

Copyright © 1984, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

OBJECT-ORIENTED PROGRAMMING IN BIASLISP

by

K. Mayaram

Memorandum No. UCB/ERL M84/103

19 December 1984

<J\

OBJECT-ORIENTED PROGRAMMING IN BIASLISP

by

Kartikeya Mayaram

Memorandum No. UCB/ERL M84/103

19 December 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Object-Oriented Programming in BIASlisp

ABSTRACT

The LISP-based circuit simulation program BIASlisp now makes use of
object-oriented programming through the Flavors system in LISP. This report
describes the program structure of this version of BIASlisp. The advantages of
object-oriented programming are presented and specific examples are taken
from the application at hand to demonstrate the power of such a programming
technique. A comparison of perfomance is made with the previous version of
BIASlisp and results obtained on the Symbolics 3600 LISP machine and the
VAX 11/780 are reported. -

ACKNOWLEDGEMENTS

I would like to thank my research advisor Prof. D. O. Pederson for having given me the

opportunity to work on this project. His constant support and encouragement have been the

driving forces behind this project.

Dr. Andrei Vladimirescu has contributed to this work through numerous discussions.

Most of this work was done at Analog Devices, Palo Alto and I would like to thank him for

providing an atmosphere that was very conducive to the development of BIASlisp. Thanks to

him I have gained more insight into SPICE2.

Ted Vucurevich gave valuable comments and suggestions when I was becoming familiar

with the use of flavors. These aided in a better understanding of the Flavors system. His com

ments on both versions of BIASlisp are also appreciated.

Peter Moore and Rick Spickelmier helped in porting BIASlisp to the VAX 11/780. I

thank them for their help and for discussions which were very usefuL

Jeff Burns, Ron Gyurscik, and Mark Hofmann have been a big help all through. I wish

to thank them for their encouragement and support. Their suggestions and comments are also

appreciated.

I thank Jacob White, Res Saleh, Tom Quarles, Mke Klein, and George Jacob for their

continuing support.

Last but not least I would like to thank Ann Bikle for help with all administrative

matters.

The author thanks the Semiconductor Research Corporation, Analog Devices and Hewlett

Packard for funding this research.

1. INTRODUCTION

BIASlisp is a LISP-based circuit simulation program [1-2]. It has been used as a vehicle

for studying the performance of LISP-based circuit simulation. The latest version of BIASlisp

employs object-oriented programming [3-4] via the Flavors system [5]. This report describes

the program and makes an evaluation of object-oriented programming for circuit simulation.

The specifics of object-oriented programming and the Flavors system on the Symbolics 3600

LISP machine are described in Section 2.

One of the main reasons for using flavors is that object-oriented programming is a more

natural way to program, and generic algorithms can be implemented. Mxiularity is improved

and the source code can be easily modified and extended for increased functionality. These

ideas are demonstrated by means of an example in Section 4. An important contribution of this

work is that these ideas can be used to develop a circuit-simulation program in an object-

oriented programming language such as Smalltalk [6-7].

Performance comparison with the previous version of BIASlisp indicates that there is no

sacrifice in performance by use of object-oriented programming on the Symbolics 3600 LISP

machine. However, on the VAX 11/780 the object-oriented version of BIASlisp has a poor per

formance. This is due to an increase in the time required for garbage collection. Detailed

results and comparisons are presented in Section 5.

2. OBJECT-ORIENTED PROGRAMMING AND FLAVORS

LISP supports object-oriented programming through the Flavors system. This section

presents a definition of some of the terminology used in the Flavors system on the LISP

machine [5]. The basic ideas are similar to those of any object-oriented language anddetails of

these basics can be found in [3-4].

The fundamental object in the Flavors system is the flavor. The flavor can be any con

ceptual entity and is accompanied by a set of operations that can be performed on it. A flavor

basically defines a class of objects that have common characteristics. A program which makes

use of flavors can create several instances of a particular flavor or class. Each instance has a set

of local variables called instance variables. The values of the instance variables is different

from instance to instance though their number is the same for all instances of a particular

flavor.

Instances of a particular flavor communicate with the "external world" (other parts of

the program) by responding to messages. A message consists of a symbolic name, the selector,

which describes the type of operation to be performed by the receiver (the object that

receives the message). The selector is just the name for a desired task and essentially describes

what should happen. Messages have no description of how the task has to be performed. This

feature is useful because it hides the details of the implementation. Someone reading a pro

gram can concentrate more on understanding the algorithms by knowing what is the result of

sending a message instead of being concerned about the specific implementation.

This feature of message passing is very powerful and quite different from a procedure

call. A procedure name can be descriptive of the task that it performs. However, there can be

only one procedure to a name whereas a message can be interpreted in different ways depend

ing on the type of its receiver. This leads to the idea of generic operations, since the message

does not determine what will happen. It is the receiver which responds to a message in a par

ticular way. These ideas are explained further in Sections 3 and 4.

A method is a specification of the actions to be performed in responding to a message

(similar to a procedure). Associated with each flavor description is the protocol of that flavor:

a set of methods which define the messages to which instances of the flavor can respond.

Methods of a particular flavor can access that flavor's instance variables directly (without

sending messages). However, these methods can access instance variables of another flavor only

by sending messages. In this sense the instance variables of a flavor are strictly local to the

flavor and are also called the state of the flavor.

Inheritance is another useful notion in object-oriented programming. A flavor can be

made up of other flavors whereby it inherits all the instance variables and methods of the

component flavors. The Flavors system makes use of non-hierarchical inheritance [8] which

makes it a very powerful system.

Flavors and methods can be defined by use of the functions defflavor and defmethod,

respectively. A message is sent by using the send function. The definitions of these functions

are included here for completeness and a detailed description is available in [5].

A flavor is defined by the form

(defflavor flavor-name
((varl init-vall)
(var2 init-val2) -
(varn init-vabi))

(flavl flav2 - flavm)
option! option! ~)

Flavor-name is a symbol which is the name of the flavor.

Varl, var2,.-, varn are the names of instance variables and init-vall, init-val2, -, init-valn are

their default initial values respectively. An initialization is not required but is useful for

assigning default values to the instance variables.

Flavl, flav2, ..., flavm are the names of the component flavors out of which flavor flavor-

name is built. The features of the component flavors are inherited as described earlier.

-4-

Optl, opt2, etc. are options to the defflavor and are described in [5].

A method is defined by a form

(defmethod {flavor-name message-name) argument-list
form! form2 ~J

Flavor-name is a symbol which is the name of the flavor which is to receive the message

specified by the symbol message-name.

Argument-list is a list of auxiliary variables used by the method (function).

Forml, form.2, etc are the method body.

A message is sent to an object by means of the form

(send object message-name argument-list)

Object is a flavor instance to which the message message-name and the argument-list are sent.

A message can be handled by a receiver only if the appropriate method has been defined by a

defmethod otherwise it results in an error.

-5-

3. STRUCTURE OF THE PROGRAM

This section describes the choice of objects, the methods and messages used in the

BIASlisp circuit-simulation program. The effectiveness of flavor-oriented programming is

demonstrated by an example.

The main idea in object-oriented programming is the choice of objects. In a circuit simu

lation program each type of circuit element can be taken to be a distinct flavor. Thus each

allowable circuit element is described by means of a defflavor. The local state of the flavor is

specified by its instance variables. Element names, node numbers/names, sparse-matrix

pointers, and model parameters are used as the set of instance variables for a particular flavor.

Instances of a particular element type are created as they are read in from a circuit description

by the input processor of BIASlisp.

The sparse-matrix implementation could also be flavor oriented. However, message send

ing requires more CPU time and for efficiency reasons structures have been used as described

in [2].

The setup and analysis functions send messages to the objects (the instances of a particu

lar element type) for performing specific tasks. If one examines the setup and analysis stages

there are two tasks that are object-dependent:

i) the setting up of the sparse-matrix and storing of the direct pointers to appropriate

matrix locations as instance variables of each object, and

ii) the calculation and loading of conductances andcurrents for each element.

If these two tasks can be performed by the object then the setup and analysis stages of

the program "know" exactly what has to be done. Therefore, the choice of messages and

methods is clear. The objects must be able to create and store their sparse-matrix pointers and

calculate and load their contributions into the matrix and right-hand side. The message names

that have been used are :set-matrix-pointers and :load-mna-matrix-and-rhs. Each flavor must

have associated methods that describe how these messages have to be handled.

-6-

The task of creating the sparse matrix is handled by the function createsparse-matrix

and that of loading conductance/currents by the function load-conductances-and-currents. To

appreciate fully the advantage of message sending the reader is referred to the three subrou

tines of SPICE2: MATLOC, MATPTR, and LOAD [9\ The function create-sparse-matrix per

forms the same function as subroutines MATLOC and MATPTR and load-conductances-and-

currents the same as LOAD. However, the implementation is much simpler in terms of details

as can be seen from a definition of these two functions for BIASlisp in Figure 1.

The details of how an object sets up the sparse-matrix or how it calculates and loads the

conductances are not required by the main program. Hence the program can be developed

without worrying about the specifics resulting in generic algorithms which are simpler in

description. How the object has to react to a message is specified by the methods of the flavor.

This also facilitates addition of new devices and models. Only the appropriate flavors and

methods need to be defined or modified to enhance the capabilities of the program. It clearly

localizes the portion of the source code that one needs to concentrate on and hence makes it

very modular and easy to modify.

-7

Function create-sparse-matrix

(defun create-sparse-matrix(dim)
;#his function sets up the sparse-matrix pointers and stores the direct
;;pointers in the circuit element flavor,
initialize variables for the sparse-matrix structure

(setq *col-head* (make-array dim) ;column header
♦row-head* (make-array dim) row header
rhs (make-array dim) right handside vector
label-row (make-array dim) ;tokeep track of row swaps
label-col (make-array dim) ,*o keep track of column swaps
♦solution* (make-array dim)) solution vector

(fillarray *solution* XO.OdO)) initialize solution vector to OJOdO
initialize label arrays
(loop for i from 0 below dim

do (setf (aref *label-row* i) i)
(setf (aref *label-col* i) i))

;j*element-list* is the list of all circuit elements
(loop for element in *element-list*

do

(send element set-matrix-pointers)))

Function load-conductances-and-currents

(defun load-conductances-and-currents 0
;;function loads conductances in the nodal admittance matrix and currents
;$n the rhs. appropriate methods are called.
;;zero rhs and the matrix before each iteration
(zero-m *number-of-eqns-minus-one*)
(zero-rhs *number-of-eqns-minus-one*)
;;set the element-list to be the list of all resistors, capacitors,
independent sourcesand the models that have been defined
(let ((element-list (append *res-list* *cap-list* *vsrc-list* *isrc-list*

♦models-defined*)))

;cycle through semiconductor device models instead of devices
(loopfor element in element-list

do (send element :load-mna-matrix-and-rhs)))
;;appropriate methods defined for loading the device conductances in the
;pnna matrix.

;;;load constraints under "nodeset* option in the input
(cond (*converge-with-nodeset* (load-constrained-nodes))))

Figure 1.
LISP code for Functions create-sparse-matrix

and load-conductances-and-currents

-8-

4. AN EXAMPLE

In this section a resistor is used as an example of a circuit element and its flavor

definition and methods are given. The diode device and model flavors and definitions are

explained in Appendix A. Flavors and methods for all circuit elements in BIASlisp are given

in Appendix B.

4.1. Flavor definitions

The flavor that is used for the resistor is called resistor-mixin. Two basic flavors are

defined which specify some common properties of all two-terminal elements. These flavors

can then be used as component flavors when defining flavors for other two-terminal elements

such as a capacitor or diode.

It is known that a two-terminal element will contribute to four locations in the

modified-nodal admittance (MNA) matrix, with the exception of a current source, and the

pointers to these must be stored. For this reason the flavor 2-terminal-sparse-matrix-mixin has

been defined. All it does is to provide storage for the four pointers for any two-terminal ele

ment. Since a current source contributes only to the right-hand side this flavor is not a com

ponent of the flavor for an independent current source.

Another set of attributes common to any two-terminal element is the name and node

numbers of the element These common properties are defined by the flavor 2-terminal-

element-mixin. As can be seen in the definition given below, this flavor has the flavor update-

self-mixin as a component which provides a feature for updating instance variables and is

used by all circuit element flavors in this implementation (directly or indirectly).The flavors

2-terminal-sparse-matrix-mixin and 2-terminal-element-mixin do not have any methods associ

ated with them. They are only defined to be used as components of other flavors and represent

some common features, whereby replication of common information is minimized. Figure 2

gives the definition of these flavors.

-9

;defone some basic flavors on which a 2-terminal-element flavorcan bebuilt
;a 2-terminal-sparse-matrix-mixin is just the set of matrix pointers for a
;two-terminal element.
(defflavor 2-terniinal-sparse-matrix-mixin

(nlnl
n2n2

nln2

n2nl)0
;;make all variables gettable, settableand initable by use of options.
igettable-instance-variables
rsettable-instance-variables

dniteble-instance-variables)

;; another basic flavor for any two-terminal element such as rfi etc
(defflavor 2-terminal-element-mixin

(name
nodel

node2

value) (update-self-mixin)
:gettable-instance-variables
settable-instance-variables

anitable-instance-variables)

Figure 2.
Component Flavors for a resistor-mixin

The two component flavors defined above are now used to define the resistor-mixin

flavor. The resistor-mixin flavor has the 2-terrrunal-sparse-matrix-mixin and the 2-terminal-

element-mixin as component flavors directly. By the inheritance feature flavor, update-self-

mixin is also a component flavor, though indirectly. The set of instance variables for a resistor

will be the union of the instance variables of all the component flavors by inheritance. In

addition to these instance variables a resistor requires additional variables (specific to a resistor

only); the conductance value and the two temperature coefficients. Flavor resistor-mixin is

given in Figure 3.

4.2. Method definitions

Once the resistor flavor has been defined the associated methods have to be defined. The

resistor flavor must be able to handle the messages to set up its sparse-matrix pointers and to

load the conductances. Hence two methods are defined.

-10-

;define the resistor flavor
(defflavor resistor-mixin

(conductance
temp-coeff-1
temp-coeff-2) (2-terminal-sparse-matxix-mixin 2-terniinal-element-mixin)

;the two flavors defined earlier are now used as component flavors
rgettable-instance-variables
settable-instance-variables

anitable-instance-variables)

Figure 3.
Flavor definition for resistor-mixin

The method which responds to the message iset-matrix-pointers calls function fillij

which creates a matrix entry at the (i,j) location indicated by its arguments and returns a

pointer to this location. The pointers returned are assigned to the four instance variables nlnl,

n2n2, nlnZ and n2nl of the resistor flavor (these are present by inheritance of the properties

of the 2-terminal-sparse-matrix-mixin flavor).

For a resistor the message :load-mna-matrix-and-rhs must enable the resistor to add its

contribution to the admittance matrix. This is the task undertaken by the second method. The

conductance value is loaded in the matrix locations to which the resistor contributes. The con

ductance term adds to the diagonal entries and subtracts from the off-diagonal terms. Func

tion add-to-matrix-entry (sub-from-matrix-entry) is used to add (subtract) a value or a list of

values to (from) a matrix entry pointed to by pointer. The LISP code for these methods is

given in Figure 4.

4.3. Remarks

All the flavors and methods that need to be defined for the setup and analysis functions

to handle resistors have been defined in Figures 2 to 4. Independent sources require some addi

tional methods and a description is included in Appendix B.

For semiconductor devices the message load-mna-matrix-and-rhs is handled by the dev

ice models and not by the devices themselves. Each model flavor maintains a list of devices

-11-

;?nethod to handle the message iset-matrix-pointers
(defmethod (resistor-mixin set-matrix-pointers) 0

;;create the matrix location and store the pointer.fiUij creates a particular
;;matrix location and returns the pointer to that location.
(setq nlnl (fillij nodel nodel nil)

n2n2 (fillij node2 node2 nil)
nln2 (fillij nodel node2nil)
n2nl (fillij node2 nodel nil)))

;?nethod to handle the message load-mna-matrix-and-rhs
(defmethod (resistor-mixin :load-mna-matrix-and-rhs)

0
;;here the conductance value is being added/subtracted to/from
;;the previous contents of the appropriate sparse-matrix locations.
(add-to-matrix-entrynlnl conductance)
(addrto-matrix-entry n2n2 conductance)
(sub-from-matrix-entry nln2 conductance)
(sub-from-matrix-entry n2nl conductance))

add-to-matrix-entry is a function which takes a pointer to a matrix
entry and adds mvalue* to it. sub-from-matrix-entry subtracts "value*
from the matrix entry pointed to by pointer.

(add-to-matrix-entry pointer value)
(sub-from-matrix-entry pointer value)

Figure 4.
Methods for resistor-mixin

which use it as a model. Upon receiving the message load-mna-matrix-and-rhs a model flavor

instance accesses the model parameters and sends the message calculate-and-load-conductances

to each of its devices. In this manner the overhead of accessing model parameters is incurred

only once for each model. Alternatively the device could handle the message load-mna-

matrix-and-rhs whereby the model parameters would have to be accessed for each device

associated with that modeL The first method isefficient since the number of devices in general

is more than the number of models.

The addition of a new device or model is fairly easy once the process is understood. One

needs to define a flavor for the device or model and the methods which describe the sequence

of operations to be performed when a particular message is received. This point is illustrated

further in Appendix A by using the diode as an example.

-12-

To map into the theme of generic functions it may sometimes be necessary to define

methods which do nothing but handle a particular message. An example of this is the

independent current source which makes no contribution to the MIMA matrix but only to the

right-hand side. For the current source then the message :set-matrix-pointers really has no

meaning. However, it must handle this message otherwise an error will result. So the method

is defined and no task is performed. The advantage gained is that the overall setup stage of the

program is very general and modular.

-13-

5. PERFORMANCE COMPARISON

The performance of the flavor-oriented version of BIASlisp can be appreciated from a

comparison with the previous version of the program which does not make use of flavors.

The results for the Symbolics 3600 LISP machine are given in Table 1. Both versions of

BIASlisp use sparse-matrix techniques and double-precision arithmetic

Description
Circuit 1 Circuit 2 Circuit 3

BIAS1 BIAS2 BIAS1 BIAS2 BIAS1 BIAS2

iterations 19 17 23 18 43 40

Setup time (sec) 0.5 0.43 0.07 0.06 0.66 0.64

Analysis (sec) 21.4 16.7 4.57 3.36 65.2 54.1

Matrix load (sec) 1562 123 366 26 573 476

ID decomp. (sec) 037 0.43 0J05 0J04 om om

DC solution (sec) 1.15 0A5 022 0.16 2.1 u

Garbage collection (sec) 0.0 0.0 0.0 0.0 0.0 0.0

Time/iteration (sec) 1.12 0.98 0.2 0.2 1.51 135

TABLE 1

BIASlisp Simulation Results on the Symbolics 3600:
Comparison of BIAS1 (BIASlisp without flavors)

and BIAS2 (BIASlisp with flavors)

It is seen that the flavor implementation results in a smaller number of iterations and is

slightly faster. The difference in the number of iterations may be due to a changed order in

loading the MNA matrix. Complete runtime statistics do not give a meaningful comparison

when the number of iterations are significantly different. The only reasonable parameter for

comparison is the time per iteration. However, the complete statistics have been included to

give an idea where the program spends most of its time. Most of the time is spent in the

matrix load phase. Garbage collection was turned off during these simulations, therefore, no

time is spent in garbage collection

The flavor implementation is efficient and is a good choice for such an application. Mes

sage passing does have an overhead but that has not resulted in a degraded overall perfor

mance on the Symbolics 3600. Simulation performance on a recent release of the Symbolics

-14-

3600 system software indicates a significant improvement in speed for the flavor implementa

tion of BIASlisp [10]. These results are presented in Table 2.

Description j Circuit 1 Circuit 2 Circuit 3

iterations 19 18 40

Setup time (sec) 0.55 0.06 0.51

Analysis (sec) 14.16 3.04 51.8

Matrix load (sec) 1064 236 435

LXJ decomp. (sec) 1J7 0O7 0.83

DC solution (sec) 1W 0.16 1.47

Time/iteration (sec) 0.69 0.15 1.17

TABLE 2

BIASlisp Simulation Results on the Symbolics 3600: Under
software version 6.0 using the flavor implementation

The results for the VAX 11/780 are included in Table 3. Here again the total number of

iterations is different for the two versions and the time/iteration is used as the basis for com

parison. It is seen that the garbage collection time takes up almost fifty percent of the total

analysis time. If one subtracts the garbage collection time in both cases then the time/iteration

works out to be almost the same as indicated in Table 4. However, the garbage collection time

cannot be ignored in a real application and does result in a performance penalty as has been

pointed out in [2]. It can be speeded up but it cannot be avoided.

15-

Description
Circuit 1 Circuit 2 Circuit 3

BIASl BIAS2 BIASl BIAS2 BIASl BIAS2

iterations 14 22 23 18 26 40

Setup time (sec) 7.2 13.25 1.67 1.2 9.9 10.1

Analysis (sec) 53.35 113.8 23.05 24.55 136.2 290.8

Matrix load (sec) 45.1 87.1 173 212 1236 266.4

LU decomp. (sec) 1.17 135 03 0.2 0.4 2j05

DC solution (sec) 432 10.4 25 2D 7.1 16J5

Garbage collection (sec) 16.8 54.3 1A 13.45 405 133.4

Time/iteration (sec) 3.81 5.17 1.0 136 5.24 7.27

TABLE 3

BIASlisp Simulation Results on the VAX 11/780:
Comparison of BIASl (BIASlisp without flavors)

and BIAS2 (BIASlisp with flavors)

Description Circuit 1 Circuit 2 Circuit 3

Time/iteration (sec)
(BIASlisp without flavors)

2.6 0.64 3.7

time/iteration (sec)
(BIASlisp using flavors)

2.7 0.68 3.94

TABLE 4

Time/iteration comparison ignoring garbage collection time
on the VAX 11/780

-16-

6. CONCLUSION

An object-oriented version of the circuit simulation program BIASlisp has been

developed. This program has been used to motivate the usefulness of object-oriented program

ming for circuit simulation.

This program can be easily used with other kinds of design tools which also employ the

object-oriented paradigm. As an example consider a schematic-capture program. This program

can represent each circuit element as a flavor and have methods for doing schematics editing.

By using the flavors, the methods and the functions of BIASlisp, the schematic capture pro

gram can be extended to provide simulation capabilities as well. Modularity is an important

consequence of the flavor system and is well suited for developing very complex programs.

The code is easy to comprehend because generic algorithms can be described.

Since the flavor system is LISP-based one still enjoys the advantages of the LISP pro

gramming environment. This, along with the power of object-oriented programming, provides

an extremely productive system for software development.

-17-

Appendix A

This appendix explains the flavors and methods for a diode device and model and illus

trates how new models can be added to BIASlisp

Al. Diode Model Flavors

The flavors that are used by the diode model are defined in this section. In Section Al.l

the component flavors for any semiconductor device model are presented.

Al.l. Component flavors

Each device model has a model name and a list of devices which make use of this modeL

As has been noted in Section 4 the conductances for a semiconductor device are calculated by

cycling through models rather than cycling through devices (as in SPICE2). When a particular

model is referred to, all its parameters are accessed. These parameters are common to all dev

ices which make use of the model. Hence, this accessing is done only once for all devices of

that modeL If a device is referred to, then the overhead of accessing parameters for the model

associated with the device is incurred every time conductance/current calculations are made

for the device. Qearly, the first method is efficient and has been used in the flavor-oriented

implementation of BIASlisp.

The flavor model-mixin is used to represent information common to all models. Only a

name and a device-list are characteristics common to different types of models and these are

the instance variables of model-mixin. Flavor update-self-mixin is used as a component flavor.

Each model creates a list of devices that are associated with it by means of the message

nipdate-device-Ust. A device name is passed as a parameter to the method which handles this

message and the device name gets added to the list of devices already existent. Figure Al gives

the LISP code for these flavors and methods.

18

A function for calculating model constants is defined by calculate-model-constants. This

function sends a message to every model that has been defined, to compute values for con

stants which are to be used in calculating conductances and currents. Since these calculations

are done prior to analysis, there is a saving of time in the analysis phase of the program. A

description for this function is also included in Figure Al.

;;flavors for a generic semiconductor device model
(defflavor model-mixin ((name nil)

(device-list nil)) (update-self-mixin)
:gettable-instance-variables
aettable-instance-variables

dnitable-instance-variables)

;;a method to create the list of devices which are associated
;?with a model, this is used before the setup phase.
(defmethod (model-mixin aipdate-device-list) (device)

(setq device-list (cons device device-list)))

;;a function to calculate some commonly used model constants.
(defun calculate-model-constants 0

(loop for model in "models-defined*
do (send model :calculate-model-constants)))

Figure Al.
Component Flavors and Methods

A1.2. The Model Flavors

A description of the diode model flavors and methods is given. The model used is a dc

one and the model parameter is the saturation current is. No breakdown characteristics have

been modeled.

The diode model is denned by the flavor diode-model-mixin. Its instance variables are

the model type, Hype, the saturation current, *is, and the critical voltage used for limiting

purposes, *vcrit. Model-mixin denned previously is used as a component flavor. Two methods

are defined to handle the messages :calculate-model-constants and :load-mna-matrix-and-rhs.

In this example *vcrit is the only model constant that is calculated. The method for the

-19-

message :load-mna-matrix-and-rhs cycles through the device-list and sends a message

:caladate-and-load-conductances to each device. When an instance of the device receives this

message, it performs the task requested. These flavors and methods are given in Figure A2.

;;flavors used for diode models.

(defflavor diode-model-mixin ((*type 'diode)
(*is ld-14)
(*vcrit nil)) (model-mixin)

igettable-instance-variables
settable-instance-variables

nnitable-instance-variables)

(defmethod (diode-model-mixin xalculate-model-constants) 0
(setq*vcrit (* *vt* (log (// *vt* 1.4142 *is)))))

;; method :load-mna-matrix is defined for the model for reasons
;; of efficiency, the program cycles through models instead of
;; devices (SPICE cycles through devices) and hence
;; this method is associated with the model flavor.
(defmethod (diode-model-mixin :load-mna-matrix) 0

(let* ((is *is)
(vcrit *vcrit))

(loop for device in device-list
do (send device :calculate-and-load-conductances))))

Figure A2.
Diode Model Flavors and Methods

A2. Diode Device Flavors and methods

This section gives a description of the flavors and methods that have been used for a

diode device.

The flavor for a diode device is denoted by diode-device-mixin. Instance variables are the

name of the model associated with the device, model-name, the area factor, area, and the pre

vious values of the voltage across the device, the current through it, and the conductance

denoted by vdo, ido, and gdo respectively. Flavors 2-terminal-element-mixin and 2-terminal-

sparse-matrix-mixin are used as component flavors (as in the case of a resistor flavor). The

message -.set-matrix-pointers is handled in the same way as it was for a resistor in Section 4.

-20

The diode flavor and the method for :set-matrix-pointers are given in Figure A3.

;;define diode flavors and associated methods
(defflavor diode-device-mixin

(model-name area vdo idogdo)
(2-termmal-element-mixin 2-terniinal-sparse-matrix-mixin)

igettable-instance-variables
settable-instance-variables

dnitable-instance-variables)

;;set-up the sparse-matrix pointers for the diode device
(defmethod (diode-device-mixin set-matrix-pointers) 0

(setq nlnl (fillij nodel nodel nil)
n2n2 (fillij node2node2 nil)
nln2 (fillij nodel node2 nil)
n2nl (fillij node2 nodel nil)))

Figure A3.
Diode Flavor and Method for set-matrix-pointers

The method for handling the message :calculate-conductances-and-currents is given in

Figure A4.This message is sent by the model associated with the device. An outline of the

operations performed in this method are as follows: If it is the first iteration then a guess is

used for the diode voltage, otherwise the voltage is calculated as a difference of the two node

voltages from the previous iteration. This junction voltage is then limited by the function

pnjlim and stored. A call to the function calculate-conductances-and-currents does all the

conductance and current calculations. A special type of definition for this function enables it

to use the instance variables of the flavor (such a function is defined by defun-methodX After

the conductance and current terms have been calculated a check is made for convergence and

then the contribution to the matrix and right-hand side is entered. The functions calculate-

conductances-and-currents, check-convergence, and load-currents-and-conductances are given

in Figure A5.

21

;;defun methods for calculating diode conductances etc~
(defmethod (diode-device-mixin xalculate-and-load-conductances) 0

(let ((isat (* area is))
vd

delvd

idhat)
(cond ((and (= 1 *iteration-number*) *use-initial-guess*)

(setq vdo vcrit))
(t (setq vd (- (aref *old-sol* nodel) (aref *old-sol* node2))

delvd (- vd vdo)
idhat (+ ido(* gdo delvd))
vdo (pnjlim vd vdo vcrit))))

;;compute branch currents and derivatives
(calculate-conductances-and-currents isat)
;;check convergence
(check-convergence idhat)
;;load rhs and yn-matrix
(loadrcurrents-and-conductances)))

Figure A4.
Method for calculation and loading of the

current and conductance for a diode

A3. Remarks

A simple dc model for a diode has been used as an example to demonstrate the power of

flavor-oriented programming. It is easy to extend the model to include transient, and reverse

breakdown behavior. The method that handles the message :load-conductances-and-currents

for the device has to be modified to include these capabilities. This is all that need be done to

extend the above modeL The above example illustrates the ease with which different device

models can be implemented. A complete dc and transient model for a MOSFET is given in

Appendix B.

22-

(defun-method calculate-conductances-and-currents diode-device-mixin
(isat)
(let (exp-vd)

(cond ((<= vdo(* -5.0 *vt*)) (setq gdo (+ (// isat*vt*) *gmin*)
ido (* vdo(- gdo *gmin*))))

(t (setq exp-vd (exp (// vdo *vt*))
gdo(+ (// (* isat exp-vd)*vt*) *gmin*)
ido(- (**vt* (- gdo *gmin*)) isat))))))

(defun-method check-convergence diode-device-mixin (idhat)
(let (tolerance)

(cond ((not (= 1 *iteration-number*))
(setq tolerance (+ *abstol* (* *reltol* (max (abs idhat) (abs ido)))))
(cond ((>= (abs (- idhat ido)) tolerance)

(setq*number-not-converged* (1+ *number-not-converged*)))))
(t (setq*number-not-converged* (1+*number-not-converged*))))))

(defun-method load-currents-and-conductances diode-device-mixin 0
(let ((ideq (- ido(*gdo vdo))))

(sub-from-rhs nodel ideq)
(add-to-rhs node2 ideq)
(add-to-matrix-entry nlnl gdo)
(add-to-matrix-entry n2n2 gdo)
(sub-from-matrix-entry nln2 gdo)
(sub-from-matrix-entry n2nl gdo)))

Figure A5.
Functions used by the diode methods

-23-

APPENDIXB

This appendix describes all the flavors and methods that have been used in the flavor-
oriented implementation of BIASlisp.

USEFUL COMPONENT FLAVORS

;;some other useful flavor mixins used by biaslm

;;flavor update-self-mixin used by any flavor instance to update it's instance variables
;;a useful function when parsing input information

update-self-mixin
(defflavor update-self-mixin 0 0

(method-combination (append :base-flavor-first rupdate-self)))

update-self-mixiii
(defmethod (update-self-mixin rupdate-self) (keywords)

(let* ((result nil) (keyword nil))
(do ((fll (flavor-depends-on-all (instance-flavor self))

(cdr fll)))
((null fll) result)

(do ((1 (flavor-initable-instance-variables (get (car fll) 'flavor))
(cdr 1)))

((null 1))
(setq keyword (member (caar 1) keywords))
(unless (null keyword)

(send self (keyword-hack (first keyword)) (eval (second keyword))))))))

keyword-hack
(defun keyword-hack (keyword)

"(quote ,(uconcat "set-" keyword)))

;;a two-terminal sparse-matrix mixin is defined as a base flavor whish is used by r,c,vj, and d

2-terminal-sparse-matrix-mixiii
(defflavor 2-ternimal-sparse-matrix-mixin

(nlnl
n2n2

nln2

n2nl)0
:gettable-instance-variables
settable-instance-variables

dnitable-instance-variables)

;;;presently structures have been used for the sparse-matrix implementation

sparse-elem

24

•sparse-elem

(defstruct (sparse-elem)
sparse-elem-value
sparse-elem-i
sparse-elem-j
sparse-elem-nexti
sparse-elem-nextj)

;; a basic flavor for any two terminal element such as r,c etc.

(defflavor 2-terrninal-element-mixin
(name nodel node2 value) (update-self-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

;a useful macro for entering data in the matrix.

2-terminal-element-mixin

(defmacro add-to-matrix-entry (pointer &rest value)
*(setf (sparse-elem-value .pointer) (+ (sparse-elem-value .pointer) ,@value)))

sub-from-matrix-entry
(defmacro sub-from-matrix-entry (pointer &rest value)
tsetf (sparse-elem-value .pointer) (- (sparse-elem-value .pointer) .©value)))

add-to-matrix-entry

(defmacro add-to-rhs (node &rest value)
*(setf (aref *rhs* .node) (+ (aref *rhs* .node) .©value)))

(defmacro sub-from-rhs (node &rest value)
tsetf (aref *rhs* .node) (- (aref *rhs* .node) .©value)))

;;FLAVORS FOR A GENERIC SEMICONDUCTOR DEVICE MODEL

(defflavor model-mixin ((name nil)
(device-list nil)) (update-self-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defmethod (model-mixin rupdate-device-list) (device)
(setq device-list (cons device device-list)))

add-to-rhs

sub-from-rhs

model-mixin

model-mixin

calculate-model-constants

(defun calculate-model-constants 0
(loop for model in *models-defined*

do (send model 'xalculate-model-constants)))

-25-

—calculate-model-constants

;;FLAVOR STATE-INFO-MIXIN IS USED BY CAFACTTIVE ELEMENTS TO STORE THE
CHARGE AND CURRENT STATE

;;FOR USE AT THE NEXT TIME POINT. CAN BE EXTENDED IF TRUNCATION ERROR IS
USED FOR TIMESTEP CONTROL

state-info-mixin
(defflavor stet^info-mixin

;,-used to store charge and current info of capadtive elements
((q-present-state (make-hash-table)) (q-previous-state (make-hash-table))
(i-present-state (make-hash-table)) (i-previous-state (make-hash-table))) 0

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

state-info-mixin
(defmethod (state-info-mixin rupdate-state-info) 0

;;updates the state table after a timepoint has been accepted Xhe tables are cycled over
(let (temp)
(setq temp q-previous-state

q-previous-state q-present-state
q-present-state temp
temp i-previous-state
i-previous-state i-present-state
i-present-state temp)))

update-all-state-info
(defun update-all-state-info 0

(let ((element-list (append *cap-list* *mos-list*)))
(loopfor element in element-list

do (send element 'rupdate-state-info))))

store-state-info
(defun store-state-info (state-table key value)

(puthash key value state-table))

(defun get-state-info (state-table key)
(gethash key state-table))

get-state-info

26-

RESISTOR FLAVORS AND METHODS

resistor-mixin
(defflavor resistor-mixin

(conductance temp-coeff-1 temp-coeff-2) (2-terminal-sparse-matrix-mixin 2-tenninal-element-mixiii
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

resistor-mixin
(defmethod (resistor-mixin set-matrix-pointers) ()

(setq nlnl (fillij nodel nodel nil)
n2n2 (fillij node2 node2 nil)
nln2 (fillij nodel node2 nil)
n2nl (fillij node2 nodel nil)))

resistor-mixin
(defmethod (resistor-mixin rload-mna-matrix-and-rhs)

0
(add-to-matrix-entry nlnl conductance)
(add-to-matrix-entry n2n2 conductance)
(sub-from-matrix-entry nln2 conductance)
(sub-from-matrix-entry n2nl conductance))

27

CAPACITOR FLAVORS AND METHODS

capacitor-mixin
(defflavor capacitor-mixin

(initial-condition)
(2-terminal-sparse-matrix-mixin2-terminal-element-mixin state-info-mixin)

;;the q-state-table stores information about charges and the i-state-table stores information about currents
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

capacitor-mixin
(defmethod(capacitor-mixinrset-matrix-pointers) 0

(setq nlnl (fillij nodel nodel nil)
n2n2 (fillij node2 node2 nil)
nln2 (fillij nodel node2 nil)
n2nl (fillij node2 nodel nil)))

calculate-capacitor-charge
(defun calculate-capacitor-charge (name nl n2 value vc q-previous-state q-present-state)

(let (qc)
(cond (*new-time*

(cond ((and (= 1 *number-timepoints*) (= 1 *iteration-number*))
(cond (*use-initial-conditions*

(cond ((not vc) (setq vc O.OdO))))
(t (setq vc (- (aref *old-sol* nl) (aref *old-sol* n2)))))
;&se the dc solution to get voltages

(setq qc (* vc value))
(store-state-info q-previous-state name qc))

(t (setqqc (get-state-info q-previous-state name)))))
(t (setq vc (- (aref *old-sol* nl) (aref *old-sol* n2))

qc (* vc value))))
(store-state-infoq-present-state name qc)))

get-capacitor-contribution
(defun get-capacitor-contribution (name value q-previous-state q-present-state i-previous-state i-present-state)

;;this function performs the numerical integration for a capacitor. trapezoidal integration with
a backward-euler

;;start up has beenused, states are assumed to bestored in the state tables for chargeand current.
(prog (ieq geq qc qco ico)

(setqqc (get-state-info q-present-state name)
qco (get-state-info q-previous-state name)
ico (get-state-info i-previous-state name))

;;check if first timepoint
(cond ((= 1 *number-timepoints*) ;?use backward-euler integration

(store-state-info i-present-state name (// (- qc qco) *delta*)) ;;i(n+l)
(setq geq (// value *delta*) ;;eqxdvalent conductance

ieq (- (// qco *delta*y));;equivalent current only valid for a linearcapacitor

-28-

•wget-capacitor-contribution

(return (list geq ieq)))
(t pise trapezoidal integration
(store-state-info i-present-state name (- (* 2 (// (- qc qco) *delta*)) ico))

(setqgeq (// (* 2 value)*delta*)
ieq (- (+ ico (// (* 2 qco)*delta*))))

(return (list geq ieq))))))

capacitor-mixin
(defmethod (capacitor-mixin rload-mna-matrix-and-rhs) ()

(cond ((and *transient-analysis* (not *use-initial-guess*))
;;capacitancecontribution to the mna matrix during transient analysis only
(calculate-capacitor-charge name nodel node2 value initial-condition

q-previous-state q-present-state)
(destructuring-bind (equivalent-conductance equivalent-current)

(get-capacitor-contribution name value
q-previous-state q-present-state
i-previous-state i-present-state)

;;load the equivalent current and conductance

(sub-from-rhs nodel equivalent-current)
(add-to-rhs node2 equivalent-current)
(add-to-matrix-entry nlnl equivalent-conductance)
(add-to-matrix-entry n2n2 equivalent-conductance)
(sub-from-matrix-entry nln2 equivalent-conductance)
(sub-from-matrix-entry n2nl equivalent-conductance)))))

29

SOURCE FLAVORS AND METHODS

(defflavor dc-mixin (dc-value) 0
igettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defflavor pwl-mixin
(time-voltage-data-list dc-value) 0

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

dc-mixin

pwl-mixin

sin-mixin

(defflavor sin-mixin
(vl v2 omega delay theta dc-value) 0

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

pulse-mixin
(defflavor pulse-mixin

(vl v2 td tr pw tf per v2-minus-vl td+tr td+tr+pw td+tr+pw+tf td+per dc-value) 0
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

independent-vsrc-mixin
(defflavor independent-vsrc-mixin

(branch-number dc-value (ac-magnitude O.OdO) (ac-phase O.OdO))
(2-terminal-element-mixin 2-terminal-sparse-matrix-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defmethod (independent-vsrc-mixin rset-matrix-pointers) 0
(setq nlnl (fillij nodel branch-number nil)

n2n2 (fillij branch-number nodel nil)
nln2 (fillij node2 branch-number nil)
n2nl (fillij branch-number node2nil)))

(defmethod (independent-vsrc-mixin rinterchange-rows) 0
(cond ((not (zerop nodel)) (swaprow nodel branch-number))

((not (zerop node2)) (swaprow node2 branch-number))))

independent-vsrc-mixin

independent-vsrc-mixin

30-

-.independent-vsrc-mixin

(defmethod (independent-vsrc-mixin rload-mna-matrix-and-rhs) 0
(add-to-matrix-entry nlnl 1.0d0)
(add-to-matrix-entry n2n2 l.OdO)
(sub-from-matrix-entry nln2 l.OdO)
(sub-from-matrix-entry n2nl l.OdO)
(setf (aref *rhs* branch-number) dc-value))

independent-vsrc-mixin

independent-isrc-mixin
(defflavor independent-isrc-mixin

(dc-value (ac-magnitude O.OdO) (ac-phase O.OdO)) (2-terminal-element-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defmethod (independent-isrc-mixin rset-matrix-pointers) 0)

(defmethod(independent-isrc-mixin rload-mna-matrix-and-rhs) 0
(sub-from-rhs nodel dc-value)
(add-to-rhs node2 dc-value))

(defflavor dc-vsrc-mixin 0
(independent-vsrc-mixin dc-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defflavor pulse-vsrc-mixin 0
(independent-vsrc-mixin pulse-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defflavor sin-vsrc-mixin 0
(independent-vsrc-mixinsin-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

(defflavor pwl-vsrc-mixin 0
(independent-vsrc-mixin pwl-mixin)

rgettable-instance-variables
rsettable-instance-variables

independent-isrc-mixin

independent-isrc-mixin

dc-vsrc-mixin

pulse-vsrc-mixin

sin-vsrc-mixin

pwl-vsrc-mixin

-31-

—pwl-vsrc-mixin

rinitable-instance-variables)

dc-isrc-mixin
(defflavor dc-isrc-mixin 0

(independent-isrc-mixin dc-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

pulse-isrc-mixin
(defflavor pulse-isrc-mixin 0

(independent-isrc-mixin pulse-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

sin-isrc-mixin
(defflavor sin-isrc-mixin 0

(independent-isrc-mixin sin-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

pwl-isrc-mixin
(defflavor pwl-isrc-mixin 0

(independent-isrc-mixin pwl-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

;; A FLAVOR IMPLEMENTATION FOR EACH TYPE OF SOURCE (PULSE, SIN, AND PWL)

dc-mixin
(defmethod (dc-mixinrupdate-value) ())

pulse-mixin
(defmethod (pulse-mixin rupdate-value) 0

(let ((time *present-time*))
(setq time(loop for timei first time then (- timei per)

until (<= timei td+per)
finally (return timei)))

(setq dc-value (cond ((<£= time td) vl)
((<= time td+tr) (+ vl (*(// (- time td) tr) v2-minus-vl)))
((<= time td+tr+pw) v2)
((<= time td+tr+pw+tf) (+ v2 (*(// (- time td+tr+pw) tf) (- v2-minus-vl))))
(t vl)))))

sin-mixin

-32-

~sin-mixin

(defmethod(sin-mixin rupdate-value) 0
(let ((time (- *present-time* delay)))

(setq dc-value (cond ((<= time O.OdO) vl)
(t
(cond ((zerop theta)

(+ vl (*v2(sin (*omega time)))))
(t (+ vl (*v2(sin (*omega time)) (exp (- (*time theta))))))))))))

pwl-mixin
(defmethod (pwl-mixin rupdate-value) 0

(let ((tl (first time-voltage-data-list))
(vl (second time-voltage-data-list)))

(loop for list first (rest2 time-voltage-data-list) then (rest2 list)
while list

for t2 = (first list)
for v2 = (second list)
when (> "present-time* t2)
do (setq tl t2 vl v2)
else

do (setq dc-value (+ vl (*(// (- *present-time* tl) (- t2 tl)) (- v2 vl))))
(return))))

;; FUNCTION TO UPDATE SOURCE VALUES DURING TRANSIENT ANALYSIS
update-sources

(defun update-sources 0
(let ((source-list (append *vsrc-list* *isrc-list*)))

(loop for source in source-list
do (send source 'rupdate-value))))

;;to implement a break-point table for transient analysis define appropriate
-methods (defun-method?)

(defmethod (dc-mixin rgenerate-break-points) 0)

(defmethod (pulse-mixin rgenerate-break-points) 0
(loop for time first 0.0d0 then (+ time per)

while (< time *tstop*)
do

(nconc *break-point-table* (list (+ time td)
(+ time td+tr)
(+ time td+tr+pw)
(+ time td+tr+pw+tf)))))

(defmethod (sin-mixin rgenerate-break-points) 0
(nconc *break-point-table* (list delay)))

dc-mixin

pulse-mixin

sin-mixin

33

.~sin-mixin

pwl-mixin
(defmethod (pwl-mixinrgenerate-break-points) 0

(loop for data-list first time-voltage-data-list then (rest2 data-list)
for time = (first data-list)
while (and time (< time *tstop*))
do

(nconc *break-point-table* (list time))))

-34

DIODE FLAVORS AND METHODS

;;define diode flavors and associated methods
diode-device-mixin

(defflavor diode-device-mixin
(model-name area initial-condition vdo ido gdo) (2-terminal-element-mixin 2-terminal-sparse-matrln

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

;;set-up the sparse-matrix pointers for the diode device
diode-device-mixin

(defmethod (diode-device-mixin rset-matrix-pointers) 0
(setq nlnl (fillij nodel nodel nil)

n2n2 (fillij node2 node2 nil)
nln2 (fillij nodel node2 nil)
n2nl (fillij node2 nodel nil)))

;;defun methods for calculating diode conductances etc*.
(declare (special is vcrit))

calculate-conductances-and-currents
(defun-method calculate-conductances-and-currents diode-device-mixin (isat)

(let (exp-vd)
(cond ((<= vdo (* -5.0 *vt*))(setq gdo(+ (// isat *vt*) *gmin*)

ido(*vdo (- gdo *gmin*))))
(t (setq exp-vd (exp (// vdo *vt*))

gdo(+ (// (* isat exp-vd) *vt*) *gmin*)
ido(- (**vt* (- gdo *gmin*)) isat))))))

check-convergence
(defun-method check-convergence diode-device-mixin (idhat)

(let (tolerance)
(cond ((not (= 1 *iteration-number*))

(setq tolerance (+ *abstol* (**reltol* (max(abs idhat) (abs ido)))))
(cond ((>= (abs (- idhat ido)) tolerance) (setq *number-not-converged* (1+*number-not-converged*)))))

(t (setq *number-not-converged* (1+ *number-not-converged*))))))

load-currents-and-conductances
(defun-method load-currents-and-conductances diode-device-mixin 0

(let ((ideq (- ido (* gdo vdo))))
(sub-from-rhs nodel ideq)
(add-to-rhs node2 ideq)
(add-to-matrix-entry nlnl gdo)
(add-to-matrix-entry n2n2 gdo)
(sub-from-matrix-entry nln2 gdo)
(sub-from-matrix-entry n2nl gdo)))

-35-

—load-currents-and-conductances

diode-device-mixin
(defmethod (diode-device-mixin rcalculate-and-load-conductances) 0

(let ((isat (* area is))
vd

delvd

idhat)
(cond ((and (=* 1 *iteration-number*) *use-initial-guess*)

(setq vdo vcrit))
(t (setq vd (- (aref *old-sol* nodel) (aref *old-sol* node2))

delvd (- vd vdo)
idhat (+ ido(*gdodelvd))
vdo (pnjlim vd vdo vcrit))))

;;compute branch currents and derivatives
(calculate-conductances-and-currents isat)
;;check convergence
(check-convergence idhat)
;;load rhs and yn-matrix
(load-currents-and-conductances)))

;;flavors used for diode models.

diode-model-mixin
(defflavor diode-model-mixin ((*type 'diode)

(*is ld-14)
(*vcrit nil)) (model-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

diode-model-mixin
(defmethod (diode-model-mixin :caleu late-model-constan ts) 0

(setq *vcrit (**vt* (log (// *vt* 1.4142 *is)))))

;; method .'load-mna-matrix-and-rhs is defined for themodel for reasons of eflidency. the program
;; cycles through models instead of devices (SPICEcycles through devices) and hence
;; this method is associated with the model flavor.

diode-model-mixin
(defmethod (diode-model-mixin rload-mna-matrix-and-rhs) 0

(let* ((is *is)
(vcrit *vcrit))

(loopfor device in device-list
do (send device 'rcalculate-and-load-conductances))))

36

BIPOLAR FLAVORS AND METHODS

\define bipolar flavors and associated methods
;Eber's-Moll dc model is used at present

bjt-device-sparse-matrix-mixin
(defflavor bjt-device-sparse-matrix-mixin

(ncnc ncnb ncne nbnc nbnb nbne nenc nenb nene) 0
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

bjt-device-mixin
(defflavor bjt-device-mixin

(name nc nb ne model-name area
vbeo vbco ico ibogibvbegibvbc gicvbe gicvbc)

(bjt-device-sparse-matrix-mixin update-self-mixin state-info-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

bjt-device-mixin
(defmethod (bjt-device-mixinrset-matrix-pointers) 0

(setq ncnc (fillij nc nc nil)
ncnb (fillij nc nb nil)
ncne (fillij nc ne nil)
nbnc (fillij nb nc nil)
nbnb (fillij nb nb nil)
nbne (fillij nb ne nil)
nenc (fillij ne nc nil)
nenb (fillij ne nb nil)
nene (fillij ne ne nil)))

;declare special all model parameters
(declare (special vaf betaf betar is vcrit type))

calculate-conductances-and-currents
(defun-method calculate-conductances-and-currents bjt-device-mixin (isat)

(let* ((exp-vbe(exp (f// vbeo*vt*)))
(exp-vbc (exp (f// vbco *vt*)))
(idume (f* exp-vbe isat))
(idumc (f* exp-vbc isat))
(1/alphar (f+ l.OdO (f// l.OdO betar)))
(vabc (f- 1.0d0 (f// vbco vaf))))

(setq gicvbe (f// (f* idume vabc) *vt*)
gibvbe (f// gicvbe betaf)
gibvbc (f// (f* idumc vabc) (f* *vt* betar)))

-37-

^.calculate-conductances-and-currents

(cond ((> vaf 20000.0)
(setq gicvbe (f- (f* (f* idumc (f// vabc *vt*))

1/alphar))))
(t
(setq gicvbe (f* isat (f+ l.OdO (f// l.OdO betar))

(f- (f// (f+ (f- exp-vbe l.OdO)
(f* exp-vbc (f+ 1.0dO (f// vbco*vt*)))
-1.0d0)

vaf)
(f// exp-vbc *vt*))))))

(setq ico (f* isat vabc
(f- (f- exp-vbe l.OdO)

(f* 1/alphar
(f- exp-vbc 1.0d0))))

ibo (f+ (f// (f- idume isat) betaf)
(f// (f- idumc isat) betar)))))

check-convergence
(defun-methodcheck-convergence bjt-device-mixin (ichat ibhat)

(let (tolerance)
(cond ((not (= 1 *iteration-number*))

(setq tolerance (f+ *abstol* (f* *reltol*(max (abs ichat)
(abs ico)))))

(cond ((< (abs (f- ichat ico)) tolerance)
(setq tolerance (f+ *abstol*

(f* *reltol* (max (abs ibhat)
(abs ibo)))))

(cond ((> (abs (f- ibhat ibo)) tolerance)
(setq *number-not-converged* (1+*number-not-converged*)))))

(t (setq *number-not-converged* (l+-*number-not-converged*))))))))

load-currents-and-conductances
(defun-method load-currents-and-conductances bjt-device-mixin 0

(let ((iceq (f* type (f- ico(f* gicvbe vbeo) (f* gicvbe vbco))))
(ibeq (f* type (f- ibo(f*gibvbe vbeo) (f* gibvbc vbco)))))

(sub-from-rhs nc iceq)
(sub-from-rhs nb ibeq)
(add-to-rhs ne iceq ibeq)
(sub-from-matrix-entry ncnc gicvbe)
(add-to-matrix-entry ncnb gicvbe gicvbe)
(sub-from-matrix-entry ncnegicvbe)
(sub-from-matrix-entry nbnc gibvbc)
(add-to-matrix-entry nbnb gibvbe gibvbc)
(sub-from-matrix-entry nbne gibvbe)
(add-to-matrix-entry nenc gicvbe gibvbc)
(sub-from-matrix-entry nenb gicvbe gicvbe gibvbe gibvbc)
(add-to-matrix-entry nene gicvbe gibvbe)))

bjt-device-mixin
(defmethod (bjt-device-mixin rcalculate-and-load-conductances) 0

-38-

...bjt-device-mixin

(let ((isat (f* area is))
vbe vbc delvbc delvbe ichat ibhat)

(cond ((and (= 1 *iteration-number*) *use-initial-guess*)
(setq vbeo vcrit

vbco 0.0d0))
(t (setq vbe (f* type (f- (aref *old-sol* nb) (aref *old-sol* ne)))

vbc (f* type (f- (aref *old-sol* nb) (aref *old-sol* nc)))
delvbe (f- vbe vbeo)
delvbc (f- vbc vbco)
ichat (f- ico (f* gicvbe delvbe) (f*gicvbe delvbc))
ibhat (f- ibo(f* gibvbe delvbe) (f* gibvbc delvbc))
vbeo (pnjlim vbe vbeo vcrit)
vbco (pnjlim vbc vbco vcrit))))

(calculate-conductances-and-currents isat)
(check-convergence ichat ibhat)
(load-currents-and-conductances)))

;bipolar EMI model flavors

bjt-model-mixin
(defflavorbjt-model-mixin ((*type 'npn)

(*vaf lel5)
(*is le-16)
(*bf 100)
(*br 1)
(*vcrit nil)) (model-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

bjt-model-mixin
(defmethod (bjt-model-mixin rloadmna-matrix) 0

(let* ((is *is)
(vaf *vaf)
(betar *br)
(betaf *bf)
(vcrit *vcrit)
(type *type))

(loop for device in device-list
do (princ 'curry) (send device 'rcalculate-and-load-conductances))))

bjt-model-mixin
(defmethod (bjt-model-mixin rcalculate-model-constants) 0

(cond ((equal *type 'pnp) (setq *type -l.OdO))
((equal *type 'npn) (setq *type l.OdO)))

(setq *vcrit (f» *vt* (log (f// *vt* 1.4142 *is)))))

39-

MOS FLAVORS AND METHODS

mos-device-sparse-matrix-mixin
(defflavor mos-device-spai^-matrix-mixin

(ndnd ndng ndns ndnb ngnd ngng ngns ngnb nsndnsng nsns nsnb nbnd nbng nbns nbnb)0
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

mos-capacitances-mixin
(defflavor mos-capacitances-mixin

(vgs-n vgd-n vgb-n cgs-n cgd-n cgb-n cgs-n+1 cgd-n+1 cgb-n+l) 0
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

mos-device-mixin
(defflavor mos-device-mixin

(name nd ng ns nb model-name (lc ld-6) (we ld-6) (ad 1.0)(as 1.0)(pd 0.0) (ps 0.0)
(vgsi 0.0) (vdsi 0.0) (vbsi0.0) vgso vdso vbso vbdo vgdo vgbo ido
ibso ibdogmogdso gmbso gbdo gbso device-mode vton vds-sat idrain)

(mos-device-sparse-matrix-mixin update-self-mixin state-info-mixin mos-capacitances-mixin)
rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

mos-device-mixin
(defmethod (mos-device-mixin rset-matrix-pointers) 0

(setq ndnd (fillij nd nd nil))
(setq ndng (fillij nd ng nil))
(setq ndns (fillij nd ns nil))
(setq ndnb (fillij nd nb nil))
(setq ngnd (fillij ng nd nil))
(setq ngng (fillijng ng nil))
(setq ngns (fillijng ns nil))
(setqngnb (fillij ng nb nil))
(setq nsnd (fillij ns nd nil))
(setq nsng (fillij ns ng nil))
(setq nsns (fillij ns ns nil))
(setq nsnb (fillij ns nb nil))
(setq nbnd (fillij nb nd nil))
(setq nbng(fillijnb ng nil))
(setq nbns (fillij nb ns nil))
(setq nbnb (fillij nb nb nil)))

mos-device-mixin
(defmethod(mos-device-mixin rupdate-capacitance-data) 0

-40-

—mos-device-mixin

;;updates the parameters used for meyer's model, at present it is not required because no prediction
;;isbeing done for the solution at the next time-point. It is being used for the sake of generality
(setq vgs-n vgso

vgd-n vgdo
vgb-n vgbo
cgs-n cgs-n+1
cgd-n cgd-n+1
cgb-n cgb-n+l))

(declare (special vto kp gamma lambda js phi type vbi vfb vto tox cgbo cgdo cgso cbs cbdcj cjsw mj mjspb
fc*pb f 1 f2 f3 f 1-sw f2-sw f3-sw))

limit-voltages
(defun-method limit-voltages mos-device-mixin (vdsvgs vgdvbs vbd vcrit idsat issat)

(cond ((< vdso O.OdO) (setq vgdo (fetlim vgd vgdo vton)
vds (- vgs vgdo)
vdso (- (limvds (- vds) (- vdso))) ;pvew vds assigned to vdso
vgso (+ vgdo vdso)))

(t (setq vgso(fetlim vgs vgso vton)
vds (- vgso vgd) .
vdso (limvds vds vdso)
vgdo (- vgso vdso))))

(cond ((< vdso O.OdO) (setq vcrit (* *vt* (log(// *vt* (* 1.4142 idsat))))
vbdo (pnjlim vbd vbdo vcrit)
vbso (+ vbdo vdso)))

(t (setq vcrit (* *vt* (log(// *vt* (* 1.4142 issat))))
vbso (pnjlim vbs vbso vcrit)
vbdo (- vbso vdso)))))

calculate-source-drain-diode-contributions
(defun-method calculate-source-drain-diode-contributions mos-device-mixin (issat idsat)

(let (evbs evbd)
(cond ((> vbso 0.0d0) (setq evbs (exp (// vbso*vt*))

gbso (+ *gmin* (// (* issat evbs) *vt*))
ibso (* issat (- evbs l.OdO))))

(t (setq gbso (// issat*vt*)
ibso (*gbso vbso)
gbso (+ gbso *gmin*))))

(cond ((> vbdo 0.0d0) (setq evbd (exp (// vbdo *vt*))
gbdo (+ *gmin* (// (* idsat evbd) *vt*))
ibdo (* idsat (- evbd l.OdO))))

(t (setq gbdo (// idsat*vt*)
ibdo(*gbdo vbdo)
gbdo(+ gbdo *gmin*))))))

calculate-conductances-and-currents
(defun-method calculate-conductances-and-currents mos-device-mixin (vds vgs vbs beta)

-41-

...calculate-conductances-and-currents

(let (vgst betap tempi temp2)
(cond((> vbs O.OdO) (setq tempi (sqrt phi)

tempi (max O.OdO (- tempi (// vbs (* 2.0d0 tempi))))))
(t (setq tempi (sqrt (- phi vbs)))))

(setq vton (+ vbi (* gamma tempi))
vgst (- vgs vton))

(cond ((> tempi O.OdO) (setq tempi (// gamma (* 2.0d0 tempi))))
(t (setq tempi O.OdO)))

(setq vds-sat (max O.OdO vgst))
;;check region of device operation : saturation or linear
(setq betap (* beta (+ l.OdO (* lambda vds))))
(cond ((> vgst O.OdO) ;device is on

(cond ((> vgstvds) ;Unear region
(setq temp2 (* vds (- vgst (* .5d0vds)))

idrain (* betap temp2)
gmo (* betap vds)
gdso (+ (* betap (- vgst vds)) (* lambda betatemp2))
gmbso (* gmo tempi)))

(t (setq temp2 (* vgst vgst«5d0)saturation region
idrain (* betap temp2)
gmo (* betapvgst)
gdso (* lambdabeta temp2)
gmbso (*gmotempi)))))

(t (setq idrain O.OdO ;cut-off region
gmo O.OdO
gdso O.OdO
gmbso 0.0d0)))

(setq ido (- (* device-mode idrain) ibdo))))

check-convergence
(defun-method check-convergence mos-device-mixin (idhat ibhat)

(let (tolerance)
(cond ((not (=* 1 *iteration-number*))

(setq tolerance (+ *abstol* (**reltol*(max (abs idhat) (abs ido)))))
(cond ((< (abs (- idhat ido)) tolerance)

(setq tolerance (+ *abstol* (* *reltol*(max (abs ibhat) (abs (+ ibso ibdo))))))
(cond ((> (abs (- ibhat ibso ibdo)) tolerance)

(setq *number-not-converged* (1+ *number-not-converged*)))))
(t (setq *number-not-converged* (1+ *number-not-converged*)5)))))

calculate-capacitance-and-charge
(defun-method calculate-capacitance-and-charge mos-device-mixin 0

(when (and *transient-analysis* (not *use-initial-guess*))
(let ((cbd-bottom 0.0d0) (cbs-bottom 0.0d0) (cbd-sidewall 0.0d0) (cbs-sidewall 0.0d0)

capacitance-bd capacitance-bs capacitance-list geq)
;;calculate depletion region capacitances
;&f cbs and cbd arenot given then they are calculated using the junction capacitance
(cond ((and cbs cbd)

(setq cbs-bottom cbs
cbd-bottom cbd))

-42-

—calculate-capacitance-and-charge

(t
(cond (cj

(setq cbs-bottom (* cj as)
cbd-bottom(* cj ad))))))

(cond (cjsw
(setq cbs-sidewall (*cjsw ps)

cbd-sidewall (* cjsw pd))))
;;calculate the charge stored in the depletion regions
(setqcapacitance-list (source-drain-junction-charge-and-capacitance q-present-state q-previous-state

cbs-bottom cbd-bottom

cbs-sidewall cbd-sidewall vbso vbdo)
;;this function storesthe chargein the state tables and returns a list of capacitance (cbscbd)
capacitance-bs (first capacitance-list)
capacitance-bd(second capacitance-list)
geq (first (get-capacitor-contribution 'cbscapacitance-bs q-previous-state q-present-state

i-previous-state i-present-state))
gbso (+ gbso geq)
ibso (+ ibso (get-state-info i-present-state 'cbs))
geq (first (get-capacitor-contribution 'cbd capacitance-bd q-previous-state q-present-state

i-previous-state i-present-state))
gbdo (+ gbdo geq)
ido (+ ido ibdo)
ibdo (+ ibdo (get-state-info i-present-state 'cbd))
ido (- ido ibdo)))

;;calculate meyer-capacitances for a mos device
(let ((cox (// (* wc lc 3.453d-ll) tox))

(cgb-overlap (* cgbo lc))
(cgs-overlap (*cgso wc))
(cgd-overlap (* cgdo wc))
capacitance-list)

(cond ((equal 1 device-mode) piormal mode of operation
(setq capacitance-list (calculate-meyer-capacitances vgso vdso vbsovds-satvton coxcgb-overlap

cgs-overlap cgd-overlap)
cgs-n+1 (first capacitance-list)
cgd-n+1 (second capacitance-list)
cgb-n+1 (third capacitance-list)))

(t inverse mode of operation (interchange drain and source)
(setq capacitance-list (calculate-meyer-capacitances vgdo(- vdso)vbdovds-sat vton coxcgb-overlap

cgd-overlap cgs-overlap)
cgd-n+1 (first capacitance-list)
cgs-n+1 (second capacitance-list)
cgb-n+1 (third capacitance-list))))

;;calculate charges
(when (and (= 1 *number-timepoints*) (= 1 *iteration-number*))

(setq cgs-n cgs-n+1
cgd-n cgd-n+1
cgb-n cgb-n+1
vgs-n vgso

vgd-n vgdo
vgb-n vgbo))

-43-

—calculate-capacitance-and-charge

(calculate-and-store-charges-for-meyer-model cgs-n cgd-n cgb-n cgs-n+1 cgd-n+1 cgb-n+1
vgs-n vgd-n vgb-n vgso vgdo vgbo
q-previous-state q-present-state))))

load-currents-and-conductances
(defun-method load-currents-and-conductances mos-device-mixin (normal inverse)

(let ((gcgs 0.d0) (gcgd O.OdO) (gcgb O.OdO)
(ieqcgs O.OdO) (ieqcgd O.OdO) (ieqcgb O.OdO)
ieqbs ieqbd idreq)

(cond ((and *transient-analysis* (not *use-initial-guess*))
;;integrate to get equivalent conductance and current
(setq gcgs (first (get-capacitor-contribution 'cgscgs-n+1 q-previous-state q-present-state

i-previous-state i-present-state))
gcgd (first (get-capacitor-contribution 'cgdcgd-n+1 q-previous-state q-present-state

i-previous-state i-present-state))
gcgb (first (get-capacitor-contribution 'cgbcgb-n+1 q-previous-state q-present-state

i-previous-state i-present-state))
ieqcgs (* type (- (get-state-info i-present-state 'cgs) (* gcgs vgso)))
ieqcgd (* type (- (get-state-info i-present-state 'cgd) (* gcgd vgdo)))
ieqcgb (* type (- (get-state-info i-present-state 'cgb) (* gcgb vgbo))))))

(setq ieqbs (* type (- ibso (*(- gbso *gmin*) vbso)))
ieqbd(* type (- ibdo(* (- gbdo *gmin*) vbdo))))

(cond ((= 1 device-mode)
(setq idreq (* type (- idrain (* gdso vdso) (* gmo vgso) (*gmbso vbso)))))

(t (setq idreq (- (* type (- idrain (* gdso (- vdso)) (* gmo vgdo) (* gmbso vbdo)))))))
;;load rhs and mna matrix
(sub-from-rhs ng ieqcgs ieqcgd ieqcgb)
(sub-from-rhs nb ieqbs ieqbd(- ieqcgb))
(add-to-rhs nd ieqbd ieqcgd (- idreq))
(add-to-rhs ns idreq ieqbs ieqcgs)
(add-to-matrix-entry ngng gcgs gcgd gcgb)
(add-to-matrix-entry nbnb gbdo gbso gcgb)
(add-to-matrix-entry ndnd gdso gbdo (*inverse (+ gmo gmbso)) gcgd)
(add-to-matrix-entry nsns gdso gbso (* normal (+ gmo gmbso)) gcgs)
(sub-from-matrix-entry ngnd gcgd)
(sub-from-matrix-entry ngns gcgs)
(sub-from-matrix-entry ngnb gcgb)
(sub-from-matrix-entry nbnd gbdo)
(sub-from-matrix-entry nbng gcgb)
(sub-from-matrix-entry nbns gbso)
(sub-from-matrix-entry ndng (*(- inverse normal)gmo) gcgd)
(sub-from-matrix-entry ndnb gbdo (* (- inverse normal) gmbso))
(sub-from-matrix-entry ndns gdso (* normal (+ gmo gmbso)))
(sub-from-matrix-entry nsng (* (- normal inverse) gmo) gcgs)
(sub-from-matrix-entry nsnb gbso (* (- normal inverse) gmbso))
(sub-from-matrix-entry nsnd gdso (* inverse (+ gmo gmbso)))))

mos-device-mixin
(defmethod (mos-device-mixin :calculate-and-load-conductances) 0

-44-

—mos-device-mixin

(let ((idsat (* ad js))
(issat (* as js))
(beta (// (* kp wc) lc))
vds vgs vbs vcrit vbd vgd delvbs delvbddelvgs delvds delvgd ibhat idhat inverse normal)

(cond ((and (= 1 *iteration-number*) *use-initial-guess*)
(setq vdso O.OdO

vgso vto
vbso -1.0dO))

(t (setq vds (* type (- (aref *old-sol* nd) (aref *old-sol* ns)))
vgs (* type (- (aref *old-sol* ng) (aref *old-sol* ns)))
vbs (* type (- (aref *old-sol* nb) (aref *old-sol* ns)))
vbd (- vbs vds)
vgd (- vgs vds)
delvbs (- vbs vbso)
delvbd (- vbd vbdo)
delvgs(- vgs vgso)
delvds (- vds vdso)
delvgd(- vgd vgdo)
ibhat (+ ibso ibdo (*gbdo delvbd) (*gbso delvbs)))

(cond ((= 1 device-mode) (setq idhat(+ ido (- (* gbdo delvbd)) (* gmbso delvbs)
(*gmodelvgs) (*gdso delvds))))

(t (setq idhat (- ido (*(- gbdo gmbso) delvbd) (*gmo delvgd)
(- (* gdso delvds))))))

;;limit nonlinear branch voltages
(limit-voltages vds vgs vgd vbs vbd vcrit idsat issat)))

(setq vbdo (- vbso vdso)
vgdo(- vgso vdso)
vgbo (- vgso vbso))

(calculate-source-drain-diode-contributions issat idsat)
;; check for mode of device operation: normal or inverse and calculate conductances
(cond ((< vdso 0.0d0) inverseregion of operation

(setq device-mode -1
inverse 1

normal 0)
(calculate-conductances-and-currents (- vdso) vgdovbdobeta))

(t (setq device-mode 1
inverse 0

normal 1)
(calculate-conductances-and-currents vdso vgso vbso beta)))

(calculate-capacitance-and-charge)
;;check convergence
(check-convergence idhat ibhat)
;;load current vector and conductances
(load-currents-and-conductances normal inverse)))

;;M0S1 MODEL FLAVORS . WILL REQUIRE DIFFERENT FLAVORS FOR A DIFFERENT
MOS MODEL

mos1-model-mixin

(defflavor mosl-model-mixin ((*type 'nmos)
(*vto 1.0d0)

45-

...mos1-model-mixin

(*kp 2.0d-5)
(*gamma O.OdO)
(♦lambda .OdO)
(*js ld-14)
(*phi .6d0)
(*tox ld-7)
(*cgso 0.0d0)
(*cgdo 0.0d0)
(*cgbo O.OdO)
(*cbs nil)
(*cbd nil)
(*cj nil)
(*cjsw nil)
(*mj .5d0)
(*mjsw (// 1.0d0 3.0d0))
(*pb 0.8d0)
(*fc 0.5d0)
(*vfb nil)
(*vbi nil)
(*fc*pb0.4d0)
(*f1 nil) (*f2 nil) (*f3 nil)
(*f1-sw nil) (*f2-sw nil) (*f 3-sw nil)Xmodel-mixin)

rgettable-instance-variables
rsettable-instance-variables

rinitable-instance-variables)

mos1-model-mixin
(defmethod (mosl-model-mixin rload-mna-matrix-and-rhs) 0

(let* ((kp *kp)
(gamma *gamma)
(lambda *lambda)
0* *js)
(phi *phi)
(tox *tox)
(type *type)
(vfb*vfb)
(cgbo *cgbo)
(cgdo *cgdo)
(cgso *cgso)
(cbs *cbs)
(cbd *cbd)
(cj *cj)
(cjsw *cjsw)
(mj *mj)
(mjsw *mjsw)
(pb *pb)
(fc*pb*fc*pb)
(f1 *f1)
(f2 *f2)

46

—mosl-model-mixin

(f3 *f3)
(fl-sw *fl-sw)
(f2-sw *f2-sw)
(f3-sw *f3-sw)
(vbi (* type *vbi))
(vto (* type *vto)))

(loop for device in device-list
do (send device 'rcalculate-and-load-conductances))))

mos1-model-mixin
(defmethod (mosl-model-mixin rcalculate-model-constants) 0 ;some constants to beused during analysis

;;calculate the magnitude of vfb for charge storage calculations
(cond ((equal *type 'pmos) (setq *type -1.0

*vbi(+ *vto (* *gamma (sqrt *phi)))
*vfb (- (- *vto) *phi(* *gamma (sqrt *phi)))))

((equal *type 'nmos) (setq *type 1.0
*vbi (- *vto (* *gamma (sqrt *phi)))
*vfb (- *vto *phi (**gamma (sqrt *phi))))))

;;calculate the constant coefficients for forward bias depletion capacitances
;;the constants are defined as

fl = pb*(l-(l- fcT(l - mj))/(l - mj)
f2~l/(l- fcT mj
f3 = mj / (pb* (1 - fcT (1 + mj))~ mj * f2 / (pb* (1 - fc))

;;fl-sw, f2-sw, and f3-sw are similarly defined except that mjsw is used instead of mj
(setq *f1 (* *pb(// C (- 1.0d0(- l.OdO *fc)) (- l.OdO *mj))(- l.OdO *mj)))

*f2 C (- 1.0d0 *fc) (- *mj))
f3 (// (*mj *f2) (* *pb (- 1.0dO *fc)))
*f1-sw (**pb(// C (- 1.0dO (- 1.0d0 *fc)) (- l.OdO *mjsw)) (- l.OdO *mjsw)))
*f2-sw C (- LOdO *fc) (- *mjsw))
f3-sw (// (*mjsw *f2) (* *pb(- 1.0d0 *fc)))
*fc*pb (* *fc *pb)))

update-mos-capacitance-data
(defun update-mos-capacitance-data 0

(loop for mos in *mos-list*
do (send mos 'rupdate-capacitance-data)))

calculate-and-store-charges-for-meyer-model
(defun calculate-and-store-charges-for-meyer-model (cgs-n cgd-n cgb-n cgs-n+1 cgd-n+1 cgb-n+1

vgs-n vgd-n vgb-n vgs-n+1 vgd-n+1 vgb-n+1
q-previous-state q-present-state)

;;this function calculates the charge of a nonlinearcapacitorusing an approximate integration
;;of C(v) wrt v. Trapezoidal integration is used whereby
;; q-n+1 = q-n + (.5 * (c-n+ c-n+l) (v-n+1 - v-n)) for n 0

q-0 = 0
(let (qcgs qcgd qcgb)

(cond((and (= 1 *number-timepoints*) (= 1 *iteration-number*))
(setq qcgs (* cgs-n+1 vgs-n+l)

-47-

...calculate-and-store-charges-for-meyer-model

qcgd (*cgd-n+1 vgd-n+1)
qcgb (*cgb-n+1 vgb-n+1))

(store-state-info q-previous-state 'cgs qcgs)
(store-staterinfo q-previous-state 'cgd qcgd)
(store-state-info q-previous-state 'cgb qcgb))

(t
(setq qcgs (+ (* .5 (+ cgs-n+1 cgs-n) (- vgs-n+1 vgs-n)) (get-state-info q-previous-state 'cgs))

qcgd (+ (* .5 (+ cgd-n+1 cgd-n) (- vgd-n+1 vgd-n)) (get-state-info q-previous-state 'cgd))
qcgb (+ (* .5 (+ cgb-n+1 cgb-n) (- vgb-n+1 vgb-n)) (get-state-info q-previous-state 'cgb)))))

(store-state-info q-present-state 'cgs qcgs)
(store-state-info q-present-state 'cgd qcgd)
(store-state-info q-present-state 'cgb qcgb)))

calculate-meyer-capacitances
(defun calculate-meyer-capacitances (vgs vds vbs vds-sat vtoncox cgb-overlap cgs-overlap cgd-overlap)

;; the regions of operation of the device are
;; cut-off vgs <£= vfb + vbs
;; sub-threshold vfb + vbs < vgs <= vton
;; on vton < vgs
;; saturation vds >=vdsat
;; linear vds <vdsat
(let ((vgst (- vgsvton))

(vt-minus-vfb-vbs (- vton vfb vbs))
cgb cgs cgd vdiff vdiffl vdiff-square)

(cond ((<= vgst (- vt-minus-vfb-vbs)) j,e. vgb <= vfb the device is cutoff
(setq cgb(+ cox cgb-overlap)

cgs cgs-overlap
cgdcgd-overlap))

(i<= vgstO.OdO)
(setq cgb (+(- (// (* vgst cox) vt-minus-vfb-vbs)) cgb-overlap)

cgs cgs-overlap
cgdcgd-overlap))

(t ;device is on
(cond ((<= vds-sat vds) ,in saturation region

(setq cgbcgb-overlap
cgs (+ (// cox 1.5) cgs-overlap)
cgd cgd-overlap))

(t $n linear region
(setq vdiff (- (* 2 vds-sat) vds)

vdiff-square (* vdiff vdiff)
vdiffl (- vds-sat vds 1.0d-12)
cgb cgb-overlap
cgs (+ (// (* cox (- 1.0d0 (// (* vdiffl vdiffl)vdiff-square))) 1.5) cgs-overlap)
cgd (+ (// (* cox (- 1.0d0 (// (* vds-sat vds-sat) vdiff-square))) 1.5) cgd-overlap))))))

(list cgs cgd cgb)))

source-drain-junction-charge-and-capacitance
(defun source-drain-junction-charge-and-capacitance

(q-present-state q-previous-state cbs-bottom cbd-bottom cbs-sidewall cbd-sidewall

-48-

^^iource-drain-junction-charge-and-capacitance

vbs vbd)
;;the drain source depletion capacitances and charges are calculated
(let (qc-list qbs qbd cbs cbd)

(setq qc-list (depletion-region-charge-and-capacitance vbs cbs-bottom cbs-sidewall)
qbs (first qc-list)
cbs (second qc-list)
qc-list (depletion-region-charge-and-capacitance vbd cbd-bottom cbd-sidewall)
qbd (first qc-list)
cbd (second qc-list))

(when (and (= 1 *number-timepoints*) (= 1 *iteration-number*))
(store-state-info q-previous-state 'cbs qbs)
(store-state-info q-previous-state 'cbd qbd))

(store-state-info q-present-state 'cbs qbs)
(store-state-infoq-present-state 'cbd qbd)
(list cbs cbd)))

depletion-region-charge-and-capacitance
(defun depletion-region-charge-and-capacitance (vc cjO cjO-sw)

;;this function calculates the charge in a depletion region if cjO-sw, the sidewall capacitance is
;;zero then no sidewall capacitance is calculated
;;in the case of a forward biased junction 3 precalculated model constants are used
;;they are

fl = pb*(l-(l- fcT(l - mj))/(l - mj)
f2 = l/(l- fcTmj
f3 = mj/(pb * (1 - fcT(1 + mj)) =mj*f2/(pb*(l- fc))

;;fl-sw, f2-sw, and f3-sw are similarly defined except that mjsw is used instead of mj
;;these constants are calculated in method :calculte-model-constants
(let (temp arg arg-sw (qj O.OdO) (cj O.OdO))

(cond ((and (= O.OdO cjO) (= O.OdO cjO-sw)) (list qj cj))
(t
;;check if the junction is reverse biased or forward biased
(cond ((< vc fc*pb) reverse biased

(setq temp (- l.OdO (// vc pb)))
(when (not (= 0.0d0 cjO)) ,t/ bottom capacitance

(setq arg C temp (- mj))
qj (* pb (// (* cjO (- 1.0d0 (* temp arg))) (- l.OdO mj)))
cj (*cjOarg)))

(when (not (= 0.0d0 cjO-sw)) ;add sidewall contribution if cjO-sw 0
(setqarg-sw C temp (- mjsw))

qj (+ qj (* pb(// (*cjO-sw (- l.OdO (* temp arg-sw))) (- l.OdO mjsw))))
cj (+ cj (* cjO-sw arg-sw))))

(list qj cj))
(t ;forward biased
(let ((vc-minus-fc*pb 0- vc fc*pb)))

(when (not (= O.OdO cjO)) ;bottom capacitance
(setq cj (* cjO (+ f2 (* vc-minus-fc*pb f3)))

qj (* cjO (+f1 (* vc-minus-fc*pb (+ f2 (* .5 vc-minus-fc*pb f3)))))))
(when (not (= O.OdO cjO-sw)) ;add sidewall contributions

(setq cj (+ cj (*cjO-sw (+ f2-sw (* vc-minus-fc*pb f3-sw))))
qj (+ qj (* cjO-sw (+ fl-sw (* vc-minus-fc*pb (+ f2-sw

-49-

.depletion-region-charge-and-capacitance

(* .5 vc-minus-fc*pb f3-sw))))))))
(listqjcj))))))))

50-

REFERENCES

[l] K. Mayaram and D. 0. Pederson, "Circuit Simulation in LISP", Digest of Technical

Papers 1CCAD-84, Santa Clara, California, pp. 24-26, Nov. 1984.

[2] K. Mayaram and D. 0. Pederson, "Circuit Simulation in LISP", Memo. No. UCB/ERL

M84/60, Electronics Research Laboratory, University of California, Berkeley, Aug. 1984.

[3] E Horowitz, Fundamentals of Programming Languages, Computer Science Press, 1984.

[4] D. Robinson, "Object-Oriented Software Systems", BYTE, VoL 6, Nb. 8, pp. 74-86, Aug.

1981-.

[5] D. Weinreb and D. Moon, LISP Machine Manual, Symbolics Inc., 1981.

[6] The Xerox Learning Research Group, "The Smalltalk-80 System", BYTE, VoL 6, Nb. 8,

pp. 36-48, Aug. 1981.

[7] A. Goldberg and D. Robinson, Smalltalk-80: The Language and its Implementation,

Addison Wesley, Reading, Masachussets, 1984.

[8] H. Cannon, "A non-hierarchical approach to object-oriented programming", Unpublished

paper, Artificial Intelligence Laboratory, MTT, Cambridge.

[9] E Cohen, "Program Reference For SPICE2", Memo. No. ERL-M592, Electronics Research

Laboratory, University of California, Berkeley, June 1976.

[10] T. Vucurevich, Private Communication

	Copyright notice 1984 - Copy
	ERL-84-103

