=0.

if((f-g). ge. 2. Y goto 54

al =f-1.

1fC((f. 1t. (1.-s)). and. (5. 1¢. 1. ))al=m-g

a2 =3+1.

ifca2 gt.s)a2 = s
if(s.1t. 1. )a2 = s
i?((df.no.o.).and.(f.no.g))t?zﬂ.isa§(sin(d#§(f-g)0(2.Goa-i—g)lz.)
8 —gin(dfa($—g)#(2 wal-f-g)/2.))/(dPa(f-g)ramax)

if((de. 0q. 0.).0r. (f. eq. §))t2 = 2 #s28(a2-al)/amax

if((Ffeg). ge. 2. ) t1=0. ——

54 fac=ai()+1)#ai(k+1)/4.

misj+k
m2=)-k : S et ir L
if(m2 eq.Q)goto 143 ' '

ti=2 2t} Cb e s
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ch

cf

cf

ct

143

»

oo cimre o IS S O ..—

spcc(l+ﬂl)-sp¢c(1+n1)+90c&2.iti
spec(1+m2)-spec(1+m2)+?nc*2.§t2
t1=0.

t2 = ¢

continue

retuT™n

end

function £t2(x)

common /fig/f,a
caommon /trans/s,n, p,df, ai(41), spec(81)
comolex ait(41), spec(8l) -

£¢2 = 0. 5#(1. ~cos(2 #x))#cos(dfn(f—g)#(2. #cos(x)=-F+g)/2.)
return :

end .

funciion £t3(x)

comnon /fig/f. g
comman /trans/s.n, p,df, @ai(41), spec(81)
complex ai(41), spec(81)

£§t3 = 0.6*5*5*(1.-cos(2.*x))icos(dfﬁt-f+g)itz.*s*cos(x)—f-g)lz.)
return

end

function gciix)

common /trans/s.n., p,df, aild1), spec(Bl)

commen /fig/fg - Ce e e e = = em <.

compiex ai(4l1), spec(8l)

gecl = s*s*(l.*cos(a.*x))*cos(.5*d$i(€*f—g*g))*cos(df*(f+g)*s*
cos{(x))

retuTn

end

function gti(x)

common /trans/s.n. p, df, 8i(41), spec(8l)
common /fig/f. g
complex ai(41), spec(8l)

gti = O.5*(1.—:0:(2.*:))fcos(0.5*d90(0+9)0(2.icos(x)-'—g))
return

end
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ct

ct

cP

ch

cf

cf

FUNCTION GO X 77" =mm—er o o oo e

comnon /trans/s.m p, df.0i(41),spec(Bl)
common /fig/f. g
complex ai(41), spec(Bl)

gt2 = 0. Susxsw(l. —cos(2. #x))%cos(0. SHdPR(f+g)#(2 ngwcos(x)—-Ff+g))
return

end

function ftaxtx)

common /fig/f. g
comnon /trans/s.,n.p,df ai(41), spec(81)

.complex ai(41), spec(81)

ft21 = 0. 5#(1. ~cos(2. #x))usin(df*(f~g)#(2. #cosS(x)~Ff+g)/2.)
retuTn

end

function £¢3i(x)

comron /fig/f. g

" comnon /trans/s,n,p,df@i(41),spec(81)

compiex ai(41), spec(81)

£t31 = O. Sugesn(l. —cos(2. #x))#sin(den(—f+g)H(2. ®gecos(x)=f=g)/2.)
retvrn

end

function gecli(x)

comncn /trans/s.n.p,df.ai(41),spec(81)
comren /fig/f, g
compiex ai(4l), spec(81)

gcli = s¥#g#(l. —cos(2. #x))#sin(. Sedfe(faf—gig))ucos(dfe(f+g)Hsk
cos{x))

return

end

functzon gtli(x)

comnun /trans/s.n.p,df,ai(41),spec(81)
comron /fig/f, q
complex ai(41), spec(81)

gtli = 0. 5#(1. —cos(2. #x))#sin(0. Sudf#(f+g)w(2. #cos(x)=Ff=-g))
return

end

function gt2i(x)

common /trans/s.n.p.dP.ax(Ai).spec(Bl)
comuon /fig/f. g
complex ai(41).spet(81) : - —-— - .- -

gt2i = O. S#gks# (]l —cos(2. #x))*sin(~0. SHdf%(f+g) (2. #secosi{x)—Ff+g))
return .
end
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