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ABSTRACT

This paper deals with effects of modifications of network structure that may
be studied without reference to the type of devices present in the network. We
introduce and make systematic use of the notion of a generalized minor of a
vector space. This operation generalizes the usual short and open circuit opera-
tions for a graph. Using the generalized minor operation we show how to make
the equations of a given network appear to be the "bordered version" of the
equations of some other specified network. We also consider the decomposition
of a network into several "muiltiports” and a "port connection diagram.” We
show that some of the properties of the original network are retained by a
reduced network that can be defined on the port connection diagram. In each
case we present efficient algorithms wherever appropriate. While the paper
makes use of ideas from elementary matroid theory it is entirely self contained

and requires no more than the knowledge of elementary linear algebra from the

reader.
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1. Introduction

In this paper we deal with structural modifications of electrical networks
and their effects that can be studied ignoring the type of devices present in the
network. Such modifications arise, quite naturally, in both practical and
theoretical network analysis. In practical network analysis it may be desirable
to split the given network into several subnetworks. In theoretical network
analysis splitting the original network into muiltiports of various types is quite
common: for instance, the given nonlinear network may thought of as a linear
network terminated by nonlinear elements, or the given dynamic network may
be thought of as a resistive network terminated by reactive elements. The net-
- work theorist who is faced with such problems' handles them intuitively using his
experience with the {ype of network being studied. A formal study would, at the

least, clarify the fundamental ideas underlying such techniques.

Consider for instance the most natural topological transformations that
every network theorist uses - open and short circuits. It is easy to show that
such operations are special cases of the following operation (see sec. 4): Let the

original KCL, KVL equations of the network be
Asif =0
stg' =0

We derive complementary orthogonal equations on is.p, Vs_p (associated with

subset S-P of S) by imposing the conditions (onip, vp)
Apif =0

Bpvi =0, where Ap , Bp
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generate complementary orthogonal spaces. Observe that to open circuit the
edges P we can choose Ap = [U] and to short circuit the edges P we can choose
Bp = [U). In general however the complementary orthogonal equations we
obtain on is_p, Vs_p would not be the KCL and KVL equations associated with a
graph. One is therefore forced to study topological problems not in terms of
graphs but in terms of complementary orthogonal spaces. However the results
one obtains are relevant to networks based on graphs. Indeed, one can con-
struct general procedures of topological transformations and, plugging in the
fact that the vector space we are working with is the space of coboundaries of a

graph, derive additional advantages.

In this paper we use the generalized minor operation (which has been infor-

mally defined in the preceding paragraph) to solve the following problems:

(1) Given a network N; on graph G, on set of edges S what is the least number
of extra variables required to "convert” it into network Np on graph Gs on
the same set of edges and the same device characteristic? The "conver-
sion" here refers to obtaining a vector space over a larger set which has the
coboundary spaces of the graphs of N; and Ny as generalized minors. We
can use this technique to obtain the equations of N, as "bordered versions"
of the equations of Np. (The "thickness" of the border is equal to the
number of extra variables). We give efficient alghorithms for doing the

"conversion” in general and better algorithms for certain important special

cases.
() Given a network N with graph G on S and a partition {S;, - - -, S,} of S
how to decompose it into multiports on S; U P;, -+, S, UP, and a

"port connection diagram" on UP; such that |UPF;| is a minimum? For this
problem we give an algorithm which makes the port connection diagram

into a graph, while the multiports are "generalized.” We also show through
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an example that solutions of the original network, in which devices lying in

different S interact, map to solutions of a reduced network defined on the-

port connection diagram.

The ideas in this paper have arisen from an attempt to understand the
essence of Kron's ideas [1], [2]. It is hoped, however, that they have a right to

independent existence.
The organization of the paper is as follows:

Section 2 contains mathematical preliminaries. We have outlined proofs for

all the results from elementary matroid theory that we have used in this paper.
Section 3 introduces the generalized minor operation.

Section 4 gives a physical interpretation for the geﬁeralized minor opera-

tion in terms of ideal transformers.

Section 5 describes the notion of mutual extension of vector spaces and
gives algorithms for the construction of minimal extensions. Application to
practical network analysis is outlined by considering two special topological

transformations.

Section 8 describes decomposition of a vector space into several com-
ponent spaces (multiports) and a coupler space (port connection diagram).
Application to network theory is indicated by considering the case of an RLMC

network in some detail.

2. Preliminaries

We deal with finite sets throughout. If Sis a set | S| denotes its cardinality.
A function f: S=» F is said to be a vector on S over the field F. Unless otherwise
stated F would be the real field R If used in equations f refers to a row vector
and (f)7 refers to a column vector. If T is a set, f7 would denote a vector on T,

Op the zero vector on T. We define restriction of a vector f on S to a subset T of
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S in the usual way and denote it by f/ 7. Scalar maultiplication and addition of
two vectors on the same set are defined in the usual way. However we permit
addition of two vectors on different sets as follow§: letfbeonS gonT. 'I;hen
f+ gisdefinedon S UT and agreeswithfon S — T, withgon T — .S and on
S N T with the usual addition of vectors on the same set. The T notaticn would
be also used for the extended notion of addition. When 7 N R = ¢ we may write

Ir @ Ip to emphasize the fact that T, R are disjoint. When addition of several

n n
vectors over disjoint sets is involved we may use @1 in place of 2 . A collection
=

i=1

of vectors on S closed under addition and scalar multiplication is called a vector
space on S. Vg would denote a vector space on S. /ndependence and rank of a
collection of vectors on S are defined in the usual way. Rank of a collection of
vectors P is denoted by r(P). We define Vp + V7 in the obvious way as the col-
lection of all sums of vectors one in Vp and the other in Vy. Vo + Vp would
therefore be on P U T. We use @ when P, T are disjoint. V; — V, refers to set

theoretic difference. If g, fare on S, (g, f)= Y gle). f(e). 1 {g,I)=0
i GES

then we say g, { are orthogonal to each other. V' is the vector space of all vec-
tors orthogonal to vectors in V. We would call it the dual of V. Let 7 € S and let
VbeonS. Then

VxT ={gr=1/T 1€ Vandfle)=0,e € S - T}

V- T is the collection of all restrictions of vectors of Vto T. When R € T C S we
write VX TR for (VX T)+ R and Vo T X R for (V.T) X R. Such spaces are
referred to as minors of V. We say T C S is a separator of VIif VX T = Vo T
Observe that we then have V= (WxT) @ (VX(S-T)). If Kis a matrix, (K)7 is
its transpose. The symbol [U] refers to an identity matrix whose order would be
clear from the context. A positive (negative) definite matriz K is a symmetric

real matrix such that x(K)x7 >0 (x(K)x” < 0) for all nonzero real x A

-6-
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permutation matriz is a square matrix whose columns are obtained by permut-

ing the columns of an identity matrix of the same order.

The generator matriz Ay of a vector space Vis a matrix whose rows form a
maximal linearly independent set of vectors of V (basis of V). We say that Ay
generates V. Observe the g€V’ iff (Ay) (g)T =0. If A}, AF are generator
matrices of V observe that a set of columns of Ay are linearly independent iff the
corresponding set of columns of Au? are linearly independent. Let V be a vector
spaceon S. Let T C S. We say that T is a circuit of M(V) iff the set of columns
of a génerator matrix Ay of V corresponding to T are minimal linearly depen-
dent. T is a bond of M (V) iff it is a circuit of M(V"). (M (V) stands for "matroid
associated with V." However we do not use the idea of a matroid explicity any-
where in this paper).

Let G be an oriented graph on the set of edges S. Let T € S. Then G+T is
the graph obtained by deleting the edges in S - T and any isolated vertices
formed. G X T is the graph obtained by fusing the end vertices of each edge in
(S-T) and deleting it. A coboundary of G is a vector on S that satisfies the Kir-
chhoff voltage (tension) equations of G. A cycle of G is a vector on S that
satisfies the Kirchhoff current (flow) equations of G. Vg (G) (Viy (G)) denotes
the vector space of coboundaries (cycles) of G. Let Gy, G be on disjoint sets of
edges Sy, Sz and vertices V;, Vo. We construct G; @ Gp on edges S; U Sp and
vertices V; U Vp, where V;, Vs are disjoint copies of ¥, Ve, by making it agree
with G; on S; and with Gz on Sp. In the graph G; @ G2 observe that S,, Sy
are separators of both the coboundary as well as the cycle spaces. A vector
space Vg is graphic (cagraphic) iff it is the coboundary (cycle) space of a graph.

A generalized electrical network N is a triple (S,Vg,Ds) where S is a finite
set of "edges,” Vg is a vector space on S over R and the device characteristic Dg

is a collection of ordered pairs (v5(:),ig(-)) where for all ¢ €IR, vg(t), ig(¢) are
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each vectors on S. Usually Dg will be specified informally as D(vs,ig) =0. A
solution of N is a pair (vg(-),ig(-)) belonging to Ds where vs(f)€V;,
is(t) € Vs, for all t. We will refer to Vg as the coboundary space of N and Vg as
the cycle space of N. A generalized network is Ordinary when Vg is the coboun-
dary space of a graph. Let S be partitioned into 54,53, ..., S,. We say
S1.52, ..., S, appear decoupled in Dg iff there exist collections Ds, of ordered
pairs (vs,(-).is,(*)) such that (vs(-).is(")) belong to Ds iff (vs(-)/ S;,is(-)/ S;)
belong to Ds, (¢ = 1,2,...,n). A multiport is a generalized network with a subset
P of edges specified as ports such that on the ports there are no device charac-

teristic constraints.

We now present a number of results which we use freely in the rest of this
paper. In order to make this paper self contained we outline proofs for most of
them. The results are standard in elementary linear Algebra and matroid

theory. [3], [4].

Let Vg be a vector space on S.

Theorem P1.
(a) (V§)* = Vs
(6) 7(Vs) + 7(V5) = | S|

Outline of Proof: Observe that if V5 has a generating matrix [UA,3], then Vg

has the generating matrix [— A% U].

Theorem P2.  Let Vj, V3 be vector spacesonS. ThenV; C Vp <= => V2 V5.

Theorem P3 Let T € .S. Then

(Vs T) + r(Vsx(S=T)) =r(Vg) .

(]



Outline of Proof: Choose a generator matrix A for Vg of the form shown below,

where App, Ags have linearly independent rows

A= Ay A
0 A

Observe that Apr is a generator matrix for Vs T and As is a generator matrix

for Vs X (S—T).

Theorem P4 Let T ¢ S. Then
(8) (VseT)* =VsxT
(b) (VsxT)" =Vg.T.

Proof: (a) Let f7€Vg X T. Then there exists fg € Vg such that f5/ T = {7
and f5/(S-T)=0. If ggeVs, it follows that {fg,gs)=0. Hence
(fr.8s/ T)=0. Hence f7 € (Vg+T)". Next,let fp&(Vs+T)". Consider a vector
fs defined as before. Let g5 €Vs. Then {fs.85)=<{fr.8s/ TY=0. Hence

is EVS’- and fp EV.S: x T.
(b) follows from (a) by application of Theorem P1(a).
Theorem P5 7 (V\nVp) + r(V;+Vp) = r(V;) + 7 (V).

Outline of Proof: Choose a basis By of V; N Vo, Extend it to a basis of V; by
adjoining B;, and a basis of V; by adjoining Bs. Observe that B, U B; UB; is a
basis of V; + V.

.
Theorem P8 Let T € S. (a) The circuits of M (Vs) contained in T and those of
M(VgeT) are identical. (b) The bonds of M(Vs) contained in T and those of
M(VgxT) are identical.



Proof: Consider a generator matrix of Vg of the form shown in the proof of
Theorem P3. Observe that minimal linearly dependent set of columns of A con-
tained in T are the same as the minimal linearly dependent set of columns of
Arp. This proves (a). Bonds of #(Vs) contained in T are the same as circuits of
M(Vs) contained in T and bonds of M(VgxT) are the same as circuits of

M(Vs+T) by Theorem P4. So (b) follows from (a).
]

Theorem P?7 Let 7C S. (a) If #(Vs) has circuits contained in T then
r(VS-T) < |T|. (b) If M(Vs) bas bonds contained in T then 7 (Vg X T) > O. -

Proof: If M(Vys) has circuits contained in T then M(Vg+T) has circuits. Hence
the columns of a generator matrix of Vg+T are linearly dependent. Since the
rows are linearly independent it follows that the number of rows is less than the
number of columns of the generator matrix. Hence 7(VseT) < |T|. By
theorems P1, P4 7(VgeT) + 7(VgxT) = |T]. (b) now follows by Theorems
P6(b), the definition of a bond and (a) above.

Theorem PB  (Tellegen) (Veos (G)) " = Vipy (G).

Theorem P9
(a) V?ob(GxT) = (vcob(G)) xT
(b) vcab(G‘T) = (Vcob(G)) « T.

Outline of Proof: Construct a fundamental cutset matrix Q of G of the form

shown below, i.e., choose maximum possible number of edges of T in the tree.

T S-T
rUQlEZOQm
Q=10 0 :y q

Then [U Q2] is a fundamental cutset matrix of G+T and a generator matrix of

-10-
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(Veoo () T while [U Q] is a fundamental cutset matrix of G X (S—7) and a
generator matrix of (V g (G)) x (S-T).

Theorem P10
(a) Vey (GXT) = (Ve (G)) - T

(b) vcy(G‘T) = (ch(G)) xT.

Proof:

ch(GXT) = (Veop (GXT))*
= ((Veon (G)) x T)°
= cy(G)’ T,

by the use of Theorems P8, P9(a) and P4. (b) can be proved similarly.

3. The Generalized Minor

In this section we introduce an operation on vector spaces which we use

throughout this paper.

Definition 3.1 Let Vg be a vector space on S. Let P € S. Let Vp be a vector
space on P. Then the generalized minor of Vg with respect to Vp is denoted

Vg « Vp and is defined as follows:

Vs « Vp = {is_p:there existis€V; , [p€Vp
such that fg/ P =ip , 15/ S—P =15_p} .

We now describe a convenient way of constructing a generating matrix A for
a space Vg so that the generating matrix for Vg « Vp, Vg x (S—P), Vg x P,
Vp N (VsxP), Vp n (Vs<P) appear as a submatrix. We would say that these

subspaces are visible in such a generating matrix. Construct the basis BXS =P for

-11-



Vs X (S—P). Let us suppose that these vectors form the row vectors of the

submatrix Ay(s-p) of A shown below.
S-Pp P
Ay(s-p) O
Ao(s-p) Acp
A= |Ays-p) Asp
0 Anxp
0 Asp

Next choose a basis Bfy for (VsxP) n Vp. Let the vectors of Bfy form the row
vectors of Anyp. Extend this to a basis B, of (Vg+P) N Vp. Let the additional
vectors form row vectors of the matrix Agp. Extend BADX to a basis Bf of
Vs X P. Let the additional vectors form the row vectors of the matrix Agp.
Extend B4,u Bf to a basis B? of Vs « P. Let the additional vectors form row
vectors of the matrix Agp. The row vectors of Agp and Azp are restrictions of
certain vectors from Vg. Restricting these vectors to (S-P), we obtain the row

vectors of

Axs-p)
Ag(s-p)

We now list the set of properties for this matrix.
Anxp :
Property 1. The rows of Ap form a basis for Vg X P.

Property 2.  The rows of Ay(s-p) form a basis for Vs x (S—P).

[ Acp

Property 3. The rows of :3; form a basis for Vg « P.

| Asp |

[
Property 4. The rows of AA:;; form a basis for (Vg«P) N Vp.

-12-

| <t



[ Ax(s-p)
A(s-p) | form a basis for Vg « (S—P).

Ag(s-p)

Property 5. Rows of

Proof: The rows must be linearly independent as otherwise by a linear combi-

nation of row vectors of

23; ] we would get a vector of Vg X P.

Ax(s-P)

Property 6. The rows of Aa(s P)

form a basis for Vg « Vp.

Proof: Let I belong to Vg « Vp. Then there exist vectors fg €Vg, Ip€Vp
such that fg/ (S—P) =1{, 5/ P = {p : i5/ P is linearly dependent on the rows

Ax(s-
of AT;P and hence { is linearly dependent on rows of A‘;{((:-g)) . Conversely if
f is linearly dependent on rows of Ax (:‘5 )) . it can be expressed as f; + f;

where I, is linearly dependent on rows of Ax(s-p) and {3 is linearly dependent on
rows of Ags_p). Let f; = (0y) (Ax(s-p)) and let f, = (02) (Ag(s-p)). Choose

Axis-p) 0
Ay(s-py Agp

Vp it follows that f€ Vg « Vp.

f; = (0, 05) and fp = (03) (Agp). Since rows of A3p belong to

The generator matrix for Vg in which VgxP, Vg X (S—=P), (Vs*P) n Vp

and Vs « Vp are visible can be used to derive the following results.

Theorem 3.1. V(5_p) is a g-minor of Vg if Vg X (S—-P)¢ V(S-P)
C Vs (S-P).

Proof: The construction of the appropriate generator matrix for Vg described

earlier shows that if V(s -Pp) is a g-minor of Vs then



Vs X (S—=P) € V(s_py & V;« (S—P). Conversely if V(s_p) satisfies the condi-

tion of the theorem we could build a generator matrix A for Vg as shown below

- Ax(s-p)
where the rows of Ay(s-p) from a basis for Vg X (S—P), the rows of As((S-P)
Ax(s-P)
form a basis for V(s_p) and the rows of |Ays_p) | form a basis for Vg » (S —P).
Ay(s-p)
S-P P
Av(s-p) O
As Aos-p) Azp
~ |Bs(s-p) Asp
0 Axp
Azp
Observe that the rows of |Agp| are linearly independent. If now we choose Vp as
Axp

the space generated by the rows of Agp, it can be seen that V5 « Vp = Vig_p).

Theorem 3.2.

7(Vs«Vp) = 7(Vs X(S-P)) + ((Vs+P) n Vp)
- ‘I‘((stp) N Vp) .

Proof: This follows immediately from the construction of the generator matrix
in which Vg « Vp, Vg X (S—P), Vs x P, Vp n (VsxP), Vp N (Vg+P) are visible.

-
The next Lemmas are needed for the proof of Theorem 3.3. Lemma 3.1 is a stan-
dard result from Linear Algebra and can be proved by routine use of Theorems

P1 and P5. Lemma 3.2 is merely a restatement of Theorem P3.
Lemma 3.1. Let V), Vzbe onS. Then (VinVp)* =V, + V.

Lemma  3.2. Let Vg be on S Let PcCS. Then



T(Vs+P) = r(VgxP) = 7(V;+(S~P)) — r(Vsx(S—P)).

Theorem 3.3. Let Vg, Vp bé spaces on S, P respectively where P € S. Then
(Vs « Vp)° = Vg « V5.

Proof: We will first show that the two spaces are orthogonal to each other and
then show that their ranks add up to | S—P]|. Let f€ Vs « Vp. Then there exist
vectors f5, fp belonging to Vg, Vp respectively such that fs/P =1ip,
= fs/(s-p). Let g€ Vg « Vp. Then there exist vectors gg, gp belonging to Vg,
VP such  that gs/p =gp, E= gs/(s_p). We now  have
(t.g)=—- ('fs/p,gs%:> = —-(fp,gpY=0. Next consider
7(Vs+Vp) + 7(Vg«<Vp). By Theorem 3.2,

(Vs +Vp) = 7(Vsx(S-P)) + r((Vs-P) N Vp) — r((VsxP) nVp) .
T(Vs+Vp) = r(Vsx(S—P)) + r((Vs - P) N Vg) = r((VsxP) n Vp) .
By application of Lemma 3.1 and Theorems P1, P4 we have

r((V§-P)NVg) = | P| = r((VsxP) + Vp) .
and

7((VsxP) nVp) = |P| = r((Vs-P) + Vp) .

So



(Vg «Vp) + r(V5Vp) = 7 (Vgx(S=P)) + r(Vsx(S-P))
+7((Vs*P) nVp) + 7((Vs-P) + Vp)
= |P| =7 ((VsxP) nVp) —7((VsxP) + Vp) + |P] .
= 7(Vsx(S=P)) + 7(Vsx(S—P)) + 7(Vg+ P) + 7(Vp)
—7r(VgxP) - r(Vp) by Theorem P5 .
= |S=P| = [r(Vse(S=P)) = r(Vsx(S-P))]
+ (Vs P) —r(VgxP)
= |S-P| byLemma 3.2

This proves the theorem.

4. Ideal Transformers

In this section we dwell briefly on the concept of an ideal transformer.
Using ideal transformers we give a simple physical interpretation for the notion
of a generalized minor. Generalized networks' may be thought of as being con-
structed by plugging 2-terminal electrical devices to the ports of ideal
transformers. The g-minor operation is therefore natural for generalized net-
works. Ordinary networks obtained by connecting 2-terminal electrical devices
according to a graph are a special case of generalized networks. The g-minor
operation is therefore applicable to ordinary networks also. We show in this sec-
tion- that the g-minor operation generalizes the short circuit and open circuit

operations.

Definition 4.1. An ideal transformer Ig on S is a "black box" with S as its set
of ports, and satisfying the following condition: Let V¥, Vg be the sets of all vol-

tage vectors and current vectors that can exist at S. Then V¥ = (V)"

Since an ideal transformer is fully characterized by the vector space V§ on
S we will identify Ig with the pair (S,V¥). We will refer to V¥ as the space of

coboundaries of Is and (V%) " as the space of cycles of Ig.



Example 4.1.

Consider the 3-winding ideal transformer of Fig. 4.1. Here

S ={123lvz=(na/n,)v;, v3=(nsz/m,)v,. The rows of matrix

1 2 3 [
Q@ =[1ny/n,ng/n,] generate V. The rows of matrix B = :::;Z: cl) ?]
generate V.‘g
Example 4.2.

Let G be an oriented graph on S. Tellegen's Theorem states that the space
of coboundaries of G al;e complementary orthogonal to the space of cycles of G.
It follows that (S,Vg) where Vs is the coboundary space of G may be regarded
as an ideal transformer. In other words a graph is a special case of an ideal

transformer.

*
Definition 4.2. Let Ig = (S,V). Then the dual of Ig denoted Ig is the pair
(SV.

Observe that in our notation the dual of a nonplanar graph would be an ideal

transformer.

Definition 4.3. Let Ig = (S.Vy) ..... Is, = (S, V). be ideal transformers on

pairwise disjoint sets Sy, ...., Sp. Then their direct sum Is, & - - @ Ig is
n
the ideal transformer 'L-)l S.ié - @ V|

The following simple lemma is useful. Its routine proof is omitted.

¥
lemma41. (Vs, @ - @ V5 )=(V5,® - - & Vg).
An immediate consequence is
Theorem 4.1. (Is, & --- & Isn)*= (Is'1 & --- B I;;”).
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Definition 4.4. Let S be a set and let P € S. Let Ig = (S,Vg), Ip = (P, Vp).
Then the g-minor of Ig with respect to Ip is denoted I « Ip and is defined by
Is « Ip = ((S-P),Vs<Vp).

The g-minor operation gives us a simple way of deriving new ideal

transformers from old.

Example 4.3.

Let Is = (5,Vg). Then I(‘S_p) = ((S=P), Vs x (S—P)) =I5 « I}, Where
I} = (P,0p) and I&_py = ((S—P),Vs:(S—P)) = Ig « I3 where I3 = (P,R?)
where RP is the space of all vectors on P over R. By Theorem P9
Veob (GX(S =P)) = (Voou (G))X(S —P) and Viop (G+(S=P)) = (Voo (G))-(S=P).
Hence, for graphs, the operations of short circuiting edges and of open circuit-
ing edges can be achieved by the g-minor operation. Let
I%-p) = ((S=P), Vsx(S—P,)+ (S—P)), PyCP. Then 1%-py =15 « I3,
where I = (P.{0p} & IR(P-P‘)). The g-minor operation was introduced to gen-

eralize the ordinary minor operations. The above illustrate this fact.

Theorem 3.3 permits us to give a simple physical interpretation of the
operation of g-minor. Let Ig, Ip be ideal transformers on S, P with P € S. Let
Is = (S,Vs), Ip = (P,Vp). Let us identify the ports P in both transformers as
in Fig. 4.2. Consider the current and voltage constraints on the exposed ports
(S§—P). Avector fs_p can be a voltage (current) vector on the exposed ports iff
there exist voltage (current) vectors fs€Vg(Vs), fp€Vp(VP such that
fs/P=1p, ie, i f5.p€VgeVp(Vs«Vp). By Theorem 3.3
(Vs<Vp)® = (Vs«Vp). It follows that on the exposed ports (S-P) we have an
ideal transformer. Thus if we "plug” the ports P in Ig by Ip the ideal
transformer I5+Ip results. The g-minor operation can be used to prove the fol-

lowing standard resulit.



Theorem 4.2. (BELEVITCH [5]) Physical connection of ideal transformers

results in an ideal transformer.

Proof: Let Ig,, ..., Is, be ideal transformers on pairwise disjoint sets of ports
S1. ..., Sp. Let us suppose that the ports Sy € S}, ..., Spc € S, are con-
nected according to a graph G. The remaining ports S = (US;~US;. ) are
exposed. The graph may be treated as an ideal transformer
Is, = (US;c,Veos(G)). Connection of ports US; according to graph G is
equivalent to imposing the KCL and KVL conditions of the graph G on the ports
US;c of the ideal transformer IS, & --- & Is“. The result of this operation is

the ideal transformer (Is, @ - -+ & Is) «Ig,.

5. Extension of Vector Spaces

5.1. In this section we introduce the "inverse” operation of g-minor, namely
"extension” of a vector space. While analyzing a given network we can use the
topology of a different network by constructing a mutual extension of the
coboundary spaces of the two networks. These ideas are detailed in subsection

5.2 and exemplified in subsection 5.3.

5.2. Definitions and Theorems on Extension.
Definition 5.1. Let Vg, Vgp be vector spaces on S, S U P respectively. We say

Vsp is an eztension of Vg iff Vg is a g-minor of Vgp.

Definition 5.2. Let V3, ..., V& be vector spaces on S. Vgp is a minimal exten-
sion of {V3, ..., VB} iff Vgp is an extension of V% (i = 1,...,n) and if Vip’is any
other extension of V§ (i=1.....n) then |P| < |FP'|.

Theorem 5.1. Let Vi, V% be vector spaces on S. Let Vgp on S U P be an

extension of V4 and V&. Vsp is a minimal extension of V} and V% iff
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|P| =7(Vi+VE) -7 (Vi n VE) .

Proof: Let Vgp be an extension of V&, V% Then Vgp-«S - 2 VY and
Vsp+ S 2 V& by Theorem 3.1. Hence Vgp+ S 2 Vi + Vi Also Vgp X S ¢ Vi
and VspxXS cV3 by Theorem 3.1. Hence Vip+S 2(VY)® and
Vsp+ S 2 (V3)* by Theorems P4 and P2. Hence Vspe S 2(VY)* + (V3)® and
hence Vgp X S C V& 1 V& by Theorems P 4 and P2. By Lemma 3.2,

7(Vsp:S) — 7(VspxS) = r(Vgp+P) — r(VgpxP) .

Hence 7(Vsp'P) — 7(VgpXP) = r(Vi+VE) — r(VinV3). Since
0 = r(VspxP) < r(Vsp*P) <= |P|, it follows that if
|P| = r(VE+VE)—r (Vi nV3), Vsp is a minimal extension of V} and V&. We
now show how to construct a minimal extension of given spaces V4 and VE Con-
struct a basis B, of V& N VZ. Extend it to a basis B; of V& and a basis By of V3.
Clearly B; U By is a basis of V} + V3. Let Bs, B; — By, B, — B,, form the sets of
row vectors of Ang, Ajg, Age respectively. The matrix A shown below is taken to
be the generator matrix for Vgp. (Here Py U Pz = P).
SRR
rAls Uo
A=A 0 O
Ay O U

Py Py Py P,
If V3 has the generator matrix (U 0) and V3 has the generator matrix (0 U)

then it is easy to see that Vgp « V3 = Vi and Vsp « VB = V3. Note that

|P| = |Py| + | Pp
= r(V}) — 7 (VEnV3) + 7 (VE) - r(VinVE)
=7 (Vi+V3) — 7 (VinVE) ,

by Theorem P5. It follows that Vgp is a minimal extension of V3 and V2.
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In Theorem 5.1 observe that we are able to obtain V} and V§~ as ordinary
minors (as opposed to g-minors) of Vgp since Vi = Vgp+(SUP,) X S and
V& =Vgp - (SuPy)x S. If we have to construct a minimal extension of
fVi ... V2 whenn > 2 ordinary minors would be inadequate. By using the

ideas of the first half of the proof of Theorem 5.1 we can show
n . ]
Pl r(Y VE)=r(VAn --- nVB) .
i=1

The matrix A shown below can be taken as the generator matrix of Vgp

As A,s U
T |Ans O
/ . : . A, s :
‘Rows of Ans form a basisfor (Vi n - - - n V3), while rows of I.Ans ] form a basis
for .‘Zl VE.) Let Vi be generated by the matrix [K; K ] ﬁ:g . Let Vp be the
i=
space generated by the rows of [K,]. Clearly
Vsp « Vp =V .
We summarize these results in Theorem 5.2 below:
Theorem 5.2 Let Vsp on S U P be an extension of {V} - VB. Itis a
minimal extension of {V} - .- VBiff |P| = 'r(f:l Vi) ~- 7'(':81 V§).
o =
We next prove a simple but useful result.
Theorem 5.3 Vgp is a minimal extension of {V}, - - - V2] iff Vgp is a minimal

extension of {(V§)", - - - (VB)°l.
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Proof: By Theorem 3.3 V% is a g-minor of Vgp iff (V%) " is a g-minor of Vgp. We

next observe that
n o no o,
(Y VE)=1[S| -r(n (V&)
i=1 =1
n . n e
(0 VO = IS] =7(3 (V§))
=1 i=1
by Theorem P1 and Lemma 3.1. Hence

Pl =r(% V) = (0 V)

i=1

IPI=r(3 (V)" = (0, (V8)) .

5.3. Application to Network Analysis

In this subsection we show the relevance of the notion of extension of vector
spaces to network analysis. We will show that if we are allowed to increase the
number of variables it is possible to solve a given network utilizing the topology
of a different network. These ideas do not depend upon the types of devices

present in the network.

Suppose we have to solve a network N; on the set of edges S i.e., solve Equa-

tions (5.1)

(A5)if=0
(Bis) vi=0 or (Als)el =v{ (5.1)
D(Vs,is) =0



We wish to utilize the topology of a different network say N on S with reduced
incidence matrix Apg but the same device characteristic D(vg,ig) = 0. Let V3,

V& be the spaces generated by matrices A;g, Ags respectively. We can then

[, i
AIS A’
S
construct a generator matrix Ang for the space V3 + V§ such that lAn [A"
Aos Ass

are generator matrices for Vi, V§ respectively. We next choose A:gp shown

below as a generator matrix for Vgp

A;s U 0
Asp=|Ans 0 O
As O U

Here rows of Ajg. Asg may be taken from rows of A,, A;. Then VSIQ «Vi=V}

P, Pp
and (Vgp « Vz) = VZ where V}, VB are generated respectively by [U 0],

Py Py
[0 U] By a suitable row transformation we can choose Agp as a generator

matrix for Vgp, where

QSIIO
Ans

AisUO
= |A2s 0 Kag

u o
Asp = [0 Koz Kas

Equations (5.1) may now be rewritten as

1Pr‘[o] (5.2(a))
1pg

Ais U
AstKzs

[U o] ;ﬁ g =0 (5.2(b))



D(vs,ig) =0 (5.2(c))
U o hF=f (5.2(d))

2 ov (k ;rg) e: = 0. (5.2(e))
Equations (5.2(a)), (5.2(b)) follow V& = Vgp « V3.
Equations (5.2(d)), (5.2(e)) follow from (V4)® = Vgp « (V})°. Equations (5.2)

may be rewritten as (5.3) below:

(A2s)id = — (Kea)iB, .. (5.3(2))

- vi + (Ads)ed = — (Ay5)Tvpp 4 (5.3(b))
D(vg,ig) = 0 (5.3(c))
(Khef =0 | (5:3(2))
Aisif=0 (5.3(e))

Equations (5.3) are equivalent to the equations (5.2) whatever be the device
characteristic D(vg,ig) = 0. However, when networks N; and Ny have unique

solutions the following convenient procedure may be adopted for solving Nj.

Observe that Equations (5.3 (a), (b), (c)) would reduce to the equations of

N if the right side were zero. Let us for simplicity suppose that (5.3(c)) has the

form

Eif+Fvl= (5.4)



In order to solve Nl'we could first solve ig, €, Vg in terms of ip, Vp, and s. In

the linear steady state case this is equivalent to solving Np, | P| + 1 times. The

equations (5.3 (d), (e)) can then be converted to an equation involving ip, Vp,
and S. Solving this equation would yield ip, Vp, and s. Back substitution would

yield ig, Vg. A slight modification of this technique will permit us to handle non-
linear, dynamic networks also. It is clear from the construction that Kos, (Ais)T
have linearly independent columns. It follows that be addition of a suitable sub-
set of rows of (5.3 (a)) to (5.3 (d)) and a suitable subset of (5.3 (b)) to (5.3 (e))
we get equations (5.5) below with the coefficient matrix on the right hand side

being nonsingular.

H;y Hiz o igr= Hy, o] 't (5.5)
Hp; Hez Hos 3? 0 Hes| Vpr '

Assume that we know if:z(tl). v}‘:l(t 1)+ s(t4) (where s is the source vector). We
then solve the nonlinear resistive network N£(¢£,) (obtained by using a non-
dynamic approximation of D(vs,is) = 0 at ¢; ) iteratively in terms of if,(£,),
vE (t). s(£,) and obtain i£(¢,). vE(¢,). e£(¢,) and thence using (5.5) obtain

iﬁ’;“)(t h v;’%:’l(tl). The procedure can be repeated at (£;+A) using ig,(f,) as

iga(tI’l'A), V}?‘(t 1) as Vgl(tl'l'A).

5.4 Two special topological transformations

The derivation of subsection 5.3 glosses over practically important details
such as the construction of Ajg, Azs, Kz; and the size of the border |P|. Our
aim there has been merely to show that such a procedure is possible rather than
that it is efficient. The method can compete with other methods only if the

required matrices can be computed efficiently, | P| is small and N has a very



"desirable” structure. We next present:two cases where N3 has some specified
sets Sy, ..., S, as separators. We assume that these sets have been chosen in
such a way that | P| would be smalil ie we will assume that in the original net-
work Sy, ..., S, are "loosely” connected. (This problem can only be handled
heuristically). In the cases presented the required matrices can be computed

effliciently and we present algorithms for doing so.
Case]l Newgraph = (GxS;)® - - & (GXS,).
Let N; =(5,V5,Ds) and let S; (i = 1....n) be a partition of S. We will
assume that Vg 1is the coboundary space of a graph G. Choose
n
Ny = (S, 91 Vs x S;,Dg). In this case Ang would simply be the reduced

incidence matrix of (G X S; ® --- @ GxS,). Apg would have no rows. Kag

would have no columns. Algorithm ] describes how to construct Aig. In this

143
case Py = P and |P| =7(G) — Y 7(GXS;). Observe that Nj is easier to solve

i=1
if in the device characteristic D(vg,ig) = 0, the sets S;, i = 1, ..., n appear

decoupled. Solving N3 would then be equivalent to solving n smaller networks.

n
Algorithm I.  To construct A;g when N, = (S, @1 VsxS;,Dg)
i=
Stepl Select trees ¢; of graphs GXS; (i = 1,...,n).
n
Step II Construct the reduced incidence matrix of the graph G X (S —(_u1 t)).
i=

n ’
Adjoin zero columns corresponding to .Ul t;. A;s is the resulting
=

matrix.

END

Justification for Algorithm I By Theorem P9,

n n '
V‘;og,(GX(.S'—-iL_J1 £;)) = (Veoo (&) X (S— Y t;). The rows of Ajg are linearly

26~
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independent and belong to V., (G) since they are obtained by padding vectors

n n
of Veop (G) X (S— Y t;) with zeros corresponding to 'Ulti' Since £; forms a
= =
n

forest of G X 5; (i = 1,....,n) in the reduced incidence matrix of @1 GXS; the
i=

n

columns corresponding to _Ulti from a linearly independent set. In the matrix
=

Ais we have only zeroes corresponding to these columns. Further the number

’ n ’
of rows of Ajg is T (Ve (G)—]| Y t;|. Hence the rows of AIS
1=

n

together with the rows of a redurced incidence matrix of & GXS; form a basis

i=]1

of Veop (G).

Example 5.1 Let G in Fig 5.1 (a) be the graph of N;. Let S; = {1, -- -5},
Sz =16, --10}, Sg={11,- - 17}, Sy = {18, - - - 24]. The graph & GXS; is
shown in Fig 5.i(b). Here ¢;=1{1,2], £3=1{6,7, tg= {11, 12 13 14},

4
£, ={18,19,20,21. r(G) — ) r(GxS;) =3. So we need 3 extra variables

i=1
for acquiring the advantages of working with S, S, S3, S4 as separators - vp,

has three variables and A;S has 3 rows. The rewritten equations are as follows:

(Bo1y) id, = 0
(Az2) i§, = 0
(Az) 4, = 0
(Ass) 18, =0

( Agy; is a reduced incidence matrix of GXS;)



( T

-vE 1 (afed)
- Vg:e + (Aéz)eé

- Vg'; + (Ads)ed
- vi +(ady)ed,

= (AiS)T Vp[

D(Vs‘is) =0

(A;5)if =0
Ais. may be chosen as the reduced incidence matrix of the graph obtained by

4
adding U £; as self loops to G X (S — ’Ul t;) shown in Fig. 5.1 {c). In this case,
=

since the coboundary space of the graph of Nj is contained in the coboundary

’ T
space of the graph of N, the matrix Koq has no rows.

n
Case 2. New graph = @1 G-S5;
i=

Let Ny =(S,Vs,Dg) and let S; (i = 1,..n) be a partition of S. We will

assume that Vg is the coboundary space of a graph G. Choose
n
N> = (S5, @1 Vs+S; . Ds). In this case Ang would simply be the reduced
i= :
incidence matrix of G. Algorithm II describes how to construct K{a In this case
n
Pp=P and |P| = () 7(GS;) ~7(G)). Observe that N is easier to solve if
i=1
in the device characteristic D(vg,is) = 0, S; (i = 1....n) appear decoupled. Solv-
ing N3 would then be equivalent to solving n smaller networks.
n
Algorithm I.  To construct K when N = (S, @1 VseS;, Ds).
=

Let ny, be the set of boundary nodes of G where edges of more than one S;

are incident. Let the copy of node e; of my in the graph G+S; be named e;;. Let

8-



m; be the number of components of G+S; (i = 1...n). Forj=1,.m,; andi=1,
.. n do the following. If the jth component of G+S; has boundary nodes select a
boundary node xyi as a datum node. Construct the graph G, by adding an
edge e; directed from e to ey for each boundary node ej; in the jth com-
ponent of GeS;. Let B, be a cycle matrix of Gy. To this matrix add zero
columns corresponding to nonboundar'y nodes of each G+S; The resulting matrix
is Kg%

-
Justification of Algorithm II. The condition I(g% ezT = O represents the maxi-
mal linearly independent voltage constraints on all the nodes of G+S; (i = 1,...n)
in order to connect the G+S; to makeup the graph G. The KVL conditions of G,
also represent the voltage constraints on all the boundary nodes of G-S; (i =
1,...n) in order to connect the G-S; to make up the graph G. If By is a cycle
matrix of G, then B, el =0 is a maximal linearly independent set of con-
straints among them. Padding the matrix By with zero columns corresponding

to internal nodes of G5 (i = 1....n) therefore yields (a candidate for) K&,

Example 5.2. Let G in Fig 5.1 (a) be the graph of N;. Let S; = {1,..5,
4
S3=1{6,..10, S3=1{11, 17}, S,= {18, --24]. The graph 5‘21 G.S; is

4

shown in Fig 5.2 (a). In this case (), 7(G-S;) —=7(G)) = 1. So we need one
i=1

extra variable for acquiring the advantages of working with S;, Sp, S3, S4 as

separators. ip, has one variable and Kz% has one row. The rewritten equations

are as follows:
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(Bgy))if,
(Axz0)if,
(Ags3)id,
(Aqq)if,

= [Kealirg

‘Vg'; +Af el =0

v, + Alpeh=0
—-vi +Alseh=0
-vi +A,el=0
D(vs.is) =0
(Kef =0 .

Here Ay; is the reduced incidence matrix of G»S;. For the jth component of

G-S; (if it has a boundary node) the node €r,* must be chosen as the datum

node i.e., the datum nodes selected in the construction of G, (see Fig. 5.2 (b))
and the datum nodes selected for constructing reduced incidence matrix of
G-S; must be the same. In this example éku = ey ep, = e e = e,
€, = €3 Different k;; can turn out to be .ident.ical. Here, for instance,
kzy = k4 = 3. It simply means that copies of the same boundary node (g3 in
this case) have been chosen as datum nodes in components of different G-S;.
The matrix K£ has a single row in this example. It has entries for each non-

datum node of each component of G+S; (i = 1,...n). In this case it has entries

4
corresponding to all the nodes of @1 G+S; except ey, €33, €3 and eg, i.e., it

=
has 18 entries. Of these entries all entries except those corresponding to edges

of G, are zero. Corresponding to edges of G, we have the entries

30-
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€11 €24 842 €43 ,
(-1 1 =11 -). (This is a circuit vector of Gy). In this case A;s has no

4
rows since Vg is a subspace of ), (V-S;).
i=]

6. Decomposition of a vector space.

8.1. In this section we introduce another vector space notion based on the g-
minor operation, namely decomposition of a vector space. The notion of decom-
position arises when we decompose an electx.'ical network into several submul-
tiports and a port connection diagram. For theoretical network analysis the
notion of decomposition provides a convenient means of network reduction. Pro-
perties of the original network, pertaining to interaction between different com-
ponent multiports can be transferred to a reduced network based on the port
connection diagram. A more detailed study of vector space decomposition is

available in [6].

6.2. Definitions and Theorems

Definition 8.1. Let Vg be a vector space on S. Let S be partitioned into
Sy, - Sp. Let sets Py, - - - P, be pairwise disjoint and disjoint from S. Let

n

P= iL=)1 P;. Let Vg p (i = 1,...n), Vp be vector spaceson S; U P; (i=1,..n), P
respectively. We say that {Vp, V5 p, - - - Vs p } is an n-decomposition of Vg
with respect to S, - - - S, iff Vg = (Vslpl & - & Vsnpn) « Vp. V,s'ipt (i=

1....n) will be called components of the decomposition. P; will be called the sets
of ports of the component Vg, p-Vp will be called the coupler of the decomposi-
tion. The decomposition is said to be minimal iff whenever
EVP"VS,P; , e VS” P,;; is an n-decomposition of Vg with respect to Sy, ... Sy,

|P'| = |P].
Example 8.1. Consider the graph G in Fig. 68.1. Let S be the set of edges of G.
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Let S;=1{1,.5}, S;=1{6,.12}, S3={13,.19}, P, = py), Pz = (pal.
P3 = {pg3}. We see that the graph G has been broken up into three multiports
and a port connection diagram Gp. Let Vg, V5,5, (i = 1, 2, 3), Vp be the coboun-

dary spaces of G, Gs,p, (i = 1, 2, 3), G, respectively. Then it is possible to show

3
that Vg = (21 Vs‘p‘) « Vp.
=

We begin with a result which gives characteristic properties that a vector
space must possess in order to be a component of a decomposition of a given

space Vg.

Theorem 6.1.  Let Vg p (i = 1,...n) be spaces on S; U P;, i = 1, ... n, where
SiNnPj=g¢ for al 1,j,5;,nS;=¢ for i #j, P NP;=g¢g, 1#j. Let
US; =S, UPF,=P. Then, there exists Vp on P such that
Vs =(Vs,p, @ -~ @ Vg5 p )« Vpiff V5x5; 2Vgp X S;, Vs-5; C Vg,p, 5. (i

=1,..n).

Proof: Vs can be a gminor of (Vgp® & Vgp) iff
Vs C(Vs,p, @ & V5 p)S and Vg2 (Vs,p, @ - Vs, p,) XS by Theorem
3.1 We will show that these two conditions are equivalent to the ones in the state-
ment of the theorem. If Vs C (Vgp & - & Vs, p“')'s then clearly
Vs°S; € Vg5,p+S; (i = 1,..n). Next let Vg-S; CVsp+S; (i =1, ..n). Let
Is €Vs. Then Is/ S; €Vgp + S; (i = 1,...n). Hence
fs€Vsp,*S1® .. ® Vs p *S,. But
(Vs,p'S1) @ - @ (V5,p°S:) = (Vs,p, & - @ Vs,p,)*S. Thus it is clear
that Vs C (Vsp, @ - & Vg5 p )S. Next Vg 2 (Vs,p, @ - ® Vg p) xS i
Vs ¢ (Vs,p, ® - & Vs, p) *.S by Theorems P2, P4, i.e., ifi V§ -S; C V§‘H°Si @i

=1,.n)ie, i Vg X S; 2 Vs,p, XS; (i = 1,..n) by Theorems P2, P4.
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]
Theorem 6.2. Let 2VP,VSIPI,"VS“}D"£ be a decomposition of Vg. Then

iVﬁ,Vglpl,'-Vb:n B,} is a decomposition of V.

Proof: Vg = (V51P1 e - Vsnpn) « Vp iff
Vs = (Vsp,® - & VS“p")“‘ Vp by Theorem 3.3. By Lemma 4.1 this is
equivalent to Vs = (Vs,p, & - Vs, p) « Vp.

]
[ ]

An immediate consequence of Theorem 6.2 and the definition of minimal decom-

position is the following theorem:

Theorem 6.3. {Vp,Vgp (i =1,.n)} is a minimal decomposition of Vg iff

{Vp, Vé:‘ g (1 = 1,.n)} is a minimal decomposition of Vg.

The next few theorems provide characteristic properties for a minimal

decomposition.

Lemma 6.1. Let EVP.Vslp‘,"VS“png be an n-decomposition of Vg. Then

Ile = T(Vs’si) - T(VSXS,;) i=1,.n
Proof: From Theorem 8.1 we know that
VS-S,- CVs‘p‘ . Si , VS X S‘i 2 VS‘H X Si .
Hence
r(Vs-S;) —7(VsXS;) < 7(Vs,pS;) —7(Vg,pXS;) .
By Lemma 3.2,

7(Vs,pSi) — 7(Vs5,p,%xS;) = 7(Vs,p°Pi) — 7(Vs,pXP;) = ||

(I



The Lemma follows.

Lemma 6.2.  Let {Vp,Vs,p Vg p { be an n-decomposition of Vg. Then

r(Vs:5;) =7(VsxS;) < 7(VpeP;) ~7(VpxP;) i = 1,.n

Proof: Select vectors fgvi ce f§i which together with a basis of Vg X S; form a

basis of Vg «S;. Then by the definition of decomposition there exist vectors

f5,p, (r = 1..k) in V5, p, such that

t5p/s =15 . 15,p /P €Vp-F;

Suppose {5 p /B, (r = 1,..k)} does not form a linearly independent set with a
basis of VpXF;. Then there exists {5 p, € Vs, p such that fs.p/p, is a nontrivial
linear combination of I, p/p, (r = 1..k) and belongs to VpxFP;. This linear com-
bination of f§‘ P, / 5, Wwill however yield a vector which belongs to
Vs+S; —VgxS;. Thus the vector fg p€Vsp is such that

fs,p/s, € Vs°5; = Vs xS;,  f5p/p€Vp X B, Consider a  vector

n
fspE @1 Vs, p, such that
i=

Isp/ sup, = Is,p,

tsp/(sup)-(s,up) =0 .

Next choose a vector {fp €VP such that fp is zero outside FP; and
fp/p‘ = fS‘p‘/p‘. This is possible since fs‘p¢p‘ €Vp X P;. Since fsp/p =1fpit
follows that fsp/s €Vg. But then fsp/S‘ €Vg X S;. This contradicts the fact

that ifg-‘ P’/S‘; forms a linearly independent set with a basis of Vg X S;. We con-
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clude that [f,§‘ P/P, (r = 1,..k)} forms a linearly independent set with a basis of

VP X P‘i Le., T(VP.Pi) - T(VpXPi) = T(VS'S‘i) - T(stsi).

We later present an algorithm for the construction of a minimal decomposition
of a vector space Vg that is the coboundary space of a graph and has
|P| = Z(r(Vg+S;)=r(VsxS;)). A simple algorithm of the same kind can be

given even for a general vector space Vg [8]. We therefore assert

Lemma 6.3. {Ve.Vs,p,Vs,p,} is a minimal n-decomposition of Vg iff

|Pi| = 7(Vs:5;)—r(VsxS;), (i = 1,..n).

Theorem 68.4. Let {Vp,Vs,p,-Vs p }. be an n-decomposition of Vs. Then the
following statements are equivalent:

(a) It is minimal

(b) |F;| =7(Vs:S;) = 7(VsxS;) (i=1,.n)

(e) P; has no circuits or bonds in & (Vs,p,) (i=1,..n) or M (Vp).

Proof: By Lemma 6.3 we know that (a) and (b) are equivalent. We will now
show that (b) and (c) are equivalent. Let |P;| =7(Vs:S;) —7(VsXS;) (i =
1,..n). Then for all i, i)y Theorem 6.1, |P;| < 7(Vgp-S;) — 7 (Vs,pXS;).
Hence by Lemma 3.2, |F;| < 7(Vgp-F;) -7 (Vs,pXF;). By Lemma 8.2,
|| = 7(Vp:P;) —7(VpXP,). It follows that |P;| =7 (Vs,p P;) = 7(Vp-P;)
and 0 =7 (Vg pXP;) = 7(VpXF;) for all i Hence by Theorem P7, M (Vs,p F;)
and M (Vp+P;) do not have circuits and M (Vs,p,XFP;) and M(VpXxPF;) do not have
bonds. Hence F; has no circuits or bonds in #(Vg,p,). (i = 1,..n) or #(Vp) by
Theorem P6. Conversely suppose P; has no circuits or bonds in #(Vg,p), or

M(Vp). Then for all i
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|Pi| =7(Vs,peP;) =7(VpeF;) ,
0= T(VS‘p‘XPi) = T(VPXP.,;) .
So

| P;| =7 (Vs,pP;) —7(Vs,pXF;)
=71 (Vs,pS;) — 7(Vs,p,%S;)

by Lemma 3.2. Suppose |P;|>7(Vg*S;) —7(VsgxS;) for some j. Hence
r(VS,pth'j)—T(Vsjpjxsj)>'i‘(VS-Sj)-T(stSj). Then by Thecrem 6.1

there exists

ijE(VS,R,'Sj—VS'Sj) or gSjE(VSXSj-VS,P,XSj) .

Assume the former. Then there exists a vector fS, P, EVsj p, such that
fS, P/s; = f,s'j. Since Vp * P; has full rank there must exist a vector fp €Vp
such that fp/ p= fS, P,/ p,- Since Vs, p, * P; has full rank for all i it follows that

there exist vectors Ig5p for all i such that Is,p/p, = Ip/p. Then by the
n

definition of n-decomposition the vector fs = }] f,gip‘/st belongs to Vg. This
t=1

contradicts our assumption. Next suppose there exists
8s;€Vs X S; —VSjpj X S;. Then there exists a vector gg €Vg such that
Bs/s; = Bs; and gs/(s-s;) = 0. By the definition of decomposition there exist

vectors gg, p, € Vs, p, and gp € Vp such that
8s,p/s, = 8s/s, (i =1,..n)
and

ee/p, = gs,p/p, (L =1,.1m) .
But then

8s,p/5,=0 i #]



Hence &s.P,/P, €Vgsp X P;,i #j. But Vs,p, X P; has zero rank for all i. Hence
ep/p, =0 for i # j. Hence Er/p, €Vp X P;. But Vp X P; also has zero rank.

Hence gr/p = 0 and hence Es, P/Pj = 0. This contradicts the fact that

gSij/Sj( = gSj) EVS X S] —VSj% X SJ

We now present an algorithm for minimal n-decomposition of a space Vg
that is graphic. It seems difficult (if not impossible) to give an algorithm that
makes both Vg,p (i = 1,..n) and Vp graphic. Justification for this algorithm is

given in Appendix I.

Il. Algorithm for a minimal n-decomposition of a coboundary space Let G bea
graph on S. Let K be its incidence matrix. Let S be partitioned into S;, Sz ...
Sp. Let Voo (&) = V.

Step 1. Construct & X S; (i=12..n).

Step 2. Construct trees ?i for G x S; (i=1,2,...n).

~ n n
Step 3. Construct G x (S— Y T;). Add the edges Y T, back again as self
= =
loops. Let the resulting graph on S be G. Let A be its reduced
incidence matrix.

Step 4. Select trees ¢; for G-S;. Let A, be the submatrix of A corresponding

to the columns £;.

Step 5. Construct the matrix Ap as shown below.

P,

. P"
Ao = (A A

Vp is the space generated by the rows of this matrix.
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Step 8. Let A;5, be the reduced incidence matrix of G + S; (i = 1,..n). Let Ay
be the submatrix of A;5, corresponding to columns £;. Let Zu be the

reduced incidence matrix of G X S; (i = L...n) The generator matrix of

Vs,p, (i = 1...n) is shown below

S; B
. |4y O
Asip = Aisi Ay,

Remark: Observe that Ap is the reduced incidence matrix of a graph, while

the spaces VS‘ p, need not be coboundary spaces of grai)hs. An algorithm that

makes Vg, p (i = 1...n) graphic (but Vp non graphic) is given in [8].

6.3. Applications to network theory

The idea of decomposition is particularly relevant when the network can be
naturally partitioned into different types of elements such as resistors, induec-
tors, capacitors or linear, nonlinear or faulty and good elements etc. Solutions
that can exist in such networks may be classified as of two kinds: "Trapped” and
"interactive” solutions. Trapped solutions "lie” entirely within one type of ele-
ment. A solution that is not trapped will be called interactive. By examining
sections of such solutions corresponding to one part of the network, one can get
an idea of what is happening to another part of the network. Trapped solutions
can yield no such information. Interactive solutions can be studied more con-
veniently by working with a network defined on the coupler space of the decom-
position. The new reduced network will be minimal when the decomposition is

minimal.

Definition 8.2. Let N = (S,V5,Dg) be a generalized network. Let S be parti-

tioned into 5';,--S,,. Let these sets appear decoupled in the device characteris-
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tic. We say that (vg,is) is a trapped solution with respect to the partition

n n
(Sl,"S,,_) iffivg € 2 VS X S; and ig € Z Vs.v X Si'
i=1 i=1

Observe that in the above definition if Vg is the coboundary space of a

n
graph G, a solution (vg,ig) is a trapped solution iff vg can exist in _@1 G x S;
i=
n .
and ig can exist in @l G-S;. One may imagine the voltages lying trapped within
i=

cutsets of G lying entirely in a single S; and currents as trapped within circyits
of G lying entirely in a single S;. Such solutions cannot be observed at the ports
of the component multiports and hence will not be reflected onto the network

defined on the coupler space of the decomposition.

Multiport decomposition can be used in theoretical network analysis in the

following manner.

Let N = (S5,V5,Ds) be a generalized network and let S be partitioned into
(51,8 2*Sp). Let 5y, Sp- -+ S, appear decoupled in the device characteristic.

Let (Vp.Vs,p,.'Vs p) be an n-decomposition of Vg. Define networks
Nip, = (5;UF;.V5,p,.Ds,p). (i = 1,..n), Dg,p, imposes no constraint at all on 7
and precisely the same constraints on S; as Dg. Solving the network N is then

equivalent to finding solutions (vgp,igp) (i = L.n) of N; such that
n n o .

.21 Vs, p/ P, €Vp and .21 1s5,p/P €Vp.

i= i=

In other words, in order to solve N, we solve the "multiports" N;p, in terms
of the port variables, in the proce'ss obtaining the "port behavior” of N,-a (ie.,
the set of all vg, ip, that can coexist on P; in the multiport N.p,) -We then define

a new coupler network Np on P with coboundary space Vp (the "port connec-
tion diagram') and device characteristic on P; as the port behavior of the mul-

tiports N;p,. Solving Np gives the possible port vectors. Since in each N;p, the
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other variables have been determined with respect to the port variables this
completes the solution of N. Observe that trapped solutions will coexist with
zero vectors on the portedges which' means that the trapped solutions of the
network correspond to the zero solution of Np. The nonzero solutions of Np will

correspond to the interactive solutions of N. We will illustrate these ideas for an

RIMC network.

Let N = (S,Vs,Ds) be a generalized linear RLMC network. Let S be parti-
tioned Sg, Sy, S¢ corresponding to resistors, inductors and capacitors. Dy is

equivalent to the constraints

vi=(R)if

vI=Wif
iZ= () v¢

where R, L, C are positive definite matrices and subscripts R, L, C have been
used in place of Sp, S;, Se. Let Vg have the minimal decomposition

tVp.Vs, P, Vs, P, Vs p.}. Let V§R Pg» V'Stz. P, Vs, p, have generating matrices:

er’o I']311. S0 [Qc’
. : + 0
BZRIU]'BZLIU]’IQ;(:EU

[/ N\ fQ
Bu.l 1C
Bs,! {Qz¢| have linearly independent rows. This

Bir
Observe that the matrices(Bop ;

follows from the fact that for minimal decomposition VS‘ J R P; has zero rank.

We know that the solution of the original network is equivalent to the solution of

the following equations (8.1), (6.2), (6.3), and (6.4)



B:R - 0] vi [0]
Bz : U v.l'e =l
B BL| il (5] |

L0 U [if = i7,
(R)if = V§ J
B,, : )

-

ol i/ [o]
B, : U vSl‘ = lo
B7, : BL|if [if
10 Ui T g
(Lif = vf J

?

[wab il [o )
Qe : Ui T [0

[qfc Lokl vk [v4])

0 : U[vf ™ vh,

(©vf=if J
i 3
1 R

[QF,: Q1 QE. 1if =0
| i,
Q)7 vE,
(QE)T|(v6)T = |vh,

CIAM vh, J

Equations for the

resistive multiport

N_ = { S, UP_, V
RPR R R SRPR

Equations for the
inductive multiport

N = S U P » v >
LPL { L L SLPL

Equations for the
capacitive multiport

N =JS. UP,, V
CPC {C C SCPC

Coupler KCL
and KVL Equations

» D
SRPR

J

D
SLPL}

D
bl
SCPC

J

(6.1)

(8.2)

(6.3)

(6.4)

We now solve the resistive, inductive and capacitive multiports with respect to

the port variables. In the process we get relations ng between ip, and Vpg. DpL

between ip, and Vp, and Dpc between ip, and vp,.. In this case from the resis-

tive, inductive and capacitive multiport equations we get,
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4 4 :./ N\, \
. LT _ Big ( T _ T | T =
Y, =-jro vyl (R) [ Bip EZRJ ) UP.—J? = D,
L IR I .
> ’ N \\.( \\- -
T i By ’Er B‘r‘l' 0 (iTv. = p 5
Ve =-ito Uil (L) B, 2| (ip) = Dp - (55,
i ‘] B_, . J
% \ ‘- ,‘ _i\ Ji -
¢ " a, , NN :
. C T T T b4 -
i =-|to u1| (C) |Q,c K- || (v.) & D
£ c >z \ Ve !/ ¥
. a. \ U] ¢ c
L ! Tee AN

The coefficient matrices on‘the right are all negative definite.
we next use D, ,D. ,D. as the device characteristic for the

- ¢ .
coupler network N with V as its coboundary space. Solving the

coupler netwerk we get possible values of i&~,%i ’iF » Vo ,i? ,%:
. - Z o

- —

Since in each of the multiports we already know the rest of the
variables with respect to the port variables this completes the
sclution of the network.

Using this technique it is possible to show that the trapped
solutions correspond to zero eigen values and the state equations
of the reduced network have the same Jordan canonical form as the
state equations of the original network except for the zero
eigenvalues. We outline proofs for these facts in the Appendix II.
Example 6.2

In this example we illustrate the idea of the decomposition
of an RLMC network. Fig 6.2(a) shows an RLMC network N.

The set S of edges of the graph 3 (Fig 6.2(b)) of N has been

PY

s ’ .
par‘titioned il“ltD SL-=:L' ’LZ ,L 3 '} SR=\'R= ,R?_ ’R3! [ 1

|

f

S, = "C, ,C, ,cz.'}.
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r.
We now proceed to decompose G through Algorithm III.

’r A A
Constructing G X S_s6 X §; ,6 X Sc sWe find that we can

A

choose tL =

- / - A -
2 atp = <R3; st, = ~C:z: . Graph G is shown in

- -~

L
Fig 6.2(c). 6. S, 6. S, 6. S, have trees t, = "Ry sR.
.

&
t, = ‘L, L, ,t =¢ , Fig 6.2(d) shows a minimal

Z. c z
A\
decomposition of graph 6. The g9raphs 6. ., 6. - , 6. . have
o CARRER s
coboundary spaces. (constructed according to Algorithm III)
Voo s Vo, v, s VU respectively. 1In this case both the component
-1 "'L-‘L. "C"f. P

spaces and the coupler of the decomposition of the original
coboundary space have turned out to be graphic. (This may not be
possible in general). The network N may be thought of as being
obtsined bv the ’'connection’, of the resistive, inductive and
capacitive multiports on graphs eskal s Sgai s Gsc% according
to the ‘port connection diagram’ ap. This will correspond to
physical connectien if the ports of the multiports are connected
te 1 ¢ L. transformers and the secondaries are connected according
N

to G,. NMext by using equation 6.5 or simply by inspection of the

multiports we can obtain Dﬂ(’ DFL s D?c for N as

r v
Voo, 'R, + Ry Rs is,
VT’P' R\,} Rz_ + R;z i—?&z
: /
« ~ .
V";L , _ Py o+ I‘Z L 3 i-pL‘
= = o
V;;L' Lz L?. + L3 i‘\?:-z.

/



C, (CQ_ + C_:; ) 'C‘Ca »
i Vp
' (€ #Ci+Cz € +Cp 40y i
. . -Cc, C, Cp (€, + C3) |
i-. ! i Ve
- 'C +C; + C. C, +C, + Cq €2

NP would in general be an accurate representation of all the
interactive solutions of N ('modulo’ trapped solutions). In this
(RLMC) cas= it has the same Jordon block as N except for zero

eigen values.

Conclusion

In this papsr we have introduced and made systematic use of
the geresralizsd miner opsration on vector spaces. We have shown
that it arisss naturally in the context cof connection of ideal
re, W

transform have defined the notion of the minimal extension

] [.
[ {§

cf twe or more vector spaces and used it to describe a method of
retiviork enalysie where one could use ayydesired network topology,
at 2 certzin cos*t, *o solve a given network. We have defined the
nctior of decomposition of & vector space to formalize the intui-
tive idea 0©f descomposition of = network into multiports and a
pcrt  cornstion diagram. Using the example of an RLMC network we
have ehkeown that some of the properties of the original network
could be more cenveniently studied by examining a reduced network
defined suitably on the port cennection diagram. While all the
concepts intrecduced in this papesr have been for arbitrary vector

spn2ces, in order to show their relevance to network theory, we

-4 4L



have presented algorithms, wherever necessary, which are

particularly appropriate to coboundary spaces of graphs.
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APPENDIX 1

Al. Justification for Algorithm III. Observe that the rows of the matrix a

shown below generate the coboundary space of G.

Ay . where A g 1s the
~ ‘. i
A= Em submatrix of A
corresponding to
As, - As, columns §..

This is because (a) The rows of A belong to the coboundary space of G (They are
obtained by taking suitable vectors of VgXx(S —u?.;) and adding zero columns
corresponding to edges in UE;).

S, 5 Sn ‘ ~
(b) Therows of [0 - -- Ay - -+ O] belong to the coboundary space of G since

the rows of A, belong to (V. (G)XS;).

(c) The rank ofz = rank of 5 E‘he columns f,; of lt are linearly independent,
where as these columns are zero columns in the matrix A. Hence

~ n ~ -~ n .
rank of A= ) 7(GxS;) + r(Gx(S- Y t;)) .
=] =
n - -~ n -~
= ‘U tll +7’(GX(S"’ .U tt))
i1=1 t=1

n A -~
Since U £; contains no circuits in &
i=1

3

rank of A = r(@-(ﬁ1 £)) + r(Bx(S—- U &)
= =

=7(G) :]

A5, can be expressed as k; (A;s,) since A;s, is a reduced incidence matrix of

n -~
G-S;. For the spaces :21 Vs,p, and Vp we have the generator matrices Ag, Ap



shown below

S, - Si"sn Pl"?i"Pv\.

Ay 0 -0 0 0]

A s, : Ay, 0
Ap = 0 0 Ag A; O
Y ' Znn : 0

0 O Aws, © 0 0 Ay

P A Po
Ap = kiAg) - ]

Consider the submatrix As of Kaa as shown below:

Sv-- 51 Sa Poo Py Pa
rAlsl Ay,
Ag = As, ; Ay,
Ans, Ans

If we premultiply this matrix by the matrix

we get the matrix

Sy S S Py P,

Py

[A31"'AS¢'"AS,,,EAtt"'At{"'At,.]'

observe that Ap appears as the submatrix corresponding to columns P. From

n
the definition of g-minors it follows that Vs C (( @1 Vs,p, « Vp). We will now
i=

show the reverse inequality. Let fg be a

n
vector in (61 Vs,p, ) « Vp. Then fg
i=

n
can be written as £} + £% where fg € @1 (VsxS;) and £% is the restriction of a
i=



vector fg-p which is linearly dependent on the rows of Ae and further

fEP/P €Vp. £} clearly belongs to Vs. We will show that 3 also does. We have
f%p = (A)(Ag ). Hence fép/p = (A)(Ag p)- We know that fép/p is linearly

dependent on the rows of

Py ... P, A,

(A, - B 1=k - k)| A,
A,

The matrix postmultiplying (k; .. kn) is the matrix Ae P Since this is nonsingu-

lar A is linearly dependent on the rows of (k; - - k,). Hence fgp/s is
Sy S
spanned by the rows of [Ag, - - - Ag ]. Hence f2eV;.
ENDS



APPENDIX T1

In the following discussion we refer to state equations of a generalized RLMC

network. By this we mean a set of equations of the form

()T = A(x(t))T

such that V4(£), id(¢) can be expressed as (k,)xT(¢) and (k;)xT(¢). Just asin
the case of ordinary RLMC networks we may choose the state variables to be a
maximal linearly independent set of capacitor voltages and a maximal linearly
independent set of inductor currents. We refer below to independent solutions
of the network as well as to independent solutions of the state equations of the

network. The latter requires no explanation. Solutions (V¥i}) ... (v%,i%) of the

network are linearly independent iff there exist no nontrivial Aq, ..., A, such
that
AvE ) + -+ (AvENE) = (0,0) .

Let N be a generalized RLMC network. Let Sg, Si. S¢. Pr. P, P;, Np be
defined as in subsection 8.3. We define a generalized negative RLMC network as
one where R, L, C matrices are negative definite. We reemphasize that we are

dealing with minimal decompositions.

Theorem  Al. The number of independent state variables of

N =7(Vs-S¢) + 7(Vs-Si).

Proof The number of independent state variables is the same as the number
of independent initial conditions. Capacitor voltages and inductor currents can
be chosen as state variables. The possible capacitor initial voltage vectors and

the possilbe inductor initial current vectors form respectively the spaces Vg-S¢



and Vg-S;. Hence the number of independent state variables of
N =r(Vs-S¢) + 7(Vg-Sp).

Q.E.D.
Theorem A2. Let N be a generalized RLMC or negative RLMC network.

(a) Asolution of N is a trapped solution iff it is a constant solution of N.-

(b) The number of independent constant solutions of N is equal to the

number of independent constant solutions of the state equations of N.

(c) The number of independent trapped solutions of N is the number of its

zero eigenvalues and equals 7 (VsxS¢) + 7 (Vsx Sy ).

Proof We will prove the theorem for the case where N is a generalized RLMC
network. The negative RLMC network case is essentially the same and so is omit-

ted.

(a) Let (v4(2),i4(¢)) be a trapped solution of N. Then, by definition
vi(t) €VsxSp |
ik(2) eVsxSg |
(R)ERENT = (vk(£)T

Since VsxSp ¢ (VsxSg)°, we have {vp(),ip(t)>=0 ie.,
(1A )NR)(iA(2))T = 0. Since R is positive definite we conclude that ij(¢) and

therefore vpf(t) is a zero vector. Next we have
vi(t)eVexS, ,

il(t)evsxS, .



(DELENT = vi(t)
As in the previous case we have
(vit)if(t)>=0 .

Hence, since (L) is positive definite we have

LaUOWaEENT =0 .

This means that (if(¢)(L)(i}(¢))7) is constant.Since (L) is positive definite it
can be factorized as (kk7 ) where k is a constant matrix with linearly indepen-
dent rows. Hence (i}(¢)k)(i}(¢)k)7 is constant. Hence (i}(t)k) is a constant
vector and hence i}(%) is a constant vector. Hence v}(¢) is a zero vector. The
capacitor case can be handled similarly and we can show that v&(t) is a con-
stant vector and i}(¢) is a zero vector. Thus we see that trapped vectors are
constant vectors. Next suppose (v3(¢),i3(¢)) is a constant solution. From the
device characteristic it is clear that we must have Vo(¢) = 0, i;(¢) = 0. 1t fol-
lows that {v}(¢),i}(¢)> =0 and {v}(¢),i}(¢))> = 0. Since {(vi(¢),it(t)>=01t
follows that {vA(£),i3(¢)>=0. Since R is positive definite it follows
vA(t) = i3(¢) = 0. Hence i’,;(t)evng,, and vé(t) €VsXxSe. Hence

Vé(t)GVSXSR & stsL & VsxSe .

ié(t)€vs’XSR & VS.XSL & Vngc .

Hence (v3(¢),i3(¢)) is a trapped solution.

(b). (c). We thus see that (v3(¢),i}(t)) is a constant solution of N iff vA(¢),
i}(¢) are constant vectors, v3(£) € VgxSe, i}(t) € VsxS, and vi(¢)., vi(¢).
ip(2), i3(¢) are zero vectors. The number of independent constant solutions of

N is therefore the same as the number of independent constant solutions of the
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state equations of N. The latter equals the mﬁnber of zero eigenvalues of N.
While the former is equal to the number of independent trapped solutions which
equals 7(VgXxS¢y + 7(VsxSy).

Q.E.D.

From Theorems 8.4 and A2 we have

Theorem A3 (a) Number of independent state variables of

Np = |P| + |Pel.

. {b) Np has no zero eigenvalue.

Proof  Since {Vp, Vs.p,. Vs,p,. Vs.p,} is a minimal decomposition of Vg we

have by Theorem 6.4 and Lemma 8.2

[Pl =7(Vs-S,) — m(VsxSy)
=7(Vp-PL) — T (VpxPp)

| Pel = 7(VsS¢) = r(VsxSe)
= T(Vp'Pc) - T(Vpxpc) .

Hence we have

T(Vp-PL) = |P,| ,7(VpxP,) =0
7(Vp-Pg) = |Pe| , 7(VpxPe) =0 .

In particular
7(Vp-Pc) = | P¢|
and

r(VpPL) = |PL| —7(VpxP,) = | P, |

by Theorems P1 and P4. Hence by Theorem Al the number of independent state

variables of Np = |P,| + |P;|. The number of nonzero eigenvalues of
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Np = (V5S¢ + 7(V5-5;,) — 7(VsxSe) — 7(V§xS,) (by Theorems Al and A2)
=7(Vs-S¢) —7(VsxS¢) + | S, | =r(VgxSy) — S| + r(Vs-Sy)
= |P¢| + | P,| by Theorem 6.4. Hence Np has no zero eigenvalues.

Q.E.D.

Theorem A4 The state equations of N and Np have the same Jordan canonical

form except for zero eigenvalues.

Proof Since the decomposition {Vp, Vs,p,. Vs, p,. Vs,p,} of Vs is minimal by
Theorem 6.4, #(Vs, p,). M(Vs,p,) bave no circuits or bonds in Py, P, respec-
tively. Hence in generator matrices of VS,, Py VS'L p, the columns corresponding
to P, are linearly independent and in generator matrices of Vgcpc, Vs,p, the
columns corresponding to P, are linearly independent. Hence we can write
iﬁ; = (k)i and vgc = kvl where kz, ke have linearly independent vouvs.

Let the state equations of N and Ny be respectively
x7 = AxT (A1)
%7 =3% . (A.2)

Let X and X be the corresponding state spaces. We then have a map from X onto
X defined through ¥ = (k)x7, where k is the direct sum of k;, ko. We know
that equation (A.2) has no nonzero constant solutions since Np has no zero
eigenvalues by Theorem A3. Hence the space of constant solutions of equations
(A.1) maps to the zero vector under (k). Next |P;| =7(Vg'Sy) — 7(VsXSy)
|Po| =7 (Vs-S¢) = r(VsxSe) by Theorem 6.4. Noting that
T7(Vs-Sp) =7 (VsxS.) =7 (Vs5:S;) — r(VsxS,), we have by Theorems Al, A2,
and A3, dim(X) = |P,| + |Pg| = dim X - dim (constant solutions of (A.1)).

Now there exists a transformation T such that T !AT has the form



. where A, has no zero eigenvalues. Let zl = T-'x7. . Then
A,
2T = (T™'AT)z”. We could write this as
ixr o . zlr
e (A.3)
=T .
Z5 . Az Zér

The transformation T~} maps all constant solutions of equation (A.1) to vectors

T
A V'
of the form [01 while T maps all solutions of the form [01} of (A.3) to constant

solutions of (A.1).

Now

% = kTz27

Since equation (A.2) has no constant solutions and dlm(f ) = dim X - dim (con-

stant solutions of (A.1)) it follows that (kKT) = (0: M) where M is nonsingular and

¥ =Mz]

Hence

T = (M(A MR

Now A, and (MA,M™") have the same Jordan canonical form and A, has the
same canonical form as A except for the zero eigenvalues. The theorem follows.

Q.E.D.
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