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Abstract

We study the multiple time scales structure of linear systems of

the form

x=AQ(e)x + BQ(e)u

y s CQ(e)x

with a view to obtaining "approximate" lower order transfer functions

valid at different time scales. Our development includes the classical

two time scales case as well. We use our results to study the positive

realness of linear systems with multiple time scales in terms of the

positive realness of the reduced order transfer functions.
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Section I. Introduction

It has been widely recognized that weak couplings are responsible

for the multiple time scales evolution of linear systems. The study of

systems evolving at multiple time scales is simplified by studying

reduced order models of these systems valid at specific time scales.

Such reduced order models are obtained by assuming that the dynamics at

faster time scales has reached its equilibrium and that at slower time

scales has yet to evolve. In Coderch et al. [1], the multiple time scales

structure of the autonomous linear system

x=AQ(e)x

is studied. Motivated by their results we study linear, multiple time

scale input-output systems of the form

x =AQ(e)x + BQ(e)u
(1.1)

y =CQ(e)x

with a view to obtaining approximate, lower order transfer functions valid

at different time scales. We relate the time scale behavior at these

separate time scales to the overall input-output behavior of the system

(1.1).

There is an extensive literature on two-time scale singularly per

turbed systems (see Kokotovic [3] for a review) and an input-output time

scales decomposition has been suggested in the work of Porter and Shenton

[4], and Luse and Khali 1 [5]. Our own work has been motivated by the

paper of Saksena and Kokotovic [6], who show (in the two-time scale case)

that the system (1.1) has a strictly positive real transfer function
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if the reduced order slow transfer function and the fast transfer func

tion are strictly positive real. Our contribution in this paper is as

follows: We utilize the methods of Coderch, et al. [1], which we review

in Section 2 to obtain the input-output description of linear systems

with two time scales in a form resembling that of Luse and Khalil [5],

it however extends naturally to the multiple time scale case (Section 3).

We use this description in Section 4 to generalize the results of Kokotovic

and Saksena [6] on the positive realness of two-time scale transfer func

tions. Our method of proof is, however, quite different. Finally, in

Section 5, we define and discuss the input-output behavior at different

time scales of the system (1.1) and positive realness of multiple time

scale linear systems.

The reason for the interest in the positive realness of multiple time

scale systems is its relevance to the study of the robustness of adaptive

control schemes to unmodelled dynamics. Roughly speaking we have shown

here that positive realness of a reduced order transfer function at one

time scale is preserved only if all the faster time scale dynamics

(unmodelled dynamics) are also positive real! This implies non-robustness

of the positive realness of a transfer function to unmodelled dynamics.

Section 2. Mathematical Preliminaries and Review

In this section we review briefly (a) some facts from the perturba

tion theory of linear operators (from Kato [2]) and (b) some of the

results on the multiple time scales decomposition of autonomous linear

differential equations (from Coderch et al. [1]) of the form

x = A(e)x
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with A(e), an analytic function of e.

2.1. Perturbation Theory for Linear Operators

Consider a linear map; T:Cn •»• (Dn. a(T), the set of all eigenvalues
»

of T is called the spectrum of T. The function R(£,T) :C-a(T) •* C

defined by

.nxn

-1
R(5,T) = (T-5I)

is called the resolvent of T. The resolvent of T is an analytic function

with singularities at A. € a(T), k = 1, ..., s. The Laurent series of

R(£,T) at X. has the form

v1R(€.T) =-(C-Xk)_1Pk - l_ (5-Xk)"i"1D1k +J (€-Ak)1sJ+l

where

-1

27T1*
'r,

nxnR(S,T)d£ € C

(2.1)

(2.2)

(with I\ a positively oriented contour enclosing Xk but no other eigen-
2

value of T) is a projection (i.e. P£ = P. )called the eigenprojection of X.;

mk := dim R(Pj^)

is the algebraic multiplicity of X..

D,. : =
-1

k • 2iri
(C-Xk)R(^,T)d^. (2.3)

m
k _is the eigennilpotent (i.e., D. = 0) for X. , and

Sk = 2iri Jr,
(C-Xj^RfCTjd^. (2.4)
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It is known that

PkPA " 6kA (2.5)

Cn =R(P-,) (+>.-. ©R(PS) (2.6)

and that R(Pk) is the generalized eigenspace for the eigenvalue X..

Further, the spectral representation of T is

T= I (XkPk+Dk). (2.7)

An eigenvalue X. is said to be semisimple if its associated eigennilpotent

zero.

We now discuss the perturbation of a linear operator T(e) of the

D. is zero.

form

T(e) =T+ I en T(n) e € [0,£q] (2.8)
n=l

Here (2.8) is assumed to be an absolutely convergent power series expan

sion. The eigenvalues of T(e) satisfy

det(T(e)-CI) = 0 (2.9)

This is an algebraic equation in £ whose coefficients are e-analytic.

From analytic function theory it follows that the roots of (2.9) are

branches of analytic functions of e with only algebraic singularities.

Hence the number of (distinct) eigenvalues of T(e) is a constant s,

independent of e, except at some isolated values of e. Without loss of

generality let e = 0 be such an exceptional point and further let it be

the only such point in [0,eQ]. In the neighborhood of the exceptional

point, the eigenvalues of T(e) can be expressed by s distinct, analytic
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functions: X,(e), ..., X (e). These may be grouped as

{X.j(e), ..., X(e)}, {Xp+1(e)» .... K+^e) »•••

so that each group has a Puiseux series of the form (written below for

the first group)

Xh(e) =X+a.,a)h£1/p +a?i£\Z,p +... h=1, ..., p

where X is an eigenvalue of the unperturbed operator T and u)=exp{i2Tr/p}.

Each group is called a cycle, X is called the center of the cycle and

the group of eigenvalues having X as center is called the X-group split-

ting at e = 0. The perturbations of the resolvent and eigenprojection

are discussed next:

Proposition 2.1 [1], [2]

If c i a(T), then £ f a(T(e)) for e € [0,eQ] and

R(5,T(e)) =R(5,T) + J e" R(n)(£) (2.10)
n=l

where

(n) r n (vl) (v?) (vn)Rinj(0= I (-DPR(?,T)T ] R(C.T)T 2 ... T P Rfc.T)
v,+...+v =n

v^l (2.11)

the sum being taken over all integers p and v,, ..., v > 1 satisfying

v-| + ... + v = n. The series (2.10) is uniformly convergent on compact

subsets of C - a(T).

Let X be an eigenvalue of T = T(0) with (algebraic) multiplicity m.

Let r be a closed contour in (C-a(T) enclosing X but no other eigenvalues

of T. From the proposition 2.1 above, it follows that for e small enough
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R(€»T(e)) is well defined for £ € r (i.e., there are no eigenvalues of

T(e) on r). Further, the matrix

p(£>=^ R(S9T(e))d£
'r

(2.12)

is a projection which is equal to the sum of the eigenprojections for

all the eigenvalues of T(e) lying inside r. Using (2.10) and integrating

term by term (recall uniform convergence from Proposition 2.1), we have

P(e) =P+ Ien p(n)for e€ [0,en]
n=l u

where

and

P--=Lv 2iri R(C,T)d5

P(n)=^(R(n)(0d^

(2.13)

(2.14)

(2.15)

P(e) is called the total projection and R(P(e)) the total eigenspace for

the X-group of eigenvalues of T(e).

The following proposition is useful in the results of Section 2.2:

Proposition 2.2

Let X be an eigenvalue of T = T(0) of algebraic multiplicity m and

P(e) be the total projection for the X-group of T. Then

(T(e)-XI)P(e) =̂ - f (C-X)R(C.T(e))d5 =£ + f e" f<"> (2.18)
2irie

n=0

where D is the eigennilpotent for r and rn' is given by
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f(n>=."fW I S(^y^..WVsVl>(2.19)
p=l v,+...+v =n+l

kl+---+kp+lap"1
v.>l,k.>-m+1

with S^ =-P, S("k) =- Dk for k >0 and

S(k) =Cj '̂f (5-A)"1R(5,T)d5]k for k>0

Corollary 2.3

If X = 0 is a semi-simple eigenvalue of T = T(0) in Proposition (2.2)

above we have

T(e)P(e) _ y n=(n)
e n=0

with the Pn' defined as above, with X = 0.

2.2. Multiple Time Scales Structure of Autonomous Linear Systems

We state here the results of Coderch et al. [1] for the multiple

time scales structure of the autonomous linear system

x =AQ(e)x x 6IRn (2.20)
with

00

Ve) =„!/% e«CO.e0] {2.21)

The matrix AQ(e) is assumed to be semistable for each e € [0,eQ] (i.e.,
o

all eigenvalues in (C_ except for perhaps a semi-simple eigenvalue at 0),

with constant rank nfor e €]0,eQ]. As is shown in [1] the system (2.20)

exhibits multiple time scales iff

rank AQ(0) <n
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Further, heuristically there is a connection between the time scales

evolution of (2.20) and the eigenvalues of A(e). In particular, eigen-

k k
values of order e are symptomatic of system behavior at time scale t/e .

We discuss how to make this connection precise. Since AQ(0) has some

zero eigenvalues, we can define PQ(e) to be the total projection matrix

for the zero group of eigenvalues of AQ(e). Define

An(e)Pn(e)
Al(e) :s-^-^ • (2-22)

Then if AQ(0) =AQQ has semi-simple null structure - SSNS (i.e., 0 is a

semi-simple eigenvalue of AQ0) the matrix A,(e) has series expansion of

the form

Me> =I Ad (2'23)1 p=0 H

by Corollary (2.3). Intuitively, A-j(e) represents the part of AQ(e)

having eigenvalues which are at most 0(e) - i.e., the zero group of eigen

values of AQ(e) - corresponding to slower dynamics of (2.20). If the

first term of the series (2.23), namelyA1Q, has semi-simple null structure

it follows that

A2(e) :=-L_L_ -J Q^O—

where P,(e) is the total projection for the zero group of eigenvalues of

A-.(e), has series expansion

00

A?(e) = I ePA?
L p=0 6p

Proceeding recursively in this fashion and assuming successively, that

A2Q, A3Q, ..., i.e., the leading terms of A2(e), A3(e), ... have SSNS,
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we define A. (e), Pk(e) for k= 0, ..., m. The recursion ends when

m

A^-ife) =0or equivalently £ rank AkQ =n. (2.16)

The assumption that AQ0, A,Q, ..., A« have SSNS is referred to as the

multiple semi-simple null structure (MSSNS) assumption. Under this assump

tion, AQ(e) represents the fast (time scale t) dynamics, A-j(e) the next

slower (time scale t/e) dynamics, A«(e) the following slower (time scale

t/e ) dynamics, ... . Further, the total number of time scales is the

stopping point of the above recursion, i.e., m. The following proposition

establishes some important properties of the Ak(e), Pk(e) and the comple

mentary projection to Pk(e)» i.e., Qu(e) =I- M^)*

Proposition 2.4.

For e small enough, including zero and k = 1, ..., m

(i) Pi(e)Pj(e) =PjUJP^e) i,j =0, ..., m

(ii) Q^ejQjU) =0 i i j i,j =0, ..., m

(111) <Dn =R(QQ(e)) © ... © R(Qk(e)) © R(PQ(e).. .Pk(e)) (2.25)

(iv) rank Qk(e) = rank AkQ (2.26)

and for e small enough but not zero

(v) Qk(e)A0(e)=ekQk(e)Ak(e)=ekAk(e)Qk(e) =A0(e)Qk(e). (2.27)

Remarks: By (2.27) R(QQ(e)) is the generalized eigenspace of order 1

eigenvalues of AQ(e), R(Q-i(e)) is the generalized eigenspace of the

order e eigenvalues of AQ(e) (i.e., the generalized eigenspace of the
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order 1eigenvalues of A-j(e)), (2.25) then is adecomposition of Cn

into eigenspaces corresponding to different orders of eigenvalues of (2.25).

Next, we study the evolution of (2.20) at different time scales:

Definition 2.5 (Time Scale Behavior of (2.20))

Consider (2.20) and let a(e) be an order function (i.e., a: [0,eQ]

-*]R+, continuous with a(0) =0 and monotone increasing). x(t) in (2.20)

is said to have well defined behavior at time scale t/a(e) if there exists a

bounded, continuous matrix function Y(t) such that, for any <5>0 and T<«,

lim sup ||exp{An(e)t/a(e)}-Y(t)|| = 0 (2.28)
e+0 t€[6,T] u

It is said to have trivial behavior at time scale t/a(e) if Y(t) can be

chosen to be zero in (2.28). a

AQ(e) is said to satisfy the multiple semi-stability (MSST) condi

tion, if (i) AQ(e) satisfies the MSSNS condition and (ii) the matrices
o

AkQ, k =0, ..., mare semi-stable (i.e., all eigenvalues in I_ except

for perhaps a semi-simple eigenvalue at 0). The time scale behavior of

(2.20) when AQ(e) satisfies the MSST condition is given by.

Theorem 2.6 [1]

Let AQ(e) satisfy the MSST condition. Then,

(i) lim sup ||exp{An(e)t/ek}-$.(t)|| =0
e+0 6<t<T u K

V 6 > 0, T < °°, k = 0, 1, ..., m-1.

(ii) lim sup ||exp{An(e)t/em}-$m(t)|| =0
e+0 6<t<~ u

where \(t) is given by:
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•k(t) = Qk exp{Ak0t} + PQ ... Pk

= Pq ... P. , exp AkQt k = 0, ..., m.

Section 3. Input-Output Description of Two-Time Scale Linear Systems

In this section we study transfer functions of two-time scale linear,

time-invariant systems of the form

n, ^

X=A^x +A12z +B^ x€Rn, u€R^

ez =A21x +A22z +B2u z €IRm (3.1)

y = CjX + C2z + Du y €

We first describe the classical [3] analysis of (3.1) and then use the

machinery of Section 2 to derive the desired results. The singularly per

turbed approximation to (3.1) obtained by setting e =0yields (with A22

assumed non-singular):

x = A x + B u
r r

y = crx + Dru
(3.2)

with A := A-.-J - "12 22 21' r "= 1 " 12 22 2' r *= 1 " 2 ^2 ^1 ^

Dr := D- C2A22B2. The system (3.2) is of order n and along with the

algebraic relation

provides an approximation to the trajectories of the full order (m+n)

system (3.1) on compact intervals of time bounded away from the origin
o

provided that a(A22) c (D_, i.e., A22 is exponentially stable. We also
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associate with (3.1) the fast system (time scale et) by rescaling time

t = t/e and then formally taking the limit e 4- 0, namely

£ °A222 +B2U
y = C«z + Du

(3.3)

we denote the transfer function of the reduced system (3.2), H (s),

Hr(s) := Cr(sI-Ar)"1Br +Dr (3.4)

and the transfer function of the fast system (3.3), Hc(s)

Hf(s) := C^sl-A^)"^ +D. (3.5)

We study the relation between Hr(s), Hp(s) and the transfer function of

the full system H (s). First note that from the definition of Dr we

have

lim Hjs) = D = lim Hf(s) (3.6)
s-h» r r s-K)

A laborious calculation yields that

H£(s) =Hr(s) +Hf(es) - Df +0(e) (3.7)

The 0(e) is a matrix whose elements are uniformly of order e in the

common domain of definition of Hf(s), H£(s), Hf(es). The exact form of

the 0(e) term is unintuitive and is omitted. Expressions (3.6) and (3.7)

taken together are suggestive -the overall transfer function H£ is (up

to an error of order e), the sum of the reduced order transfer function

H (s), the frequency scaled fast transfer function Hf(es), minus the

d.c. value of Hf(s) (or equivalently the high frequency asymptote of

H (s)). The form (3.7) has also been derived by Luse and Khali! [5].
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From our standpoint the 0(e) term is unwieldy and the preceding tech

nique does not generalize to the multiple time scale case. Hence, we

use the techniques of Section 2 to derive an alternate expression for

H (s).
ex '

To convert the system (3.1), which is singular at e=0 to the form

studied in Section 2.2, consider the undriven form of (3.1) in the

x = t/e time scale

(3.8)

dx dzwith x', z* representing ^ ,̂ respectively. Then we have

An Ai2
AQ(e) = + e (3.9)

^21 A22

Under the assumption that A22 is nonsingular we see that AQ0 the first

term of (3.9) has SSNS with n eigenvalues at 0. Let PQ(e) be the projec

tion onto the zero group of eigenvalue of AQ(e). Then, using formulae

(2.13)-(2.15) of Section 2 for PQ(e) we see that

with

P0(e) =PQ(0) +J enpjn)
n=l

P0<°>=^T
<l

*21

0

A22-£I

-1

dC
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-1
2ttT

'r

-f}i o

tt22<D'\}C'i (a^-ci)"1
d£

L"A22A21

(3.11)

A somewhat longer calculation using (2.10), (2.11) yields

,0)- _L
0 " " 2iri h

d) (5)d5

-A A A
M12M22a21 ~A12A22 (3.12)

-A22A21A11

+A22A21A12A22A21
-1 -2

+A22A21A12A22A21

^^1*12*22

(3.10), (3.11), (3.12) yield the form of PQ(e) up to terms of order e'

We block diagonalize the system (3.8) using the change of basis

>n+m . mn+m
aennea oy

u
nxm

Kl-Pte))

T:1R' K defined by

I.

P(e)
nxn

T(e) :=
0,
mxn

Using (3.11) we see that at e

-1

mxm

= 0

(3.13)

T(0) =

I

"A22A21

(3.14)

which is well defined. By continuity then, T(e) is well defined in

some interval [0,eQ], By construction the first ncolumns of T(e)
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spanthegeneralizedeigenspaceofthe0-groupofeigenvalues.Thenext

mcolumnsspanthegeneralizedeigenspaceoftheorder1eigenvalues.

Thus

k-l
T(e)A(e)T(e)'

eAr(e):0

Aoo(e) •"22

(3.15)

From(3.14)itisimmediatethatA22(0)=A22.However,inorderto

obtainA(0)wemustusetheformofT(e)accurateuptotermsoforder

e,i.e.,useequations(3.11)and(3.12)togetthat

T'^e)

A22A21

and

T(e)=
I

*22*21°

+e-A
,-2

2A22A21

+e

"A22A21A11+
-2-1

A22A21A12A22A21
"1aaA"2/.

12*22^21
"^MrtrtMrtnM^nn/inn/

Al2*22*21
_2

*22*21*11
-2-1

~*22*21*12*22*21

Using(3.16)and(3.17)in(3.15)wefindthat

-1
Ar(0)=A^-A12A22A21

Nowthesystem(3.1)inthettimescaleis

x'
•V£>

eB.

y=[c,c2]+Du

-16-
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Using the transformation matrix T(e) of (3.17) and defining

= T(e)fx^), and converting back to the t-time scale we see that

G]-"•'["]•
the diagonalized system satisfies

ez

ye) 0

0 A22(e)

y =[Cr(e) C2(e)]

Br(e)

B2(e)

+ Du

"\

J

(3.19)

with Br(0) =B1 -A12A^B2, B2(0) =B2, Cr(0) =C} -C^A^,C2(0)=C2.
Now, by inspection of (3.19) we have

H£(s) =Cr(e)(sI-Ar(e))"1Br(e) +yeKesI-A^e^ye) +D (3.20)

The form (3.20) is very similar to (3.7). In particular, the last two

terms constitute (up to an error of order e) fL(es). At e = 0 they also

yield D- C2A22B2 = Dr. The form (3.20) is more convenient for analytic

purposes since all the matrices in (3.20) are continuous functions of e

(cf. the results of Section 4). Further, this block diagonalization

technique is useful for systems with multiple time scales (cf. Section 5).

Section 4. Positive Realness of Two Time Scale Systems

Recently, in problems of adaptive control, the robustness of the

strict positive realness condition has been a topic of discussion. In

this section we discuss the positive realness of a square (n^=nQ) two

time scale transfer function H (s) in terms of the positive realness of

H (s) and Hf(s). Our results are a generalization of related results
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derived by other methods in Saksena and Kokotovic [6] in the special

case that Hf(s) is a positive constant. Our techniques enable the discus

sion in this section to be generalized to the multiple time scale case.

Definition 4.1 [7]
nixni

A matrix Z(s) € R(s) is said to be positive real (PR) if Z(s)
o *

is analytic in (Ef, any purely imaginary pole ja)Q of Z(s) is simple, with

associated residue matrix positive semi-definite Hermitian and for all

other jo) (w€R), Z*(ju>) + Z(jto) is positive semi-definite Hermitian.

Definition 4.2

n-xn.

A matrix Z(s) € IR(s) is said to be strictly positive real (SPR)

if Z(s) is analytic in (t+, the closed right half plane, and for all

a) € IR, Z*(ju)) + Z(jo)) is positive definite Hermitian.

The key to our results is the following theorem.

Theorem 4.1
nxn. n.xn

Let A(e) €TRnxn, B(e) €IR \ C(e) eIR be continuous functions of e
n.xn.

and D € IR . Then the transfer function

H£(s) =C(e)(sI-A(e))"1B(e) +D (4.1)

is SPR for e €[0,e*] if HQ(s) is SPR.

Proof: It is easy to see that HQ(s) analytic in the right half plane

implies that H (s) is analytic in (E+ for e small enough. Thus, we only

need show

H*(ju)) + H (jw) > 0 V a) € IR.

First we claim that given ojq >0 3 y>0 such that
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H*(ja)) +H0(ja)) >Il for |u)| >a)0. (4.2)

(4.2) is true when n. = 1 (i.e., the scalar case) since in that case the

SPR condition implies that the proper rational function HQ can be of

relative degree 0 or 1. For the general case consider x*HQ(jo))x for

x € I . If (4.2) is false, then for fixed wn there exist sequences
n. u

{xi,xi €C l,||x1l|=l> and {u. : \u.\ >a)Q} such that

4x*[fio(aa)i)+"o(ja)i^xi "* ° as 1* °° (4-3)
ni

Compactness of the unit ball in C implies that we may assume {x.} is
n.

a convergent sequence with limit x € I \ Therefore from (4.3);

u^CHqUco^+hJUu^Ix ^Oasi^ (4.4)

But this is a contradiction since x*HQ(ju))x is a scalar SPR transfer

function. (Either {w. } has a bounded convergent subsequence so that there

exist finite ci € K with

x*[H0(Jw)+Hq(jS)]x =o

or {a).} is unbounded and (4.4) violates condition (4.2) for scalar SPR

transfer functions).

Now using the Laurent series for (jwI-A(O))" in (4.2) we have for

M ±%> large enough

D+DT -i{C(0)A(0)B(0)+(C(0)A(0)B(0))T} >̂ (4.5)

neglecting higher order terms on the left hand side. Continuity in e and

the fact that D is constant implies that
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D+DT 1{C(e)A(e)B(e)+(C(e)A(e)B(e))T} I _ll (4.6)
w 2oT

for |oj| >aLand e € [0,eQ]. Now, we can add on the extra terms inthe

Laurent series for (jwI-A(e)) to (4.6) to obtain that

H(ju>) +H*(j(o) >^ (4-7)
3a)

for|w| >uuande € [0,eQ]. In the compact region |co| £o)Q, positive

definiteness of H0(jcj) + Hq(joj) implies that By such that

Hq(Jco) + Hq(Jo)) >yl for |ca| <d)0

and continuity in e yields,

Hc(jw) +H*(ju>) >̂ for |u| <o)Q. (4.8)

Combining (4.7), (4.8) yields the desired conclusion. d

Corollary 4.2. Let the assumptions of Theorem (4.1) be in effect except

that D is a function ofewith D(0) + D(0)* > 0. Then the conclusion of

Theorem (4.1) still holds.

Theorem 4.3

Consider the two time scale system of (3.1) with n^ = nQ. Further,

let the reduced order system Hr(s) of (3.4) be PR, analytic in (D+, except

perhaps for a simple pole at s = 0 and the fast transfer function Hf(s)

be SPR. Then, the transfer function H£(s) of (3.1) is PR.

Proof: From the setup of (3.1) we see that H (0) = Hr(0) and

lim sH (s) = lim sH-Js). Thus, in the case that Hy, has a simple pole at
s-»0 £ s-*0 r r

s = 0, H also has only a simple pole at s = 0 with the same residue as
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Hr. Hence, H£ is analytic in (D+ and the only pole on the ju-axis is a

simple pole at s = 0 with positive semi-definite residue matrix (same as

Hf). Hence to prove that H£ is PR for e small enough, we only need show

that

H*(ju>) + He(jeo) >0

for e small enough.

Consider the expression (3.20) for H£(jo)). For a) €any compact inter

val [-u>.|,u>.|], H£(jo)) is close to

Cr(e)(sI-Ar(e))"1Br(e) +C2(e)(-A22(e)r1B2(e) +D (4.9)

which in turn is a perturbation of

Cr(sI-Ar)"1Br +Dr =Hr(s) (4.10)

i.e., Cr(0) =Cr, Ar(0) =Ar, §r(0) =Br and D- C2(0)A22(0)§2(0) =Dr.
Further, since Hf(s) is SPR and Hf(0) = Df (equation (3.6)) we have that

Dr +dJ >0. Since (4.10) is SPR, (4.9) satisfies the conditions of
Corollary 4.2 and we have that (4.9) is SPR. Consequently, for any ai-,

3 e, small enough such that

H£(ju>)* +H£(ju)) >0 Va) €[-oip^], Ve6[0,^] (4.11)

Also H^r(s) SPR implies from Theorem 4.1 that the transfer function

-1- -C2(e) (esI-A22(e)) 'B2(e) +D=: Hf(e,s)

is SPR. Further from the estimates of Theorem 4.1,

/\. ^

Hf(e,ja)) +Hf(e,ju)) > v^ 2,u) €R (4.12)
1+e a)

for some v,e€ [0,eQ]. Also, in (4.9) we see that Cf(e) (sI-Ar(e))" Br(e)
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is strictly proper so that 3 v,,iii,,e,, > 0 such that V |u| ><j),, e € [O.e,]

Cr(e)(ja>I-Ar(e)rVe) +̂ JeJUuI-A^e))-^ (<•)}* <\ (4.13)
03

Given v and v-. the values of e, and to, can be revalued (i.e., e-. smaller

and a)«| larger) so that

vl 1
~7 < 1 r? ^or |w| > u_, e € [0,e.,].
a) 1+e oj • '

Seeing that H£(ju)) is the sum of the left hand side of (4.12), (4.13) we

get

He(jeo) + H*(jo)) >0 (4.14)

for |co| >u)-|, and e<min(e0,e.|). Combining (4.11) and (4.14) yields

that H£ is PR for e small enough. d

Corollary 4.4

If both Hf(s) and Hf(s) are SPR, the full order system H (s) of (3.1)

is SPR for e € [0,eQ]. o

The following examples illustrate the necessity of the conditions of

Theorem (4.3).

Example 4.1 (Fast System Zero)

y = (1 0) /x

Hr(s) =J^- is SPR, but Hf(s) =0(not SPR). However, H£(s) =S(gs+T)+1
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is not SPR since its relative degree is 2.

Example 4.2 (Fast System PR but not SPR)

Hr(s) =-~y which is SPR, but Hf(s) =-^ which is PR (but not SPR)

HJs) = 3*£S so that
e es^+s+1

Re Hfju,) =<3-f)0-f) .
2 2

This is negative for oj satisfying 3-eaj > 0 > 1-eoT.

Example 4.3 (Reduced System PR, but not SPR)

Hf(s) =-~y is SPR and HQ(s) =-^|^- is PR but not SPR. However the poles
s +1
2

of the full system satisfy X3 +— -(1+ i)X +~ =0, showing that the

full system is unstable for small e.

Section 5. Multiple-Time Scale Linear Systems

We consider in this section input-output descriptions of linear

systems of the form
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x= AQ(e)x + BQ(e)u
(5.1)

y = CQ(e)x

nxn. nQxn
with AQ(e) €Rnxn, BQ(e) eF 1and CQ(e) €F
tion of Section 2 we generalize definition 2.5:

Under the MSST assump-

Definition 5.1 (Time Scale Behavior of (5.1)

The system (5.1) is said to have well defined behavior at time scale

t/a(e) (with a(e) an order function) if there exists a bounded continuous

matrix function Y(t) such that for any 6 > 0, T > °°,

lim ?UP - ll7T7rrC0(e)exp{A0(e)t/a(e)}BQ(e)-Y(t)|| =0
e+0 t€[6,T] ct{e} u u u

(5.2)

It is said to have trivial behavior at time scale t/a(e) if Y(t) can be

chosen to be zero in (5.2). •

By the MSST condition, AQ(e) also satisfies MSSNS so that by Proposi

tion (2.4):

m

u i=0 1 T

Using (5.3) and the fact that

Kn =K(Q0(e))©...©R(Qm(e))

and Q.|(e)Q.(e) = 0, we obtain

Qi(e)x =e^tejQ^eJx +Q.(e)B0(e)u

*1 =y£)Qi(£)x

m

1=0 '
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equivalent to (5.1). To find conditions under which we obtain (m+1) sub

systems with time scale behavior at time scales of order t, t/e, t/e2,

..., t/e respectively, consider a change of basis T(e) € ]Rnxn con

structed as follows:

First, from Proposition (2.4), we have that rank Qk(e) =rank A.q=: p.

for e small enough. Now choose matrices M. , k = 0, 1, ..., m of dimen

sions nxpk such that Qk(0)Mk is full rank (pk), and define

-1T(e) :=[Q0(e)MQ: ... IVl^VliV^V (5.5)

T(e) in (5.5) is well defined for e small enough, since it is well defined

at e = 0. By the definition of the projection operators Q^(e), the p.

column vectors of Q^(e)M., i= 0, ..., m are an independent set of vectors

spanning the 'non-zero group1 eigenspace of A.(e), i = 0, ..., m. Thus,

T(e)AQ(e)T(e) is of the form

Me)

eA^e)

0 ' 0
• :

- - +• - •-

0 i o

i

0 » 0

0 i 0

- -I - -

4"
.mx0 »el"Am(e)

m
i

(5.6)

Pkxpk
where Ak(e) €F are stable, for e small enough by the MSST assumption

Pi<xn. _ nnxPb
Define matrices Bk(e) €F N and Ck(e) €Fu K, by

and

T(e)BQ(e) =
Bn(e)

Bm(e)L. m ' _

-lC0(e)r'(e) = [C0(e)I ... ICje)]
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Note that Bk(e), Ck(e), Ak(e) are analytic in e

decoupled into the (m+1) subsystems

Thus, (5.1) may be

P..

x. =e1Ai(e)x. +B..(e)u, x. 6F1

y1 =C^ejx.

m

i=0 ^

(5.9)

s

We now give conditions under which they have well defined behavior at

time scale t/e1. Consider the impulse response of the ith subsystem of

(5.9) at time scale t/e1 (i.e. Definition (5.1)) given by

^yejexp^emye)

A sufficient condition for (5.10) to have a limiting value as e+0

uniformly for t € [6,T] is that

C^ejA^ejB^e) -Ofe1) j = 0,...^.-!

(5.10)

(5.11)

At faster time scales i.e., t/e for k < i, the impulse response of the

ith subsystem is

^Ci(e)exp{A.(e)ei"kt}B.(e)

(5.12) has a uniform limit as e+0 for t € [6,T] if

C.tejye) -0(ek)

(5.12)

(5.13)

(5.13) in turn is implied by (5.11). In fact if (5.11) holds the uniform

limit of (5.12) is 0. At slower time scales i.e., t/e for k > i, (5.12)

has the uniform limit 0 as e +0 for t € [6,T] if A..(e) has its eigenvalues
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in £_. This in turn is implied by MSST assumption.

Thus, under the MSST assumption and condition (5.11) for i = 0, ..., m,

the subsystems of (5.9) have well defined time scale behavior at all

time scales t/e . However, the ith subsystem has non-trivial time-scale

behavior only at the time scale t/e1. We summarize these results in a

proposition:

Proposition 5.2

Consider the decomposition of (5.1) into the form (5.9). Further,

assume that AQ(e) satisfies the MSST condition and that condition (5.11)

holds for i = 0, ..., m. Then, we have

(i) lim sup ||-LcQ(e)exp{An(e)t/ek}Bn(e)-4).(t)|| =0 (5.14)
e+0 6<t<T eK u u UK

V 6 > 0, VT < «», k = 0, ..., m-1

(ii) lim sup ||^C0(e)exp{A0(e)t/em}B0(e)-cJ)nl(t)|| =0 (5.15)
e+0 6<t<°° e

V 6 > 0. In (5.14), (5.15) 4>k(t) is given by the pointwise limit

*k(t) =lim -\ Ck(e)exp{Ak(e)t}Bk(e)
e+0 e

for k = 0, ..., m.

(iii) ||C0(e)exp{A0(e)t}B0(e) - \ e\(eKt)|| =0(1) (5.16)

uniformly in t.

Remarks: (i) The conditions (5.11), namely

C.(e)AJ(e)B.(e) -0(e1) j=0, ..., P-l (5.11)
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for i=0,...,m are only sufficient conditions for Proposition 5.2 to hold.

A simpler set of conditions that implies (5.11) is

or

B.j(e) ~0(e1) i=0, ..., m

C.j(e) ~0(e1) i=0, ..., m
> (5.17)

(ii) The conditions (5.11), (5.17) are on the matrices A-(e), B.(e),

C.(e). In order to obtain conditions on the original system matrices

we need to consider the decomposition (5.4) and the impulse response

JrC0(e)Qi(e)exp{eiA.(e)t}Q.(e)B0(e) (5.18)

By the construction of T(e) (equation 5.5) it follows that

T(e)A.(e)T(e) -1

0.

0 . O
A^e)

eAi+1(e)

(5.19)

o ni-ir

Ve>J

-1C0(e)Q.(e)T(e)"' =[0,...,0, C.(e),... ,0], (5.20)

and

T(e)Q.(e)B(e) =

B^e)
(5.21)

Using (5.19), (5.20), (5.21) we obtain

X C0(e)Q.(e)exp{eiA.(e)t}Q.(e)B0(e) =-i C^eJexp^^eJeHlB^e)
(5.22)
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From (5.22) it follows that,

yejQ^ejA^ejQ.^BoU) =C.(e)AJ(e)B.(e) j=0, 1, ...

Consequently the condition equivalent to equation (5.11) to ensure the

existence of a uniform limit as e + 0 of (5.22) is

C0(e)Q.(e)AJ(e)Q.(e)B0(e) -Ofe1)

i = 0, ..., m j = 0, ..., p.-l

Example 5.3 (Three time scale system)

x = x +

y = x.

The system (5.24) can be shown to satisfy the MSST conditioDn and

diagonalized to yield

-l+0(e3) 0 0 "l+0(e3)
•

x = 0 -e+0(e3) 0

0 0 -e2+0(e3)

x + e+0(e3)

-e2+0(e3)

u

(5.23)

u (5.24)

3 2 7.i.e., B-j(e) =e+ 0(e ),B2(e) =-e+0(6°). Thus the system satisfies

the conditions (5.17) which imply (5.11) for well defined time scale
2

behavior at time scales t, t/e, t/e .

Conditions (5.11) allow the internal time-scale structure of AQ(e)

(obtained under the MSST condition) to be reflected in the input-output

We discuss computational issues in Section 6.
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behavior of (5.1). In general, there will be circumstances under which

there are fewer time scales in the input-output description than in the

internal dynamics of the system. Consider the following examples 5.4

and 5.5:

Example 5.4 (Two time scale system)

^-1 0 o\ /o
x = 10 0 0+e0

000/ \-l

y = [(1 0 0) + e(0 1 0)]x.

(5.25)

(5.26)

Note that the system (5.25) has the same AQ(e) as (5.24) so that the

internal dynamics contain three time scales t, t/e, t/e . On diagonaliz-

ing the system we obtain

x =

0

-e

0

0

-e1

+ 0(eJ) x+

y=([l+e2,e,e]+0(e3))x

1-e

1

i t
1-e-e

+ 0(eJ) u (5.27)

Thus BQ(e) =l-e+0(e ), CQ(e) =1+e^+0(e3) implying well defined time
scale behavior at time scale t. Further, ^(e) =1+0(e3), C-j(e)
= e f 0(e ) implying well defined non-trivial time scale behavior at time

scale t/e. However B2(e) = 1-e-e +0(e), C2(e) =e implying that the

system does not satisfy (5.11) for well defined time scale behavior at
2

t/e . However

1 - ?
lim 7: C9(e)exp A9(e)ett/e}B9(e)
e+0 e L d 6
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exists uniformly for t € [6,T] and is equal to 1. Thus from Definition

(5.1), we can conclude that the system (5.25) has well defined time

scale behavior at only two time scales t and t/e. a

Example 5.4 shows that when the condition (5.11) is not satisfied

the input-output description of the system can have fewer time-scales

than the internal dynamics of the system.

Example 5.5 (One time-scale system)

x = + e x + (5.28)

y = (1 1 (5.29)

The AQ(e) is the same as that of examples 5.3, 5.4 and so has three time
2

scales t, t/e, t/e in its internal dynamics. On diagonalizing the sys

tem we get (5.27) and

y - (CI 1 1] + 0(e))x. (5.30)

Note that the conditions (5.11) are met by the system (5.27), (5.30) only

at the time scale t. Further

and

lim C1(e)exp{A1(e)et}B1(e)
e+0 • • •

lim C9(e)exp{A9(e)e2t}B9(e)
e+0 L L L

exist uniformly on [6,1] and are both 1. Thus by definition (5.1), the

system (5.28), (5.29) has well defined time scale behavior only at time

scale t.
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Condition (5.11) is a sufficient condition for internal time-

scales to be reflected into external time scales. In examples 5.4, 5.5

we have shown that when (5.11) is not satisfied, the input-output system

can have fewer than the internal time scales. The following example

shows that if the conditions (5.11) are not met at a specific time scale,

say t/ek, then behavior at faster time scales is t/eJ for j<kmay also

not exist:

Example 5.6

Consider a diagonalized system with three time scales

x =

"a0(e) 0 0

0 eA^e) 0

0
0 e2A2(e)

y =[C0(e) ye) C2(e)]x

X +

B0(e)

eB^e)

B9(e)
L°2

(5.31)

with all A..(e), B..(e), C.(e) of order 1. The conditions (5.11) are

satisfied at time scale t and t/e and are not satisfied at t/e2 as evi

denced by the fact that limit as e + 0 of

-^ C2(e)exp A2(e)t §2(e)
e

for t € [6,T] does not exist. However, limit as e H of

1C2(e)exp{A2(e)et}B2(e)

also does not exist for t € [6,T]. Consequently the system (5.31) does

not have well defined time scale behavior at time scale t/e. It has well

defined time scale behavior only at the fastest time scale t. o
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From Example 5.6, we conclude the following:

yejye) -0(eJ')

is only one of the sufficient conditions (5.11) for well defined behavior

at time scale t/eJ. However, if

ye)ye) ~0(eq)

for q < j, the system (5.1) is not well defined at time scales t/e^ ,...,

t/eJ , since

lim -tye)exp{A.(e)eJ"kt}B.(e)

=lim 4- C.(e)B.(e) =« for q<k<j
e+0 eK J J

The details of the exact time scale structure of the system (5.1)

when conditions (5.11) are not met is currently under investigation.

5.2. Positive Realness of Multiple Time Scale Systems

Consider the multiple time scale linear system

x=AQ(e)x + BQ(e)u
(5.32)

y = CQ(e)x + DQu

Here AQ(e) €Fnxn satisfies the MSST conditions; the number of inputs
is equal to the number of outputs and DQ is a constant matrix. We con

sider in this section assumptions on transfer functions of (5.32) valid

at different time scales in order to guarantee that (5.32) is SPR for

e € [0,e*]. In Section 4, we found that in the case of a two-time scale

system, the reduced system Hr(s) SPR and the fast system Hf(s) SPR
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implied that the augmented system H£(s) was SPR for e small enough.

In the case of (5.32), we will assume that it is well defined in

the sense of Definition 5.1 at time scales t, t/e, ..., t/e (for

instance, this is implied by conditions (5.11)). In that case we define

the transfer functions at the various time scales using the form (5.9):

H0(s) := lim DQ +C0(e)(sI-A0(e))_1B0(e)

il(s) := H, ,(0) +lim JrC.(e)(sI-A.(e))"1B.(e) (5.33)
1 1-1 e+0 e1 ^ n 1

Theorem 5.7

The input-output system (5.32) is SPR for e € [0,e*] if H^s) is

SPR for i = 0, ..., m

Proof: Is by induction. Define

HQ(e,s) := DQ +yeKsI-ye^ye) (5.34)

and for i = 1, ..., m

ye.s) =H.ye^) +C.(e)(sI-e1A.(e))"1B.(e) (5.35)

From the definitions (5.34), (5.35) it follows that the transfer function

of (5.32) is Hm(e,s). By Theorem (4.1), HQ(e,s) is SPR for e small enough

if H0(s) is SPR and further

H0(e,ju)) +ffoe.ju)) >̂ (5.36)
1+0)

Further, exactly as in the proof of Theorem (4.3), H._^(e,s) SPR and
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~* v. ,1
H.ye,ju)) + H.ye.joj) > ^ 2 (5.37)

l+(e u))

implies that the inequality (5.37) holds for H..(e,ja)). Combining this

with the fact that lim H.fe^s) = H.(s), with H,(s) SPR, we obtain as
e+0 ^ _ 1 n

in the proof of Theorem 4.3 that H.j(e,s) is SPR. Finally, at i= m, we

get the transfer function of the system (5.32) to be SPR.

Section 6. Concluding Remarks

We have extended results on the time-scales decomposition of auto

nomous systems to that of input-output systems. We have used these

results to study conditions under which positive realness of a transfer

function are preserved under singular perturbation.

The computations associated with obtaining the time scales decompo

sition of Section 5 are straightforward, but are involved and hence

omitted from the discussion. We have carried out these computations in

detail for systems of the form

x= (A0+eA-|)x+(B0+eB-j)u
(6.1)

y = (Cp+eyx.

with three time scales. Roughly speaking, the most involved part of

the computations is obtaining the projection matrices PQ(e) of (2.22)

up to 0(e3), P.j(e) up to 0(e2) and so on using the formulae (2.13)-(2.15)
Once these matrices and consequently the diagonalizing transformation

T(e) of (5.5) are obtained the conditions for the existence of multiple

time scales input-output behavior is easily verified. Details of these

calculations are available with the authors.
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