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ABSTRACT

A new model is proposed for the study of transient stability
where the load is modeled as a PQ bus. Flux decay of the generator
field winding is included. The original network topology is main-
tained explicitly. An energy function is proposed which differs from
the traditional one in that it includes additional terms correspond-
ing to the energy stored in the loads and field winding. The new
energy function eliminates the difficulties in earlier approaches
arising from transfer conductances. Moreover, the preservation of
the network topology in the energy function makes it much more

suitable for on-line security assessment.
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1. Introduction

The use of energy functions in power system transient analysis is now well
established. These functions are used to estimate the domain of attraction of &
stable equilibrium point. The standard approach to constructing energy func-
tions is facilitated by three modeling choices: a generator is modeled by the
classical swing equation, a load is taken to be a constant impedance, and the
entire network is reduced to an n-port as seen from the n generator internal

buses.

These choices impose several limitations. The classical swing equation
assumes a constant field flux linkage which is unrealistic. While it may be con-
ceded that in the time period of interest one can reasonably ignore governor
and exciter feedback effects, critics contend that flux decay cannot be ignored.
In the model used here, the classical model is aﬁgmented by a lux decay rele-
tion to yield what Anderson and Fouad [1] call the "one-axis” model. From the
vantage point of this augmented model it will be seen that the classical equa-

tions generally give more conservative estimates of the region of stability.
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Second, in this study the load the load bus is viewed as a constant PQ bus.

This is generally accepted as being more realistic. It also conforms with the
practice in load flow studies.

Third, the reduction of the network to an n-port entails two deficiencies. On
the one hand, this introduces transfer conductances even when the transmission
lines are lossless. To obtain an energy function one is then led to ignore these
transfer conductances creating an error of unknown magnitude. Alternatively, if
one chooses not to ignore the transfer conductances, then one is faced with the
computationally cumbersome and mathematically unsound practice of defining
the energy function via path-dependant integrals. In contrast, the energy func-

tion proposed here is exact for PQ loads and lossless lines.

Reduction of the network to an n-port erases the network topology making
it irnpossible to allocai:e the aggregate energy to the components of the net-
work. As a result, changes in energy during a transient cannot be decomposed
into energy shifts occurring in individual power system elements. Since the pro-
posed energy function is the sum of the energy of each individual component, as
will be seen in the illustrative examples given below, this provides an insightful
description of the transfer of energy during the transient. One other attempt to
provide a "structure preserving” Lyapunov function [8] is limited by the require-
ment that loads be modeled as PV buses.

Finally, the proposed energy function is expressed in two forms. The first is
more useful for purposes of mathematical analysis. The second is especially

appealing from the viewpoint of computation and practical implementation since

the expression involves only terminal measurements.

This paper is structured as follows. The one-axis model, as well as the classi-
cal model, are presented in Section 2. The energy function is derived in Section

3, and alternative forms are given in Section 4. Key stability results occupy
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Section 5, whereas Section 6 is devoted to the evaluation of the critical clearing
time. Examples may be found in Section 7. All the figures are collected at the

end of the paper.
2. Model

2.1. The network

The power network consists of n+m+1 nodes or buses connected by lossless

transmission lines. It is represented by its node admittance matrixY = [Yij 1

where Y;; = —jBy, and B;; is the susceptance of the line connecting buses iand j.

The first n nodes are the terminal buses of the generators. Bus n+1 is an infinite
bus. These buses are indexed by i or j = 1,2,...,n+1. Each terminal generator bus
is connected with its internal generator bus through a lossless line (armature
resistance of the stator is neglected) with reactance equal to X', the generator
transient reactance. The remaining m nodes are the load buses. These are
indexed by k or | = n+2,.....,n+m+1. Let E; Z§; denote the internal voltage phasor
and V; LU; denote the terminal voltage phasor of the ith generator. Let Vi / ¢y
denote the voltage phasor of the k* load bus. All phase angles are measured
relative to the infinite bus i.e. ¥p43 = 0. Furthermore Vp41 = 1. p.u..

2.2. loads

Each load is represented as a constant real (P4) and reactive (Q?) power

demand. Therefore we refer to a load bus as a PQ bus.
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2.3. Generator Model

It is generally agreed that in transient stability studies, generators close to

the fault should be modeled in greater detail. The complexity of a generator

model depends on how many of the rotor windings have been represented. Two

models are considered here.

2.3.1. The One-axis Model

This model includes one circuit for the field winding of the rotor. For a com-

plete description and more details see [1,37). The model is given by the following

differential and algebraic equations.

For generator i

6; = 2mi(ewy—1)
Miw; = P = Di(wi—1) = E'gIg + (xg%a) Iy,
T'dqﬁ'q; = -E'q‘ + (Xd‘-X'dl) Idg + pr

Vq; = E’ql + x’d‘Id‘

Vo, = —xXqlq,
Vit = (V, + V) &Y
where,
4 = Synchronous frequency (80 Hz)

pr = Mechanical power (torque)

CE)
(2.2)
(2.3)
(2.4)
(25)

(2.8)

S7¢



- 9y ¢

-5-
M;,D = Moment of inertia and damping coeflicient
X3, » Xy = Direct and quadrature axis synchronous reactance
X'q, = Direct axis transient reactance (Xg, < X3, Xq,)
Tde, = Direct axis transient open-circuit time constant
E'¢li = Quadrature axis voltage behind transient reactance
Ep, = Voltage behind synchronous reactance

Voo V4, 1g, 1s, = Quadrature and direct axis components

of terminal voltage and current.

The mechanical power P{™ is assumed constant. Ep, is the output of the exciter
and is also constant. The internal generator voltage is E'; with E'g its component
along the quadrature axis. Figure 1 shows the phasor diagram of the stator.

The field winding is modeled as a linear RLC circuit. The flux linkage, ®f, is

given by

QF; = LF;IF| + LADIIdx (2.7)

where Lg, Lyp, is the self and mutual inductance respectively. Equation (2.3) can

also be written as

Qp‘ = -rF;Id‘ + VF, (2.8)



where Iy, is the field resistance and Vg, is the field voltage. Finally*

E, = Lﬂ"’n (2.9)
Fy

2.3.2. The Classical Model

If we assume that @pl is constant, or equivalently E’ql is constant, and
Xg = x’d1 then we have the so called "classical model. It assumes a constant vol-

tage behind a transient reactance and it has been used widely in transient sta-

bility studies. The motion of generator i is governed by the "swing" equation,

é; = 2mi(w;—1) (2.10)

E,V; sin(6;~9,) @11)
x'd;

M;o; = PP - Dy (w—1) =

where E'g has been replaced by E;, the internal generator voltage.

In both models the effects of the amortisseur or damper windings have been
neglected as being very small during a transient. As suggested in [1), in some
cases, these effects may be included in the damping torque i.e. by increasing

the damping coefficient D.

3. Energy Functions

The terminal buses of the generators are modeled as PQ load buses with P =
0 and Q = 0. This means simply that they are treated as power distribution sta-
tions with no local loads.
We choice of per umit base quantities a factor of V3 might be needed i.e.

«=
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S.1. The One-axis Model

For a power system where the generators are represented by the one-axis

model], the system equations are given by

6; = 2nf (w;—1) (3.1)
M;cy = PP - D;(w—1) — P§ (3.2)
T'do‘ .
—FE'q =K (6,E',9,V,9) (3.3)
XX * 1
i=1,..n
where,

VZsin[2(6;-9;))(x'4,~x,) .

S =5(6,E8,V,p):=

2Xq X'q
E',V; sin(d;—9;
G 'i x'dl i 1) 3.4)
and
' V; cos(6;—;)
(8,E',,9,V,p) = — - X4 B 4 iV
I(i QO) xdl(xdl—x,dg) [} x'dx

1

S ra

(Xq %) T (3.5)

At the i® terminal generator bus, i = 1,...,n, one gets

V# sin[2(9;~6;)](x'4 ~Xg) .

0=gi(6,Eq3.V,9):= TR

BV¢



E'qlVi sin('t?i-di)

xd1

n+1
jmi

n+m+

8 By Vi Visin(oi—p) @8)
k=n+2

X'd“l'qu v? - E'q‘Vi cos(%;-6;) _
2XeX'a | X4,

0=Dhi(5,Eqv,V,p):=

VPcos[2(5,-6)] (¥g%g) _
2Xg X'g,

n+1
an;? - 2 B,,V,V, COS('l’i"!’j) -
Jei
n+m+1
Y, BgV; Vi cos(¥—py) (3.7)
k=n+2

At the X'® load bus, k = n+2,...,n+m+1,

n+l
Pkd =8 (6n E'qv ﬂ'vn ¢) = 2 Bkivkvi Sm(%-’al) +

i=1
n+m+l .
2 BaViVisin(gx—¢) (3.8)
lnk
n+1
Qf =hy (6,E',, ¥, V. 9) := =B VE - iZ‘.IBkinVi"r‘l'»‘s(fﬁ’k“"i) -

n+m+1

1& By Vi Vicos(pr—9)) (3.9)

Equations (3.1) - (3.9) constitute the system model. We can revwrite them in a

more compact vector form

6 = 2mi(w—1) (3.10)

6ve
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Mo = P2 = D(w—1) —1(6,E'q,9,V,9) (3.11)
Tao g = K(8,E',3,V,9) (3.12)
2g—xq ¢ g
0=P-g(s,E,v.V,9) (3.13a)
0=Q¥~h(5,Ev.V.9) (3.13b)

Let Z, denote the 2n-dimensional manifold or surface of all points
(6,E'(,8,V, p) € R+ gaticfying (3.13). Then the state for this model is
(@,6,E',9,V,9) € RPxZ;.

Obviously V; > 0, i = 1,...,n. Assume that the load is never zero, that is,
(P82 +(Q8)2> 0.Then Vi > 0 , k = n+2,....n+m+1, and one may define

new variables y; := logV; , vy, =logVy. Consider the function

Vi (8. E'g, 9, v,9) := — <PB,6> — <Pdp> — <Qdu> - <k_dE E'g>

(¥a~xg) cos[2(6,-9)] = (X4%g) | 621

2By +

i=1 RXyX'q, l 2

i E'qe'cos(d—9) o Xq, E2 _

{=1 X', f=1Xq,(Xg—X'q) 2

n+l n+1 n+m+l

Y Bye"™cos(v~9) - 3 Y Bye"™cos(v—g,) —

i<j {=1 k=n+2

n+m+1 n+m+1 X
Y Bue™cos(p~y) - ¥ Bkkz— (3.14)
k<l =n+2

Let

0S¢
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Wy (@,6,E',9,v,9) := -;—(217{)< (w—1),M(w=1)> +

vl (63 E,qr 1’» v, v) (3. 15)

where <., . > denotes inner product.

Observe that

av,

66i = le = f:'l (6- E'qc 9, v, ¢) (3.16a)

- av_',z K;(3,E',, B, v, @) (3.18b)
OE'q
9V,

75, =-g(6,E'q%,v.9) (3.18c)

- iV_,_= =hi(6,E'q, %, v, %) (3.16d)
dy;

avy _ .
ot e Qf — hy (8.E'q, 9, v,9) (3.16e)

Vi _ g :
o Tk ~8x(6.Eq.v.9) (3.181)

V; is the potential and W, is the (total) energy function for this model. Using
(3.16) it is easy to check that along the trajectories of the system we have

T4

LW, (0.6, E,3,v,9) = =3 [2niDy(e-1)% + _;a,E"i] <0 (3.17)
j=1

dt

which shows that W, is a suitable Lyapunov function for the system. From [1,37]

we have
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= s (3.18)

and

L,

xdl—f 4 - L—Ft- (3. 19)

Using (3.18) , (3.19) and (2.9) we get

'd_wl (0' 6- E'q.%,v, ?) = -i {21rﬂ)i(wi—1)z + -l_éﬁl =0 (3'20)
dt' @ i=1 rF; !

which shows that the decrease in energy equals the dissipation due to damping

and the power dissipated in the field winding.

3.2. The Classical Model
When the generators are represented by the classical model the system

equations are given by

6 = 2mi(w-1) (3.21)
Mo = P® - D(w—-1) - £(6,9,V,9) (3.22)
0=Pd-g(6,9.V,p) (3.23a)
0=Q4-h(57.V.p) (3.23b)

where f, g, h can be easily obtained from (3.4) - (3.9) upon replacing E'q by E;

and setting Xy, = X'q,.

eS¢
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The state for this model is (@, 8,9, V, ) € R°XZ,, where I3 is the n-
dimensional manifold or surface of all the points (6,9, V, ¢) € R3*2m gqtistying
(3.23).

From (3.14) or from the model equations (3.21) - (3.23) we have

Vo(8,9,v,9) := — <P®,6> = <Pd,p> — <Qd > -

2 E;e"cos(é;—v;) & 1, e
By- —) &~

sg:a X'q i>=:1( i xd,) 2
n+1 n+1 n+m+l

iquij e"‘w’cos('t?i-'t’j - i21 k=§+zBik-e"‘+"“cos(ﬂi-¢k) -
n+mi1 n+m+1 2 |

kZ(}l By e™** cos(gy—¢) — kg} szk 32—- (3.24)

=n+

Wo(w,6,9,v,9):= -é—(21rf)< (0-1),M(w—-1)> + V,(5,%, v, ¢) (3.25)
Equations (3.18) are also satisfied for this model and
n
LW, (0,6,9,v,9) = - 3, 2m Dy (=12 < 0 (3.28)
i=1

which was expected since @y! ,1=1,...,n, is constant for this model.

Remark 3.1

The incgualities (3.17) and (3.26) show that the energy functions can be used as
Lyapunov functions. Moreover, the fact that (3.17) contains an additional dissipa-
tion term in comparison with (3.26) suggests that stability estimates based on

the classical model will be more conservative than the estimates based on the
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one-axis model

Remark 3.2

These system models are to be interpreted as follows. One solves the algebraic
equations (3.23) [ (3.13) ] for the unknowns ¥,V, ¢ in terms of 6 [6 and E'q] and
substitutes them into (3.21) - (3.22) [ (3.10) - (3.12) ] to obtain a system of
differential equations in & [6 and E'(] alone. This procedure, however, yields a
legitimate differential system in 8 [(8, E'q)] only if (3.23) [ (3.13) ] provides a
solution ¥, V, g which is differentiable in & [6 and E'q]. From the Implicit Func-
tion Theorem, a sufficient condition for this is that the 2(n+m) X 2(n+m) Jaco-
bian matrix obtained by differentiating the function (g , b) with respect to

(¥,V, 9) is nonsingular. While this nonsingularity may hold for reasonable values
of (6,9,V,9) [(6,E'q,¥.V,9)]inZ; [Z;]itis easy to see that it cannot hold for
all possible values. One way of overcoming this difficulty is to permit the trajec-
tories to have a discontinuity or jump whenever the Jacobian becomes singular.
This extension is defined via singular perturbations as in [23]. If in addition we
assume that the energy function does not increase at these jumps thenit is a
global Lyapunov function. Alternatively, one may restrict the possible states to
those initial values from which issue smooth trajectories over the infinite future.
This alternative will be followed here. More precisely, let Sz [S;] be the set of all
statesx = (©,6,9,V,9) [x= (©,6,E,¥,V,9)] in R*XxZ; [R2xZ,] such that
for all X € Sp [x € S,] there is a differentiable function x(t), 0 <t < =, with
x(0) = x and which satisfies (3.21) - (3.23) [ (3.10) - (3.13) ] for all t. Henceforth
the system model is taken to be (3.21) - (3.23) [ (3.10) - (3.13) ] with the state
space Sz [S;], and time derivatives of the energy function are taken along
smooth trajectories.

Remark 3.3

Since (@, 6,9,V.9) [(@,6,E'q,9,V,¢)]is an equilibrium of (3.21) - (3.23) [
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(3.10)- (3.13) Jifw = 1 end P® = £(6,9,V,9) =0 [w=1, E}y= O and

P®~1(6,E',9,V,9) = 0] the point (,9,V,¢) [ (3,E';,9,V, ) ] will also be
called an equilibrium.

4. Disaggregation and Reformulation

4.1. Disaggregation of the Total Energy

Consider the classical model. One of the main advantages of the proposed
energy function is that the potential energy of an individual line or group of lines
can be calculated explicitly. There are many ways to re-group the terms of
(3.15) or (3.25). In [18] it is shown that the potential energy stored in a lossless
transmission line is equal to half of the reactive power loss in that line.
Motivated by this we have the following terms (separate indexing of the terminal
generator buses from the loads is now very helpful).

Vign °= -;—(znf)<(a-1),m(o-1)> (4.1)

Vp, i= = <Pp, 8> (4.2)

Vp = = <P o> (4.3)

Vo == <% v> =< logv> (4.4)
2 1 Vf

Ver:= Y =—{ —=——E;V;cos(6;—3))] (4.5)
i=] Xdl 2

a_  VE+VE
VTJ'_' 4 ingu[ _iTL—Vivj COS(‘l’i-‘I’j)] +

n Viz
121Bi.n+1 [ i Vicos() ] (4.8)
n némél Vi?- + Vf

V=32 X Bik[——z—"Vincos(‘l’i-sak)]"'
i1 kene2

SS¢



n+m+ 2
+2 lBk.n+i[Y21‘_" Vi cos(ey) ] (4.7)
k=n+2

Vi i= 2"%["@-—;E—Vkvlcos(m—m] (8)

Here G stands for the internal and T for the terminal generator buses, and L for
the load buses. Similar re-grouping can be carried out for the energy function of

the one-axis model.

During a fault large amounts of energy are transferred from one system
component (generator, line, load) to another. We give an example that shows
this transfer of energy, during and after a fault, for the stable and unstable
case. The network is shown in Figure 2 and its data are given in Section 6 (Table
1, 2 and 3). Buses 8,9 and 10 are the internal and 4,5 and 6 the terminal genera-
tor buses. The fault occurs, at 0.04 sec, on the line connecting buses 3and Sat a
distance of 25% (of the line) from bus 3. If the line recloses at 0.34 sec the sys-
tem is stable, Figure 9, whereas at 0.36 sec generator 8 separates from the oth-
ers as shown in Figure 10, and the system becomes unstable. The terms of the
energy function are evaluated along the fault-on trajectory for both cases
shifted by a constant so that their value at the stable equilibrium point is zero.
The terms Vp, Vg, Vir. V1, are negligible in relation to Vin, Vp,, Ver and V.
The latter are shown in Figures 5 and 8 for the stable and unstable case respec-
tively. Examining in detail both cases we found that, soon after the faulit, the ter-
minal voltage V, of generator B drops and the angle difference 0g—7, increases.
The dominant factor though is g =1, which increases up to 80° making the
c0s(63—V,) term in Vgr almost equal to zero. This is shown in Figure 3. The
shape of the Vgr curve is determined by this factor. Similarly the dominant fac-
tor in the term Vqy, is ¥5 — @3 which is shown in Figure 4. Around 0.5 sec these

angle differences are maximum. In the interval 0.8 - 1.2 sec the terminal

-l
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voltage as well as the differences 83 —14 and 5 — @3 are very close to their
equilibrium value. As a result the energy function terms involving these vari-
ables are also close to zero. On the other hand dg is at its minimum causing the
Vp, term to become maximum. By the time this maximum is reached all the
kinetic energy has been transformed to potential energy. This is not true in the
unstable case (Figure 8) where at no time does all the kinetic energy get
transformed to potential energy. In almost all the faults that were simulated a
similar pattern was observed. There is little energy transfer between the load
buses { V1, is very small ) and between the terminal generator buses ( Vpris also
small ).

4.2. A Reformulation

We present a reformulation of the energy function that greatly simplifies its
computation.

Consider the one-axis model and its energy function W, as given by (3.15).
In practice it is also customary to have W; = 0 at the stable equilibrium by sub-
tracting from W, its value at the equilibrium. Let (6° E'§, 9%, V®, ¢°) denote the

stable equilibrium. Using (3.7) and (3.9) we can rewrite W, as follows

W, (w,8,E',9.V,9) = é—(Zni)< (@=1),M(w—1)> — <P®,5-5°> +

Li¢ X g2z L fm vicos(é—9))| -
2 i=21 I.xfdl(xdl_x'dt) “q X'd, l Q 'l ( 1 l) ]

1) %
1 Lx'dl(xd;"x'dt)

' T 1
g EREER + {Gan Qi) =

' 1 "
E'S? - ;;[E LAYy cos(6i'-19{)] ] -

LSc¢
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<Pd,9—p%> — <Qd,log -;—L—> (4.9)

Similarly, for the classical model,

Wa(w, 6,8,V,¢) = é—(Zfrf)< (@-1), M(w—1)> — <P™,6—6% —

1 —[Vicos(d —9;) — V¥ cos(68-5) ] +
i-1

L (Qu1=0841) - <Pl - <Qllogl>  (4.10)

where Q.+, is the reactive power injection at the infinite bus which is not con-
stant. If, instead of the (n+1)™ terminal generator bus we take as infinite bus its

internal generator bus, then

Qn+1—Qas1 = — x‘:ﬂ [Vn+1 cos(Vpeq) — V§+1¢°S(1’§+1)] )

otherwise we have to sum the reactive power flow from bus n+1 to all the buses

that are connected to it.
The sum in (4.10) can also be written as

.__2 E; [V cos(6;—0;) — V¥ cos(68-vf) ] = ‘é‘i Q-QP)
2 X i=1

where Q; is the reactive power injection at the it generator internal bus. The

same form is not possible for the corresponding sum in (4.9), but both functions

(4.9) and (4.10) can take a simpler form.

N4
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The voltage behind synchronous reactance, Ep, is given by®

Lap, Vr,
Ep‘ = T (4.11)
Using (2.7), (2.9). (3.19) and (4.11) we have
W, = é—(an)< (0—1), M(w—1)> — <P™,5—5%> —
<Ly op—0p> + L3 [oplp—02 18] +
Ty PR 2 FyiF 2hy Ol
I (Que1=Q84)) — <Plo—9*> - <Qllog 3’—3> (4.12)

wherea =1 or 2.

The time needed to compute W, has been reduced substantially using (4.12)
since the number of operations needed is proportional to the number of buses
and is independent of how these buses are connected. Equation (4.12) is valid
even if some or all of the terminal generator buses have local loads i.e. P; # 0

and/or Q; # 0.

Finally, the energy function (4.12) is a valid Lyapunov function for a power
system where some of the generators, say those close to the fault location, are

modeled with the one-axis model and the rest with the classical model.

We choice of per unit base quantities a factor of V3 might be needed i.e.
F‘ = ..

66¢
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5. Asymptotic Stabﬁity

Consider a power system where the generators are modeled with the classi-
cal model. The distinction between internal and terminal generator buses,
although helpful in calculating the total energy function, is not needed for
analysis. Therefore, we incorporate the terminal buses and the transient reac-
tances into the bus admittance matrix. The resulting network is still lossless.

The system model is then given by (cf. (3.21) - 3.33))

Mé +Dé=P2-{(5,9,V) ‘ (5.1)
0=Pl-g(s,9.V) (5.2a)
0=Q~h(s V) (5.2b)

where M and D have been normalized by 27,

o+l . n+m+1 . .
f,(3,¢.V) = Y, E;E;Bysin(6;~6;) + ) E;Vy By sin(6;—py)
ju k=n+2

and
d n+1 . n+m+1 A
P =gx(6,0.V) := iZ;VkEiniSlrl(sok"'ﬁi) + IZ;‘ Vi V) By sin(gx—#1)
= v
d_ _ s B ,
Qf =hy (6,9, V) := —By Vi - i2;"3:1"31131:5COS(!P]:"%) -
n+m+l
Y, VxViBycos(px—v)
lwk
The energy function is given by

W, (6,6,9.0) = -é—éTMé + Vo(8,9,v) (5.3)

Udc¢
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where vy = logVy, k=n+2,..,n+m+l, and

Vo (6,9, V) = —<Pm,8> — <Pd 0> = <Qdv> -

n+l n+1 n+m+1

Y ByE;Ejcos(8—6) — ), 3 ByE;e™cos(si~py) -

i<j i=1 k=n+2

n+m+1 ném+1 vy
Y Bue™Mcos(py-v) = Y BaSH— (5.4)
< k=n+2 2

and
L w,(5,6,p,v) =-6"Dés 0 (5.5)

dt

Recall that an equilibrium is (asymptotically) stable if trajectories starting
at initial states sufficiently close to the equilibrium converge to it. Since (5.3) is

decreasing along (continuous) trajectories, we have

Lemma §.1

An equilibrium (69, ¢°, V°) is stable iff it is a local minimum of the potential Vz
(restricted to the surface Z3 defined by (5.2)) i.e. iff PTF,P, evaluated at

(6%, ¢°, V9) is positive definite, where P is the projection of (5, ¢, V) onZ3 and F

is the Hessian of Vj.

There is a very simple sufficient condition for stability if there are no load-
to-load connections i.e. if power transfer through lines connecting loads can be

neglected.

Lemma 5.2
Consider a power system modeled with the classical model (5.1) - (5.2). Assume
that there are no load-to-load connections i.e. By = 0 and let (60. ¢°,V°) be an

equilibrium. If

182
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T 5=
1) l6f - 6j°l< 2 whenever By >0, i,j=1,..n

2) cos(6P-¢Q) = -2%-, whenever By >0, i=1,..,n, k=n+2,..,n+m+1
X

Then (6%, ¢°, VO) is asymptotically stable.
Proof see Appendix

Condition (2) of Lemma 5.2 has appeared in the literature, see [36], as an
assumption in the form 2Vy > E;. As far as we know this is the first time that
some physical interpretation is given to it.

We emphasize that these conditions are only sufficient. In Section 7 we give
an example with two stable equilibrium points and in one of them these condi-

tions are violated.

We give now some theoretical results concerning the region of attraction of
a stable equilibrium point. In the interest of brevity let x denote the state of the
system (x is (8, 8) for the classical model and (6, 0,E'g) for the one-axis model).
The algebraic equations have been solved for the non-state variables in terms of

x. The model then can be expressed as
x = F(x)

Consider the classical model. Notice that the sets {Vz < c} and {W; < cj are
not bounded so the next result is surprising.
lemma 5.3
1et A be eny (positively) invariant set of the state space and ¢; < ¢z be such
that ¢, < W;(é. 8) < ¢z for (6,8) in A. Then A is bounded. (Invariant means that a

trajectory starting in A cannot leave A.)

c9¢
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Proof see Appendix

The analogous result holds for the one-axis model. Since (3.3) is linear in E'q
and has a bounded input it follows that E'q is bounded as well. The rest of the

argument is identical to the proof for the classical model.

We are concerned with the region of attraction of a stable equilibrium point,

say X°. Let ® (t, x) denote the state at time t starting in state x at time 0. Then
A=ixld(t,x)+»x° as t » =}

is the attractor (or region of attraction) of x°. Our aim is to characterize A by

describing its boundary.

Assume that the equilibrium points "*are hyperbolic i.e. the Jacobian

of F(x) at these points has no imaginary eigenvalues.

Let

A ,A = the boundary and closure of A respectively,

ind(x) = the index of a hyperbolic fixed point x, i.e.

the number of eigenvalues with positive real part,
M3(x) = the stable manifold of x = tyl®(t,y) »x as t » =},

M¥(x) = the unstable manifold of x = {y l$(Ly) »x as t » —o]}.
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Note that ind(x) is equal to the dimension of M*(x). The following result is well
known.
Lemma 5.4
The boundary of A, 94, is invariant.

Let W (equal W, or W ) denote the appropriate energy function. Let X € oA
Then W(x) > W(x%). Since W decreases along trajectories, W(®(x,t)) < W(x). By
Lemma 5.3 the trajectory &(x,t) is bounded, hence it must converge to some

equilibrium Xx; € 9A. Hence

dA C LiJ M3(x;) (5.8)

where i ranges over all equilibrium points X; € A. These equilibria must be
unstable i.e. ind(x;) = 1. Since the stable manifold of any X; with ind(x;) > 1 is
of lower dimension (hence nowhere dense), by use of the Baire category

theorem, (5.8) implies

8A ¢ U MB(x) (5.7)
i

where i ranges over the X; with ind(x;) = 1.
To investigate whether equality hold in (5.6) or (5.7) we need the following
Lemma.

Lemma 5.5
Let x; € A be a hyperbolic equilibrium point. If M*(x;) N A # ¢ then
M‘( Xi) C GA.

Proof see Appendix
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If x; € 3A, it can be shown that M¥(x;) contains points z € &, 2 # X;. Sup-
pose that z € A. Because of (5.8) z must be on the stable manifold of some

X; € 9A, X; # X;, which implies the next result.

Theorem 5.1
Ir

[M"(xi) N M(x) } NoA=¢ (5.8)

for X; , Xjon 0A, X; # X;, ind(x;) = 1, then

0A = Y M¥(x;),
i

where i ranges over the x; € 8A, with ind(x;) = 1.
This result is the basis for our proposal to evaluate the critical clearing

time presented in the next section.

One case where condition (5.8) fails is when a trajectory connects two sad-

die points as in Figure 7.

For each ¢ > 0 let A, denote the component of the set
f x| W(x) < W(x%) + c | which contains x°. Let T be the smallest value of ¢ such

that A, contains another equilibrium point X" on its boundary.

Theorem 5.2
Ay C A. Moreover x%is an unstable equilibrium on the boundary of A.

Proof see Appendix

Corollary 5.1
A is the only bounded component of the set { W(x) < w(x%) + .

§9¢
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These two results together give the behavior suggested by Figure 8.

8. Critical Clearing Time Evaluation

Lyapunov’s direct method can be used effectively in power systems for on-
line stability analysis. Although its use has been limited to small systems and
the reported results are considered conservative, we believe that the energy
tunctions defined above, especially in their simplified form, are suitable for large

systems since they require very little computation time.

The situation to be studied here can be described briefly as follows. Initially
the system is operating at a stable equilibrium %0, At time tg a fault occurs and
the system moves away from x° governed by the dynamics of the faulted system.
At some time later t, the fault is cleared. Let x! be the state at t; and xPa
stable equilibrium of the post-fault system. The question of interest is to deter-
mine whether or not the trajectory of the post-fault system starting at x! con-

verges to x%,

Remark 8.1

In practice x! is not known since monitoring of the state is impractical. Hence it
must be estimated from the pre-fault equilibrium state ¥ and the dynamics of
the faulted system. In principle x! can be calculated by integrating the equa-
tions of the latter, over the Yault-on pericd, starting from x°. The system is too
large and the available time too short for this to be practical and some approxi-
mations must be made ] 16].

The time period ty—tg is the fault clearing time, t¢. The maximum t such
that the post-fault trajectory converges to x® is defined as the critical clearing
time, t. The value of the energy function at t = t., is denoted by We,.

Many techniques have been developed for the evaluation of t¢r based on Wer.

The motivation for most of them comes from the “equal area criterion” for the

JIC



-26-

case of one machine connected to an infinite bus, see [7,16]. All of them assume

knowledge of the post-fault network.

One method for evaluating t,, for multimachine systems, based on the
“equal area criterion”, can be described as follows. A sustained fault is simulated
and the post-fault potential energy function V is evaluated along the trajectory
of the faulted system. Its maximum value, Vp,;, is noted and saved. When a fault
occurs the post-fault total energy function W is evaluated along the trajectory of
the faulted system. The critical clearing time is estimated to be the time when
W(x(ter)) = Vinax. We will refer to this method as the total energy method.

The technique proposed in [29] is identical to the previous method except
that, instead of the energy function of the whole system, the so-called “indivi-
dual energy function” of a critical machine is used. A critical machine (or eriti-
cal group of machines) is defined as the generator which tends to separate from
the rest of the generators soon after the fault. Although such individual energy
functions are not Lyapunov functions the idea seems interesting. Motivated by it
we define the individual potential and total energy function of the ith generator

as
W, = %(Zﬂf)Mi(ui-l)z +V; (6.1)

where, for the one-axis model,

E E'q Vi cos(6;=;
Vi=—-P6; — —Ey — — ix.dfl ) _

. (%'g,—Xq) cos[ 2(6;=9;) ] - (X'q~Xq) ] VB,
2Xq X'g, I 2

X E§

X'a(xq-%q) 2

n+l
jg. B,]VIVj COS('I,i—'I’j) -
1
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n+m+1
. X zBskVin cos(V;—¢y) (8.2)

=N
and, for the classical model,
E'o, Vi cos(6;—;) v?
= —PMy§, — 21 Vo (gL y¥Y__
n+l n+m+l
j%BijViVj cos(¥9;—9;) - . 2+zBikVin cos(V;~¢x) (8.3)
=7

Note that the sum of the individual energy functions is not equal to the whole
system energy function. As in the total energy function, (8.2) and (6.3) can also

take a simplified form, namely

2
Xg—Xg 0 Xg(xq-%X4q) 2

Vi =~ P4 -

i (x'q,~Xq) cos[ 2(6;=9;) ] — (X'q—%g) ] vz

B; (6.8)
RXq Xg, ] 2
for the one-axis model, and
vz
Vi=—-PP4; + (By - ;.1—') '21— (8.7)

4

for the classical model.
We will refer to this approach as the individual energy method.

One drawback of these methods is that they are fault-dependant since Vipay

differs from fault to fault so that a separate simulation has to be carried out for

89¢
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each fault. Moreover the potential function (individual or total) may not have a

maximum value. In the next section we give such an example.

The method we propose here differs from the two previous methods. We
assume that a load flow study has been performed to determine the unstable
equilibrium points of the post-fault system and the value of the total (potential)
energy function at each of these points (in the case when the post-fault and
pre-fault network are the same no extra computation effort is needed, during
the fault-on period, to obtain these values). The total energy function of the
post-fault system is then evaluated along the trajectory of the fault-on system
together with the distance of the state from each of the unstable equilibrium

points (u.e.p.’s). By distance we mean the Euclidean distance in S' (or S) i.e.

a ¥%
[ Y 8y(t) — 6212 ] for the classical model,
i=1

and

zn: (l8y(t) - o212 + | E'q(t) - E'gl 2 for the one—axis model,

i=1

where 6U (or ( 6%, E' )) denotes the unstable equilibrium. The equilibrium point
with the minimum distance is called the closest u.e.p.. The critical clearing time
is defined as the time when the value of the total energy function is equal to its

value at the closest u.e.p..

The intuition behind this method comes from the theoretical results in Sec-
tion 5. From Theorem 5.1 we see that if the faulted trajectory leaves the attrac-
tor A of X%, then it must "pierce” the boundary 8A at some point, say x. More-

over x must belong to the stable manifold of an unstable equilibrium, say X%

69¢
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Then W(x) = W(x*) and x" is likely to be the closest u.e.p.. The critical clearing
time estimated by W(x") will then be smaller than the true critical clearing

time, and the approximation will be better the closer is x to X%
We will refer to this method as the closest u.e.p. method.

Remark 8.2

As was mentioned in the beginning of this Section, for on-line analysis, the avail-
able time is too short to calculate all the u.e.p.'s, especially for large systems.
There are methods which try to determine the closest u.e.p., and hence Ve by
merely observing the generator (or group of generators) that accelerates after
the fault, see [16,22]. But there can be many such equilibria and it is not clear
which one of them should be chosen. We believe that a combination of these
approximate methods and the closest u.e.p. method will result in a more feasi-

ble method for on-line transient stability analysis.

7. Examples

The 10-bus, 4-machine system of Figure 2 is taken from Pai [18] with some
modifications. Tables 1 and 2 give the line and model data, respectively. Only the
classical model is considered. Buses 8,9 and 10 are the internal buses and 4,5,8
are the corresponding terminal generator buses. They are connected through
the transient reactance X'q. Bus 7 is the infinite bus i.e. V3 = 1.0 and ¥, = 0.0.
Table 3 gives the specified initial data.

Using the simulation program described in [27], we find eight equilibrium
points of which two (!) are stable and six are unstable. They can be separated in
two classes, each containing one stable and three unstable ones. In the first
class V; is close to 1.0 p.u. In the second class V is very low. The equilibria are

shown in Tables 4 and 5 along with the value of the Lyapunov (Energy) function.

ueLe



LINE DATA

Frombus Tobus | Susceptance (p.u)
1 2 -2.500
1 3 -2.000
1 8 =3.333
2 7 -8.8686
3 4 =3.000
3 5 -2.000
3 7 =5.000
4 8 -1.000
5 8 -1.250
8 9 -2.000
8 10 -2.500 |
Table 1.
GENERATOR MODEL DATA
Number | x3 (p.u) | M (p.u) | D (p.u)
8 1.0 1,130.0 1.130
9 0.5 2,260.0 | 2.260
10 0.4 1,.508.0 1.508
Table 2.

SPECIFIED INITIAL DATA ( p.u. )

Generators Loads
Bus (P, | Eq {[Bus| P Q
8 0.4 | 1.057 1 -0.5 | =0.15
9 0.5 | 1.155 2 -0.3 | =-0.10
10 loa3}ioesll 3 [-021-010]

Table 3.



EQUILIBRIUM POINTS ( CLASS 1)

s.e.p. u.e.p.

Voltage Angle “ Voltage Angle .
1 || 0.9722 0.4287 || 0.8968 0.8773
2 || 0.89807 -1.8130 || 0.9599 -1.8399
3 || 0.9790 4,7676 || 0.8081 5.7522
4 || 0.8703 12.8361 || 0.4328 | 28.1304
5 1.0389 14.7012 || 0.9577 18.1934
6 1.0197 8.2376 || 0.9678 9.9481
8 1.0570 35.7908 || 1.0570 | 147.1708
9 1.1550 26.7281 || .1.1550 | 31.2564
10 1.0950 14.4074 || 1.0950 16.4499
v 0.000000 - 0.391133
u.e.p. u.e.p.
Bus
Voltage Angle " Voltage Angle

1 || 0.7532 1.0082 || 0.8928 1.86840
2 |l 0.9201 | -1.8436 || 0.9034 | -1.9232
3 || 0.7185 6.5401 || 0.5901 7.8335
4 || 07485 | 209355 || 0.3800 | 44.3175
5 | 02218 | 84.1014 || 0.2457 | 97.5104
e | 07390 | 16.3981 || 0.7005 | 20.0431
e I 10570 | 51.3055 || 1.0570 | 129.0612
o || 1.1550 | 181.4618 || 1.1550 | 159.2609
o | 109050 | 24.9266 || 1.0950 | 29.0437
v 1.093655 1.196225

Table 4.



EQUILIBRIUM POINTS (CLASSII)
8.8.p. u.e.p.
Voltage Angle Voltage Angle

to
e
(73

1 0.1302 | —-41.2120 | 0.1542 | -32.2850
2 0.7383 =5.1485 || 0.7473 —-4.9764
3 0.8800 10.71687 || 0.5631 12,9751
4 0.7240 26.1983 || 0.3881 50.7972
5 0.7577 44.8052 | 0.6780 59.8531
8 0.5026 54.6438 | 0.4828 687.4522
8 1.0570 57.7129 || 1.0570 | 129.3304
) 61.2043 || 1.1550 78.2704

10 87.2385 || 1.0950 80.57682

v 1.302421 1.379109

u.e.p. u.e.p.

to
e
n

Voltage Angle Voltage Angle

0.2825 -6.3762 || 0.2815 =5.7765
0.7890 -3.5676 | 0.7888 -3.0101
0.5478 11.0993 || 0.5088 11.8871
0.5885 36.4473 || 0.4422 48.3968
0.4005 | 117.8124 | 0.4173 | 116.9271
0.4114 95.0313 || 0.4214 92.3404
1.0570 78.1796 | 1.0570 | 107.2494
1.1550 | 150.5278 {| 1.1550 | 148.1679

950 | 110.4815 || 1,0950 | 107.4123

1.424024 1.42842)

<locomo bk wWN L

Table 5.
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Only line faults are simulated. If the line connecting buses i and j trips then
the faulted network has that line removed and a shunt inductance is inserted at
each of the buses i, j the value of which depends on the location of the fault.
Clearing the fault means that the buses are re-connected and the shunts
removed, so the pre-fault and the post-fault networks are the same. In all the
cases the fault occurs at 0.04 sec éo the pre-fault values of the variables are also
shown. The location of the fault is given as a percentage of the distance (as
measured from the first bus) between the two buses that specify the line. Table
6 shows the critical clearing time for different faults. obtained with the three

methods. The integration step in the simulation program is 0.02 sec.
Two cases are analyzed explicitly.
Example 7.1 : Line 3 - 5. Fault location 257 from bus 3.

The actual critical clearing time for this fault, obtained from simulations, is
equal to 0.30 sec as shown in Figure 9. If the fault clears after 0.32 sec the sys-
tem becomes unstable after it survives the first swing (Figure 10), while after

0.34 sec generator B separates from the others in the first swing (Figure 11).

Figure 12 shows the generator angles when a sustained fault is simulated.
The critical generators are 8 and 9. Their individual total and potential energy is

shown in Figure 13 along with the total and potential energy of the whole system.

Using the individual energy method the estimated critical clearing time is
equal to 0.40 sec while the total energy method gives an estimate of 0.36 sec.

Using the closest u.e.p. method the estimated critical clearing time is equal
to 0.22 sec.

We see that in this case the only reliable method is the closest u.e.p.

method, although a little conservative. The other methods give wrong results.

1.2



Critical Clearing Time (sec)
Total Closest

Individual

Line | Loc Ener. Meth. | Ener. Meth. | u.e.p. Meth. Actual
1-3 | 50% ﬂ NA NA 0.38 0.44
1-3 | 75% 0.38 0.36 0.268 0.32
3-51] 25% 0.40 0.38 0.22 0.30
3-51] 50% 0.40 0.38 0.22 0.38
83~-5] 75% 0.34 0.32 0.20 0.34
5-6| 25% 0.48 0.48 0.48 0.48
5§—-81| 50% 0.80 0.78 0.78 0.78
5—8 | 95% NA NA 0.24 0.42
1—6 | 85% NA NA 0.20 0.34

Table 8.
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Example 7.2 : Line 1 - 6. Fault location 85% from bus 1.

The actual critical clearing time for this fault, obtained from simulations, is

equal to 0.34 sec as shown in Figure 14.

A sustained fault is simulated. Figure 15 shows the generator angles. But
peither the individual potential energy of the critical génerator 10 nor the indi-
vidual energy of any other generator reaches a maximum. The same is true for
the potential energy of the whole system as it is shown in Figure 18. Therefore,
the previously mentioned methods are not applicable (NA) to estimate the criti-

cal clearing time.

Using the closest u.e.p. method the estimated critical clearing time is equal
to 0.20 sec.

The rest of the fault cases are shown in Table 6.

Remark 7.1

The results in this Section indicate that methods using Vp,a¢ @s the critical
energy can give critical clearing time larger than the actual one. The closest
w.e.p. method is more reliable although in some cases the estimated critical
clearing time is conservative. Closer examination reveals that in all of these
cases for some time after the fault the closest u.e.p. is also the u.e.p. with the
smallest energy. It is this u.e.p. that determines the critical clearing time. At
some time later the closest u.e.p. changes and the value of the energy function
is smaller than its value at the new u.e.p.. Applying the method again the
estimated critical clearing time is very close (sometimes equal) to the actual
clearing time. |

Remark 7.2

Instability can occur even if the system survives the first swing. Example 7.1
contradicts an implicit assumption made in previous stability analyses that are

based on the intuition gained from the equal area criterion.
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APPENDIX

Proof of Lemma 5.2

Let x € R? and y, 2 € R™ be any vectors and consider the product

(x,¥.2)T F5 (%,7,2). After collecting terms and forming the squares we have
(%,7,2)" Fz (x,7,2) = S + Sg

where, after replacing e** with Vi

S = 3 S EE;Bycos(8,-6,) (xi-x)?

i=1 j=iv1
n+1 ném+l . 2 r 2
Sp=Y X BuVi|Eicos(8i—ey) (xi—yw)° + [V — E; cos(6;—¢y) ] zy
i=1 k=n+2
+ E;sin(6;—¢y) {z(xi - Vi) Zk] }
with Xp41 = 0.

Hence, Fz is positive definite if each of the two sums is nonnegative for all

(x,y,2) € Ro*2m*1 yith at least one sum strictly positive.

A sufficient condition for SBB > 0is
l6; - 6j| < -721- whenever By > 0.

Recall that a necessary and sufficient condition for ax? + 2bxy + cy? to be non-

negative is

1) a>0

gle
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2) ac=b?
Hence, each term in the sum of Sy is nonnegative iff

3) cos(;=yy) >0

4) E;cos(8;—¢y) [ 2Vy — Ejcos(8—py) 1= EZsin®(6i—¢))
or, equivalently,

. E;
4’) cos(b;i—py) = o

Note that (4°) implies (3). Therefore, a sufficient condition for Sy = O for all

(x,y.2) € RR¥2m+ jg

cos(8;—py) = 5 whenevr By > 0.
2Vy

Proof of Lemmma 5.3

" Limit attention to trajectories in A. Since % 67 M 8 < W, (5, 6) < c; it follows that
&(t) is uniformly bounded, and it only remains to show that (t) is uniformly
bounded as well.

Differentiation of (5.1) reveals that & (t) is uniformly bounded. For positive

t, h Taylor’'s theorem applied to é implies
S(t+h) —8(1) —h &(t) =¥h2¢

where §; := 6; (t+s;) for some O < s; < h. Multiply both sides by M and use (5.1)



toget
Mo(t+h) —[M—-hD]t) =h [ P= —f(5(t))] + BhZM &
Hence there are positive constants k;, k such that for all small h
|80+) | +18(0) 12 ky B [|P® — K6(0) |~ b kp ] A1)

(Here| | denotes Euclidean norm.)
Let E := §6°| P™ — £(6°) = 0} be the set of equilibria. Let B,(6°) be the ball
with radius ¢ and center 6°. Choose &€ > 0, 77 > O so that the distance between

two different B,(39) is at least £ and | P® — £(6) | > 1) whenever & € | B,(9).
E
For any trajectory let T, := { t| 8(t) € U B;(6°) } and let L(T,) be its Lebesgue
E

measure.

Suppose 6(t) is not uniformly bounded. Then L(T, ) cannot be bounded

either.

By hypothesis A is invariant, and so, by (5.5),

{ ()T D é(t) = _Zé(t)T Dé(t) s cp —c;. (A.2)

Let d = min D; and take h = %7 k5. Then, from (A1) and (A.2)

2(cz-c,)=2 _[ S()TDA(t) dt= 2d [ ¥ k; n? ks?! PL(T,)

so that L( T, ) is uniformly bounded.
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Proof of Lemma 5.5
Suppose M3(x;) £ 8A. Obviously M*(x;) N A = ¢. Hence there exist points
z € M3(x;) such that 2 € (A)° (compliment of A). Take a small neighborhood V

of z and consider |J ®(t,V), the.orbit of V. Since (A)° is invariant, the orbit is
>0

en open subset of (A)°. On the other hand, see [24], we have

U 2(L.V) 2 M¥(x;). Hence M¥%(x;) € ( (A )®) = A®.which contradicts the
t>0

hypothesis M¥(x;) N A # ¢.

Proof of Theorem 5.2

It is not difficult to see using Lemma 5.1 that W(x?) < W(x) for xin A,.
Since W(x(t)) is decreasing, A, is invariant and then by Lemma 5.3 Ay is
bounded. Hence every trajectory in A, has at least one limit point, say X. From
(3.17) or (3.26) X must be an equilibrium and so, by construction, X = x% So
A, C A Finally, if X" were stable, then it would have an open attractor contrad-

icting the fact that it is in 8A; C A.
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Figure Captions

1. Phasor diagram of stator for the one-axis model

2. Network for example

3. Significant phase angles in V

4, Significant phase angles in V

5. Components of energy for stable case

6. Components of energy for unstable case

7. Trajectory connects two saddle points

8. Illustration for Theorem 5.2

9. Fault on line 3-5 at 0.04 sec., cleared at 0.36sec.
10. Fault on line 3-5 at 0.04 sec., cleared at 0.36 sec.
11. Fault on line 3-5 at 0.04 sec., cleared at 0.38 sec.
12, Generator angles for sustained fault on line 3-5.
13. Energy functions for sustained fault on line 3-5.
14, Critical clearing time for fault on line 1-6 is 0.34 sec.
15. Generator angles for sustained fault on line 1-6.

16. Energy functions for sustained fault on line 3-5.
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