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Abstract

We consider a MIMO linear time-invariant feedback system S(P,C)

which is assumed to be ^-stable. The plant P is subjected to an additive

perturbation AP which is proper but not necessarily stable. We prove

that the perturbed system is ^-stable if and only if AP[I+Q»AP]" is

^-stable. (Here Q:= Cfl+PC)"1.)
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I. Introduction

One of the main purposes of feedback is to reduce the sensitivity of

the closed-loop system to changes in the plant, and it is very important

to determine whether a feedback system remains stable after being sub

jected to changes in the plant. There is an abundant literature on this

subject with various restrictions imposed on the nature of i) the plant

(linear lumped [Des. 1], [fat. 1], [Fra. 1] [Doy. 1]; linear distributed

[Chen 1], [Chen 2]; nonlinear and time-varying [Zam. 1], [San. 1]),

i1) the perturbation (stable [fat. 1], [Fra. 1], [Cru. 1] [Pos. 1], [Zam:

2])-all giving only sufficient conditions; a class of possibly unstable

perturbations [Doy. 1], [Chen 1] with necessary and sufficient conditions

(n.a.s.c.); fractional perturbations [Chen 2] which gave n.a.s.c.

In this note we consider exclusively MIMO linear time-invariant

systems, we state and give a simple algebraic proof of a necessary and

sufficient condition for ^-stability (%l refers to an undesirable sym

metric region of the complex plane (£ C+) of the feedback system S(P,C)

(Fig. 1, solid lines) under arbitrary perturbations AP (i.e. AP is not

required to be ^-stable). In Section II we formalize the following

intuitive argument: a) the addition of AP to ^(P.C) (as shown by dotted
lines in Fig. 1) creates a new loop; b) the "gain seen by AP," through

^(P.C) is equal to -Q := -CU+PC)"1; c) since the nominal system S(P,C)
is 4fc-stable, Qisit-stable, d)viewthe new loop as S(Q,AP) as shown inFig.

2: it is <&-stable iff AP-d+Q-AP)'1:^ is ^-stable by the Q-parame-
]S(Q,AP)

trization theorem [Zam. 2], [Des. 2]. If, in addition, AP is ^-stable,

the new loop is stable iff det [I+Q-AP](s) f 0, V s €lu; e) S(P,AP,C) is

^-stable iff the new loop is V-stable. These statements are intuitively
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appealing, however it is not clear whether some particular restrictions

on P, C, AP are required to make them true. We prove that they hold even

if P, C and AP are unstable!

II. Statement and Proof of Theorem

Definition: S(P,AP,C) (defined in Fig. 1) is ^-stable iff

Hyu :(uvu2>u3) "" (y]»y2'y3^ is ^"stable-

Assumptions:
n.xn. n.xnrt

Al. P(s) € 3R (s) ° \ C(s) € IR (s) n °,det [I+PC](~) t 0.

A2. All hidden modes of P and C are ^-stable.

n xn.

A3. AP € R (s) ° 1 anddet [I+(P+AP)C](~) f 0.

Comment: Note that P, C, AP are only required to be proper but may be

unstable. Of course the nominal and perturbed systems are required to

be well-posed (see Al and A3).
»

Theorem: Let Al, A2 and A3 hold. If ^(P.C) is ^-stable, then

a) S(P,AP,C) is ^-stable ^=* AP-(I+Q-AP)"1 is ^-stable;
b) S(P,AP,C) is «K-stable^ ]S(Q,AP) is ^-stable.

If, in addition, AP is ^-stable, then

c) S(P,AP,C) is ^-stable<^det[I+Q-AP](s) f 0, V s € eU..

Comments: a) Define Heu :(u1,u2,u3) h- (e.,,e2,e3). By writing the rela

tion between the e|s, uls and yjs it is easy to check that H is <U~
stable implies that Heu is ^-stable. We will prove Hyu is ^-stable,

b) Suppose AP = R/(s-p) where R6 Xnxn and pmay be in ^. It is

easy to check that AP(I+QAP)"] =R[(s-p)I+QR]-1. Since the expression in
brackets is analytic in <Z/, by part c) of the theorem, we have:
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S(P,AP,C) is ^t-stable^det [(s-p)I+Q(s)R] t 0, V s € II

In some applications, [Bha. 1], R turns out to be a dyad, say cb (with

b, c € In): hence, the n.a.s.c. condition for ^-stability reduces to

a scalar condition:

(s-p) + b*Q(s)c t 0 V s 6 U.

Proof: The summing node equations for S(P,AP,C) are:

e2 - Ce, » u2

Pe2 + e, + APe3 = u,

- Ce} + e3 = u3

(1)

(2)

(3)

Apply the following block elementary row operations p2 «- p2 - Pp, and

then p3 «- p3 + Qp2 and note that w.A.o.g. we can set u, = u2 = 0, thus

obtaining:

I -C 0

0 I+PC AP

0 0 I+QAP

Using back-substitution and Fig. 1, we obtain:

• 'e2' " 0 "

el
= 0

.63. .U3.

k-ly3 =AP-e3 = AP(I+QAP) u3

y1 =Ce1 =- C(I+PC)"]APe3 =- Qy3

y2 = Pe2 = PCe1 = - PQy3

Pf. of a) (=>) By assumption S(P,AP,C) is ^-stable, hence by (4)

APd+QAP)'1 is -^-stable.
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(<£=) By assumption, 'S(P,C) is ^-stable, hence Q and PQ are *U-

stable. Also, by assumption, AP(H-QAP)"1 is ^-stable. Hence (4)-(6)
show that H is Instable.

Pf. of b). Note that because Qis known to be ^-stable* ^(QjAP) is

^-stable Iff APd+QAP)"1 is instable by the Q-parametrization theorem
[Zam. 2], [Des. 2].

Pf. of c). By assumption S(P,C) is ^-stable; Q and_AP.are also'in

stable.- Since 'U-stable matrices form a ring, (I+QAP) is

3*-stable <& det [I+QAP] (s) /0,Vs6«<. c

Comments: Since the proof is purely algebraic, Assumption Al is not

strictly necessary - the theorem holds for linear distributed plants

either continuous-time or discrete-time by working in the appropriate

algebra (see, for example [Des. 3]).
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Figure Captions

Fig. 1. The figure shows the system S(P,AP,C) with inputs u,, u2, u3

and outputs y-j, y2, y3. If the dotted part of the diagram is

removed, we are left with S(P,C) whose inputs are u1, u2 and

outputs y-j, y2.

Fig. 2. S(Q,AP) - obtained from Fig. 1. The "gain seen by AP," going

from point a to point b through S(P,C), is equal to -Q.
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