
 

 

 

 

 

 

 

 

 

Copyright © 1983, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



BBL USER'S MANUAL

by

Nang-Ping Chen, Chi-Ping Hsu,

Howard H. Chen, Ernest S. Kuh

and M. Marek-Sadowska

Memorandum No. UCB/ERL M83/68

4 November 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



BBL User's Manual

Nang'Ping Chen
Qti-Pmg Hsu

Howard H. Chen

Ernest S. Kuh

M. Harek-Sadowska

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory

University of California, Berkeley, CA 94720

ABSTRACT

BBL is an automatic layout system for placement and routing in VLSI

design. The building-block modules are assumed to be rectilinear, and two

layers of interconnection are used. The routing system of BBL can be divided

into three parts: prerouting analysis, global routing, and detailed routing*. The
purpose of prerouting analysis is to allocate routing space if the original place

ment is not desirable. In global routing, a Steiner-Tree-On-Graph algorithm is

used to assign each net a specific route without actually embedding it In
detailed routing, channel router and switch-box router are used to do the track

assignment. Since blocks can be shifted during the routing process, 100% rout

ing completion is always guaranteed.

Currently, BBL runs under the 4.2 Berkeley UNIX on VAX 11/780. the whole
system is implemented in C language, except channel router in PASCAL The
largest example we have tested so far is the AMI chip with 33 functional blocks,

132 nets, and 440 pins. It takes 5.5 minutes CPU time and 2.5 megabytes core

memory to complete the routing.

November 4, 1983



BBL User's Mammal

Nang-Pbng Chen

Chi-Ping Hsu

Howard H. Chen

Ernest S. Kuh

M. Jiarek-Sadowska

1. What is BBL?

BBL is an abbreviation for the Berkeley Building-Block Layout System. It

can be used as an automatic tool to generate the layout of integrated circuits.

The design style of building-block layout has the following features:

1. It uses library cells or user-designed macros as the building-blocks.

2. Each building-block may have terminals along its boundary.

3. All the electrically equivalent terminals should be connected together as

a net.

4. The routing problem is described by the net list.

5. 100% routing completion is guaranteed while the chip size is kept as

small as possible.

This approach has a wide application in the random-logic custom chip

design. It can also be applied in a hierarchical design where BBL is used as the

layout tool on each leveL

2. What can BBL do?

BBL can generate an automatic layout of integrated circuits, provided the

following conditions are satisfied :



1. All cells are rectilinear polygons.

2. Each cell may have terminals on its boundary. Terminals with the same

net number are to be connected together. While the positions for termi

nals along the chip boundary can be shifted according to the size of the

chip, their relative positions will not be changed. All other terminals are

fixed on the boundary of their parent cell.

3. All the cells are treated as blockages. No wires are allowed to cross

the cells.

4. Initial placement of functional blocks should be specified by the. user.

Two blocks should not overlap each other, and all the functional blocks

must be inside the chip boundary. The boundary segments can be either

horizontal or vertical.

5. Two layers are available for routing.

6. All the wires have the same width

7. Four design-rule parameters should be specified; namely, horizontal

(vertical) track spacing, and horizontal (vertical) edge clearance.

The current version of BBL does not allow any prewiring before the

automatic routing process. However, interactive routing and wire modifications

can be done after the automatic routing.

3. The routing system of BBL

The routing system of BBL is called ROSE. It includes three major

approaches: prerouting analysis, global routing, and detailed routing.

At the beginning of routing process, a set of "bottlenecks" is generated.

Bottleneck is defined as a region between the parallel edges of two neighboring

blocks. It is a critical region where congestion is most likely to occur.

Bottlenecks are very important for prerouting analysis and global routing. As

blocks are shifted, the structure of some bottlenecks will be changed.

The prerouting analysis will estimate and allocate the routing space needed,

if the initial placement is not desirable. It assumes that the interconnection for



each net will be done inside the smallest rectangle which encloses all its termi

nals. The probability for a bottleneck to be passed through by this net is then

calculated, and the sum of probabilities over all nets is the expected routing

density in the bottleneck. The number of tracks needed will be the smallest

integer larger than the expected density. Blocks are then shifted upwards or

toward the right to allocate the routing space.

The next step is global routing. The purpose of global routing is to assign

each net a wiring path without actually embedding it. A global routing graph is

generated by representing each bottleneck as an edge. The weight for each

edge is defined as follows :

edge weight =A• L+B/ CN+1

where L is the length of the active bottleneck region, N is the number of avail

able tracks left, and AJ3.C are the parameters specified by the user. If a shor

test path is desired, the length factor "A" should be large to dominate the edge

weight. If the chip area and routing congestion are of primary concern, the

congestion factors "B" and "C" should be large to avoid allocating extra space.

According to our experiences, a combination of A=l, B=50, and C=2 tends to

give the best result

A Steiner-Tree-On-Graph algorithm is then applied on the global routing

graph to find the minimum weighted tree which connects all the terminals in a

net The net ordering is determined by the available routing space. The net

with less routing space will be routed first After all the nets have been assigned

their routes, we can get a better estimation of the routing space needed. The

required number of tracks in each bottleneck is equal to its maximum routing

density, and a compaction process will be done to remove redundant routing

space. After the compaction, the minimum chip size is obtained by the global

router, though it might be increased later in the detailed routing.

Two detailed routers are used in BBL One is the channel router, and the

other is the switch-box router. Channel router is suitable for the routing



problem in a rectangular region with fixed terminals on two opposite edges and

floating terminals on the other two edges. Switch-box router, on the other hand,

can handle any rectilinear region with fixed or floating terminals. It is not as

efficient as the channel router, but it is more flexible. In BBL, the active region

of a bottleneck is routed by the channel router, and all the other regions are

routed by the switch-box router. Both routers will return a request for extra

space if the given routing region is too small. Some blocks will then be shifted

to allocate enough space for routing. 100% routing completion can thus be

guaranteed, while the increase in chip size is kept as small as possible.

4. How do you enter input data ?

4.1. A net-iist input file

This is the standard input for ROSE. It includes the description of modules,

terminals, design rules, and the relationship among them.

Two levels of module are used. The top-level module, which encloses all the

modules on the bottom level, is usually the chip boundary. The bottom-level

module, which looks like a black box, is a regular module. The whole routing

region will be divided into several routing modules.

A terminal must be on the boundary of a module. It can be either fixed or

floating. If the terminal can only move on one edge, it is called "edge-fixed". All

the terminals which are not originally fixed will be called "routing-fixed" after

they are routed. Every terminal must have a routing direction, which should

point toward the routing region.

Four parameters of the design rules should be specified. The horizontal

(vertical) track spacing is the minimum spacing required between two horizon

tal lines. The horizontal (vertical) edge clearance is the minimum distance

required between a horizontal wire and a horizontal boundary segment.

Currently, all the design rule parameters must be 1.

A detailed description of input format is in Appendix C.



4.2. A GIF input file

The user can enter the input data by using the interactive graphics editor

KIC. In fact, any graphics editor will do as long as the CIF file generated con

tains the following layers:

TRM - symbolic layer for terminals
BND1 - symbolic layer for the chip boundary
BND2 - symbolic layer for modules

The chip boundary is a rectangular box which contains all the modules. A

module is represented by a box or a rectilinear polygon, and terminals are

represented by boxes. The center of a terminal box must be on the boundary of

its parent module. Each terminal has a label, and the lower left corner of a label

should be inside the terminal box. The spacing between terminal centers or

between a terminal center and its parent module corner should be equal to or

multiples of the minimum track spacing.

The CIF input file can be transformed into the standard ROSE input format

by using the CIF2R0SE command. The new file generated will then be the net-list

input file for ROSE.

5. What is the output of BBL ?

The routing pattern generated by ROSE is written into a data base, which is

specified by the user at the beginning of the program. The format of this output

file is described in detail in Appendix D. The user can look at the final placement

and routing by using the LOOKDB command. A CIF file can also be generated by

the CIFGEN command. Then the interactive graphics editor KIC can be incor

porated to do the interactive routing or modification. A final plot can be

obtained by using the CIFPLOT. ( Both KIC and CIFPLOT are in the Berkeley VLSI

Tools package. )

Currently, ROSE runs under the 4.2 Berkeley Distribution of VAX UNIX. All

the source files are stored under the directory /oc/kuh/ming/BBL/ROSE.

HP2648A terminal is used as the graphics display for ROSE, and AED512 color

display is used for LOOKDB, KIC, and other interactive graphics editors.



6. Appendix

6.1. Appendix A: Commands and application programs

6.2. Appendix B: library subroutines

6.3. Appendix C: Input format for BBL

6.4. Appendix D: Output format for BBL



Appendix A: Commands and Application Programs

Contents

cifgen(l) - CIF format generator for BBL

cif2rose(l) - translate CIF format to ROSE format

lookdb(l) - database look or dump program

rose(l) - automatic routing system for BBL



CIFGEN (1) BBLSystem's Manual CIFGEN (1)

NAME

cifgen - generate CIF file from BBL database

SYNOPSIS

cifgen [ —option [ —option ]... ] inputjlle outputjile
DESCRIPTION

Cifgen is a CIF format generator for BBL It takes BBL database as the input
and outputs a CIF file. The actual size of layout is controlled by input parame
ters. The result can be examined by an interactive graphics editor kic [l] or the
CIF plotter cifplot [2]. The options are:

-n (HPterminal)
Display a layout on the HP2648A terminal.

-d (defaults)
Allow you to change default values of geometrical parameters interac
tively during the program execution. Default values in CIF units are:
1. metal segment width = 300
2. poly segment width = 200
3. contact size = 400

4. terminal size = 400

5. metal to metal separation = 300
6. poly to poly separation = 200

—c (chip)
Generate the whole chip.

-m (module) module_name
Generate the specified module only.

-n (number) maxjiepth
Specify how many levels in the hierarchy are to be translated into the CIF
file.

-I (input) textile
Input data from textile . A database will also be created.

FILES

/oc/kuh/ming/BBL/ROSE/CIF/«
SEEAI20

Berkeley VLSI Tools
A7C(cad)[l]
CIFPLOT(cad)[2]

1st Edition 10/7/83



C3F2ROSE (1) BBL System's Manual CIF2R0SE (1)

NAHE
cif2rose - translate a CIF file into the ROSE input format

SYNOPSIS
cif2rose input.cif input.rose

UKSdUPTIGN
a/Srose is an input interface between CIF format and BBL format. In order to
generate the net list ( a standard input format for ROSE ), the CIF input file
must include the following layer definitions:

TRM: symbolic layer for terminal definition
BND1: symbolic layer for chip boundary
BND2: symbolic layer for regular module frame

To define a routing problem, the modules and terminals should be specified as
follows :

1. Chip boundary is represented by a rectangular box.

2. Regular modules are represented by boxes or rectilinear polygons.

3. Terminals are represented by boxes on the TRM layer. The center of a termi
nal box must be on the boundary of a regular module.

4. Terminal labels are specified on the TRM layer. The lower left corner of a
label must be inside its associated terminal box.

FTUES
/oc/kuh/ming/BBL/ROSE/C!F/»

SEE ALSO

Berkeley VLSI Tools
A7C(cad)[l]
CIFPLOT (cad)[2]

1st Edition 10/7/83



LOOKDB(1) BBL System's Manual LOOKDB(l)

NAHE

lookdb — database look or dump routine

SYNOPSIS

lookdb database-name

DESCRIPTION

This program displays all the database information on an HP2648 or AED512 ter
minal The manual for usage can be printed by typing the HELP command.
Currently, the following commands are supported by dblook:

h: help
q: quit
p: change plot flag
n: change print flag
?: print all the signal and module names
8: identify the specified signal
m: identify the specified module
d: display regular modules
dw: display regular modules with default window
da: display chip routing
daw: display chip routing with default window
z: find the name of a module by cursor
xt : find the name of a routing module by cursor
xm: find the name of a regular module by cursor
R: run channel router in the specified routing module
R2: run 2D router in the specified routing module
V: define new window
f: find input file name
r: read input file
w: write output file
!: escape

ITLES

/oc/kuh/ming/BBL/ROSEAOOKDB/*
SEE ALSO

dbread(3)

BOGS

Currently, the chip plotting is set to two levels from the top level. For display on
the AED terminal, you have to turn on the "lower case" indicator before each
command is issued.

1st Edition 10/7/83



ROSE(l) BBLSystem's Manual ROSE(l)

NAME

rose —automatic routing system for BBL (Building Block Layout)
SYNOPSIS

rose

DESCRIPTION

Rose is the automatic routing system for BBL[l,2]. It is an all or nothing
proposition now. The user is unable to turn off the System unless all the
routing is completed. In the process of routing, the System may shift
functional blocks in order to guarantee 100% routing and compact the
layout The terminal positions are needed to be fixed on the boundaries
of functional blocks. The System is not able to handle the floating termi
nals currently. The I/O pads are represented by the terminals on the
boundary of the bounding box. The bounding box may be reduced or
enlarged in size so that it will become the minimal rectangle to enclose
all the functional blocks and interconnection. Although the positions of
these I/O pads may be changed after the routing, the ratio of the dis
tances between pads will be kept the same as the input one. The design
rules of wire-to-wire separations, wire-to-edge clearences are specified in
multiples of the unit width. No additional restriction on the contact-to-
contact separation, so the user is responsible to put the wire-to-wire
separation large enough to take care this situation.

This routing system can handle rectilinear blocks with arbitrary shape
and sizes. No over-the-block routing is allowed. Currently, the System
assumes that one metal and one polysi lie on layer are available for rout
ing.

A prerouting analysis is equipped with this System. The user has the
option to turn it off. The purpose of this prerouting analysis is to allocate
routing space for a given placement based on a simple uniform probalis-
tic model. Not very satisfactory results are reported from this analysis
because it sometimes distorts the original placement too much and
hence put the routing System in a bad starting position. The user has to
specify the three constants that control the global routing of the System.
If the user is very happy with his placement and does not want to have a
big change on it, then he should use a large congestion constant. If the
user cares more about the shortest length connections for all nets, then
he should use a large length constant. The System will interactively ask
user the following qustions:

rose

ENTER INPUT FILE : <filel>
ENTER DATABASE FILE: <flle2>
DEBUG MODE : <y or n>
ENTER LENGTH FACTOR FOR BOTTLENECKS : <integer>
ENTER CONGESTION FACTOR FOR BOTTLENECKS : <integer>
ENTER PLACEMENTADJUSTIBILITY FACTOR: <integer>
PREROUTING ANALYSIS? <y or n>
FINAL PLOTTING? <y or n>

The System will generate a file named "debug" under the same directory.
This file contains all the bottleneck information for the debugging pur
pose. Filel is the input file whose format is described in
~ming/BBL/ROSE/DATA/inputform. File2 is the output of the System

1st Edition 10/7/83



ROSE(l)

PILES

SEE ALSO

DIAGNOSTICS

1st Edition

BBL System's Manual R0SE(1)

whose format is described in ~ming/BBL/ROSE/DATA/db.form. Three
factors are used to control the global routing. If the user choose the
enter the debugging mode, then the System will interactively print and
plot the intermediate results. The user can see the plotting of result
before the database write which is a time consuming job by answering y
to the "FINAL PLOTTING?" question.

~ming/BBL/ROSE

[1] Chen, N. P., "The Routing System for Building Block Layout", Ph.D
thesis, U. C. Berkeley, 1983.
[2] Chen. N. P.; Hsu, C. P.; Kuh, E. S., "The Berkeley Building-Block Layout
System for VLSI Design", Memorandum No. UCB/ERL M83/10, Electronics
Research Laboratories, U. C. Berkeley, Feb. 1983.
[3] Chen, N. P.; "New Algorithms for Steiner Tree on Graphs", Proc. ISCAS,
1983. pp. 1217-1219.
[4] Hsu, C. P., "A New Two-Dimensional Routing Algorithm", Proc. 19th
Design Automation Conference, June, 1982, pp. 46-50.
[5] Yoshimura, T.; Kuh, E. S., "Efficient Algorithms for Channel Routing",
IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, January, 1982, pp. 25-35.

A new program which can handle different wire widths for power and
ground nets is under development. It will be provided in our next version
of BBL

10/7/83



Appendix C: Input Format for ROSE

(1) The input text file format

SN <number of nets>
{top level module data)
(design rules]

{module data at this level J

(2) The format of module data

MOD
<x> <y>

<module name>
<module type>
<xl> <yl>

<x2> <y2>

t
T /*terminals*/
<x> <y> <name of its parent net> <routing direction> <terminal type>

/•(x,y) : terminal coordinates relative to the origin*/
/•name of net is restricted to 6 characters*/
/♦routing direction: left 0, down 1, right 2, up 3*/
/•terminal type : O(floating), l(edge fixed), 2(fixed). 3(routing fixed)*/

%

/♦top level module*/
/•origin coordinates, all module coordinates are

relative to this position*/
/*up to 8 characters*/
/*l=routing module; 0 otherwise*/
/•corner coordinates of the module in the

counterclockwise direction*/

(3) The design rule format

DES
ht

vt

he
ve

*

<horizontal track spacing>
<vertical track spacing>
<horizontal edge clearance>
<vertical edge clearance>
/* Currently, all the parameters must be 1 •/



(4) A sample input file

SN2S
MOD
00
bound
0
00
100 0

100100
0100

$
T
200u32
40 0 g 3 2
50 0 m 3 2
55 0 c 3 2
800f32
90 0 k 3 2
0 40 a 2 2
075v22
0 90 o 2 2
10 100 z 1 2
25 100J12
50 100 a 1 2
75 100 x 1 2
100 45h02

%
DES
htl

vtl
hel

ve 1

$
MOD
00
a

0
10 85
1010
5010
50 50
20 50
20 85

$
T
10 15 r 0 2
10 35 p 0 2
10 40 p 0 2
10 45o02
10 50 a 0 2
10 64v02
10 87 u 0 2
10 70 10 2

X

X

>:

•*-

x

X

X

-*- •*-

| X X X X i

X >:

> t

«—W M X —H—1

y w v v

-u-

* )•< w

x

•M.

( X X

5: X X X X

,*, ,h X irt -M-nH

•*- ^c X X X -*•



S
S

™
0

0
0

K
^
S

»
»

»
2

K
&

$
g

S
5

S
5

2
S

5
£

£
H

*
*

J
5

S
5

S
2

P
0

0
-0

K
^
H

t
w

w
w

w
*

^
o

3
o

o
cv

>
en

tn
cn

en
en

en
.|

k.
.*

.G
o

o
a

w
i-

»
»

-
o

o
e
n

o
0

o
io

io
iw

o
o

o
io

io
o

o
o

o
io

s
io

o
c
n

0
q

e
n

o
o

o
o

o
m

o
en

o
o

o
o

o
o

<
5e

n
en

o
o

c
n

o
C

D
.f

*
4

*
o

e
n

e
n

c
o

a
>

-
>

i~
4

a
>

o
)
o

>
a

>
a

>
-
4

C
0

C
0

<
0

<
0

e
n

o
e
n

o
e
n

e
n

e
n

e
n

o
o

o
o

o
o

*-
•

k
*

<
on

g
^
-

x
c

o
*"

*
-

cr
«<

i
w

M
IN

3
l0

r0
|-

k>
-'

l-
'i

-*
O

O
C

0
t0

C
0

W
w

c
o

M
iO

ro
lo

M
i>

3
ro

ro
,0

ro
ro

M

U
i
O

O
U

l

O
i

O
J

C
O

C
O

e
n

e
n

o
o

o
o

C
D

C
D

-v
jc

D
c
n

c
n

c
n

c
n

c
n

*
-^

.
e
n

o
o

e
n

e
n

o
o

o
o

e
n

o

X
<

x
v
j

e
n

o
o

e
n

o
o

o
o

o
o

o

D
«

-^
a

»
-g

c
D

o
.q

j0
r

»^
»o

q
<

^
*i

»o
cr

n
in

W
w

M
r
o

r
o

e
o

c
a

e
O

fl
jp

jj
^
j^

io
r
o

^
^
^
^
^
^
o



75 80

$
T
80 45

90 50

90 60

90 75

76 80

80 80

85 80

89 80

75 55

75 65

75 75

el2

f 22

x22

d22

c32

b32

a32

t32
g02
i02

r02

MOD
00

d

0

85 15

85 35
60 35

60 15

$
T

85 20

85 25
85 30

65 35

70 35

75 35

80 35

60 20
60 25

60 30

60 34

65 15

70 15

75 15

80 15

$
$

122

k22
122

e32
d32

c32

h32

f02

e02

g02
z02
nl2

ml2

bl2
z!2



(5) Restrictions on input data

The current version of BBL has the following restrictions on input data :

• The top level module must be rectangular.

• The bottom level modules are rectilinear functional blocks.

• Module type is always 0 (regular).

• Terminal type is always 2 (fixed).

• The module and terminal coordinates should be integers.

• All the design rule parameters must be 1.



Appendix D: Output Format for ROSE

The output file of ROSE is created by the DBWRITE subroutine. It can be
checked directly by using the LOOKDB command, or translated into a CIF
file by the CIFGEN command. The first two lines of the output file contain
information about the size of each data type. Then 11 types of data are
stored in the following order : schip, module, rmpar, geom, gterm, signal,
term, srjun, rseg, sroot, and designrl. All records of a given type are
dumped consecutively. The output format for each type of record is as
follows.

size

Line 1 -

line 2 -

schip

integer, number of schip records in file
integer, number of module records in file
integer, number of rmpar records in file
integer, number of geom records in file
integer, number of gterm records in file

integer, number of signal records in file
integer, number of term records in file
integer, number of srjun records in file
integer, number of rseg records in file
integer, number of sroot records in file
integer, number of designrl records in file

line 1 - integer, module pointer
integer, designrl pointer
integer, signal pointer

module

line 1

line 2

line 3

line 4

integer, length of module name string
««••««* jf non.zer0| the next iine contains the string.
****••* jf 2er0( ^ next jjjjg is ^2) below.

integer, ansmp module pointer
integer, desmp module pointer
integer, sibmp module pointer
integer, mtc term pointer
integer, geop geom pointer

integer, loc.xy[X]
integer, loc.xy[YJ

integer, rot
integer, rfl



integer, placg

line 5 - integer, type
integer, globrt

rmpar

line 1 - integer, routbnd
integer, chdr
integer, rtflag

line 2 - integer, param[l
integer, param[2

line 3 - integer, param[3]
integer, param[4J

line 4 - integer, param[5]
integer, param[6J

line 5 - integer, param[7
integer, param[8

line 6 - integer, adjx
integer, adjy

geom

line 1 - integer, gtp gterm pointer
integer, rpar rmpar pointer

line 2 - integer, lgtp
integer, lbndp

line 3 - integer, locxy[X]
integer, locxy[YJ

line n - for n size locxy array

gterm

line 1 - integer, length of name string
•*•*•** jf non.zer0t next line is string
•***•** If zero, next line is (2) below

line 2 - integer, loc.xy[Xl
integer, loc.xy[YJ



line 3 - integer, eeg
integer, leg
integer, rdg

line 4 - integer, placg
integer, msklvl

signal

line 1 - integer, length of name string
******** jf non-zero, next line is string
•***•*** ^ 2er0t next njjg js ^) below

line 2 - integer, alls signal pointer
integer, rtls sroot pointer
integer, smp module pointer
integer, trmls term pointer

term

line 1 - integer, mtc term pointer
integer, stc term pointer
integer, mp module pointer
integer, sig signal pointer
integer, rsp rseg pointer

line 2 - integer, tnum

srjun

rseg

line 1

line 2

line 3

Line 1

line 2

line 3

line 4

integer, alljr srjun pointer
integer, sljr rseg pointer

integer, locjr.xypC]
integer, iocjr.xy[YJ

short integer, conjr

integer, widsr
integer, msklvl

integer, type of jOsr ( 0 = srjun, 1 = term )
integer, type of jlsr ( 0 = srjun, 1 = term )

integer, allsr rseg pointer
integer, hsr sroot pointer

integer, jOsr record pointer ( see line two for type )
integer, jlsr recordpointer( see line two for type )



sroot

integer, sOlsr rseg pointer
integer, sllsr rseg pointer

line 1 - integer, alls eg rseg pointer
integer, alljun srjun pointer
integer, nrts sroot pointer
integer, mp module pointer
integer, shr signal pointer

designrl

line 1 - integer, htrksp
integer, vtrksp

line 2 - integer, hegcl
integer, vegcl


	Copyright notice 1983
	ERL-83-68

