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ABSTRACT

Volterra Series have been in the Engineering literature for

some time now, and yet there have been few attempts to measure

Volterra kernels. This paper discusses techniques for measuring

the Volterra kernel?: of weakly nonlinear systems. We introduce a

new quick method fur measuring the second Volterra kernel which

is analogous to pseado-noise testing of a linear device. To illus

trate the discussion we present an experimental example, an

electro-acoustic tra:isducer. Throughout the paper we emphasize

the practical aspects of kernel measurement.
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1. Introduction: Purpose and Point of View

Volterra series have appeared in the engineering literature for forty years

now. There have been many articles devoted to theoretical issues such as

existence of Volterra Series (e.g. [1-3]) computation of Volterra kernels of spe

cial systems (composition, feedback configurations, nonlinear circuits; see [8-

13]), the formal framework for Volterra series [1.4-6]; we can say that the topic

has a firm foundation. However relatively few attempts have been made, outside

the biological areas, to actually measure Volterra kernels.

This paper discusses practical techniques for measuring the Volterra ker

nels of a weakly nonlinear system (device, plant, network). By a weakly non

linear system we mean no more than a system which is well described by its first

few Volterra kernels; in particular the higher order kernels must fall off rapidly.

We assume that the nonlinearities may be subtle (i.e. distortion products 40db

or more down) and that the measurement noise is lew (or that the necessary sig

nal averaging has been done). Examples of such systems are some high quality

transformers, electromechanical and electroaccustic transducers, simple com

munications systems; not included are e.g. devices with dead zone, hard satura

tion or hysteretic nonlinearities (even when these nonlinearities are subtle).

"While the problems of kernel measurement in biology are quite different, involv

ing stronger nonlinearities and very poor S/N ratios, much of the following is

still relevant.

Related work includes that of Narayanan and Meyer et al. [22-25] who have

studied IM distortion in transistor circuits; Werner and others [26] have done

similar work for simple communications systems. In these studies a model of a

transistor or modulator is assumed and expressions derived for the various ker

nels; then certain distortions such as 2fi-f2 are measured at a few frequencies

and input levels and checked against the model's predictions. Certain recent

• Research supported in part by the Office of Naval Research under contract N00014-76-C-
0572, the National Science Foundation under grant ECS 80-20-640, and the John and Fannie
Hertz Foundation.
•• The authors are with the department of Electrical Engineering and Computer Sciences,
and the Electronics Research Laboratory, University of California, 3erkeley 94720.
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work by Ewen and Weiner [17] assumes a specific (but important) form for the

Volterra kernels and gives methods to solve the resulting parameter

identification problem. In contrast to these studies we make no assumption

about the form of the kernels. These measurements are thus useful in systems

of such complexity that no simple model is obvious, and for model validation

when one is.

We have chosen frequency domain Volterra kernels over time domain Vol

terra kernels and Wiener kernels for two reasons. The first is that it is easier to

accurately measure frequency domain kernels than time domain Volterra ker

nels when the nonlinearities are subtle. Second and more important, we are usu

ally interested in frequency domain Volterra kernels precisely because they

have an intuitive interpretation: for example H2{j ~\,-jcj2) is a measure of the

second order difference intermoduiation of ux anc. x2 . While a similar interpre

tation exists for time domain Volterra kernels, no such simple interpretation

can be given to the Wiener kernels, whose apparent advantages are type of con

vergence ( Lz as opposed to local Taylor series; iirelevant to us) and "ease" of

measurement with white noise [15;18-20]. Concerning this last "advantage", we

feel that in many applications the advent of microcomputers, D/As and A/Ds has

outmoded the use of white noise/correlation techniques. With only a few inex

pensive components it is now possible to generate very complicated multitone

signals with all distortion products near the noise floor, often 70db or more

down. Signal processing too has gone far beyond Y. F. Lee's Laguerre lattice

filter [7:p91], These practical considerations allow us to make a more direct

attack on the measurement problem than was possible twenty five years ago.

The organization of the paper is as follows: section 2 contains the prelim

inaries, section 3 covers the two basic methods used to resolve the output into

its homogeneous components, section 4 discusses the basic multitone method of

measuring the kernels, section 5 introduces a new quick method of measuring

the second kernel, and section 6 describes a simple experimental example.
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With the exception of section 5, much of the material in this paper is known,

though perhaps not in the form appearing here. We have tried to keep the expo

sition practical as opposed to theoretical. Where a statement or method may be

true for, or generalizable to, arbitrary n, we give it for a specific and practical n,

e.g. two or three: most of the following can be formalized.

2. Preliminaries

Under very general conditions a nonlinear causal time invariant operator N

has a Volterra series

y{t)=Nu{t)=yc+yl-ry2-r...

Vn{t)=f • • •fhn(T1,T2,...Tn)u(t-Tl)U{t-T2) • • u(t-Tn)dTldT2- • ±Tn
where hn is a symmetric distribution supported on (/?+)n and is called the nth

Volterra kernel of N. We will be concerned with those systems for which the

truncation Vo+--+Vn is verv close to y for the signals of interest; n is some

small integer, say five or six.* We refer to yn as the the nth degree or order

component of the output y and assume for simplicity that Vc=1^- The IIjap u^Vn

is homogeneous of degree n, that is, au^anyn . Each h^ also determines, a

symmetric multilinear operator

^n(^i.^2.-^) =

=/ "*' /M7i.TaI...Tn)li1(f-T1)u8(f-T2) "••Un'yt-T^dTidTz • • •drn
so that yn-Nn{u,u,...u). These multilinear operators can also be specified in

terms of their Laplace transforms

Hn(slts2,...sn)=f- ••fhn(tl,t2,...tn)ezp(-£siii )dixdt2 •• dtn
which are called the frequency domain Volterra kernels.

If u is a multitone. i.e. u(^)=l(OSa<e:cP(siO then as t~*°° • y(')-*y»(0.
i=l

where

v»(0= t t •'•• £<v*i2--'"in«*P<£V>tf»'sv*3-"sO
•We are deliberately vague about what "close" and "signals of interest" mean exactly.
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It will be important later to note that the nth order component of ys is a sum of

exponentials whose frequencies are sums of n input frequencies, negative fre

quencies included.

References 1-4, 8-16, 26, and 27 cover this material in more detail.

3. The Problem of Kernel Separation

In general the output y due to u has components of ail degrees, though in

the systems we consider their amplitudes fall off quickly. One step in measuring

the kernels, in the time or frequency domain, is to estimate the components

y i.... of y. What we need is a stable method of estimating

While N(au)(t) is in general an analytic function of a, for the systems we con

sider it is close to a low order polynomial in a, with coefficients ]/». Thus the

problem of estimating the different order compensnts is in practice one of

estimating the coefficients of a noisy polynomial. There are many ways to do

this. We'll first describe the simplest, which we call the Vandermonde method.

Consider the fact that yn is homogeneous of degree n. Thus if our input is

reduced 6db, yx falls 6db, y2 12db and so on; if -u is applied, the odd degree

components change sign while the even ones do not. Suppose rve assume that

components of degree five and higher are negligible, i.e. buried in the

measurement/quantization noise. Let us apply the signals a^u{t) to the device

and call the resulting responses r^t) , where ai( i=l,..4 are some wisely chosen

nonzero distinct constants. Then we have

rz

where the e< contain measurement noise and terms of degree five and higher.

The matrix A above is a Vandermonde matrix, and is invertible since the a* are

a, a? a? a} H 2l
<x2 af af a| \yz 22

«3 af ai a| 1/3
+

23

°U af af a} [y* 2 4
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distinct and nonzero. Approximating e=0 and solving this equation (for each

time or frequency sample point) gives us an estimate of the components yt in

terms of the measurements rt* . This is just a simple polynomial interpolation

and is mentioned in Simpson and Power [20:p318] and Halme [6:p29].

In the frequency domain the a* may be complex and vary with frequency.**

Thus the response of a device to a signal passed through various all-pass filters

could be used to resolve the output into its homogeneous components. Some

times we know apriori that only certain yt appear; the other yt's may then be

dropped from the y vector and the corresponding columns from the A matrix.

For example if we know only even order responses occur, the equations above

can be replaced with a two by two system involving just y2 and y4. This is of

course equivalent to interpolating with an even polynomial.

The a, must be chosen carefully. Choosing the oi.i>l has the advantage of

keeping 11^4-1| | small, so the error in our resulting estimates is small. The

disadvantage is that to estimate the components at some reference level we

apply a larger signal, perhaps overloading the device (that is, operating the cev-

ice where it is not weakly nonlinear in our strict sense). The a* should alter

nate in sign and not be too close, to keep | !^4"111 small.

But even with careful choice of the a^ the Vandermonde method is in gen

eral sensitive to measurement error. To see this consider estimating yx and y2

with ai=l, az=-l. We average rx and r2 to get y2, and since rx is very nearly

-rg (y2 is generally much smaller than yx) we have committed the cardinal sin

of subtracting nearly equal quantities. Of course this example is oversimplified,

but it conveys the basic idea. A more formal explanation is that the absolute

error iny is bounded by | \A~le 11 , but the magnitudes of y2,ya ... are generally

much smaller than yx so the relative error in these entries may be huge. Res-

caling the equations, perhaps using yi.iOy&iOQys • • • instead of ylt y2 ... simply

makes A~l blow up.

•We should point out that the inverse of this matrix can be explicitly found and that there
are stable and fast ways to solve these equations: see e.g. [29].
••Some of Victor's (biological) experiments can be interpreted as the Vandermonde method
with complex a< ; see e.g. [28].
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One improvement is to take additional measurements ana use the least

squares solution of the resulting overdetermined equations as our estimate of y.

This is the method we used, and although it is an improvement over the simplest

inerpolation method, it still gives poor estimates of the higher order com

ponents: estimating the rapidly decreasing coefficients of a noisy polynomial is

inherently difficult. What we can say is this: we can get a good estimate of the

first coefficient appearing, a poorer estimate of the ne:l, and a very poor esti

mate of the small high order coefficients. The frequency separation technique

we discuss below is based on this observation. It arranges for the component.we

need to estimate at some frequency to be theirs* component -.ppearing at that

frequency.

For time domain kernel measurement or vrhen the input u is fixed, we may

have no alternative. But in other cases, clever selection of the probing signal u

can greatly improve our estimates. The frequency separation technique relies on

the fact that the (steady state) nth order response to a multitone signal only

occurs at specific frequencies, sums of n input frequencies. We assume that the

input has the form u(t)=ZRe 2 bmexp(jumt) and that the steady state output
171= 1

spectrum y(A:w) is measured; for notational convenience we will assume iu = l

and drop the qualifier "steady state" in the following. The simplest and oldest

use of frequency separation is as follows: suppose the input frequencies are all

odd (i.e. bk=Q for k even); then the odd and even order responses occur at odd

and even order frequencies, respectively. To isolate a second order response at

some even frequency we need only remove the 4th, 6th. etc. order responses,

that is, estimate the x2 coefficient of an even polynomial. We could use the Van

dermonde method, modifying the matrix and y, but the estimate will be very

accurate since the second order response we seek is not swamped by a larger

first order response; it is the first large response occuring at that frequency.
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Moreover by applying the signal at three levels we can approximately remove

the effects of the components through degree six. as opposed to degree three

for the general case. This trick is widely known, the requirement is simply that

the input signal be odd, i.e. have the inverse repeat property as it is sometimes

called. In the next section we'll see very robust methods for measuring even

high order kernels using frequency separation.

It should be mentioned that complete separation of the components of

different order by frequency separation is impossible. For whenever w is an nth

order response frequency, it is also ann+2,n-r4, ... order response frequency,

at least.

4. The Multitone Method ("Harmonic Probing")

In this section we discuss the actual measurement of the kernels. Suppose

we apply a two tone signal it(i)=ccs(n1i)+cos(n20. n1>n2>0. Then

y(n1±n2)=H2(jnl,±jnz)+ terms of order 4, 6,... and for certain values of nx and

n2 , additional terms of order 3. 5,... Applying the signal at two or three levels

and using the Vandermonde method to estimate the second degree component

of y{nx±nz) yields an accurate measurement of H2(jn:.jn2) and H2{jnlt-jn2).

At the same time we can measure Hz(jni,jnl) and H2(jn2,jn2) but these are of

less interest since they always lie on the line ~i=~2 • We simply repeat this pro

cedure until a sufficient number of points have been measured.

A variant of this method can be used to measure the-third and higher order

kernels. Suppose a three tone signal is applied. Third decree responses occur

at up to 22 different (positive) frequencies, three of -vhich :*re the input frequen

cies nj ,n2 ,n3 .* If we choose integer triplets such that the full 22 frequencies

appear (the "general" triplet has this property), estimation of y3 yields a good

estimate of 19 points of H3. The four points H-Jjnlt=fr2,•=.$*.$) are of more

importance than the remaining 15 which lie on planes where two frequencies are

equal. Note that 12 points of H2 can be measured from the same experiment.

•They are:

n j, n2, 7I3, 371 j, 3712, 3713, J7li±7l2±7l3! ,
12nx±n21, |2ni±n3|, \2n2±nx\, |27i2±n3j, |2n3±7ij!, \2n2±n2\
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5. A New Method

Unfortunately, measuring kernels by the multitone method can be quite

slow. For example to measure H2 at only 100 points (relatively few) requires at

least 100 experiments, each experiment consisting of generation of a signal.

waiting for steady state, sampling the output, and then computation (FFT, ker

nel separation). One may have to wait through naif of these before deciding the

input level is too low or high or that another frequency range might be more

interesting. We've developed a method for getting a quick estimate of the

second kernel. We use this method to make decisions about input level, fre

quency range, etc. before using the slower but more robust multitone method.

It is perhaps surprising that many points of H2{jcjltjx2) can be simultane

ously measured since methods for simultaneously measuring many points of

H(jcj) for a linear device (pseudonoise, impulse testing) reiy very heavily on

linearity. The idea is simple: arrange the second order IM tones to lie on distinct

frequencies which don't include the input frequencies.

We start with two relatively prime integers p and q, q odd. The probing sig

nal will have two parts: one with frequencies p, 2p...p{q-i)/2 and the other

with frequencies q,2q,...q(p-l). We claim that the part one- part two intermo-

dulation tones are distinct. These IM tones occur at frequencies

np+mq, 0<\n |^(g-l)/2, 0<m^p-l; the input tones are precisely the n=0 or

77i=0 cases. Suppose that np+mq = np+mq, where 0^ n, n =s(g-l)/2 and

0< m, m <p—l. Taking residues mod g, we have n=n[q], and thus n=n consid

ering the inequality in n, n above. Hence m=m as well. This shows that the

part one -part two IM tones are distinct and do not include any input frequen

cies. They also do not include any part one(two) -part one (two) intermodulation

tones since these are all 0 mod p (mod g ); here we use the inequality in

m, 77i.* The conclusion is that at the part one -part two IM frequencies, there is

•We could add more zones to the second part and simply ignore every pth column, since
these frequencies may have part one -part one contributions.
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no first order component and only one second order contribution. Let us take

p=7, g =5 as an example. We make a table as follows:

14 19 24 29 34 39 44
7 12 17 22 27 32 37
0 5 10 15 20 25 SO
-7 2 3 8 13 13 23

-14 9 4 1 6 11 15

The left column and center row (in bold) are input frequencies; the other entries

are the part one -part two IM frequencies and it is easily checked that at these

frequencies there is no first order and just one second order contribution.

A quick estimate of H2 is new easy: we apply this multitone signal u at, say,

six different levels and use a least squares interpolation to es :imate y2 . Almost

every entry of yz gives us a value of H2 • in cur example above

y2{3)=H2{lDJ,-7j)ap where a and £ are the complex amplitudes at 15 and 7 in

u. This should be compared to the multitone method where only two cr four of

the entries of y2 are used and in fact the efficiency of using the FFT is question

able.

The distribution of points at which we estimate Hz is interesting. We meas

ure H2 at the points in the uniform grid as in the table above, but recall that H2

has two symmetries: it is symmetric and H2{j ~1.j '->z) = -^s(-j "i.-J "2)• The

region \w2 \<ox is a "fundamental region" for H2, that is a minimal region which

determines H2 everywhere, and in it the distribution is shov.Ti in figure 1 for

p=13, g = ll.

Several comments are in order concerning this quick method. First,

repeated quick-method tests with different p's or g's yield estimates of new

points. For example one test may estimate at 200 points; the next test at 200

new points yielding 400 points altogether: there are no redundant estimates.

The second comment concerns the choice of the complex amplitudes of the fre

quencies in the probing signal. While it is tempting to make them all one. this is

the worst choice possible. This results in sin{QN/ 2)/sin{0/ 2) type signals with

very high crest factors; the signals spend most of their time down where the

-10-



quantization step is significant. For a given peak level (to keep from clipping the

device, perhaps) the amplitudes are small, and the second order distortions we

are trying to measure are extremely small (i.e. small squared). To avoid these

problems we simply let an optimization routine adjust the phases to minimize

the peak (see [30]). The practical result of this is to pack as much probing sig

nal (I2 ) as possible into a given peak.** For signals with frequencies

/, 2/, ...Kf near optimal phases are 6t=(77k2)/{X+l); cur optimization rou

tine used these as starting points. For the quick tests we used (7<x>,g<l9), we

were able to reduce the peak by more than lOdb and thus realise a 20db gam in

measurement sensitivity. This is not far from the bound paak>VAV2 for a K

tone unit amplitude signal. To illustrate this figure 2 shows two 7-5 quick test

signals: the first (darker) with optimized phases and a peak of about 4, the

second with all phases zero and a peak of 8. In this case the peak has only been

reduced about 6db (representing a 12db gain in second kernel measurement

sensitivity), but in more realistic cases the improvement is greater. We have

now arrived at probing signals which at first glance resemble the white noise we

complained about in section one, but we hope the reader will appreciate the

difference.

6. An Example

In this section we briefly describe our test set up and illustrate some of the

above with an example. We used a small 8085 based microcomputer to generate

the probing and trigger signals and do ail computation except the FFT; an

HP3582A spectrum analyzer collected and transformed the responses. We built

several reference nonlinear devices with known kernels like

- 6.4 „ , _ N_ 0.064
*i(*)=, •,:;. H2(Sl,S2)=1+S/S0 " I'**' (i+Sl/S0)(i+S2/Sc)

Hn=0, n>2 s0=2rr350 i^|<17

and used them to check the algorithms above. Xote that the- distortion is at

most 1%, i.e. at least 40db under yx . The values of H2 measured by the multi-

••Ihcidently we first used the quick method with all the amplitudes one and it reaily wasn't
that bad. *
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tone and quick methods were within 2% and 7", respectively, of the predicted

values. Figure 3 shows the magnitude of H2 measured by the multitone method;

it is indistinguishable from the graphs based en e-.ther the quick test measure

ment or the expression above.

The example we give is an electro-acoustic transducer, a J3L 2441 compres

sion driver on a Northwest Sound 90 degree radial horn, measured 0.5m on axis.

We chose this example because it has no simple medei* and as far as we know

these measurements have never been made before. To illustrate frequency

separation and the fact that. N(au) is indeed close to a low order (even) polyno

mial in a, figure 4 shows the real part of the output at 800Hz versus the input

amplitude of a 400Hz signal. The Vandermonde method correctly estimates a

large second order, small fourth order, and nearly zero first and third order

components at 800Hz. A plot like figure 4 can warn us that a device is not well-

described by its first few Vo .terra kernels if it is net close to a low order polyno

mial.

Figures 5 and 6 show typical input and output spectra for this transducer

during a 13-11 quick test. In figure 5 one can see clearly the large first order

responses at the input frequencies and the smaller higher order responses. The

responses on the right which are about 8db higher are mostly second order part

II -part II intermoduiation. Measurements of the second kernel cf the trans

ducer by the quick method and the two-tone method agreed within o%. Figure 7

shows the magnitude of the second kernel measured by the quick method. The

peak distortion here is only 2%. Some features are recognizable, for example

the "trough" along the line /i+/8=0 suggests a linear high pass filter (horn cut

off) following a nonlinear operator.
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Rgure Captions, Measuring Volterra Kernels, Boyd et al.
fig. 1: Distribution of points measured by the 13-11 quick test (described in

section 5) in the region \/2\<f\.
fig. 2: Two unit amplitude signals for the 7-5 quick test: the first (darker) is

with nearly optimal phases, the second is with zero phases. The peak in the
optimized signal has been reduced about 6db below that of the zero-phases sig
nal, giving a second kernel measurement sensitivity gain of about 12db. For
more realistic quick tests, e.g. 13-11, the improvement is more drastic.

fig. 3: \H2{fi.fz)\ for reference device #1. The Reference level is IK"1. fx
and f2 are actually shifted slightly so that none of f \ , f2 , f \+f2 , f\-fz is
zero.

fig. 4: Real output at 800Hz vs amplitude of 400Hz input signal for example
of section 6, JBL 2441 compression driver en Northwest Sound radial horn, 0.5m
on axis.

fig. 5: Typical input spectrum for 13-11 quick test.
fig. 6: Typical output spectrum for 13-11 quick test, J3L 2441 driver on

Northwest Sound horn, b.5m on axis.
fig. 7: \Hz{f \.f2)\ for transducer example in section 6. JBL 2441 compres

sion driver on Northwest Sound radial horn, 0.5m on axis. The reference level is
20PaV~z . /2=0 values are not measured by the quick test and are interpolated.
The "trough" along fi+f2=0 represents a linear high pass filter following a non
linear operator.
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