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ABSTRACT

An abstract model of concurrency control algorithms is
presented. The model facilitates implementation-independent
descriptions of various algorithms, allowing them to be specified in
terms of the information that they require, the conditions under
which blocking or restarts are called for, and the manner in which
requests are processed. The model also facilitates comparisons of
the relative storage and CPU overheads of various algorithms
based on their descriptions. Results are given for single-site ver
sions of two-phase locking, basic timestamp ordering, and serial
validation. Extensions which will allow comparisons of multiple
version and distributed algorithms are discussed as well.

1. Introduction

Considerable algorithm development has occurred in the area of con

currency control for both single-site and distributed database systems. The vast

majority of the proposed algorithms are based on one of three mechanisms:

locking [Mena78, Rose78, Gray79, Lind79, Ston79], tvrnestamps [Reed78,

Thom79, Bern80, Bern8l], or commit-time validation (or certification) [Bada79,

Casa79, Baye80, Kung81, Ceri82]. It is also possible to form a large number of

algorithms by combining these mechanisms [BernBO, Bern8l]. Thus, there are a

large number algorithms to choose from. Unfortunately, little is known that

would assist an implementor in making this choice.

Several recent studies have addressed the problem of evaluating the perfor
mance of alternative concurrency control algorithms. These include qualitative,

analytical, and simulation studies. Bernstein and Goodman performed a

comprehensive qualitative study which discussed performance issues for a
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number of distributed locking and timestamp algorithms [Bern80]. Results of

analytical studies of locking performance have been reported by Irani and Lin

[Iran79] and Potier and Leblanc [PotiBO]. Simulation studies of locking done by
Ries and Stonebraker provide insight into granularity versus concurrency
tradeoffs [Ries77, Ries79a, Ries79b]. Analytical and simulation studies by
Garcia-Moiina [Garc79] provide some insight into the relative performance of
several variants of locking as well as a voting algorithm [Thom79] and a ring

algorithm [E1U77]. Simulation studies by Lin and Nolte [Lin82] provide some
comparative performance results for locking and several timestamp algorithms.

A recent thesis by Galler [Gall82] provides a combination of a new analytical

technique for locking, some qualitative techniques for comparing algorithms,

and some simulation results for locking versus timestamps which contradict

those of Lin and Nolte.

While certainly interesting, these performance studies fail to offer definitive

results regarding the selection of a concurrency control algorithm. The analyti

cal and simulation studies examine transaction throughput and response time

characteristics under various workloads and system parameter settings, assum

ing a fixed cost (sometimes zero) for processing each concurrency control

request. Little or no consideration has been given to the relative storage and

CPU overheads required by the various algorithms. The studies involve lengthy

analyses, large simulation programs, or both, with the underlying system models

and assumptions varying from study to study. As a result, no single comprehen

sive analytical or simulation study of the many proposed algorithms has been

undertaken, and cross-comparisons of different studies are difficult or impossi

ble. Only Bernstein and Goodman [Bern80] and Galler [Gall82] have attempted

comprehensive comparative studies, and their work thus far has been too quali

tative to be conclusive.

In this paper we report on a current effort to provide a uniform model of

concurrency control algorithms. The model is designed to facilitate a

comprehensive comparative study, providing a uniform framework for describ

ing and evaluating alternative concurrency control algorithms [Care83]. Here

we describe our model and techniques for analyzing the relative storage and

CPU overheads of various concurrency control algorithms. Section 2 presents

our model, and section 3 explains how algorithms are described under the

model, presenting descriptions of single-site versions of two-phase locking, basic

timestamp ordering, and serial validation. Section 4 shows how the model may
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be used to analyze relative storage and CPU overheads for algorithms, giving

results for the algorithms described in section 3. In section 5, we describe

extensions to the model and analysis techniques for multiple version and distri

buted concurrency control algorithms. Section 6 presents our conclusions thus

far and describes our intended future work.

2. The Basic Model

The concurrency control subsystem of most database management systems

can be thought of as a special-purpose scheduler [Casa79, Papa79, Bern80,

Bern82a]. It accepts begin, data access, and commit requests from transac

tions, and decides whether to allow, postpone, or reject these requests. Con

currency control schemes of this sort are called dynamic and syntactic

schemes, as they make decisions based on information as it becomes available,

and the information used does not involve knowledge about the semantics of the

transactions or the semantics or structure of the database. We restrict our

attention to this class of concurrency control algorithms.

Our model of single-site concurrency control algorithms contains a single

concurrency control scheduler. This scheduler keeps information about the

history of requests received to date. We refer to this information as the

concurrency control database, and we will treat it conceptually as a simple,

relational database, ignoring the multitude of data structures which might be

used in its implementation. For a particular concurrency control algorithm, the

scheduler obeys a well-defined set of rules which tell it how to respond to incom

ing requests, based both on the requests themselves and on the contents of the

concurrency control database. For reasons of simplicity, conciseness, and

implementation independence, we formulate these rules as relational database

queries. Our model is summarized in Figure 1.

2.1. Transaction Requests

Our model allows three types of requests from transactions: BEGIN, END,

and ACCESS. The first two mark the beginning and the end of transaction exe

cution, and the latter indicates that the requesting transaction wishes to access

one or more objects. A given transaction may make a number of ACCESS

requests in the course of its execution. When the scheduler receives a request,

it also receives a collection of (abj-id, mode) pairs indicating the objects and

access modes (read or write), if any, associated with the current request. We
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on BEGIN:...

on ACCESS:.,

on END:...

CC SCHEDULER
CC DATABASE

Figure 1: Concurrency control model.

refer to this collection as a relation, the REQ relation, for the purpose of formu

lating concurrency control algorithms as queries. It is assumed in our model

that transactions abide by the responses received from the scheduler, accessing

data objects accordingly. It is also assumed that writes are written to a

deferred update list [Gray79], and that they are installed as new data values at

transaction commit time, so that concurrency control algorithm descriptions

need not be concerned with such details.

2.2. The Concurrency Control Database

The concurrency control database, shown in Figure 2, consists of four rela

tions. The XACT relation contains transaction state information, specifying the

transaction identifier, state (ready, blocked, committed, aborted), and times

tamp of each current or recent transaction. The ACC relation contains informa

tion about accesses to objects, specifying the object identifier, access mode

(read or write), transaction identifier, and timestamp for each current or recent
access. This relation plays the role of a concurrency control table, such as a

lock table or a timestamp table, in algorithm descriptions. The BLKD relation

contains information about any blocked transactions, containing the transaction
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identifiers of these transactions and of the transactions which they are waiting
for. It is assumed that the deletion of an entry from the BLKD relation unblocks
the corresponding transaction implicitly, allowing it to begin where it previously
left off. The HIST relation stores histories ofACCESS requests which are condi
tionally granted, where the concurrency control decision is to be deferred until
transaction commit time (such as in optimistic concurrency control algo
rithms). Entries in this relation specify the transaction identifiers, object
identifiers, and access modes associated with such requests.

Not all concurrency control algorithms use all of the relations in the con

currency control database, as this set of relations is intended to represent the
collection of all possible information which algorithms might choose to make use
of. For the same reason, not all concurrency control algorithms use all of the
fields of these relations. Thus, the portion of the concurrency control database
used by an algorithm is specified as part of its description.

XACT(xact-id,state, ts)

ACC(obj-id,mode,xact-id, ts)

BLKD(blocked-id, cause-id)

HIST(xact-id.obj-id.mode)

Figure 2: Concurrency control database.

2.3. Algorithm Descriptions

Concurrency control algorithms are described in three parts under our
model. These are:

(1) Alist of the concurrency control database relations and fields used by the
algorithm.

(2) A pair of views, BLKCFL and RSTCFL, which define the situations where
blocking or restarting are called for, respectively.

(3) Three query sets, describing the actions to be taken on receipt of BEGIN,
ACCESS, and END requests. These query sets access the concurrency con
trol database and REQ relation associated with the current request and are
presumed to execute atomically when invoked. We borrow from the QUEL
query language [Ston76] for our query syntax, deviating or adding high-level
macro-operations where QUEL fails to fulfill our needs.
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3. Using The Model

In this section, we demonstrate the descriptive use of our single-site model
by showing how two-phase locking [Gray79], basic timestamp ordering [Bern8l],
and serial validation [Kung81] may be described under the model. In doing so,
we take several liberties with the QUEL syntax. First, we omit range statements.
Second, we define the macro-operations shown in Figures 3 through 5. The
BLOCK operation blocks a specified transaction, recording its transaction
identifier and the identifier of the transaction which it is waiting for in the BLKD
relation. The EXPUNGE operation deletes all of the information associated with

a specified transaction, and is used at transaction commit or restart time. The

RESTART operation restarts a specified transaction. We assume the existence

of a fourth macro-operation, CYCLE(xact -id), which searches for cycles of
blocked transactions in the BLKD relation involving a specified transaction and
returns true if and only if a cycle is found. (This last operation cannot be
specified in QUEL in a convenient manner.) Finally, we assume the existence of
several convenient global variables, such as req-xact^id, the transaction
identifier for the current requestor. Other such variables will be assumed and

commented upon as they seem reasonable and convenient.

3.1. Two-Phase Locking

In two -phase locking (2PL) [Gray79], the concurrency control scheduler
maintains a lock table. Transactions set read and write locks on objects before
accessing them, and they release their locks at commit time. Atransaction may
set a read lock on an object as long as no other transaction has a write lock set

on the object, and a transaction may set a write lock an object if no other tran
saction has a read or write lock set on the object. When a transaction tries to

set a lock and fails, it must wait until the lock is released and then try again.
Deadlocks are a possibility, and must either be prevented or detected and bro
ken by restarting one of the transactions involved.

We will use the the linear-time deadlock detection algorithm of Agrawal,
Carey, and DeWitt [Agra82] for this example. In this algorithm, when a transac
tion Tt is forced to wait for a lock on some object X, it blocks on exactly one of
the transactions 7) which hold locks on X. If there are more than one, it picks
one arbitrarily. As shown in [Agra82], if deadlocks are checked each time a

transaction must wait, the CYCLE(xact-id) operation (ie., the deadlock detec
tor) can operate in a very efficient manner. Figures 6 through 8 give a
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BL0CK(xact-idl,xact-id2) =

replace XACT(state = "blocked")
where XACT.xact-id = xact-idl

append to BLKD(xact-idl,xact-id2)

Figure 3: Definition of BLOCK macro-operation.

EXPUNGE(xact-id) =

delete XACT

where XACT.xact-id = xact-id
delete ACC

where ACC.xact-id = xact-id
delete BLKD

where BLKD.blocked-id = xact-id
or BLKD.cause-id = xact-id

delete HIST

where HIST.xact-id = req-xact-id
{

Figure 4: Definition of EXPUNGE macro-operation.

RESTART(xact-id) =
I

replace XACT(state = "aborted")
where XACT.xact-id = xact-id

EXPUNGE(xact-id)
1

Figure 5: Definition of RESTART macro-operation.

description of 2PL using our model.

The subset of the concurrency control database needed for 2PL is specified
in Figure 6. In Figure 7, the conditions under which blocking and restarts are
required are defined as views. The BLKCFL view says that a block conflict has
occurred if there is an ACC relation entry for one of the current requests, and
either the current request is a read request and the ACC entry is a write entry,
or else the current request is a write request (in which case the mode of the
ACC entry does not matter). In other words, the ACC relation serves as a lock
table, and a transaction must block if an incompatible lock is already set on an
object that it wants to access. The RSTCFL view says that a restart conflict has
occurred if there is a cycle in the BLKD relation involving the current request
ing transaction. In other words, a transaction must restart if it is the cause of a
deadlock.

Figure 8 gives the query sets for processing requests under 2PL When a
BEGIN request arrives, the state of the requesting transaction is set to indicate
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XACT(xact-id.state)
ACC(xact-id,mode,obj-id)
BLKD(blocked-id.cause-id)

Figure 6: Concurrency control database for 2PL.

define view BLKCFL(xact-id = ACC.xact-id)
where REQ.obj-id = ACC.obj-id
and ACC.xact-id != req-xact-id
and ((REQ.mode = "read" and ACC.mode = "write)

or (REQ. mode = "write"))

define view RSTCFL(xact-id = BLKD.xact-id)
where CYCLE(BLKD. blocked-id)
and BLK.blocked-id = req-xact-id

Figure 7: Block and restart conflict views for 2PL.

on BEGIN:

append to XACT(req-xact-id,"ready")

on ACCESS:

replace ACC(mode = REQ.mode)
where not any(BLKCFL)
and ACC.obj-id = REQ.obj-id
and ACC.xact-id = req-xact-id

append to ACC(req-xact-id,REQ.mode,REQ.obj-id)
where not any(BLKCFL)
and not any(ACC.obj-id

where ACC.obj-id = REQ.obj-id
and ACC.xact-id = req-xact-id)

BLOCK(req-xact-id,BLKCFL.xact-id)
where any(BLKCFL)
and BLKCFL.xact-id = min(BLKCFL.xact-id)

RESTART(req-xact-id)
where any(BLKCFL) and any(RSTCFL)

on END:

replace XACT(state = "committed")
where XACT.xact-id = req-xact-id

EXPUNGE(req-xact-id)

Figure 8: Request processing queries for 2PL.

that it is ready to run. When an ACCESS request arrives, the BLKCFL view is

materialized. If no block conflicts exist, then the ACC relation is updated to
indicate that locks have been granted on all requested objects. If a block
conflict does exist, the requesting transaction is blocked on one of the

conflicting transactions (the one with the smallest transaction identifier is arbi

trarily picked here), and the RSTCFL view is materialized. If a restart conflict

exists, the requesting transaction is restarted. This corresponds to granting
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requests if no locks interfere, blocking a transaction if one or more locks are

unobtainable, and restarting a transaction if it becomes the cause of a deadlock

condition.

3.2. Basic Timestamp Ordering

In basic timestamp ordering (BTO) [Bern8l], the concurrency control
scheduler assigns timestamps to transactions according to their startup order.
It maintains a table of read and write timestamps for objects, recording the
timestamps of the latest reader and writer for each object. (Entries with times

tamps older than the oldest active transaction need not be kept in the table.) A
read request for an object is granted as long as no newer write timestamp exists

for the object, and a write request is granted as long as no newer read or write

timestamp exists for the object. If a request is rejected, the requesting transac

tion is restarted. Deadlock is impossible, although cyclic restarts are a possibil
ity [Date82].

For the purpose of this example, read requests will be processed as they

arrive, and all write requests will be processed together just prior to transaction

commit time. This simplifies the considerations involved in making BTO work

with two-phase commit, as otherwise some scheduling would be required to

prevent transactions from reading objects for which a write request has been

processed but the associated deferred update has not yet taken place. Figures

9 through 11 give a description of BTO using our model. The global variable

req—ts is assumed to contain the timestamp of the current requestor. The

macro-operation CURRENT-TS() is assumed to return the current timestamp

value, implicitly increasing its value for the next time around and setting the

global variable current-ts to the value of the current timestamp. The global

variable oldest-ts is assumed to contain the timestamp of the oldest active

transaction. The global variable req -type is assumed to indicate the type of the
current request.

While this description appears a bit lengthy, its semantics are actually rela
tively simple. The ACC relation plays the role of the timestamp table for BTO.
The "append to ACC..." portion of the ACCESS request query set in Figure 11
handles the case where there is no current timestamp for a requested object,
recording a new one, and the "replace ACC..." portion of the ACCESS request

query set handles the case where there is a current timestamp for the object,

updating it as called for by the BTO algorithm. The HIST relation is used to



-10

XACT(xact-id.state.ts)
ACC(ts,mode,obj-id)
HIST(xact-id.obj-id)

Figure 9: Concurrency control database for BTO.

define view RSTCFL(obj-id = ACC.cbj-id)
where (REQ.obj-id = ACC.obj-id

and ACC.ts > req-ts
and (REQ. mode = "read" and ACC.mode = "write)

or (HIST.obj-id = ACC.obj-id
and HIST.xact-id = req-xact-id
and ACC.ts > req-ts
and req-type = END)

Figure 10: Restart conflict view for BTO.

defer write timestamp checking until commit time, with similar timestamp

checking and updating involving the HIST relation occurring in the END request

portion of the description.

3.3. Serial Validation

In serial validation (SV) [Kung8l], the concurrency control scheduler

keeps track of the writesets of recently committed transactions. Transactions

run freely until commit-time, at which point each transaction is submitted to a

validity test to see if committing it will leave the database in a consistent state.

For a committing transaction Tit the test considers all recently committed tran

sactions T„, where a recently committed transaction is one that committed

since 7i started running. The test results in 7< being committed iff

readset(Ti) n writeset(7^) = 0 for all Tn, and being restarted otherwise.

Rather than write a description of serial validation as it was presented in

[KungBl], we will describe a more efficient version with different but provably
equivalent semantics. In our version, transactions will be assigned a startup

timestamp and a commit timestamp (though only their startup timestamps will
be stored). Write timestamps will be maintained for all data objects, and the
write timestamp for an object X will be the commit timestamp of its most

recent (successfully committed) writer. A transaction will be allowed to commit

if and only if the write timestamp of each object X in its readset is smaller than

its startup timestamp. It is fairly easy to show that this test is equivalent to the

original readset/writeset test of [Kung81], and it is clearly more efficient. Afor

mal equivalence proof is presented in [Care83]. Figures 12 through 14 give a
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on BEGIN:

append to XACT(req-xact-id,"ready",CURRENT-TS())

on ACCESS:

replace ACC(ts = max(ACC.ts,req-ts)
where not any(RSTCFL)
andREQ.mode = "read"
andACC.mode = "read"
and ACC.obj-id = REQ.obj-id

append to ACC(req-ts,REQ.mode,REQ.obj-id)
where not any(RSTCFL)
and REQ.mode = "read"
and not any(ACC.obj-id

where ACC.obj-id = REQ.obj-id
andACC.mode = "read")

append to HIST(req-xact-d.REQ.obj-id)
where REQ.mode = "write"

RESTART(XACT.xact-id)
where XACT.xact-id = REQ.xact-id
and any(RSTCFL)
andREQ.mode = "read"

on END:

replace XACT(state = "committed")
where XACT.xact-id = req-xact-id
and not any( RSTCFL)

replace ACC(ts = max(ACC.ts.req-ts)
where not any(RSTCFL)
andACC.mode = "write"

and ACC.obj-id = HIST.obj-id
and HIST, xact-id = req-xact-id

append to ACC(req-ts,HIST.obj-id."write")
where not any(RSTCFL)
and HIST.xact-id = req-xact-id
and not any(ACC.obj-id

where ACC.obj-id = HIST.obj-id
andACC.mode = "write")

RESTART(XACT.xact-id)
where XACT.xact-id = req-xact-id
andany(RSTCFL)

delete HIST

where HIST.xact-id = req-xact-id
delete XACT

where XACT.xact-id = req-xact-id
delete ACC

where ACC. ts < oldest-ts

Figure 11: Request processing queries for BTO.

description, somewhat simpler than the previous descriptions, of SV using our

model.
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XACT(xact-id,state,ts)
ACC(ts.obj-id)
HIST(xact-id,mode,obj-id)

Figure 12: Concurrency control database for SV.

define view RSTCFL(obj-id = HIST.obj-id)
where HIST.obj-id = ACC.obj-id
where HIST.xact-id = req-xact-id
where HIST.mode = "read"
andACC.ts> req-ts

Figure 13: Restart conflict view for SV.

on BEGIN:

append to XACT(req-xact-id,"ready",CURRENT-TSQ)

on ACCESS:

append to HIST(req-xact-id,REQ.mode,REQ.obj-id)

on END:

replace XACT(state = "committed")
where XACT.xact-id = req-xact-id
and not any(RSTCFL)

RESTART(XACT.xact-id)
where XACT.xact-id = req-xact-id
and any(RSTCFL)

replace ACC(ts = current-ts)
where not any(RSTCFL)
and HIST.mode = "write"
and ACC.obj-id = HIST.obj-id
and HIST.xact-id = req-xact-id

append to ACC(obj-id = HIST.obj-id.ts = current-ts)
where not any(RSTCFL)
and HIST.mode = "write"

and HIST.xact-id = req-xact-id
and not any(ACC where ACC.obj-id = HIST.obj-id)

delete HIST

where HIST.xact-id = req-xact-id
delete XACT

where XACT.xact-id = req-xact-id
delete ACC

where ACC. ts < oldest-ts

Figure 14: Request processing queries for SV.

4. Algorithm Overhead Comparisons

In this section, we present techniques for comparing the relative overhead

characteristics of various concurrency control algorithms. The storage and CPU

overheads are compared via a simple complexity analysis, based on

implementation-independent units of CPU and storage cost and influenced to

some extent by ideas presented in [Bern80]. We illustrate the use of our
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techniques by using them to analyze and compare the three algorithms
described in the previous section.

To facilitate these cost analyses, we will use a performance model based on
a set of simple parameters. Let R be the average readset size for transactions,
and let Fw be the average fraction of the readset also included in the writeset.
Each transaction thus makes an average of R(l+Fw) data access requests. (We
assume the writeset to be a subset of the readset for each transaction, and we
assume that transactions do not make the same request twice.) Let Ta be the
average number of transactions in the system Let Fb be the average fraction of
blocked transactions, and let Fn be the factor which, when multiplied by Ta,
yields the average number of recently committed transactions. (A recently
committed transaction is one which committed since the startup time of the
oldest transaction still running).

The blocking and restart characteristics of algorithms will influence the
parameters Fb and Fn, so they will vary from algorithm to algorithm. The
parameter Fw is determined solely by the transaction mix. To bound these
parameters, note that 0< Fb < 1 and 0< Fw < 1. For the parameter Fn, how
ever, all that is certain is that F„ > 0, as Fn is determined by the variance in
running times for transactions in the transaction mix. For example, a very long
transaction mixed with a collection of short transactions would result in a large
value for Fn.

4.1. Storage Overhead

We analyze the sizes of the relations in the concurrency control database
for various algorithms in order to compare their storage overheads. We take
one field of one tuple of one relation as the unit of storage cost for this analysis.
Given an algorithm, the tuple widths of the relations in the concurrency control
database are explicit in the description, and the cardinalities of the relations
are determined by the nature of the query sets in the description. The overall
database size is simply the sum of the width-cardinality products for the rela
tions in the database. Both upper and lower bounds on the storage overhead of
algorithms are quite easily determined in our model.

We consider the 2PL algorithm first. The XACT relation represents a
storage cost of 27*0, and the BLKD relation represents a cost of 2Fb Ta. For the
ACC relation, a storage cost of 3Ta(l-Fw)R is incurred for storing read locks
(note that only one lock is set on objects that are to be written). For storing
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write locks, the cost can vary from as low as 3FWR, in the case where ail Ta

transactions write the same objects, to as high as 3TaFwR, in the case where no

two transactions write the same object. Thus, we have:

ST02PL ^ 2Ta(l+Fb)+3TaR (la)

STOzpl ^ 2Ta(l+Fb)+3TaR(l-FU))+3FwR (lb)

Similar reasoning yields the following results for BTO and SV:

STOBT0^ 3Ta(l+F„)R(l+Fw)+Ta(3+2FwR) (2a)

STOBTO s* 3R(1+Fw)+Ta(3+2FWR) (2b)

STOsv* ^Ta(l+FTC)RFw+3Ta(l+R(l+Fw)) (3a)

STOSV^2RFw+3Ta(l+R(l+Fw)) (3b)

Given the bounds on Fb and Fw, we can draw some conclusions about the

relative storage overheads of the algorithms. From equations (la), (2a), and

(3a), one can conclude that 2PL has the smallest worst-case storage overhead of
the three algorithms, which is (±+3R)Ta. The worst-case storage overheads of

the other two algorithms are dependent on the parameter Fn, which is
unbounded. A more detailed analysis of these equations reveals that the worst-

case storage overhead of SV is strictly smaller than that of BTO (assuming com
parable Fn values for the two algorithms), and that, if Fb < 1/ 2, 2PL is certain

to have a smaller worst-case storage overhead than both SV and BTO. The

worst-case storage overhead occurs when transactions do not compete for the

same data items, which is likely to be the case for real mixes of transactions

[GrayBl]. Thus, Fb is likely to be small for 2PL, leading to the conclusion that
2PL dominates SV, and SV in turn dominates BTO, with respect to worst-case
storage overhead.

A comparison of equations (2b) and (3b) reveals that, with respect to best-
case storage overhead, BTO dominates SV for Ta 2* 3. Comparing equations (lb)
and (3b), we find that, ifFb <. 1/ 2. 2PL is certain to dominate SV as well. Finally,
a comparison of equations (lb) and (2b) indicates that BTO dominates 2PL

unless Fw > 3/ 5 and Fb < 1/ 2. Since the best-case overheads apply when tran

sactions tend to conflict (access the same objects), this combination of Fw and
Fb is impossible; if Fw is large, transactions will be competing for write locks on

these shared objects, and lots of blocking will occur. Hence, BTO dominates 2PL
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with respect to best-case storage overhead. To summarize the overall storage
overhead results, then, SV is the worst of the three algorithms. 2PL is best in
terms of worst-case storage overhead, indicating that it is superior under low-
conflict transaction mixes. BTO is best in terms of best-case storage overhead,
meaning that it is best under high-conflict transaction mixes.

4.2. CPU Overhead

We analyze the number of operations involved in executing the query sets
for various algorithms in order to compare their CPU overheads. We take one
tuple access, insertion, or replacement in one relation as the unit of CPU cost
for this analysis, assuming that the CPU time required is proportional to the
number of table lookups, as proposed (in different terms) by Bernstein and
Goodman [Bern80]. We do not assess CPU cost for accesses to the REQ relation,
as this is simply our model of the way transactions pass requests to the
scheduler.

Unfortunately, analyzing the CPU overhead of a given concurrency control
algorithm is, in the general case, considerably more complex than analyzing the
storage overhead of the algorithm. In this paper we consider only the no-
conflict CPU overhead [BadaBl], the CPU overhead experienced by a transaction
which does not conflict in any way with other concurrent transactions. Since

actual conflicts are reported to be rare [Gray8l], the no-cost CPU overhead
should be a reasonable "first-order" metric. We leave for future work the prob
lem of generalizing the analysis to include the additional sources of CPU over

head associated with transactions which must restart or repeat requests due to
blocking.

We again consider 2PL first. The cost of processing a BEGIN request is 1.
The cost of materializing the BLKCFL view is 1, so the cost of processing
R(l+Fw) data access (ACCESS) requests is 2R(l+Fw) if no blocking occurs.
The cost of processing an END request is 3+/? (assuming one BLKD access to
determine the lack of blocked transactions). Hence, we have:

CPUZPL = 4+J?(3+20 (4)

Similar analyses can be performed for BTO and SV. The cost of processing
an END request for BTO and SV depends on the number of timestamps deleted
at that time; in the no-conflict case, we assume that all transactions access
different data items, meaning that all timestamps associated with a given
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transaction must eventually be explicitly deleted. We charge this timestamp

deletion overhead to the transaction creating the timestamp, even though dele

tion may occur at some later point in time. Other details of the CPU analysis for

BTO and SV are quite similar to locking, so we do not present them here. We find

that:

CPUBT0 = 3+R(3+7Fw) (5)

CPUsv = 3+R(4+5Fw) (6)

Comparing equation (4) with equation (5), we find that 2PL has a smaller

no-conflict CPU overhead than BTO unless Fw is extremely small, in which case

2PL and BTO are comparable. Comparing equation (4) with equation (6), we find

that 2PL also has a smaller no-conflict CPU overhead than SV. Comparing equa

tions (5) and (6), we find that BTO has a smaller no-conflict CPU overhead than

SV if Fw < 1/ 2, and that SV has a smaller no-conflict CPU overhead if Fw > 1/ 2.

Thus, with respect to this CPU overhead metric, 2PL is dominant, BTO is second-

best if writing is infrequent, and SV is second-best if writing is frequent.

4.3. Overhead Comparison Summary

In the previous sections, we compared the storage and CPU overheads of

2PL, BTO, and SV. We found 2PL to be the algorithm involving the least storage
overhead under low-conflict transaction mixes, with BTO being the best under

high-conflict mixes. SV was the worst algorithm with respect to storage over

head. We found 2PL to be the algorithm with the smallest no-conflict CPU over

head. BTO turned out to be second-best with respect to no-conflict CPU over

head if writing is infrequent, with SV being second-best if writing is frequent.
These results are summarized in Figure 15. We will pursue these comparisons
and investigate tradeoff points in a more rigorous fashion in [Care83]. In partic
ular, we intend to use the storage and CPU results to partition the parameter
space into regions where various algorithms are clearly dominant.

5. Model Extensions

In our ongoing study of concurrency control algorithm performance, we are
studying multiple version and distributed algorithms as well as single-site algo
rithms. In this section we briefly describe the extensions required to our model
which facilitate these studies.



-17

Results of Overhead Comparisons

Algorithm Storage Overhead i CPU Overhead

2PL best under

low conflicts

best no-conflict

overhead

BTO best under

high conflicts

second best under

infrequent writing

SV worst of the

three schemes

second best under

frequent writing

Figure 15: Summary of algorithm overhead results.

5.1. Multiple Versions

Several recent concurrency control algorithm proposals involve maintain
ing multiple versions of data objects [Reed78, Baye80, Stea81, Chan82, BernS2b].
In order to describe such algorithms within our model, we introduce a new con
currency control database relation, the OBJ relation, with obj-id, version-id,
and obj-value fields. Each version of each object in the database has a
corresponding tuple in this relation. In places where an obj-id was called for in
single-site algorithms, we use an (obj-id, version-id) pair in our multiple ver
sion model. The analysis techniques can be applied to this extended model in
the same manner as for the single-site model, except that Q, units of storage
cost are assessed for obj-value fields of OBJ tuples (to reflect the fact that
objects require much more storage than typical concurrency control informa
tion).

5.2. Distributed Databases

Many recent concurrency control algorithm proposals are intended for use
in distributed database systems [Rose78, Mena78, Ston79, Lind79, Bern80.
Bern81, Bern82a, .Thom79, Ceri82]. In order to describe distributed con
currency control algorithms within our model, we assume that each site has a

concurrency control scheduler with an associated concurrency control data
base, and that the schedulers interact via messages. To model this interaction,
we introduce some new notation for use in writing algorithm descriptions for
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distributed systems. Queries of the form <command> where <predicate>
AT-SITES-OF(obj —id) will be used to indicate that the predicate must be true
at all sites where the specified object resides, indicating the need for a round-
trip message exchange to evaluate the predicate. In cases where the

AT-SITES-OF clause is left out, just the local site will be involved in evaluating
the predicate.

With this extension, algorithm descriptions will be formulated as before,
except that the AT-SITES-OF(X) set must be described for all objects X. It is
this set description which will serve to differentiate primary site, primary copy,
and decentralized concurrency control schemes [BernBl, Bern82a] from one
another, for example. The overhead analysis techniques carry through, though
is necessary to account for the additional overhead when the AT-SITES-OF set

contains more than a single site. Also, a new type of overhead, message over
head, arises in distributed systems. This overhead may be characterized by
analyzing the number of messages required when executing the new query sets
on behalf of transactions.

6. Conclusions

We have presented a new model of concurrency control algorithms, one
which provides a unified framework for describing and comparing the many
algorithm proposals. We have given several sample descriptions, and we have
shown how our model facilitates analyses of the relative storage and CPU over
heads of algorithms. Our model differs from those of other researchers [Bern80,
Bern81a, Gall82] in this respect, as other attempts at uniform concurrency con
trol frameworks have not been able to support both algorithm descriptions and
quantitative algorithm comparisons. Finally, we have indicated how we are
extending our model to include the domains of multiple version and distributed
concurrency control algorithms.

We intend to use this model to perform a comprehensive study of the over
heads of various concurrency control algorithms, describing them and compar
ing their storage, CPU, and message overheads. We have also written a fairly
general simulation program, allowing a concurrency control algorithm to be
described in terms ofa small collection of Pascal routines (called by the simula
tor as needed), and we will use this simulator to validate our overhead bounds
and to study the concurrency properties of algorithms as well.
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