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ABSTRACT

In this paper we show that systems consisting of a memoryless

nonlinearity sandwiched between two linear time invariant opera

tors are unique modulo scaling and delays. We mention a few

corollaries and applications of general circuit and system

theoretic interest.
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1. Introduction

In nonlinear systems theory two types of operators are especially impor

tant: linear time invariant (LTI) operators and memoryless or static nonlinear

operators. Many important and well-known results pertain to systems which are

interconnections of these operators, for example the Popov criterion for the

Lur'e structure. Indeed if multi-input multi-output (MIMO) operators are con

sidered, all dynamical systems are included.

In this paper we consider what is perhaps the simplest interconnection of

these operators, shown in fig. 1, and ask the question: in what sense are such

systems unique, that is, under what conditions could two such systems have the

same input/output (I/O) map? Some conditions are easy to think of, for exam

ple we can rescale the operators or distribute any delay in A and C arbitrarily

between them ( #=aexp(-sTM, C=yexp(sT)C, B(x)=oClB(y-lx) ) . We show

that these are the only ways these systems fail to be unique.

W. J. Rugh and others [1-5] have shown that certain systems containing

lumped LTI operators and memoryless power nonlinearities or multipliers are

unique in a certain sense, and this paper is inspired by their work. Our

emphasis, however, is slightly different: we consider memoryless nonlinearities

as opposed to multipliers and pure power nonlinearities, and general as opposed

to lumped LTI operators.

2. Notation

We consider operators with a Volterra series:

Nu(t)= tvn(t)
n=l

Vn(t)=f • •• fhn(Tl.T2,...Tn)u(t-Tl)u(t-T2) ' ' •u(t -Tn)dTxdT2 ' ' ' drn
where /^ is a symmetric real tempered distribution supported on (R*)n, and

the inputs u belong to some subset of C°(R+) which ensures yn summabie.* We

•This formulation includes operators such as differentiation and has a correspondingly res
tricted signal space. If you like, the A- can be bounded measures, the signal space the ooen
baH inZ" with radius 7?_1 = ami |/4iil/n. •
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refer to hn as the nth time domain Volterra kernel of N; we will work with their

Laplace transforms, called the (frequency domain) Volterra kernels or nonlinear

transfer functions:

Hn(sl,sZt...sn)=f ••• fhn(tlttz...mtn)exp(-%siti )dtxdt2 •••dtn

, henceforth denoted

i = l

defined and analytic at least in js Res^X), A: =l...n

(C*)n. For more details, see [6-11].

A LTI operator has all kernels above the first vanishing; a memoryless

operator is one with all kernels constant, and a positive radius of convergence.

To keep the notation simple, we will use the same symbol for a LTI operator and

its first kernel, and similarly for a memoryless operator and its associated func

tion from R to R. Juxtaposition of operators will denote composition, equality of

operators will mean that they have the same I/O map.

We should mention that the Volterra kernels are completely determined by

the operator N, i.e. by its I/O map. Indeed for ak*0,

Hnbow-JOn) =
an

doti • • • dan

where the right hand side refers only to the operator N, and not to any particu

lar representation of it. This means that the kernels can be measured [12].

3. Statement and Proof of Theorem

Theorem 1: Suppose A, X, C, C are nonzero LTI operators, B and B are

memoryless operators, at least one of which is not linear. If ABC=ABC, then

there are real constants a, y, T such that:

X(s)=aexp(-sT)A(s) C(s)=yexp(sT)C{s)

B(x)=a~lB(y-lx)

That is, systems of the form (l) which are not linear have a unique representa

tion of the form (1), modulo scaling and delays.

N(2^ akcosukt)
fc=i

a=0
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Proof: Under the hypotheses of theorem 1, the two systems have the same ker

nels Hn =

=A(Sl+ • • • A-sn)BnC(Sl)C(s2) • • • C(sn)= (1)

=Z(Sl+ • • • +sn)BnC(Sl)C(s2) • • • C(sn) (2)

Consider now any n>l for which Hn is not identically zero (and there is at least

one such n). Fmd an open ball D in (C+)n on which Hni*0. Indeed

se(C+)7 #n(s)*0 ' is open and connected in (C")n. On D define Q=

=In[i?n(cy C)(Sl) •••(C/ C)(sn)]= (3)
=ln^n(^/^)(Sl+ •••+sn)j (4)

Any branch of In will do. Then on D,

d2Q _
d

when calculated from (3) and
3SlaSa =° («

^-^llndf/A)] (Sl+...+Sn) (6)
when calculated from (4). Note that n>l is crucial; this is where the require

ment of strict nonlinearity enters. From (5) and (6) we conclude for some 77 and

7\

lnOaVM)(sl+ • • • +sn) = n-T(Sl+ • • • +sn) (7)

on D and hence everywhere in (C*)n. Thus

X(s)=aexp(-sT)A(s) (3)
for seC+, where a=exp?7. From A(s)=AjsJwe conclude a and T are real. Substi

tuting (8) into (1) and (2) yields

C(s)=yexp(sT)C(s) (9)

where yn=BnBnla~l and as above 7 real. Thus we have Bn=a~l3ny~n, which

remains true for those n for which Bn=Bn=0, hence

B(x)=a-lB(y-lx) (10)

and the theorem is proved.

Corollary 1: Systems of the form HN are completely disjoint from systems of
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the form NH, where H is LTI nonconstant and N is memoryless strictly non

linear. (See fig. 2).

Corollary 2: Given any operator N with at least two nonzero kernels, the only LTI

operators which commute with N are delays (or delays and negation, if yV is

odd).

Corollary 3: Chua [13] has defined algebraic circuit elements as those with con

stitutive relations of the form $(i>), i^))=0 (where /<«) is the ath derivative, or

integral if a<0, of/ ). Nonlinear resistors, capacitors, and inductors are exam

ples. Under weak conditions theorem 1 shows that if such an element is strictly

nonlinear its order (a, 0) and its characteristic curve $(x,y)=0 are unique, that

is, such elements have only one description as algebraic elements.

Application: Consider a communications system consisting of N cable-repeater

sections, each with frequency response R(s). Suppose the output stage of the

kth repeater drifts off bias and starts distorting slightly. The faulted system I/O

operator is then RN~kf (.)Rk, where /(.) represents the nonlinear output stage:

see fig. 3. Theorem 1 tells us that from I/O measurements alone (of the whole

system) we can locate the faulty repeater.* This should be compared to a linear

fault: suppose an element in the kth repeater amplifier drifts in such a way as

to, say, halve the bandwidth of the repeater. The kth repeater is still linear, but

with frequency response R(s). I/O measurements alone cannot locate this fault,

since the system's linear (and only) frequency response is R(s)*'~lR(s) no

matter where the fault is.

4. Comments and Generalizations

The theorem remains true under a wide variety of generalizations. It is true

for discrete time systems, with the obvious modification of the conclusion

X(z)=az~dA(z) and C(z)=yzdC(z), d an integer. It holds for multidimensional

systems as well, for example for two-dimensional systems we get

♦ One might suspect that this is possible. The advantage of our machinery is that it can teil
us exactly which distortion products to look at.
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-#/»(* 1- ' " *Sn;p!, • ' • pn) =

= A(sx+ • • • +sn',Pl+ • • • +pn)£nC*(s1,p1) • • • C(sn,pn)

and a proof analogous to the one above establishes

X(s,p)=ccexp(-sX-pY)A(s.p) C(s,p)=yexp(sX+pY)C(s,p)
B(x)=a-lB(y-lx)

The theorem is also true for most noncausal A and C. For example when

their impulse responses fall off exponentially A(s) and C(s) are analytic in a

strip —e<Res<£ and the proof above applies directly. And under weaker

conditions it is usually true as a consequence of the fact that the functional

equation /(x +y)=ag(x)g(y) only has exponential solutions under quite general

conditions, e.g. / and g measurable and nonzero.* But there are pathological

cases in which the theorem fails, for example consider

. v fl M<1 fl l«l<3

Then ABC-ABJ, where /(s)=l.

From these comments we may conclude, for example, that the theorem

holds for image processing operators of the form (l). Other generalizations,

however, are not straightforward. We do not know under what conditions the

theorem holds in the MIMO case. We suspect but cannot prove that the theorem

holds for any measurable nonlinearity, and not just the analytic ones considered

here.

5. A Stable Decomposition Method

Our proof, which relies on partial derivatives and analytic continuation,

might suggest that the decomposition of Hn into A(s), Bn, and C(s) is quite sen

sitive. The main purpose of this section is to show that this is not so. We now

give a sketch of the simplest case: discrete time, minimum phase exponentially

decaying A and C. We decompose the second kernel since the higher order ker

nels decompose similarly. We assume that Hz has been measured: there are

♦See e.g. Shapiro [14]
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simpier methods to estimate A and C based on partial knowledge of H2 (e.g.

from H2(eWe-W)=A(0)B2\C(eJn)\*; cf. [2,3]) but measuring the kernels allows

us to verify that the system has the form (l), as well as estimate A and C. It will

be convenient to normalize 4(0)=C(0)=1. Then ln//2 is analytic in

f I 1
(zi.zg) i«il^l. |z2|<l •and

lnH2(ej\ejQ*) =InAie^^ +lnB^lnCie^) +lnC(eJ'°8)
The assumptions imply that the terms above containing A, B2, and C, when con

sidered elements of L2(TxT),* are contained in the mutually orthogonal sub-

spaces Si, S2, and S3, where

St =U(01+02) gsL2(T), fg=0 J
>

S3= /(9l)+/(©8) fsL2(T), ff=o

and S2 is the constants. A natural method to estimate ln4, lni?2, and InC is to

project lnH2 on these subspaces, i.e.

InB = -£s-ff]nHz(eiai.eia*)dQldQ2

\nA{ei«) = ±-flnH2(ej{a-^\e3^)dQ1 - InB

lnC(e>n) =^-flnH2(e^.eini)dQl -InB

In fact these formulas can be used to estimate lnj,41, ln| C\, and B2 when A or C

is not minimum phase,** but the method must be modified to yield the correct

phases. The point is that A, B2, and C can be estimated in a stable way, without

taking partial derivatives.

6. Conclusion

The theorem has the interpretation that from I/O measurements alone, we

can in principle extract information about the internal structure of a system of

the form (l). We believe that this is an instance of a general property of non-
*T is the unit circle with normalized measure.
•♦With the modified normalization for the transfer functions A(0) = J\ I<*k I-where-the ak
are the zeros of A in the unit disk.
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linear systems: the same complexity which makes nonlinear systems difficult to

represent, analyze, and design (e.g. noncommutativity, nondistributivity...) also

allows much more information about internal structure to be extracted from I/O

measurements.
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8. Figure Captions

figl: The system considere± A and C are LTI with frequency responses A(s) and
C(s), B is memoryless with characteristic function B{x).
fig2: Two simple nonlinear structures: (a) is of the form HN, and (b) is of the
form NH. Except in the trivial cases H constant or N linear, the two types are
exclusive.

fig3: (a) cable-repeater section; (b) communications system; (c) system with kth
repeater nonlinearly faulted at output; (d) system with kth repeater linearly
faulted.
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