
 

 

 

 

 

 

 

 

 

Copyright © 1983, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



VIRTUAL MEMORY TRANSACTION MANAGEMENT

by

Michael Stonebraker

Memorandum No. UCB/ERL M83/74

December 19, 1983

{ &rv-*<



VIRTUAL MEMORY TRANSACTION MANAGEMENT

by

Michael Stonebraker

Memorandum No. UCB/ERL M83/74

December 19, 1983

ELECTRONICS RESEARCH LABORATORY



VIRTUAL MEMORY TRANSACTION MANAGEMENT

by

Michael Stonebraker

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY. CA.

ABSTRACT

In this paper we examine the consequences of an operating system provid

ing transaction management in an environment where files are bound into a

user's address space. The discussion focuses on inherent limitations in providing

concurrency control and crash recovery services in this environment and on

hardware extensions needed to overcome these deficiencies.

I INTRODUCTION

It is widely suggested that transaction management be performed as part of

the function of an operating system. This approach provides clients (such as

editors and data base managers) access to concurrency control and crash

recovery services without special user-level code. Operating systems (OS) have

started to appear with this orientation, e.g. [MITC82], and new systems are

being proposed which incorporate object managers with this outlook, e.g.

[SPEC83].

This research was sponsored by the U.S. Air Force Office of Scientific Research Grant 76-3506,
the National Science Foundation Grant MCS-8211528 and the Naval Electronics Systems Conunand
Contract N00038-78-G-0013.



It is also widely suggested that an operating system map files into a user's

virtual address space [REDD81, 0RGA72]. Then, a client program can simply

read a file by referencing virtual memory locations. If the page holding the

desired data is not resident in main memory, a page fault will cause it to be

brought in. Writes to a file would be done by moving data values to virtual

memory locations. At some later time, modified pages would be written out to

disk by the page manager. In this fashion, the page manager would subsume all

buffering decisions, and clients (including data managers) would be spared the

necessity of providing custom routines.

This paper explores the implications to an OS transaction manager of bind

ing files into virtual memory. In Section II we indicate the problems which can

arise in the three major mechanisms for providing concurrency control. Then,

in Section III we review the two main themes for providing crash recovery,

namely deferred update and write ahead logs (WAL) and discuss the problems

which they cause in a virtual memory environment. Next, section IV contains a

hardware proposal to overcome most of the indicated deficiencies. Lastly. Sec

tion V indicates our conclusions.

D TRANSACTION MANAGEMENT

A transaction manager provides two services, concurrency control and

crash recovery. A client has three available commands:

begin xact
end xact
abort xact

The 'begin xact' and 'end xact' statements bracketa collection of read and write

operations that must be serialized [BERN80] with respect to all other con

current file activity. A client can also abort a transaction with the 'abort xact*

command. This will cause all data base modifications by this transaction to be

undone.

-2-



The second service is crash recovery. In the event of a system failure, a

client is guaranteed that his transactions will either be performed to completion

or aborted.

Concurrency control can be provided by many different algorithms. In

[BERN81] a large collection of possibilities are surveyed. In this paper we

assume that concurrency control is provided by either dynamic locking

[GRAY78, MENA78, ASTR76], by serial validation [BHAR80. KUNG81. CERI82], or

by timestamp ordering [BERN77, BERN80]. The reader is referred to [BERN81]

for a discussion of these and other approaches.

2.1 Locking

There are several problems with dynamic locking in a virtual memory

environment

Ll) The unit of locking cannot be smaller than a page

An operating system cannot enforce a finer granularity than one page as a

lockable object. A client can read (update) any data on a page bound into his

address space with read (write) permission. Hence, two clients cannot update

the same page with any guarantee of consistency.

Traiger [TRAI82] suggests that page locking is unacceptable to some data

managers, and therefore concludes that locking cannot be done by a virtual

memory OS. On the other hand, there are several data base systems which lock

at this granularity, eg. [BR0W81, RTIB3]. and no study has definitively proved

that page locking imposes an unacceptable performance penalty. Hence, we

assume that page level granularity is acceptable.

12) Only pages which are locked can be addressible.

Consider two clients, each holding a write lock to single page in the same

file. If the file is in a shared data segment and both locked pages happen to be

-3-



resident in main memory, then each client can read (and with hardware permis

sion) write the page locked by the other without an interrupt transferring con

trol to the OS. This breach of concurrency control occurs because an OS which

binds a whole file into a user's address space implicitly gives a read or write lock

to that client for the whole file. If page level locking is desired, then addressibil-

ity must be provided only when locking is accomplished.

This will guarantee that the cost of setting page level locks is VERY high. In

current OSs several thousand instructions are required to bind a page into an

address space. This compares unfavorably with current lock management com

ponents of data base systems which require a few hundred instructions to set a

lock [GRAY81]. This economy results from running the lock manager in user

space and directly accessing a lock table in a shared segment.

L3) Implicit OS locking may not be reasonable when accessing B+-trees

[C0ME79].

If a data manager is using a B+-tree access method, then a hierarchical

directory of pages with key values will reside in a file. Pages containing data

records will be intermixed with these directory pages. Clearly, data pages must

be locked on access and such locks must be held to the end of a transaction

[ESWA76]. However, locking must also be provided for directory pages. Efficient

schemes (e.g. [BAYE77]) do not hold locks on directory pages throughout a tran

saction. Hence, accesses to index pages can obey a less restrictive protocol

than accesses to data pages. An OS page manager cannot distinguish between

the two cases and must treat all pages equally thereby reducing parallelism.

2.2 Serial Validation

The following points apply to serial validation [KUNG81].

SI) Validated objects cannot be smaller than one page.

-4-



The page manager cannot distinguish read access to objects smaller than

one page. Moreover, it cannot distinguish write access to objects smaller than

one page unless it differences the old and new versions of the page. This is the

same as point LI) above.

S2) All addressibie pages must automatically be in a client's read set.

A page manager cannot tell what addressibie pages a client has touched.

Therefore, it must assume that the client has touched all of them.

The read set of a transaction should be kept as small as possible in order to

maximize its chances of successfully being validated. Hence, the OS should add

pages to a client's address space one at a time. Binding individual pages, as dis

cussed above, will be VERY expensive.

S3 An Interrupt Must be Generated on the First Write to a Page

In current validation schemes the transaction manager must maintain a list

of objects which have been read (Or) and a list of objects which have been writ

ten (Ow). Private copies are usually made for any modified objects which are

then installed into the data base at the time the transaction is validated.

Hence, the OS must get an interrupt on the first write to a page so it can

allocate a private copy of the referenced page. Special hardware is needed to

detect this event.

S4) Serial validation does not work well for B+-tree index pages

A semantically consistent data structure will be produced by applying the

serial validation algorithm to the index pages of a B+-tree. However, throughput

can be increased by certifying transactions even if they read an index page

which was written by a recently committed transaction. Unfortunately, an OS

cannot know when to apply this less restrictive algorithm,be cause it cannot dis

tinguish index pages from data pages.

-5-



2.3 Timestamp Ordering

The following considerations apply to timestamp schemes.

Tl) Granularity of objects cannot be smaller than a single page

Since there is no way for the OS to know what part of a page was accessed

by a client, it cannot run a timestamp algorithm for any smaller granularity

objects.

T2) Every page access must trigger timestamp processing

Consider a page which a client wishes to read. When it is made addressibie,

the client's timestamp is compared to the timestamp of the transaction which

last wrote data on the page. If the client's timestamp is later, the read is

allowed; otherwise, the client is aborted and restarted. Unfortunately, all subse

quent accesses to the same page by the client must also be checked because

another user could have committed an update to the page in the meantime.

Hence, timestamp processing must be built into the page mapping hardware

because it will be disasterously expensive to perform in software.

T3) Timestamp processing does not work well for B+-tree index pages.

The basic timestamp algorithm [BERN81] will ensure a consistent B+-tree

index if applied for all reads and writes in the data structure. However, more

parallelism can be obtained by a special case algorithm that allows readers of

index pages to proceed even if there is a later write to that page. Of course, the

normal algorithms must be run for data level pages. Since the OS cannot distin

guish data and index pages, it must run the regular algorithm for all pages.

2.4 Summary

The following conclusions can be drawn from the above comments.

Cl) Without hardware support specific to a given concurrency control scheme,

-6-



all options appear to have substantial performance problems. In Section IV we

will present a modest hardware proposal which appears to perform competi

tively against an application software lock manager.

C2) Concurrency control for B+-tree index pages should have a special case

algorithm applied. Appropriate system calls must be provided to communicate

the collection of pages for which a less restrictive algorithm can be run.

HI CRASH RECOVERY IN A VIRTUAL MEMORY ENVIRONMENT

Transaction management systems use different techniques to provide crash

recovery. We indicate the salient characteristics of the two main approaches,

deferred update and write ahead logging (WAL).

1) deferred update

A file update is not installed directly in the file. Rather, it is stored in an

"intentions list" [LAMP76, ST0N76]. When 'end xacf is reached, a commit flag is

stored at the end of the intentions list All pages of the intentions list must now

be forced out to disk, and the page with the commit flag must go out to disk last

The intentions list is now processed sequentially and all updates are

installed. The installation procedure is carefully programmed so that it can be

performed again from the beginning in the event of a system failure. After a

system failure the OS is first restored. Then, a special recovery utility inspects

all intentions lists. If the commit flag is present for a given list, the utility rein

stalls the updates in the file; otherwise, the intentions list is discarded. A "sys

tem log" of the intentions lists of all committed transactions is often maintained

to ease recovery from media failures.

The intentions list must be visible to the client program. In this way the

client can see proposed changes or make multiple changes to the same data

object. A clever technique to support this function is used in System R

-7-



[ASTR76].

2) Write Ahead Log

Alternately, an update can be directly processed. First, a log record con

taining the old values which the update replaces must be created. This log

record must be forced out to disk prior to the time that the file data is written

to disk. The name Write Ahead Log (WAL) is derived from this requirement. The

last step of a transaction is to install the commit flag in the log and force it out

to disk. At recovery time the log is inspected and the updates of all uncommited

transactions must be undone by a utility program.

All current recovery techniques are variants on these techniques, and we

assume that a virtual memory transaction manager will choose one of these two

schemes. The following considerations apply in this environment.

Rl) All page modificationsmust be logged.

Since the OS has no way of distinguishing data pages from index pages, both

must be logged in the same manner. As discussed in [TRAI82], the deferred

update approach does not require that index pages be logged. Moreover, struc

tural changes on a page (such as allocating an overflow page and updating a

page pointer to reference this new page) may be recreatable at the time of

recovery. Hence, they do no need to be logged by an application level recovery

system. Again the OS cannot distinguish this kind of modification from an ordi

nary update and may make unnecessary log entries.

R2) Least Recently Used (LRU) cannot be used as a page replacement policy

With either approach to crash recovery, there are restrictions concerning

the order in which pages must be written out to disk. A page manager cannot

simply implement the popular LRU replacement policy.

-8-



IV HARDWARE SUPPORT FOR LOCKING

The following hardware expedites page level locking in a virtual memory

transaction manager. It is similar to the hardware support which would be

required by serial validation or timestamp approaches. We assume that memory

mapping hardware is supported; however, its exact composition is of limited

interest. Lastly, we assume that direct update is selected as the crash recovery

technique.

The following bits are associated with each page presumably as part of the

hardware which maps logical pages to physical pages.

don't care bit
0 = deactivate hardware checking
1 = activate hardware checking

write-lock bit

0 = page does not have a write lock
1 = page has a write lock

count field

value = number of readers who have referenced the page
access bit

0 = page has not been read by the current process
1 = page has been read by the current process

update bit
0 = page has not been modified by the current process
1 = page has been modified by the current process

At each page reference for which the don't care bit is set to one, the

hardware must perform the following algorithm:

IF reference is a update THEN
IF write-lock = 0 and count = 0 THEN

update = 1
write-lock = 1

generate an interrupt to log the current page
ELSEIF write-lock = 1 and update = 1 THEN

do nothing
ELSE

generate an interrupt noting the page requested
so the process can be blocked

ELSEIF reference is a read THEN
IF (write-lock = 0 and access = 0) or
(write-lock = 1 and update = 1 and access = 0) THEN

access = 1

count = count + 1

-9-



ELSEIF access = 1 and write-lock = 0 THEN
do nothing

ELSE
generate an interrupt noting the page requested
so the process can be blocked

The lock manager must get control when an interrupt occurs. It maintains the

following information for each process:

process-id
vector of access bits
vector of update bits

At a task switch, the lock manager must save the vectors of access and update

bits from the memory management hardware for the halted process. Its last

step is to load the memory management hardware with the vectors for the new

process.

When a transaction is committed, the lock manager first forces all modified

pages to disk and into the log so that recovery from media failure is possible and

then sets all write-lock bits to zero. Moreover, it decrements the count for each

page with an access bit of one. Then, it can destroy the two bit vectors for the

committed process.

When a transaction begins, the lock manager must assign two new bit vec

tors initialized to all zeros. Notice, that a new transaction can have addressibil-

ity over a large collection of data base objects when it begins. It can also bind

large objects into its address space as necessary.

Deadlock detection can be done by any of the currently popular schemes.

Whenever a failed lock request generates an interrupt, an entry must be

inserted in the "waits for" graph and the graph inspected for cycles. This latter

step can either be done periodicallyor on every access [AGRA83].

Write ahead logging can be performed efficiently by taking a snapshot of

each page before it is updated. When a modified page is written to disk, it is

differenced against the snapshot, and only the old and new values of changed

-10-



bits are written to disk. This scheme will result in a more compact log than

would result if the entire old and new pages were written to disk. In addition,

the log is approximately the same size as a record oriented log managed by

application software.

It should be noted that 16 concurrent readers can be supported in this

scheme with 8 bits per page, 4 for the count and 1 each for the other fields.

Because the page table already holds minimally a presence bit and a physical

page address (typically 16 bits on current hardware), the page table must be

expanded from two bytes to three bytes per entry. As a result, there is a 50 per

cent space overhead.

The two bit vectors suggested above contain the read and write sets for

each transaction. Since serial validation algorithms use this information, these

vectors may be useful for other concurrency control schemes. However, the

count and write lock bits are particular to locking schemes.

Some systems implement virtual memory by a hashing scheme (e.g. the

IBM System 38 [IBM78]). The above algorithm can be incorporated easily into

this architecture. The only complication is that the vectors of access and

modify bits are somewhat more difficult to save and restore.

Standard private data segments can be supported using this hardware

scheme. The lock manager need never save or restore the update or access bits

if there is only a single user.

However, read-only code segments present a problem because they require

shared read access while denying write access. This feature can be supported

by a "read-dirty-data" bit. With the inclusion of this extra bit, a read only seg

ment is bound into a user's address space with both the write-lock and read-

dirty-data bits set for each page. An added advantage of this extra bit is that

hardware support for level 1 consistency [GRAY78] is automatically provided by

-11-



setting the read-dirty-data bit for all pages that a transaction might read.

V CONCLUSIONS

We have proposed a hardware scheme that overcomes some of the perfor

mance problems associated with OS virtual memory transaction management.

Additional OS software must save and restore the access and update bit

vectors at each task switch and perform deadlock detection. Reasonably simple

hardware can do the remainder of the work. This scheme should perform com

parably to current software-only DBMS algorithms that run in user space.

Although page level logging is required, the log can be easily compressed to

a size nearly equal to those produced by current DBMS logging schemes. The

overhead to perform this compression may make an OS scheme use more CPU

time than current techniques.

There are three remaining drawbacks. First, page level locking may reduce

parallelism in high volume applications. The performance consequences of page

level granularity on very large data bases are presently unknown. Traiger

[TRAI82] also notes that page level locks are very inefficient for B+-tree index

pages. However, this inefficiency will only occur if a transaction changes the key

value of a record, inserts a new record into a data base that causes a B+-Tree

index to split or deletes a record which causes a B-f-Tree underflow. In a well

designed data base these events may be relatively infrequent, and the perfor

mance consequences of page level locking may not be severe.

The second drawback is the absence of a "fairness" provision. A transaction

that wishes to write a heavily accessed page may wait indefinitely. As long as

new readers appear to keep the count above zero, it will remain blocked. A

software transaction manager can easily implement a scheme that will deny

read locks to any transaction if there are any waiting writers. It would require

another hardware bit to implement this tactic in conjunction with the algorithm

-12-



in Section IV.

The final drawback concerns presetting of write locks. A data base update is

typically made by first reading a page and then writing it. Hence, a read lock

would be obtained first followed by a write lock. On pages that are sure to be

subsequently written, it is more efficient to obtain a write lock on the first lock

request and avoid the necessity of a subsequent upgrade which could increase

the chance of deadlock. Directly setting write locks would have to be done by a

user immediately rewriting accessed data to set the write-lock bit. This mild

inconvenience may not be tolerated by all clients.

[AGRA83]

[ASTR76]

[BAYE77]

[BERN77]

[BERN80]

[BERN81]

[BHAR80]

[BR0W81]

[CERI82]

[C0ME79]

[ESWA76]

REFERENCES

Agrawal, R., et al., "Deadlock Detection is Cheap," SIGMOD
Record, January, 1983.
Astrahan, M., et. al., "System R: A Relational Approach to
Data." TODS, June 1976.

Bayer, R. and Schkolnick, M., "Concurrency of Operations on
B-Trees," IBM Research. San Jose, Ca., RJ1791. May 1976.. ""

Bernstein, P. A. et aL, "The Concurrency Control Mechanism
of SDD-1: A System for Distributed Data Bases," Computer
Corp of America, Cambridge, Mass., December 1977.

Bernstein, P. et al., "Concurrency Control in a System for
Distributed Data Bases (SDD-l)," TODS. March 1980, pp 18-51.
Bernstein, P. and Goodman, N., "Concurrency Control in Dis
tributed Data Base Systems," Computing Surveys, June 1981,
pp185-222.

Bhargawa, B., "An Optimistic Concurrency Control Algorithm
and Its Performance Evaluation Against Locking Algorithms,"
University Of Pittsburgh, Pittsburgh, Pa., June 1980.

Brown, M. et. al., "The Cedar Database Management System,"
Proc. 1981 ACM-SIGMOD Conference on Management of Data,
Ann Arbor, Mich., June 1981.

Ceri, S. and Owicki, S., "On the Use of Optimistic Methods for
Concurrency Control in Distributed Data Bases," Proc. 6th
Berkeley Workshop on Distributed Data Bases and Computer
Networks. Pacific Grove, Ca., February 1982.

Comer, D., "The Ubiquitous B-Tree," Computing Surveys, Vol.
11. No. 2, June 1979.

Eswaren, K., et. al., "On the Notions of Consistency and Predi
cate Locks in a Data Base System," CACM. October, 1976.

-13-



[GRAY7B]

[GRAY81]

[IBM7B]

[KUNG81]

[LAMP76]

[MENA78]

[MITC82]

[0RGA72]

[REDD81]

[RTI83]
[SPEC83]

[ST0N76]

[TRAI82]

Gray, J., "Notes on Data Base Operating Systems," in Operat
ing Systems: An Advanced Course, Springer-Verlag. 1978.
pp393-481.

Gray. J., "Experience With the System R Lock Manager,"
unpublished collection of notes.

IBM Corp., "IBM System/38 Technical Developments", IBM.
White Plains, N.Y., IBSN 0-933186-03-7. 1978.

Kung. H. and Robinson, J., "On Optimistic Methods for Con
currency Control," TODS, June 1981, pp 213-226.

Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed
System," Xerox Palo Alto Research Center, 1976.

Menasce, D. A. et. al., "A Locking Protocol for Resource Coor
dination in Distributed Systems," TODS. June 1980, pp 103-
138.

Mitchell, J. and Dion, J., "A Comparison of Two Network-Based
File Servers," CACM, April 1982.

Organick, E.. "The Multics System. An Examination of Its
Structure," MIT Press, Cambridge, Mass.

Redell, D. et. al., "Pilot: An Operating System for a Personal
Computer," CACM, February 1981.

Relational Technology, Inc.. "INGRES Reference Manual." 1982
Spector. A and Schwartz, P., "Transactions: A Construct for
Reliable Distributed Computing," Operating Systems Review,
Vol 17. No 2. April 1983.

Stonebraker, M. et. al., "The Design and Implementation of
INGRES." TODS 2, 3, September 1976.

Traiger, I., "Virtual Memory Management for Data Base Sys
tems," Operating Systems Review, Vol 16, No 4, October 1982.

-14-


	Copyright notice 1983
	ERL-83-74

