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Higher order corrections to the quasilinear diffusion coefficient are obtained
for Hamiltonian maps which are locally approximated by the standard
map. Using the Fermi map as an example we numerically integrate the
Fokker-Planck equation for the action and compare the resulting distribu-
tion function with direct solutions ;f the mapping equations. The second
moment of the distribution is compared with the diffusion measured in the
numerical experiments. Both show mﬁhtions (as a function of the initial
velocity) similar to those found in the standard map. In addition we nu-
merically find the invariant distribution in the Fermi map. We observe dips
in the distribution of actions. We calculate the size of islands surround-
ing stable fixed points and show that the dips correspond to these islands.
Thus chaotic orbits uniformly fill the phase space available to them.
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1. Introduction

The study of non-linear dynamical systems has revealed many examples of
chaotic behavior. The simplest systems in which such behavior is observed are
two degree of freedom Hamiltonian systems. Two dimensional area preserving
mappings which have their own Hamiltonian structure may be used to model
such systems.

The motion of chaotic orbits cannot be described analytically, as one de-
scribes regular orbits. Rather than describing the detailed motion of a chaotic
orbit, we would like to predict the statistical properties of families of orbits. In
many problems, such as ion or electron cyclotron resonance heating, the evolu-
tion of only one of the two phase space variables, the action. (or the energy), is
of interest. We assume that the other variable, angle or phase, is randomizsed
much more rapidly than the action. Based on these assumptions we describe the
dynamics using a Fokker-Planck equation in action alone. The Fokker-Planck
equation describes the evolution of the :iistributién of actions, as represented

by the distribution function f(u,n), where u is the action and n is the “time”.

For a Hamiltonian system, the Fokker-Planck equation is specified by giv-
ing the diffusion coefficient D(u). The quasilinear diffusion coefficient Dy has
been used by many authors?"3to describe the evolution of the action in an area
preserving map. However there are stringent limits on the validity of the quasi-
linear approximation, which assumes phase randomization on each mapping
iteration. Approximations to the diffusion coefficient that incorporate longer
correlation times are thus of great interest. The global diffusion coefficient of
the action for the standard map, which has been calculated by Rechester et
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al.>’ 4 includes phase correlations over many mapping periods. In this paper
we apply their results to more general maps, restricting ourselves to those maps

Jocally approximated by the standard map.

We wish to describe the evolution of a distribution function f(u,n) in the
action alone. We assume that the phase evolves randomly and the evolution
in action is a Markov process. In addition we assume that the change in ac-
tion is small on the time scale over which the phases become random. These

assumptions lead one to a Fokker-Planck equation for the action® :

3f(u,n) 3 18
-—a;-- = —-az (B(u)f(u, n)) + '2‘%; (D(u)f(u,n)) ’ (l)

where D(u) is the local diffusion coefficient
D(u) = L / dv' (v’ - u)’ W, (4,0;¢',An) , (2
An
and B(u) is the local friction coefficient
B(u) = & / dv' (v’ — u) W; (u,0;v',An) . (3)

The transition probability W, (u,0; ;'.An) is the probability density that a
particle has action u’ at time An given that it had action u at time 0. The

time An is assumed to be small compared to the evolution time, 7ection, of
the action distribution function, but must be longer than the phase relaxation
time, r,;.;.,. We assume that only the first and second moments of W; are
proportional to An and that coefficients corresponding to higher order moments
vanish as An — 0. For Hamiltonian systems with action-angle variables (i.e.
with periodic dependence on the angles) and assuming random phases, it may
be shown that® '

B(v) = %“:f"‘). (4)
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We are interested in radial twist mappings of the form’

Uns4y = Uy +€8iD 6,
(5)

bnt1 = 6a + A(tin41),
which are area preserving and therefore have a Hamiltonian form. An example
is the Fermi map, whose mapping equations in the surface of section phase

plane are!

Unil = Up +8iD Y,

2zM
¢u+1=¢n+u:

(mod 2r) . ()
+1

These equations describe a model for the motion of a ball bouncing between two
walls, one of which is fixed and the other oscillating sinusoidally. The action
g is the normalized velocity of the ball just before the nth collision with the
moving wall. The angle ¢, is the phase of the moving wall just before the nth
collision. The quantity M = L/(2xa), where L is the distance between the
walls, and @ << L is the maximum amplitude of the wall oscillation. Typically,
M >> 1. We will choose M = 10,000 in all figures to illustrate features of the

pbase plane.

As shown in Fig. 1, the phase plane of the mapping divides naturally into
three regions: (1) At low velocities phase space is predominantly stochastic, and
all period one fixed points are unstable. We (ienobe by u, the action below which
there exist no stable period one fixed points; (2) At intermediaté velocities,
stable islands (around elliptic fixed points) are embedded in the stochastic sea;
(3) At high velocities, the motion is predominantly regular, with only thin
stochastic regions near the separatrices joining hyperbolic fixed points. Regions
(2) and (3) are separated by a KAM barrier. The average action (averaged over
phase) at the barrier is denoted by u;. Simple stability calculations, as well as
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pumerical results, give u, &~ (x}M/2)}/3 and uy = 2.5u,. In this paper we focus

our attention on the first two regions.

II. The Local Diffusion Coeficient

In order to use the Fokker-Planck equation to describe the Fermi map we
must determine the diffusion coefficient D. The simplest procedure is to set
An =1 in (2) and assume a uniform distribution of initial phases. Averaging
over the phases we find the quasilinear diffusion coefficient Dy = 1/2, and the
Fokker-Planck equation

0f(u,n) _182f(u,n)
on 4 0u? @

The result in (7) ignores phase correlations which may exist over many
steps. An alternative procedure, which is valid in the limit of An large, is the
Fourier path method applied by Rechester et al.3* to diffusion in the standard

map
I”+l = In + K'in.'an (mod 2*) Y

Opn41 =64+ I, (mod2rx). 8
Note that, in contrast to the Fermi map, the standard map is 2x periodic in
the action I. The Fourier path calculation depends on the periodicity of the
standard map in action. Thus the long time diffusion is an average over the
2x interval in action, depending only on the stochasticity parameter K. To
ensure that the procedure converged, a small external noise was added to the
mapping (8). However, the noise can be taken equal to sero after the calculation,

obtaining for K > 2x ¢

Do (K) = K? [% - Jo(K) + J3(K)+0 (-}-:;)] ©)
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where Do, is the average long-time diffusion coefficient. For smaller K, the
Fourier paths must be integrated numerically, obtaining for K.y < K < 21
the result shown in Fig. 2¢'.% For K < K.i; =~ 0.9716 a KAM barrier exists

and there is no long-time diffusion.

The Fourier path method depends on the peculiar periodicity in action of
the standard map to evaluate the Fourier integrals in the limit of long times
(An —~ o0). Because of this, the method of Fourier paths cannot be applied
in the long time limit to maps without this periodicity. In principle, the long
time diffusion coefficient for any map having motion bounded by KAM tori is
Dy, = 0. However, the Fokker-Planck equation only requires an intermediate
time diffusion coefficient, that is, Tocsion >> An >> fpaqee in equation (2). In
addition, the standard map is a local approximation in action to a wide variety
of maps. Thus the possibility arises that Do, (K) may be used to approximate
the local diffusion coefficient D(u) for a general map. For those cases where
the stochasticity parameter K depends on the action, D(u) will depend on the
action, through K. . '

Although this can be formally done, as we shall show below, there are
some inherent limitations. For sharply peaked (in action) initial distributions,
we cannot expect good agreement over short timescales between the predicted
diffusion and the actual diffusion obtained by numerically iterating the map-
ping. Also, the presence of stable islands embedded within the stochastic sea
will modify the diffusion when the timescale of interest is short compared to
the timescale for extrinsic diffusion (noise) to diffuse phase points into and out
of the islands. The modifications required to deal with these limitations are

developed in the following sections.



To use Doy (K) to obtain a local (in action) diffusion coefficient D for a
more general map, we consider the example of the Fermi map (6). Linearizing
around a given fixed point u; = M/, with ! an integer and ¢; = x , we obtain

Atnyy = Ay, —8iné,

21rM

Ony1 =0, (mod 2x) .

Letting K = 2xM/u} and I, = —KAu, puts the map in the standard form
(8) -
To use this result in finding a diffusion coefficient, we examine the Fokker-

Planck equation for I:

ag(tl) a1 [

a 1
This equation is only valid for (1/£)(8f/8I) << 1/(2x). This is because Do,
is obtained in the long time limit, implying averaging over many 2x intervals

in the action I. Correspondingly, for the Fermi map we write

3a(u) au[ b )89(0)

Since 3/9u = K(u;)3/81 locally, this suggests that

D(v) = =D (K(w) - (10)

K ’( )
Appendix A gives a derivation of this resuit. For an initial broad distribution
(1/9)(89/9u) << K(u)/(2x) we expect (10) to yield good correspondence to
the numerically determined distribution. For a sharply peaked distribution, we
expect good agreement only for times exceeding the time required for the dis-

tribution to broaden over many primary resonances, n >> 1/(K3D) = 1/Dy.
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For u < M*/3, using (9), we obtain

D)= 3 - J,(z::—f’) +J2 (”M ) +0(K-3) . (11)

)

For larger actions u, we apply (10) to Fig. (2). For small values of u, D
oscillates rapidly around the quasilinear value Dy = 1/2, while for large values
of u it drops rapidly to sero at K = Kcpiz-

The calculations of Rechester et al***assume the presence of noise, enabling
particles to diffuse into and out of stable islands. When the particles are in the
islands, they behave as though they are trapped and do not diffuse globally. The
diffusion coefficient obtained in this manner averages two populations: particles
outside islands with a non-sero diffusion coefficient and particles inside islands
with a negligibly small diffusion coefficient. |

In this study we are primarily interested in heating problems. In such
problems, particles will generally start at low velocities, where the stable is-
lands have negligibly small area. As the particles are heated their velocities
increase, and they enter regions of phase space within which large islands exist.
Without extrinsic stochasticity the particles will not become trapped within
the islands. Thus we are interested only in averaging the diffusion over the un-
trapped distribution. For an ergodic phase space, the equilibrium distribution
is upiform.® With embedded islands one would expect that the equilibrium
(infinite time) distribution in the connected portions of the phase space would
also be uniform. Thus to extract the diffusion of the untrapped species, alone,
from the results of Rechester et al., we divide their diffusion coefficient by the
fraction of phase space occupied by stochastic orbits. We denote the stochastic
population distribution by f,(K,7) and the trapped distribution function by



Ji(K,I), where f,(K,I)+ fi(K,I) = 1. These are the equilibrium distributions
for the standard map with stochasticity parameter K. We define the relevant

diffusion coefficient for the Fermi map as

Dw(x("))
K3(u) < fo(K(u1),I(Au)) >1

D(u) = (12)

where K(u;) = 2eM/u} and I(Au) = =K Au. The average over a 2x interval
in I ignores rapid variations in the diffusion coeflicient, which is consistent with
(10). X rapid variations in D were kept, they would be smoothed rapidly in
integrating the Fokker-Planck equation. Nevertheless, as we see below, the

rapid variations in the distribution function must be retained.

We have investigated the correctness of this picture using the Fermi map.
In appendix B we calculate the size of the last stable orbit surrounding each
stable period one and period two fixed point. We use the approximation that
the width of the separatrix layer surrounding the island(s) can be obtained from
overlap of second order islands of the appropriate aepm;%x mapping®’.” These
“last” island KAM curves yield the fractions f,(u, M) (solid curves) shown in
Fig. 3. The two variables u, M correspond to the variables Au, u; in (12). We
assume a fixed M and therefore suppress the M dependence in f,. We expect
the size of the islands having fixed point periods greater than two to decrease

sufficiently rapidly with period that the sum of their areas is negligible.

To compare with this analytical calculation, we have numerically calcu-
lated the equilibrium distribution function f,(u). Iterating 64 initial conditions
10 million times yields the distribution function shown as dots in Fig. 3. The
action space between u = 0 and u = 250 was divided into 6000 bins. The beight

of the curve represents the total number of visits to a particular bin, suitably
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normalised. The dips in f(u,n) persist over a large range in the number of
iterations (from n = 10° to n = 107)and do not change wheﬁ a double precisiox;
calculation is made. The primary difference between the theoretical and nu-
merical values of f,(u) is the stairstep pattern of the dips in the numerical value
compared to the smooth increase in the magnitude of the dips with increasing u
as determined from the perturbation calculation. The stairstep pattern in the
numerical results is due to the discreteness of the second order islands. A more
exact perturbation calculation has been done on a related problem, bringing

theory and numerical results into close agreement.!°

Figure 4 shows the average fraction < f,(K,I) > of the phase space occu-
pied by stochastic orbits, obtained by averaging f, over I for a given stochas-
ticity parameter K. We have also plotted < f,(u) >4i*, the average fraction
of the phase space occupied by stochastic orbits in the Fermi map. The average
is taken over the action interval from the center o/ the island at w; = M/l
to the center of the next island at w;_y = M/(l{ — 1). This corresponds to
< fo(K,I) >; with K = 2xM/u}. For greater accuracy in comparing the re-
sults of integrating the Fokker-Planck et;uation with numerical results, we have
used < f,(u) >4i™! in calculating the diffusion coefficient (12). The resulting

diffusion coefficient is shown in Fig. 5.

III. Use of the Diffusion Coefficient

The diffusion coefficient may be compared to numerical measurements ob-
tained by direct iteration of the mapping equations. However it is difficult to
make this comparison due to the rapid oscillations of the diffusion. In numer-

ical calculations of D, we must iterate the map a number of times. As the
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particles diffuse away from the initial action, they experience different local
diffusions. In addition the friction coefficient B is non sero, which produces a
pet Bux of particles in action, further complicating the eoinpuison. Choosing
large values of M increases the sisze of the stochastic region and the oscillation
period of D(u), yielding better agreement between the diffusion coefficient and
the numerical calculations. But for sufficiently small values of u or sufficiently
long iteration times, peaks and dips in the diffusion distort and change their

positions in action, and the agreement is poor.

To account for these effects we integrate the Fokker-Planck equation using
the theoretical diffusion coefficient (12) and a delta function at action u, as
an initial condition. This yields the predicted theoretical distribution function
J(u,n), where the dependence on the initial action u, is suppressed. Recall,
bowever, the existence of stable islands embedded in the stochastic sea. As
discussed above, we expect that for times greater than the action evolution
time, the total equilibrium distribution function f,(u,¢) = limp oo £(u, ¥, n)
will be uniform in those regions of phase space accessible to stochastic orbits.?
When the integration over phase is performed to obtain f,(u), the islands
will appear as dips. However, if we use the Fokker-Planck equation with (4),
limp o f(u,n) will be constant for u < u,. Therefore', the Fokker-Planck de-
scription must be modified to account for the islands. For example, to obtain

limp oo f(4,n) = f4(u), Chirikov modifies (4) to*!

B(u) = %%‘:‘) + 3D(u)infu(u) (13)

where f,(u) is obtained numerically. This procedure only ensures the correct

invariant distribution, while we are interested in the short and intermediate



-19-

time behavior as well. Rather than modifying (4), we re-interpret f(u,n).
The information about the size and location of islands is contained in f,(u).
To incorporate this information into the Fokker-Planck approach, we multiply

f(u,n) by f,(u) to obtain the observed distribution function:

_ _J(u,n)fa(u)
Flu,n) = I S, n)fo(u)du'” (14)

Dividing by the integral ensures that the number of particles is conserved.
Clearly as n — oo and f(u,n) becomes uniform, F(u,n) — f,(u), which is in
agreement with Chirikov’s approach. However, for finite n, F(u,n) will differ
from the distribution obtained using (13). For example, initial conditions near
a large island will result in large dips in F(u,n) while the value obtained by
use of (13) will be fairly smooth. '

In addition to comparing F(u,n) directly with distributions obtained by
iterating the mapping equations, it is useful to calculate the second moment or
variance of F(u,n). This variance can be compared to the variance measured
by iterating the map. That is, we compfre the measured value of the variance

o3 to the theoretical value
3
1 («-u,‘,_,) F(u,n)du

o} (uo,n) = =

n J F(u,n)du ’

(15)

where
J uF(u,n)du

Yove(Uo,8) = F(u,n)du ~
We use gy, rather than u, in (15) because the friction may cause the entire
distribution to drift. This would cause an anomalously large variance. The

variance is a function of u, through its dependance on the initial value used to

calculate F.
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We use a modified Crank-Nicolson method!3to integrate the Fokker-Planck
equation, with a small but finite width delta function in u as the initial distri-
bution. The boundary conditions specify no flux at u = 0 and at u = u;, where
u, is the action at the first KAM barrier that spans the phases in the (u,%)
phase space. For the Fermi map uy & 2.5(nM/2)}/? ~ 250 for M = 10,000.

From (4) the diffusion (10) yields a friction coefficient (for ¥ << u,, where

there are no significant stable islands)

5= 2 (n (M) - (2))

ul
which diverges as O(1/u?) for u small. This affects the convergence of the
Crank-Nicolson method. To improve the convergence, the friction coefficient is

set equal to gero for very small values of u, usually ¥ < 3 or 4.

IV. Numerical Experiments

The mapping equations were solved numerically to see how well the theory
corresponded to the actual dynamics. We followed m initial conditions (with
m ranging from 1000 to 64000) having random initial phases at a fixed action
u = u, for n between 1 and 1000 iterations. Figure 6 gives two examples of
numerically obtained distribution functions. The action axis was divided into
bins of width Au = .025, and after iterating the map, the number of orbits
residing in each bin was recorded. Thus each dot represents the number of
particles within an interval Au about a particular action. The solid lines are
the predictions of the Fokker-Planck equation.

In Fig. 6a we note that the distribution is not symmetric due to the

inhomogeneity of D(u). The theory and experiment are in excellent agreement
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regarding this fact. We note also that F(u,n) is the same as the result obtained
from (13) since there are no stable islands at this action. The bump in the
distribution obtained in the numerical experiment at 100 < u < 105 is due to
particles in a small region of phase space streaming upward in action. This
streaming behavior will be discussed below.

Figure 6b shows a region of action where large stable islands exist. Since
there were no initial conditions inside the island centered at u = 185, the island
manifests itself as a dip in the distribution function. Evidence of neighboring
period one islands may be seen on the skirts of the distribution function at
u = 189 and u = 182. The effects of the two iteration islands at u = 183 and
u = 187 are also visible. The predictions of the Fokker-Phpck equation using
(13) and (14) are shown for comparison. We see that (14) agrees much better
than (13) with the numerical results.

The variance was also calculated, using
73torm) = o 3 ()~ tan)? - (1)
= nm =1 .
The use of many initial conditions provides a way to estimate the error in the
variance. We can calculate the variance for subgroups of m, < m initial condi-
tions and then use the standard deviation as a measure of the uncertainty. Uciné
m = 64000 initial conditions and m, = 16000, a typical standard deviation is
about one percent.
The results after an iteration time n = 20 are shown in Fig. 7a . The solid

line is a linear interpolation of several hundred calculations of the variance,
each at a different initial u,. Each calculation was performed using the method
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of Sec. III, that is, by integrating the Fokker-Planck equation and using'(ls).
From now on the result (15) will be referred to as the theoretical variance.

The dots in Fig. 7a represent several hundred measurements of the variance
using (16). The variances in Fig. 7a both show the characteristic oscillations
observed in the standard map, for large values of the stochasticity parameter
K. Both variances drop rapidly toward sero as K approaches one, as in the
standard map. However, the oscillations occur in action space rather than in
parameter space. For u < 40, both the theoretical and measured variances no
longer exhibit oscillations. This is because as particles diffuse, they experience
different local diffusions. The result is that rapid variations in D(u) are averaged

to the quasilinear value of 1/2.

We can estimate the limits of validity of quasilinear diffusion. We expect
that quasilinear diffusion is adequate if large islands do not exist (u < u,) and
if particles diffuse over a range of action u comparable to or larger than the
local period of the oscillations in D(u). For large K the diffusion oscillates as
cos(K) so we expect averaging when (8"}( /8u)bu = x/2. Using 6u = \/nDgr

and
9K _ 4xM
ou = o

for the Fermi map, we find quasilinear diffusion for
u < (32M3%n)Y/8 < u, . (17)

The validity of (17) has been studied numerically for 102 < M < 10° and
10 < n < 1000. For actions satisfying (17), the variance is within five percent

of the quasilinear value.
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Another effect of the variation of D with u is seen by comp_aring results of
calculations made at different times n. Fig. 7b shows results at time n = 40.
Comparing Fig. 7a to Fig. 7b, we see that the location of the maxima and
minima of the variance change with n. Near ¢ = 75 in Fig. 7b, a maximum
and a minimum are merging, forming an irregular bump. Examination of Figs.
7a and 7b makes it clear that the maxima and minima of the variance do not
always correspond to the maxima and minima of the diﬁusibn coefficient in.
Fig. 5. These results are expected on physical grounds. As particles diffuse
they experience different local diffusion rates. Particles starting pear a local
minimum diffuse into regions of higher diffusion rates. There they diffuse more
rapidly than they would at the minimum, and thus the meuﬁred variance is
greater than the local diffusion coefficient. A similar but opposite effect is seen
near local maxima of D, reducing the variance. Particles starting between max-
ima and minima diffuse more rapidly toward regions of increasing D, thereby

experiencing a friction given by (4).

For actions greater than u =~ 200, i.e. for actions near u,, the numeri-
cally determi!;ed values of the variance exceed the theoretical values. Note,
h&wever, that the numerical value of the variance after 40 iterations is r;;.xghly
half the value after 20 iterations. Any initial conditions started near the isolat-
ing KAM curve around a stable fixed point will tend to “stick” to the island
border, being carried around the island. This effect will produce ao anoma-
lous variance which decays as 1/n. As n — oo we expect that the numerical
variance will agree with the theoretica_l predictions. Numerically iterating the
mapping equations for longer times verifies this 1 /n decay. In calculating the

variances, we have attempted to select only initial conditions outside of stable



-17-

islands. This is possible for period one fixed points, but for higher order fixed
points our code was inadequate. Initial conditions started in such islands also
produce variances which decay as 1/n. These initial conditions do not produce
long-time diffusion and therefore over sufficiently long times would lead to a nu-
merical variance lower than that calculated from the Fokker-Planck equation,
as observed pumerically.

When we examine phase space portraits for initial conditions at these large
actions (corresponding to K near K.,is), we see some interesting behavior.
Particles diffuse rapidly up and down in action up to certain limits, beyond
which they will not pass, at least initially. After repeated iterations particles
will leak through these apparent barriers and again d:ﬂ'use rapidly until they
reach the next apparent barrier. This process repeats itself until the particles
reach the isolating KAM curve at uy, or until they diffuse toward lower actions

where the behavior gradually passes into a more uniform diffusion.

Similar bebavior has been described in a paper by Mackay, Meiss, and
Percival.!® They refer to these barriers as cantori. They give a theory describing
the bebhavior and calculate a diffusion coefficient. By using the Fourier path
diffusion coefficient we have averaged over a finite range of actions between
primary resonances. In doing so, we bave averaged the very slow “diffusion”
across the cantorus with the much faster diffusion on either side.

The measured value of the variance also exceeds the theoretical value near
values of u corresponding to K = 2xrM/u? = 2xl where [ is an integer, and
pear u = 145 (K = 2.95). The standard map (8) exhibits “accelerator” modes
near these values of XK. An accelerator mode in the standard map is a stable

fixed point of the map that corresponds to monotonic increase or decrease of
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the action with each iteration of the map. Since the standard map is periodic
in the action, these fixed points are encircled by KAM curves, .and there is an
“island of stability”.? Orbits started inside the island remain inside and vice

versa.

Locally, any small region of the Fermi map lying between adjacent (period
one) island centers resembles the standard map. Thus, we expect the Fermi
map to show behavior similar to that of accelerator modes in the standard map.
However, generic maps such as the Fermi map are not periodic in the action.
Because a change in u corresponds to a change in K, and accelerator modes
in the standard map exist only for limited ranges of K, the Fermi map cannot
have true accelerator modes. The corresponding fixed points and associated
KAM curves do not exist. This allows orbits in the Fermi map to diffuse into
and out of regions of phase space where they may be accelerated for a number
of iterations that will depend on both K and M. Large values of M correspond
to Fermi maps that closely resemble the standard map over many adjacent
island centers, and thus exhibit orbits resembling accelerator modes for long
times. An example of such bebavior was seen in Fig. 6a near u = 100. The
effect of such orbits on the variance is shown in Fig. 7a, where evidence of these
“quasi-accelerator” modes may be seen at u = 145. and u = 100., corresponding
to K = 2.95 and K = 2x. The effect of “quasi-accelerator” modes is the only

major disagreement between our theory of diffusion and numerical experiments.
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V. Conclusions

Using a local diffusion coefficient that includes the higher order correlations
‘of diffusion in the standard map, the Fokker-Planck equation is integrated to
obtain the evolution of the distribution function for stochastic orbits of generic
Hamiltonian twist mappings. Oscillations of the variance as a function of the
action are observed. For the Fermi map with u < (32M3n)1/, these oscillations
in the variance average to zero, yielding the quasilinear value. For larger values
of u, the variance may exceed the quasilinear value by as much as a factor of two.
For u approaching the KAM barrier, the variance tends to sero. In addition,
peaks and dips in the diffusion interact in a complicated manner. These effects
are predicted by the Fokker-Planck equation, using a local diffusion coefficient
derived from a locally equivalent standard mapping.

Dips observed in the invariant (steady state) distribution are due to the
existence of KAM barriers around stable fixed points. When these islands
are taken into account the invariant distribution is homogeneous (to a good

approximation), in agreement with the prediction of ergodic theory.
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Appendix A: Derivation of the Local Diffusion Coefficient

In this appendix we derive a local, intermediate time, diffusion coefficient

for radial twist mappings of the form

Uni1 = Up +€8in by .
. (A1)
Ons1 =6n+ A(tns1) -

For the Fermi map our result will be equation (10).

Following Rechester et al.3’,* we introduce the Viasov equation for the

distribution function P(4,u,t),

8P 08638P 06udP od3%P
F T T i i b (A2)
We have introduced noise in the system, represented by the last term on the
left band side of (A2), corresponding to diffusion in 6 with variance ¢. Since

we are interested in calculating an action diffusion coeflicient, we let
P(f,u,t =0) = —-6(u - u,)
3By = —~2* o)

that is, a line of initial conditions with random phases and initial action u,.
With this initial condition P(8,u,t) is just the probabilistic form of the transi-
tion probability W; used in the main text. A

Equation (A2) may be solved using a Green's function. We find

P(6,u,t) = 2'r(':’(é' - 8’;«)1’(0’ ,u <+ enin ¢, t - 1)d?’, (A3)

where

G(o-¢,u) = (2«_:)"_’.;.:,,“" (_E’ -¢ - Az?) + 2m]z) g
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From the Poisson summation formula,!* we have

i i é(i"':ﬂ'ﬂ): i é(a\m')e""'"

NT=00 m'==00

where ¢ is the Fourier transform of ¢. Choosing 3(&) = ﬁe-g' /",

¢(t+2m) vF p[_(u—m) /4]

with A = (¢/2)Y/3. For t = 6 — 6’ — A(u) we have

[6 -6 — A(u) + 2%n]?
21ra) (270)'"? E ( 20 )

R==00
1 00
= c—,———""‘ cun' (0-0'-A(w))
2 mi==00

Using this relation in (A4) and inserting into (A3), we obtain

o0
P(0,u,t) = Z c-“—'i"— im's —im’ A(v)

m!=-00

ar o1
/ 4 eV P(6',u+esinf,t - 1) .
° 2x

Introducing the Fourier transform of P(6,u,t),

P(0,u,t) = (2 23 Z dk efimo+klgt (k)
. (A5)
o () = j af du e~imi+inlp(g u ) |

we find

al, (k) = E ¢"" / 3' do / du e=i(m=m*)0 —iku —im’A(x)

m'=-—00
3 Jaor
ﬂc"" "P(0',u+esind’,t - 1) .
o 2%
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Performing the @ integration yields a Kronecker delta, é,, m; and after doing

the sum over m', we obtain

2r oo
at (k) = = dg' =™ du c~SIEv+mAN)I D@ o 4 €siné',t — 1) .
- -0
(A6)
We pow focus our attention on the u integral, treating ¢’ as fixed:
OO
In=[ ducwtmAG)Ip(g o« 4 enind’,t =1). (A7)

-co

As discussed in sec. I, we would like to describe the evolution of a distri-
"bution function in action alone, using the Fokker-Planck equation. Thus we are
interested in calculating a dﬁion coeficient for times ¢ (An in sec. I) short
enough that the action does not change by much, but long enough so that each
particle in the distribution receives many uncorrelated kicks, i.e., we assume
a separation of time scales roction >> ¢ >> Tpaese. This means that in the
expression for af,(k), t is short enough that P(#',u +esin#,t —1) in (A7) is

still sharply peaked. Because of this fact, we may expand A(u) in the exponent

around the initial action u,: - .
AW =AG) + (u=w) (G2)_ + Jlu-w? (%)“ .

=a(to) + uK (uo) + -«

Then we obtain

3 Q ’
Iy=ce"'"™me du e$E+mK) D9 o 4 enind',t - 1) .
-0
Letting w = u + ¢sin &, we see that

I = emmagietamBuns [Z g, —itmKIop(gr g1~ 1) .
=00
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Using this in (A6) we obtain

at (k) = i J;(lk'e])c.—"’:c""

[ > ' [ du e=ilim=togn(k+mK))0'+(k+mK)w] P(# w,t—1).
o -0l
where we have also used the identity
. w 3
et = 3 J(B)er M, B>0.
I==00
Using the definition (A5) in the double integral, but at time ¢ — 1, we obtain
the recursion relation
oo
ah(B) = Y D(Ke)e™ T e maatsl(¥) (A9)
I=~00

where
K =k+mK

m' =m - lsgnk’.
This result differs from that in reference (4) by the term e=*™ in (A9), and by
the expression for k'. The difference in &’ results in a change in the arguments
of the Bessel functions. In the case of the standard map k is an integer. In the

more general case k is K times an integer (or sero).

With (A9) we can obtain the diffusion coefficient from the following argu-
ment*'? . Using equation (A5) in the definition of the diffusion coefficient (2)
and integrating by parts, we find

18 .

D(u,) = lim a, (k) , (A10)

k0t T Ok?
where T >> 7ppaqe, and we have neglected terms proportional to 1/7. From

this expression we see that the path in Fourier space must end at (m, k) = (0,0).
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Furthermore, we are interested in the case ¢X > .9716, that is, where diffusion
occurs in the absence of external noise. In this case T >> (2/Ke)? and the
path must also begin at (0,0).4 Because the path must begin and end at (m, k)
the sum Y_, m; = 0. Therefore [], e~™® = 1, so that the e™*™ term in (A9)
has no effect on the diffusion coefficient. If each m in the recursion (A9) is
equal to sero, then

a7, (k) = [Jo(lke))} a3(k)

and from (A10), treating ke as small, Jo(Jke]) = 1 ~ (ke/2)? so that
D(u,) =¢€3/2.

Considering now paths that leave the origin we see from (A9) that for the first
step away from (0,0), m’ = —Isgnk’ and k' = k. That is, the first step must be
(0,0) — (—lsgnk’,0), from which we obtain a factor Ji{|ke|), where k tends to
sero. Furthermore, since the path must end at the origin we must have a step
(1, -1K) — (0,0), giving a factor J;(Jke|). For k small, Jy(ke) = (ke/2)'. These
st;ps will contribute a factor of &%, which will give a sero contribution to the
diffusion unless I = %1 and one derivative in (A10) operates on each J;(ke|).
These two steps will contribute a factor of €7/4 to each path that leaves the
origin. The simplest example of a path which leaves the origin is given by
(0,0) = (1,0) = (-1,K) — (0,0), (and its mirror image), which gives

ato (k) = 2(T ~ 2) [Jo(lke)]™~> I_a(lkel) Ja(I(k + K)ee™*/La (jkel)e™ /2,

and contributes a term

—€2Jy(|Ke|)e™

to the diffusion.
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We may proceed in this manner to sum more paths to obtain more accurate
values of D(u,). But notice that whenever ¢ appears in the argument of a Bessel
function, it will always be multiplied by k' = k + mK. Bessel functions with
m = 0 contribute factors of J,(0) = 1, Ji(0) = 0, or ¢/2, where the last term
corresponds to entering or leaving the origin. Because of this simple rule, we
may take over the results of reference (4) simply by letting ¢ — Ke. However,
we must divide the result by K? to cancel the extra K2 in (/2)% — (eK/2)?
corresponding to the steps entering and leaving the origin. This must also be
done for the path which does not leave the origin. Symbolically,

D(u,) = D,(CK )
where K = (0A/du),,. For maps such as the Fermi map, ¢ = 1, and
D(u,) = D..,(K )

which is equation (10). For the Fermi map, A(u) = 2xM/u, so that K(u,) =

—2xM/u? , and if K >> 1 we obtain

D(uo)=35~J (2"M) +J3 (2"M) ,

U u3

which is equation (11).

For the expansion (A8) to be valid, we must have

(v—- "°)a >> (u u.)g‘:.

or

K/ (8K/ou) >> %(u —u). (A11)

As an estimate we have |u — u,| & eV/T, using the quasilinear diffusion. For

the Fermi map (A11) becomes
Yo >> VT
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which is usually easily satisfied.

Appendix B: Island Sise Calculation

We outline here the perturbation calculation for the size of the stable is-
lands in the standard map.

First we convert the standard map to a Hamiltonian. Using a periodic

delta function,

i b(n-q)= i cos (2wgn)

=-0c0 ==
where n is the “time”, the map may be written in the Hamiltonian form
1 = ‘
H(I,6;n)=I*+K ) cos(6-2xng).
2
=~
| Moving to extended phase space, we obtain
~ 1 —
H(1,0,0,¢)=22J+ 3P +K Y- cos(8-¢q),
=-c
where J = —-H/2x and ¢ = 2xn. The new Hamiltonian is independent of
the new “time” £ . Letting § — x + 0, we find the Hamiltonian for a driven
pendulum

lI’+2tJ-Km0

-Kz:coa(a—#).
20

i=

(1]

(B1)

We have a slow motion described by the (7,8) variables and a fast motion
described by the (J, ¢) variables. Near the pendulum separatrix, the interaction
between the two oscillations leads to chaotic motion and jumps in the actions

I and J. The jump in J may be calculated over a half-period of the separatrix
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motion. Since H is linear in J we may write ¢(t) = Ot + &,, where 1 = 2x
is the period of the J motion and @, is an initial phase. For 6(t) we use the
expression for 0 on the separatrix: §(t) = 4tan~! e~“** — x. Keeping only the

leading term in the interaction we obtain

aF
AJ--[aw

= Ksin®, _: %cos (a(r) + “wL,)
- %A, (wﬂ) sin(®.)

where &, is the phase after n half-periods and w, = VK is the period of
small ibrations of the pendulum. The maximum amplitude of the jump is thus
AJ, = (K/w,) Az (/w,), where the Melnikov-Arnold integral A5(Q,) is given

by

4xQ, exp (vQ,/2)
sinh(xQ,) )

The change in the phase ® is T, where

= 3/ 255)

"is the half-period of the motion near the separatrix. These relations may be

Az (Qo) =

expressed as a mapping (called the separatrix map3),
NAaJ, .

Wnyy = Wy — X sin ®,,

1] 32
n+l n o lwu-l-l'

(B2)

where w(J) = (H - K)/K, which is the deviation of the energy H = -02J
from its value of K on the separatrix. The width of the stochastic layer in the

separatrix map corresponds to the width of the separatrix around the resonance
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in the standard map. This width is found by using the 2/3 rule’or by approx-
imating the separatrix map by the standard map and solving K (wp) = Kerit-

The result is

n? 0
%)

Wo

We then use J = =K (1+w)/Q, and the sign of w; that describes the separatrix

widening into the island to obtain

K 0
J5=-ﬁ+ﬂA3( )

Wo
Returning to the Hamiltonian (B1), we solve for I = I,{6). This is the equation

of the outer-most stable orbit which determines the size of the island:

E:ﬂ.h-i-%l?-l(coaﬂ

or, sinceEEO.
2 0
1?(0) =2Kcoa0+2l?-2ﬂ Az(w—)
o

4 -
= 2K(1 + cos ) - i‘-‘;’;-—"x-pihl) :
K? sinb(37)
To apply this result to the Fermi map, we note that K(u,) = 2xM/u3 and

Au = (1/K)I so that

Auy(f) = \/ %(l + cos 6) - ::5,”: .::((;:!;/\% '

This is the equation of the island surrounding the stable fixed point at v, = M/I,

where [ is an integer.
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The calculation of the size of the islands surrounding period two fixed

. points is similar. We start with the same Hamiltonian:

B(1,6,0,)= 31 +267 +K Y cos(6  o4)

e=-c0 (B3)
= ﬁo + §l
with H, = (1/2)1? + 2rJ and H, = K35 o cos(f — gd). We are interested

in gero order orbits at I = (2p + 1)x and 8 = In, so that

_oi;___2p+l
wz- 2 :

We see that & 1 has no first order resonances. Since the perturbation term in
(B3) does not exhibit this resonance in lowest order, the calculation must be
carried out to second order. It is therefore convenient to use Lie transformation
methods”to obtain the analog of B1. We wish to obtain a canonical transforma-
tion w(I,6,J,¢) to a new Hamiltonian Kz that has no oscillatory part (along

- the sero order orbits). We do this by solving the following set of equations:

»

0= Ko —ﬁa
D.w; = Kx - ﬁ] (34)

Dows = 2(K3 - ﬁg) - [w;, (§1 + K;)]

and 50 on. Here Dow = 3 + [w,ﬁ,] where | , ] is the Poisson bracket in
extended phase space. We pick K, to eliminate secular terms on the right-
hand side of the first order equation. Then w, is chosen to solve the resulting
equation. We then use w; in the second order equation and follow the same
procedure to find K; and w;. The new Hamiltonian Kz describes the motion

near the period two fixed point at I = (2p + 1)x.
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Since K; =< ﬁ; >, we have K; = 0. Solving for w;, we obtain

[wx,ﬁo]=( 9 +2t8¢)

=-K Z cos(6 - ¢¢) ,

§=-00

such that

We pote that the denominator is non resonant. Proceeding to second order, we
have H; = 0, so that the right-hand side of (B4) is -[wl,ﬁl]. We choose K3

to eliminate 1/2 < [wl,ﬁn] >, where < > denotes averaging over 8:
_ dw, 8H,
Ka=-3 < oI 98 >

K3 sin(6 — q¢) sin(6 — ¢'¢)
2 <Z (I - 2xq)? >

i

(X
_K (2 con(g — ¢')¢ — cos|26 (q+q')¢1>
T2\ (I - 2xq)?
"
Performing the sums and averaging, we ﬁnd
Kz = -Ii% K miza (2p+1)¢] .

The transformed Hamiltonian (including the averaged terms) is then

Ka
Kr= -1’ +21J = — cos[20 — (2p + 1)4]

16
T N TR D
L]

e+’ ¥ip+1

To put Kr in the form of a driven pendulum we use

Fa=(20-(2p41)¢)Js + ¢J3
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to make a final transformation I = 2J,, J = Ja—(2p+1)J1, 6, = 26— (2p+1)¢,
6, = ¢. Expanding to second order around the fixed point at J;, = (x/2)(2p +
1), we find

AK7r(Jy,61,J3,63) =14(AJ,)3 +2nJ; — Il(_smal

+K§:eoa( 0+ (p—g+ o )92)

cos [0: +(2p+1)-(¢g+ Q'))Gz]
e+e'E2p+1 (pP-g+3)° .

The rest of the calculation exactly parallels that given after (B1). For the
Hamiltonian AK the frequency of small librations is w, = K/2, and there are
two types of perturbations. The dominant term is K cos((l/2)0; - (1/2)93).
This calculation gives an estimate for the equation of the stable island

I»(o)=\/"7’u+m) s ”‘:(‘ZE,’)

For the island size around the u = 2M/(2p + 1) fixed point of the Fermi map

we find

Auy = J =(1+cos 32"3&((;,)— .

The results of these calculations are shown as the solid lines in Fig. 3.
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Figure Captions

Fig. 1. Tbhe Fermi map for M = 10,000. Thirty-two initial conditions started
near u = 10 were iterated 1,400,000 times; u, marks the KAM barrier and
u, the stochastic barrier. Twenty initial conditions were started above u, and
iterated 200 times to illustrate regular orbits.

Fig. 2. Do (K) vs. K, from A. B. Rechester and R. B. White, private com-

munication.

Fig. 3. The equilibrium distribution function obtained from 10 million itera-
tions of 64 initial conditions started at low initial velocities. The phase space
is projected onto the action axis, which is divided into 6000 bins. The dots
represent the (normalized) number of visits to each bin. The solid lines are the
fraction of phase space outside stable islands, as calculated in the appendix.

Fig.-4. The (averaged) fraction of the area accessible to stochastic orbits in
the Fermi map, < f,(u) >u;~*, and in the standard map, < f,(K,I) >;. The

deviation for large u is due to insufficient iteration time in the Fermi map.
Fig. 5. The local diffusion coefficient given in (12) as a function of action, u.

Fig. 6. (a) The distribution function obtained by iterating 6400 initial con-
ditions with u, = 90 and random phases. The dots indicate the number of
particles within Au = .025 at a given action. The solid line is the prediction of
the Fokker-Planck equation with the diffusion coefficient (12); (b) The same as
(a), with u, = 186. The dashed line is obtained using (13). '
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Fig. 7. The variance plotted as a function of initial action. Each dot corre-
sponds to a measurement of the diffusion obtained by iterating the Fermi map.
The solid line is the theoretical variance obtained by integrating the Fokker-
Planck equation; (a) after 20 iterations; (b) after 40 iterations.
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