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1. Introduction

Multiparameter Martingale Differential Forms

Eugene Wong*and Mesne Zakai2

A substantial body of results on stochastic integration with respect to multiparameter

martingales now exists. Yet, as it stands, the theory is not entirely satisfactory in a number

of ways. In particular, the calculus for stochastic integration, already complicated in two

dimension, becomes prohibitively so in higher dimensions. In retrospect, the source of the

diflficulty seems to be that integration over n-dimensional volumes in n-space is only a very

small part of a complete theory of integration in n-space. What seems to be needed is a theory

of differential forms involving martingales and integration of such forms on sets of appropri

ate dimensionality. To embark on a course to develop such a theory is the objective of the

work reported here.

Our approach to stochastic differential forms follows the general approach of Whitney

[4] and forms are denned as function on chains or functions parametrized by chains satisfying

certain continuity conditions. While the flat cochains defined by Whitney (Ki ch. DO have

the representation

X(cr) = /x(0^I/...A dtir (L1)
or

we cannot expect such a representation to hold for any class of martingale forms that includes

the Wiener process. However as we intend to show in this paper an exterior calculus for

martingale forms can be constructed without such a representation. In the nonrandom case

the exterior calculus is coordinate independent. However, in the stochastic case there is an

underlying information pattern, namely, the subsigma fields, and as a result the stochastic cal

culus presented here is not coordinate free. The situation is similar to those cases where boun

dary conditions for physical systems yield a coordinate dependent formulation.

1Departmcnt of Electrical Engineering andComputer Sciences andthe Electronics Research Laboratory, Univer
sity of California, Berkeley, CA 94720.

^Department of Electrical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.



In the next section we define the subsigma fields involved, stochastic cochains and two

norms for chains: namely, the mass norm and the fiat norm of Whitney. Stochastic

differential forms are introduced in section 3, these are cochains satisfying certain continuity

properties. The exterior derivative of a cochain is introduced by adapting the result of the

Stokes theorem as a definition. Different classes of martingale cochains and forms are intro

duced in section 4 In section 5 it is shown that with a wide class of martingale cochains we

can associate with each martingale cochain a positive cochain which plays a role analogous to

that of the increasing function of a one parameter process. The notions of martingales of path

independent variations and martingales of orthogonal increments are easily generalized to the

multiparameter case via the positive cochain associated with the martingale. The exterior pro

duct is considered in sections 6, 7, 8. First, in section 6, we deal with the exterior product

0 * M where <f> is a zero cochain (L&, a predictable integrand) and M is a martingale cochain

which plays the role of an integrator. The exterior product X * Y of nonrandom forms is

discussed in section 7. Since our assumptions on the forms X and Y are not enough to have a

representation of the form (1.1) for X andY, we cannot define X * Y through

rr 1 *

We introduce the exterior product by an approximation procedure that avoids the local

representations x it ) and y ix ). This approach can be considered as an extension of stochastic

integrals of the second type that was introduced in [6]. This approach is followed in section 8

in introducing the exterior product of martingale forms. A formula for the exterior deriva

tive of the exterior product X A Y is discussed in section 9 and its relation to the Green for

mula of Cairoli and Walsh is pointed out.
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2. Preliminaries

Notation. Let IR% denote the positive quadrant of JRn. We associate with 1R+ the

usual order

it j/ y **/n ) ^k 1»* •• ^n )) # 'i ^*i for a11 * = !A* **»»

Cf i»- • • /» ) >Cff i,« • •A ) if ^i >*i for all j = 1,2,- • • /i

and define

t ~ s = immit lySiX ^nin(rR jn ))

t v s = (maxfr j^r x), ,max(*n *rn ))

If 2. = (* i»* 2» *r ) is a subset of the integers from 1 to n then j* will denote the collec

tion of all remaining integers between 1 andn , and[_£ ] will denotej^ put in increasing order.

Similarly, r,- denotes Cf,- , /,p).

Let (UF^P ) be a complete probability space and let {£r, t € M +. } be a family of

sub-o* fields. Define

,sLaIL "

e.g.» if n =3 and _£ = (1,3) then £r- = \/ F.(tvd;z) ~ -5L(r lfc«v 3> ^e assume that £_t satisfies

the following assumptions (cf. [l]):

iFi) t >s => F_t 2£s

iF 2) £» contains all the null sets of F,

iF^Ft = n Fs
— t >s —

iF 4) V t ,j_, F_l and £r- are conditionally independent given£*
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Condition iF 4) is a generalization of the corresponding condition of Cairoli andWalsh [l].

Let aj denote a finite interval open to the left and closed to the right on the t} axis.

For i < j ,Oi * aj will denote a possibly oriented 2-dimensional rectangle with sides a^ and

aj and aj * a$ = —a,- * a; will denote the same rectangle with a negative orientation. In

general, let o-ixfii^ Air denote intervals as above. Then a,- * a* * * aip will

denote an r dimensional rectangle with sides ^.A 2» Ar • The orientation is positive if

an even permutation of (t lfi3 £ ) puts it into increasing order, and the orientation is

negative otherwise. We call such rectangles oriented r -rectangles and refer to [_£ ]as the

direction ofa** «** •••*<**•

We note that the boundary Qo* of an oriented (r +1) rectangle o~ is a collection of

oriented r-rectangles that overlap at most on boundaries. Subdivision of an r-rectangle pro

duces a collection of r-rectangles. It is useful to denote such a collection by a sum

oi + 0*2 + + o*m . Furthermore if o* is an oriented r-rectangle it is useful to denote by

—<r the same rectangle with the opposite orientation. It is therefore useful to introduce linear

combinations

m

A = £ a*°i (2.D
4=1

where ak are real numbers taking values in {—1,0,1} and <rk are oriented r-rectangles. We

shall call any sum of the form (2.1) an r —chain .

Let X (o) be a real-valued random function defined on iQJi.jP ) and parametrized by

oriented r-rectangles such that

(a) X (o) is defined for every oriented r-rectangle ar

m m

(b) X ia) = -X (—0) and for disjoint rectangles X i £ <rk ) = 2 x (°* )
4 =1 * =1

(c) X (o) is jF f(o) adapted where FGx) denotes the supremum of the points of cr.

We can extend X to all rectangular r-chains by linearity and X so extended is appropriately

termed a random 1—cochain .
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In the next section a further extension of X that depends on whether it satisfies some

continuity conditions will be considered. For this purpose the notion of convergence of chains

is necessary. Let Icrl denote the r-dimensional volume of the oriented rectangle crwith Icrl

= 1 for r=0. For A defined by (2.1) with disjoint crk, k = 1,- • • ji, the mass of a chain A is

defined as

IA I = £ Iak I• Io* I .
l

Turning to another norm, let {Am , m = 1,2,- ••} be a sequence of r chains, we shall say that

the sequence is a Cauchy sequence if either

\Am -Ak I -> 0
m Jc -«oo

or, if for every m Jc there is an r +1 chain Bm % such that QBm # = Am — Ak and

\BmJc I -> 0
m Jc -«oo

Note that for the convergence of an n-chain in IRn , only the first type of convergence makes

sense, while for the convergence of a 1-chain in JR 2to a curve the second type of conver

gence is necessary. Therefore, it is useful to define the flat norm IA I for an r-chain in E n

by ([41 p. 154)

IA f = inf { IA - $B I + IB I} (2^)

where the infimum is over all r +1 chains B. It is shown in [4] that

IA +5 l" ^IA l"+ I5l" and IAl"=Oifand only if A = 0 . Hence, I•l" is a

norm. Furthermore, I*I satisfies (see [4])

I9A f < IA f < IA I (2.3)

Note that for r = n , IA l" = IA I. For r =0 and A a point in Mn , IA I " = 1. For

the case where A is the difference of two points, s and t, IA I = mm (2, Iis / ) I)
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3. Stochastic Differential Forms

Intuitively we would like to write a random r-cochain X (cr) as an integral over cr

X (cr) =J X

where the integrand X is a "stochastic differential r-form." If we are to include such

processes as the Wiener process and white noise in the theory, then the random differential

forms are necessarily generalized processes (Le^ randomcurrents). Ito defined randomcurrents

a long time ago [2], however his approach is incomplete for our purposes because it is limited

to linear operations. Exterior products X * Y, where X X are random currents have not

been defined in [2]. As will be seen in later sections, to define such exterior products is to

define stochastic integrals (of different varieties)on IR + .

One possibility is to define a stochastic differential r-form as the formal integrand of a

stochastic r-cochain that is continuous in probability with respect to the flat norm defined in

the previous section, L&,

p

X(Am)-*0 whenever \Am I -•0 as m -*oo . (3.1)

Similarly a random differential form is said to be an Lq form or a q-integrable form if

E \XiAj\i <oo (3.2>

and

E \XiAmj\'' -0 (3.2)*

whenever IAm \" -*0. In (3.1) and (3.2) we extend the definition of X to limits of chains

under the flat norm by adjoining X (A^.

As an example let i) be "Gaussian white noise" on IR + defined as follows

(a) 7)(cr) is a Gaussian random function parametrized be oriented 2-rectangles cr on IR +

(b) £7)(<r) = 0
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(c) E 7)(cr>n(cr') = pt(cr 0 cr') if cr and & are similarly oriented

= —fxia" Hcr*) otherwise

where cr denotes crwithout orientation and fi denotes the Lebesgue measure.

A Wiener process Wt, t 6 Mt2, is defined by

Wt =7}(Af)

where At is the rectangle {s :0 ^s ^t). The white noise 7) is a random rectangular 2-

cochain. Since E ifia-) = Icrl, (3.2) is satisfied. The Wiener process is a O-cochain satisfying

(3.2). Furthermore, suppose that cris anoriented 1-rectangle [ialfa2Xifiifci2j\ then

E iW (dcr))2 = ajifa - ax)

and Icrl = /3j — ttl. Hence (3.2)" is verified for horizontal 1-rectangles.

Continuing with our example, suppose that we define an oriented 1-cochain as follows

for cr =((<*if 2XO1/2)] set X i(cr) =W^2 - W^2

forcrsfo^ajXfri^)] set Xi(cr) = 0.

Since the only 1-rectangles in 2R+ are horizontal and vertical line segments, Xi is well

defined as a random cochain. For a 2-rectangle a defined by the edges iaita2X (/31,a2), ifofaX

ia^fcX ax <a2, &i <02» and anticlockwise orientation

X iOo) = iW ^ - Wava2j - iW fivh - W^ (3.3)

and EX } (flcr) = Icrl so that X1 satisfies (3.2). We can similarly define a vertical cochain

and we shall see that X x + X 2 can be viewed as dW iA, the exterior derivative of the 0-

cochain Wt.

It turns out that convergence in the flat norm is not convenient for martingale forms

and exterior products. For this reason we introduce the following type of convergence: Let A

be a r-chain and let A = £ ak crk where the crA are disjoint rectangles. Set
1
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I IX (A ) I I(i) =sup £ Ictk I•£ IX (cr* ) I
k =1

K

where the supremum is over all representations of A as £ ak crk with cr* disjoint (and over
i

allX). Similarly,

I IX (A ) I I(2) = sup
K

Z oik2EiXicrk)y
k=l

where the supremum is the same as for the definition of I I• I Id). Obviously, I hi Id)

satisfies the triangle inequality:

I IX(A) + r(A)l l(1) ^ I IX(A)I I(d+ I ir(A)l l(1)

So does I 1*1 I(2> and the proof of this is as follows

IIX (A )+Y(A )II(2) =sup JE £ iak X(cr* )+ak Y(o* ))
<sup JZT ((£ ak2X K<Tk ))" 2+(£ ak2Y K<Tk ))" ^
<saj>{E " 22>*2X V* ) + 2? " 2£a*2r^o* )}

where the last inequality follows by the Minkowski inequality. Consequently, for A fixed,

I IX (A ) I I(q) with q —1 or 2 isanorm.

Definition X will be said to be a £? cochain, q = 1or 2, if

I IXOOl l(?)-0

whenever IAm I -•Oasm -»oa

For example, if EX Ka) ^ C •Icr I for every r-rectangle cr then X is a £2 cochain. The

notion of £„ cochains is not sufficient to extend a cochain X to manifolds, this will be done

later after dX , the exterior derivative of X , is defined.

As in the non-random case, an advantage of working with differential forms rather than

with linear functional or generalized functions is a conceptual one. The non-random

differential forms are denned locally so that exterior differentials and exterior products of

1/2

1/2

1/ 2
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forms make sense. Exterior products, in particular, lead to a nonlinear analysis of cochains.

We intend to present a similar stochastic-calculus approach in the stochastic "generalized" case

by defining the operations on the corresponding random cochains.

As we have defined them, random differential r-forms are random currents of Ito [2l but

not every Ito current is an r-form in our sense. While linear operations are definable on all

random currents, nonlinear operations (e.gn exterior products) are not. The r-forms that we

have defined have the right degree of localization to allow exterior products to be defined.

If X is a regular (nongeneralized) differential form, then X can be represented as

xt = E«Blfo*ftin (3.4)
I_»J

where the differentials dt\,• ]=dttt * dti2~ ••• " dtir provide a local coordinate system.

For a random current such a representation is in general not possible, but a useful representa

tion similar to this one still exists. For a random cochain X, define X n] as the cochain such

that for every rectangle cr

X [i j(cr) =X (cr) if cr has the direction [i ] ( .
= 0 otherwise

Then for any rectangular chain A

X(A) = IX(l.](A) (3.6)
U)

and if X is a random-differential form so is X n j. Hence we can write

x = Lxli\ (3.7)
[i 1

and this is the equivalent of (3.4) for random differential forms.

Next, we define the exterior derivative dX of a random r-cochain X (via the Stokes

theorem) as follows Set

dX (A ) = X (QA ) (3.8)

for all oriented (r +1) chains A. An equivalent definition for the exterior derivative is the
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following. Define dk Xp j for rectangles eras

dk X[i {.&) = dX[i j(cr) if k isnot in [i] and cr has direction [k I_£ D
= 0 otherwise

(3.9)

Then we can write

dkX = £dk X[i) (3#10)

and

dX = £ <f* X (3.8y
i

Let fl/(cr), Qjffo) denote the upper and lower boundaries of cr in 'the k direction

(^/(cr) = Qfc~(cr) if & is not in the direction of cr)

idk x Xcr) = x (e*+(o-)) - x (er(cr)) • (3.9>

The exterior derivative of a stochastic differential form as defined by (3.1) and (3.2) is also a

stochastic differential form of the same type, this follows directly from the definition of dX

andthe fact that IQA l" < IA l".

We turn now to the definition of£? forms, q = 1,2.

Definition. Acochain X will be said to be a £? form if both X and dX are £? cochains.

Note that in general I IX i$B ) I I(?) & I I<fX iB ) I I(? > Also note that if X is a £? form

so is dX since <fcfX = 0, and that every £? n-cochain is also a £? n-form.

For example, if EXKa) <tc Icrl for every r-rectangle cr and EXKQt) <c It I for

every(r+l) rectangle r then X isa £2 form- ^ for everv r-caain A

-EX^AXcilA f

then

SX^AXc IA I .

since IA f < IA I and E idX iB ))2 = E (X (&B ))2 <c \QB I " <c 15 f <c 15 I ,
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X is a £2 *orm#

Consider a Wiener process Wt , t 6 IR 2. Take oi and cr2 to be the horizontal andvert

ical 1-rectangles

0-1 = iit i/2X (^ 1+ a /2)1 °2 = (Cf 1/2). ('l** 2+ * )1
oriented from the left (from below) to the right (to above). We have

d1Wi<r1) = Wtl+att2-Wtl,2

d2Wi<r2) = Wtltt2+b -Wgl,2

d1Wia2) = d2Wi<rl) = Q

Now, take a positively oriented 2-rectangle cr with_f_ = it Xlt 2) and t —it x+a jt 2+b ) . Its

boundary Qcris given by:

acr={oi, -cr2, iitt+ajtzXiti+af 2+b )],-{&!,* 2+bXiti+a,t2+b )]

Hence

d id XW Xcr) =iWtl+a,2- Wt 1<r2) - (Wt 1+a t,2+b - WtlJt2+6 )
= —r)(cr)

and

did2WXo) = T)io) (3.12)

We can interpret (3.11) and (3.12) as follows

did1W) = d1d1W +d2d!W

did2W)-dxdxW +did2W

with dxd2W -did2W =0, d^xW = -dxd2W and dxd2W = d nW =7). Observe

that

ddW -didxW +d2W) = d2dxW + dxd2W =0

as it should be.

Remark. Note that the Hodge star operator * is a linear operator defined on all Ito random
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currents. Hence *X is well defined as an Ito random current for any r-cochain X considered

as an Ito random current. However, *X is not necessarily a cochain (equivalently a

differential form) and for many interesting cases it is not For example, let 7} be an n-cochain

representing Gaussian while noise, for * 7) to be a O-cochain it must be a continuous random

function. However

7}(cr) =f *-r\dtxdt{---*dtn
cr

so that * i) can not be a continuous random function and hence is not a O-cochain.

4. Martingale Cochains and Forms

For an oriented r-rectangle cr, denote by_£_(cr) its infimnm point and t (cr) its maximum

point Recall that a random differential r-cochain was defined to be adapted i&, X (cr) is F_r(a-)

adapted for every r-rectangle o; also, recall the notation

ZJ- = v Zs

For n ^r ^ 1 and a fixed integer k, 1 ^k <n , a random r-cochain M is said to be a k-

martingale r-cochain if for every r rectangle cr with direction [cr] containing k ,

E \M (cr)l <ooand

E[Mia) l£,W = 0 (4*1)

Note that if [cr] does not contain k , then crlies in the (n-l) hyperplane {s :sk = tk } and

'E[M (cr) l^<r)3 = M(cr) as.

It follows immediately from the definition that if M is a k-martingale then M\i\ is also a k-

martingale for all [i ] (cf. (3-5)). M is said to be a martingale if it is a k-martingale for every

k, 1 ^k <n . (Note that if X is a martingale then X[,] is also a martingale.) M is said to be

a weak martingale r-cochain if E IM id) I <ooand

E[M (cr) I^(J = 0 (4.2)

Since F x*3Ff for every k, any k-martingale is a weak martingale.
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For zero cochains we define the martingale property in terms of its exterior derivatives.

An zero cochain M is said to be an i-martingale if it is bounded in L x and <*,- M is an i-

martingale cochain. (Note that by definition <?,- M is zero except on 1-rectangles with direc

tion L Hence dt M is a martingale if and only if it is an i-martingale.) A zero cochain M is

said to be a martingale cochain if dx M is a martingale for all i ^ n.

If M is a martingale zero cochain then dt dx M is a martingale r-cochain. If M is

a k-martingale then dM[ j ]is a k-martingale for any [J_ ] for which k € \j] but dM need

not be k-martingale. The relationship between the martingale properties of M and those of

dM are as follows:

(a) M is ak-martingale =>dM \ j jisak-martingale for every [i_ ]such thatk € [i_ \

(b) M is a k-martingale and dkM is a k martingale =>dM is a k-martingale.

(b') M is a martingale and dkM is a k martingale for every k => dM is a martingale.

Note that by itself the condition "dkM = k-martingale for every k" implies that dM is a

weak martingale but not necessarily a martingale, and if M is a martingale then dM is a

weak martingale.

In both [l] and [6], a 2-parameter martingale is defined as a random function

{Mt / € IR ? ) such that

t >s => EiMt l£.,) = Ms as.

Such a process is a O-form in our sense characterized by the property that dM is a martingale

1-form.

Cairoli and Walsh have defined 1 and 2 martingales for IR2 in [l] and it is interesting

to compare their definition with ours. Let M be a O-form and let cr be a 2-rectangle

{ax <t ^bXfa2<t2 ^b2). Denoting

AM (cr) = MbxJ>2 + Mayfi2 - Ma^2 - M^

Cairoli and Walsh define M to be a 1-Martingale if



-14-

E (AM (cr)l£ai,J =0

for all 2-rectangles crand a 2-martingale if

^[AMtol^^O

for all 2-rectangles cr. Now, AM can be viewed as a 2-form derived from M as follows

AM -did2M) = -didxM) = dxd2M

Thus, Af is a k-martingale, ik = 1 or k = 2), in the sense of Cairoli and Walsh if and only

if d xd 2M is a k martingale 2-form in the sense of this paper.

Assume now that d2M is a 2-martingale 1-form in our sense. Then since

AM =<f(<f2M),we have by (3.6)

AM(cr) = Gf2MXd<r)

Note that d 2M is zero on horizontal 1-rectangles so that

AM (cr) = d2M iia^O t (a^2) + (a J J 1 ia^J)

and d 2M being 2-martingale 1-form implies

^(AMWl^^O

so that M is a 2-martingale in the sense of Cairoli and Walsh. Similarly d XM being a 1-

martingale in our sense implies that M is a 1-martingale in the sense of Cairoli and Walsh.

Since dM = dx- M on 1 rectangles in the i-direction, we may summarize the above: M is an

i-martingale in the sense of Cairoli and Walsh if dM is an i-martingale in the sense of this

paper. The relationship among the various definitions can be displayed as follows:
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This Paper C-W [1]

dM= martingale 1-cochain «=> M = L2 martingale

V

dM= k martingale 1-cochain

V

dxd2M•» k martingale 2-cochain >> M = L2 k martingale

We conclude the definitions of the martingale cochains with a definition of strong mar

tingale r-cochains. Let cr be a rectangle and let [cr] = (i lf- • •J^ ) denote the orientation of a.

An r-cochain X will be said to be a strong martingale form if for all r-rectangles cr,

E IX(cr)l <ooand

EiXia)\ \/
r €W

Note that for r = 1 every martingale cochain is strong and for n —r —2 this reduces to the

definition of [ll

Finally, every martingale cochain of the different types defined here will be said to be a

£2 martingale cochain and a £2 martingale form of the same type if in addition it is a £2

cochain or form respectively.

5. Positive Cochains and Forms Associated with Martingale Forms

A differential form or cochain X will be said to be positive if X (cr) is nonnegative for

every positively oriented rectangle cr.

Proposition 5.1. Let M be £2 martingale r-cochain, 1 ^r <n . Then there exists a £1
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r-cochain <M > which is positive and satisfies

EiM Ka) - <M (cr)> I£^5) = 0 (5.1)

for every positively oriented rectangle cr.

Remarks, (a) Note that relation (5.1) is for rectangles only and for the case where A is a

chain and r <n we may well have

EM2iA)*E <M >(A)

However (5.1) implies that

I IM (A ) I IJ) = I l<M >(A ) I Ia)

(b) For the case r = n it will follow from the proof that EM Ka) = E <M >(cr) and since

M is a martingale form it follows that EM KA ) = E <M >(A).

(c) Note that I IX (A) I I(9) is a convenient norm for square integrable martingale

cochains since for A fl 5 = <f> we have

I IX(A 05)1 l(J)= I IX(A)I l(f)+ I IX(5)I l(J)

Before turning to the proof consider the following example. Let 7) and g be two

independent white Gaussian noises on IR 2 , and let Y and Z be the two zeroforms induced

by 7) and g respectively: d ^d XY —7), d^ XZ = {. Let U be the 1-form

U = dY = dxY + d2Y then the 1-form <J >=t2dtx +txdt2 satisfies (5.1). Let

V - dxY + d2Z then <V>=t2dtx + t2dt2- <J >, note however that U and V are

1-forms with different probabilistic properties since

dU =didY) = 0 while dV =dzdxY +dxd2Z 5*0 .

Proof. The proof will be divided into several parts. Parts (b) and (c) of the proof follow

Cairoli and Walsh [l] (cf. also pp. 21,22 of [3]).

(a) Note that if suffices to prove the existence of a positive cochain <M > satisfying (5.1)since

the assumption that M is a martingale £2 cochain implies that the cochain <M > is a £x
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cochain.

(b) Let M be £2 martingale n-cochain in IRt\ Let R+denote the rectangle generated by 0

and t, t 6 IR+ , (Le^ic, = {tj : 0 ^y <* }) and let nit denote the zero cochain m, = M iRt ).

We shall also use m (cr) to denote the n-cochain M (cr). Let <f>t = m^ 2 and let <f£o) denote

aXa) = idxdT"dn(f>Xcr).

Lemma 5.2. (i) m, is a one parameter martingale on every increasing path in £R n . Conse

quently <f>t is a (one parameter) submartingale on every increasing path in IRn . (ii) for

every rectangle cr

E(#cr) I^j) =EiiM (cr))2 I£,(o)) (5.2)

Proof of lemma: (i) Note that (m, 1+a>r ..^ ,Ftl+0(fr ..^ ), a >0, is a one parameter mar

tingale in the parameter a. Consequently m, is a one parameter martingale on every increas

ing path since 12 > t x implies that 12 can be reached from t x along a stepped path Le^ one

that is a chain. Hence, m, is a martingale along such stepped paths which proves (i). Turning

to (ii), we note that for a given o*

M(cr)=£8lmtj
t

where tx denotes the vertices of crand 8t- is +1 or -1. Therefore

E(#cr) IZ^j) =££(8,- mt2 Ijj^
i

=E £(8{ mf(ojmti IJ^^
i

= E imTi<r)M (cr) IF^

=E(M ^cr) Î (o)) +5 iimTM - M(cr))M (cr) IZti^

=5(M2(cr)l^i(o.))

which proves (i).

(c) As in part (b), let M be an L 2 martingale n-form and <f>t = m,2. Let t = it rf y jtn)

and consider 4K9*y"*n) as a function of 0 , 0 ^0 ^tx. By lemma 5.2 0erf2,...^n is a 1-
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parameter submartingale and therefore by the Doob-tyfeyer decomposition <f>t = <f>T l + t/rrl ,

where \f?tl is a 1-parameter martingale in the t xdirection relative to iF Xx(°r by the F-4

property, relative to iF *)f ), and <f>t x is the predictable function of bounded variation in the

t xdirection relative to iF X, or iF l)t,. Therefore, for a > 0,
st ' sj 1

=limX5(^+l^...,n -^V*^ '^^....J

where 0 f denote the points of a partition of the t x axis and the limit is as the partition is

refined. Consider now the behavior of <j>t x in the 12 direction it = t x,- • • fn X

=E[Urn £ E(<*»<,, +l, J+a... ^ - *», .1,+«,.. Jn (5^j
I

where 0f and the limit is as in (5.3). It follows from (5.4) and part (ii) of lemma 5.2 that

<f>t l is a submartingale in the 12 direction. Let <f>t l denote the dual predicuble function of

bounded variation appearing in the Doob-Meyer decomposition of 6t in the t{ direction and

consider i^X 2> then

is a one parameter martingale in the 12 direction. Furthermore ($Vvf7 is a submartingale in

the t3 direction. Repeating, we construct

A° = <t>t

Af2=(0^r2
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where, as before, Ak is a submartingale in the k+1 direction. Then Af —Atk _1 is a one

parameter martingale in the k direction. Let Aq be apartition of IR2 then

An -limECM,)!^)) i5.6)

where the limit denotes a proper sequence of refinements of the partitions (first in the t x

direction, then in the 12 direction etc).

Let 5n denote the cochain 5n (cr) = id xdr • •dnAnXa) or

5*(<r) =lim£5WA? Ucr)!^^))
9

Then 5n is a positive cochain and since Ak+1 —Ak isa one parameter martingale in the

k+1 direction

E iM2icd-Bn (cr) I£,(o£ = 0

therefore we may set 5 n = <M > which proves (5.1) for the case r = n . Note that as in

the two parameter case, uniqueness is not assured by this argument since i5S) may depend on

the order in which the limit in i5S) is taken.

(d) Let M = M [£]be a £2 r-martingale cochain in IR n. Consider [i_ J, fix t j = oij for all

j €[_£]*, aj ^0 and denote Sa = {* :*; =ajfj €[_£]*}. Then, since

M (cr) = M[i j(cr) is zero whenever the direction of cr is different from [_£ 1 we can map

iMn j(cr),£(cr) 6 5a) on IR +. Applying part (c) to IR+ , yields <M[,- j >= <M[t j >&]

which satisfies (5.1).

Consider now M[t j and M(^], [_£] ^[j] and Oj, cr2 r-rectangles. Let k be a direction

included in [_£ ]but not in [j]. Then, by F-4

EiMu fad MUfa} IZJlirj) * 0 i5.6)

Consequently, setting
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<M >=Z<Mbi> (5.7)

yields (5.1).

Remark: Note that for r < n , because of the F-4 property as defined in section 2

E(M Ka) IF^ = E(M K<r) I£$)) (5.8)

where [cr] is the direction of cr. Consequently, <M > can be constructed by conditioning

with respect to F ,(<£* ) instead of conditioning with respect to F,(«. v>

For a pair of £2 martingale r-cochains M and N , <M ,N >is defined by polarization

<M,N >= i-(<Af +# >- <M -N >)
4

Lemma 53. <M , iV > = 0 iff:

E (M (cr)iV (cr) Ij^j) = 0 (5.9)

for all r-rectangles cr.

The proof follows directly from the construction of < M >.

Lemma 5.4. If M is a £2 martingale r-form (1 ^r ^n —l) and <fk M is a martingale

cochain for all k, 1 ^k ^n then whenever kx^k2

<dklM,dk2M >=0 (5.10)

and consequently

<dM >= £ <dkM > (5.11)
*=i

Proof: Let_r_(oi) = tio-2X [crj ?*[crj where both oi and cr2 are r-rectangles then as in (5.8)

E (M (cr^M icr2) IZti^ = 0 (5.12)

Now, <f* M (cr) = 0, if k $ [o$ for * 6 [cr]

dk Mia) = M (6*+(cr) - Qfio))
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It follows from (5.12), since dkM is a martingale cochain that

E IdkiMio)dk2Mio) I£,(«)) =0

and (5.10) follows from the previous lemma.

We conclude this section with a discussion of martingales of path independent variation

and martingales of orthogonal increments [9\

Definitions: (a) A Z2 martingale r-form 1 <r <n —1 will be said to be of closed variation

if < M > is a closed cochain La, d <M > = 0.

(b) A £2 martingale r-form M , 1 ^r 4n —1 will be said to be of orthogonal increments if

dM is a martingale form and

<dM >=d<M >

Lemma 5.5. If M is of orthogonal increments and M is of the form dM where m is an

(r-l) martingalecochain then M is of closed variation.

Proof, d <M >= <dM >= <ddm >=0 .

Lemma 5.6. If M is a £2 martingale r-form 1 <r ^n —1 and dk M is a strong mar

tingale £2 (r+1) form for 14k ^n , then M isof orthogonal increments.

Proof. It follows directly from the definition of strong martingales given in the previous sec

tion and the proof of proposition 5.1 that <dk M > = dk <M > and the rest follows from

lemma 5.4.

6. Exterior Products I

If X and Y are ordinary r 1 and r 2 ordinary differential forms then their exterior pro

duct is well defined as an (r x+r 2) form X * Y . Our goal is to extend this definition to JV

cochains and forms. We begin by observing that if X is a £2 n-cochain (which in this case

(r=n) is the same as being a £1 n-form) and <f> is a bounded function 0r, f 6 2R + then
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i<f> ~XXcr) =/ <f> X
<r

is an n-£i cochain defined by an ordinary Lebesgue integral that can be expressed in a more

convenient form as

f^Xidt)

Similarly if M is a £2 martingale n-cochain and <f> is predictable then

i<f> ~MXcr) =/ <t>t Midt )

is nothing but a stochastic integral as has been defined in the literature [6] [l] [8]. Therefore if

(j>t, t € 2R + is predictable and

E f <f>2 <M Xdt) <oo

then <£ * M is the unique £2 martingale n-cochain (or form for r=»n) such that

.<0~ M ,M >=<£A <M >

and for every rectangle cr

E ii<f> * M Xcr))2 = E i<t>2 * <M >)cr .

For the case where X is an r-cochain we set, first

<f>" X = £ 0 * X[jj

and proceed to define 0 A X [i j. Let cr be a rectangle with direction [_£ 1 By mapping the r-

hyperplane which includes cr onto IRr , we reduce the case of <f> " X [ j ] where X is an r-

cochain in M % to the case of integrating <j> with respect to an r-cochain in IR+ . Therefore by

the previous result, if <f>t, t 6 IR+ is predictable and M is a £2 martingale r-form satisfy

ing

E <f>2~ <M Xq) <co

for all rectangles cr, then <j> ~ M is a well denned £2 martingale r-cochain such that
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<0~ MM >=<£" <M >

and for every rectangle cr

E {i<f>2 * <M >Xcr)} = E «<f> * M Xcr))2

Note that the result states that 0 * M is a £2 martingale r-cochain, not r-form, and further

assumptions on <f> and M are necessary to assure that <j> " M is an r-form. This will be dis

cussed in section 9.

To further motivate the exterior product, first consider a Wiener process W and a Gaus

sian white noise t) on IR +. For a O-form 0, <f> A 7) is just the stochastic integral

i<f> * 7)Xcr) =/ 4>t 7)idt )

For the 1-forms d XW and d 2W we shall have

dxW * rfiW =<f2W * ^2^ =0

and

idxW*d 2W Xcr) = -id2W~dxWX<r)= f t\idt )T\idt' )
rW€o-

when the last integral is a stochastic integral of second type as introduced in [61 If X is a

ordinary 1-form

X —4>t dt i

then we should have

X A d,W =0

iX"d2WXa)= f <f>tdt t)idf)
(f\/V)€o-(f\/7)€<

where the last integral is a mixed integral as defined in [l] and [7]. If <f> and \f/ are 0-forms

then 4> * dxW + i/T d2W is a 1-form and for suitable paths r in IR+

i<f dxw +$* d2w xr) =/ (091^ +^a2w)



-24-

where the last quantity is the path integral introduced in [l].

7. The Exterior Product IL

In this section we consider the exterior product X " 7 of nonrandom ri and r2

cochains, which are continuous in the sense that they are £i cochains. The case of stochastic

integration will be considered in the next section.

Let X and Y denote nonrandom J^ r i and r 2 cochains respectively and assume that

l^rxjm2<n ,r i+r2^i. Let

x = Zxiii» Y - Lxiji-

We require X*Y to be an r,- +r 2form with representation

X AY = £ 8i±,l,k)X[j} * Y[kJ (7.1)

where 8(_£; j_,k) = 1 if G/], ft]) is a permutation of[£ ] and zero otherwise. In short,

»**•},,- I 8U;i,*)xm-rU] (7>a)

Therefore, in order to define X * Y we only need to consider (X Ay Xcr) where X = X [f j,

r = y [;j for some fixed [i_ ] and [j] such that [_£ ] and [j] are disjoint, and cr is an r x+r 2

rectangle with direction ft] = JHj\ [J_ J. Suppose X = X[i],Y =Y[j) were ordinary or flat

differential forms satisfying

X idt ) - ait )dtj *dtJ2 •••A<ft;r

Yidt)-^it)dtkS-"^dtk
i p

Then obviously

(X~rXcr) =€/ *it)flit)dti;..."dtir~dtk;...~dtkp (7.3)

where € = +1 or —1 according to whether ([_/], ftD isaneven orodd permutation of [_£ 1

Let [cr] denote the direction of the rectangle cr. Let Xyj, Y[j\ be rx and r2 forms

respectively. Given an (r 2+r 2) rectangle cr, if cr can be factored into the product of one
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rectangle of direction [J_ ]and another rectangle of direction [j] then we denote the first fac

tor by c/1* and the second factor by o*2) (so that cr = o*1^ o@*). If cr can not be factored in the

[j] and ft] directions, set cf^ =0, o*2) =0. Now, let

U0TOi? =IRn+ (7.4)
i

denote the dyadic partition of IR + inton-cubes of volume (2~™ ** each. Set

(x ~y )m (cr) =z x (Co- nem>? W r ((cr nem„ )(2)) (7J0* ym wy

7

v i "vm>?

Define,:now

(X ~FXcr) = lim ((X
/7l -«0O

*FXcr))„ (7.6)

provided the limit exists for all finite cr. Note that in the case where X ^ are ordinary

forms, (X *Y Xcr) of (7.6) is related to (7.3) via approximating the integrands ait Xflit) by

piecewise constant integrands.

Lemma 7.1. If <f> is piecewise constant and X *Y exists and

<f>" iX~Y) = i<jfX)~ y =(x>r)

The proof follows directly from (7-5).

We conclude this section with a general condition for the existence of the exterior pro

duct. Let X = X[i j, Y = Y[j\ be as before, define the cartesian product of X and Y on

IR ** as follows, for any rectangle p in ZR ^ set p = p a X p * where p a is the rectan

gle obtained by projecting p on the first n coordinates and p * is obtained by projecting p

on the last n coordinates. From p a , p * we derive rectangles pa and p6 in IR n as follows,

paiPb) is the rectangle obtained by deleting the last (first) n-coordinates of the points of

p a(p 6}. Now define

(X XYXp ) = Xipa)Yipb) (7.7)

Having defined the "lifting" of X, F (in 2Rtt ) to X XY iniR2", consider now the

"contraction" of an r-cochain in IR271 into cochain in ZR" as follows. Let cr be anr-rectangle
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in ZR" defined by it / +c ) where t and c are n-vectors and only r components of c are

strictly positive, the others being zero. Let Ta (cr) denote the r-rectangle in ZR ^ defined by

iit jl Xit +c / )) where it a, t p denotes the concatenation of the n-tuples t a and t p. Simi

larly let Tb (cr) denote the r-rectangle in ZR ^ defined by iit f),it jL +c )). Now, let a[j] and

o\k) be r i and r 2 rectangles in ZRn , set

T ia[j] Xaitj) =7a ia\jj) Xr6 (o*_) (7.8)

If Z is an (r x+r2) cochain in ZR ^ , then define Z , the "contraction" of Z , as the (r i+r 2)

cochain in ZR" obtained by the pullback

Zio[j) Xo^]) = Z (Ta (qj]) x 76 (cO)

Proposition 7.2.

Tm = UT iiaij] Xqfc|)n0m,) (7.9)
w — —

is a Cauchy sequence in the fiat norm in ZR2" and there exists a sequence of (ri+r2+l)

CO

cochains Bm inZR2" such that (rm+1 —Tm) QQBm and 2 IZJ^I-^Oasm-^oa
fi=m

Proof: Consider an (r i+r 2) rectangle or in ZR* with sides of length 2~m and starting at

the origin. Let cr = o[j] X qtj, then <r n 0mt0 = cr. Set

r(cr) =Ta io[jP XTb (q*j)
and

Q(r(cr))= UTi<rC\em+x.)

We want to evaluate Ir(cr) —Q (r(cr)) I . It will, however, be convenient to augment r(cr)

as follows. Let t be a q-rectangle in ZR ^ , r <2n , let [u_] be the direction of this rectangle

and let a be a coordinate direction not in [u\ Let t+ denote the (q+l) rectangle generated by

decreasing r in the a direction, L&, the shadow of r in the a direction on
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t+ = {it xjt y • • fto-jXf ajt a+1,. • • / & ): 0 <\ < 1 and

ititv-tinJ € r} .

Note that r £Qt+, comparing each rectangle part of Q^irid)) with a corresponding part of

r+ yields

Ir+(cr) - Q+(t(ct)) I < Ir(cr) 1.2~m (7.10)

Therefore

Ir(cr) - Qiricr)) I" < I$(t+(ct)) - $Q +(r(cr)) I"
<lT+(cr)-e+(T(cr))l"

<lr+(cr)-Q+(r(cr))l

< I r(cr) I >2~m

where for a k-rectangle A , IA I denotes the k dimensional volume of A. The first inequal

ity in (7.11) follows from the triangle inequality (t Q$t+X the next two inequalities follow

from the properties of the flat norm and the last inequality follows from (7,10). Conse

quently, since Ir(cr) I = IQ iricr)) I, rm is a Cauchy sequence in the flat norm. Setting

00

Bm = r£+x - t£, it follows from (7.10) that £ 5 M-• 0 as m ->oa
m

Proposition 73. Let X and F be r x and r 2 cochains in ZR n , r x+r 2^n.IfX XF is

continuous in the flat norm in ZR .^ then X AF exists and is also continuous in the flat norm.

Proof: Note that ((X *F Xcr))^ as defined by (7.5) can be written as

((X~FXcr))m =(X XFXO (7.12)

where rm is as defined by (7.9) and the existence and continuity of the limit as m -• conow

follows directly from the assumptions X XF is a form and from proposition (7.2).

Remark: The construction of X * F via X XF and (7.12) can be generalized in different

directions eg.,

(a) In order to construct X XF it is not necessary to require that ri+r2 4n all that is
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necessary is that r xjr 2 ^ n .

(b) Let <f> be a zero form on ZR ^. Then we can construct the (r x+r 2) form

Z = <£ * (X xF)inZR2n, and from Z we can construct a form (r x+r 2) in ZR n as was

done for Z = X X F . This will be a natural extension of the integral of the second kind of

[6].

8. Exterior Product m

Let X X be Lq r xandr 2stochastic cochains respectively, r i+r 2^n . We define X AF

to be the Lq limit of (7.5) provided that the limit exists for all chains. The exterior product

X ~F thus defined is a cochain. We shall be particularly interested in the case where X and

F are martingale forms and X "Y is a form.

Proposition 8.1. Let XX be martingale rx and r2 forms respectively, (ri+r2) ^n ,

satisfying for every rectangle or

E1/2iXi<r)y<K Icrl tE1,2idXicr)y^K Icrl

Elf KY (cr))4 *.£ IcrI , Ell KdY (cr))4 ^X Icrl

Then the L2limit of (7.5) exists andX F isa £2 martingale (r x+r2) form.

Proof: Note that without loss of generality we may assume that all rectangles are included

in the unit cube and X = X[,- j, F -Y[j\. We first prove the results of the proposition by

an approach similar to the one given in the previous section. The existence of the L 2 limit of

(7.6) will also be proved by a direct calculation.

We construct now an (r x+r 2) cochain Z in IR +1 as follows. Recall that X x F was

constructed by defining for rectangles

iX~YXfi ) = X(pfl)F(p6)

we want to construct ZtobeasXxF,i.e^

Zip ) = Xipa>Yipb)
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only if^ipa ) = tipb ) "and zero otherwise" namely, if tipa ) &tipb) and p does not include

any rectangle p ' for which tipa ') = t_ipb ') then set

Zip ) = 0 .

Otherwise stated, let 9 m^ denote a dyadic partition of ZR2" (D0 m§? = ZR2* ). Let

(ot?!*)"» (°l7l*)* denote the rectangles formed by the [j_ ] and [j] intervals of length 2"m

starting at£(0 m̂ ) and ( )fl , ( )b their projection on IR %. Set

z((q7,')»x(q^))= |0t - - ^^ - c«a>

Z can be extended by linearity to be defined on chains in ZR ^. Note that for rm as defined

by (7.9) ZiTm) = (X X F Xrm ) = ((X *F Xcr))m. Consequently, in view of proposition 7.2,

in order to prove the existence of X " Y it suffices to prove that Z is a Zz r i+r 2 form in

ZR +*. Let cr[k j, k = IA* •• Jfc be disjoint r i rectangles in ZRn andlet q*j be disjoint r 2rec

tangles in ZR5.. Let£(<ra*) = ticrbk) then

Z(UTa(q^ PXT4 (qjp) =t X(q^ j) F(oft) (8.3)
* "" " k =1 ~ "" •

and

I IZ(Ura(q^j)xr6(qPl l(I) (8.4)

k ~ ~

^Z^l,ziX Xofi»Elf KY <Cor)]»
k ~ ~

<XZ lotf]M°l*;]l

In particular, I IZ (cr) I l(|)^C Icrl for every rectangles or andZ is a £2 cochain in ZR +" .

Remark: If we introduce the filtration in ZR+"

then Z becomes an (r i+r 2) martingale cochain in ZR +" .
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Turning to dZ , it follows from (8.3) that dZ is the sum of products of X with dY

and dX with F . dX ,dY (and dZ ) need not be martingales but a direct modificationof the

arguments of (8.4) yields that for every rectangle r

I \dZir)\ l(|) <c It I

which proves that dZ is also a Zz coc^8^' Therefore, by proposition (7.2), X F isa £2

form.

A direct proof of the existence of the limit (7.6) without using proposition 1.2 and Z

will now be given. Consider the q in 9m„ defined by (7.4), this is the address of each n-cube

in the m-th partition. Assume that for any given m, q is represented as an n-tuple of

numbers q - iq Xlq y •*ftfn )• Each qp is a binary fraction with m binary digits after the

"decimal" point denoting the p-th coordinate of ti9m/lX Let [q]x denote the following

modification of q: for each qp for which p € [£], if the last digit (to the right) is a one

modify it into a zero. All other entries of qp remain unchanged. Similarly, [q ]2 is the same

modification of q for p 6 [j]. With this notation we can write Im and Im +1 as follows

/„+l =Z * ((o- n em +1< p>r ((o- n e„«, „)<») (8.6)

im =Z * (Co- n9m+li? ]1)<1>>F ((cr n9m+xlq ,2)<2>) (8>7)

Note that ^ has (m+1) binary digits in both (8.6) and (8.7). Set

Im +i = Z aq bq
i

Im = Z a9 Pq

where af9fiqtaqt bq are as defined by iS.6) and (8.7). We want to prove that Im is a Cau

chy sequence in L 2. Note first that for q &u

E aqPqaubu =0

for the following reasons. Let
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t2=£(o-nem+u,l2P

and

*a =rx\/ r2;f* = *3\/ t4

Then rfl =_f_(cr fl0m+1(? ) and ta ^tb . Let /> bea direction such that p € [cr] and such

that(?a)p <ith)p then

£ (a? j3? a„ O = £ {fl„ £a E (a9 0? I£/a)} = 0

If such adirection does notexist, let p be adirection for which ita )p >itb)p. Then

E (a? &q au bu ) = E {aq j8? E iau bu I£/J} =0 .

Therefore,

E ilm+l-Im ¥ = E Z (fl, *f -«? 0, ?

=£ Z (fl? *? -«? *? +a7 ** "a? Pq )22 (8.8)

<2E Z bqM ~<Xq ¥ + lE Z "q^q ~^q *
q q

Consider now a term in the first sum of (8.8)

EibqKaq-aqy)
=£{(F((crn0m+i^)(2>))2{x((crn0m+1^yi))-x((crnem+!i9]iyi>]2

Let k be adirection inicr C\9m+hq ^2)] and let£denote£((cr n 9m +lt? ^2)), then

E bqKaq -aq¥<E " 2bq4 Elf Kaq -aq )4 (8.10)

Therefore, by the assumptions and lemma 7.2

E bqKaq -aq7^K2r x2<m +'Xr 1+r 2+1)

(8.9)
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Similarly, for a term in the second sum of (8.8) we have by similar arguments

E aq\bq—&qr ^r2K*2 l 2

Substituting (8.10) (8.11) into (8.8) yields

E^Klm+x-Imy<Kx2-<m^2

Consequently Im is a Cauchy sequence.

>From the proof of proposition 8.1 it also follows that

Proposition 8.2. Under the assumptions of proposition 8.1, < X > * <F > exists and

<X ~ F >= <X >* <F > . (8.12)

Proof: If Mm , m = IA* •• is a sequence of Z2 r-martingale cochains and Mm -»Af in

L 2then Af is an Z, 2 martingale cochain and < Mm >(cr) -*• < M >(cr) for every rectangle cr.

Applying this to (X * F )m of (7.5) yields (8.12).

9. A Differentiation Formula

In the non random case it is well known that

diX~Y) = dX ~ Y +i-iflX A dY .

This will, in general, not be true for the stochastic case. Let X and F be respectively r 1 and

r 2 Z2 niartingale forms. Assume that dX " Y and X * dY are well defined, and further

assume that dX and dY are also Z2 martingale forms. Define the (r x+r2+l) form [XX]

by

diX~Y) = dX * F +(-l)riX ~ dY + [XX] " (9.1)

we will call [X X ] the cross variation between X and F. (Incidentally, we have not

defined the exterior product between two zero cochains <f> and ^ but if we set <6 * \\i —<f>\ft

then (9.1) reduces to the Ito formula). Some simple properties of [X X ] can be derived

directly from (9.1) as follows. Because X~F = i-lY^KY "X ), we have
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[YJC] = i-l)rir>[XX] (9.2)

and it also follows that for r odd X * X = 0. Hence, for r odd

i(X*X)=iX * X -X ~ iX +[XJC]

= 0 + [X ,X ] = 0

and [X JC ] = 0 for r odd. For r even we have

i(X~X) = 2X * iX +[X,X]

Finally, note that ii (X AF ) = 0 whence it follows from 9.1 that

d[XX] + UXX] + (-l)r,[X ,iF ] = 0

for X = F and r x even it reads

i [X ,X ] + 2[X ,iX ] = 0 .

We conjecture now that if either dk X (or dk Y ) is a strong martingale form for every

k then [X X ] = 0. The heuristic arguments for this are as follows:

i(X-FXT) = (X~FXaT)

= lim(X~F)m(6T)

where (X * F )m is as defined by (7.5). Therefore

(i* (X * F )Xt) = lim(X AF )m 0+-d-)

where t is an (r x+r2+l) rectangle r - cr" xrk and r* is an interval in the k direction, cr~

is therefore the lower face of t in the k direction and cr+ is the upper face of t is the k direc

tion. Now, (X AF )m is of the form of a sum of products X icrx)Y (cr2*) and therefore

diX~Y)m will be of the form of sums of terms of the following type

X i<rx+)Y (cr2+) - X (erf)F (cr2-)=

= X (oi+XF (cr2+)-F icrf)) + (X i<rx+)-X (crf))F i<rf)

= X (crfXF (cr2+)-F (cr2-)) + (X (oi+)-X (crf))F (cr2-) +

+ (X i(Tx+)-X (crf)XF (cr2+)-F {af))

with t icrx)=t(02) and (X * F )m will be the sum of the three types of terms of the last equa-
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tion. The sum of the terms of the first type will yield (—l)r KX *dY ) as m —oq the sum of

the terms of the second type will yield (iX * F ) as m -»oo and the sum of the terms of the

last type will yield [X X ] as m -»on The [X X ] term is therefore very similar to the cross

quadratic variation of continuous one-parameter martingales. In the one parameter case

ton Z ^tt^-Mh? = lim Z Ei(M^rMH )* I£, )
i i

and what we conjecture is that the same is true in the present case; namely, we assume that

we may replace the terms limit of terms of the form

(X (oV)-X (oT)XF icrf)-Y (erf))

by the limit of terms of the form

E {(X (ai+)-X iaf)XY (cr2+)-F {of)) I££,->}

which vanishes if either dk X or dk Y is a strong martingale.

As an application of (9.1) consider the case where 0 is a Z2 martingale zero form and

Af is a Z2 martingale one form. Note that our definition of a strong martingale implies that

every martingale 1-formis strong therefore [<f>M ] - '0 and

i(0A M) = d<f>~ M +<f>* dM

which for ZR 2 is the Green formula of Cairoli and Walsh [l\
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