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I. INTRODUCTION

We.study a general finite-element model for a large flexible space

structure (LFSS). When sensors (with suitable gains) and actuators are

colocated, strictly passive compensators result in an exponentially stable

feedback system. For the general case (no colocation) we use

Q-parametrization theory to state necessary and sufficient conditions on

Q for stabilizing a certain number of modes which approximate the plant

for design purposes. We state a necessary and sufficient condition for

stability under additive perturbation (by an unmodeled mode) and, finally,

we show that, under certain conditions, the compensator can be chosen so

that it does not destabilize the unmodeled modes.

II. THE LFSS MODEL

Following standard practice, we consider a general finite-element

(lumped) model for the LFSS (see, e.g., [Wes. 1]). We assume small

deformations, linear-elastic materials and neglect gyroscopic coupling

and damping. The equation of motion of the LFSS is then:

M'q + Kq = Bu (1)

where M = MT >0 is an "inertia" matrix, K= K >0 is a "stiffness"

matrix, K,M e lRnxn; q e lRn is a vector of generalized coordinates

(position and angle); u is a vector of control inputs (forces and torques)

and B is determined by the type and location of control actuators.

The modal vectors, nk> are defined as solutions to the (generalized)
2

eigenvalue problem mT. Mtv = Knk» k= l,...,n, with the normalizations
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T 2 T 2nk Kn.j = o)k 6ik and nk Mn^ = 6ik where a>k, k= l,...,n are the

eigenvalues. Define the modal matrix, T , as the matrix with rh 9 ••• >^Im

as columns [Cou. 1, p. 282 ff.], [Go!. 1]. Then, with q =: TQc, (1)

becomes

£ + fl e = Bu (2)

where B := T B, Q := diag(a),,... ,o)n) with u>j _> 0, Vi

Let the modal velocities, £k» be the measured variables and let the

state be x := [? • c 3 ; then the LFSS is described by

A = ; B = ; c = [ o ; c 3

-n'

and from (3) the plant transfer function, P(s), is:

P(s) =C(sl9 -A)_1B =C -s(s2I +A2)-1 B= I
2n

s p cT
2 2 k kk=l S^+a)£ KK

(3)

(4)

where ck (resp. b.) are the column (resp. row) vectors of C(resp. B).

III. COLOCATION OF SENSORS AND ACTUATORS

Colocation (i.e., sensors and actuators located at the same place),

together with suitable gains in each sensor, implies that C = B .

Consequently, from (4), Pc(s) (the plant P(s) with colocated sensors) is

given by:

p<(s) =A ih ^K=l S +Ci)i,

(5)

Since b.bT >0, Pc(s) has only simple jai-axis poles with real symmetric
positive semi-definite residues of rank 1 and Pc(s) is passive and

strictly proper.
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In view of standard results on passivity [Des. 13, [Zam. 13 we state

the following well-known result:

Theorem 1: For all strictly passive C(s), 1S(P(,,C) (Fig. 1), with Pc(s)
as in (5), is exponentially stable.

K. Ka
Remark 1: For example, a controller of the form C(s)=—+K+J j+q-

H a a
is strictly passive if K^, K and Va, K are positive semi-definite and

K and/or at least one K is positive definite, and 3a>0, V a.

Remark 2: For all strictly passive C(s), all unmodeled dynamics will be

stabilized in 1S(P(.,C).

Remark 3: Since C(s) is strictly passive, C" (s) is strictly positive

real [New. 1, pp. 117,1263, and thus we can justify Theorem 1 as follows.

Let sk be a closed-loop eigenvalue of S(P ,C). Then, since

det(I+PcC) = det(I+CPc),

3 y t en s.t. [i + c(sk) Pc(sk)3y = en (*)

To get a contradiction, assume Re(sk) >_ 0. Multiplying (*) by [C(sk)3

gives

[c-1(sk) +Pc(sk)]Y =en

which is the required contradiction with y f 0 .

Remark 4: Since we use velocity feedback we may have non-zero steady

state position error but, using the results of [Mor. 13, [Des. 23, we

may get around this by introducing an "integrator" block, I + — , prior to

the compensator C(s) (Fig. 2), and for K small it will not affect the

exponential stability of the system. More precisely, let
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K „(°) =PrC(I+PrC)_1(0) e iRnxn be nonsingular; call UH its polar
y«u-i c c

decomposition, then U is orthogonal and H is real positive definite; hence

*

if we choose K = eU , for e small and positive, the system of Fig. 2 is

exponentially stable.

IV. GENERAL CASE (NO COLOCATION)

We assume that the design is done for resonant frequencies upto u>m,

i.e., for design purposes, the plant P is*approximated by

P«(S) := w1! ^ £^ (5)k=l s +cok

Let C:= Q(I-PdQ)"1, where Qis the well-known Q-parameter [Zam. 13,
[Des. 33. Then, defining a transfer function to be ^-stable iff it has

no poles in a symmetric subset U (Dl+) of (C ,following [Des. 43, we

state:

Theorem 2: For the given rational, strictly proper Pd(s), the system

1S(P(j,C) (C := Q(I-PdQ)_1) is ^-stable if and only if

i) Q is ^-stable,

r

and ii) Vk = 1,... ,m
Q(ja)k)8k =enQ; b£ Q(J«k) -e*
and bJk Q'(J(ok)ck =2

Remark 4: It can be shown (when U = (C+ and ^-stability <* exponential

stability) that =[Q € H"xn satisfying i) and ii) by a straightforward

generalization of an elementary Lagrange interpolation argument for the

s.i.s.o. case (where q must belong to Hro and q and q' must have prescribed

values at jook, k= 1,2,... ,m).
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V. UNMODELED DYNAMICS

Let us consider any mode with resonant frequency co^, i > m as an

additive perturbation (Fig. 3), AP. From (5),

AP.=?-Xi (6)
1 S-JU).|

Redrawing ^(P^AP^C) (i.e., Fig. 3) as in Fig. 4(i.e., from the
"point of view" of the perturbation APj) and using the Q-parametrization

theorem (since Q in Fig. 4 is exponentially stable) we state [Bha. 13

Theorem 3: ^(Pj+AP^C) is exponentially stable iff AP^I+Q-AP.)"1 is
exponentially stable.

Remark 5: Note that the results of [Doy. 13, [Chen. 13 cannot be used

since AP. has a pole at w• on the ju>-axis.

Since the residue of AP. at Jul. is a rank one matrix (see (6)),

Fig. 3 is essentially an s.i.s.o. system. Good design practice requires
aT

that Q be small out of band [Zam. 2], [Des. 33. Assume that b.QfjuLj)^

is therefore small and let Jul. +h denote the new location (under feedback)

of the open-loop mode at Jul. Then, within the first order, we have

h=-jb] QUcu^c- ^ (7)

Remark 6: Equ. (7) shows that in the case of colocation'with suitable

sensor gains such that c^ = b^, if Q is positive definite at the

unmodeled resonant frequency ul, then, within the first order, the pole

at this frequency moves away from the jgj-axis into the open left half

plane.
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VI. CONCLUSIONS: THE DESIGN PHILOSOPHY

The analysis above suggests the following philosophy for optimization-

based CAD: i) choose a truncated plant model Pd that contains all the

modes for the required control-bandwidth, ii) select Q to bring the

ju)-axis modes of Pd into a suitable region in the open left half-plane

and to achieve a suitable I/O transfer function, iii) for the next few

unmodeled modes use (7) to ensure that h is negative (say by.imposing

inequality constraints ), iv) for the remaining unmodeled modes, we know

that they are more heavily damped [Asw. 13; the Green's function approach

shows that the b.'s and ck's decrease rapidly as k increases and, for Q

small, the resulting h (see (7)) will be small enough to ensure that

irrespective of its sign, the higher order modes will not be made unstable

Thus, we can achieve, in principle, suitable control over any

prescribed bandwidth. The only fundamental constraint on achieving this

goal is plant uncertainty [Zam. 23, [Doy. 13, [Chen 23: from our work on

simple examples the uncertainty on the exact resonant frequencies may

turn out to be an important problem.

+For an example of optimization-based CAD using Q-parametrization see
[Gus. 13.
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Figure Captions

Fig. 1. S(PC,C) — the feedback system. Pc is the plant transfer

functions when actuators and sensors are colocated.

Fig. 2. 1S(Pc,C(I+j)) — the system ]S(PC,C) with an "integrator" block
(1+j )preceding compensatorC, to achieve zero position error.

Fig. 3. S(Pd+AP1-,C) — the perturbed system. Pd is the approximate

plant model chosen for design (colocation is not assumed) and the

ith mode (which is unmodeled) is considered as an additive

perturbation AP-.

Fig. 4. S(Q,AP.) — this figure is obtained from Fig. 3. The "gain seen

by AP," going from point a to point b through S(P,C), is equal

to -Q.
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