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ABSTRACT

This paper deals with effects of modifications of network structure that may

be studied without reference to the type of devices present in the network. We

introduce and make systematic use of the notion of a generalized minor of a

vector space. This operation generalizes the usual short and open circuit opera

tions for a graph. Using the generalized minor operation we show how to make

the equations of a given network appear to be the "bordered version" of the

equations of some other specified network. We also consider the decomposition

of a network into several "multiports" and a "port connection diagram." We

show that some of the properties of the original network are retained by a

reduced network that can be defined on the port connection diagram. In each

case we present efficient algorithms wherever appropriate. While the paper

makes use of ideas from elementary matroid theory it is entirely self contained

and requires no more than the knowledge of elementary linear algebra from the

reader.
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1. Introduction

In this paper we deal with structural modifications of electrical networks

and their effects that can be studied ignoring the type of devices present in the

network. Such modifications arise, quite naturally, in both practical and

theoretical network analysis. In practical network analysis it may be desirable

to split the given network into several subnetworks. In theoretical network

analysis splitting the original network into multiports of various types is quite

common: for instance, the given nonlinear network may thought of as a linear

network terminated by nonlinear elements, or the given dynamic network may

be thought of as a resistive network terminated by reactive elements. The net

work theorist who is faced with such problems handles them intuitively using his

experience with the type of network being studied. A formal study would, at the

least, clarify the fundamental ideas underlying such techniques.

Consider for instance the most natural topological transformations that

every network theorist uses - open and short circuits. It is easy to show that

such operations are special cases of the following operation (see sec. 4): Let the

original KCL, KVL equations of the network be

A5iJ=0

B5v| = 0

We derive complementary orthogonal equations on i$-p. Vs-P (associated with

subset S-P of S) by imposing the conditions (on ip, Vp)

Apij?= 0

BpVp" = 0 , where Ap , BP
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generate complementary orthogonal spaces. Observe that to open circuit the

edges P we can choose Ap = [U] and to short circuit the edges P we can choose

Bp = [UJ. In general however the complementary orthogonal equations we

obtain on is-p. Ts-p would not be the KCL and KVL equations associated with a

graph. One is therefore forced to study topological problems not in terms of

graphs but in terms of complementary orthogonal spaces. However the results

one obtains are relevant to networks based on graphs. Indeed, one can con

struct general procedures of topological transformations and, plugging in the

fact that the vector space we are working with is the space of coboundaries of a

graph, derive additional advantages.

In this paper we use the generalized minor operation (which has been infor

mally defined in the preceding paragraph) to solve the following problems:

(1) Given a network N! on graph Gi on set of edges S what is the least number

of extra variables required to "convert" it into network Ng on graph G2 on

the same set of edges and the same device characteristic? The "conver

sion" here refers to obtaining a vector space over a larger set which has the

coboundary spaces of the graphs of Ni and Ng as generalized minors. We

can use this technique to obtain the equations of iVj as "bordered versions"

of the equations of Nz. (The "thickness" of the border is equal to the

number of extra variables). We give efficient alghorithms for doing the

"conversion" in general and better algorithms for certain important special

cases.

(2) Given a network N with graph G on S and a partition [Slt • • • , Sn j of S

how to decompose it into multiports on S1 u Plt • • - , Sn u Pn and a

"port connection diagram" on UP* such that | u7^ | is a minimum? For this

problem we give an algorithm which makes the port connection diagram

into a graph, while the multiports are "generalized." We also show through



an example that solutions of the original network, in which devices lying in

different S interact, map to solutions of a reduced network defined on the

port connection diagram.

The ideas in this paper have arisen from an attempt to understand the

essence of Kron's ideas [l], [2], It is hoped, however, that they have a right to

independent existence.

The organization of the paper is as follows:

Section 2 contains mathematical preliminaries. We have outlined proofs for

all the results from elementary matroid theory that we have used in this paper.

Section 3 introduces the generalized minor operation.

Section 4 gives a physical interpretation for the generalized minor opera

tion in terms of ideal transformers.

Section 5 describes the notion of mutual extension of vector spaces and

gives algorithms for the construction of minimal extensions. Application to

practical network analysis is outlined by considering two special topological

transformations.

Section 8 describes decomposition of a vector space into several com

ponent spaces (multiports) and a coupler space (port connection diagram).

Application to network theory is indicated by considering the case of an RLMC

network in some detail.

2. Preliminaries

We deal with finite sets throughout. If S is a set | S | denotes its cardinality.

A function f: S-+ F is said to be a vector on S over the field F. Unless otherwise

stated F would be the real field R If used in equations f refers to a row vector

and (f) refers to a column vector. If Tis a set, fy would denote a vector on T,

Or the zero vector on T. We define restriction of a vector f on S to a subset T of



S in the usual way and denote it by / / T. Scalar multiplication and addition of

two vectors on the same set are denned in the usual way. However we permit

addition of two vectors on different sets as follows: Let f be on S, g on T. Then

f + g is defined onSuf and agrees with f on 5 - T, with g on T - S and on

S n T with the usual addition of vectors on the same set. The 2 notation would

be also used for the extended notion of addition. When T n B = (p we may write

f x ® Ir to emphasize the fact that T, R are disjoint. When addition of several

n n

vectors over disjoint sets is involved we may use ® in place of 2 • Acollection
i=l i~\

of vectors on S closed under addition and scalar multiplication is called a vector

space on S. V5 would denote a vector space on S. Independence and rank of a

collection of vectors on S are defined in the usual way. Bank of a collection of

vectors P is denoted by r(P). We define Vp + YT in the obvious way as the col

lection of all sums of vectors one in Vp and the other in Vy. Vp + Vr would

therefore be on P U T. We use ® when P, T are disjoint. Va - V2 refers to set

theoretic difference. If g, f are on S, <g , f >s £ g(e). f(e). If <g , f >= 0

then we say g, f are orthogonal to each other. V* is the vector space of all vec

tors orthogonal to vectors in V. We would call it the dual of V. Let T Q S and let

Vbe on S. Then

Vxr= lgT = f/T ,f e Vandf(e) = 0,e €5-7)

V« T is the collection of all restrictions of vectors of V to T. When B Q fc5we

write Vx T*B for (Vx T) • B and V* T x B for (V»T) x B. Such spaces are

referred to as minors of V. We say T Z S is a separator of V iff Vx T = V«7\

Observe that we then have V= (VxT) 6 (Vx(S-T')). If K is a matrix, (K)T is

its transpose. The symbol [U] refers to an identity matrix whose order would be

clear from the context. Apositvue (negative) definite matrix K is a symmetric

real matrix such that "x(K)xT > 0 (xJKJx7* < 0) for all nonzero real x. A



permutation matrix is a square matrix whose columns are obtained by permut

ing the columns of an identity matrix of the same order.

The generator matrix Ay of a vector space Vis a matrix whose rows form a

maximal linearly independent set of vectors of V (basis of V). We say that Ay

generates V. Observe the geV* iff (Ay) (g)T = 0. If Av. A§ are generator

matrices of V observe that a set of columns of Ayare linearly independent iff the

corresponding set of columns of A§ are linearly independent. Let V be a vector

space on S. Let T C S. We say that T is a circuit of M(V) iff the set of columns

of a generator matrix Ay of V corresponding to T are minimal linearly depen

dent. T is a bond ofM(V)iffitisa circuit of M(V*). (M(V) stands for "matroid

associated with V." However we do not use the idea of a matroid explicity any

where in this paper).

Let G be an oriented graph on the set of edges S. Let T C S. Then G'T is

the graph obtained by deleting the edges in S - T and any isolated vertices

formed. G x T is the graph obtained by fusing the end vertices of each edge in

(S-T) and deleting it. A coboundary of G is a vector on S that satisfies the Kir-

chhoff voltage (tension) equations of G. A cycle of G is a vector on S that

satisfies the Kirchhoff current (flow) equations of G. Vcoi,(G) (V^G)) denotes

the vector space of coboundaries (cycles) of G. Let Git Gz be on disjoint sets of

edges Si, S% and vertices Vj, Vg. We construct G\ $ G% on edges 5X u 5g and

vertices Vj U 1^. where V\, V*2 are disjoint copies of Vlt Kg, by making it agree

with Gi on Si and with G2 on ^z- m tne graph Gx & G2 observe that St, Sz

are separators of both the coboundary as well as the cycle spaces. A vector

space V5 is graphic (cographic) iff it is the coboundary (cycle) space of a graph.

Ageneralized electrical network N is a triple (S,Vs,D§) where S is a finite

set of "edges," V5 is a vector space on S over R and the device characteristic D§

is a collection of ordered pairs (vs(-)4s()) where for all t eIR, Vs(t)t is(t) are

-7-
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each vectors on S. Usually Ds will be specified informally as D{vs,is) = 0. A

solution of N is a pair (vs(),is()) belonging to D$ where Vs(£)£Vs>

istf) eYs. for all t. We will refer to V5 as the coboundaryspace of N and V5 as

the cycle space of N. Ageneralized network is Ordinary when V5 is the coboun

dary space of a graph. Let S be partitioned into Si,S2 Sn. We sav

S\tS2 "S^ appear decoupled in Ds iff there exist collections Dsi of ordered

pairs (vSl(-),ist(0) such that (v5(),i5()) belong to Ds iff (v5()/^,i5(-)/5'i)

belong to Dst (i = 1,2,...,n). Amultiport is a generalized network with a subset

P of edges specified as ports such that on the ports there are no device charac

teristic constraints.

We now present a number of results which we use freely in the rest of this

paper. In order to make this paper self contained we outline proofs for most of

them. The results are standard in elementary linear Algebra and matroid

theory. [3], [4].

Let V5 be a vector space on S.

Theorem PI.

(a) (Vs)# = V5

(b) r(V5)+r(Vi)= |5|

Outline of Proof: Observe that if Vs has a generating matrix [UAj2], then V$

has the generating matrix [— A12 U].

•

Theorem P2. LetVlt V2 be vector spaces on S. ThenV^ CV2 <= => V^ 2 V2.

Theorem P3 Let T Q S. Then

T0rs-T) + r<ysx(s-T))=T<ys) .

r -- s



Outline of Proof: Choose a generator matrix Afor V5 of the form shown below,

where A^, A^ have linearly independent rows

A =
A7T Are

0 Aeg

Observe that A^ is a generator matrix for V^- T and Ag2 is a generator matrix

forV5 x(5-r).

•

Theorem P4 Let T C S. Then

(a) (v5.n#=vixr

(b) (v5xr)' = y|.r.

Proof: (a) Let iT e V^ x T. Then there exists ls e V5 such that fs/ T = fT

and is/(S-T) = 0. If gs eV,s, it follows that <fs.gs>=0. Hence

(*T,gs/ T}=0. Hence fT€ (V5-r)*. Next, let lT e (Vs*r) *. Consider a vector

is defined as before. Let gs^Vj. Then <fs,gs> = <fr,gs/F> = 0. Hence

f5eV5andfreV5 X T.

(b) follows from (a) by application of Theorem Pl(a).

Theorem P5 r^nYz) + r (Vj+V.,) = r(Vj) + r(V2).

Outline of Proof: Choose a basis Bn of Vj n V2. Extend it to a basis of V! by

adjoining Blt and a basis of V2 by adjoining Bg. Observe that Bn U Bj U Bg is a

basis of Vj + V2.

•

Theorem P6 Let T C S. (a) The circuits of M(VS) contained in T and those of

M{Vs*T) are identical, (b) The bonds of M(Vs) contained in T and those of

M(VsXT) are identical.



Proof: Consider a generator matrix of V5 of the form shown in the proof of

Theorem P3. Observe that minimal linearly dependent set of columns of A con

tained in T are the same as the minimal linearly dependent set of columns of

Ajt-. This proves (a). Bonds of M(V5) contained in T are the same as circuits of

M(Vs) contained in T and bonds of M(VSXT) are the same as circuits of

M(Vs*T) by Theorem P4. So (b) follows from (a).
•

Theorem P7 Let T C 5. (a) If M(VS) bias circuits contained in T then

r(Vs*T) < \T\. (b) If M(VS) has bonds contained inTthen r(Ys*T) > 0.

Proof: IfM(Vs) has circuits contained inTthen M(VS*T) has circuits. Hence

the columns of a generator matrix of Vs*T are linearly dependent. Since the

rows are linearly independent it follows that the number of rows is less than the

number of columns of the generator matrix. Hence r(Vs*T) < \T\. By

theorems PI, P4 r(V^T) + r(VsxT) = \T\. (b) now follows by Theorems

P6(b), the definition of a bond and (a) above.

•

Theorem PB (Tellegen) (Vco6 (G)) ' =Vcy (G).

Theorem P9

(a) Vcob(Gxr) = (Vco6(G))xr

(b) Vco6(G.7) = (Vco6(G)).7\

Outline of Proof: Construct a fundamental cutset matrix Q of G of the form

shown below, i.e., choose maximum possible number of edges of Tin the tree.

T S-T

Q =

Then [U Q12] is a fundamental cutset matrix of G*T and a generator matrix of

U Q12

0 0

0 Q14

U Q24
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(Vcob(G))f while [U QgJ is a fundamental cutset matrix of Gx (S—T) and a

generator matrix of (Vco6 (G)) x (S-T).

m

Theorem P10

(a) VCJ/(Gxr) = (Vcy(<7))-r

(b) vcy(cn = (vcy(c))xr.

Proof:

Vcy(GxT) = (Vcob(GxT))0
= ((vc*(0)xr)'

= vcy«?).r ,

by the use of Theorems P8, P9(a) and P4. (b) can be proved similarly.

•

3. The Generalized Minor

In this section we introduce an operation on vector spaces which we use

throughout this paper.

Definition 3.1 Let Vy be a vector space on S. Let P C S. Let Vp be a vector

space on P. Then the generalized minor of V5 with respect to Vp is denoted

V5 «- Vp and is defined as follows:

Vs «- V> = lfS-p: there existf5 eV5 , fp e Vp

such that is/P = fp , Is/ S-P = f5-pj .

We now describe a convenient way of constructing a generating matrix A for

a space Vs so that the generating matrix for Vs *- Vp, Vs X (S—P), Vs x P*

Vp n (V^XP), Vp n (V5«P) appear as a submatrix. We would say that these

subspaces are visible in such a generating matrix. Construct the basis Bjf~p for
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Ys X (S—P). Let us suppose that these vectors form the row vectors of the

submatrix Ax(s-P) of Ashown below.

S-P ?

A*(S-P) 0
Ag(S-P) Agp

A= A3(5_p) A3P

0 &nXP
0 Asp

Next choose a basis B& for (V5xP) n Vp. Let the vectors of B^ form the row

vectors ofAnxp. Extend this to a basis Bp. of (Vs*P) n Vp. Let the additional

vectors form row vectors of the matrix Agp. Extend Bfix to a basis Bjf of

Yjy x P' Let the additional vectors form the row vectors of the matrix A5P.

Extend B£u B;£ to a basis Bp of V5 • P. Let the additional vectors form row

vectors of the matrix Agp. The row vectors of Agp and A3P are restrictions of

certain vectors from Vs. Restricting these vectors to (S-P), we obtain the row

vectors of

42(S-P)
A&(S-P)

We now list the set of properties for this matrix.

Property 1. The rows of &nXP
4>P

form a basis for V$ X P.

Property 2. The rows of Ax(s-P) form a basis for V5 X (S-P).

Property 3. The rows of

Property 4. The rows of

Aqp
&nXP
&>P

Asp
&r\XP

form a basis for V5 * P.

form a basis for (Vs'P) n Yp-
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Property 5. Rows of
A*(s-p)
Ae(s-P)

(&a{s-P)
form a basis for V5 • (S—P).

Proof: The rows must be linearly independent as otherwise by a linear combi

nation of row vectors of
Aep
43P

we would get a vector of V§ X P.

Property 6. The rows of AX(S-P)
A3(S-P) t form a basis for V5 «- Vp.

Proof: Let f belong to Vs *-Yp. Then there exist vectors f$ eVs, fp^Vp

such that is/ (S—P) = f, f^/P = fp • is/P is linearly dependent on the rows

of
Ajp

AnXP
and hence f is linearly dependent on rows of

A3(S-P)
. Conversely if

f is linearly dependent on rows of &X{S-P) , it can be expressed as f j + f2Ag(S-P) (

where f j is linearly dependent on rows ofAx"(5-P) andf2 is linearly dependent on

rows of A3(i?_p). Let f2 = (qx) (A*(s-p)) and let f2 = (a2) (H{S-P))- Choose

U = (°i vz)
&x(s-P) 0
Aq(5-P) Aqp and fp = (c72) (Agp). Since rows of Agp belong to

Vp it follows that f £ Vs <- Vp.

•

The generator matrix for Vs in which V5xP, Vs X (S-P), (VS*P) n Vp

and V5 <- Vp are visible can be used to derive the following results.

Theorem 3.1. V(S-P) is a g-minor of V5 iff Vs x (S -P) QV(5_p)

CV5.(5-P).

Proof: The construction of the appropriate generator matrix for Vs described

earlier shows that if V(S-P) is a g-minor of Vs then

-13-



Vs X(S-P) CV(s-P) C Vs • (S-P). Conversely ifV(5_p) satisfies the condi

tion of the theorem we could build a generator matrix A for V^ as shown below

where the rows of Ax{s-P) from a basis for Vs x (S—P), the rows of

form a basis for V5 • (S—P).form a basis for V(s-P) and the rows of

A =

S-P P

A*(s-P) 0

42(S-P) A2p

Aa(5-P) Agp
0 A^p

4*(S-P)
A2(S-P)
[A3(5-P) J

Ax(s-P)

Observe that the rows of
A2P
A3P
&XP

are linearly independent. If now we choose Vp as

the spacegenerated by the rows ofAgp, it can be seen that Vs *" Vp = V^s-py

m

Theorem 3.2.

rOfc-Vp) = r(VsX(S-P)) + r((Vs-P) n VP)
-r((V5xP)nVp) .

Proof: This follows immediately from the construction of the generator matrix

in which Vs «- Vp, Vs x (S-F), V5 x P, Vp n (V5xP). Vp n (VS*P) are visible.

The next Lemmas are needed for the proof of Theorem 3.3. Lemma 3.1 is a stan

dard result from Linear Algebra and can be proved by routine use of Theorems

PI and P5. Lemma 3.2 is merely a restatement of Theorem P3.

Lemma 3.1. LetV1( V2 be on S. Then (VjOVg) * = V/ + V2.

Lemma 3.2. Let be on S. Let P Q S. Then

-14-



r(Vs-P) -r(Vs*P) = r(Va-(S-P)) -r(Vsx(S-P)).

Theorem 3.3. Let Vs, Vp be spaces on S, P respectively where P C S. Then

Proof: We will first show that the two spaces are orthogonal to each other and

then show that their ranks add up to |S—P |. Let f € Vs «- Vp. Then there exist

vectors f^} fp belonging to V5, Vp respectively such that Is/P = fp,

f = fs/{S-py Let 6 e Yy <- Vp. Then there exist vectors gs, gp belonging toV5,

Vp such that g^/p =gp, g=gs/{S-Py We now have
(f.g)=—(Xs/p>fLs/py - ~(fp.gpy =0- Next consider
r(Vs+-VP) + r (Vj«-Vp). By Theorem 3.2,

r(Ys-Vp) = r(Vs*(S-P)) + r (Ofe-P) n VP) - r((Vs*P) n Vp) .

r (V5VV;) = r (V5*x(S-P)) +r ((V5* -F) n VP') - r ((V5'xP) n Vfl .

By application of Lemma 3.1 and Theorems PI, P4 we have

r((Ys-P)nYf) = |PI -r((V5xP) +Vp) .
and

rWs*P) n V£) = |PI -r((V5.P) +Vp) .

So

-15-



rVTs-Vp) + r<y5-Vp) = r(Vsx(S-P)) + r(V^x(S-P))
+ r ((V5.P) n Vp) + r ((V5.P) + Vp)
-\P\ -T«ysxP) nVP) -r((VsxP) +VP) + \P\

= r(Vs*(S-P)) + r(V£x(S-P)) + r (V5.P) + r(VP)
- r (VsxP) - r (VP) by Theorem P5 .

= \S-P\ -[r(V9.(S-P))-r(Vsx(S-P))]
+ rfV>P)-r(V5xP)

= \S-P\ by Lemma 3.2

This proves the theorem.

•

4. Ideal Transformers

In this section we dwell briefly on the concept of an ideal transformer.

Using ideal transformers we give a simple physical interpretation for the notion

of a generalized minor. Generalized networks* may be thought of as being con

structed by plugging 2-terminai electrical devices to the ports of ideal

transformers. The g-minor operation is therefore natural for generalized net

works. Ordinary networks obtained by connecting 2-terminal electrical devices

according to a graph are a special case of generalized networks. The g-minor

operation is therefore applicable to ordinary networks also. We show in this sec

tion- that the g-minor operation generalizes the short circuit and open circuit

operations.

Definition 4.1. An ideal transformer I5 on 5 is a "black box" with S as its set

of ports, and satisfying the following condition: LetV]f, Vj be the sets of all vol

tage vectors and current vectors that can exist at S. Then V? = (V$) *.

Since an ideal transformer is fully characterized by the vector space Ys on

S we will identify ls with the pair (5,V?). We will refer to V? as the space of

coboundaries of ls and (V|) *as the space of cycles ofI5.

-16-



Example 4.1.

Consider the 3-winding ideal transformer of Fig. 4.1. Here

S = (l,2,3j v2 = (ti2/tl^ vlt v3 = (nz/njvx. The rows of matrix

l 2 3

Q ~ [1 Ti2/rii 7L3/n\] generate Ysf. The rows of matrix B =

generate Vj.

-^ri2/ni i o
—Tig/ TL i 0.1

Example 4.2.

Let G be an oriented graph on S. Tellegen's Theorem states that the space

of coboundaries of G are complementary orthogonal to the space of cycles of G.

It follows that (S,Vs) where Ys- is the coboundary space of Gmay be regarded

as an ideal transformer. In other words a graph is a special case of an ideal

transformer.

Definition 4.2. Let I5 = (S,V). Then the dual of ls denoted I5 is the pair

(S,V*\

Observe that in our notation the dual of a nonplanar graph would be an ideal

transformer.

Definition 4.3. Let I5l = (S.Vj) Isft = (Sn,Vn). be ideal transformers on

pairwise disjoint sets Slt ...., Sn. Then their direct sum Ic, 0 • • • $ Ie is

the ideal transformer

The following simple lemma is useful. Its routine proof is omitted.

Lemma 4.1. (VSl e ••• 0 V5nf= (V^ <B ••• 0 VjJ.

An immediate consequence is

Theorem 4.1. (I5l $ •• 0 1^)*= (1^ $ ••• $ l£).

-17-
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Definition 4.4. Let S be a set and let P Q S. Let ls = (S,VS), lP = (P,VP).

Then the g-minor of I5 with respect to Ip is denoted I5 +- Ip and is defined by

Is*-Ip = ((S-P),V5<-Vp).

The g-minor operation gives us a simple way of deriving new ideal

transformers from old.

Example 4.3.

Let Is = (StVs). Then Ife_P) = ((S-P), Vs X(S-P)) = ls «- Ip/ffhere

Ip =(P.Op) and ifc-P) = ((S-P),VS>(S-P)) =I5 «- l£ where l£ = (P.IR^)

where 1RP is the space of all vectors on P over IR. By Theorem P9

Vco6(Gx(S-P)) = (Vcob(G))x(S-P) and Vcob(G-(S-P)) = (Vcob(G))-(S-P).

Hence, for graphs, the operations of short circuiting edges and of open circuit

ing edges can be achieved by the g-minor operation. Let

I?S-P) =((S-P), Vsx(S-Px) . (S-P)), Px c P. Then lf5_P) =I5 «- \%

where Ip = (P.fOpJ 0 IR l'). The g-minor operation was introduced to gen

eralize the ordinary minor operations. The above illustrate this fact.

Theorem 3.3 permits us to give a simple physical interpretation of the

operation of g-minor. Let I5, Ip be ideal transformers on S, P with P Q S. Let

Is = (^»YsO. Ip = (P»Yp). Let us identify the ports P in both transformers as

in Fig. 4.2. Consider the current and voltage constraints on the exposed ports

(S—P). Avector f5_p can be a voltage (current) vector on the exposed ports iff

there exist voltage (current) vectors fs ^Vs(V$), fp^Vp(Vp such that

is/P-ip, i.e., iff fs-PeYs «- VP(Vs*-Vp). By Theorem 3.3

(Yy«-Vp) = (Ys*-Vp). It follows that on the exposed ports (S-P) we have an

ideal transformer. Thus if we "plug" the ports P in I,? by Ip the ideal

transformer Is«-Ip results. The g-minor operation can be used to prove the fol

lowing standard result.
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Theorem 4.2. (BELEVITCH [5]) Physical connection of ideal transformers

results in an ideal transformer.

Proof: Let I§lt ..., lsn be ideal transformers on pairwise disjoint sets of ports

•^l. .... Sn. Let us suppose that the ports Slc QSi 5TC C Sn are con

nected according to a graph G. The remaining ports S = (uSi—uS^) are

exposed. The graph may be treated as an ideal transformer

Ise - (uSic,Vcob(G)). Connection of ports uS^. according to graph G is

equivalent to imposing the KCL and KVL conditions of the graph G on the ports

uSjc of the ideal transformer Ist& • • • 0 I^n. The result of this operation is

the ideal transformer (I5 0 • *• $ I5 ) «- I5 .

•

5. Extension of Vector Spaces

5.1. In this section we introduce the "inverse" operation of g-minor, namely

"extension" of a vector space. While analyzing a given network we can use the

topology of a different network by constructing a mutual extension of the

coboundary spaces of the two networks. These ideas are detailed in subsection

5.2 and exemplified in subsection 5.3.

5.2. Definitions and Theorems on Extension.

Definition 5.1. Let Vs, Ysp be vector spaces on S, S U P respectively. We say

Vsp is an extension ofV5 iffVs is a g-minor ofVsp.

Definition 5.2. Let Vj-, ..., V5 be vector spaces on S. Ysp *s a minimal exten

sion of [Vs V5J iff V5p is an extension of Vj (i = l,...,n) and if Vj-p'is any

other extension ofV£ (i=l,...,n) then \P\ ^ \P'\.

Theorem 5.1. Let Vs, Vj be vector spaces on S. Let VSP on S UP be an

extension ofVs and Vf. V$p is a minimal extension ofVj and Vf iff
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|P| =r(Vi+V|)-r(VinV|) .

Proof: Let VSP be an extension of V£, V|. Then VSP • S 2 Vs and

V5p • S 2 Vj by Theorem 3.1. Hence VSP • S 2 Vs +V|. Also VSP XS QVS

and V5p X5 CVf, by Theorem 3.1. Hence Vjp • S 2 (Vs)' and

Y?p • S 2 (Vf) * by Theorems P4 and P2. Hence Vsp • 5 2 (V£) *+ (V|)* and

henceVSp x S C V£ n V| by Theorems P4 and P2. By Lemma 3.2,

r (Ysp-S) - r(V5pX5) = r(VSp-P) - r(VSPxP) .

Hence r (V5p.P) - r (V5PxP) & r (Vi+Vf) - r (Y£nVj). Since

0 < r(YypXP) <s r(VSP*P) ^ \P\, it follows that if

IP I =r(Vs+V§)-r(Vs n V|), V5P is a minimal extension of V£ and Vf. We

now show how to construct a minimal extension of given spacesVs andVf. Con

struct a basis Bn ofVs n Vf. Extend it to a basis B2 ofVj- and a basis B2 ofV|.

Clearly Bj u B2 is a basis ofVs +V|. Let Bn> B! - Bn, B2 - Bn form the sets of

row vectors of A^, A15, A^ respectively. The matrix A shown below is taken to

be the generator matrix for Ysp. (Here Pi u P2 = P).

c p -p

Aj5 U 0

= Aw 0 0

Ass 0 U

1 Pl P2 Pl P2
IfVp has the generator matrix (U 0) and Vp has the generator matrix ( 0 U)

then it is easy to see that Vsp «- Vp = Vs andVSp «- Vp = Vf. Note that

1^1 = 1^11 + \Pz\
= r(Vs) - r (VinVf) +r (Vf) -r(VsnV§)
=r(Vi+Vl)-r(VinV|) ,

by Theorem P5. It follows that VSP is a minimal extension ofVs andVj.
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In Theorem 5.1 observe that we are able to obtain Vs and Vf as ordinary

minors (as opposed to g-minors) of VSp since Vs = VSp'(SuP2) x S and

Ys —Ysp " (SuP{) X S. If we have to construct a minimal extension of

cY? • • V§i when n > 2, ordinary minors would be inadequate. By using the

ideas of the first half of the proof of Theorem 5.1 we can show

n

P\J* TC£Vs)-r(Vsn ••• nV§)
i=l

The matrix Ashown below can be taken as the generator matrix ofVsp

A =
Af* U

AnS 0

(Rows ofAn5 form a basisfor (Vs n • • • n V§), while rows of A+s
form a basis

n

for 2 Y^-) Let V£ be generated by the matrix [K+ ¥^ ]
t=i

space generated by the rows of [K+]. Clearly

fSP Vh=V%

Af£
An5

. Let Vp be the

We summarize these results in Theorem 5.2 below:

Theorem 5.2 Let Ysp on S u P be an extension of [Vs • • • Vgj. It is a

minimal extension of (Vj- • • • Vgj iff | P | = r (£ Vs) - r( n VJ).
i=i *=i

We next prove a simple but useful result.

Theorem 5.3 Vsp is a minimal extension of [V^, • • • V§j iffY|p is a minimal

extensionof [(Vs)', • • • (Vg)*j.
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Proof: By Theorem 3.3 VJ is a g-minor of VSp iff (Vj) *is a g-minor of Vjp. We

next observe that

n

»-(E^)=|5| -r(n (Vj)')

r(n Y*)=|S| -r(£ 0*n
i = l i = l

by Theorem Pi and Lemma 3.1. Hence

iff

\P\ =r(£Vs)-r(n Vj)

1^1 =r(£(Vsy)-r(n (Vs)') .
i=l *=1

5.3. Application to Network Analysis

In this subsection we show the relevance of the notion of extension of vector

spaces to network analysis. We will show that if we are allowed to increase the

number of variables it is possible to solve a given network utilizing the topology

of a different network. These ideas do not depend upon the types of devices

present in the network.

Suppose we have to solve a network N2 on the set of edges S i.e., solve Equa

tions (5.1)

(A15) ij = 0
<Bw)*J=0 or (Ak)eJ =vJ
D(v5,iS) = 0

-22-
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We wish to utilize the topology of a different network say N2 on S with reduced

incidence matrix Ags but the same device characteristic D(v£,is) = 0. Let Vs,

Vf be the spaces generated by matrices A15, Aqs respectively. We can then

construct a generator matrix
Ajs

•is

s
for the spaceVs + Vf such that L?1 KiS

AgS

are generator matrices for V5, Vf respectively. We next choose A$P shown

below as a generator matrix for Ysp

A^p =
a;5 U 0

KyS 0 0
A^s 0 U

Here rows of AJ^. A^s may be taken from rows of Alt Aq. Then VSp *- VP =Vj-
Pt P*

and (Vsp *~ Yp) = V§ where Vp, Vp are generated respectively by [U 0],
Pi P*

[0 U]. By a suitable row transformation we can choose A^p as a generator

matrix for Vsp, where

Asp =
U 0 0

0 K22 K23

Ks U 0'
A^s 0 0 =

fa 0 U

A15 U 0

Aqs 0 K23

Equations (5.1) may now be rewritten as

Ks U 0
Ags 0 K23 lpT

[U0]Jj =0

lo
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D(vs. is ) = 0

(Ai5)r A&
U 0

0 Kg

ef

[o ujyy =0

(5.3(c))

(5.2(d))

or (K«) ef = 0 (5.2(e))

. Equations (5.2(a)), (5.2(b)) follow V& = Ysp «- Vp.

EquaUons (5.2(d)), (5.2(e)) follow from (Vi)'=V|p«- (Vp)*. EquaUons (5.2)

may be rewritten as (5.3) below:

(Aes)i/ =- fe)^

- vj+i*£s)4=- (A;5)rvpr

D(v5,i5) = 0

»£W=0

A!is ij = 0

(5.3(a))

(5.3(b))

(5.3(c))

(5.3(d))

(5.3(e))

Equations (5.3) are equivalent to the equations (5.2) whatever be the device

characteristic D(v5,ijy) = 0. However, when networks Nj and N2 have unique

solutions the following convenient procedure may be adopted for solving Nj.

Observe that Equations (5.3 (a), (b), (c)) would reduce to the equations of

N2 if the right side were zero. Let us for simplicity suppose that (5.3(c)) has the

form

EiJ+ FvJ = s (5.4)
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In order to solve N2 we could first solve is, e2, V5 in terms of ip, Vp , and s. In

the linear steady state case this is equivalent to solving N2, \P\ +1 times. The

equations (5.3 (d), (e)) can then be converted to an equation involving ip , Vp

and s. Solving this equation would yield ipg, Vpx and s. Back substitution would

yield is, V5. Aslight modification of this technique will permit us to handle non

linear, dynamic networks also. It is clear from the construction that K23, (A!is)T

have linearly independent columns. It follows that be addition of a suitable sub

set of rows of (5.3 (a)) to (5.3 (d)) and a suitable subset of (5.3 (b)) to (5.3 (e))

we get equations (5.5) below with the coefficient matrix on the right hand side

being nonsingular.

H11 H12 0
H21 Kfc Ife rf= Hu 0 ] hf

0 Has v PI
(5.5)

Assume that we know ijp2(ti), Vp^^) , s(^) (where s is the source vector). We

then solve the nonlinear resistive network N2(ti) (obtained by using a non

dynamic approximation of D(vs,is) = 0 at t1 ) iteratively in terms of i£8(ii),

vP\(*l). s(*i) and obtain i£(ti). Vstfi), e£(ti) and thence using (5.5) obtain

ip^+1)(^i). v^+1(*i). The procedure can be repeated at (^+A) using ip2(*i) as

5.4 Two special topological transformations

The derivation of subsection 5.3 glosses over practically important details

such as the construction of A!is. Aqs. KS33 and the size of the border \P\. Our

aim there has been merely to show that such a procedure is possible rather than

that it is efficient. The method can compete with other methods only if the

required matrices can be computed efficiently, \P\ is small and N2 has a very
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"desirable" structure. We next presenbtwo cases where N2 has some specified

sets Si, ..., Sn as separators. We assume that these sets have been chosen in

such a way that | P | would be small ie we will assume that in the original net

work Si, ..., Sn are "loosely" connected. (This problem can only be handled

heuristically). In the cases presented the required matrices can be computed

efficiently and we present algorithms for doing so.

Case I Newgraph s (GxSi) ® • • • $ (GxSn).

Let Nj = (5,V5,DS) and let 5* ( i = 1 n) be a partition of 5. We will

assume that V5 is the coboundary space of a graph G. Choose
n

Nz - (S> $ Ys XSt,Ds). In this case A^§ would simply be the reduced

incidence matrix of (G x Sx 0 • • • 0 G*Sn). A^s would have no rows. Kzz

would have no columns. Algorithm I describes how to construct AJ5. In this
n.

case Pi = P and | P | = r(G) - £ r(GxSi). Observe that N2 is easier to solve
i=l

if in the device characteristic DCvj,]^) = 0, the sets Sit i = 1 n appear

decoupled. Solving N2would then be equivalent to solving n smaller networks.

n

Algorithm I. To construct A?iS when N2 = (S, 0 VsxSi ,DS)
t=i

Step I Select trees tt of graphs GxSi (i = l,...,n).

71

Step II Construct the reduced incidence matrix of the graph G x (S—( U ti)).
i-l

n ,
Adjoin zero columns corresponding to u tit Ax$ is the resulting

i—1

matrix.

END

Justification for Algorithm I. By Theorem P9,

Vcob(Gx(S- u ti)) = (Vcob(G)) X(S- U ti). The rows of A^s are linearly
t=i i=i *w
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independent and belong to Vcob(G) since they are obtained by padding vectors
n n

of Vcob(G) X (S— u t^ with zeros corresponding to ut. Since L forms a
t=i ' isi c *

n

forest of G x Si (i = 1 n) in the reduced incidence matrix of 6) GxSi the
i=i

71

columns corresponding to u^ from a linearly independent set. In the matrix
x=l

Ajs we have only zeroes corresponding to these columns. Further the number

71 /

of rows of A1S is r(Vcob(G)-\ U ^|. Hence the rows of A,^
t=i 15

n

together with the rows of a reduced incidence matrix of $ GxSi form a basis
t=l

ofVco6(G).

Example 5.1 Let G in Fig 5.1 (a) be the graph of N:. Let 5a = (1, • • • 5}.

S2 = [6, • • • 10}, 53 = {U, • • • 17J, S4 = (18, • • • 24}. The graph $ GxSi is

shown in Fig 5.1(b). Here tt = f1, 2j, tz = (6, 7$, *3 = [11, 12 13 14},

4

*4 = [18, 19, 20, 21}. r(G) - £ r(GxSi) = 3. So we need 3 extra variables
i=i

for acquiring the advantages ofworking with Sit S2, 53, SA as separators - vPl

has three variables and Aj^ has 3 rows. The rewritten equations are as follows:

(Aeii) i£ =0

(Abb) ijt =0

(A233) i|3 =0

(Ae44) i£ =0

( Ag^ is a reduced incidence matrix of GxSi)
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~YSZ +(Ag22)e^

_J

-vj4 + (AL)e&]

' vr(A15) rpf

D(v5,i5) = 0

(Ais)iJ = 0

Ais may be chosen as the reduced incidence matrix of the graph obtained by

4

adding u ^ as self loops to G X (S - u £t) shown in Fig. 5.1 (c). In this case,
i=l

since the coboundary space of the graph of N2 is contained in the coboundary

space of the graph of Nlf the matrix K23 has no rows.

n

Case 2. New graph =6 G • Si
i=i

Let Ni = (S,Vs,Ds) and let Si (i = l,...n) be a partition of S. We will

assume that Vs is the coboundary space of a graph G. Choose
n

N2 = (S, (£ Vs*SitJ)s)' In this case A^s would simply be the reduced

incidence matrix of G. Algorithm II describes how to construct KjS- In this case
71

Pz = P and \P\ = (£ r(G'Si) ~r(G))' Observe that N2 is easier to solve if
i=l

in the device characteristic D(vs,is) = 0, Si (i = l,...n) appear decoupled. Solv

ing N2 would then be equivalent to solving n smaller networks.

71

Algorithm n. To construct K^ when N2 = (S, & VS9Sit De).
i=i

Let n^ be the set of boundary nodes of Gwhere edges of more than one Si

are incident. Let the copy of node ek of n^ in the graph G*Si be named e^. Let
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rrii be the number of components of G»Si (i = l,...n). For j = l,...mi and i = 1,

... n do the following. If the jth component of G«Si has boundary nodes select a

boundary node ej^ as a datum node. Construct the graph GJ, by adding an

edge Bjgi directed from e^ to e^, for each boundary node ew in the jth com

ponent of G*Si. Let Bb be a cycle matrix of G^. To this matrix add zero

columns corresponding to nonboundary nodes of each G»Si The resulting matrix

isK^.

•

Justification of Algorithm n. The condition KgJ e2 = 0 represents the maxi

mal linearly independent voltage constraints on all the nodes of G»Si (i = l,...n)

in order to connect the G»Si to makeup the graph G. The KVL conditions of GJ,

also represent the voltage constraints on all the boundary nodes of G*Si (i =

l,...n) in order to connect the G»Si to make up the graph G. If 3b is a cycle

matrix of Gb then Bb eT = 0 is a maximal linearly independent set of con

straints among them. Padding the matrix B5 with zero columns corresponding

to internal nodes of G*S^(i = l,...n) therefore yields (a candidate for) Kj^.

Example 5.2. Let G in Fig 5.1 (a) be the graph of Nj. Let 5j = fl,..5j,

4

S2 = [6,..10}. Sz = [11, • • • 17}, 54= [18, • • • 24J. The graph $ &Si is
i=l

4

shown in Fig 5.2 (a). In this case (£ r(G*Si) -r(G)) = 1. So we need one
i=i

extra variable for acquiring the advantages of working with S^ S2, S$t S4 as

separators. ipg has one variable and K23 has one row. The rewritten equations

are as follows:
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(AaiHii
(AB2)i£

8 -H- 1K23
(AnsOiJ, l
(Abm)^

w

-•I,1 + a£ic£ = o

- vJ2 +A& e^ =0

- v|3 +A&3 e^ =0

- • J4 +AL e£ =0

D(v54s) = 0

Here Agg is the reduced incidence matrix of G*Si> For the jth component of

G*Si (if it has a boundary node) the node e^i must be chosen as the datum

node i.e., the datum nodes selected in the construction of Gb (see Fig. 5.2 (b))

and the datum nodes selected for constructing reduced incidence matrix of

GmSi must be the same. In this example e^ = e2, ek = e3, efc = e1§

efc41 = e3- Different Afy can turn out to be identical. Here, for instance,

^21 = ^41 = 3- 1^ simply means that copies of the same boundary node (e3 in

this case) have been chosen as datum nodes in components of different £«5{.

The matrix K^ has a single row in this example. It has entries for each non-

datum node of each component of G»Si (i = l,...n). In this case it has entries

4

corresponding to all the nodes of $ G»Si except e21, e^, e13 and e^ i.e., it

has 18 entries. Of these entries all entries except those corresponding to edges

of Gf, are zero. Corresponding to edges of Gf, we have the entries

-30-



ell 834 e42 c43

( I 1 —1 1 ••)• (This is a circuit vector of Q,). In this case AJ5 has no
4

rows since Vs is a subspace of £ (V-SJ.
i=l

6. Decomposition of a vector space.

6.1. In this section we introduce another vector space notion based on the g-

minor operation, namely decomposition of a vector space. The notion of decom

position arises when we decompose an electrical network into several submul-

tiports and a port connection diagram. For theoretical network analysis the

notion of decomposition provides a convenient means of network reduction. Pro

perties of the original network, pertaining to interaction between different com

ponent multiports can be transferred to a reduced network based on the port

connection diagram. A more detailed study of vector space decomposition is

available in [6].

6.2. Definitions and Theorems

Definition 6.1. Let V5 be a vector space on S. Let S be partitioned into

Si, • • • Sn. Let sets Pi, • • • Pn be pairwise disjoint and disjoint from S. Let
n

P = .U Pt. LetYs,1pi (i = l,...n), Vp be vector spaces on 5* UPt (i = l,...n), P

respectively. We say that (Vp, V^p, • • • V5 p } is an n-decomposition 0/V5

with respect to Slt • • • Sn iff Vs = (VSlPl & • • • $ Ys,nPn) ♦" Vp. V5.pt (i=

l,...n) will be called components of the decomposition. Pi will be called the sets

of ports of the component Ys^-Vp will be called the coupler of the decomposi

tion. The decomposition is said to be minimal iff whenever

[Yp-,Vc p«, • • • V5 p»j is an n-decomposition ofVs with respect to Si, ... Sn,

\P'\ * \P\.

Example 6.1. Consider the graph G in Fig. 6.1. Let S be the set of edges of G.
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Let Si = {l,..5l, S2= [6,..12j, 53 = [13,..19}, P1 = (p^, P2=\p2\,

-Ps = (P3i- We see that the graph Ghas been broken up into three multiports

and a port connection diagram Gp. LetV5, VsiPi (i = 1, 2, 3), Vp be the coboun

dary spaces of G, GsiPi (i = 1, 2, 3), Gp respectively. Then it is possible to show

thatV5 = (£ V5lpt)«-Vp.
i=l

We begin with a result which gives characteristic properties that a vector

space must possess in order to be a component of a decomposition of a given

space V5.

Theorem 6.1. Let Yg^ (i = l,...n) be spaces on 5* UPit i = 1, ... n, where

Si n Pj = cp for all i,j, Si n S3- = p for i * j, Pt n Pi = <pt i * j. Let

U St = S, U Pi = P. Then, there exists Vp on P such that

v5 = (Y?lPl e •• e v5npj <- Vp iff v5x5i 2 v5iPi x sit vs-Si c v5iPi .£<, a

= l,...n).

Proof: V$ can be a g-minor of (Ve « $ •• $ Vc p ) iff

Y? C(V5lPl e •• e Y?npn).5 and V5 2 (V5lPl $ - VSnPn) XS by Theorem

3.1 We will show that these two conditions are equivalent to the ones in the state

ment of the theorem. If V5 C (V5{pt $ •• $ Ys^pJ-S then clearly

Vs'Si QVSiPi-Si (i = l,...n). Next let VS'Si CV5<pt • 5* (i = 1, ...n). Let

f^eYy. Then is/Si^Vs^-Si (i = l,...n). Hence

^S eYfflPl • 51! e .. e V5nPn • 5n. But

(Ys^'^i) e •• e (VSnPn-Sn) = (V5iPi e •• e V5nPn)-5. Thus it is clear

that Vs C (VSlPl e • e YsnpJ.5. Next V5 2 (V^ 0-0 V^pJ X5 iff

Ys C(V5lpt 0 •• e V5npn)#.5 by Theorems P2, P4. i.e.. iffVj .5t CVj^-Si (i

= l,..n) i.e., iffV5 X 5* 2 V5ip{ x5t (i = l,..n) byTheorems P2, P4.
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Theorem 6.2. Let [Vp,Y?1pl,--V5npnJ be a decomposition of Vs. Then

fYpiY5lP1t,*Ys'npB{ is a decomposition of Vj.

Proof: Vs = (VSlPl e » 8 V^PJ - Vp iff

Y? = (YSiPi ^ '• ^ Ysnpn)VVp by Theorem 3.3. By Lemma 4.1 this is

equivalent to V5 = (Yslpl ® " Y? P ) *" Vp.

•

An immediate consequence of Theorem 6.2 and the definition of minimal decom

position is the following theorem:

Theorem 6.3. [Vp,Ys*ipt (i = l,..n){ is a minimal decomposition of V5 iff

[Vp, Ys,1pi (i = l,..7i) j is a minimal decomposition of V5.

The next few theorems provide characteristic properties for a minimal

decomposition.

temma 6.1. Let [Vp,Ys-1pl,--V5ftpn} be an n-decomposition of V5. Then

\Pi\ =fc r(V5-5i)-r(V5x5i)i=l,..n.

Proof: From Theorem 6.1 we know that

ys'SizVsipl'SitVsxSi^VSipixSi .

Hence

r(Vs'Si)-r(VsxSi) <, r(VSiPi-Si)-T(VSiPixSi) •

By Lemma 3.2,

r(ySiPi'Si) -r(VsiFixSi) =T(VSiPi'Pi) -r(VSiPixPi) -s |Pt| .
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The Lemma follows.

•

l£mma 6.2. Let (Yp,Ys'1pl,--Ys,npft j De an n-decomposition ofV^. Then

r(Vs-Si) ~r(VsxSi) < r(Vp-Pi) -r(VPxPi) i = l,..n

Proof: Select vectors f5l • • • f^ which together with a basis of Vs x Si form a

basis of Vs ' Si. Then by the definition of decomposition there exist vectors

t^Pi (r = l,...k) inYs,1p< such that

iSiPi/St =*£ . fSiPi/Pt zVp'Pi

Suppose HSipi/pi (r = l,..fc)j does not form a linearly independent set with a

basis of VPxPi. Then there exists fs4p{ eV^ such that isipi/pi is a nontrivial

linear combination of f§<pv/p4 (r = l,..k) and belongs toVPxPt. This linear com

bination of f-SiPi/Si ^11 however yield a vector which belongs to

Vs • Si - Vs x Si# Thus the vector fstp4€Vs4pi is such that

tSiPi/Si e Vs*5t - Vs x Sit fStPi/Pi eYp XPi. Consider a vector
n

fsp e $ Vs^ such that

tsP/SiUPi - fs^

f5P/(5uP)-(5iuPt) = 0 .

Next choose a vector fpEV^ such that ip is zero outside Pi and

fp/Pi = ISiPi/Pi- This is possible since *s<Pi/pt eYp x Pt. Since isp/p = ip it

follows that fsp/seVs. But then fsp/s, €VS XSt. This contradicts the fact

that [f^Pj/Sii forms a linearly independent set with a basis of Vs XSi. We con-

-34-



elude that \tsipi/pi (r = l,..k)} forms a linearly independent set with a basis of

Vp x Pi i.e., r(VP-Pi) - r(VPxPi) > r(Vs-Si) " r(VsxSi).

•

We later present an algorithm for the construction of a minimal decomposition

of a vector space V"s that is the coboundary space of a graph and has

|P| = Z(r(VS'Si)—r(VsxSi)). A simple algorithm of the same kind can be

given even for a general vector space Vs [6]. We therefore assert

temma 6.3. (Vp,Vs1p1,--Vsnpni is a minimal n-decomposition of Y? iff

\Pi I = r(Vs-Si)-r(VsXSi), (i = l,..n).

Theorem 6.4. Let [VP,VslPl,"VsnPnl. be an n-decomposition of Vs. Then the

following statements are equivalent:

(a) It is minimal

(b) |Pi | = r (Vs.Si) - r(VsxSi) (i = l,..n)

(c) Pi has no circuits or bonds in M(VSiPi) (i=l,..n) or M(VP).

Proof: By Lemma 6.3 we know that (a) and (b) are equivalent. We will now

show that (b) and (c) are equivalent. Let \Pi\ =r(VS'Si) "^(YsX^i) (i =

l,..n). Then for all i, by Theorem 6.1, \Pt\ sS r(VSiPi'Si) -r(VSiPixSi).

Hence by Lemma 3.2, \Pt\ <, r(VSiPi*Pi) -r(VSiPixPi), By Lemma 6.2,

\Pi\ ^ r(VP-Pi) -r(VPxPi): It follows that |Pt| =r(VSiPi'Pi) =r(Vp-Pi)

and 0 = r(VsiPixPi) = r(VPxPi) for all L Hence by Theorem P7, M(VSiPi'Pi)

and M(VP*Pi) do not have circuits and M(VSiPiXPi) and M(VPxPt) do not have

bonds. Hence Pi has no circuits or bonds in M(V$iPi), (i = l,..n) or M(VP) by

Theorem P6. Conversely suppose Pi has no circuits or bonds in M(VSiPi), or

M(VP). Then for alii
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\Pi\ =r(VSiPl'Pi)=T<yP.Pi) .
0 = r(ySiPtxPi)=r(VPxPi) .

So

\Pi\ =r(YSiPi.pi) -rOfSiPixPi)
= r<yS(Pi.si)-r<yStPixsi)

by Lemma 3.3. Suppose |P,| >r(Ys'Sj) - T(ysxSj) for some j. Hence

r(ystP,'3j)-r(ySjPjxSj) >r(Vs-S,)-7-(V5xSy). Then by Theorem 6.1

there exists

isjZpTsjPsSj-Vs'Sj) or gSj ^x^-V^xS,) .

Assume the former. Then there exists a vector ts-Pj^Ysjp. such that

i-SiPi/Si = i-Sy Since Vp • Pj has full rank there must exist a vector fpeVp

such that ip/Pj - Is^/Pf Since Vs^ • Pi has full rank for all i it follows that

there exist vectors fs4p4 for all i such that fsiP(/pi = fp/P^ Then by the
71

definition of n-decomposition the vector fs = S ^Pv/^t belongs to Vs. This
t=l

contradicts our assumption. Next suppose there exists

gS/^Ys XSj —VSjPj x Sj. Then there exists a vector gs eVs such that

&S/Sj - 65y and Ss/iS-Sj) = 0- By the definition of decomposition there exist

vectors gstpt ^Ys,ip4 and gp e Vp such that

ZSiPf/Si = &s/s{ (* = l.-.w)
and

gp/p, =g5iP/P, (* = l...n) .
But then

g^p/5, =0 * * J •
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Hence gs^/Pi eVs.Pi XPiti * j. But VSiPi XPi has zero.rank for all i. Hence

gp/Fi =0 for i 5* j. Hence gP/Pj eVp XPjm But Vp XPj also has zero rank.

Hence gP//Pj =0and hence gsjpjj/pj =0. This contradicts the fact that

eSjPi/s^ =&s,) eVs XSj - VSiPj xSj .
•

We now present an algorithm for minimal n-decomposition of a space Y?

that is graphic. It seems difficult (if not impossible) to give an algorithm that

makes both Ys^ (i = l,..n) and Vp graphic. Justification for this algorithm is

given in Appendix I.

m. Algorithm for a minimal n-decomposition of a coboundary space Let G be a

graph on S. Let A be its incidence matrix. Let S be partitioned into Si, S2 ...

•SW.LetVco6(g)=Vs.

Step 1. Construct G X Si (i = l,2,...n).

Step 2. Construct trees tt for G X Si (i = 1.2,...n).

* n n

Step 3. Construct Gx (S- U ?i). Add the edges U tt back again as self
**~i i^i

loops. Let the resulting graph on S be G. Let A be its reduced

incidence matrix.

Step 4. Select trees ^ for G'Si • Let A^ be the submatrix of A corresponding

to the columns t^.

Step 5. Construct the matrix Ap as shown below.

rPi . Pn
Ap = [*»,:-4j

Vp is the space generated by the rows of this matrix.
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Step 6. Let A^ be the reduced incidence matrix of G • Si (i = l,..n). Let Ay.

be the submatrix of A^ corresponding to columns tim Let A# be the

reduced incidence matrix of G X Si (i = l,..n) The generator matrix of

YsjPf (i = l.-n) is shown below

ASiPi =

Si ?i
•A.

An 0

Ai5t A*

Remark: Observe that Ap is the reduced incidence matrix of a graph, while

the spaces Ys^ need not be coboundary spaces of graphs. An algorithm that

makesYs,tpi (i = l,..n) graphic (but Vp nongraphic) is given in [6],

6.3. Applications to network theory

The idea of decomposition is particularly relevant when the network can be

naturally partitioned into different types of elements such as resistors, induc

tors, capacitors or linear, nonlinear or faulty and good elements etc. Solutions

that can exist in such networks may be classified as of two kinds: "Trapped" and

"interactive" solutions. Trapped solutions "lie" entirely within one type of ele

ment. A solution that is not trapped will be called interactive. By examining

sections of such solutions corresponding to one part of the network, one can get

an idea of what is happening to another part of the network. Trapped solutions

can yield no such information. Interactive solutions can be studied more con

veniently by working with a network defined on the coupler space of the decom

position. The new reduced network will be minimal when the decomposition is

minimal.

Definition 6.2. Let N = («S\Vs,Ds) be a generalized network. Let S be parti

tioned into Si,"Sn. Let these sets appear decoupled in the device characteris-
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tic. We say that (vs.is) is a trapped solution with respect to the partition

(Si,~Sn)mvse § Vsx^andise £ V5' x S^
i=l i=l

Observe that in the above definition if V"s is the coboundary space of a

71

graph G, a solution (vs.is) is a trapped solution iff vs can exist in & G x St
i=i

n

and is can exist in & GSi. One may imagine the voltages lying trapped within
i=i

cutsets of G lying entirely in a single Si and currents as trapped within circuits

of G lying entirely in a single «%. Such solutions cannot be observed at the ports

of the component multiports and hence will not be reflected onto the network

defined on the coupler space of the decomposition.

Multiport decomposition can be used in theoretical network analysis in the

following manner.

Let N = (SWs.Ds) be a generalized network and let S be partitioned into

(Si,S2"Sny Let S\, S2 • • • Sn appear decoupled in the device characteristic.

Let (Vp/Ys-jP^-Vs^) be an n-decomposition of V*s. Define networks

^iPi = ('Siu-r9i'YsiPi.Ds<Pt)' (i = l.-.n), Vs^ imposes no constraint at all on P$

and precisely the same constraints on Si as Ds- Solving the network N is then

equivalent to finding solutions (vs^.is^) (i = l,..n) of N* such that

.? vstp/pt eVp and | is.p^ eVp\
T *~1 1 = 1

In other words, in order to solve N, we solve the "multiports" N^ in terms

of the port variables, in the process obtaining the "port behavior" of N^ (i.e.,

the set of all vPi, iPi that can coexist on Pi in the multiport N^) .We then define

a new coupler network Np on P with coboundary space Vp (the "port connec

tion diagram") and device characteristic on Pi as the port behavior of the mul

tiports N^. Solving Np gives the possible port vectors. Since in each N*pt the
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other variables have been determined with respect to the port variables this

completes the solution of N. Observe that trapped solutions will coexist with

zero vectors on the portedges which means that the trapped solutions of the

network correspond to the zero solution of Np. The nonzero solutions of Np will

correspond to the interactive solutions of N. We will illustrate these ideas for an

RLMC network.

Let N = (5\Vs,Ds) be a generalized linear RLMC network. Let S be parti

tioned Sr, Si, Sq corresponding to resistors, inductors and capacitors. Ds is

equivalent to the constraints

vj = (R) i$

vf=(L)iZ

i?=(C)v£

where R, L. C are positive definite matrices and subscripts R, L, C have been

used in place of Sp, Si, Sq. Let Ys have the minimal decomposition

fVp.VsRp^.YSiP^.Vs^p^j. Let VsrPr, Ys^p^. Yscpc nave generating matrices:

Bitf : 0
Bzb : U

Bil
B21

0
u

Observe that the matrices

he
• [Q2C

B1R
lB2/?J,

'Bid <?ic
JPzLljSzC

follows from the fact that for minimal decomposition Y?ipi X i^ has zero rank.

We know that the solution of the original network is equivalent to the solution of

the following equations (6.1), (6.2), (6.3), and (6.4)

have linearly independent rows. This
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Bli?

&ZR

0

u

B& B&
0 U

(R)tf =vj

tf

'4

if.a

*1L

B/L
0 "lift

tf

(L)i/=vf

Qjc i o] $

o •" u

(C)v£=i£

t \

0

0
V i

*.

0

0
V J

0

0,

ik

-\

J

~\

W& :Q£ :<tfc ]i£ =0

'w' '4
(Q&)r (vf)r = -h
(Q&)7"

..
-h

J

Equations for the

resistive multiport

NRPR -{SR UV VS_P

Equations for the
inductive multiport

N

R R

LP,
{sLu

^' \pl'

Equations for the
capacitive multiport

N (sc upcCP.

Coupler KCL
and KVL Equations

S P
C C

SRPR} (6-D

hh} (6.2)

scpc} (6.3)

(6.4)

We now solve the resistive, inductive and capacitive multiports with respect to

the port variables. In the process we get relations Dp_ between ipD and Vp , Dp

between ip£ and vPl and DPc between ipc and Vpc. In this case from the resis

tive, inductive and capacitive multiport equations we get.
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B

4 v; C 0 U 3

B2R

B

vr CO U 3 •

M B,,

r'

C O U 3

(R)

-1

N / N ^
0

*V^
(L) E1L BLL

u

lUi
ri

(C)
' T T 1) f°

_*̂

^Vf! D

'uy 5 d
• *7? '• ?L

-i

;tuJJ
(<y.s di

C ',

The coefficient matrices on the right are all negative definite.

we next use Ds ,D_ ,D- as the device characteristic -for the
* "- "c.

coupler network N with V as its coboundary space. Solving the

coupler network we get possible values o-f i0 ,IL ,ir fV_ ,i- ,M\ ~* ru ' ?_ \ \
Since in each o-f the multiports we already know the rest o-f the

variables with respect to the port variables this completes the

solution o-f the network.

Using this technique it is possible to show that the trapped

solutions correspond to zero eigen values and the state equations

o-f the reduced network have the same Jordan canonical -form as the

state equations o-f the original network except -for the zero

eigenvalues. We outline proo-fs -for these -facts in the Appendix II.

Example 6.2

In this example we illustrate the idea o-f the decomposition

o-f an RLMC network. Fig 6.2(a) shows an RLMC network N.

A

The set S o-f edges of the graph G (Fig 6.2(b)) o-f N has been

partitioned into SL=; Lr ,L£ ,L3j* , SR=^R. ,R1,R3; ,
t ,

S- = C, ,C^ ,C<a '.

- 4-Z-
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We now proceed to decompose G through Algorithm III.
a A A

Constructing G X St ,G X Sfc ,G X Sc ,We find that we can
A / f - A -

choose tL = La ' ,tR = -R: ,tc = ^C? . Graph G is shown in

Fig 6.2(c). G. S, , G. St , G. S. have trees t _ = •'R, ,RC •,

t, = - L, , L- , tc = • C( jC^ "• Fig 6.2(d) shows a minimal
/\

decomposition of graph G. The graphs Gc c , Gc ~ , Gc have
-L rL

S^t

coboundary spaces, (constructed according to Algorithm III)

v*. , , V , V , V respectively. In this case both the component

spaces and the coupler of the decomposition of the original

coboundary space have turned out to be graphic. (This may not be

possible in general). The network N may be thought of as being

obtained by the 'connection', of the resistive, inductive and
A A A

capacitive multiports on graphs G- c , Gc r> % G* a according
-Jfcrft -U1!. •-,CrC

A

to the rpdrt connection diagram* Gp. This will correspond to

physical connection if the ports of the multiports are connected

to 1 : 1-transformers and the secondaries are connected according

A

to Gp. Next by using equation 6.5 or simply by inspection of the

multiports we can obtain Dp , Dp , Dp for N-p as

^, fR, ♦
*\

*s>.

V~z
e. *1 + R,

'R-2.

V-
3 M

Vr. LL ♦ L 4*
-2.
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1-

1-

C, (C^ + c3 )

C, + Cc + c^

! -C, C

-c,cL
\

c, + c^ + C-

C^ (C, + C3)

V

V;

C + C~ + C, C, + C. + Ca

Np would in general be an accurate representation of all the

interactive solutions of N ('modulo' trapped solutions). In this

(RLMC) case it has the same Jordon block as N except for zero

eigen values.

Conclusion

In this p3.psr we have introduced and made systematic use of

the generalized rcinor operation on vector spaces. We have shown

that it arises naturally in the context of connection of ideal

tr-ansf ormer s. We have defined the notion of the minimal extension

of two or more vector spaces and used it to describe a method of

network analysis where one could use arydesired network topology,

at ? certain cost, to solve a given network. We have defined the

net ion of decnripas ition of a vector space to formalize the intui

tive idea of decomposition of a. network into multiports and a

port connetion diagram. Using the example of an RLMC network we

have Fhown that some of the properties of the original network

co'.'.Id be more conveniently studied by examining a reduced network

defined suitably on the port connection diagram. While all the

concepts introduced in this paper have been for arbitrary vector

soeces, in order to show their relevance to network theory, we
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have presented algorithms, wherever necessary, which are

particularly appropriate to coboundary spaces of graphs.
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APPENDIX I

A.I. Justification for Algorithm ID. Observe that the rows of the matrix A

shown below generate the coboundary space of G.

m

A =

As,
Ann

As.

where Ag is the
i

submatrix of A
corresponding to
columns S..

This is because (a) Hie rows of A belong to the coboundary space of G (They are

obtained by taking suitable vectors of VsX(S—u^i; and adding zero columns

corresponding to edges in uf i).

(b) The rows of [ 0 • • • An • • • 0 ] belong to the coboundary space of G since

the rows of A* belong to (Vcob (5)x5i).

(c) The rank of A = rank of G. The columns ?* of A# are linearly independent,

where as these columns are zero columns in the matrix A Hence

J*
An

Sn

~ » » ~
rank of A = 2 r(GxSi) + r(Gx(S- u *<))

= |u?J +r(gx(S- u ?,))
t=i i=i

n a

Since U & contains no circuits in G
i-l

rank of A=r(5-(u £)) +r(6x(S- u £))
x=i t=i

=*•(£) 7]

Asi can be expressed as ki(Ai5t) since A^ is a reduced incidence matrix of

n

G-Si. For the spaces $ Y^/^ ano^ Yp we nave the generator matrices A^, Ap
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shown below

S, • • Si-- Sn P,-?i"Pa

An 0 0 0 0

A15, Am, 0
A«

0 0 A^4 Ak, 0
0 Ann 0

0 0 AnSn 0 0 A^

Ap = [
Pi Pi

• • • Id(A*,) ... ]

Consider the submatrix A^ ofA^ as shown below:

^15, Ll*,

At54 ^
^n^ A*

If we premultipiy this matrix by the matrix

Pi

[ki

we get the matrix

:kn]

Si Si Sn px pt pn
[ ASl • • • As- • • •ASn ;A<1 • • •A^ • • • A^ ]

observe that Ap appears as the submatrix corresponding to columns P. From

n

the definition of g-minors it follows that Vs C (( & VstPt «~ Vp). We will now
i = l * *

n

show the reverse inequality. Let is be a vector in (0 Ys p ) «- Vp. Then fc
i=l * *

n

can be written as is + f| where fs £ 6) (VeXS*) and fJ is the restriction of a
i=l
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vector fsp which is linearly dependent on the rows of A~ and further

^P/PGYp. is clearly belongs to V5. We will show that ff also does. We have

*Sp=(^)(Ae). Hence isp/p = (X)(Asp). We know that ffp/p is linearly
dependent on the rows of

Pi

[A,
Pn
K ] = (kj kn)

Ah,

^

4*

The matrix postmultipiying (kx .. kn) is the matrix A^ p. Since this is nonsingu-

lar \ is linearly dependent on the rows of (kj •• • k^). Hence ffp/s is
St Sn

spanned bythe rows of [A^ • • • A5J. Hence fJeVs*.

ENDS
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APPENDIX n

In the following discussion we refer to state equations of a generalized RLMC

network. By this we mean a set of equations of the form

such that Ysfa). ij(0 can be expressed as (k„)x7?(i) and (ki)xT(t). Just as in

the case of ordinary RLMC networks we may choose the state variables to be a

maximal linearly independent set of capacitor voltages and a maximal linearly

independent set of inductor currents. We refer below to independent solutions

of the network as well as to independent solutions of the state equations of the

network. The latter requires no explanation. Solutions (Vg'is) —(vJM§) of the

network are linearly independent iff there exist no nontrivial Xlt ..., A,,, such

that

(Xivi,\^) + • • • + (AfcV^iJO = (0,0) .

Let N be a generalized RLMC network. Let Sr, Sl, Sc, Pr, Pl, Pq> Np be

defined as in subsection 6.3. We define a generalized negative RLMC network as

one where R L, C matrices are negative definite. We reemphasize that we are

dealing with minimal decompositions.

Theorem Al. The number of independent state variables of

N = r(V5-Sc) + r(Vf5i).

Proof The number of independent state variables is the same as the number

of independent initial conditions. Capacitor voltages and inductor currents can

be chosen as state variables. The possible capacitor initial voltage vectors and

the possilbe inductor initial current vectors form respectively the spaces Vs'Sq



and YsiSjr. Hence the number of independent state variables of

N = r(yr5c)+r(Vf5z#).

Q.E.D.

TTieorem A2. Let N be a generalized RLMC or negative RLMC network.

(a) A solution of N is a trapped solution iff it is a constant solution of N.

(b) The number of independent constant solutions of N is equal to the

number of independent constant solutions of the state equations of N.

(c) The number of independent trapped solutions of N is the number of its

zero eigenvalues and equals t(V§xSc) + ^(YyXS^).

ftroof We will prove the theorem for the case where N is a generalized RLMC

network. The negative RLMC network case is essentially the same and so is omit

ted.

(a) Let (vs(t),is(t)) be a trapped solutionof N. Then, by definition

v£(OeV5xSp. ,

ik(t)eVs*SR ,

(R)(ih(t))T = (vh(t))T

Since VsXSr Q(VsXSr)*, we have <vKO,ii(0>=0 i.e.,

(ij?(0)(R)(i;K*))T = °- Since R is positive definite we conclude that i£(£) and

therefore y£(t) is a zero vector. Next we have

*l(t)zVsxSL ,

i2(OeV5*xSi .



(Wl(t))T = »2(0

As in the previous case we have

<*2<*).ti(*)> = o .

Hence, since (L) is positive definite we have

|-a2(')(L)(i2(0)7) =o

This means that (il(t)(L)(il(t))T) is constant.Since (L) is positive definite it

can be factorized as (kk") where k is a constant matrix with linearly indepen

dent rows. Hence (i2(Ok)(i2(Ok)r is constant. Hence (i2(0k) is a constant

vector and hence ll(t) is a constant vector. Hence vl(t) is a zero vector. The

capacitor case can be handled similarly and we can show that v£(£) is a con

stant vector and i<?(0 is a zero vector. Thus we see that trapped vectors are

constant vectors. Next suppose (•£(*)Ai(0) is a constant solution. From the

device characteristic it is clear that we must have v<?(0 = 0, i/,(0 = 0. It fol

lows that <vi(0,ij!(0>= ° and <*i(0.i£(0>= 0. Since <v£(0.i£(0>= 0 it

follows that (^(0,1^(0)= 0- Since R is positive definite it follows

•£(0 =U(0 =0- Hence i[(t)eVsXSL and YC(t) €V5xSc. Hence

•KOeVsXS* $ Vs*Sl & V5x5c .

ii(*)cV5X5/? $ V^xSi 0 Vjx5c .

Hence (y£(0»i£(0) is a trapped solution.

(b), (c). We thus see that (vi(0,i£(0) is a constant solution of N iff v£(£),

il(t) are constant vectors, ?k(t) €ZVsxSc, it(t)eVs*xSL and •&(*). v2(0.

*/?(*)• *£(*) are zero vectors. The number of independent constant solutions of

N is therefore the same as the number of independent constant solutions of the



state equations of N. The latter equals the number of zero eigenvalues of N.

While the former is equal to the number of independent trapped solutions which

equals r(VsxSC) + r(VsXSL).

Q.E.D.

From Theorems 6.4 and A2 we have

Theorem A3 (a) Number of independent state variables of

NP= \Pt\ + \PC\.

. (b) Np has no zero eigenvalue.

Proof Since (Vp, Ys^p^, Ys£pi, Yscpcj is a minimal decomposition of V5 we

have by Theorem 6.4 and Lemma 6.2

\PL\ =r(Vs-SL)-r(VsxSL)
= r(VPPL)-r(VPxPL)

\PC\ =r(VsSC)-r(VsxSc)
= r(VP-Pc)-r(VPxPc) .

Hence we have

r(VPPL)= \PL\ ,r(VPxPL) = 0

tWp-Pc)= \Pc\ .r(VPxPc) = 0 .

In particular

r(VPPc)= \PC\

and

rCYp-^t) = \Pl\ -r(VPxPL) = \PL\

by Theorems PI and P4. Hence by Theorem Al the number of independent state

variables of Np = \Pi\ + |Pq\. The number of nonzero eigenvalues of
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Np = r(VS'Sc) + r(Vs-SL) - r(VsxSc) -r(V|xSA) (byTheorems Al and A2)

= r(VsSc) -r(VsxSc) + \SL\ -r(VsxSL) - \SL\ -rr(VsSL)

= \Pc\ + \Pl\ byTheorem 6.4. Hence NP has no zero eigenvalues.

Q.E.D.

Theorem A4 The state equations of N and Np have the same Jordan canonical

form except for zero eigenvalues.

Proof Since the decomposition (Vp, VSjiPs, Ys^, VScPc\ of Vs is minimal by

Theorem 6.4, M(VSlPl), M(VScPc) have no circuits or bonds in P^, Pq respec

tively. Hence in generator matrices ofY^p^, VslPl the columns corresponding

to Pi are linearly independent and in generator matrices of Vscpc, ^scPc tne

columns corresponding to Pq are linearly independent. Hence we can write

\pL = (ki,)i[ and vpc = k^vj where k^, k<? have linearly independent tows.

Let the state equations of N and Np be respectively

xr = Axr (A.1)

ir =Axr. (A.2)

Let X and X be the corresponding state spaces. We then have a map from X onto

X defined through x7* = (k)x7*, where k is the direct sum of k^. kc. We know

that equation (A.2) has no nonzero constant solutions since Np has no zero

eigenvalues by Theorem A3. Hence the space of constant solutions of equations

(A.1) maps to the zero vector under (k). Next \Pi\ = ^(Ys'Sz.) "r(^Sx^L)

\Pc\ =t(VS'Sc)-r(VsxSc) by Theorem 6.4. Noting that

t(VSSL) ~t(VsxSl) = r(VfSL) -r(VsXSL), we have by Theorems Al, A2,

and A3. dim(Z) = \PL | + \PC\ = dim X - dim (constant solutions of (A.1)).

Now there exists a transformation T such that T^AT has the form



where Az has no zero eigenvalues. Let z1 = T^x'. Then

±T = (T"1AT)zr. We could write this as

f -r 1
Zl

* T
z2

t \
0 :

: K

if
(A3)

The transformation T"1 maps all constant solutions of equation (A.1) to vectors

of the form

solutions of (A.1).

Now

x=kTz7'

Since equation (A.2) has no constant solutions and dim(A') = dim X - dim (con

stant solutions of (A.1)) it follows that (kT) = (0; M) where M is nonsingular and

X7* = Mzjf

Hence

X7* = (M(Az)M-1)x7' .

Now Ag and (MAgH"1) have the same Jordan canonical form and Ag has the

same canonical form as A except for the zero eigenvalues. The theorem follows.

Q.E.D.

zi
0

V J

while T maps all solutions of the form

t >

Zl
0

of (A.3) to constant
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