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I. INTRODUCTION

We shall consider two optimal control problems for linear

systems whose behavior may be described by the set of differential

equations

n r

x.(t) = X a..x.(t) + y b..u.(t) i = 1, 2, ...n. (1)
i jt"i XJ J j t-i XJ J

The • indicates differentiation with respect to t, and all of the quan

tities in (1) are assumed to be real. The vector x(t) = (x.(t), x?(t), . . .x (t))

is called the state (at time t) and the function t—• u(t) = (u..(t), u-,(t), . . .u (t)),
Yd. r

the control.

The first problem is to choose a control over tn < t < t, which trans

fers a specified initial state to a preassigned terminal state in such a way

that the integral

\
r-°r(x(t), u(t)) dt (2)

*0

is minimized. In (2), f is a convex function and x( • ) is the solution

of (1) corresponding to the control u. We assume that the magnitude of

each component of the control is bounded in absolute value by unity, i.e.

|u.(t) | <_1, i = 1, 2, . . . r for all t.
The second problem is to choose, for each initial state, the con

trol over the interval 0 < t < co in such a way that the integral

r°° 0J fU(x(t), u(t)) dt
0

is minimized. It is assumed again that f is convex and that each

component of the control is bounded in absolute value by unity. This
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mathematical model is frequently used to represent the behavior of a

regulator system.

Both of these problems will be treated by using Pontryagin's

maximum principle. As is well known, the maximum principle

specifies a set of necessary conditions for a control to be optimal.

Two of the principal results of this report are that the maximum prin

ciple is also a sufficient condition for optimality for the first problem

and for a particular case of the second. These results are essentially

the contents of Theorems 4 and 10, which are similar to results ob

tained by Gamkrelidze for the time optimal control problem.

In Sec. II, we develop both of the problems together. The main

results are Theorems 1 and 2 which assert the existence of an optimal

control for the problems. These theorems are apparently new although

some papers have been devoted to the question of the existence of
2, 3

optimal controls for related problems.

Sec. Ill is concerned with the first problem exclusively, The

main result is that the maximum principle is a sufficient condition for

optimality when the problem is normal (Theorem 4). We show that the

problem is normal whenever the specified terminal state is in the

interior of K, the set of states reachable from the initial state. K is

shown to be convex, and to have a nonempty interior when (3) is con

trollable. If (3) is controllable, the interior of K is, roughly speaking,

almost all of K, and therefore the maximum principle is almost always

a sufficient condition for optimality.

We consider a special case of the second problem in Sec. IV. The

most important assumption is that

f°(x, u) = 1 <x, Qx> + 1 <u> Ru>
2 2

where Q and R are non-negative and positive definite matrices, res

pectively. We show that the maximum principle, suitably strengthened,
is a necessary and sufficient condition for a control to be optimal
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(Theorem 10). Because of its engineering importance, the problem of

constructing an optimal feedback control (the synthesis problem) is
4

treated in some detail. This problem was discussed by Jen-wei and
5 6

Letov, but it appears that their results are in error.

A. NOTATION AND CONVENTIONS

For the most part we shall use standard mathematical notation.

Typical symbols for functions are x(«)» t—•u(t), g:R —•R, while the

values of the functions at particular values of their arguments are

denoted x(t), u(t), g(x), respectively. Matrices are denoted by capital

letters such as A, B, Q. No distinction is made between row and

column vectors; the meaning will always be clear from context. For

example, if A is an n x n matrix and x, i|i are n-vectors \\iA and

Ax have meaning only if ijj is a row-vector and x is a column vector.

The scalar product of x = (x., x?, . . .x ) and y = (y,, y?, . . ., y ) is

denoted <^x, y^> = £ . , x.y.. The norm of x, unless specified

otherwise, is max |x.|. The 0(e ) and o(€ ) notation have their
l<i<n x

usual meaning: f = o(e ) means lim f/e = 0 and g = 0{e. ) means there

is an A such that |g/e | < A. €~~*°
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II. TWO OPTIMAL CONTROL PROBLEMS

A. SUMMARY

In Part Bthe two control problems to be studied are formulated

precisely, and the notions of admissible control and transfer are de

fined. The synthesis problem, i. e., that of finding an optimal feed

back control, is stated in Part C. The principal results of the section

are in Part D where existence theorems for optimal controls are proved

(Theorems 1 and 2). Their proofs, like those of similar theorems in

Markus and Lee, are based on the weak compactness of the set of

admissible controls. What is new in the proofs is the exploitation of the

convexity of the cost function f and the application of the Banach-Saks

theorem to obtain strongly, instead of weakly, converging sequences.

Lemmas 1 and 2 are also important because they are used later in Sec. Ill,

where Problem I is treated, and in Sec. IV, where a special case of

Problem II is solved.

B. PROBLEM STATEMENT

In this section we formulate the two problems that will be considered.

The first is a particular case of those considered by Pontryagin in Ref. 7,

with the greatest specialization being to a linear system, and the second is

a regulator problem.

The control region ft, a subset of Rr the real r-dimensional vec
tor space, is assumed to be

n ={(uru2, ...ur)| |u.| <1, i =1,2, ...r}

We say a function t—•u(t), is an admissible control iff u(t)€& for each
t and it is measurable. For brevity, frequently the adjective "admissible

will be omitted and "control" will mean "admissible control. "

Comment: In any engineering application, of course, a control must

be at least piece-wise continuous for it to be physically realizable. How
ever, in proving the existence theorems (Theorem 1 and 2) it is necessary

-4-
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to use measurable controls. Technically, the reason for this is the fact

that the class of measurable controls is closed under passages to limits.

We will consider systems whose state at time t is described by

the set of differential equations,

n

x.(t) = V a..x.(t) + V b..u.(t), i=l, 2, ...n,i j4i ^J j4-x iJ J

the coefficients a., and b.. being real constants. Introducing the

matrices x = (x,, x_, . . . x ), u = (u,, u-,, . . . u ), A = (a..) and B = (b..),
\ y 2/ n7 v 1 2 r' !J XJ

these equations are

x = Ax + Bu . (3)

Eqs. 3 are called the state equations of the system.

For any control t •u(t), the solution (trajectory) of (3) satisfying

the initial condition x(t-., u) = x^., is given by

A(t-tQ) t A(t-r)
x(t, u) = e xQ + J e Bu(T)dT . (4)

*0
For brevity, x( •, u) often will be abbreviated to x(-), when the control

intended is clear from context. Occasionally, the notation x( •, u, xn) will
be used whenever the initial state is important.

The control t—•u(t), t« < t < t„ is said to transfer the state from

position xQ to x, iff the solution of (3), x(«,u), satisfies the boundary

conditions x(tQ,u) = xfi and x(t,, u) = x.. . The states xn and x, are

called, respectively, the initial and terminal states.

We consider in addition the integral

r1 oJ r (x(t, u), u(t» at
4o

where the function f satisfies the conditions
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, .0 , 8f° . _ _
1. f and , 1 = 1, 2, ... n.

3x.
i

are continuous on R xQ

2. f is convex: For all x., x2, u., u2 and 0 < X < 1,

f°(\ X]L +(1 - \ )x2, \ ux +(l-\ )u2) <\ f°(xr ux) +(1 - X. )f°(x2, u2)

The first problem we shall study is

Problem I: For the system (3), given states xn and x,, and
times tfi, t. among all admissible controls t—*u(t), tn < t < t., which

transfer xn to x., find one for which J.l f (x, u) dt is a minimum.
0 0

Comment: The case when the cost function f depends solely on

the control u, is especially important in engineering problems. For

example, if f (x, u) = £-=i |u- I» the integral

h
S •£ |u.(t) | dt
t0 i = i

might physically represent the fuel expended in control by u.

In Problem I the control is explicitly required to move the state

to position x,. However, in some engineering problems this requirement

is not essential. For example, suppose the process described by (3) is

the deviation of a regulator from its equilibrium state, x = 0, the normal

mode of operation. In other words, x(t) represents the displacement of

the state from the desired one at time t. Then, a natural measure of the

performance of a control t—*u(t), 0 < t < co, is the integral

co

/ fU(x, u) dt
0

where we might, for example, specify f (x, u) > 0 with equality if

(x, u) = (0,0).

With this motivation, we formulate
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Problem II: For the system (3) given the initial condition

x(0) = xfi, find among all admissible controls t • u(t), 0 < t < oo one
for which the integral

co .

/ fU(x, u) dt
0

is a minimum.

A control which is a solution to either of the problems cited above

is called an optimal control, and the corresponding trajectory, an optimal

trajectory.

C. THE SYNTHESIS PROBLEM

In engineering problems, it is often necessary to consider more than

a single initial state. For example, in the regulator problem cited above,

no initial state is distinguished (xQ might represent a displacement from
equilibrium due to some load disturbance). In this case, a solution of

Problem II for all xft is needed.

This requirement leads to the so-called synthesis problem for

Problem II. We say a function x—*u(x) from R to fl is an admissible

feedback control iff for every xn

1. The differential equation

x = Ax + Bu(x)

has a solution, x( •), 0 < t < oo, satisfying x(0) = x-..

2. The (time) function t >u(x(t)) is an admissible control in the

sense previously defined.

The synthesis problem corresponding to Problem II is

Problem II': For the system (3) among all admissible feedback

controls x—ki(x), find one such that for every initial state the integral

co _.

/ fU(x, u(x)) dt
0

is a minimum.
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A solution to the synthesis problem is called an optimal feedback

control. If x—^u(x) is such a control, the differential equation

x = Ax + Bu(x)

determines all of the optimal trajectories of the system.

Comment 1: The relation between Problems II and II' may be seen

as follows:

Suppose t—•u(t), 0 < t < oo, is optimal for initial state xfi. Let the

corresponding solution of (3) be x(•, u). Then if tQ < t' < co the control
t •u'(t) defined by u'(t) = u(t), t' < t < co, is optimal for initial state

x(t', u). This is clear since once at state x(t', u), the subsequent control

must be optimal. Observe that the value of the control depends solely on

the state, and the value of t' is immaterial. Thus t *u(t) actually deter

mines a value of u(x) for each state on the trajectory x( •, u). Conversely,

if x *u(x) is a solution of the synthesis problem, the control t—*u(x(t))

(for each initial state) is a solution to Problem II.

Comment 2: For many engineering problems, the solution to the syn

thesis problems is the desired one. The function x *u(x) defines a feed

back control; whereas, a solution to Problem II is an open loop control.

Generally speaking, feedback control systems are preferable to open-loop

systems.

D. EXISTENCE THEOREMS

In this section, we show that the problems formulated above have a

solution under suitable hypotheses (Theorems 1, 2 and Corollary 2). The

proofs are based on the weak compactness of the set of admissible controls,

the convexity of f , and the Banach-Saks Theorem. The actual proofs of

the theorems will not be needed in the sequel, although Lemmas 1 and 2

are used later. The reader may therefore omit the proofs of the theorems

without loss of continuity, and go on to the next chapter.

Consider tQ and t. fixed (finite) and let U be the set of all ad
missible controls defined on ftQ, tj . U is a subset of the Hilbert space
L? of square integrable vector functions on jtQ, tj . In proving the
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existence theorems, however, it is necessary to consider L? with its

weak topology. The following lemma plays a crucial role in what follows.

Lemma 1: U is convex and compact in the weak L? topology.

Proof: If u and u2€ U, then \u, + (1 - \) u2€ U for all 0 < \ < 1,
because for any t€ [L, t"| , X.u..(t) + (1 - X.) u2(t)e Q since £2 is convex.
Hence, U is convex.

U is bounded as a subset of L2 since £2 is bounded and t. - tn is

finite. It is easy to show U is closed in L2 (consider L-> with its norm

topology). Therefore, U is compact in the weak L2 topology.

We will also use the Banach-Saks theorem whose proof may be found

in Ref. 8.

Theorem (Banach-Saks): Given in L-, a sequence (u j which con
verges weakly to an element u, there is a subsequence {u } such that the
arithmetic means

u + u + . . . + u

nl n2 *k
u

k

in norm.

The next result is simple, but is quite useful and will be needed

in Sees. 3 and 4 as well as here.

Lemma 2: Let u. and u2e U and suppose x(*,u.) and x(',u?)
are the corresponding solutions of (3). Then if 0 < X. < 1

x(-, \ul + (1 - \) u2) = \x(.f ux) + (1 - X.) x(-,u2) .

Proof: From (4) we have

A(t"t0) r* A(t t)x(t,Xu1+(l-Mu2) =e x0+ J e^" 'b(Wt )+(1 -X) ,))dT

A(t-tQ) ^1 A(t_T)
= Xe x0 + X.J ex ' Bu,(t) dT

tZ0
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A(t-V i A(t t)+(1-Me °x0 +(l-M / eA<t-T)Bu2(T)dT
0

= X. x(t, u,) + (1 - X)x(t, u2)

which proves the lemma.

Using Lemma 2, it is easy to prove by induction

Corollary 1: Let u„ u2, . . . u, € U and x( •, u.), i = 1, 2. . .k be the

corresponding solutions of (3). Then

un + u •>+... + u.
12 k ) =1 | x(.,u.) .

/ k i=l 1

We note also the following property of convex functions:
n

Lemma 3: Let x—•—•<!> (x) be a convex function defined on R . Then

(x. + x, I . . , +x, \ . k

-i - -]< -i 1 +(xi)k / - k i =1 l

Proof: The lemma is true for k = 2 by definition. Assume it to be

true for n = k - 1. Then,

«1 +»2+...+ xk\_ /*! ^ k,X x2+... +xk
k k k - 1

k * k \ k - 1
1 > 1 / x2+' ' '+ xlc

< i 4>(Xl) +^i * '

<Icf>(x1) +L^I—L_ f <t>(x.)
- k L k k - 1 i = 2 *

l k
= - 2 *(x.)

k i = 1
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which proves the lemma.

We are now in a position to prove an existence theorem for optimal

control in Problem I.

Theorem 1: In Problem I, if there is a control t—•u(t), tn < t < t„

which transfers xfi to x„ there is an optimal one.

Proof: Let FC U be the set of all controls which transfer xn to x..

F is convex, in view of Lemma 2, and it is nonempty by hypothesis. Con

sider the function C:F—•R defined by

C(u) = J fU(x(t, u), u(t)) dt
t„

and let d = inf C(u). We have to show there is a u € F such that C(u) = d.
U€F

If F is finite, the theorem is trivial. If F is infinite, choose a sequence

u in F such that
l. n1

C(uJ < d+ -L . (5)
2n

Since U is compact, there is a u* e U and a subsequence of ju ]
converging weakly to u* . From (4) and the definition of weak conver

gence, we see that u* e F, i.e., u* transfers xQ to x]. We will show
u* is an optimal control.

The Banach-Saks theorem (renumbering indices if necessary) states

there is a sequence of functions jv ] converging to u* in norm with

u, + u, +. . . + u.
v, =-J 2 k

k

The vk€ F because F is convex. Denote the solution of (3) for control

Uk by xk^' Then using Corollary 1, Lemma 3 and Eq. (5) in that order,

-11-



<1
C(vk) = / f°(x(t, vk), vk) dt

V

J1 f0 /x1 +x2+... +xk u1 +u2+...-fuk \ ^
tQ \ k ' k /

k h
< 1 $ f f°(x u) dt
- k i = 1 tQ

< d+ i | -i_ <d +1 .
k i = 1 2i k

Since v^ •u* in norm, it is clear that x(t, v, ) *x(t, u* ) for
each t (See (4)). In addition there is a subsequence of {vjj converging
to u* almost everywhere on fto'^l » so we may assume v^ •u* a. e
Therefore, since f is continuous

lim f° (x(t, vk), vk) =f°(x(t, u* ), u* ) a. e.
kr-*co

The theorem then follows from the inequalities,

d < / f (x(t, u* ), u* ) dt

t.

r1 0= J lim r (x(t, vk), vk) dt
tQ k—co

r1 o= J lim inf fU (x(t, vk), vk) dt
tQ k-+co

-12-



< lim inf J f (x(t, vR)) dt
— k—•co tn

= lim inf C(v, ) = d .
k—•oo

9
The fourth line follows from the Fatou-Lebesque theorem.

In order to prove the existence of an optimal control for Problem II,

two additional assumptions will be made about the function f :

1. f°(x, u)^0, f°(0, 0) =0 (6a)
oo 0

2. for every C, if f* f (x, u)dt < C then there exist C,
J0 L

such that oo r ?
f > u. (t) dt < C, . (6b)

Jo i4i 1 l

Eq. (6a) is natural in engineering problems, and it rules out the possibility

of the integral in Problem II diverging to -co. Eq. (6b) is somewhat more

a.r

2

restrictive but is satisfied in the important cases when f (x, u) = <j>(x)

+| | u| | where | | u| | is either £_. _. u. or 2_. _1 | u. | . The integral of
the latter two terms might represent, physically, energy and fuel, respec

tively, expanded in control by u.

With these assumptions, an existence theorem for an optimal control in

Problem II is

Theorem 2: In Problem II, suppose that Eq. (6av and (6b^ are satisfied. Then

if there is a control v such that

co

J f° (x(t, v), v) dt < oo
0

there is an optimal control,

-13-



Proof: For each admissible control, let

co

C(u) = / f° (x(t, u), u) dt .
0

From (6a), C(u) > 0 for all u. By hypothesis, there is an admissible

control v such that C(v) < co. This fact along with (6b) allows us to

restrict the search for an optimal control to some bounded set in L? j~0, co),
the Hilbert space of square integrable function on fo, co). The theorem then
follows in essentially the same way as Theorem 1 was proven.

If in addition, we make the following assumptions about the system of

(3)

1. it is a Lyapunov stable (7a)

11 12
2. it is controllable, ' (7b)

then the second hypothesis of Theorem 2 is always satisfied. To show this,
13

we will need the following theorem due to LaSalle.

Theorem (LaSalle): Suppose system (3) satisfies conditions (7).

Then for any initial state xn, there is an admissible control t •u(t),

t~ < t < t., which transfers xn to the origin x = 0.

Corollary 2: In Problem II, in Eq. (6) and (7) are satisfied, there

exists an optimal control.

Proof: Using LaSalle's theorem, there exists a control t •u(t),

tn < t < t., which transfers x~ to x = 0. Define the control t ^v(t) by

u(t) *() 1*1*1

v(t) r.

t, < t < oo

Since f (0, 0) = 0, C(v) < co, which, in view of Theorem 2, proves the

corollary.
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E . NOTES AND REMARKS

The idea of introducing the weak topology was used first by

Gamkrelidze in proving an existence theorem for the (linear) time optimal

control problem. Existence theorems for optimum control were proven
2 3by Markus and Lee and Roxin for certain nonlinear systems, but their

hypotheses are not fulfilled for the problems considered here.
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III. THE MAXIMUM PRINCIPLE AND PROBLEM I

A. SUMMARY

We shall treat Problem I using the maximum principle in this

chapter. In Part B we formulate the maximum principle as it applies to

the problem. The main result of the chapter is Theorem 4 which asserts

that the maximum principle is a sufficient condition for optimality when

the problem is normal. In Part D, we show that except possibly when the

terminal state x, lies on the boundary of K, the set of states reachable

from the initial state x~, the problem is normal. We show that K is

convex and has nonempty interior when the system (3) is controllable.

Therefore, when (3) is controllable "almost all" choices of a terminal

state for which the problem makes sense, give rise to a normal problem.

B. THE MAXIMUM PRINCIPLE

In this section, we shall formulate the maximum principle as it

applies to Problem I. For the most part, we shall use the notation and

conventions in Pontryagin.

We introduce the scalar differential equation

xQ(t) =f°(x, u), t0<t<tx (8)

with the initial condition

xo<V =°
The meaning of f , x, and u is the same as in the last chapter. We

observe that the right hand side of (8) does not depend on xQ, and that
if t >u(t), tn< t < t,, is any admissible control, the solution of (8) is
given by

t 0xQ(t) = J f (x(t, u), u(t)) dt
*0

where x( •, u) is the solution of (3), the state equations, corresponding to

u. The value of Xq^) may therefore be interpreted as the cost associ
ated with the control u.

Following Pontryagin, we combine Eqs.(3) and (8) into a single

equation. Letting x = (x'0» x^ . . .xn), (3) and (8) are equivalent to the

-16-



vector equation,
x=f(x, u) (9)

where the i-tih component of _f(x, u) is given by

f°(x, u)
f (x, U) =

f°(x, u) if i = 0

y a.. x. + y b.. u., i = 1, 2, . . . n .j4i y j f=i «J j
We consider in addition to the system of Eqs. (9), the auxiliary set

of equations

3f°(x, u)^(t) =-^0 £ } - ]> a ^(t) i =0, 1, 2, . . .n
i j=l J J

(10)

In (10), the coefficients a., are the same as in (3). We do not

specify the initial conditions for the i|i., and therefore to each control u,

there corresponds not just one solution of (10), but a family of solutions.

We note that i|/0(t) *s a constant because (3f /9xfi) = 0, and that (10) is a
linear equation in the variables di-., ik, . . . ib .

0 l n ay
Letting j; = (ip-, ip_, . . . ip ), we define the real valued function rr by

the equation

<%{±,x, u) = <4,J> . (11)

using ty- , (9) and (10) can be expressed in the form of the following

Hamiltonian system:

dxi B%/
dt dip

i = 0, 1, 2, . . . n (12)

dip.i v, „ . n , „ n ^ (13)=-£%L i =0, 1, 2,
dt dx

l

This is the reason why "9/ is called the Hamiltonian.
For fixed values of ip and x, the Hamiltonian is a function of

uc £2 . Let (//} (4/, x) be the maximum of y5/ (^» x> u) over S2:

fY) (jv x) = max *#($. x, u) (14)
ue Q
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Since Q is compact, and 74 is continuous, yt) (4<» x) ^s well defined.

The maximum principle as it applies to Problem I is expressed in

Theorem 3: If t—•u(t), t~ < t < t., is an optimal control for Prob

lem I, then there is a nontrivial solution of (12), ip_( • ), corresponding to u

such that

1. ^'(ip(t), x(t), u(t)) = JY) (ip(t), x(t)) almost everywhere on

2- f}'} (di(t), x(t)) = constant.

3. ipQ<0.

It will be necessary in the sequel to distinguish between the case when

ip0 < 0 and when ipQ = 0. If ip < 0, the trajectory x( •, u) is said to be
normal; if ipn = 0, it is said to be abnormal. When ipQ < 0, since (12) is
linear, in the variables ipQ, ip., . . ., ip , we may assume ipQ = -1. We shall
also say the problem is normal or abnormal according to whether ip^ < 0
or ipn = 0. This terminology is also used in the classical calculus of varia.

°15
tions.

We remark that the maximum principle consists of a set of necessary

conditions for a control to be optimal. Somewhat loosely, we shall speak of

the maximum principle itself as being a necessary condition for a control to

be optimal. Similarly, we shall say that the maximum principle is a suffi

cient condition for a control to be optimal iff every control which satisfies

the conditions 1-3 of Theorem 3 is necessarily an optimal control.

C. SUFFICIENT CONDITIONS FOR OPTIMALITY

We shall show the maximum principle is a sufficient condition for a

control to be optimal for Problem I, provided the problem is normal. This

will be accomplished in two steps. First, we derive the weaker result that

the maximum principle is a sufficient condition for a control to be stationary.!

Then we shall prove that it is a sufficient condition for a control to be optimal

(Theorem 4).

If t ^u(t) and t •u'(t), tfl < t < t., are two admissible controls, it
will be convenient to let

t A control u is said to be stationary if controls O(e) distant from u, in
a suitable metric, are at most o(€ ) "better than it. "
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d(u, u') = J ||u(t) - u'(t)|| dt . (15)
*0

Although we shall not use the fact that d is a distance in the mathematical

sense, it is helpful to keep the intuitive idea of a distance in mind.

In the sequel we need a formula which can be deduced from a more
16

general result by Rozonoer. For convenience and completeness, we have

given a proof of this result in Appendix A. The formula in question is con

tained in

Lemma 4: Let t • u(t) and t •u'(t) be admissible controls and

x(-) and x'(«) be the solutions of (12) corresponding to u and u' respec

tively. Suppose there is a solution ip( •) of (13) corresponding to u such

that almost everywhere on [~tn, t~)

9J. wt), x(t), U(t)) = fflwt), x(t)) .

Then

<>(tx), i,(V " -(V> + °(e ] 1 ° (16)

when d(u, u1) < e .

Proof: Lemma 4 is proved in Appendix A.

We define the cost associated to a control u by the formula

h
C(u) = J f°(x(t, u), u) dt (17)

40

Using Lemma 4, we now show that the maximum principle is a sufficient

condition for a control to be stationary, when the problem is normal.

Lemma 5: Let t ^u(t) and t •u'(t), tQ < t < t,, be admissible
controls which transfer xfi to x... Suppose there is a solution of (13)
ip( • ) such that almost everywhere
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f/(j;(t),x(t), u(t)) = p)(Mt),x(t)) .

Then, if x( •, u) is normal,

C(u) - C(u') < o(c)

when d(u, u') < € .

Proof: Let x( • ) and x'(") denote the solutions of (12) correspon

ding to u and u', respectively. Since x( • ) is normal, we may assume

vpn = -1, and because both u and u' transfer x~ to x., x(t.) = x'(t.).

Therefore, from Lemma 4, it follows that

X0(V " X0(V + °(€) 1 ° '

But since C(u) = xn(t.) and C(u') = x' (t.), this proves the lemma.

We are now in a position to prove the main result of the chapter:

Theorem 4: In Problem I, let t Ki(t), tQ < t < t., be an admissible
control which transfers xn to x]. Then a sufficient condition for u to be

optimal is that there exists a solution ip( • ) of (13) corresponding to u such

that

1. ^f (ip(t), x(t), u(t)) = jTlWt), x(t)) almost everywhere on [tQ, tj .
2. 4-0 < 0.
Proof: The proof is by contradiction. Suppose that u" is an optimal

control (such a control exists by Theorem 1) but that u is not optimal, i.e.

\
S f°(x, u) - f°(x', u1) dt =d > 0
l0

C(u) - C(u') =
t.

where x( • ) and x'( • ) aire the solutions of (3) corresponding to u and u'

respectively. For each 0 < \ < 1, we consider the controls

t—*ux(t) =(1 - \ ) u(t) + (1 - X) u'(t), tQ < t < tx .
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In view of Lemma 1, each u. is admissible, and we observe that
A.

d(u, u^) = J II u(t) - u^(t)!| dt
*0

h
= \ J || u(t) - ix'(t) 11 dt = \ (3 (18)

where we define p by the last equality.

By Lemma 2, the solutions x. (• ) of (3) corresponding to u. satisfy

the boundary conditions x. (t,) = x., so each u. transfers xn to x1. Then
Klip. K U 1

using Lemma 2 and the convexity of f , in that order,

C(u) - C(u^) = / f°(x, u) - f°(xx, ux) dt
t0

*1
/ f°(x, u) - f°((l - \)x + \x\ (1 - \)u + \u') dt
t„

> / f°(x, u) - ((1 - \ ) f°(x, u) + X. f°(x', u')) dt

\
= X J f°(x, u) - f°(x', u')dt = X d.

Putting \ = e/p in the last expression and in (18), this contradicts

Lemma 5. Therefore u must be an optimal control.

Comment: Theorem 4 shows that Problem I is equivalent to solving

a two-point boundary value problem: In the system of Eqs. (12) and (13),

the initial and final values of x are known, but the boundary conditions on
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ip., ip-, . . . ip are not. When f does not depend on x explicitly, and

only on u, special methods for solving the boundary value problem have
17been derived. See, for example, Neustadt, who without using the

maximum principle derives the equivalent of Theorem 4 under these cir

cumstances. In addition, he gives a computational procedure for solving

the resulting boundary value problem.

D. NORMALITY

In this section, we shall show that the normality hypothesis in

Theorem 4 is essentially unimportant when system (3) is controllable.

This will be accomplished by showing that except possibly when the ter

minal state x. lies on the boundary of K, the set of states reachable from

the initial state xfi, the problem is normal. We show K is convex, and
that it has nonempty interior when system (3) is controllable. The set of

terminal states which can give rise to an abnormal problem is therefore,

in a sense, negligible when (3) is controllable.

We first consider the set of states reachable from the initial state xQ

at time t = t, by admissible controls. Referring to (4), we see that this

set is (U is the set of admissible controls)

K = ( y€ Rn| y = x(t., u) for some u €Uj

where

x(tr u) =e 1_ ° xQ + / eA(t"T) Bu(r)dT .
*0

In considering the time-optimal control problem, LaSalle proved that K
13was convex and compact. We shall give a different proof of the same

result.

Lemma 6: K is convex and compact.

Proof: It suffices to prove Lemma 6 for the set

K« ={y€Rn|y = / e"AT Bu(t), dr , uCui
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At.

because K may be obtained from K' by multiplying by the matrix e
A(ti -tn)

and translating the result by e L u x~. These two operations, of

course, do not effect the properties of convexity and compactness.

We recall that U is convex and weakly compact (Lemma 1), and we

define the linear transformation L:U •R by

Lu = / e"AT Bu(t) dT .
*0

Then if x,, x-, e K', there exists u., u? € U such that x. = Lu. and

x? = Lu?. Since L is linear, for any 0 < X < 1,

z = Kx. + (1 - X)x2 = L(Xu. + (1 - X) u2)

U being convex, Xu. + (1 - X) u2 e U, and therefore z€ K1, proving K'

is convex.

To prove K' is compact, first we observe that L is continuous when

U is given the weak L2 topology and R the usual topology. Since

K' = L(U), K' is compact (the continuous image of a compact set is compact),

which completes the proof of Lemma 6.

We now show that the set of terminal states x. which give rise to ab

normal problems is a subset of the boundary of K.

For abnormal problems ip = 0, and the Hamiltonian reduces to (see

(ID)

fy (^ x, u) = <ip, Ax + B£> (19)

where we define ip = (ik, iju> . . . ip ). Moreover, with ipn = ^' ^e differen

tial Eqs. (10) which the ip. satisfy, simplify to

n

^P(t) = - T a ip(t), i = 1, 2, . . .n
1 j = 1 J1 J
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or in vector form,

ip= -ip A. (20)

Clearly tt , in abnormal problems, attains its maximum as a func

tion of u simultaneously with the function

<ip, Bu>

We want to consider all possible abnormal optimal trajectories, so

in the sequel we assume that u maximizes fr :

u(t) = sgn (i|i(t) •B), tQ < t < tx (21)

r r
where sgn: R *R is the vector valued function whose ith component,

l_<i<^r, is(x= (xj, x2, . . . xr) )

1 if x. > 0

(sgnx). = ^ -1 if x. <0

undefined if x. = 0
l

We observe that if x. is a terminal state which gives rise to an abnormal

problem, any optimal control for x. must satisfy (21) for some solutions

of(20).

Now we consider the set

r = (ye R | y =x(t., u), u satisfies (21)| .

In view of the previous discussion, T contains the set of terminal states

which give rise to abnormal problems. The relation of T and K is given

in
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Lemma 7: r is the boundary of K.

Proof: First we review how the boundary of the convex set K,
18

denoted 8K, may be characterized. Geometrically, y € 9K iff there

exists a hyperplane containing y such that K lies entirely on one side

of it. Analytically, this is equivalent to the statement: y € 3K iff there
ft r»

exists ip e R such that for all z € K

<+°, y> ><*°, z>

We note that, as in the proof of Lemma 6, it suffices to consider the

sets

K' = {yeRn|y = / e"Ar Bu(t)!<1t, ueUJ
*0

*1
r'={yeRn|y= J e"AT Bu(x)dT, u satisfies (21)}

and prove that T' is the boundary of K'.

We remark that every solution, ip( • ), of (20) is of the form

ip • e~ , for some ip e R . Therefore, if y e T1, for some ip ,

f -At -. . .0 -Atv n ,
y = J e B sgn (ip • e )• B ot .

We consider

<+°.y> = / <+° • e"AT B. sgn^0 • e"AT •B)> dr .
(22)

<* 0 \ 0 -At
ip , y/ is well defined even though sgn(ip • e" B) may

not be.
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and

Now let ze K'. Then for some u€ U,

*i At
z = J e" Bu(t) dT

<*°,z> =</ +°e-ATB. u(t)> dt .

Comparing (22) with the last expression, since each component of

u is bounded in absolute value by unity,

<*°.y> > <+°-i>

The last inequality, in view of the previous discussion, shows that

ye 3K', which proves the lemma.

Recalling the definitions of K and T, we have immediately from

Lemma 7

Corollary 3: If the terminal state x. belongs to the interior of

the set of states reachable from xQ by admissible controls, Problem I
is normal.

Corollary 3 is correct but meaningless if K, the set of states

reachable from xn by admissible controls, has empty interior. A
necessary and sufficient condition for the interior of K to be nonempty

is for system (3) to be controllable. To see this, recall that by definition,

(3) is controllable iff given any states xn to x., there exists a bounded-

function t •u(t) e Rr, t <t <t, which transfers xQ to Xy It follows
that without the restriction u(t)e ft, the set of states reachable from xQ
is all of Rn iff (3) is controllable. Because (3) is linear, it is then clear

that the interior of K is nonempty iff (3) is controllable.

We summarize the main results of this chapter by combining

Theorems 3 and 4 and Corollary 3 in
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Theorem 5: In Problem I suppose x. belongs to the interior of

the set of states reachable from xn by admissible controls, and suppose

t *u(t), tn < t < t., transfers x-. to x.. Then a necessary and sufficient

condition for u to be optimal is that there exist a solution ip(') °f (13)

corresponding to u such that

1. ^ (^(t)» *(t), u(t)) = W (+(*)» x(t)> u(t)) almost everywhere on

2. <#] (ip(t), x(t)) = constant.

3. ipQ < 0 .

Remark: Theorem 3, like Corollary 3, is meaningful only when the

system (3) is controllable.

E. NOTES AND REMARKS

LaSalle proved Lemma 6 using Liapunoff's theorem on the range of
13a vector measure. We have preferred to give an independent proof of the

lemma because our proof, perhaps, relies on more well known tools. The
17

idea used in proving Lemma 7 is contained in Neustadt.
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IV. A SPECIAL CASE OF PROBLEM II

A. SUMMARY

We shall consider a special case of Problem II in this section. The

most important assumption is that

f°(x, u) = I <x, Qx> + 1 <u, R£>
2 2

where Q and R are non-negative and positive definite matrices, respec

tively. Special emphasis is placed on the problem of constructing an optimal

feedback control because of its engineering importance.

As the problem is formulated, there is no form of the maximum prin

ciple which is applicable, the difficulty being in the boundary conditions at

oo. In Part C we show how the problem can be stated as one for which the

maximum principle applies without actually changing the problem. The

principal results in part C are Theorems 6 and 7 which state, respec

tively, that the optimal, control is unique and that the optimally controlled

system is asymptotically stable in the large.

In Part D the maximum principle as it applies to the reformulated

problem is stated. We strengthen the maximum principle in Part E to a

form in which we can show it is both a necessary and sufficient condition

for optimality. The sufficiency proof is carried out in Part F, and the final

result is stated in Theorem 10.

We consider the synthesis problem in Parts G and H. The optimal

feedback control is shown to be a linear function of the state in a neighbor

hood of the origin in state space (Proposition 1), but no closed form ex

pression for it is derived for all states. However, it may be computed,

roughly speaking, by running system (3) backwards in time, in a way

similar to that proposed by LaSalle for the time optimal control problem.

Part H deals with some computational aspects of the synthesis problem.

B. PROBLEM STATEMENT

In this chapter we shall consider a special case of Problem II (see

Sec. II, PartB). The following special assumptions are made:
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1. f (x, u) = — <x, Qx> + __ ^i, RiO where Q and'
2 2

R are non-negative and positive definite matrices, respectively.

2. System (3) is controllable and Lyapunov stable.

3. The only element of the set

M= {x€Rn| <eAtx, QeAtx> =0 Vt>o}
is x = 0.

>

(23)

We note that the first two assumptions fulfill the hypotheses of Corollary 2,

and therefore an optimal control for the problem exists. The reason for

the third assumption will be explained later.

C. PROPERTIES OF THE OPTIMAL SYSTEM

The purpose of this section is to convert the problem into one for

which the maximum principle is applicable. The difficulty is in the form

of the boundary conditions at infinity. We first prove the optimal control is

unique.

Theorem 6: If u. and u2 are optimal controls, then u.(t) = u?(t)
almost everywhere on 0 < t < co.

Proof: We observe that the function u *<C^i, Ru^ is strictly
convex, i.e., for 0 < X < 1,

^.ux +(1 - X)u2, R(Xux +(1 - X)u2)> <X<^ir Ru^> +(1 - X) <u2, Ru2>

with equality only if u. = u->. Therefore f is also strictly convex. Con

sider the (admissible) control,

u (t) + u (t)
t *u(t) = — , 0 < t < oo.

2 ~

Let x1(-), x2( •), and x( •) be the solutions of (3) corresponding to u., u?,
and u respectively. Then utilizing Lemma 2, we have
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x, +x2/\V.u,dt= ft p
o o \

co _ A

<1 J f°(x u ) +f°(x u2) dt .
- 2 0 l i L

Since f is strictly convex, the above inequality holds with equality only

if u. = u_ almost everywhere. But since u. and u? are optimal, we

must have equality, which proves the theorem.

We now show that the optimally controlled system is asymptotically

stable in the large (a. s. i. 1. ). This enables us to adjoin to the problem the

requirement that the control transfer the initial state to the origin, in the

limit at t •co, without changing the problem. With this additional speci-
19fication, the maximum principle is applicable.

We let x *u(x) be the optimal feedback control for the problem

(see Sec. 11, PartB). Such a control exists and is unique by Corollary 2

and Theorem 6, respectively. Consider the system

x = Ax +Bu(x) t > 0. (24)

System (24) describes the behavior of the optimally controlled system.

We define the function V:R •R by the equation,

co

V(xn) = J <x, Qx> + <u, Ru> dt (25)
• 0

where x(«) is the solution of (24) for the initial condition x(0) = xQ, and
u is the associated control. Clearly, an equivalent definition of V(xft) is

oo

V(x ) = inf J <£, Qx> + <u, Ru> dt
U ueU 0
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where U is the set of all admissible controls, and x(« ) is the solution

of (3) corresponding to the control u and initial state xn. Since an

optimal control exists for each initial state xn, we see that V is well

defined.

The assumption M = [Oj (see (23)) is needed to prove the first state
ment in the next lemma, and this lemma will be used in proving system

(24) is a. s. i. 1. .

Lemma 8: If M= [oj , then V has the following properties:
1. V(xQ) = 0 iff xQ = 0.
2. If a>l then V(axQ) > V(xQ).
3. V is continuous.

Proof: Lemma 8 is proved in Appendix 2.

We now are in a position to prove (24) is a. s. i. 1. .

Theorem 7: If M = [Oj , then system (24) is a. s. i. 1. .
Proof: We have to prove that (24) is stable and that for any initial

state lim x(t) = 0. We first observe that for any xn,
t—•oo

V(x ) = V(x(t )) + J <x, Q$> + <u, Ru> dt. (26)
0

Eq. (26) expresses the fact that the control t •u'(t) = u(t), t1 < t < co is
the optimal control for initial state x(t.). From (26), since the integrand in

(26) is non-negative, it follows that

V(xQ)< V(x(tx)) . (27)

In other words, V as a function of time is nonincreasing.

We prove the stability of (24) first. Given € > 0, let

S = {x(Rn| ||x|| =*}

Then since V is continuous, V(x) > 0 for each x c S , and S is compact,

-31-



inf V(x) = b > 0 . (28)
X€ S

Since V(0) = 0 and V is continuous, we can find 0 < 6 < e such that if

|| xQ|| < 6, then V(xn) < b. Hence for any initial state x~ satisfying
j| xn 11 <6, in view of (27) and (28), the solution of (24) remains inside
the set S . This shows (24) is stable.

From 2 of Lemma 8 and (28), it follows that if || x|| > e , then
V(x)>b. Since

V(xQ) = lim / <x, Qx> + <£, R^> dt
t. •oo 0

it follows from (26) that there exists T such that for all t. > T

V(x(t1)) < b

which implies ||x(t,)|| <€ . Since e was arbitrary, this shows lim x(t) = 0,
which completes the proof of the theorem.

D. THE MAXIMUM PRINCIPLE

In view of the previous section, the maximum principle can now be

applied to the problem. We shall formulate the maximum principle for it in

this section. With a few changes all of the discussion and definitions of Sec.

Ill, Part A, where we formulated the maximum principle for Problem I,

carries over in this case. For this reason, the presentation here will be

somewhat abbreviated.

We introduce the scalar differential equation

xn(t) = I <$, Qx> + 1 <u, Ru> t>0 (29)
u 2 2 -

with the initial condition

xQ(0) = 0
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and consider the set of auxiliary equations,

ij,(t)=--JL d <^'Q^> - f a ip(t) i= 0,1, 2, ...n. (30)
1 2 8x. j = l J1 J

i J

The coefficients a., are the same as in (3), the state equations. We do

not specify the initial conditions for the ip-» an(l therefore to each control

u there corresponds not one solution of (30), but a family of solutions.

We observe that ipn(t) is a constant because (9/3xn) \x, Qx^ =0.
The Hamiltonian for the problem is

<^r(jj, x, u) = ipnf° + <ip, Ax +Bi£> (31)

where ip = (ip,, ip?, . . . ip ) and ip and x are, as in Chapter II, (ipn, ip., . . . ip )
i £• n — —. U 1 n

and (xQf xiv. . .x ), respectively. In terms of *Pr Eqs. (3),(29) and (30)
may be expressed in the form of the following Hamiltonian system:

x(t) =JL^L i =0, 1, ...n (32)

k(t) =- JL2t i= 0, 1, ...n . (33)
1 9x.

i

Considering ^p and x fixed, the Hamiltonian is a function of ueft.
Let ft) (ip, x) denote the maximum of ^ over £2:

jfT] (jj, x) = max ^ M* x, u) (34)
U€ Q.

fjft (4/, x) is well defined because Q is compact and rr is continuous.
The maximum principle as it applied to the problem is expressed in

Theorem 8: If t •u(t), 0 < t < co, is an optimal control, then

there is a nontrivial solution of (33), ip(-), corresponding to u such that
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1. ^(^(t), x(t), u(t)) = ^70P(t),x(t)) almost everywhere on
[0, co).

2. rr/(±(t), x(t)) = 0.
3. ^P0<0.

We need to distinguish between the cases when ip~ < 0 and ipn = 0.

The problem is called normal when ipn < 0, and abnormal when ipn = 0.

When the problem is normal, since (33) is linear and homogeneous in

ipn, ip., . . . ip , we may assume ipn = -1.

E. A SPECIAL FORM OF THE MAXIMUM PRINCIPLE

In this section we shall strengthen Theorem 8, the maximum prin

ciple as it applies to our problem, in two ways. First, we show that the

problem is always normal, and secondly that the vector ip(t) in Theorem

8 must satisfy the boundary condition lim ip(t) = (-1, 0, 0, ... 0). The
t—•co"-

final result is stated in Theorem 9. In this form, the maximum principle

will later be shown to be a sufficient condition for optimality.

Lemma 9, whose proof is based on a construction that has been used

in studying the time optimal control problem, states that the problem is

normal.

Lemma 9: For any initial state, the problem is normal.

Proof: Suppose u is an optimal control, and ip = 0 in Theorem 8.

In this case we obtain from (31) and (33) the equations

$/Hj, x, u) = <Jj, Ax + Bu>

\\j = -ipA

where ip = (ip,, ip7, . . . ip ). We observe that these equations are identical
J. w 11

to (19) and (20). Then by exactly the same argument that follows (20),

u(t) = sgn (ip(t)- B) t > 0.
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We shall obtain a contradiction by showing that

oo

/ <u, RiT> dt = oo (34)
0

First we observe that ip(t) 4 0, since ipn = 0 and ip( •) is a non-

trivial solution of (33). To establish (34), it suffices to show that the

set of points, t, for which ip(t) • B = 0 is a discrete set. Observe that

ip(t)»B is an analytic function since ip(t) = ip e" for some 0 ^ ip 6 R

Thus if ip(t)B vanishes on a nondiscrete set, it vanishes identically,

ft Atipu e B = 0 t > 0 . (35)

Differentiating (35) successively with respect to t and putting t = 0, we

have

ip° • B= 0

ip° • AB = 0

ip° • An-!B = 0

Since by hypothesis (3) is controllable (see Ref. 20),

n-1Rank {B, AB, . . .A b} = n

(36)

and therefore, since ip 4 0, (36) cannot hold, proving the lemma.

In view of Lemma 9, we may put ip = -1. Then if u maximizes

the Hamiltonian, from (31) we have

u(t) = sat (R"1 B*ip(t)) t > 0 (37)
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i'fi r r
where B is the transpose of B, and sat R •R is the function

whos e ith component, i < 1 < r, is (x = (x., x?, . . .x ))

(sat x).

1 if x. > 1
l —

x. if | x. | < 1

^--1 if x. < -1
i —

In addition, with ipn = -1, the differential Eqs. (30) (or equivalently (33))

which the ip. satisfy become

n n

•¥*> = I, Vj" 4, aji*j(t> i =1-2--n

where Q = (q..), or in vector notation

i = -A* ip+ Qx . (38)

We observe that to each control u, there corresponds a family of solutions

of (38) which depends on the initial conditions for the ip. .

Lemma 10: Let u( •) be an optimal control and ip( •) a solution of

(38) corresponding to u such that

u(t) = sat (R_1 B* ip(t)) .

Then lim ip(t) = 0.
t—•co

Proof: Lemma 10 is proved in Appendix 2.

Combining Theorems 8 and Lemmas 9 and 10, we have the following

form of the maximum principle,

Theorem 9: If t *u(t), 0 < t < oo, is an optimal control, then there

is a solution of (38), ip( •), corresponding to u such that
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1. u(t) = sat (R'1 B* ip(t)).
2. lim ip(t) = 0 .

t—•oo

F. SUFFICIENT CONDITIONS FOR OPTIMALITY

We show that the maximum principle as stated in Theorem 9 is

also a sufficient condition for a control to be optimal (Theorem 10). The

proof of this result is similar to the proof of Theorem 4, the analogous

statement for Problem I, and it relies on Lemma 4. For brevity in nota

tion, if u and u1 are admissible controls defined over K), co), we let

h
C(u, t,)= J <x(t, u), Qx(t, u]> + <\i, Ru> dt

0

h
d(u, u', t) = / ||u(t) - u'(t)|| dt

1 0

(39)

We first establish a preliminary result.

Lemma 11: Let t •u(t), 0 < t < oo, satisfy conditions (1) and (2)

in Theorem 9. Let t •u'(t), 0 < t < oo, be any admissible control. Then

for any 6> 0 and N > 0, there exists a t. > N such that

C(u, tx) - C(u', tx) < 6 ||x(tr u) - x(tr u')|| + o(€) (40)

when d(u, u', t.) < e .

Proof: We observe that by putting tn = 0 in Lemma 4, it becomes

valid here, and we consider the end time t, as a variable (but always finite]

Then since ipn = -1, we have from Lemma 4,

<3V' -(tr u,) " *(tr ut> +o(€}

=C(u, tx) - C(u', tj) + <ip(tx), x(tru') - x(tru)> +o(e ) <0 .(41)

Eq. (41) is valid for any finite t..
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Now we use the hypothesis lim ip(t) = 0. Given N and 6 > 0,

we can find t. > N such that

^(t^, x(tr u») - x(tr u)]> <6 || x(tr u') - x(tr u) ||

The last expression together with (41) proves the lemma.

We are now in a position to prove the principal result of this section.

Theorem 10: Let t >u(t), 0 < t < co, transfer xn to the origin

x = 0. Then a necessary and sufficient condition for u to be optimal is that

there exists a solution ip(«) of (38) such that

1. u(t) = sat (R-1 B* ip(t)) t> 0 .
2. lim ip(t) = 0.

t •co

Proof: The necessity part of the theorem is just a restatement of

Theorem 9.

To prove the sufficiency, suppose u' is the optimal control but u

is nonoptimal. Then for some a,

00 ft ft
P f (x, u) - f (x», u')dt > 2a > 0

Jo

where x( • ) and x'( •) are the solutions of (3) corresponding to u and u1,

respectively. We can then find an N > 0 such that for all t, > N

J f°(x, u) - f°(x', u')dt >a . (42)
o —

For 0 < X < 1, consider the controls

t ^ux(t) = (1 - X) u(t) + Xu'(t), t > 0 . (43)

Let x. (• ) be the solution of (3) corresponding to u . Then using LemmaX 0 a.
2, the convexity of f , and (42),
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f f°(x, u) - f°(x. ,u ) dt
0 x x

h
S f°(x, u) - f°((l - X) x + Xx', (1 - X) u + Xu') dt
0

h
> / f°(x, u) - f(l - X) f°(x, u) +Xf°(x», u')} dt
"" 0

= \ S f°(x, u) - f^x', u') dt > a X > 0 .
0 "~

Restating the last inequality, we have,

C(u, tx) - C(u^, t1)>ff\>0 . (44)

Now we use Lemma 11 to obtain a contradiction. From Lemma 2,

xx(t) = (1 - X) x(t) + Xx'(t)

or

xx(t) - x(t) = X(x'(t) - x(t)).

Because u' is optimal it transfers xn to x = 0, and therefore x'(t) is

bounded. Similarly, x(t) is bounded. Therefore, there is a constant (3

such that for all t.

|| x^) - x^H <p X .
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We observe that for finite t.,

h h
d(u, u\ t) = . / || u(t) - u (t)|| dt=X / || u(t) - u'(t)|| dt

0 0

UX

= X y

with v < oo.

Finally, applying Lemma 11, we get

C(u,t]).C(ux,t])<b^\+ o(vX) . (45)

Since 6 can be made arbitrarily small, the last expression contradicts

(44). Therefore u must have been optimal.

G. THE SYNTHESIS PROBLEM

In this section we shall show how the optimal feedback control may

be determined. It is shown that the optimal control is a linear function of

the state in a neighborhood of the origin (Proposition 1), but no closed form

expression for it is derived which is valid for all states (a numerical example

for a simple second order system is given in Appendix C, and the results in

dicate that the feedback control is not a simple function of the state). How

ever, it may be computed, roughly speaking, by running the system (3) back

wards in time, in a way similar to that proposed by LaSalle for the time
13

optimal control problem.

It is expedient to combine the state equations (3), the auxiliary

system (38), and the equation defining the optimal control in terms of ip,

(37) into a single equation. The equivalent equation reads

sat(R-1B*ip) (46)
Q -A'
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where (x, ip) = (x.., x7, . . .x , ipv ip?, . . . ip ). The significance of (46) is
J. u XI X u Xl -»

this: for any initial state x~, in view of Theorem 10, there is a ip
0such that if x(0) = xn and ip(0) = ip , then the x component of the solu

tion of (46) is the optimal trajectory, while the ip component and (37)

define the optimal control. According to Theorems 7 and 10, x(t) *0

and ip(t) • O as t •co. Conversely, from Theorem 10, if we can find

a ip such that both x(t) and ip(t) converge to 0, then the optimal control

is determined by (37) and ip(t). Thus the problem of finding an optimal

control is one of choosing an appropriate ip for each x.

Unfortunately, because (46) is nonlinear, there is no simple rela

tion between x and a proper ip in general. However, for all states

sufficiently close to the origin we shall show there is a linear relation

between ip and x of the form

ip = Px

where P is an nxn real matrix.

r
We first observe that if we replace the control region Q by R ,

i. e., the constraints on the control are removed, but otherwise keep the

problem the same, then everything done so far is valid if everywhere we

substitute R" B,c ip for sat(R B ip). In fact, the only places where we

used the fact that the control region was £2 are in Eq. (37), Lemma 9, and

the existence Theorem 1. When the control region is Rr, (37) is valid with

the above substitution, and the proofs of Lemma 9 and Theorem 1 carry over

essentially without change.

Assuming the control region is R , (46) becomes the linear equa

tion

A BR^b'
(47)

ip / \Q -A*
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For brevity, let

br^b5
D =

'.Q -A'

Then, taking the Laplace transform of (47)

where x(s) and ip(s) are the Laplace transform of x( •) and ip(*)>

respectively. From (48),

MSI-D)"1 I I (49)
x(0)

«0)

(48)

The right hand side of (49) is a column vector of rational functions in

s. Given x(0), in order to satisfy the desired boundary conditions at

co (x(t)—^0 and ip(t) ^0), it is necessary to choose ip(n) so tnat

the poles at each of these rational functions have negative real parts.

Such a choice is possible because of Theorem 10 and the existence

Theorem 2. If we let x(0) take on the values e. = (0, 0, . . . 0, 1, 0, . . . 0)

with the 1 in the jth coordinate, 1 < j _< n, we get corresponding to
each e. for an appropriate value of ip(0), a vector p. = (pj. p2-, . . -Pnj)
Now from the linearity of (49), it is clear that if x(0) =]>. _l a. e., then
an appropriate choice for ip(0) is ]> ^_ i <*• P;- In matrix notation, this
can be expressed

ip(O) = Px(0), P= (p..) . (50)
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It follows that in the case when control region is R , the optimal feed

back control, is, in view of (37) and (50),

x •u(x) = R"1 B* Px . (51)

Now we show that for states sufficiently near the origin the optimal

feedback control is given by (51) even when the control region is £2 .

Consider the system

x = Ax + BR"1 B* Px . (52)

In view of Theorem 7, it is a. s. i. 1. . Let

G= {x<= Rn | Hr-VpxII < l]

G is a neighborhood of the origin. Since (52) is a. s.i.l., we can find

a neighborhood S of the origin such that if xn € S, then the whole tra

jectory of (52) starting at x_ remains within G. It is then clear that

the optimal feedback control for states in S is the same regardless of

whether the control region is £2 or R . We state this conclusion in

Proposition 1: There is a neighborhood S of x = 0 such that if

xc S, the optimal feedback control is

I .J,

x •u(x) = R B"* Px

t t
for some nxn matrix. P.

t 21
This result was obtained by Kalman. In order to maintain the con

tinuity of the discussion, and also give a way of computing P, we have
preferred to give our own development.

Later, by Lemma 12 we show P is unique.
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We observe that for x(0)c S an appropriate choice for ip(0) in

(46) to satisfy the boundary conditions at co is given by (50). The

next lemma shows that this is the only proper choice.

Lemma 12: For each xn, there is a unique ip such that if

x(0) = xn and ip(0) = ip , then the solution of (46) satisfies

lim (x(t), ip(t)) = 0.
t—•oo

Proof: Suppose (x(-), ip(-)) and (x'(-)» ^P'(")) are two solutions

of (46) satisfying lim (x(t), ip(t)) = lim (x'(t), ip'(t)) = 0 and
t—•oo t—•CO

x(0) = x»(0) = xQ. We have to show ip(0) = ip'(0). From Theorem 10,
it follows that the controls

t ^u(t) = sat (R"1 B* ip(t)) t > 0

t •u'(t)= sat (R"1 B* ip'(t) ) t > 0

are both optimal for initial state xQ. By Theorem 6, u(t) = u'(t) on
[p, oo), and therefore x(t) = x'(t) on the same interval. Then from (46)

dt

ip - ip'/ \Q -A' ' \ip - ip'

or

d (ip - vp-) = -A*(ip - ip1)
dt

Solving the last equation

i'fi

ip(t) - ip'(t) = e"A l (lP(0) - ip'(O))
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Since u(t) = u'(t) on [0, co), and both ip(t) and ip'(t) converge to 0,

for some T,

R"1 B* ip(t) = R"1 B* ip'(t) t>T .

Hence, after transposing,

At
(ip(0) - ip'(0)) e B = 0 .

We showed in proving Lemma 9 that the last relation holds iff ip(0) = ip'(n)»

which proves the lemma.

Lemma 12 implies that the matrix P in Proposition 1 is unique.

Combining Lemma 12 and Eq. (50), we have

Lemma 13: There is a neighborhood S of the origin and a unique

matrix P such that if x(0) e S and ip(0) = Px(0) then the solution of

(46) satisfies the boundary conditions

lim (x(t), ip(t)) = 0 .
t—•oo

We now are in a position to show how the optimal feedback control

may be computed. For states in S, it is given by Proposition 1. For

states not in S, we have no closed form solution. However, using Lemma

13 to determine the appropriate initial conditions, we can trace out a

family of optimal trajectories from S by integrating (46) backwards in

time. By making the family sufficiently large, we can determine the

feedback control on an arbitrarily "dense" set of states. This procedure

is analogous to the method proposed by LaSalle for the time optimal con-
13

trol problem, and is explained more precisely in the next two para

graphs.

For each xe S, let ip = Px. The differential Eq. (46) has a unique

solution on -oo < t < 0 which satisfies the initial condition ip(0) = Px and

x(0) = x. Each trajectory generated in this way determines an optimal

trajectory. For if we trace out these trajectories in the direction of in

creasing t, both x(t) and ip(t) converge to 0, and therefore, in view

of Theorem 10, are optimal.
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Now we show that the set of optimal trajectories generated in

the above way fills the entire state space R . Theorem 7 implies

that every optimal trajectory eventually enters S. Let t. be the

time x(t.)c S. From time t, on, the trajectory must be optimal,

so if ip( •) is the corresponding ip component of the solution of (46),

we must have ip(^i) = Px(ti)- Hence the trajectory can be traced out

by integrating (46) "backwards" in time with initial conditions

x(0) = x(t ) and ip{0) = P x(t,).

Since in the "backward tracing" method of determining u(x),

the value of u(x) can only be determined in practice on a subset of

state space, we need

Proposition 2: The optimal feedback control is a continuous func

tion.

Proof: Proposition 2 is proven in Appendix B.

H. SOME COMPUTATIONAL ASPECTS OF THE SYNTHESIS PROBLEM

In this section we give alternative methods for computing the

matrix P of the last section, and we show how a neighborhood of the

origin S having the required properties may be determined.

As stated in the footnote on page 43, Kalman derived the result

expressed by Eq. (51). Kalman also gave two methods for determining

the matrix P which can be more convenient than the method we gave.

We shall indicate his results in the next two paragraphs.

We recall that the matrix P has the property that if we put

ip(0) = Px(0) in (47), the solution of (47) converges to 0 as t •co.

But the relation ip(0) = Px(0) holds not only for t = 0 but for all t,

and therefore ip(t) = Px(t). Using this in (47), we get the two equations

-1 *
x = Ax + B R B Px

P x = Qx - A" Px

multiplying the top equation by P and equating with the second,
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PAx + PBR"1 B* Px = Qx - A* Px

and since this relation holds for all x,

PA + A* P + PBR"1 B* P - Q = 0 . (53)

Considering P as an unknown, (53) is a system of nonlinear algebraic

equations. In general (53) does not have a unique solution. However,
22

Kalman showed that the desired P is the unique symmetric negative

definite solution of (53). Therefore, P may be determined by solving

(53).

A convenient numerical method for computing P with a digital

computer is the following method proposed by Kalman. Consider the

nxn matrix Riccati differential equation

dir % -1 *
= ir A + A ir + ttBR B tt-Q.

dt

Let ir(t, 0) be the solution of (54) which satisfies the initial condition

-rr(t, 0) = 0. Then the matrix P is given by

P = lim ir(t, 0)
t •co

We observe that the matrix P is a solution of (54) since the right hand

side vanishes when ir = P. Kalman showed that the solution tt = P is

a. s.i.l. ; given any symmetric initial condition for (54), the solution of

(54) converges to P as t •co. This stability property of the solution

ir = P means that the numerical computation is also stable.

Now we consider how a set S satisfying the conditions in

Proposition 1 may be computed. Consider the convex set
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G={x*Rn | ||R-iB*Px||<l}.

We must choose S so that if x(0)€ S then the whole trajectory of

-1 *
x = Ax + B R B Px

remains within G. Letting D = A+BR B P, we compute e e.,
th

where e. = (0, 0, . . ., 0, 1, 0, . . . 0) with the 1 in the j coordinate,

for j = 1, 2, . . . n. Then we find the largest a., j = 1, 2, . . . n, such that
Dt •*

for all t > 0, a. e e.c G. Since G is convex, the convex hull, H,
— j j

of (a. e. | i = 1, 2, . . . n ) is contained in G, and furthermore if
1 J J Dt ;

x(0)€ H, then e x(0) € G for allt>0. Therefore, an appropriate

choice is S = H.

I. NOTES AND REMARKS

The only place we needed the Lyapunov stability assumption was

in proving existence of optimal controls (see Corollary 2). In fact, the

stability was used only to show that any initial state could be transferred

to the origin by an admissible control. We give an example of a system

which is not stable, but for which there still is an optimal control for

arbitrary initial states, in Appendix C. The results of this chapter are

valid for this example.

For regulating systems describable by Eqs. (3) having admissable

control region Q, the most widely studied design criterion has been

that of time optimality. We will compare briefly, time optimal regula

tors with ones design according to our-performance index. The time

optimal feedback control (for so called normal systems) assumes only

the values +1 and -1 and may be realized with relays, for example.

However, in general, no formulas are known for the optimal control as

a function of the state. The same lack of knowledge prevails in our

case. The optimal control in our case has a simple realization only in

some neighborhood of the origin in state space. In terms of performance,

there may be some reason to believe our regulator may perform better
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in some cases: complaints have been made that some regulators

designed for time optimal behavior have excessive overshoots

during transient motions. By adjusting the values of the matrices

Q and R, we can alter the performance. When Q is "large" com

pared to R, one would expect performance approaching time optinaal

behavior.
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APPENDIX A

We shall prove Lemma 4. First we observe that for some

M < oo, the following inequality is valid;

max || x(t, u) - x(t, u') || < M d(u, u') (A-l)

where

'o^?!

d(u, u') = / ||u(t) - u'(t)|| dt

*0

(A-l) follows easily from Eq. (4). We also shall need

Lemma A-l: If f:£2 x [tn, t,J—»R is a continuous bounded func
tion, then the function F: U *R defined by

F(u) = / f(u(t), t)dt
*0

is continuous with respect to the distance d.

Proof: Given e > 0, we can find 6 ' such that if

||u(t) - u'(t)|| <6' then | f(u(t), t) - f(u»(t), t) | < e/Zi^-tJ. This
is possible since f is continuous. We then can find 6 such that if

d(u, u') < 6 then the set D on which 11 u(t) - u'(t) 11 > 6 ' has measure
less than c/4M, where M is the maximum of f. Then d(u, u') < 6

implies (D denotes the complement of D in [t., t. J ),
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F(u) - F(u')| = | / f(u) - f(u') dt |
l0

ll
< / | f(u) - f(u') Idt

t„

D Dc

6 €< 2M -r^- + oU \ , v (t, - tj = €
4M 2(tx - tQ) ^1 ^

which proves F is continuous.

We now prove Lemma 4, which we restate for convenience.

Lemma 4: Let t—»u(t) and t •u'(t) be admissible controls

and x( •) and x'(-) the solutions of (12) corresponding to u and u1

respectively. Suppose there is a solution \fy{ •) of (13) corresponding

to u such that almost everywhere on |_tn, t.J,

Then

<\p(t2), x'(tx) - x(t^ + o(€)<0

when d(u, u1) < € .

Proof: Consider the integral

h
I= / <±>_fe u) -jx1, u')> dt

*o
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where jjj = (ipQ, ip^ . . . ipn) and _f is defined in (9). Since ipQ is a
constant,

1=%h + Iz (A"2>

where

and

h =• / f°& u> " fV', u'> dt
*0

I = / <+. A(x - x!) + B(u - u')> dt
t0

in which ip = (vp,, *p2, . . . ip ). I, may be evaluated directly:

h * X0(V " x0 <V

so we obtain for I the value

1= ^(x^tj) - x»)(t1))+ I2 . (A-3)

We obtain another expression for I by expanding f (x1, u1) in a

Taylor series. Recalling that f does not depend on x_,
0'

f(x', u») = f(x, u1) + Vf(x, u) • (x1 - x) + o(€)
.0, . i% ,0, ., . „,0, % , .,

The remainder is o(e ) because of (A-l) .

Substituting in the expression for L,
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h , hI1= J f°(x, u) - f°(x, uf) dt + J Vf°(x, u').(x - x')dt
t0 *0

+ o(e) . (A-4)

The second integral, I,, differs by at most o(e ) from

I4= / Vf°(x, u) • (x - x») dt .
'o

To see this, first note that

t

|I3-I4|< max ||x(t).x,(t)|| / ||Vf0(x,u)-Vf0(x,u.)||dt.
t0-t-tl tQ

The function Vf considered as a function on £2 x [tn, t.J satisfies the
conditions in Lemma 1. Therefore the assertion follows.

Substituting (A-4), after replacing Vf (x, u') by Vf (x, u), in

(A-2) and rearranging terms,

I = J 4-°(f°(x, u) - f°(x, u')) + <gj, B(u - u')> dt

+ f <A* i|/+ i|<0 Vf (x, u), x - xi> dt + o(c)
t0

The integrand in the first integral is

(^,x, u) - %{±,x, u')
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which is non-negative by hypothesis. Therefore^

t

f
t

I< / <A* ip + ip° Vf°(x, u), x - x'>dt +o(€) . (A-5)
'0

Referring to (10) the integral in (A-5) is identical to

• H
1= = S <3* x1 - x> dt

*0

and integrating I,- by parts,

I5 = ^(t^, x'Ctj.)' - x(tx)> + I2 .

Therefore,

if •^v* X'(V " x(V> + lZ + o(e) • (A_6)

Finally, subtracting (A-3) from (A-6) we get the desired result:

^tj), x'ttj) - x(tx)> + o(€) < 0 .
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APPENDIX B

Lemma 8: If M = {0} , then V has the following properties

a. V(xQ) = 0 iff xQ = 0.
b. Ifa>l, V(ax0)>(x0).
c. V is continuous.

Proof: (1) If V(xQ) = 0, then u = 0, because <^x, Qx> >0.
Therefore,

V(xQ) = f° <^At xQ, QeAt x^> dt.
By assumption M = | 0J and therefore xn = 0. Conversely, V(0) = 0.

(2) Let t >u(t) be the optimal control for the initial state axn,

For initial state xn, consider the control t *u'(t) = — u(t). Denote
v a

by x(',co, z) the solution of (3) corresponding to control co and initial

z. Clearly,

x(t, u', xQ) = - x(t, u, axQ), t>0.

Hence

oo

V<x0> - S <?(*' u''V» Qx(t' u'» x0^ + <&'» Ru,X> dt
0

= "V V(axQ)
a

which proves b.

(3) We will show V is convex. The continuity of V follows be-

cause a convex function defined on R is necessarily continuous.

Let u, and u2 be optimal controls associated with initial states x

and x^. For 0 < X < 1, it follows from (4) that

x(t) = \ x^t) + (1 - \) x2(t)

where
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x(t) = x(t, X u. + (1 - \) u~, Xx + (1 - X) x )
1x^t) = x(t, U^ X )

x2(t) =x(t, u2, x2) .

Then using the definition of V,

V(X x1 +(1-X)x2) < J -<x, Qx> + <^(Xux +(1-X)u2, R(Xu1 +(l-X)u2f>dt

co

<X f <xr Qx^> + <ur Ru^ dt

oo

+ (1 - X) / <x2, Qx2> + <u2, Ru2> dt

= X V(xX) + (1 - X) V(x2)

which proves c.

Lemma 10: Let u( •) be an optimal control and ip( •) a solution of

(38) corresponding to u such that

u(t) = sat (R_1 B* ip(t))

Then lim ip(t) = 0.
t—•oo

Proof: Since u is optimal

co

/ <u, Ru> dt < oo (B-l)
0

Solving Eq. (38), we have for any T > 0,
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iP(t+T) =e"A (t"T)ip(T)+ } e"A (t'T } Qx(t) dr .
T

From Theorem 7, lim x(t ) = 0, and therefore given € > 0, there
t—^co ' °

is a TQ such that if T > TQ,

||iP(t + T) - e'A (t"T) ip(T)|| <€ T<t<T+.l .

Therefore, for any T > TQ, T < t < T + 1, from (37),

||u(t+ T) || +e Hr^B*!! (B-2)

>min(l, HR-Ve^-^iKT)!!).

Note that the right hand side of (B-2) is uniformly continuous in t (i. e.

the continuity is independent of T). From (B-1) and (B-2), it then follows

that lim u(t) = 0.
t—^co

Since lim u(t) = 0, from (B-2) it follows that given any 6 > 0
t—•oo

there is a T1 such that for T > T,

6 > max min(l, HR^B* eA(t"T) ip(T) 11)
T < t< T + l

The propf of the lemma will be completed by showing for some a > 0

min max ||R_1B* e"At ip|| =a \\ \\i\\ .
ip€ Rn 0 < t < 1

We first observe that the expression

llR-^e^t HI

is homogeneous with respect to ip and that R~ is invertible, so it

suffices to show

-57-



J< A j.

min max 11 B*"* e ip|| = |3 > 0
ipll = 1 0 < t < 1

Consider the function

g(ip) = max || B e" ip
0 < t < 1

In proving Lemma 9 it was shown that there is a 0 < t' < 1 such that

t>* At IBe ip

Therefore,

At
B e ip = 0, and therefore g(ijj) > 0. Clearly, g is continuous.

min g(i|/) = p >0

which completes the proof of the lemma.

Proposition 2: The optimal feedback control is a continuous

function.

Proof: For brevity, we denote by x(-,xQ) and ip( •, ip ) the x

and ip components of the solution of (46) which satisfy the boundary

conditions x(0, xn) = xn and ip(0, ip ) = ip . By Lemma 9 there is

assigned to each xn a unique ip2 such that x(t, xQ) *0 and
ip(t, ip ) »-0 as t •oo. Let F. be the function defined by this assign

ment: F(xn) = Lp . In view of (37), to prove the proposition, it suffices

to show F is continuous. We observe that for some a > 0, S ~Z> S
a

= (x e Rn | || x|| <a} , and that if x € S then F(x) = Px, so F is
continuous on S .

a ^
0Given x0, assuming ip = F(xQ), there is a t, > 0 such that x(t^)

x(t,) € int S (interior of S ). We consider the map G:S •R de-
1 a a a

fined by

G(y) = x(-tr y)

where x(-tlf y). is the first component of (x(-t., y), ip(-t,, Py)). G is 1:1
because of Lemma 12. Moreover G is continuous because the solution

of (46) depends continuously on initial conditions. Since S is compact,
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-1 24 -1G , the inverse of G, is continuous. Observe that G (xn) =x(t.,xn)

Hence since x(t., xn) € int S , there is a neighborhood W of xn such

that G'^WJcint S . Then if x €W,

F(x) =iK-V F(G_1(x))

=ip(-tr P • G_1(x)) .

Since ip(-11, ip ) depends continuously on ip , the last equation proves F

is continuous, which proves the proposition.
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APPENDIX C

An example of the problem treated in Sec. IV was studied using

a digital computer. The system considered was

dx.

dt

dx2

dt

and the matrices Q and R were

= x2

(C-1)

= U

Q= , R = 1 . (C-2)

Although (C-1) is not Lyapunov stable, for the reasons indicated in Sec. IV,

Part I, the results of Sec. IV are valid. The matrix P, which defines the

optimal feedback control in a neighborhood of the origin, was computed by

solving Eq. (53).

/- VF* -i \

It was found that the optimal feedback control, u , is not a simple

function of the state. A few optimal trajectories and the value of u° at
some points on them is shown in Fig. 1.

If it is desired to realize the optimal control in a physical problem,

there are various possibilities. Since u is a continuous function of the

state, u can be approximated as accurately as desired by computing

u on a sufficiently dense set of states. This can be done by the reverse

time mapping procedure explained in Sec. IV, Part G. The values of
the control as a function of state can then be arranged in a "look-up"
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table and stored in some kind of memory device. Another possibility is

to approximate u by simpler functions. Because u is continuous,

this is possible in principle, and the approximating functions can be

chosen as piecewise linear or polynomial functions, for example.

The practicality of either of the above methods was not investigated

in detail. However, a comparison was made between u and the control

u' defined by

u'(x) = sat (R_1B Px)

= - sat (x. + y2 x2 )

The control u1 is simply the saturation of the optimal control for the

case when the control region is the whole real line.

For this problem, the performance index is

co ? 2
C(u) = / xf (t, x ) + u (t) dt .

0 l

It is natural to consider u' as a good approximation to u for initial

state xn if C(u) and C(u') are about equal. In this sense, u1 is a
0good approximation to u for states in the disk

O= {(xr x2) | X]L + x2 <16 }

The value of C(u) and C(u') was computed for different values of xn.

For states in 0, the values of C(u) and C(u') were about equal. Some

values of C are given in Table I. The last few entries in Table I show

that u' is not as good as u for some states not very far from O. For

xn = (16.6, - 6.11), the difference between u' and u is considerable

and it is shown in Fig. 2.
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TABLE I

A COMPARISON OF CONTROLS, u AND u'

Al . 2 •

0. 040 3. 24

0.085 2.66

0.088 1.97

0.98 2.94

1.06 -3.06

1.09 1. 37

2.07 2.55

2.12 . -1.88

2.12 -3.36

3.01 2.15

3.08 -2. 60

3.96 -2.46

4.19 -2.95

4. 89 -2.11
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C(u°)

107.

43.4

12.5

106.

43.9

11.6

104.

3.1

45.0

102,

7.09

11.3

12. 7

19.6

C(u')

107.

43.4

12.5

106.

43.9

11.6

104.

3.1

45.0

102.

7.54

12.7

15.8

21.8
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