
 

 

 

 

 

 

 

 

 

Copyright © 1984, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A STRUCTURE PRESERVING ENERGY FUNCTION FOR

POWER SYSTEM TRANSIENT STABILITY ANALYSIS

by

N. Tsoias, A. Arapostathis and P. Varaiya

Memorandum No, UCB/ERL M84/1

3 January 1984

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A STRUCTURE PRESERVING ENERGY FUNCTION FOR
POSTER SYSTEM TRANSIENT STABILITY ANALYSIS1

N. Tsoias2, A Arapostathis* and P. Varaiya
Department of Electrical Engineering and Computer Sciences

and Electronics Research Laboratory
University of California, Berkeley CA 94720

ABSTRACT

A new model is proposed for the study of transient stability

where the load is modeled as a PQ bus. Flux decay of the generator

fieldwinding is included. The original network topologyis main

tained explicitly. An energy function is proposed which differs from

the traditionalone in that it includes additional terms correspond

ing to the energy stored in the loads and field winding. The new

energy function eliminates the difficulties in earlier approaches

arising from transfer conductances. Moreover, the preservation of

the network topology in the energy function makes it much more

suitable for on-line security assessment.
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1. Introduction

The use of energy functions in power system transient analysis is now well

established. These functions are used to estimate the domain of attraction of a

stable equilibrium point. The standard approach to constructing energy func

tions is facilitated by three modeling choices: a generator is modeled by the

classical swing equation, a load is taken to be a constant impedance, and the

entire network is reduced to an n-port as seen from the n generator internal

buses.

These choices impose several limitations. The classical swing equation

assumes a constant field flux linkage which is unrealistic. While it may be con

ceded that in the time period of interest one can reasonably ignore governor

and exciter feedback effects, critics contend that flux decay cannot be ignored.

In the model used here, the classical model is augmented by a flux decay rela

tion to yield what Anderson and Fouad [l] call the "one-axis" model. From the

vantage point of **"« augmented model it willbe seen that the classical equa

tions generally give more conservative estimates of the region of stability.

zResearch supported by DOE contractsDE-AS01-78ET29135 andDE-AC01-62-CE76221 andNSF
grants ECS-7803679 and ECS-8118213. The authors are grateful to Prof. Felix Wu, EyadAbed,
Eathi Abdel-Salam, Kemal ban and R-L.Chen for many helpful discussions.
^Present address: Bell Laboratories, Holmdel NJ 07733
Present address: Dept. of Electrical Engineering. University ofTexas, Austin TX 78712
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Second, in this study the load the load bus is viewed as a constant PQ bus.

This is generally accepted as being more realistic. It also conforms with the

practice in load flow studies.

Third, the reduction of the network to an n-port entails two deficiencies. On

the one hand, this introduces transfer conductances even when the transmission

lines are lossless. To obtain an energy function one is then led to ignore these

transfer conductances creating an error of unknown magnitude. Alternatively, if

one chooses not to ignore the transfer conductances, then one is faced with the

computationally cumbersome and mathematically unsound practice of defining

the energy function via path-dependant integrals. In contrast, the energy func

tion proposed here is exact for PQ loads and lossless lines.

Reduction of the network to an n-port erases the network topology making

it impossible to allocate the aggregate energy to the components of the net

work. As a result, changes in energy during a transient cannot be decomposed

into energy shifts occurring in individual power system elements. Since the pro

posed energy function is the sum of the energy of each individual component, as

will be seen in the illustrative examples given below, this provides an insightful

description of the transfer of energy during the transient One other attempt to

provide a "structure preserving" Lyapunov function [8] is limited by the require

ment that loads be modeled as PV buses.

Finally, the proposed energy function is expressed in two forms. The first is

more useful for purposes of mathematical analysis. The second is especially

appealing from the viewpoint of computation and practical implementation since

the expression involves only terminal measurements.

This paper is structured as follows. The one-axis model, as well as the classi

cal model, are presented in Section 2. The energy function is derived in Section

3, and alternative forms are given in Section 4. Key stability results occupy

£fr2
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Section 5,whereas Section6 is devoted to the evaluation ofthe critical clearing

time. Examples may be found in Section 7. All the figures are collected at the

end of the paper.

2. Model

2.1. The network

The power network consists of n+m+1 nodes or buses connected by lossless

transmission lines. It is represented byits node admittance matrix Y= [Yy J,

where Y« - —jBy, and B^ is the susceptance of the line connecting buses i and j.

The first n nodes are the terminal buses of the generators. Bus n+1 is an infinite

bus. These buses are indexed by i or j = l,2,...,n+l. Each terminal generator bus

is connected with its internal generator bus through a lossless line (armature

resistance of the stator is neglected) with reactance equal to x'a, the generator

transient reactance. The remaining m nodes are the load buses. These are

indexedby k or 1= n+2, n+m+1. LetEjZ.^ denote the internal voltage phasor

and Vi Ify denote the terminal voltage phasor of the 'fi1 generator. Let Vk^ tp^

denote the voltage phasor of the k1*1 load bus. All phase angles aremeasured

relative to the infinite bus i.e. i)n+i s 0. Furthermore Vn+i = 1. p.u..

2.2. Loads

Each load is represented asa constant real (Pd) and reactive (Qd) power

demand. Therefore we refer to a load bus as a PQ bus.

vtz
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2.3. Generator Model

It is generally agreed that in transient stability studies, generators close to

the fault should be modeled in greater detail. The complexity of a generator

model depends on how many of the rotor windings have been represented. Two

models are considered here.

2.3.1. The One-axis Model

This model includes one circuit for the field winding of the rotor. For a com

plete description and more details see [1,37]. The model is given by the following

differential and algebraic equations.

For generator i

<5i = 2^-1) (2.1)

Mi4 = Pf* - Dita-1) - E'^ + (xB4-xidl)Iqjd, (2.2)

T'do^ =-E'* +(xdl-x'dl) Idl +EPl (2.3)

V% = E^ +x'di\ (2.4)

Vdl=-x%Idl (2.5)

Viej^ =(Vqi +jVdl)eJdl (2.6)

where,

f = Synchronous frequency (60 Hz)

Pf1 = Mechanical power (torque)

- bVC
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Mi, Di = Moment of inertia and damping coefficient

Xj , x~ = Direct and quadrature axis synchronous reactance

xV =Direct axis transient reactance (x*^ <X^, X^)

Tdo^ = Direct axis transient open-circuit time constant

E'- = Quadrature axis voltage behind transient reactance

E? = Voltage behind synchronous reactance

VvVdl, 1^, 1^ = Quadrature anddirect axis components

of terminal voltage and current.

The mechanical power Pf1is assumed constant. EpA is the output of the exciter

andis also constant. The internal generator voltage is E'j withE'^ its component

along the quadrature axis. Figure 1 shows the phasor diagram of the stator.

The field winding is modeled as alinear RLC circuit. The flux linkage, $pt, is

given by

where L^.LaDj is the self and mutual inductance respectively. Equation (2.3) can

also be written as

fys-r^ +Vpj (2.8)

3VZ
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where rpt isthe field resistance and Vpt is the field voltage. Finally4

2.3.2. The Classical Model

Ifwe assume that $px is constant, or equivalently E'^is constant, and

Xa = x'd. then we have the so called "classical"model. It assumes a constant vol

tage behind a transient reactance and it has been used widely in transient sta

bility studies. The motion of generator i is governed by the "swing" equation,

<$i =27Tf(«i-l) (2.10)

xdj

where E'^ has been replaced by Ej, the internal generator voltage.

In both models the effects of the amortisseur or damper windings have been

neglected as being very small during atransient. As suggested in[l], in some

cases, these effects may be included in the damping torque i.e. by increasing

the damping coefficient D.

3. Energy Functions

The terminal buses of the generators are modeled as PQ loadbuses with P =

0 andQ= 0. This means simply that they are treated as power distribution sta

tions with no local loads.

sending on the choice ofper -unit fcase quantities a factor ofv3 might be needed i.c
\ =

LVZ
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3.1. The One-axis Model

For a power system where the generators are represented by the one-axis

model, the system equations are given by

(5i = 27rf(cJi-l) (3.1)

Hi^ =P/n-Di(ui-l)-Pf (3.2)

T*

Y -v' g«-*(*.Pq.«.V.lO (3.3)
*di Adi

i= l,...,n

where.

and

x Vfsin[2(5i-T?i)](x'd-xQl)
Ff =fi(6\E'q,tf,V,<p) := -i Vv v> »

E'ViSinf^-iJi)

x*d.

* x'dl(xd1-x'dl) * X'd,

(3.4)

S^* (3-5)

At the i terminal generator bus, i = 1 n, one gets

. Vi8sin[2(i>i-(Si)](x,(J,-xa,)0=gitf.E'̂ .V.p) := -i LLi_^lAJV_+

%vz
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E'VjSin^i-^) n+i
* . » SBjjViVjsinMJ) +

xdt j*i

n+m+1

E BacViVkSin^i-^) (ae)
k=n+2

x'd,+Xa, • E'gViCos^i-^j)0=*<**.«.V.,) :- ^Ij-V? - «'^'

vfcosta^i-sOKx'd,-^)
cXq^X^

BiiVf-SBijViVjCos^i-^j)-

n+m+1

£ ftkViVkCOS^i-fk) (3.7)
k=n+2

At the k1*load bus, k = n+2,...,n+m+l,

n+1

Pi =g]c(<5.E'q,i?,V,?) := SBkiVkViSinfe-iJi) +
i=l

n+m+1 % , v
S BkiVkVisin(?k-?i) 0.8)
l#k

Ok* =hk(o\E' tf,V,p) := -BkkVf - £ BuVkViCosfe-tfi) -
i«l

n+m+1 , ,

£ BkiVk^costek-Pl) (3-9)
l#k

Equations (3.1) - (3.9) constitute the system model. We can rewrite them in a

more compact vector form

<5=27Tf(o-l) (3.10)

SPZ
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H« = Pm - D(u-l) -f (6\E'q, tf,V,<p)

J^E\=K(6\E'q,tf,V,<p)

0 = Pd-g(o\E'q,iVV»

0 = Qd-h(o\E'q,i?,V,p)

(3.11)

(3.12)

(3.13a)

(3.13b)

Let Sj denote the 2n-dimensional manifold or surface of all points

(<5, E'q,tf,V, p) ERto+2m satisfying (3.13). Then the state for this model is

(a,6\E'q,i>,V,?)eRnx2,.

Obviously Vj > 0 , i = l,...,n. Assume that the load is never zero, that is,

(PjJ)2 + (Q£)2 > 0. ThenVk > 0 , k = n+2,...,n+m+1, and one may define

new variables i/j := logVj , v± = logVk- Consider the function

Let

Vjtf.E' ,*,v,<p) := - <Pm,6> - <Pd,?> - <Qd,i/> - < Ep, ,E'> -
Xd-x'd

i=l

Ba +
(x,dl-xqi)cos[2(<5i-i?i)] - (x'drxqi)

2XqtXdl

nE^gos^-t^) ^n Xdt E%
i«i x'dj iBl x^x^—x'^) 2

.2vi

n+1 ux„ n+1 n+m+1 „.„.
EBjje^cos^^-S £ Bike^^cos^-^k)
i<j 1=1 k*n+2

fi*n+m+1 ^ n+m+1 _2v
£ Bkie^+Uicos^k-^i) - £ Bkk^
k<l k=n+2 *

(3.14)

0S2
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Wi(«.<$,E'q,<fl,i/,p) := l-(27rf)<(w-l),M(cj-l)> +

V^E' *,v,<p) (3.15)

where <.,. > denotes inner product.

Observe that

dV,
•557= PF - 4(*. E'q,tf, y, rf (3.16a)

^=Ki(6\E' tf,i/,p) (3.16b)
SE*

6*Vi^-= -a ((5, E'q.i>, v, 9) (3.16c)

-—*-= -hi(o\E' tf, i/t?) (3.16d)

|^-= Qkd - hk((5.E'q.i?. v,<p) (3.16e)

|^-=P^ - gk (<*.E'q,*, 1/, p) (3.16f)

Vj is the potential and Wj is the (total) energy function for this modeL Using

(3.16) it is easy to check that along the trajectories of the system we have

-^-Wj(<y,6\E'q,tf.v,q>) =-£ [27rfDi(«i-l)2 + ** E'j] * 0 (3.17)
at n iml x^—x^

which shows that Wj is a suitable Lyapunov function for the system. From [1.37]

we have

1st
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%=^i- (3.18)
rFi

Tdoj

and

*-**« *- <M>

Using (3.18) , (3.19) and (2.9) we get

-^(u^.E' tf.i/.p) =-2 [27TfDi(«i-l)2 +-J-4f[]*0 (3.20)
at * is! rpj

which shows that the decrease in energy equals the dissipation due to damping

and the power dissipated in the field winding.

a2. The Classical Model

When the generators are represented by the classical model the system

equations are given by

6 = 2iTf(«-l) (3.21)

Mw = Pm - D(w-l) - f((5, tftV, tp) (3.22)

0 = Pd-g(<5.i>.V,p) (3.23a)

0 a Qd - h (<5, tf,V, p) (&23b)

where f,g, h can be easily obtained from (3.4) - (3.9) upon replacing E'^ byEj

and setting X^ = x'dl.

292
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The state for this model is (o, 6, tf, V, <p) € R^E^ where I2 is the n -

dimensional manifold or surface of all the points (6, i?,V, <p) e R3**2111 satisfying

(a23).

From (3.14) or from the model equations (3.21) - (3.23) we have

and

V2(6\tf,i/,p) := - <Pm,(5> - <Pd,p> - <Qd,i/> -

L zr H°x - -7—; —
i«l ^di i=l

n+1 »x» n+1 n+m+1 .....
EBije '̂cosOV-tfj) " £ £ Bike^^cosK-^k) -
i<j i=l k=n+2

n+m+1 ...,. n+m+1 0&k
£ Bue^cosfa-fl) - £ BkkV" <aa4>
k<l k=n+2 *

Wgfaa.fl,!/,?) := |-(27Tf)<(cj-l),M(o-l)> +V2(6\tf,y,p) (3.25)

Equations (3.16) are also satisfied for this model and

-£-W2 (Ut $, tf, v% 9) =- § 27rf Di (Wi-l)2 £0 (3.26)
at lsl

which was expected since $p , i = l,...,n, is constant for this modeL

Remark 3.1

The inequalities (3.17) and (3.26) show that the energy functions can be used as

Lyapunov functions. Moreover, the fact that (3.17) contains an additional dissipa

tion term in comparison with (3.26) suggests that stability estimates based on

the classical model will be more conservative than the estimates based on the

£92
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one-axis modeL

Remark 3.2

These system models are to be interpreted as follows. One solves the algebraic

equations (3.23) [ (3.13) ] for the unknowns tf,V, <p in terms of 6[6 and Eq] and

substitutes them into (3.21) - (3.22) [ (3.10) - (3.12) ] to obtain a system of

differential equations in6 [6 and E'q] alone. This procedure, however, yields a

legitimate differential system in6 [(6\ E'q)] only if(3.23) [ (3.13) ] provides a

solution 1?,V, p which is differentiabie in 6 [6 and E'J. From the Implicit Func

tionTheorem, a sufficient condition for this is that the 2(n+m) x 2(n+m) Jaco-

bian matrix obtained by differentiating the function (g , h) with respect to

(fi,V,xp) is nonsingular. While this nonsingularity may holdfor reasonable values

of (<5, tf,V, tp) [(6\ E'q, tf, V, tp)] in E2 [Sj] it is easy to see that it cannot hold for

all possible values. One wayof overcoming this difficulty is to permit the trajec

tories to have a discontinuity or jump whenever the Jacobian becomes singular.

Thisextension is defined via singular perturbations as in [23]. If in addition we

assume that the energy function does not increase at these jumps then it is a

global Lyapunov function. Alternatively, one may restrict the possible states to

those initial values from which issue smooth trajectories over the infinite future.

This alternative will be followed here. More precisely, let S2 [Si] be the set of all

states x=(w, 5, fl,V,p) [x= (u,6\E'q,tf,V,p)] inRnx22 pPxEj such that

tor all X€ S2 [x € St] there is a differentiabie function x(t), 0 £ t < », with

x(0) = x and which satisfies (3.21) - (3.23) [ (3.10) - (3.13) ] for all t Henceforth

the system modelis taken to be (3.21) - (3.23) [ (3.10) - (3.13) ] withthe state

space Sjg [Si], and time derivatives ofthe energyfunction are taken along

smooth trajectories.

Remark 3.3

Since («, 6, tf, V, (p) [(a,6, E'q, Q,V, ?)] is an equilibrium of (3.21) - (3.23) [



-14-

(3.10)-(3.13)] iffw= landPm-f(o\tf,V,?) =0 [u = 1, E'q = Oand

Pm-f((5,E'q,i?,V,^) = 0]thepoint(5,T?,V,^) [ (o\E'q,tf,V,p) ]will also be

called an equilibrium.

4. Disaggregation and Reformulation

4.1. Disaggregation of the Total Energy

Consider the classical modeL One of the main advantages of the proposed

energy function is that the potential energy of an individual line or group of lines

can be calculated explicitly. There are many ways to re-group the terms of

(3.15) or (3.25). In [16] it is shown that the potential energy stored in a lossless

transmission line is equal to half of the reactive power loss in that line.

Motivated by this we have the following terms (separate indexing of the terminal

generator buses from the loads is nowvery helpful).

Vkm := |"(27rf)< (a-l).M(cj-l) > (4.1)

VpB:=-<Pm,6-> (4.2)

VPl:=-<Pd.^> (4.3)

Vqj := - <Qd. v> =<Qd, logV> (4.4)

Vgt :« £4"[?-- EiViCosto-tfi) ] (4.5)
i«i xdj .c,

n V? + V2
Vtt:= £Bij[ * * -VtVjCOB^-^)] +

i<i *

£b^i[?—Vjcos^i)] (4.6)
i«l tf

n n+m+1 V-2 + V?
Vtl:=2 S Bhil ' " -ViVkcotfo-»fc)] +

i=l k=n+2 6

992
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"T'lWitir-VkCosW] <4-7>
k=n+2

Vu, :=*+£+1Bld[ ^2.-VkVieoife-rt ] (4.8)
k<l

Here G stands for the internal and T for the terminal generator buses, and L for

the load buses. Similar re-grouping can be carried out for the energy function of

the one-axis model.

During a fault large amounts of energy are transferred from one system

component (generator, line, load) to another. We give an example that shows

this transfer of energy, during and after a fault, for the stable and unstable

case. The network is shownin Figure 2 and its data are given in Section 6 (Table

1, 2 and 3). Buses 8,9 and 10 are the internal and 4.5 and 6 the terminal genera

tor buses. The fault occurs, at 0.04 sec, on the line connecting buses 3 and 5 at a

distance of 25% (of the line) from bus 3. If the line recioses at 0.34 sec the sys

tem is stable, Figure 9, whereas at 0.36 sec generator 8 separates from the oth

ers as shown in figure 10, and the system becomes unstable. The terms of the

energy function are evaluated along the fault-on trajectory for both cases

shifted by a constant so that their value at the stable equilibrium point is zero.

The terms Vpr V^, Vn> Vu, are negligible inrelation toV^, Vpm, Vqt and V^,

The latter are shown in figures 5 and 6 for the stable and unstable case respec

tively. Examining in detail both cases we found that, soon after the fault, the ter

minal voltageV4 of generator 8 drops and the angle difference 5g—U4 increases.

The dominant factor though is 8&—'$4 which increases up to 80° making the

cos(o3—^4) term in Vqi almost equal to zero. This is shown in Figure 3. The

shape of the Vgr curve is determined by this factor. Similarly the dominant fac

tor in the termVjl is Dq—^3 which is shown in figure 4. Around 0.5 sec these

angle differences are maximum. In the interval 0.8 - 1.2 sec the terminal
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voltage as well as the differences $8—1?4 and $5 —̂ 3 are very close to their

equilibrium value. As a result the energy function terms involving these vari

ables are also close to zero. On the other hand 6Q is at its minimum causing the

Vp term to become maximum. By the time this maximum is reached all the

kinetic energy has been transformed to potential energy. This is not true in the

unstable case (Figure 6) where at no time does all the kinetic energy get

transformed to potential energy. In almost all the faults that were simulated a

similar pattern was observed. There is little energy transfer between the load

buses {Vjj, is very small)andbetween the terminal generator buses (V^S *s ^so

small).

4.2. A Reformulation

We present a reformulationof the energy function that greatly simplifies its

computation.

Considerthe one-axis model and its energy function Wx as givenby (3.15).

In practice it is also customary to haveWj = 0 at the stable equilibrium by sub

tracting from Wt its value at theequilibrium. Let ((5s, E'f,tfs, Vs, p8) denote the

stable equilibrium. Using (3.7) and (3.9) we can rewrite Wx as follows

W1(«,d\E'q,tf.V,p) = l-(27Tf)<(«-l),M(Q-l)> - <Pm,<5-<58> +

1 n

A i=l

1 n

2"2«5jol

^d^Xd-Xty xdil '

T^Z^t'--^Wo-HMO]X'd^Xdr^di)

< 1. EF,E'q-E'q,> +i-tQn+i-QS+i) -
xa-x'd 4 H 2

L±C
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<pd^-v>8> - <Qd,logX.> (4.9)

Similarly, for the classical model.

_ 1W2(«.M,V,p) =|-(27Tf)<(cj-l),M(cj-l)> - <Pm,<5-<5s> -

ft ~-fvicos((5i^i) -V?cos(6?-^) ]+
C jsi Xd, l J

f(Qn+i-Qn+i) - <Pd,v-<Pa> - <Qd.iog^r> (4.io)

where Qn+i is the reactive powerinjection at the infinite bus which is not con

stant. If, instead of the (n+l)31 terminal generator bus we take as infinite bus its

internal generator bus, then

Qn+l-Qn+l =-^-[Vn+iCOs(l?n+1) - V8+1C0S(^+1)] ,
yn+l

otherwise we have to sum the reactive power fiow from bus n+1 to all the buses

that are connected to it.

The sum in (4.10) can also be written as

-ft rjMviCoste-tfi) -VfcosW-tf?) 1=f £(Qi-Qi8)
*i»l xdj l J tfi=l

where Q; is the reactive power injection at the1th generator internal bus. The

same form is not possible for the corresponding sum in (4.9), but both functions

(4.9) and (4.10) can take a simpler form.

bbd
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The voltage behind synchronous reactance, Ep1( isgiven by5

EFl=^ (4.11)

Using (2.7), (2.9). (3.19) and (4.11) we have

Wa =|-(27rf)<(cj-l),M(w-l)> - <Pm,6-63> -

<l^Fi$F_$f> +f tt^-^lfj +
rf 2i=i

|-(Qn+i-Q5+i) - <P*.<p-<p*> - <Qd.log^-> (4.12)

where a = 1 or 2.

The time needed to computeWa hasbeen reduced substantially using (4.12)

since the number of operations needed is proportional to the number of buses

andis independent of how these buses are connected. Equation (4.12) is valid

even if some or all of the terminal generator buses have local loads i.e. Pj ^ 0

and/or Qj * 0.

Finally, the energy function (4.12) is a valid Lyapunov function for a power

system where some of the generators, say those close to the fault location, are

modeled with the one-axis model and the rest with the classical modeL

'3Ep. =
_ on the choice of per unit base quantities a factor of v3 might he needed i.e.

6SZ
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5. Asymptotic Stability

Consider apower system where the generators aremodeled withthe classi

cal model. The distinction between internal and terminal generator buses,

althoughhelpful in calculatingthe total energy function, is not needed for

analysis. Therefore, we incorporate the terminal buses and the transient reac

tances into the bus admittance matrix. The resulting network is still lossless.

The system model is then givenby (cf. (3.21) - 3.33))

M5 +Do-= Pm-f(<5,p,V) (5.1)

0 = Pd-g((5,^,V)) (5.2a)

0 = Qd-h(o>,V) (5.2b)

where M and D have been normalized by Ziri,

and

n+1 n+m+1

*i(<5,?.V)= £EiEjBijsin((5i-<5j)+ £ EiVkBik^n(di-ipk)
jui k=n+2

n+1 n+m+1

Pi? = gktf.P.V) := £VkEiBkisin^k-^i) + £ VkVjBkisin^-^)
i«l l*k

- a+1
Q£ =hk(o>,V) := -BkkV| - £ VkEjBfcCosfok-di) -

i«i

n+m+1

£ VkVjBkicosfok-tt)
lf*k

The energy function is given by

W2 (*. <$. <P. v) = ~^TM <5 +V2 (<5, ?, i/) (5.3)

uy<j



-20-

where v± = logVk, k = n+2,...,n+m+1, and

V2(ft tp, v) = - <Pm,<5> - <Pd tp> - <Qd,i/> -

and

n+1 n+1 n+m+1

£BiiEiEjcos(5i-dj) - £ £ BikEie*kcos(tfi-fl»k) -
Kj i=l kon+2

n+m+1 „ ... n+m+1 g&k
2 Bue^^cosC^-w) - £ BaSjj- (5.4)
k<l k=n+2 c

4-W8 (ft ft p, v) =- <5TDd* sS 0 (5.5)
at

Recall that an equilibrium is (asymptotically) stable if trajectories starting

at initialstates sufficiently close to the equilibrium converge to it. Since (5.3) is

decreasing along (continuous) trajectories, we have

Lemma 5.1

An equilibrium (6°, <p°,V°) is stable iff it is a local minimum of the potentialV2

(restricted to the surface £3 defined by (5.2)) Le. iff PTF2P, evaluated at

(6°, tp°, V°) is positive definite, where Pis the projection of (ft <p,V) on ^3 and F2

is the Hessian of V2.

There is a very simple sufficient condition for stability if there are no load-

to-load connections i.e. if power transfer through lines connecting loads can be

neglected.

IfmniA 5.2

Consider a power system modeled withthe classical model (5.1) - (5.2). Assume

that there are noload-to-load connections Le. Bki =0 and let (<5°, <p°,V°) be an

equilibrium. If
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!) I5.0 _ $9\ <* whenever By >0 , i.j =1 n

2) cos(ft°-rf) sr -^5-, whenever Bjk >0, i=1 n, k=n+2,...,n+m+1
cvv

Then (5°, p°,V°) is asymptotically stable.

Proof see Appendix

Condition (2) ofLemma 5.2 has appeared inthe literature, see [36], as an

assumption in the form 2Vk > Ej. As far as we know this is the first time that

some physical interpretation is given to it.

We emphasize that these conditions are only sufficient. In Section 7 we give

an example with two stable equilibrium points and in one of them these condi

tions are violated.

We give now some theoretical results concerning the region of attraction of

a stable equilibrium point. In the interest of brevity let x denote the state of the

system (x is (ft 6) for the classical model and (ft ft E'q) for the one-axis model).

The algebraic equations have been solved for the non-state variables in terms of

x. The model then can be expressed as

x = F(x)

Consider the classical modeL Notice that the sets JV2 < cj and [W2 < cj are

not bounded so the next result is surprising.

Lemma 5.3

Let A be any (positively) invariant set of the state space and Ci < c2 be such

that Ci ^ Wi(ft 6) £ C2 for (ft 5) in A.Then Ais bounded. (Invariant means that a

trajectory starting in A cannot leave A.)

cac
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Froof see Appendix

The analogous result holds for the one-axis model. Since (3.3) is linearinE'q

andhas a bounded input it follows that E'qis bounded as well. The rest ofthe

argument is identical to the proof for the classical model.

We are concerned with the region of attraction of a stable equilibrium point,

sayx°. Let§ (t, x) denote the state at time t starting in state x at time 0. Then

A:= fxl$(t,x) •* x° as t-» »}

is the attractor (or region ofattraction) of X°. Our aim is to characterize Aby

describing its boundary.

Assume that the equilibrium points *are hyperbolic Le. the Jacobian

of F(x) at these points has no imaginary eigenvalues.

Let

3A , 5 = the boundary and closure of Arespectively,

ind(x) = the index of a hyperbolic fixed point x, i.e.

the number of eigenvalues with positive real part,

M^x) =the stable manifold of x= for I*(t,y) -*x as t -» »).

M^x) = the unstable manifold of x= for I$(t,y) ->x as t -> -»J.

— t 36
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Note that ind(x) is equal to the dimension of M^x). The following result iswell

known.

Lemma 5.4

The boundary of A, 9A, is invariant

Let W(equal Wa orW2 ) denote the appropriate energy function. Let X€ 3A.

Then W(x) >W(x°). Since Wdecreases along trajectories, W($(x,t)) <W(x). By

Lemma 5.3 the trajectory $(x,t) is bounded, hence it must converge to some

equilibrium Xj e dA. Hence

aACUMs(Xi) (5.6)
i

where i ranges over all equilibriumpoints Xj e dA. These equilibria must be

unstable Le. ind(Xj) ^ 1. Since the stable manifold of any Xj with ind(Xj) > 1is

of lower dimension (hence nowhere dense), by use of the Baire category

theorem. (5.8) implies

dA C UM^ (5.7)
i

where i ranges overthe Xj with ind(Xj) = 1.

To investigatewhether equalityholdin (5.6) or (5.7) we need the following

Lemma,

Lemma 5.5

Let Xj £ dA be a hyperbolic equilibrium point. IfiPf Xj) C\A*$ then

M"(Xi) C 3A.

Proof see Appendix
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If Xj e dA it can be shownthat M^Xj) contains points Z € A , Z ?* Xj. Sup

pose that z e dA Because of (5.6) z must be on the stable manifold of some

Xj € dA, Xj ?* X}, which implies the next result.

Theorem 5.1

If

iPOOnirO*) H dA = $ (5.8)

for Xj, Xj on dA, Xj ^ Xj, ind(Xj) = 1, then

dA=uM8(Xi),
i

where i ranges over the Xj £ dA, with ind(Xj) = 1.

This result is the basis for our proposal to evaluate the critical clearing

time presented in the next section.

One case where condition (5.8) fails is when a trajectory connects two sadr

die points as in Figure 7.

For each c > 0 let Ac denote the component of the set

|xlW(x)<W(x°) + c} which contains x°. Let Cbe the smallest value of c such

that Aq contains another equilibrium point Xu on its boundary.

Theorem 5.2

Ag C A. Moreover xuis an unstable equilibrium on the boundary ofA

Proof see Appendix

Corollary 5.1

Ag is the only bounded component of the set (W( x) <W(x°) + c" j.
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These two resultstogethergive the behavior suggested by Figure 8.

6. Critical Clearing Time Evaluation

Lyapunov*s direct method can beused effectively inpower systems for on

line stability analysis. Although its use has been limited to small systems and

the reported results are considered conservative, we believe that the energy

functions defined above, especially in their simplified form, are suitable for large

systems since they require very little computation time.

The situation to be studied here can be described briefly as follows. Initially

the system is operating at astable equilibrium x°. At time to a fault occurs and

the system moves away from x° governed by the dynamics ofthe faulted system.

At some time later ti the fault is cleared. Let x1 be the state at ti and x00 a

stable equilibrium of the post-fault system. The question of interest is to deter

mine whether or not the trajectory ofthe post-fault system starting at X1 con

verges to xf^.

Remark 6.1

Inpractice X1 is not known sincemonitoring of the state is impractical. Hence it

mustbe estimated from the pre-fault equilibrium state X° and the dynamics of

the faulted system. In principle X1 canbe calculated by integrating the equa

tions ofthe latter, over the fault-on period, starting from x°. The systemis too

large and the available time too short for this to be practical and some approxi

mations must be made X16].

The time period tj—to is the fault clearing time, i^. The maximum td such

that the post-fault trajectory converges to x00 is defined as the critical clearing

time,. tcf. The value of the energy function at t = t^. is denoted byW^

Many techniques have been developed for the evaluation of t^ based onW^.

The motivation for most of them comes from the "equal area criterion" for the

a o o
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case of one machine connected to an infinite bus, see [7,16]. Allof them assume

knowledge of the post-fault network.

One method for evaluating t^ for multimachine systems, based on the

"equal area criterion", can be described as follows. A sustained fault is simulated

and the post-fault potential energy function V is evaluated along the trajectory

of the faulted" system. Its maximum value,"V^x, is noted and saved. When a fault

occurs the post-fault total energy functionWis evaluated along the trajectory of

the faulted system. The critical clearing time is estimated to be the time when

W(x(tc,.)) =Vnua. We will refer to this method as the total energy method.

The technique proposedin [29] is identicalto the previous method except

that, instead of the energy function of the whole system, the so-called"indivi

dual energy function" ofacritical machine isused. Acritical machine (or criti

calgroup of machines) is defined asthe generator which tends to separate from

the rest of the generators soonafter the fault Although such individual energy

functions are not Lyapunov functions the ideaseemsinteresting. Motivated by it

we define the individual potential andtotal energy function of the i generator

as

Wj =-jL^Hifa-l)8 +Vi (8-D

where, for the one-axis model.

Eg f E^VjCOstft-^i)
v^-p^-rfrE'* x

(x'dl-x<h)cos[2(ft-T?i)] - (X'd-Xfr) yf
2 +

1^^^-fWcos<^) -
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n+m+1

E BjkVjVkCOsfa-Wc)
k«n+2

and, for the classical model.

n+1 n+m+1

JBijViVjCosOfli-tfj)- £ BacVjVkCOS^i-^)
ji*i k=n+2

(6.2)

(6.3)

Note that the sum of the individual energy functions is not equal to the whole

systemenergy function. Asin the total energy function, (6.2) and (6.3) canalso

take a simplified form, namely

1 x^-x'a, * v
E'|

*V*V*\0 2

Bfi +
(x'^-x^) cos[ 2(6r^i)]-(x,drxqi)

2x^x^1

for the one-axis model, and

1 V?

V?
2

(6.6)

(8.7)

for the classical modeL

We will refer to this approach as the individual energy method.

One drawback of these methods is that they are fault-dependant since V«,w

differs from fault to fault so that a separate simulation has to be carried out for
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each fault Moreover the potential function (individual or total) may not have a

maximum value. In the next section we give such an example.

The method we propose here differs from the two previous methods. We

assume that a load flow study has been performed to determine the unstable

equilibrium pointsof the post-fault system andthe value of the total (potential)

energy function at each of these points (in the case when the post-fault and

pre-fault network are the same no extra computation effort is needed, during

the fault-on period, to obtain these values). The total energy function of the

post-fault system is then evaluated along the trajectory of the fault-on system

together with the distance of the state from each of the unstable equilibrium

points (u.e.p.*s). By distance we mean the Euclidean distance inS' (or S) Le.

and

ijUiW-tfi2 a
for the classical model,

i=l

£ (15t(t) - <5^!8 +1 EVt) - E'̂ !
i«l

K
for the one-axis model,

where 5U (or ( d^.E'̂ )) denotes theunstable equiUbrium. The equilibrium point

with the minimum distance is called the closest ae.p.. The critical clearing time

is defined as the time when the value of the total energy function is equal to its

value at the closest u.e.p..

The intuition behind this method comes from the theoretical results in Sec

tion 5. From Theorem 5.1 we see that if the faulted trajectory leaves the attrac-

tor Aof x00, then it must "pierce" the boundary 3A at some point, say x. More

over x mustbelong to the stable manifold ofan unstable equilibrium, say Xu.
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Then W(x) fe W(xu) andxuis likely to be the closest u.e.p.. The criticalclearing

time estimated byW(x^) will then be smaller than the true critical clearing

time, andthe approximation will be better the closer is x to Xu.

We will refer to this method as the closest u.e.p. method.

Remark 6.2

Aswas mentioned in the beginning of this Section, for on-line analysis, the avail

able time is too short to calculate all the u.e.p.*s, especially for large systems.

There are methods whichtry to determine the closest u.e.p., and hence V^, by

merely observing the generator (or group ofgenerators) that accelerates after

the fault, see [16,22]. But there can be many such equilibria and it is not clear

which one of them should be chosen. We believe that a combination of these

approximate methods and the closest u.e.p. method will result in a more feasi

ble method for on-line transient stability analysis.

7. Examples

The 10-bus, 4-machine system of Figure 2 is taken from Pai [18] with some

modifications. Tables 1 and 2 give the line and model data, respectively. Only the

classical model is considered. Buses 8,9 and 10 are the internal buses and 4,5,6

are the corresponding terminal generator buses. They are connected through

the transient reactance x'd. Bus 7 is the infinite bus Le. V7 = 1.0 and ^ = 0.0.

Table 3 gives the specified initial data.

Using the simulation program described in [27], wefind eight equilibrium

points of which two (!) are stable and six are unstable. They can be separated in

two classes, each containing one stable and three unstable ones. In the first

class Vj is close to 1.0 p.u. In the second class V] is very low. The equilibria are

shown in Tables 4 and 5 along with the value of the Lyapunov (Energy) function.

ULC



LINE DATA

From bus To bus Susceptance (p.u)

1 2 -2.500

1 3 -2.000

1 6 -3.333

2 7 -6.666

3 4 -3.000

3 5 -2.000

a 7 -5.000

4 B -1.000

5 6 -1.250

5 9 -2.000

0 JO -2.500

Table 1.

GENERATOR MODEL DATA

Number xi (p.u) M (p.u) D (p-u)

B

9

IP

1.0

0.5
0.4

1,130.0
2.260.0
*,508.0

1.130

2.260
1.508

Table 2.

SPECIFIED INITIAL DATA ( p.u. )

Generators Loads

Bus Pm E'q Bus P Q

8
9

10

0.4

0.5

0.3

1.057
1.155
1.095

1

2

-0.5

-0.3

-0.2

-0.15

-0.10
-940

Table 3.



EQUILIBRIUM POINTS ( CLASS 1)

Bus
B.e.p. u.e.p.

Voltage Angle Voltage Angle

1 0.9722 0.4267 0.8969 0.6773

2 0.9807 -1.8130 0.9599 -1.8399

3 0.9790 4.7676 0.8091 5.7522

4 0.9703 12.8361 0.4328 28.1304

5 1.0389 14.7012 0.9577 18.1934

6 1.0197 8.2376 0.9678 9.9481

8 1.0570 35.7908 1.0570 147.1708

9 1.1550 26.7281 1.1550 . 31.2564

10 1.0950 14.4074 1.0950 16.4499

V 0.000000 • 0.391133

Bus
u.e.p. u.e.p. |

Voltage Angle Voltage Angle

1 0.7532 1.0982 0.6928 1.6640

2 0.9201 -1.9436 0.9034 -1.9232

3 0.7165 6.5401 0.5901 7.8335

4 0.7485 20.9355 0.3800 44.3175

5 0.2218 84.1014 0.2457 97.5104

6 0.7390 16.3981 0.7005 20.0431

8 1.O570 51.3055 1.0570 129.0612

9 1.1550 161.4618 1.1550 159.2609

10 1.0950 24.9266 1.0950 | 29.0437

V 1.093655 1.196225

Table 4.



EQUILIBRIUM POINTS (CLASS H)

Bus
s.e.p. u.e.p.

Voltage Angle Voltage Angle

1 0.1302 -41.2120 0.1542 -32.2850

2 0.7383 -5.1465 0.7473 -4.9764

3 0.6900 10.7167 0.5631 12.9751

4 0.7240 26.1983 0.3861 50.7972

5 0.7577 44.6052 0.6780 59.6531

6 0.5026 54.6438 0.4826 67.4522

8 1.0570 57.7129 1.0570 129.3304

9 1.1550 61.2043 1.1550 78.2704

10 1.0950 67.2385 1.0950 80.5762

V 1.302421 1.379109

Bus
u.e.p. u.e.p.

Voltage Angle Voltage Angle

1 0.2825 -6.3762 0.2815 -5.7765

2 0.7890 -3.5676 0.7888 -3.5101

3 0.5478 11.0993 0.5068 11.8871

4 0.5685 36.4473 0.4422 48.3986

5 0.4005 117.8124 0.4173 116.9271

6 0.4114 95.0313 0.4214 92.3404

6 1.0570 78.1796 1.0570 107.2494

9 1.1550 150.5278 1.1550 148.1679

JO.,. 1.0950 110.4815 1.0950 107.4123

Y 1.424024 1.428421

Tables.
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Only line faults aresimulated. Ifthe line connecting buses i and j trips then

the faulted network has that line removed and a shunt inductance is inserted at

each ofthe busesi, j the value ofwhich depends onthe location ofthe fault.

Clearing the fault means that the busesare re-connected and the shunts

removed, so the pre-fault and the post-fault networks are the same. In all the

cases the fault occurs at 0.04 sec so the pre-fault values of the variables are also

shown. The location ofthe fault is given as a percentage ofthe distance (as

measured from the first bus) between the twobuses that specify the line. Table

6 showsthe critical clearing time for different faults, obtained with the three

methods. The integration step in the simulation program is 0.02 sec.

Two cases are analyzed explicitly.

Example 7.1: line 3-5. Fault location 25% from bus 3.

The actual critical clearing time for this fault, obtained from simulations, is

equal to 0.30 sec as shown in Figure 9. If the fault clears after 0.32 sec the sys

tem becomes unstable after it survives the first swing (Figure 10), while after

0.34 secgenerator 8 separates from the others inthe first swing (Figure 11).

Figure 12shows the generator angleswhen a sustained fault is simulated.

The critical generators are 8 and 9. Their individual total and potential energy is

shownin Figure 13 along with the total and potential energy of the whole system.

Using the individual energy method the estimated critical clearing time is

equal to 0.40 sec while the total energy method gives an estimate of 0.36 sec.

Using the closest u.e.p. method the estimated critical clearing time is equal

to 0.22 sec.

We see that in this case the only reliable method is the closest u.e.p.

method, although a little conservative. The other methods give wrong results.

ILZ



Fault Critical Clearing Time (sec)

Line Loc.
Individual

Ener. Meth.

Total
Ener. Meth.

Closest

u.e.p. Meth.
Actual

1-3 50% NA NA 0.38 0.44

1-3 75% 0.38 0.36 0.26 0.32

3-5 25% 0.40 0.38 0.22 0.30

3-5 50% 0.40 0.38 0.22 0.38

3-5 75% 0.34 0.32 0.20 0.34

5-8 25% 0.48 0.46 0.46 0.48

5-6 50% 0.80 0.78 0.78 0.78

5-6 95% NA NA 0.24 0.42

i-e 95% NA NA 0.20 M4

Table 6.
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Example 7.2 : lane 1-6. Fault location 95% from bus 1.

The actual critical clearing time for this fault, obtained from simulations, is

equal to 0.34 sec as shown in Figure 14.

Asustained fault is simulated. Figure 15 shows the generatorangles. But

neither the individual potential energy of the critical generator 10 northe indi

vidual energy of any other generator reaches amaximum. The same istrue for

the potential energy of the whole system as it is shown in Figure 16. Therefore,

the previously mentioned methods are not applicable (NA) to estimate the criti

cal clearing time.

Using the closest u.e.p. method the estimated critical clearing time is equal

to 0.20 sec.

The rest of the fault cases are shown in Table 6.

Remark 7.1

Theresults in this Section indicate that methods using V,^ as the critical

energy can give critical clearing time larger than the actual one. The closest

u.e.p. method ismore reliable although insome cases the estimated critical

clearing time is conservative. Closer examination reveals that in allofthese

cases for some time after the fault the closest u.e.p. is also the u.e.p. with the

smallest energy. It is this u.e.p. that determines the critical clearing time. At

some time later the closest u.e.p. changes and the value of the energy function

is smaller than its value at the new u.e.p.. Applying the method again the

estimatedcriticalclearing timeisveryclose (sometimes equal) to the actual

clearing time.

Remark 7.2

Instability can occurevenif the system survives the first swing. Example 7.1

contradicts an implicit assumption made in previous stability analyses that are

based on the intuition gained from the equal area criterion.
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APPENDDC

Proof of Lemma 5.2

Let x € Rn and y,ze Rm be any vectors and consider the product

(x, y,z)T F2 (x, y,z). After collecting terms and forming the squares we have

(x, y, z)T F2 (x, y, z) = Sffi + 5$

where, after replacing e with Vk,

Sgg= E S EiE^cos^-tS^Xi-Xj)2
i=l j=i+l

n+1 n+m+1

i=l k=n+2

EiCos((5i-^k) (xi-yj2 +[2Vk - Eicos((5i-^k) j zk2

+EiSinOWk) [2(xi-yk)zk] J

with x^ s 0.

Hence, F2 is positive definite if each of the two sums is nonnegative for all

(x, y,z) € Rn+2m+1 with at leastone sum strictly positive.

Asufficient condition forSgg > 0 is

'<*i - £jl <f" whenever By >0.

Recall that a necessary and sufficient condition for ax2 + 2bxy + cy2 tobe non-

negative is

1) a>0

ZLZ
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2) ac*b2

Hence, each term in the sum of Sgj is nonnegative iff

3) cosftfj-pic) > 0

4) Eicoste-^ic) [ 2Vk - Eicos((5i-^k) ]* Efsta^drffk)

or, equivalently,

E*4') cosWi-ffk) i g^-

Note that (40 implies (3). Therefore, a sufficient condition for Sgj 2s 0 for all

(x,y,z)eRn+2m+1is

cos(<5j-^k) ^ ;—— whenevr B& > 0.
2Vk

Proof of Lemma 5.3

limit attention totrajectories inA Since }£ o* M6£ Wj^, 6) £ c2 it follows that

6(t) isuniformly bounded, and it only remains to show that<5(t) is uniformly

bounded as well.

Differentiation of (5.1) reveals that 6 (t) is uniformly bounded. For positive

t, h Taylor's theorem applied to 6" implies

6(t+h) - (5(t) - h 6(t) = fc h2£

where &:= 6^ (t+%) for some 0 ^ Si S h. Multiply both sides by Manduse (5.1)

V LC
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toget

M<5(t+h) - [ H - hD ] <5(t) = h[ Pm - f(<5(t))] + }£h2M £.

Hence there are positive constants klf k2 such that for all small h

l^t+WI +IWI^kjhllP^-fWt^l-h^]. (A.1)

(Here| | denotes Euclidean norm.)

LetE := \5°| Pm - f(6°) = OJ be the set of equilibria. LetBc(5°) be the ball

with radius e and center <5°. Choose e > 0,7) > 0 so that the distance between

two different Br((5°) is at least c and IPm - f(<5) | >7) whenever <5 GU Be(<5°).
E

For anytrajectory let Te := f 11 <H0 e U Be((5°) Jand let L(TC) be its Lebesgue
E

measure.

Suppose 6"(t) is not uniformly bounded. Then L(Te ) cannot be bounded

either.

By hypothesis A is invariant, and so, by (5.5),

f <5(t)T D<5(t) £ /<5(t)T D<5(t) * c2 - Cj. (A.2)

Letd = min Dj and take h = JJ 77 k^1. Then, from (Al) and (A2)

2(c2 - Cl) * 2 f<5(t)T D(5(t) dt* 2d [%k, rj2 kg"1 ]2 L(Te)

so that L(Tc) is uniformly bounded.

sit
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Proof of Lemma 5.5

Suppose W(Xi) £ 3A. Obviously Ms(Xj) C\A=<f>. Hence there exist points

Z EIPjXi) suchthat z E (5)e (compliment ofA). Take a small neighborhoodV

of z and consider U $(t,V), the.orbit ofV. Since (5)c is invariant, the orbit is
t>0

anopen subset of (S)c. On the other hand, see [24], we have

\j 4(t,V) 3 ^(Xi). Hence Mu(xi) C ( ( A )c ) = Ac.which contradicts the
t>0

hypothesis M^Xj) n A * 0.

Proof of Theorem 5.2

It is not difficult to see using Lemma 5.1 thatW( x°) ^ W(x) for x in Ag.

Since W(x(t)) is decreasing, Ag is invariant and then by Lemma 5.3Ag is

bounded. Hence every trajectory in Ag has at least one limit point, say X. From

(3.17) or (3.26) Xmust be an equilibrium and so, byconstruction, x = X°. So

Ag C A. Finally, if Xu were stable, then it would have an openattractor contrad

icting the fact that it is in dAg C3.
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Figure Captions

1. Phasor diagram of stator for the one-axis model

2. Network for example

3. Significant phase angles in V

4. Significant phase angles in V

5. Components of energy for stable case

6. Components of energy for unstable case

7. Trajectory connects two saddle points

8. Illustration for Theorem 5.2

9. Fault on line 3-5 at 0.04 sec, cleared at 0.36sec.

10. Fault on line 3-5 at 0.04 sec, cleared at 0.36 sec.

11. Fault on line 3-5 at 0.04 sec., cleared at 0.38 sec.

12. Generator angles for sustained fault on line 3-5.

13. Energy functions for sustained fault on line 3-5.

14. Critical clearing time for fault on line 1-6 is 0.34 sec,

15. Generator angles for sustained fault on line 1-6.

16. Energy functions for sustained fault on line 3-5.
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Figure 13: Energy Functions,

—: Whole System

— —: Generator 8

———: Generator 9
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Figure 16: Energy Functions

•• •• ••: Whole System

: Generator 8
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