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Abstract

We study stability, parameter convergence and robustness aspects of

single input-single output model reference adaptive systems. We begin

by establishing a framework for studying parametrizable and unparametri-

zable uncertainty in the plant to be controlled. Using the standard

assumptions on the parametrizable part of the plant dynamics we give a

corrected proof (of Narendra, Lin and Valavani) of the stability of the

nominal adaptive scheme. Next, we give conditions on the exogenous input

to the adaptive loop, the reference signal, to guarantee exponential para

meter and error convergence. Using our framework for studying unmodelled

(unparametrized) dynamics; we show how the model should be chosen, and

the update law modified (by a deadzone in the update law) to preserve

stability of the adaptive loop in the presence of output disturbances and

unmodelled dynamics. Finally, we compare adaptive and non-adaptive con

trol and list directions of ongoing research.
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Section I. Introduction

Most currently used techniques for the design of control systems are

based on a good understanding of the plant under study and its environ

ment. However, when the plant is too complex and the physical processes

in it are not fully understood these techniques need to be modified. A

common method of attacking the problem is to apply some system identifi

cation technique to obtain a model of the process and its environment

from some input-output experiments. The controller design is then based

on the resulting model. Further, the parameters of the controller are

adjusted during the operation of the plant as the amount of data for

plant identification increases. For a number of PID controllers this

is in fact done manually - however, when the number of parameters is

larger than three or four, automatic adjustment is required. Adaptive

control refers to a procedure for automatically tuning controllers. Two

of the most popular schemes are self tuning regulators (STRs) and model

£eference adaptive systems (MRAS). The design techniques, in theory, are

meant for unknown but fixed (i.e., time invariant) plants; in practice

they work for slowly-varying (in time) and unknown plants.

For STRs the starting point is a design method for a known plant.

Given that the plant is cncompletely known the parameters of the con

troller cannot be determined. They are, instead, obtained from a recur

sive parameter estimator. Since a separation between identification and

control is assumed - this is referred to as an indirect methodology for

adaptive control.

For MRAS, the starting point is a reference model which represents

the performance desired of the control system after feedback. If the
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plant were known a suitable precompensator and feedback compensator

could be used to obtain the closed loop transfer function equal to that

of the model. Since the plant is unknown, one starts with an initial

guess for the parameter of the compensator. This initial guess is

updated (adapted) based on the error between the output of the model and

the closed-loop plant when driven by a reference signal. The aim of the

adaptation is to drive the error between the model output and plant out

put to zero. Since, no explicit separation between identification and

control is assumed - this is referred to as a direct control methodology.

In this paper we study in detail model reference adaptive systems

and their properties in regard to:

(1) Overall stability of the scheme,

(2) Convergence of the adaptive scheme - parameter and error con

vergence,

(3) Properties of the possible limiting adaptive controllers, and

(4) Sensitivity of the adaptive scheme to plant output disturbances

and unmodelled (unparametrizable) dynamics.

The study of model reference adaptive systems is not new. They have

been studied extensively by Narendra and co workers [1,2,5,12], Morse [3],

Goodwin, Ramadge and Caines[4]. The papers [1,2,5] and Anderson [6],

Kreisselmeier [7] in particular give a complete solution to questions

(1), (2) and (3) above. Rohrs [10] discusses thoroughly the sensitivity

of MRAS to unmodelled dynamics and output disturbances and shows by way

of simulation evidence that unmodelled and unparametrized dynamics can

result in the loss of stability of the MRAS schemes discussed in [1,2,5].

Ioannou and Kokotovic [11 »21] represent the unmodelled dynamics as being

singularly perturbed 'fast1 or 'parasitic1 dynamics and suggest a modi

fication in the update law of [1,2,5] to ensure stability of the adaptive
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scheme. Narendra and Peterson [14], Kreisselmeier and Narendra [15]

suggest the inclusion of a dead zone in the update law of [1,2,5] to

preserve stability of the MRAS.

Our contribution and the layout of the paper is as follows: In

Section 2, we discuss concepts of structured (parametrizable) and unstruc

tured (unparametrizable) uncertainty in the model of a plant to be con

trolled. Such a discussion is novel in an adaptive control context. We

discuss here when it might be preferrable to use adaptive rather than

robust non-adaptive control as is used, say, in Doyle and Stein [18] or

Desoer and Gustafson [22], We introduce the information needed about the

structured uncertainties in the plant to do adaptive control. Section 3

gives the controller structure and the parametrization of the plant un

certainty through controller parameters. In Section 4 and Appendix 1 we

rederive a proof of stability and convergence of the error to zero for

the MRAS - while our proof is very similar to that of [2], we take this

opportunity to correct the errors in the proof of [2], (Lemmas 4 and

5 esp. of Section IV in [2]). In Section 5 we give explicit conditions

on the exogenous reference signal input into the adaptive system to
*

guarantee exponential convergence of the parameter error to zero. The

conditions available in the literature [5,6,7] were in terms of the

sufficient richness of a certain signal inside the time-varying adaptive

loop and so were not explicitly verifiable. In Section 6 we study robust

ness aspects of adaptive control - we first survey briefly the results

in [15] to show that a deadzone in the parameter update law stabilizes the

MRAS system against output disturbances. We use this same machinery to

These results were derived jointly with S. Boyd, see [23].
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show a suitably chosen deadzone can also stabilize the adaptive sys

tem against the effects of unmodelled dynamics. The price to be paid is

that the error between plant and model output does not converge to zero

but rather to a magnitude less than the size of the deadzone (off a set

of finite measure). We again compare the robustified adaptive con

troller with a non-adaptive controller.

In Section 7, we discuss briefly the work in multivariate adaptive

control along with research directions for further work. While the

present paper discusses only continuous time model reference adaptive

control, the modification of the results on stability and parameter con

vergence for the discrete time case are procedural. The modification of

the robustness results to the discrete-time case are not easy or obvious

to this author (for lack of a good notion of unstructured uncertainty).

Section 2. Structured and Unstructured Uncertainty

In a large number of control systems design problems, the designer

is not furnished with a detailed state space model of the plant to be

controlled either because it is too complex or because its dynamics are

incompletely understood. Consider first the kind of prior information

available to control a stable plant: by performing input-output experi

ments (usually applying a succession of sinusoidal signals at the input),

the designer obtains a Bode diagram of the form shown in Figure 1.

Typically, an inspection of the Bode diagram shows that the data obtained

beyond a certain frequency, au is unreliable because the measurements

are poor, corrupted by noise, etc. What is available then is essentially

no phase information and only an 'envelope' of the magnitude response

beyond u>,,. The dashed lines in the magnitude and phase response
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correspond to the assumption that there are no dynamics at frequencies

beyond u^. For frequencies below cd,, it is easy to 'guess' the presence

of a zero in the neighborhood of o>1 (shown dashed in Fig. 1(a)), poles

in the neighborhood of ouj o>3 and pole pairs in the neighborhood of oj-,

to5.

2.1. Model Reference Control Adpative and Non-Adaptive

To keep the design goal specific we will assume that the designers

goal is model following: the designer is furnished with a reference

model with transfer function M(s) 6 R(s) by the user and told to design

a control system so as to get the plant output denoted yp(t) to track

the model output, denoted yM(t), in response to reference signals r(t)

driving the model. This is shown pictorially in Figure 2. The controller

generates the input u(t) to the plant using yM(t), yp(t), r(t) so that

asymptotically the error between the plant and model, e,(t) =yp(t)

-y^t) "*" °« Two options are available to the designer at this point:

(1) Non-adaptive Control. Here one uses as model for the plant a nominal

transfer function with a zero at s =-0),, poles at s =-0)2,-0)3; pole

pairs at ss-o. ± jo),, s =-a5 ± ju>g (estimates for u^, ug are obtained

from the heights of the magnitude peaks in Figure la atw^,cog_), so as to

obtain a 'nominal' rational transfer function P(s) €lR(s)

kpfs+ti^)

The gain kp in (2.1) is obtained from the nominal high frequency asymp

tote of Fig. 1(a) (i.e., the dashed line). One then estimates the

modelling error due to inaccuracies in the postulated pole-zero locations
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and poor data and represents the plant transfer function as

PtsJCl+O^s)] (2.2)

U-j(s) € IR(s) is referred to as the multiplicative (loosely speaking

'percentage') uncertainty and |U-.(jo))| is typically as shown in Fig. 3

(see[18] for a good discussion of the form (2.2)). One treats M(s) as

the desired input-output transfer function for the control system over

the frequency range of the r(t). Then,one attempts to build a linear,

time-invariant controller of the form shown in Fig. 4, with feedforward

compensator C(s) € ]R(s) and feedback compensator F(s) € R(s) so that the

nominal closed loop transfer function

PC(1+PCF) ' (2.3)

/N /\

is equal to M over the range of reference inputs r(t). Further C, F are

chosen so as to preserve stability in the presence of the unmodelled

dynamics represented by U-. and reduce sensitivity of the actual closed
/\

loop transfer function to the modelling errors represented by U,; i.e.,

if the actual closed transfer function is

*s y\ /\ /\ /\/\P(1+U1)C[1+P(1+U1)CF]'1 =M(l+U2) (2.4)

then C, F are chosen so that U« is smaller than U-. over the frequency

range of the reference signal, r(t).

(2) Adaptive Control. The distinction is made in this methodology between

the two kinds of uncertainty present in the description of Fig. 1 - para

metric or structured uncertainty in the pole-zero locations and inherent
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or unstructured uncertainty beyond o>H. Rather than postulate a nominal

transfer function for the plant, the designer decides to identify the

pole zero locations on-line, i.e., during the operation of the plant.

This on-line 'tuning' corresponds to the reduction of structured uncer

tainty during plant operation. The aim is to obtain asymptotically as

t -»• oo is a match between M(s) and the controlled plant that is better

than in option 1 above for frequencies below u)„. A key feature of this

on-line tuning approach is that the controller is generally non-linear

and time-varying. The added complexity of adaptive control is made

worthwhile when the performance achieved by non-adaptive control is

inadequate.

In summary, the plant model for adaptive control is given by

Pe*(s)(l+03(s)) (2.4)

where P0*(s) stands for the plant indexed by the parameters 0 ,for true

pole and zero locations and U3(s) is the unstructured uncertainty. The

difference between (2.2) and (2.4) lies in the fact that

|U3(Jo))| < |D1(Jai)l Va) (2.5)

with the inequality being strict at low frequencies, as shown for

example in Fig. 3. While 0* are the parameters corresponding to true

pole and zero locations, these are apriori unknown and the aim of adap

tive control is to obtain 0* from an initial guess 0.

When the plant is unstable, a frequency response curve as shown in

Fig. 1 can no longer be obtained, and a certain amount of off-line

identification or detailed modelling needs to be performed. As before,
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however, the plant model will have better structured and unstructured

uncertainty and the design options will be the same as above. The

difference only arises in the representation of the uncertainty. In

option 1, the uncertainty was modelled as (see Eq. (2.2)) P(s)(l+U,(s)),

with U,(s) stable and with bounds on |U,(jo>)|. When the plant is

unstable, then since the nominal locations of the unstable poles may

not be chosen exactly U,(s) may be an unstable transfer function.

For adaptive control, we require that all unstable poles of the

system be parametrized (of course their exact location is not essential)

so that the description for the uncertainty is still given by (2.4) i.e.

Pe(s)(l+03(s))

/\ /\

where U3(s) is stable, even though P0(s) is unstable.

Example

Consider a plant with 'true' transfer function with e small

and M > 0 large

1-M

(s-1+eHs+M)

For non-adaptive control the nominal model is chosen to be P(s) =-r^y

so that

2

Vs) " (s-l+e)(s+M) (2'6)

/N . . 1

For adaptive control on the other hand the model PQ(s) of the form -^g

is chosen and
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°3(s) =ffk (2.7)

Note that (2.6) is unstable while (2.7) is not.

2.2. Prior Information for Adaptive Control

While there are several methods of adaptive control available, our

focus in this paper is on direct model reference adaptive control.

The plant to be controlled is of the form (2.4), i.e.,

Pe(s)(l+U3(s)). (2.4)

We make the parametrization more explicit; by writing the nominal plant

Peas

k. ^ISi (2.8)
py«>

where n (s), d (s) € IR[s] are coprime, monic polynomials of degrees m and
r K

n respectively. While the zeros of n and d (the zeros and poles of

PQ(s) respectively) are not assumed to be known, we will assume that the

following reasonable information about PQ is known:

Al. The number of poles of Pe, i.e. n is known.

A2. The number of zeros of PQ, i.e., m is known.

A3. The sign of the high frequency gain k is known.

A4. Pa is minimum phase, i.e., the zeros of nn lie in the open left
y p

half plane (£_).

Comments

Assumptions 1,2,3 apply to the nominal plant P ; but not necessarily
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to the plant of (2.4). In particular PD(1+U) (the subscript 3 is dropped

for simplicity) can have many more stable poles and zeros than PQ (of the

example of Section 2.1). Further, the sign of the high frequency gain

of PqO+U) is usually indeterminate as indicated in Figure 1. Assumption

4 is the most stringent of the four assumptions and is needed since the

adaptive control procedure of Sections 3 and 4 uses asymptotic zero

cancellation.

The literature [2,3,4] lists assumptions 1 and 2 slightly differently:

it asks for knowledge of an upper bound on n and the exact relative degree

n-m of the plant. From the discussion of Section 2.1, the present form

of the assumptions is adequate.

In Sections 3, 4, 5 we will discuss the structure and convergence

properties of the error and parameters for the idealized model of the

plant with no unstructured uncertainty, i.e., we will assume, temporarily,

that the plant is modelled adequately as PQ with PQ satisfying (A1)-(A4).

These assumptions will be relaxed in Section 6 which studies robustness

aspects of adaptive control.

Section 3. Controller Structure

3.1. Problem Statement

The nominal plant transfer function P(s) € IR(s) is described as in

Section 2.2 by

np(s)
P(s) =kp^ (3.1)

Pdp(s)

where np(s), dp(s) € lR[s] are monic, coprime polynomials of degree m, n
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respectively. The zeros of np are assumed to be in (C_ and kp is un

known but positive. The input and output of the plant are denoted u(t)

and yp(t) respectively.

The model M(s) represents the behavior expected from the plant

after a suitable controller has been found and has transfer function

M(s) =kM^ (3.2)
MdM(s)

with dM(s) a monic, polynomial of degree n, n»(s) a monic polynomial of

degree r and k» a positive constant. It is assumed that nM and dM both

have zeros in G_. The input and output of the model are denoted r(t)

and yM(t) respectively.

The derivation of the model output from the plant output is given

by e,(t) =yp(t) - yM(t). The aim of the adaptive control scheme is to

find u(t) so that e-.(t) + 0 as t •»• «.

3.2. System Structure

The basic controller structure is shown in Fig. 5. The configura

tion is similar to the non-adaptive scheme of Figure 4 with the F-j block

playing the role of the precompensator C(s) and the Fg block that of the

feedback controller F(s). The precompensator is realized in feedback

form using an auxiliary signal generator with transfer function

(sI-A^b €Rn"](s) with input u(t) and output v^(t) €Rn_1. Here
A€ft""1*""1 and b€ft""1. The auxiliary signals v^ '' are multiplied

by the (n-1) adaptive gains of c(t) €R to form part of the input

u(t). The F« block consists of a signal generator identical to that

in F1 with input yp(t) and output v^(t) €R11"1. The auxiliary signals
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v^(t) are multiplied by the adaptive gains d(t) €Rn~ and the plant

output yp(t) by the adaptive gain dQ(t) to obtain the plant input

u(t) =cQr +cTv(1) +dQyp +dV2) (3.3)

The adaptive controller structure should have enough degrees of

freedom to that with the time varying parameters c , c , d, d set equal

to constant; and suitable choice of A, b the overall plant and controller

transfer function matches that of the specified model. This is verified

in Theorem 3.1 under the condition that the model has the same relative

degree as the plant. First, notice that A, b enter our calculations only

through the transfer function (sI-A)" b so that we may assume without loss

of generality that A, b are in controllable form so that

(SI-A)-1D =_-!
A(s)

(3.4)

n-2

with A(s) = det(sI-A) €]R(s). To keep the controller stable we will

insist on A(s) being Hurwitz: from (3.4), we note that the choice of

A, b is now equivalent to the choice of a stable A(s) €R(s).

Theorem 3.1

Given a model M of the form (3.2) and plant P of the form (3.1);
"k ic ic ~k n 1

then so long as r = m, there exists a choice of c , d € 1R, c , d € R

A(s) € R(s) and Hurwitz so that the closed loop transfer function of the

plant and controller equals M.

Proof: Verify that when the adaptive gains are constant with values
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•jt yc vc ft

given by cQ, c , dQ, d the transfer function of the precompensation F,

is given by

1/(1-C*(s)/A(s)) (3.5)

with C(s) =c] +c2s +... +cn-1sn"2 (using (3.4)) and the transfer
function of the feedback controller F« is given by

D*(s)/A(s) (3.6)

where D(s) =dQA(s) +d] +... +d^s""2. Note that C*(s) has degree
n-2 and D (s) degree (n-1). Using (3.5) and (3.6) we see that the closed

loop plant transfer function is given by

c*P(s)A(s))

A(s)-(T(sHns)P(s)

To show that the expression in (3.7) can be made equal to M for suitable

choice of A of degree n-1, D of degree (n-2) we need the following

lemma.

Lemma 3.2

Given two coprime monic polynomials np, dp of degree m and n; and an

arbitrary monic polynomial X of degree 2n-l, there exist unique polyno-

mials T (monic) and R of degree (n-1) respectively so that

Tdp + Rnp =X (3.8)

Proof: Since dp and np are coprime, it follows from the Euclidean

algorithm that there exist polynomials A of degree m-1 and B of degree
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n-1 (e.g., Jacobson [19])

Anp + Bdp = 1. (3.9)

Multiplying both sides of (3.9) by X we have

XAnp + XBdp = X. (3.10)

Dividing XA by dp we get

^:= Y+#- (3.11)
dp dp

where R is the remainder of degree < n-1. Rewrite (3.10) as

(XA-Ydp)np + (XB-Ynp)dp = X. (3.12)

Using (3.11) we see that (3.12) is of the required form (3.8) since

XA-Ynp =R has degree <_ n-1; thereby forcing XB-Ynp=: T to have degree

< n-1. Further X monic implies that T is monic.

Uniqueness

If there exist other polynomials T, (monic) and R-, of degree (n-1)

so as to satisfy (3.8) we would have

(T-T^dp + (R-R^np =0

np (R-R,)
so that -J- = --W-

dp (T-T,)

wiith T-T-. of degree n-1, thereby contradicting the coprimeness of np,

dp.
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*

We will now use the lemma to show that for suitable choice of c0,
a* a* a

C , D , A the expression of (3.7) can be made equal to

nM(s)
kM^_ (3.13)

dM(s)

where dM, n„ are monic, Hurwitz polynomials of degree n, r respectively:

Choose Cq = y" » and choose A to be any monic Hurwitz polynomial so
A • A a

that nM divides A. Such a choise is always possible since n» has degree

r = m _< n-1. Now, to apply the Lemma 3.2 choose

AAA

c.Vpa
A * •

M

Verify that X is a monic polynomial of degree 2n-l. By Eq. (3.8) of
A A A

Lemma 3.2, there exist polynomials T and R of degree n-1, with T monic

so that

AAA

dMnpA
Tdp +Rnp --H-E- (3.14)

nM

now choose

D (s) = -R(s)

and

C*(s) = -f(s) + A(s)

(6 (s) has degree n-1 since R is of degree n-1, C (s) has degree n-2

since it is the difference of two monic polynomials of degree n-1).

Verify now that the expression in (3.7) may be written as
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A A* A *A- iJ.lDj
(A-C )dp-D np

*

Using (3.14), (3.15) and cQ = kM/kp we see that (3.16) is equal to
A A * A A* A-J

kMnM/dM as required. Once cQ, A have been chosen, the choice of C ,D

is unique by the Lemma 3.2. It follows that np divides A-C . Also A
A A A A

has been chosen so that nM divides A. In the instance that n^ and nM
M p M

are of degree n-1 (the relative degree 1case), A-C = np and A= nM

so that equation (3.16) simplifies to

kMnM _kMnM
A A* ~" A

dp-D dM

In this case then

and

A A ~*

nM - np = C

A A* A*

dp - dM =D

so that the c. and d. are related affinely to the numerator and denomi

nator coefficients of the plant transfer function. The relationship is

more complex when the relative degree is greater than 1.

3.3. The Error Equation

A A

From the proof of Theorem 3.1, we see that if np and dp were known

the precompensator and feedback compensator could be chosen to obtain

model matching. Since np and 3p are not known exactly, C and D cannot

be obtained. The purpose of adaptive control is to start with an initial

guess for the parameter cQ, c, dQ, d and then modify the guess based on
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the output error e-j = yp - yM. We derive here the equation relating

output error to parameter error. Define the parameter vector 0 € IR by

eT =[c0,cT,d0,dT]
A|l

and the signal vector w € IR by

.T-Cr.vWU.vW1].

(3.17)

(3.18)

Now, for given choice of A let 0 6IR n represent the value of the para

meters required to obtain the model transfer function. Then the para-

meter error $ is defined to be 0-0 . To obtain the error equation, let

cp(sI-Ap)" bp be aminimal realization of kpnp/dp. Then the equations

of the control system in state space form are

"~ —"

Xp

«w

0(2)
LbcP

0 0 xp
+

bp

A 0 v(1> b

0 A v<2> 0

Since u = 0 w and 0 = 0 +(J>, equation (3.19) can be written as

(3.19)

* T *T

A„+drtb«c„ ' b„c
P 0 P P • P

bpd*T

* T i *TbdQCp , A+bc

bcj ] 0
bd*T

A

rL -\fJ.

+

v(l)
+

^P"

b

v(2) 0

(4> w+cQr)

v(1>

.-.(2)

The output equation is

A

J

-18-



yp =[cp
v.

0 0]
J

kP

,0)

,(2)

(3.21)

The model can be similarly represented in non-minimal form (with suitable

choice of initial conditions) as

= A XM

ii" VM

v(2)
VM

— —

yM = C *»

•4"
w\

+ b(c*r)
'0'

(3.22)

(3.23)

where A € R on , b, c e R are exactly the same matrices as in

(3.20), (3.21). Though the realization (3.22), (3.23) for M is non-

minimal it is easily verified to be detectable and stabilizable (i.e.,

no unstable modes are hidden). These facts will be useful in the stability

proofs of Section 4. Subtracting Eq. (3.22) from (3.20) and (3.23) from

(3.21) we get: with eT := [xJ,v(1)T,v(2)T] - [x^v*,1 >,v£2>T]
W M ,VM

e =Ae + b<j>Tw, e €R3n"2
(3.24)

e, = ce.

Also it follows from Eqs. (3.22), (3.23) that
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c(sI-A)_1bc* =M

so that the equation for the error e, may be drawn as in Figure 6 and

represented as

e1 =4fM((J)Tw)=/m.((|)Tw) (3.25)
cQ M

In Eq. (3.25) M((j> w) is to be understood as the usual convolution between
A T

the impulse response of M and <f> w. Further, the effect of the initial

condition is not explicit in Eq. (3.24).

3.3. The Update Law

We have shown that when the adaptive parameters 0 are not at the

desired values 0 the output error between plant and model is given by

ei =irM(s)-(|),w.
1 KM

what remains to be specified is a mechanism for starting from an initial

guess 0q of the parameter values and updating this on line so as to get

e, to tend to zero as t •> » and (if possible) 0 -*• 0 . This is referred

to as the update law. The update law is a formula for 0, or equivalent

the parameter error <j>.

Section 4. The Stability Proofs and Choice of Updata Law

The basic controller structure will need to be modified slightly

during the course of this section. Rather than give the most general proof

immediately, we will give a simple stability proof for the case when the

relative degree of the plant i.e., n-m=l (Section 4.1), when n-m =2
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(Section 4.2) and finally when n-m > 3 (Section 4.3).

4.1. The Relative Degree One Case

For the purpose of a stability proof we will need to assume that the
A *

model M(s) is strictly positive real. Superficially, and certainly

mathematically, this entails no loss of generality since given any stable,

minimum phase M(s) of relative degree 1 (which are the only models that

can be matched when the plant has relative degree 1 - see Theorem%3.1),

there exists a proper, but not strictly proper, stable and stably inver-

tible G(s) €R(s) wo that 6(s)M(s) is strictly positive real, (for

^ / ^-1 ^-1
example, G(s) = M (s)/s+l). By using G (s) as prefilter for the refer

ence signal r(t) we can change the model matching problem from one of

matching M(s) to one of matching the strictly positive real transfer

function G(s)M(s). (It is important to note that the prefilter G (s)
A

has not differentiators by choice of G(s) proper but not strictly proper;
^-1 A

also G is stable). The implications of assuming the model M to be posi

tive real are considered in Section 6 when unmodelled dynamics are

present. We now have

Theorem 4.1

For the adaptive system of Figure 5, consider the update law

0 = -ejW. (4.1)

where 0 and w are defined in (3.17), (3.18) respectively. Then, provided

r(t) is bounded;

A transfer function M(s) is said to be strictly positive real if for

some e > 0 Re M(-e+ja)) > 0 V u € R.
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lim e,(t) = 0 (4.2)
t-K» *

Proof: Consider the error equations of (3.24), namely

e = Ae + b<j> w

(3.24)

e, = ce

where c(sI-A)" b is a nonminimal but detectable and controllable realiza-
^P A A

tion of the transfer function -j— M(s). Since M is strictly positive real

(SPR) and kp, kM > 0; we have that c(sI-A) bis SPR. Hence, by the PR

Lemma (see for example [25]), there exist positive definite matrices P,

Q such that

ATP + PA =-Q

Pb = cT.
(4.3)

Now consider the (time-varying) dynamical system

e = Ae + b<j> w

(4.4)
<j> = -e,w

with Lyapunov function

V(e,<j>) =eTPe +<|>T<J> (4.5)

Verify using Eqs. (4.3) that

V(e,4>) =-eTQe <0. (4.6)

Since V <. 0; we have that e(t), <J>(t) are bounded. Recall that
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eT(t) =[xJ,v{1)T,v(2)T] -[xJ,vJ1)T,vJ2)T]. Further note that r(t)
bounded and the realization (3.22), (3.23) of the model is stable so that

XM' VM 'VM are bounded- Consequently [xj,v^ ' ,v* ']is bounded.
From this it follows that w =[r,v^ ' ,yp»v^ ']is bounded. Using
this fact in Eqs. (4.4) we may conclude that e, $ are bounded (so that

e, $ are uniformly continuous). Now since V(e,4>) > 0 we have that

fCO

Vdt < «. (4.7)
Jo

Since V = -e Qe is uniformly continuous (e is uniformly continuous), as

a function of time, we have that

lim V = 0 => lim e = 0 (4.8)
t-*» t-*50

From (3.24) above it follows that lim e,(t) = 0. c
t^<» '

Remarks: (1) We have shown above that e(t), <j>(t), w(t), e(t), (}(t) are

bounded and that lim e(t) = 0. We see also from (4.4)
t-*»

lim <£ = 0
t"H»

and from (4.5), (4.6) that

lim V(e,<J>) =lim <j>T<f> =V
t-x» t"*°°

* 1 /2
exists. Though ||(J)(t)|| converges to (V ) , we can say nothing about the

convergence of <j>(t) as t-*» (leave alone about its convergence to zero).

(2) The asymptotic stability of the system (4.4) has been studied
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in [5,6,7]. For given w(t), the system (4.4) is a linear time varying

system. The linear time-varying system is uniformly asymptotically

stable (and equivalently exponentially stable) if iff ] a, 6 >0 such

that V s € R.

s+6 _ 9 0
ww'dt > al I €Wnxdr) (4.9)

The condition (4.9), is referred to as a sufficient richness condition;

since it requires that w(t) be uniformly exciting in all directions over

any interval of length 6. The principal drawback of the condition (4.9)

is that is applies to a vector of signals w(t) € R inside the time-

varying adaptive loop. In Section 5 we give conditions on the exogenous

reference input r(t) so that w(t) satisfies (4.9).

(3) It is easy to verify that Theorem 4.1 still holds with the

update law of (4.1) replaced by

0 = -re-jW

where r is any positive definite matrix. The corresponding Lyapunov func-

T T -1
tion in the proof of Theorem (4.1) is V(e,<J>) = e Pe + <fr r <{>, and so on.

4.2. The Relative Degree Two Case
A

When the model and plant have relative degree 2 (i.e., n-m = 2), M

cannot be assumed positive real. We can however assume (using suitable

prefiltering, if necessary, as in Section 4.1) that there exists

L(s) = (s+<5) with 6 > 0 such that ML is strictly positive real. The

adaptive scheme of Fig. 5 is modified by replacing each of the adaptive

gains 0.,viz.co, c, dQ, d, by the gains L0..L~ ,which in turn is given by
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L0..L"1 a61 +Q^'} i=1, ..., 2n (4.10)

To obtain the new error model, define the signal vector

CT(t)-[L-1r.L-1v(1)T,L-1yp.'-_1v(2)T]-

Then, from reasoning completely analogous to that of Section 3.3, we

obtain that

kpM(sH(s) T
el(t) =̂ ^ ♦ c' (4J1)

M

We now have

Theorem 4.2

For the adpative system of Fig. 5 modified by replacing each of the

6^1=1 ,...,2n) by

0.+0.C'1

as in Eq. (4.10), consider the update law

0= -erc. (4.12)

Then, provided r(t) is bounded,

lim e-j(t) =0
t-*»

kpM(s)L(s)
Proof: Follows exactly along the lines of Theorem 4.1 since r

a aa M
is SPR by choice of L. Thus for the nonminimal realization of ML given

by the plant loop; the error equation (4.11), and the adaptive law (4.12)
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one writes down the same Lyapunov function V(e,4>) and checks that V < 0.

To conclude that lim V = 0 and hence lim e,(t) = 0, one needs to show
t-*» t-*»

that c(*) is bounded. This is established as follows

r(t) bounded -y^*', v^^O. vjjj2)(-) bounded (4.13)

e(t) bounded and (4.13) -yp(-). v(1)(«), v(2V) bounded (4.14)
*-l

Now L stable and (4.14) =» c(«) bounded.

Remark: (1) As before Theorem 4.2 does not establish anything about the

convergence of <J> (and consequently 0).

(2) e(t), (j>(t) converge exponentially to zero iff the signal vector

c(t) satisfies the sufficient richness condition, i.e., ^ a> 5 > 0 sucn

that V s € R

f

+

s+6

s

«Tdt >ol I€R2nx2n

4.3. The Relative Degree >. 3 Case

As in Section 4.2, pick a Hurwitz polynomial L so that LM is SPR.

The trick used in Section 4.2 in order to obtain the SPR error transfer

^ ^—l
function (4.11) is no longer possible since L0.L" depends on second (and

possibly higher) derivatives of 0.. However, to obtain the same error

equation we could augment the model output by

J- ML[0TL"1-L"V]w. (4.16)
KM

a 1 On

In Eq. (4.16) the notation L w stands for each component of w (e R )

filtered by C" . The difficulty in implementing (4.16) arises from the
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fact that kp is unknown. Consequently, we augment the model output not

by (4.16) but by

ya(t) • fte2n+T(t)[eTL"U"V]w (4.17)

kp
with 0O .-.(t) being a new adaptive parameter expected to converge to -r- .

^n+l KM
T^-l ~-l T

If [0 L -L 0 ]w were to be denoted £(t) the error equation would now

read

e, ••£ ML{*TC* ?> (4.18)
M

where <j>2n+i 1S tne parameter error in 02n+1 given by

*2n+l =1"rp 92n+T (4-19>

With this modification in hand it would appear from the same reasoning

as in Theorems 2.1, 4.2 that the adaptive laws

0=<J =-e-|£
(4.20)

Kp .

e2n+l =' kj^ *2n+l "elC'

would yield e, (t) •»• 0 as t + «. Difficulty however arises in showing

that w(t) is bounded; w(t) would be bounded if yp(t) were bounded. By

assuming r(t) bounded we have that yM(t) is bounded, and e,(t) is bounded

by the Lyapunov function analysis. Now yp(t) = e-j(t) + yM(t) +ya(t);

so that in the absence of information about ya(t) we cannot conclude that

yp(t) is bounded. Further, even if we did conclude that e-.(t) ^ 0 as

t -»• oo; we could not conclude that yM(t) •»• yp(t) unless ya(t) •»• 0 as well.
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We will now show that the conlcusions yM(t) -*- yp(t), ya(t) -»- 0 as

t •* oo can be achieved if <M L . This in turn is assured if the aug

mented error signal ya(t) is changed from (4.17) to

ya(t) =ML02n+1(t){[0TL"1-L"10T]w-acTce1} (4.21)

where a > 0 is a positive number, along with the adaptive law (4.20),

the resulting error equation given in (4.21) is represented in Fig. 1

el(t) ="E7 CMLK^^+^-ce^^) (4.22)

Note that no differentiators are used in the implementation of the control
AA

law since ML is a proper rational function. The notation and preliminary

lemmas used in the proof of the following theorem are collected in

Appendix 1.

Theorem 4.3

The adaptive system of Section 4.3 with the error equation (4.22)

and the adaptive law (4.20) yields when the reference signal r(t) is

bounded that

lim yM -yp. (4.23)
t-*»

Proof: Let (A^b,,^) be a realization of J^ ML which is SPR by choice
T ill *M

of L. The realization is given by

e =A-je +b^V^n+l*"06!5 c)

el = cle
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By the PR lemma, there exist P, Q > 0 such that

AJP +PA1 =-Q

Pbl • c!

Now consider the Lyapunov function

V(e,*,4»2n+1) =eTPe +*T* +/ *| ,
M

with time derivative

V(e ,cj) ,<j>2n+1) =- eTQe -2e2cTC <0

2It follows that e, <j), <J>2n+1 are bounded and since Vdt < oo that e € L
A O

and e,c € L . From the expression (4.20) for <J, we conclude that j € L .

This fact is central to the remainder of the proof.

Recall that

* Typ = P0 w

A KD A T
= Mr +1-r- M<|> w

KM

A "^P AA A—1 Ta

= Mr +/• ML[L Vl]c (4.24)
KM

By Lemma A.4 of Appendix 1

[L~VC]c =(J)Tc +o(w) (4.25)

By Lemma A.3 of Appendix 1 w=0(yp) so that (4.25) is rewritten as
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[L~Vi/k =cj)Tc +o(yp). (4.26)

Also from (4.26) it follows that

£ = [L f4>'-<J>'L ']w

^-1 T~ T

=o(yp) (4.26)

AA

Using (4.26) and the fact that ML is stable we get

y =Mr +1lML{(J>Tc}+o(yp) (4.27)
Y KM Y

We use (4.22) to evaluate

^MLUTC} =ei -^ ML^^-cg/cI

=e] - ^ MU^^C-a^^} (4.28)
M

Using (4.26) along with the fact that <t>2n+i is bounded for the second

term on the R.H.S. of (4.28), and Lemma A.l for the third we get

^ ML{<f>Tc} =e] +o(yp) +o(c)
M

=e-, +o(yp)

Using this in (4.27) we have that

yp = Mr + o(yp)

Since r is bounded it follows that yp is bounded and consequently w and
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r, are bounded. This implies that V •> 0 as t •>• ~ so that e, e-., <J -*• 0

as t -»• oo. Note also that the inputs to the ML block, viz. (L 4> -<|>TL )w

and ae-jC C tend to zero as t + oos the former by (4.26) and the latter

from e-j + 0. Consequently y •»• 0 as t •* «> and we have

yM -*• yp as t ^ oo •

A particularly neat form of the adaptive control scheme of Fig. 7
A A-l ^

results from the choice of L = M . In this case, L is not a polynomial,
AA

of course, but a non-proper rational function. In this case ML = 1, the

augmented error signal ya(t) of (4.21) is replaced by
a

ya =Q2n+}{(eJM-MQJ)vi-azT^} (4.29)
A

with £ = Mw and the error equation of (4.22) is replaced by

el =1T (eV^+^-ae^) (4.30)

with 5= (0TM-M0T)w. The adaptive law of (4.20) still yields that
A A

e-j(t) -*• 0 as t -»- oo since the transfer function ML = 1 is positive real.

An interesting observation for this scheme is that the error equation

(4.30) has no dynamics. The price that one pays is more integrators in

^-1 *
the control law (since the degree of M > minimal degree polynomial L

A A

needed to make ML SPR). This form of the adaptive system is used in

Section 6. Note that (4.30) may be rewritten as

e1 =/ ((J>V(J)2n+1C)/(l+acTc) (4.31)

In this case, we may replace the update law of (4.20) by
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• "elc

1+ac's

4>
e^

\ (4.32)

1+ac C -^

replace the augmented output signal by

ya =02n+1{(0TM-M0T)w} (4.33)

el =lcjj (^+Wl^ <4'34>

Note the resemblance of Eqs. (4.32), (4.34) to the schemes of Goodwin,

Ramadge and Caines [4].

Section 5. Parameter Convergence

In the preceding section, we showed that the adaptive laws (4.1) (in

the relative degree 1 case), (4.12) (in the relative degree 2 case), and

(4.20) (in the relative degree _> 3 case) yield that e-,(t) -*• 0 as t -»• °°,

no matter what the reference signal, r(t) is. It was remarked that

nothing could be said about the convergence of 0(t), without further con

ditions. It has been shown in [5,6,7] that both e,(t), and the parameter

error 0(t) converge exponentially to zero iff 3 5, a > 0 such that

V s €R,
+

fS+6

s

wwTdt > al (5.1)

in the relative degree 1 case, and

The results of this section were derived jointly with S. Boyd, see [23]
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s+6 T
CC dt > al (5.2)

in the relative degree >^ 2 case. The conditions (5.1), (5.2) are referred

to as sufficient richness conditions on w, z,. As is widely recognized,

the conditions (5.1) and (5.2) are not explicit since the signals w, c

are generated inside the time-varying plant loop. In this section, we

give explicit conditions on the reference signal input to the adaptive

loop to guarantee that e,(t), cj>(t) converge exponentially to zero. The

intuition for our results is as follows:

Consider, first, the case when r(t) is a step. In this case, if

the parameter error vector converges, it converges to a value such that

the (asymptotic) closed loop plant transfer function matches the model

transfer function at D.C. (0 rad./sec). This observation suggests the

following argument: assuming that the parameter vector does converge,

the plant loop is "asymptotically time-invariant." If the input r has

spectral lines at frequencies v,, ..., v^ we expect that yp will also;

since yp -»- yM we "conclude" that the asymptotic closed loop plant trans

fer function matches the model transfer function at s = jv-,, ... , jv^..

If N is large enough, this implies that the asymptotic closed loop trans

fer function is precisely the model transfer function so that the para

meter error converges to zero. We make this intuition precise, for the

relative degree 1 case. The extension ofthe following proof to the

higher relative degree cases is straightforward:
Pn

By way of notation we define the signal wM €R as

wj =[r,v^T,yM)vi2)T]. (5.3)
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wM is the vector of signals in the model loop corresponding to the vector

of signals, w in the plant loop as shown in Fig. 8.

Recall now that in the proof of Theorem 4.1 we showed that

Vdt = - -Te'Qedt < oo (4.7)
0 Jo

thereby implying that e, defined by

2
Consequently, we can conclude that w-wM €L (note that yp-yM =cp(xp-xM))

o

We denote the L norm of w-wM by ||w(«)-wM(')ll2. It is easy to see from

the Lyapunov argument of Theorem 4.1 that

lMO-wM(-)ll2 <KO{||0(O)-0*|| +||xM(0)-xp(0)|| +llv^W-vJ1^)!!

+l|v(2)(0)-vj2)(0)||} (5.4)

2
Thus, a bound on the L norm of w(-)-wM(#) is obtained from prior bounds

on the parameter error, initial state errors. Also in the proof of

Theorem 4.1 we had that if r(t) was bounded,

l|w(t)||, ||wM(t)!!<!<., for all t.

The first step in our proof is to obtain from (5.1) and (5.4) a con

dition on wM(t) for parameter convergence. The advantage of doing this

is that the vector of signals wM(t) is generated by a linear time-invari

ant loop rather than by a linear time-varying loop.

Theorem 5.1

Suppose that ||w(t)||, ||wM(t)|| < K] for all t, and ||w(-)-wM(Oll2 < K2

-34-



Then, w(t) is sufficiently rich « wM(t) is sufficiently rich.

Proof: The argument is symmetric between w and wM. Hence, we only

prove =>. w sufficiently rich implies that ] a, 6 > 0 such that

V s €R+, z €R*

fS+6

»2n

zT[ T T
ww dt]z > otz z

Iterating on (5.5) p times, we get that V p e 2+

zT[
fs+p6 T T

ww dt]z ^ apz z
s

Now, note that

(zTw)2- (zTwM)2 =zT(w-wM)zT(w+wM) <z^^K^llw-w,
M1

Hence,

rs+p6

s

By Cauchy Schwarz,

fS+P<5 T a T a - fs+p6
(z'wr- (z'wMrdt <2KlZ'z ||w-wM||dt

j l|w-wM||dt <(pfi)* fS+p6 a
l|w-wM|rdt <Kgtpfi)

Using (5.8) in (5.7) and (5.6) we have that V p6 2+

zT[
rS+p6

wMwJdt]z >zTz(ap-2K1K2(P6)1/2)

Choose pQ sufficiently large so that

a:= apQ -2K1K2(p()6)1/2 >0

and define 6 = pQ6. Then, we have that V s €R+
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fs+6 t
wMwMdt - aI#

Thus w« is sufficiently rich. o

The second step consists of giving conditions on r(t) to ensure that

wM(t) is sufficiently rich. For this we need the following definition

(Wiener [8]).

Definition 5.2. Afunction u(t) :R+ -»• Rn is said to have aspectral line

at frequency v of amplitude u(v) (? 0) € Cn iff

i fS+T . .
1f U(t)e-Jvtdt

A

converges to u(v) as T -»- oo, uniformly ins. d

The following lemma is immediate:

Lemma 5.3

Let u(t), y(t) be the input and output respectively of an exponen

tially stable, linear, time invariant system with transfer function L(s)

(and arbitrary initial condition). If u has a spectral line of frequency

v then so does y, with amplitude

y(v) = L(jv)u(v) (5.8)

Remark: Since the initial condition contributes a decaying exponential

to y(t), it does not appear in (5.8).

The next lemma is key to our main result:

Lemma 5.4

NLet x(t) €R have spectral lines at frequencies v^, v2, ..., v^.
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Further let {x(v-j ),x(v2),...x(vN)} be linearly independent in C . Then

x(t) is sufficiently rich i.e., ^ a» 5 > 0 sucn tnat V s

s+6

xx dt > al (5.9)

Proof: Define the NxN matrix X(s,6) by

X(s,6) :=|
-jv-,t

xT(t)dt

-JvNt

and the N Nmatrix XQ which is the uniformlimit (in s) as T -• » of X(s,6)

X0 = xT(jv1)

xT(JvN)

By hypothesis, XQ is non-singular. Hence, for 6 sufficiently large
*[> 6 , say) X(s,6) is invertible and

HXfs^lf1 <2IIXQH"1 Vs.

Now for z € Rn and any v € R

s+6

(xTz)2dt =4
0

S+6

xVJvtl2dt

s+

x ze"JV dt| (by Jensen's inequality)±lj

Using (5.10) for v-t, ..., vN we have
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S+6 ,. „ , N

s "N k=1 S's

S+6 T -JXt
^ (x z) dt >¥ j,J -j (x ze dt|

=1 ||X(s,6)z||;

>l ||X<s,<S)~n||-2 for 6>6*

*

* £ -1 -?
Equation (5.9) now holds with 6 = 6 , a = -tst ||XZ ||" . a

We now use Lemmas 5.3, 5.4 to prove the main result of this section

Theorem 5.5

Suppose r(t) has spectral lines at v-j, v2, ..., v«n. Then wM(t)

is sufficiently rich.

Proof: Recall that wj =[r,v^T,yM,vi,2)T]. The transfer function from
r(t) to w„(t) is given by

nT/ \ n M 1 M s M sn"2 fi Ms Ms""2-, f5 in
Q (s) = [1, t * — »T ' x- » •••» x*-a— » M> x- »•••» a—J vb.n;

P nM p nM p nM nM nM

Since the plant is minimum phase and the model is exponentially stable

Q(s) in (5.11) is exponentially stable. Simplifying (5.11) we have

PPM (5.12)

A AAA

The (n+l)th entry of Q has numerator polynomial n nM with nM of degree
A A A

(n-1). Further the first entry of Q has numerator polynomial npdM with

cL of degree n. Compare these terms with the last (n-1) entries of
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A A n-1e, viz. n , n s,...,n s . Using constant row operations then we can
r r r

write

wj, =(Tw)T =^V [dp,...,dpsn-2,np,...,npsn-2,npsn-\npsn]
npdM

for some T € R nx n, a non-singular matrix. It follows that w„ is suffi

ciently rich iff w is sufficiently rich. By Lemma 5.3, w has spectral

lines at v,, vo9'"9V2r\ of amplitude

W - }— [dn(jv.),... ,d (jv.)(jv. )n"2,n (jv.),
n^jv^d^jv.) P 1 P 1 1 P 1

...,n (jv. )(jV)n] for i = 1, 2, ..., 2n. (5.13)

By Lemma 5.4 if the wM(v.) are linearly independent, wM is sufficiently

rich. If they were not ] arow vector [e'.y].; B €Rn~ ,y €R such

that

[$:y] fiM(vl} = 0

*M(v2n}

n-2Using (5.13) and defining B(s) =^ + 62 s + ... + 3n_-|S ;

y(s) =Y-i+T2s+...+yn+1sn, we may write (5.14) as

A A A A

3(s)d (s) +y(s)n (s) =0 at s = jv1, ..., jv
2n

(5.14)

(5.15)

The polynomial in (5.15) has degree (2n-l) so we conclude that it is

identically zero and

0dp e-Ynp.
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Since n , d are coprime by assumption, the zeros of 8 must include

those of n . But this is impossible since $ has degree n-2 and n has

degree n-1. This establishes the contradiction and proves that the
A

wM(v.) are linearly independent and shows that wM is sufficiently rich, a

Comments

(1) We have shown that when r(t) has spectral lines at jv,, jv2,

...» jv2 that w„(t) and consequently w(t) are sufficiently rich, thereby

yielding parameter convergence.

(2) r(t) need not be almost periodic [9] to satisfy the conditions

of Theorem 5.5. Also the strength of the spectral lines at v, , ..., v~

appear only in an estimate of the rateof exponential convergence.

(3) An estimate for the rate of convergence of the parameter and

output error would proceed as follows: use the estimates of Lemma 5.4 to

obtain the a,6 in the definition of sufficient richness for w... Then use

2
prior bounds on parameter error and initial error to bound the L norm

||w(*)-wM(*)ll Now, use Theorem 3.1 to find the a and 6 in the definition

of sufficient richness for w. Then use the techniques of [6] to obtain a

(conservative!) rate of convergence estimate.

(4) For the higher relative degree cases the proof is a minor modi

fication of the above - the statement of the result is exactly the same:

when r(t) has 2n spectral lines, then w» and consequently £M are suffi-

ciently rich. Since c(#)-CM(0 €L , z, is also sufficiently rich yield

ing exponential output error and parameter error convergence.

Section 6. Robustness Issues in Adaptive Control

The development of Sections 3, 4 and t assumed that the plant,
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given by PQ had no unstructured uncertainty and satisfied the assumptions

A1-A4. These assumptions are, as expected, dubious in practice. In this

section we remove these assumptions and explicitly take into account

unmodelled dynamics. Some of the machinery we need is developed in

Section 6.1 which deals with the robustness of the adaptive system to

output disturbances.

6.1. Robustness to Output Disturbances

In Section 4, we saw that the parameter update laws always read, as

* = e-,c (6.1)

with <f>, the vector of parameter errors, e, the error signal between the

plant and model output and c a vector of signals derived from r, y^. The

formula (6.1) shows that adaptation ceases when e, = 0. Consider a

scenario in which adaptation is complete, i.e., e, = 0; when a distur

bance signal enters the output of the plant. This will cause parameter

value to change from their converged values resulting in further error

e-j and potential loss of stability as has been verified in several simu

lation studies [10,11,15]. We would like adaptive laws to be robustified

to output disturbances - guarantee boundedness of y,, e, in the presence

of some output disturbance in the plant. The price we shall pay is that

the output error e, will be non-zero as t -»• ». The basic idea is simple:

turn off the adaptation when the error is smaller than some small con

stant. The details are as follows.

In Figure 9, we have redrawn the adaptive loop of Figure 7, along

with a disturbance term v,(t) at the plant output so that

yp =P0Tw +vr (6.2)
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with |v.j(t)| <A for all t. Note that the signal w is derived from r

and the (new) yp of equation (6.2). To derive the error equation we

wewrite (6.2) using the techniques of Section 3.3

yp =Mr +~(M<j>Tw+v) (6.3)
M

with

v -x(l-4-)v, (6.4)
P A '

The transformation is shown pictorially in Fig. 10. Note that the trans

fer functionof Eq. (6.4) is proper and stable. Given that |v,(t)| < A

for all t; then, it follows that

|v(t)| < A0

for some AQ which depends on the unknown parameters of the plant through

dependence on C and kp. Since the transfer function

A A

^ a* V n H _^ . Ajte _

*n-J-)-£jft M»)-M»)3 (6.5)
P A KP npdM A(s)

is stable; prior bounds on parameter values of the plant could be used

to obtain an estimate of the L°° frequency norm of (6.5); which is an

estimate of the ratio AQ/A. The details of this procedure are not

insightful and yield extremely conservative bounds. We feel that the

size of the bound Aa is best decided by the control engineer in a specific

application. Of course from the discussion following Eq. (3.16) it

follows that np divides A-C and n„ divides A so that (6.5) can be

simplified. When both the (nominal) plant and the model have relative
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A A ^ A Allf

degree 1 then, as in Section 3.2 we have that nM = A, np = A - C and

(6.5) simplifies to

£ i• (6-6)
P d
K aM

Equation (6.6) illustrates the point that the estimate AQ of the distur

bance v depends on the choice of the model in an essential way, since

Aa < A SUP
U 0)

dp(jco)

dM(ju))
(6.7)

dp(jw) in (6.7) above is not known; however, from prior parameter

bounds (6.7) can be estimated. Equation (6.7) could also be

sharpened if the disturbances v(t) were localized in a small frequency

range.

The adaptive system that we will study is the one described at the
A A_ "1

end of Section 4, corresponding to the choice L = M . The error equation

in this case is given by

e1 =1T(<^+Wlc) (6'8)

and with update law

i =-e^/O+aJs)
(6.9)

*2n+l =-e^/OWO

we have that e-,(t) -*• 0 as t -»»°o for bounded r. With the output distur

bance included, (6.8) is modified to
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e, =/(*V*2n+1C+v) (6.10)
M

the update law (6.9) cannot even guarantee that yp is bounded. However,

when (6.9) is modified to

<J =-e^/l+a? c for |e^|>AQ +6

*2n+l ="ei5/l+o«TC for le^ >AQ +6 (6.11)

<M2n+1 =0 for le^ < AQ +6

(for some 6 >0) we show that the adaptive system yields yp bounded and

other desirable properties. The adaptation has a deadzone of size AQ+6;

i.e., no adaptation takes place when we cannot distinguish between the

error signal and the disturbance.

For the error system (6.10) with update law (6.11) consider the

Lyapunov function

v<*'*2n+l> =I*W4+1 (6J2)

Then we have

,,AA , -kP (♦V*2n+lg)(»Tc+Wl^ when |eJ >An+6
M l+o£ C

=0 when |e1| < AQ+6
(6.13)

From (6.13) we have that V(<M2n_-|) <, 0 and that <f>, <{>2n+1 are bounded.

Consequently <J, <J2n+i are also bounded. Let Oj ={t : |e^|<A +6} and

fy = {t : leJ^AA+6}, be the time intervals of no adaptation and adaptation
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kp (<l>V<t>2n+1 €) (*TC+*2n+l ^+v}

respectively. Then

.

f °°

Vdt = -
0 J

f ^
ti2 kM l+a^TC

dt <

— — 9n+l

For ease of notation in what follows we define $, t €R as

*T =[*T,c|)2n+1] and f =[sT,£]. Then

and

el =̂ ^+vl)

v($) =̂ £ (?Tc)(jTc+v) when !(,Aq+6
M 1+ac 5

= 0 when |e>. |< AQ+6

Using the inequalities

R T T 2V6 T|$ c+v| < |$'c| <-^j |$lC+v| for t <E av0+6 vQ+6

in Eq. (6.14) we obtain

Now

f l&lidt<
Qa 1+C £

dt < °° and (*W dt <
fi2 1+C C

*|2 cT5fe)2 for t €a,
(i+cTOz 2

= 0 for t € ft,.

so that $ 6 L ,which is key to the following theorem,
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Theorem 6.1

A "* 1

The adaptive system of Fig. 7 with L = M , error equation (6.8) and

the modified adaptive law (6.11) yields that yp is bounded when ris bounded

Proof: Case 1. t € ft-j for t >t,. In this case |cj> c+v| <L for t >t,

and $ c is bounded. Further,

yp =^(fVw+v) +Mr . (6.16)
M

A

Also as in the proof of Theorem 4.3, <J € L implies that

M<J>Tw =<J)Tc +o(w)

• *TC +o(yp) (6.17)

(since w=0(yp)). Also £=o(yp) as before and we have <b\ =$ I +o(yp).
Using this fact along with (6.17) in (6.16) we conclude that yp is bounded.

This implies that y •»• 0 as t + » and

|yP-yMl< V 6 as t ^°°-

Case 2. t € fy for t > t«. From Eq. (6.15) we have

-^- dt <oo

Also since ||$|| is bounded and \\i\\ < M^lcll +M2, it follows that
-T- 2 T($ s) /1+5 5 is uniformly continuous on ftg and we have

lim4JL- =0•=> $Tc =o(e) (6.18)
t-*» 1+c S
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A

Also <f € L yields (6.17) again, i.e.

M<|>Tw =<j>Tr; +o(yp) (6.17)
and

£ =o{yp). (6.19)

Conbining (6.19) and (6.18) we get <j>\ =o(c) +o(yp) =o(yp). Using
this in (6.17) we get for yp

yp = o(yp) +y~ v + Mr
Y v KM

thereby guaranteeing that yp is bounded.

Case 3. Both ft, and ft« are unbounded sets. The estimates (6.17), (6.19)

still stand. Further, we have

|<J>TC| <2AQ+6 t 6 ft2

4>TS =o(yp) t €ft2 from (6.18,6.19).

Combining these estimates and using them in (6.16) yields that yp is

bounded. •

Remarks: (1) We have shown that the modified adaptive law yields that

the signals yp, w, 5, £ are bounded.

(2) In Case 1, i.e. t € ft, for t _> t, we showed that

lim |yp-yM| < Ap+S- In the other cases we cannot guarantee that the
t-*»

difference between yp and yM is asymptotically less than the size of

the deadzone, without further information about the nature of the dis

turbance. However, the following remark can be made: since ||c|| ± A,

for some A,
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. .T. -5(AQ+6)
V=0 < Y- <0 for t €ft2

1+A'

i.e., V is bounded away from zero when adaptation does take place. Con

sequently, the measure of set ft« nas to be finite; i.e., adaptation

ceases on all but a set of finite measure and |yp-yM| < AQ+6 except on

the finite measure set ftp.

6.2. Robustness to Unstructured Uncertainty

In this section we revert to the description in Section 2 of the

plant model incorporating both structured and unstructured uncertainty,

i.e., the plant model is given as in (3.4) by the rational transfer
A

function Pa(s):
a

A , A .

Pa(s) = P(l+u) (6.20)
a

where the transfer function P satisfies the assumptions Al, A2, A3 and
A A

A4, U is stable and the magnitude bound on |U(ja))| is known. To derive

the error equation for the adaptive system constructed using P as the

actual plant model, we use the techniques of Section 3.3, to get

yp =P(l+0)6Tw
<it A . A ATfrA

.. (C -A)dp-kpD np 1 kp -
=M(1+UK a* a a aL a >(r+/<j>Tw) (6.21)

MC -A)dp-kpD np(l+U)J KM

A

as shown pictorially in Fig. 11. Define U,(s) by the equation

fA* A A A*A -V

(C -A)dp-KpD n- \
«k ~, PL / .> (6-22)

(C -A)dp-kpD np(l+U)(
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U-j has the interpretation of being the closed-loop unmodelled dynamics

resulting from the open-loop unmodelled dynamics U. Now a short calcu

lation yields the error equation for the adaptive system in this case to

be

k kAA ^D AA_T ^D AA T

e, = MU,r +-— ML(f)'c +-r- MU,<j>w
1 ' KM KM '

k k•^P AA T AA f^p AA "T-

=-rf- ML*'? + MU,r +/ MUVw (6.23)
KM ' KM '

k

The idea now is to treat MU^r +-p MU^^w as adisturbance and to estab-
M

lish a bound Aq on it. Once this is done, a deadzone qf size AQ can be

used to obtain the conclusions of Section 6.1 above. Also, as in Section

U(jw)| <

6.1 above the choice of L = M will be made. The most important step in
A

establishing the bound AQ is obtaining a bound on U, (joi). We first

establish conditions under which U, is stable.

Proposition 6.2

A

The closed loop uncertainty transfer function U, is stable if the
A

model M and the adaptive system are chosen so that

A A.

kMA(ja))
-**-

kpM(jw)D (jw)
(6.24)

A

Proof: The explicit expression for U, from (6.22) is

A * A A

„ U(C -A)dp
"l = A* A A A*A , A~ (6.25)1 (C -A)dp-kpD np(l+u)

Now from the results of Doyle and Stein [18] U, is stable iff the non-

adaptive loop of Fig. 11 is stable. This in turn is guaranteed when
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lul <
k n a ^*, /KPnP A Drl| wc _ . {(. 9fi.

M——t*t: " —) V s = jo) (6.26)
dp C-A A I

Since by choice of C and 6

N=- kM"pAA* A A A*

dp(C -A)-kpnpD

we have that (6.26) is equivalent to (6.24). n

Remarks: (1) It appears that in order to check Condition (6.24), the

parameters d.., kp need to be known. However, prior bounds on these para

meters are adequate to verify this condition.

(2) We remarked in Section 3 that the only restrictions regarding

the choice of the model M are that it be stable, minimum phase and have

the same relative degree as P. Now, we see that the choice of the model
A

M is also restricted by the condition that it satisfy (6.24). Consider,
A A

for example, the case when M, P both have relative degree 1. From Sec

tion 3.2, we have A= nM and D =dp-dM so that (6.24) simplifies to

|U(jco)| <
dM(Jw)

kp(dp(jui)-dM(jaj))
(6.27)

(3) The right hand side of (6.24) is asymptotically of the form

Ii In-m a 1 m
-^ ;so that |U(ja))| <^ |ju>|n . Thus, the relative degree

Kp Kp

places a bound on the rate of growth of 0 that can be tolerated by the

adaptive system. a

Once condition (6.24) has been verified, we can estimate U-j(jco) from

Eq. (6.25). It is easy to see that for high frequencies (asymptotically
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A sy

as a) -»• oo) U,(joi) = U(joj) and for low frequencies when

that

A* A

dp(C -A)
U« 1- P.„*

kpnpD

UkJl ~* -
Ui =—^' -^a^ (6.29)

M

As before, prior bounds on the plant parameters are used to obtain

bounds on U-j(ju)). We use these bounds along with bounds on the reference

signal spectrum r(jco) to estimate the disturbance term MG,r in (6.23).

Typically, the frequency content of r is in the low frequencies where
A AA

U, is small so that MU,r is small. From prior parameter bounds we estab

lish also bounds on <J> in the second term (the Lyapunov argument guarantees

that <j> decreases along trajectories). Further as in Section 5, prior

parameter bounds on w can be established by first calculating w» (as in

Fig. 8) and the error bound w-w». Since the frequency content of <$> w is

unknown apriori we have

k k

J- MU^Tw| <sup| J- M(ja))01(jo))|sup|(|)Tw|
M co M t

By this reasoning, a bound on the disturbance term is obtained and treated

using a deadzone as in Section 6.1.

Section 6.3. Comparison Between Adaptive and Non-adaptive Schemes

We have discussed one method of robustifying the model reference

adaptive scheme to unmodelled dynamics - namely, a deadzone in the para

meter update law. The crux of the method lay in neglecting the model-piant
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mismatch error signal when it was comparable to the "noise" generated by

output disturbances and unmodelled dynamics. The price to be paid is

that we are no longer guaranteed convergence of the error to zero but

only to the interior of the deadzone (off a time period of finite mea

sure). We discussed techniques for estimating the size of the deadzone.

Typically, estimates of the kind given in the previous section will be

too conservative (because of their generality). In an application the

designer would pick a deadzone - depending on his estimate of the "noise"

in the error signal - such an estimate could be obtained in the initial

time period of the transient in adaptation when the error is large. Now,

however, if a robust, non-adaptive control methodology, say, of the form

suggested in [22] (using a nominal model for the plant), could give model

matching to an accuracy greater than the size of the deadzone, then, of

course, the choice of feedback law is the non-adaptive one.

Other techniques for robustifying adaptive schemes have been suggested:

[11,21] suggest the use of a forgetting factor in the update law (say,

0 = -ae-e,c); [26] suggests that when the nominal adaptive loop is expo

nentially stable (i.e., when the reference signal is sufficiently rich -

has sufficiently many spectral lines), its stability is robust to the

presence of unmodelled dynamics. The analytic details of these approaches

to robustness are as yet incomplete.

Section 7. Concluding Remarks

We have given in this paper a corrected set of stability proofs to

the adaptive schemes of [1], [2], explicit conditions on the reference

signal for parameter convergence and a framework to discuss the sensiti

vity of adaptive systems to unmodelled dynamics. The use of a deadzone
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to suppress the effects of unmodelled dynamics was considered in Section

6. It is clear that further work needs to be done in understanding the

role of unmodelled dymamics in adaptive control, along lines considered

by other researchers - Ioannou and Kokotovic [11,21], Anderson, Kosut and

others [20,26],

The present paper is devoted entirely to single input-single output

systems. For multi-input, multi-output systems, parametrization of the

plant to be adaptively controlled is well understood only when the Hermite

form of the plant is diagonal (see e.g., [27,28,4]). In these cases the

adaptive scheme of the present paper can be modified to obtain a scheme

where the controlled plant matches a model chosen to have a stable Hermite

form identical to that of the plant. As is expected questions of sensi

tivity and robustness of those schemes are much more complicated. Further

work is necessary both in the area of parametrization and robustness

properties of multiinput-multioutput systems.
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Appendix

Proof of Stability of the Adaptive Scheme when Relative Degree > 3

Preliminary Definitions

We will need to compare the asymptotic magnitudes of time signals.

For this we develop some notation. Let x(«) € L°°e and y(-) € L°°e (the
n * ' m

extended L^ spaces with x(t) €Rn, y(t) €Rm for all t (see [24]).

Define their truncated norms by

|x|t := sup |x(t)|,
x<t

|y|t := sup |y(x)|.
x<t

Both |x|. , |yL are monotone non-decreasing functions of time.

Def. 1. y = Q(x) if 3 $(•) continuous with 8(t) -»• 0 as t •*• °°9 such

that y(t) = 6(t)x(t).

Def. 2. y = 0(x) if ] Ma constant such that

|y|t <M|x|t.

Def. 3. y - x (equivalent) if y = 0(x) and x = 0(y).

Definition 1, 2, 3 compare the asymptotic magnitudes of x, y. To

get a feel for these definitions consider

L+=Tim|y|t and L » TJm |ylt (A-1)

(with L_ < L+)

L+ and L_ are extended real valued (with L_ < L+). The following table
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shows the relation between L+, L_ and the Defs. 1-3 when x(«) and y(-)

are both continuous

L+ L_ Conclusions

0 0 y = o(x), y = 0(x)

*

Finite 0 y = 0(x)

Finite Finite y - x

«> Finite x = 0(y)

oo x = o(y), x = 0(y)

00 0 No conclusion

Remarks: 1. The table is symmetric about the y - x entry; except for

the case when L+ = oo and L_ = 0 when nothing can be said about x, y in

terms of Def. 1, 2, 3.

2. Note that y = o(x) =» y = 0(x) and x = o(y) =» x = 0(y) when x, y

are continuous.

Lemma A.l

Let x(«) €L1 UL2, c(*) €Leboth be scalar functions and H(s)

be the rational transfer function of a strictly proper, exponentially

stable linear system. Denote by y(«) the output of this system when the

input is x(«)c(-). Then,

y = o(c) (A.2)

A

Proof: Let h(t) be the convolution kernel corresponding to H(s). Then

*

Finite is to be interpreted as finite, non-zero in the table.
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h(-) €L1 and

y(t) - h(t-T)x(T)c(T)dT (A.3)
0

(Initial conditions will contribute a decaying exponential to (A.3) which

will not affect asymptotic conclusions like those of (A.2). From (A.3)

we have

|y(*0| < Ult |h(t-x)x(T)|dT.

A 12
Since H(s) is exponentially stable and x(«) € L U L , we have

ft |h(t-T)x(T)|dT + 0 as t -»• oo.
Jo

This establishes A.2. d

Lemma A.2 establishes conditions under which the input x of a mini

mum phase (not necessarily stable) linear system is 0(y), with y the out

put of the linear system:

Lemma A.2

Let x(-)» y(0 be the input and output respectively on a single
A

input-single output, proper minimum phase transfer function H(s) with

zero initial condition. Letx(-) € lTe satisfy

x = 0(x) (A.3)

Then

x = 0(y) (A.4)

We assume this for simplicity of proof alone. It is easy to see from
the proof that this assumption is unnecessary.
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A A A

Proof: Write H = H,H2 where H, has the same number of poles and zeros and

fL only has poles. Define x, =H2(s)x; then y=H,(s)x,. Since HT is
proper and stable;

x-, = 0(y) (A.5)

The proposition is trivial if x is bounded so we assume that x is un

bounded. Let t. be a sequence + oo. We will show that it is impossible

to have

lim |xJt /|x|t =0 (A.6)

We will assume that x(t.) > 0 (this is possible since x is unbounded).

Now we show that (A.6) implies that for 6 sufficiently small

!1m lxllt.+6/|xlt.+6 =0 (A'7)

This follows from (A.3) which guarantees that x, = 0(x,) so that

3 c, ,c2,6> 0, independent of i (by the Bellman Gronwall lemma),

c2|x|t >x(t) >c-j |x|t

c2|x1lt> > |x1(t)| >c1|x1|t>

t € [t.,t.+6] (A.8)

We now establish a contradiction to (A.7). Note that

t^A
x^t.+A) = x^t.) + h2(t.+A-T)x(T)dT

Further, since h2(t) the convolution kernel corresponding to H2(s) is

-57-



>0 for t small enough (due to the fact that H2(s) only has poles) we

have that

x-jU.j+A) >x-^t..) +c-j^lx^

with c3 = h2(x)dT >0 for A small. This yields

hk.+A x^t.+A) Xl(t.) 0^3
X't.+A 'X't_.+A

l
c2lxlt.

so that

,ATt.+A c,Ca
lim -— > -J-^ > 0
t-*» x

t..+A

contradicting (A.7).

Thus, L = lim Vt
t 0 and L. = lim Vt

t-*» x t-*» x

> I f 0

From the table we see that when L+ f 0 and L_ f 0 the only possibilities

that remain are x ~ x, or x = 0(x,) or x = o(x,) (which implies x = 0(x,))

At any rate, L+ +0, L_ ±0 => x =0(x,). Combining this with (A.5) we

obtain (A.4). n

Lemma A.3

In the adaptive scheme (for relative degree > 3) of Section 4,

u, v(1), v(2) =0(yp)

Proof: Since v^ =(sI-A)'1 byD and v^ =(sI-A)_1bu, with A
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exponentially stable we have that

v(2) =0(yp) and v(1) =0(u) (A.10)

To prove (A.9) it needs to be shown that u=0(yp). By reasoning as in

the preceding lemma, we will prove this by establishing that there is no

sequence t. + oo such that
i

lim \y?\ = 0. (A.ll)
i-*» v Li

Wit

Consider,

u = 9Tw +r (A.12)

The lemma is trivial if u is bounded, so assume that u is unbounded.

Now, r is bounded and 8 is bounded. Since (A.ll) holds along the sequence

{t.} we have that |yDL =o(|uL )and by (A.10) that |v^|t =0(|u|t..),i v z. ii i1 1

Hence (A.12) yields that

|uL =0(|v(1)|t.) (A.13)
zi 1

Thus, for some component iQ of v^ ,we have that

|u|t -Odvj^lt )
xi *Q M

Now, since

;0)-Av(l) + bu

we have that
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Ivj1}|t -Odvj1^)
^0 l *Q i

Further,

(2) Wi),v. (t) =PvJ''(t)
n0 ^

Since P has no zeros in the right half plane we have from Lemma A.2 that

for the sequence {t.}

wi2)itlim ^ M ? 0.

'% 1*1

This establishes a contradiction as follows: By assumption (A.ll),

|yp|t /|u|t ->0, which implies by (A.10) that |v|2)|t /|u|t -• 0. Now
i i /px m 0 i i

by (A.13), we have that |vr;L /|viuL -^0asi-^». d
n0 xi n0 zi

To prove Lemma A.4 we need the following preliminaries concerning

L(s): For simplicity we will assume that L(s) is a polynomial and has

only real zeros, i.e.,

r

L(s) = n (s+a.) (A.14)
i=l n

with a. > 0 (the following development can be repeated with only minor
A A

changes in notation when L has complex zeros. Recall that L(s) is Hurwitz

and define

A.(s) = n (s+a.), i =0, 1, ...,4-1
1 j=i+l J

Then if c(t) is a cr function,

-60-



r-1
[L-yCk =[<()T- l a:Va|+1]c (A.15)

i=0 n 1 '

neglecting the effects of exponentially decaying initial conditions.

The proof of (A.15) follows by recursion on

jjL- (j>T(s+ar)c =<|)TC +̂ <JTc. (A. 16)

Lemma A.4

With L defined as in (A.14), and w(t) = L(s)c(t), w(-) € Lf" and
°°e

, 2
<j> € L , we have

[L"VC]c =<j>Tc +o(w) (A.17)

Proof: From (A.15) we h-ve

r-1

(L-yC]r; =<j>Tc - I A^^A.^fsjL-^sJwft) (A.18)
i=0 n 1 '

Now

A-^L^w =0(w)

A.l • 2
and A. is stable for i =0, ..., r-1. Using the fact that <\> € L and

Lemma A.l we have that

V^i+1 w=°^ i =0, ..., r-1

Using this in (A.18) establishes (A.17). n

A

Remark: Lemma A.4 was derived for the case when L(s) was a Hurwitz

polynomial with real roots. It is straightforward, though notationally
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cumbersome, to verify that when L(s) is a (improper) rational function

with Hurwitz numerator and denominator (possibly with complex zeros)

Lemma A.4 still holds.
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Figure Captions

Fig. 1. Bode plots of the system to be controlled.

Fig. 2. Model following control system.
A A

Fig. 3. Typical plot of multiplicative uncertainty |U,(joj)|, |Ua(jgo)|

for adaptive control.

Fig. 4. Non-adaptive controller structure.

Fig. 5. Basic adaptive controller structure.

Fig. 6. Error equation for the basic adaptive system.

Fig. 7. Schematic of adaptive system when relative degree > 3.

Fig. 8. The adaptive system of Figure 5 with a new representation for

the model.

Fig. 9. The adaptive loop of Figure 7 with an output disturbance v,.

Fig. 10. Showing the procedure for factoring the disturbance v,(t) out

of the adaptive loop.

Fig. 11. Showing the procedure for finding the effect of the unmodelled

dynamics on the adaptive loop.
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