

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BEHAVIORAL-LEVEL SIMULATION AND

SYNTHESIS OF DIGITAL SYSTEMS

by

J. T. Deutsch

Memorandum No. UCB?ERL M83/47

1 August 1983

BEHAVIORAL-LEVEL SIMULATION AND

SYNTHESIS OF DIGITAL SYSTEMS

by

J. T. Deutsch

Memorandum No. UCB/ERL M83/47

1 August 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Jeffrey T. Deutsch

Author

" Behavioral—Level Simulation and

Synthesis of Digital Systems"

Title

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley,
to partial satisfaction of the requirements for the degree
of Master of Sciences, Plan II.

Approval for the Report and Comprehensive Examination:

Committee: , Research Adviser

Date

7-Second Reader

Date

ACKNCJWLEDGEHENTS

The author would like to thank Professor A. R. Newton for the support,
tencouragement, and guidance he has given during this research and in all the
ttime he has been at Berkeley.

Discussions with the members of the 1C CAD research group at the
University of California at Berkeley, especially J. Kleckner, K. Keller. M.
•Hofmann. P. Moore. M. Bales, and T. Quarles. have been extremely useful, and
•many of their insights have found their way into this work.

Financial support from the Army Research Office under grant (ARO)
DAAG29-81-K-0021 and from Hewlett-Packard is gratefully acknowledged.

He would like to thank Dr. H.K. Gummel of Bell Laboratories for his first
introduction to CAD, and for showing how exciting it can be.

Finally, he would like to thank his parents. Nathan and Gertrude, for their
•support andencouragement throughout his education.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION *

1.1 Computer Aided Design 1

CHAPTER 2: SIMULATION AND SYNTHESIS 4

2.1 Introduction 4

2.2 Control-flow Based Synthesis 4

2.2.1 Language Considerations 4

2.2.2 Existing description Languages 6

2.2.3 State and Statements 8

2.2.4 State Counter Generation 8

2.2.5 Variables and Assignment 9

2.2.6 Data-structures 10

2.2.7 Optimization 10

CHAPTER 3: DATA-*1XJW BASED SYNTHESIS 12

3.1 Introduction 12

3.2 Data-Flow Computers 12

3.3 Data-Flow Analysis 15

3.3.1 Language Constructs 16

3.3.2 The Single Assignment Rule 17

3.3.3 Loops 1B

3.3.4 Arrays and Data-Structures l9

3.3.5 Functions 20

3.4 Parallelism, Pipelining, and Graph-folding 20

3.5 Combined Methods 24

CHAPTER 4:THE ARCHITECTURE OF FUNCTIONS TO LOGIC 25

25
4.1 Introduction

p«
4.2 The Syntax of FTL

264.3 Object Oriented Prograrnming *°

28
4.4 Introduction to FTL2

4.4.1 Explicit Delay Mode 28

4.4.2 Implicit Delay Mode 29

4.4.3 The Compiler 3°

4.4.4 The Interpreter °*

4.4.5 Message Handlers ^

4.4.6 Variable Management 36

CHAPTER 5: EXAMPLES 37
37

5.1 Introduction

5.2 Low Level Descriptions 37

5.3 The RISC Microprocessor 40

5.3.1 The Register File 42

5.3.2 The Shifter 42

5.3.3 The ALU 42

5.3.4 The PC Group 43

5.3.5 The Control PLA's 44

5.4 The FTL specification of RISC 44

5.4.6 Opcodes.ftl 44

5.4.7 Macros and Aliases 44

5.4.8 Regfile.ftl 44

5.4.9 Alu.ftl 45

5.4.10 Jump 45

5.4.11 Memory • "45

5.4.12 Other -45

5.4.13 Exec -46

5.5 Support Files 46

CHAPTER 6: CONCLUSIONS 47

6.1 Results 47

6.2 Future Work 47

APPENDIX 1: LISP A11
APPENDDC2: DETAILED IMPLEMENTATION A2-1
APPENDDC3: USING FTL UNDER UNIX •—-•• A3-1
APPENDLX4: FTL DESCRIPTION OF THE RISC MICROPROCESSOR A4.1
APPENDDC5: SOURCE PROGRAM LISTING FOR FTL A5.1
REFERENCES R11

IC?

68000, Zilog Z8000, and Intel iapx 432) commonly takes between 50 and 200

person-months [Pattersonfl1a].

According to a recent survey of the state of the art in design automation

[Breuer82], even in companies with state of the art design tools, logic design
takes more than 50 percent of the total design effort in digital system design.

Few tools are available to aid the logic design part of the design process and

often little effort is put into specifying the functional characteristics of asystem

and then verifying that an implementation meets the specified characteristics.

Instead, the correctness of animplementation is determined by comparing it to

abreadboard prototype orto earlier versions of the same machine.

The goal of the research described in this report is to decrease the time

required to design large digital systems at the functional level, and to increase

the designer's ability to verify thathis system will function properly.

The functions-to-logic (FTL) system aids the designer in the early stages of

system design - before adetailed implementation has been planned. FTL differs

from other behavioral-level simulators such as ISP [Barbacci77], DDlrP

[Duley68] and ADLIB/SABLE [HillBO], in that it provides concurrent control
structures, that help the user clearly specify the behavior of their digital

systems in the same way that sequential control structures aid software

engineers inwriting clearer, more reliable programs. FTL differs from "silicon
compiler" [Johannsen79] systems in that its emphasis is on specification of the
architectural behavior of a system rather than the structure of an

implementation of it.

This report is divided into six chapters. The second chapter introduces

several methods for specifying concurrent systems and presents techniques for

automatic generation of module-level designs for digital systems. The third
chapter describes data-flow analysis and data-flow based synthesis. The fourth

-2-

CHAPTER1

INTRODUCTION

1.1. Computer Aided Design

Computer aids have been used with great success in several stages of the IC
design process. Circuit simulators, such as SPICE [NagelTO]. make it possible
for chip designers to evaluate the detailed electrical characteristics of their
circuits prior to their fabrication Interactive graphics editors such as KIC
[KeUer82] and CAESAR. [OusterhoutBl] and commercial products from Calma
[Calma], Applicon [Applicon], and others decrease the time needed to enter
mask data. Systems for automatic placement and routing of standard cells and
gate arrays such as LTX [Deutsch76] make it possible to go from a completed
logic design to mask layouts for semi-custom chips quickly and easily.

As advances in processing have made it possible to put more and more
circuitry on a chip. CAD software designers have developed more sophisticated
techniques to keep pace with the increasing complexity. In the early 1970s
designs were small enough that entire chips could be simulated at the circuit
level. As the complexity of IC's has increased, simulating complete circuits at

the electrical level has become impractical. Instead, designers have turned to

higher levels of simulation, such as timing [Chawia75], logic [Case75], and
functional level simulation [Barbaccl77], and to mixed-mode simulators that

allow different sections of a circuit to be simulated at different levels of detail
[Newton78]. [De Man81]. Although mixed-mode simulation has made it possible
to simulate large digital systems in reasonable amounts of time, and standard-
cells and gate-arrays allow layouts to be produced in almost no time at all. CAD
has done relatively little to ease the task of turning initial ideas into logic
designs. The logic design of large contemporary chips (such as the Motorola

-1-

chapter describes the architecture of the FTL simulator and its use in some
smaU examples. The fifth chapter shows how to describe digital systems using

FTL. then introduces the RISC microprocessor and gives the FTL description of

it. The sixth chapter contains a summary of this report and directions for

future work.

CHAPTER 2

SMULAT10N AND SYNTHESIS

2.1. Introduction

Two techniques for automatic synthesis of digital systems will be described

inthis chapter. They are called control-flow based synthesis and data-flow based
synthesis. The two approaches differ in the way they derive sequencing
information from the description of a system. Control-flow based synthesis

systems use specification languages which require that the concurrency of the
design is expressed explicitly in the input specification. Data-flow based
synthesis systems derive sequencing information from data-dependency
relationships between the operations in the input specification. i.e. the

concurrency is expressed implicit*?.

2.2. Control-flow Based Synthesis

Incontrol-flow based synthesis, the sequence of operations that synthesized

system will execute is based on the control structure of statements in the user's
input description. The goal of a control-flow based synthesis system is to create
a finite-state-machine controller, often implemented using a ROM (microcode)

or a PLA.

2.2.1. Language Considerations Languages used as the input specification for a
control-flow based synthesis system must contain faculties for explicitly stating

the series/parallel behavior of the system. These facilities are called control

structures [Aho77].

In a programming or description language, it is important to be able to
combine several operations and treat them as a single unit or block. In many

prograrnming languages. (Algol, Pascal, and Ada. for example) blocks are formed

by specifying the keyword begin followed by asequence of statements and then
the keyword end It is also important to provide facilities to allow an operation
tobeexecuted anumber of times inaloop. Awhile statement is an example of

such a facility. In a while loop, the first expression evaluated is the test

condition. If the condition returns true, than the statement that is the object of

the loop is executed, and the control returns to the test at the start of the loop.
If the condition returns false, the loop terminates. For example, in the while

loop:

J = 0;
while (j < 10) do
begin

end

(j <10) is the condition, and j =j +j is the object of the loop. The successive

iterations of the loop execute sequentially. A for loop provides iteration just as

the while loop does, but the number of iterations is indicated by one of the

parameters to the loop. The loop is executed a number of times, with the
iteration variable bound to a different value each time through the loop. In the

loop:

j = 0;
fori = 1 to 10 do
begin

end

i is the iteration variable. In a language that supports concurrency, it is also

useful to have parallel control structures to group and control concurrent

operations.

There is no parallel construct that directly corresponds to the while

statement, since the definition of while is that it evaluates its exit condition

after every execution of the loop. There is. however, aparallel control structure

that is similar to a for loop, called a forall [Ackerman79] loop. In a forall loop

all the instances of the statement or expression that are the object of the loop

execute in parallel, witheach instance having the iteration variable bound to its

proper value.

In sequential languages, there is only one type of block, the serinl block.

Statements in a serial block are executed one after another in sequence. In a

language for describing concurrent systems it is useful to define another kind of

block, called a parallel block. [Shaw74] where all the statements in the block

execute in parallel. In existing concurrent programming languages parallel

blocks are delimited by parbegin and parend [Shaw74], or cobegin and coend

[Brinch Hansen76].

2.2.2. Existing Description Languages There are many other ways to specify

the behavior of concurrent systems. The ISP hardware description language, for

example, uses begin..end for both serial and parallel blocks, with statements

within a block separated by semicolons. The rule for determining the

series /parallel behavior of ablock is that all statements from the beginning of a

block until the occurence of a next statement occur in parallel then all

statements from that point until the next nextstatement occur in parallel, and

so on

Another method for specifying series/parallel behavior is found in the DDL-

Phardware description language [Cory79]. DDL-P divides the control and data

flow portions of a description into two separate parts. This is done to eliminate

the need for data-flow analysis, which is described in more detail in the next

chapter, making the job of synthesis programs easier. The data-flow portion of a
DDL-P description specifies the connectivity of the circuit and the basic data

path operations, with the user giving each data-path operation a unique label.
The user then specifies the behavior as a set of states and state transitions.

Each state consists of a label that is the name of the state, followed by a

comma-separated list of operations (labels from the data-path declaration) to

be performed in that state, followed by either a conditional or unconditional

transfer to a new state. Concurrency is specified by having several comma-

separated data-path operations in a single state. A drawback of the DDL-P style

of specification is that the decomposition of a design into separate data-path

and controller portions can be difficult and/or unnatural.

The ADLIB/SABLE simulation system [Hill80], uses ADLIB, a extended

version of PASCAL, to describe the behavior of components and SDL, a structural

definition language to specify the interconnection of components. ADLIB

extends both the syntax and the semantics of PASCAL to include the notion of

components, networks, and processes. A strength of ADLIB is that it is built on

top of a software progranuning language so that it provides facilities for data

type specification, iteration, and for procedure definition and invocation that

are usually absent from hardware description languages. ADLIB also provides a

good set of primitives for describing communication between modules. A

drawback of ADLIB is that the type structure of pascal is not hierarchal and

therefore procedures that work on one type of data must be re-written to work

on any other type. Another is that modules are connected by way of SDL

descriptions rather than by statements in ADLIB or some combination of both.

AHPL [HU173] is a hardware description language based on a subset of the

APL [Iverson62] prograrnming language. In AHPL, operations between vectors

occur in parallel for all elements of the vectors. In addition, register-transfer

(assignment) statements that are onthe same line in the source code also occur

in parallel. AHPL descriptions contain no explicit type declarations or

structure, every data object is viewed as an array of bits. AHPL inherits APL's

ability to produce terse descriptions. The positive and negative aspects of this

are well known in the software field [Barlow79]. AHPL also suffers from APL's

lack of a good iteration facility.

-7-

e z

The Slang [Foderaro82] simulation language is similar to ADLIB /SABLE in

that connectivity between modules is given by explicit connections. A major

strengthof Slang is that it is embedded inlisp, so that many of the lisp primitive

operations are available to a userwriting a Slang description. However, Slang is

similar to AHPL in that it lacks data-type declarations and thus would probably

not be a good input language for an automated synthesis system.

2.2.3. State and Statements In control-flow based synthesis, the concepts of a

store and a statement are veryimportant since the controller being generated is

a finite-state machine. The current state of the controller is given by the state

vector which is the value of the state counter. The state counter performs a

function similar to that of the program counter in a computer. i.e. it determines

the order in which events occur. "When a design specification is read, the

statements of which it is comprised are translated into an internal form. This

phase of the translation process is called the compile time phase. During this

process each statement is tagged with the state inwhich it will execute. As each

statement is translated, the state counter value to be associated with the next

input statement is also determined, and microcode or logic equations for the

next-state transition for the current state are created. In most cases, this

information specifies that when the current statement is finished being

executed the state counter should be incremented. However, next-state

generation for if. case, and while statements is more complicated, because the

next-state transition can depend on values from the data-path.

2.2.4. State Counter Generation The problem of generating optimal state

assignments is a difficult one [KangBl]. A simple, although non-optimal

assignment rule for a block-structured specification language follows. (Note
that this rule assigns the sequence of states but not their coding For a serial

block, each statement to be executed is assigned the state following the state of

the previous statement. For a single parallel block, or nested parallel blocks the

state assignment is even simpler: all statements in the block are assigned to

execute in the same state. The state counter is therefore a vector, rather than

a single value, because of the need to be able to refer to the states of

statements inside of nested serial and parallel blocks. For example, in the

section of code in Figure 2.1, one state assignment would be to assign

statement-A to occur in State 1, and statements to be State 2. The entire

parallel block would then execute in state 3. There is no problem in having

statements execute in State 3, but what about statement!) and statements?

One way to handle this program is to break the notion of time down into smaller

units at this point, so that statement Dexecutes in State 3.1 andE executes in

State 3.2. Every time a "begin ... parbegin ... begin ..." sequence occurs, the

current level of parallelism (plevel) is incremented, and state-yector[plevel]

becomes the current state vector element.

£2.5. Variables and Assignment In control-flow based synthesis, variables

represent storage locations, just as they do in conventional programming

languages. Assignment statements represent transfers between registers. When

an assignment statement is encountered it means that the variable being

begin
statement-A;
statement-B;
parbegin

statement-!?;
begin

statement-D;
statement^;

end.

end;
parend;

Figure 2.1 - ASimple Parallel Program

assigned to should be set during the current state, and that the value it should

be set to is the value that the right-hand-side of the assignment statement has

in that state.

2.2.6. Data-structures In a control-flow based synthesis system, data

structures may be treated as they would be in a conventional programming

language. One major difference, however, is that a single memory with one port

might not be adequate because of independent parallel accesses to memory by

concurrently executing portions of the generated system. There are two ways to

handle this problem. The first is to employ the same methods used in

multiprocessors. These methods range from local caches, to multiported

memory, to centrally controlled, pre-scheduled interconnection networks

[Kuck78]. The second method is to partition the "memory" into many separate

memories, with the limiting case being one memory (a register) for every

variable in the input specification.

2.2.7. Optimization There several ways to reduce the amount of hardware

generated without reducing the performance of the resulting system. One way

is to share, or multiplex, the hardware generated for execution paths that are

mutually exclusive; for example, the blocks that are executed as the disjoint

consequents of if or case statements. Another way is to share specific modules

between paths that use them at different times. For example, one path might

use an adder and then a multiplier, and another path might use a multiplier first

and then an adder. If these two paths are always started at the same time and

run in lock-step, then it is possible to share the modules between them. A

problem with this approach is that the user's specification might not have been

written with this sharing in mind. In that case it is possible that the execution

ordering specified for the two paths could stop them from sharing resources

whenthe logic of the algorithm allowed it. The wayto get aroundthis problemis

-10-

to look beyond the execution ordering specified by the user's program, and

determine the optimal execution order from the dependencies between the

variables it contains. This approach, which is similar to the one used by

optimizing compilers, is the subject ofthe next chapter ofthis report.

-11-

2 9

CHAPTER 3

DATA-*LOW BASED SYNTHESIS

3.1. Introduction

The ideasin data-flow based synthesis of digital hardware have evolved from

research in data-flow computer systems. Data-flow machines [DennisBO] are

tightly-coupled multiprocessors; that is, they are computers with many

processors that work closely together on the same problem. The programs for

data-flow machines are described by directed graphs rather than by sequences

of instructions. The vertices of these graphs represent functions to be

performed on data values (or tokens) and the arcs represent communication

paths that carry these values between the vertices. As an example, adata-flow
graph for performing the evaluation of the expression (B~2)-(4*a*c) is shown in

Figure 3.1

3.2. Data-flow Computers

The architecture of data-flow computers is also different from that of

standard von Neumann computers. Data-flow machines have no program

counter, no main memory and no CPU. Instead, they have functional units

connected by a communications network. The functional units are

computational elements that serve the same purpose as functions inaprogram;

they accept one or more operands and produce one or more results. In adata

flow machine there is no central controller; a node executes (or "fires") when,
and only when, there are new values on all of its inputs. It then produces new

values on its outputs. In classical data-flow model, as defined by Dennis

[DennisBO], functional units do not store any information from one firing to the
next. This insures that they are true combinational functions - their outputs

-12-

t *-

4*A*C

B - 4*A*C

RESULT

Figure 3.1 - A Data-Flow Graph

depend only on their inputs.

At a high level, data-flow graphs are similar to logic diagrams. In fact, some

simulators work in what is basically a data-driven fashion [Newton7B], scheduling

nodes to be evaluated only when their inputs change. If the data values

transmitted are the changes in the values of the inputs rather than the inputs

themselves, we can see that this evaluation is data driven, although it is not a

strict data-flow computation, since the nodes may also contain storage. There is

also a similarity between data-flow functional units and self-timed systems

-13-

[SeitzBO]. In a self-timed system, there is no central clock - the modules are

synchronized through signals that tell when the module is ready to receive data

and when it has completed its processing. An example of such a module,

synchronized by data-request, request-acknowledge, data-available, and •data-

acknowledge signals is shown in Figure 3.2 Again, the availability of data, not a

central controller, determines when each function is to be evaluated.

It is always possible to construct a special-purpose machine to execute a

given data-flow graph. One simple optimization is to replace the general

communications network with special purpose network (such as a set of

dedicated busses) since the pattern of communications between the functional

units is known. Another optimization is to provide only as many copies of each

kind of functional unit that are necessary to achieve the desired level of

performance. Yet another optimization is to synthesize the more complicated

functional units from combinations of simpler ones in situations where speed is

BtquMt

8»qu«t

4—

Self-Timed

Module

Figure 3.2 - A Self-Timed Module

-14r

Data

tollable

Data

ieknovlsdga
i

SSI

not critical.

Data-flow based synthesis involves generating a data-flow graph from an

input program, performing operations on that graph to get the optimum
amounts of parallelism and pipelining for the particular appUcation, and then
using that graph as the net and component list input for a computer-aided
design system that contains a library of modules and a program or set of
programs for placing the modules on a substrate and routing the connections
between them. If the modules used as primitive functions are not self-timed,

then the graph can be leveled with respect to module delays [BottorffB2] (time
or number of clock cycles) and a finite-state machine based controller can be

generated that causes the nodes at each level in the graph to fire at the proper

time.

3.3. Dataflow Analysis

In a formal sense, a data-flow graph represents a set of functions and the

dependencies that exist between them. The process of determining these
dependencies is called data-flow analysis. An accurate data-flow analysis of
programs written in most conventional programming languages is a difficult
problem and can take considerable time to perform [Aho77]. However, if a
program is written in a language which allows the designer or programmer to
avoid constructs which make data-flow analysis difficult, the complexity of the

analysis process can be reduced to amanageable level and the data-flow graphs
can be produced in reasonable amounts of time. If the right language

structures are provided, the user should not need these dangerous features to

write programs or hardware specifications.

-15-

3.3.1. Language Constructs There are several constructs in conventional

programming languages that complicate data-flow analysis. Unrestricted goto

statements greatly complicate data-flow analysis and introduce unnecessary

dependencies, which reduce the speed of the program. The reason for this is

that the values of variables referenced in the statements following a label

depend on assignments to those variables in the code sections that can jump to

the label. Since the flow of control that leads to a label is almost always

dependent on the values generated by the program at run-time, the data-

dependencies calculated at compile timewill ingeneral be overly pessimistic.

Global variables (variables that are declared outside of any function, and

therefore sharable by all of the functions) also cause problems. When a global

variable is encountered, its last use cannot be determined without examining

the entire program. Dependencies involving global variables can span multiple

functions, rnMrir,g separate compilation difficult or impossible. Although global

variables can cause difficult problems for a data-flow analyzer, global constants

do not. Because constants do not change, a copy of the constant may be used

whenever a reference to the constant appears.

Static variables (variables local to a function that retain their value

between calls to that function) are not allowed in most data flow programming

languages because they can create dependencies between the order of calls to

the function. In effect, they represent a communication path between all

functions which call the function Like many of the language features that

complicate data-flow analysis, static variables can be supported if the notion of

data-flow computation is extended to allow explicit storage.

Another problem, often called aliasing, occurs when more than one name is

used to represent the same variable. Aliasing makes data-flow analysis more

difficult because it creates hidden dependencies. For example if the same

-16-

variable name is allowed to occur more than once as a actual parameter in a

function call and a call byreference or call byname style ofpassing parameters

to subroutines is used, then inside the routine the formal parameter names of

those arguments will be aliases for each other. If the function expects two

different variables as arguments and modifies one of them, incorrect results will

occur if the same variable is used for both. If a language allows separate

compilation of subroutines, it may notbe possible to determine at compile time

if such a problem exists. Aliasing problems do not occur very often for scalar

parameters because users tend to pass them by value. Arrays, however, are

often passed by reference and aliasing is much more likely to be a problem

when array-valued parameters are used.

Call-by-reference and call-by-name addressing can also create problems

when several functions are called with name or address of the same object at

the same time and one or more of them tries to modify that object. Because

such errors depend on the run-time behavior of a program they can be very

difficult to find.

3.&2. The Single Assignment Rule The removal of goto statements, global

variables, call by reference, and aliasing greatly aids the compiler in

determining what expressions a variable depends on and which expressions

depend on the variable.

One remaining problem in conventional languages is that variables are often

used as "scratch-pad" temporaries - they are assigned a value and then

reassigned another value within the same section of a program. This

complicates the data-flow analysis, because it creates a false dependency

between the old value of the variable and the new one, decreasing the amount of

parallelism available in the program. One way to eliminate this problem is to

introduce a rule that specifies that a variable may be written only once within a

-17-

891

given scope, while allowing the variable to be read as many times as desired.

This convention, called the single assignment rule, is found in the data-flow

languages YAL [AckermanB2], and ID[Arvind7B], While the single assignment rule

makes analysis easier, it also forbids such familiar constructs as "A = A+l", the

function of which must be provided by other language facilities. The most

common case where such re-assignment occurs is in the index variables and

auxiliary variables of loops. The way the looping constructs of data-flow

languages solve this problem is described in the next section of this report. If a

language does not allow goto statements, global and static variables, call by

reference and aliasing, and enforces the single assignment rule, then that

language is called an applicative or functional language. These languages are

are the subject of considerable research [MorrisSl] since the same properties

that make data-flow analysis of programs written in applicative languages

tractable also cause the programs to be more modular and easier to maintain.

In applicative languages, variables are not storage cells, but instead are like

macro names for expressions. A data-flow graph can then be built by tracing

from the constants referenced in the program and from the program's external

inputs and in every place a variable name appears, substituting the expression

that corresponds to that variable name. The final result of this process is a

data-flow graph for the program.

3.3.3. Loops The single assignment rule must be modified slightly if the

language is to allow loops. In general, loops require that the values of certain

variables (called the iteration variables of the loop) change from one iteration

to the next. One way avoid the prohibition of reassignment is through the use of

a special keyword that specifies that the assignment is for the value of the

variable for the next time through the loop. In the data-flow language ID this

keyword is called new. In the body of a loop, one might see "new x = x + 1",

-IB-

691

meaning that the value of x in the next iteration would be one greater than its

value during the current one. Aloop in a program results in a loop in the data

flow graph. These loops are a form of feedback; therefore, when hardware is

generated, registers must be created to hold the values of the iteration

Tariables.

3.3.4. Arrays and Data-Structures The single assignment rule and call-by-value

work quite well for scalar variables, but arrays and data-structures require

special consideration. Arrays and structures can be viewed two ways —either as

single, large, objects or as collections of smaller objects. In data-flow languages,

arrays and data-structures are almost always viewed as single objects with the

result being that the entire array or data-structure must be assigned to as a

single unit. Languages (such as VAL) that use the single object approach provide

constructs that copy the entire array, substituting in new values for particular

chosen elements. This allows the programmer to create new arrays with small

changes from the original ones, rather than changing individual elements. This

may seem to be more expensive than the second approach (dealing with an

array as a collection of smaller elements) but it has the advantage that the

entire array can have one set of control information rather than a control block

for each element of the data-structure or array.

In hardware synthesis, the values of all variables, arrays, and structures, as

well as scalars, are carried on busses and stored in registers. The array element

substitution operation compiles to a set of busses which connect to, or go

through, a functional module. Any values that are specified to be unchanged by

the source code are passed through the module directly and any that are be

given new values in the code receive them from the module.

-19-

Ol

a&5. Functions The evaluation of functions in a data-flow program results in

an interesting set of problems because a function may be called from more than
one place and it may also be necessary to allow more than one invocation of the
function to be active at the same'time. In hardware, this corresponds to several
modules using the same type of submodule at the same time. There are two
approaches to the problem. The first, and simplest, is called code copying.
Every time a function is called, a copy of the code is created and used for the
function Thus, every caller has its own copy of the function and conflicts are

avoided. The other approach is to use colored tokens [ArvindTB], where each
value in the graph has a tag associated with it that tells what function invocation
it belongs to. For digital synthesis, the code copying approach is simpler and
results in functions being treated like software macros, where each call of a
module results in a new copy of the module being inserted in the calling circuit.

3.4. parallelism. Pipelining, and Graph-folding

Data-flow graphs can contain both parallelism and pipelining. The
parallelism results from more than one functional unit at the same level in the
graph being active at the same time. Pipelining results from units on more than
one level in the graph being active at the same time. The output of the data-flow
analysis section of the compiler is a data-flow graph where the only
dependencies are those that result from data dependencies in the input
program. This graph gives the maximum possible parallelism and pipelining for
that program. It is possible to restrict one or both of these properties by
performing operations on the graph that introduce additional constraints. These
operations correspond to folds in either the width (decreasing the number of
units on agiven level) or length (decreasing the number of levels that may be
active at one time) of the graph. To prevent two units of the same type at the
same level from being active at the same time we make one unit depend on the

-20-

V.i.

output of the other unit by creating asymbolic data dependency. The dependent
node is then constrained not to fire until the node on which it depends has
finished just as if it depended on the particular value that node produced. This
is called widthwise folding. An example of widthwise folding is shown in Figure
3.3 where the graph of the expression (a +b) +(c +d) which can require that
two adder functional units be available at the same time is folded to produce a
graph that can only require asingle adder at atime. It is also possible to
reduce the maximum amount of pipelining, creating lengthwise folds,

(A+B) + (C+D)

Figure 3.3-Widthwise Folding

-21-

decreasing the number of levels in the graph. Lengthwise folds are created by

overlaying one or more levels in the graphwith previous levels. This is done by

generating symbolic connections from the outputs of a level of the graph to the

inputs of a previously generated level. A symbolic multiplexer node is then

generated at each input of each functional unit that receives a signal which is

fed back. The number of inputs to the multiplexer is equal to the number of

signals that share that functional unit and the multiplexer contains a counter

that determines which input it should direct to the functional unit. Each time

the multiplexer generates a value, the counter is incremented. This technique

is similar to the use of colored tokens in data-flow computer systems [Arvind78],

. except that the "color" is kept onthe inputs to the functional unit not as part of

the data-value. An implementation of a folded graph need not use actual

multiplexers: any technique that insures that the correct data-values are

transported to the functional units canbe used. One set of levels of the graph

cannow be thought of as the first iteration of a pseudo-loop, the next set as the

second iteration, and so on. Note that this technique does not need a central

controller or a central clock. An example of lengthwise folding is given in Figure

3.4 where the multiplexers have two states, called Odd and Even. When a fold is

generated between two functional units, additional control information must be

generated to make sure that they receive their input values at the right time.

In addition, when two functional units of different types are folded together, a

functional unit that can perform both operations must be generated. The

limiting case of lengthwise folding is a parallel processor with aninterconnection

network to switch data-values between the processors and memories. The

limiting case of widthwise folding is a multi-stage pipeline processor with

feedback and memories between the stages. If both maximum lengthwise and

widthwise folding is performed then the result is a microcode representation for

use in a general-purpose processor and memory system.

-22-

(A+B) + (C+D)

Figure 3.4 - Lengthwise Folding

It may be desirable to limit the parallelism and pipelining of an

implementation synthesized from a data-flow graph to reduce the total amount

of logic, total chip-area, or to create implementations of the same architecture

with different cost-performance tradeoffs. An attempt can also be made to

minimise crossovers, i.e. to make the graph planar or as close to planar as

possible. In general, the larger the number of crossovers inthe graph, the more

difficult the wiring of the chip or circuit board with a limited number of

interconnection layers will be.

-23-

*LZ

3.5. Combined Methods

Both control-flow and data-flow based systems have their respective

advantages. To be able to combine the best elements of both approaches it is

necessary to have a specification language that is facilitates data-flow analysis

and also provides constructs for the explicit specification of concurrency. With

these restrictions, it is possible to have the translation system compare the

explicit and the implicit control and data flow aspects of the user's specification

and check for errors. These errors fall into two classes. The first kind of error is

when the user's specification fails to specify that two computations can be

performed in parallel but the data dependencies imply that they can. An error

of this kind can mean two things: either the user has neglected to recognize

some potential concurrency (a relatively harmless error) or there is some

external constraint that the user neglected to include in the specification. The

second kind of error occurs when the user specifies that two events can go on in

parallel, but the dependencies prevent them from doing so. Catching this kind

of error is extremely useful for high performance design since it points out

potential bottle-necks to the user so that they can be examined and corrected.

•24-

£11

CHAFTER4

THE ARCHITECTURE OF FUNCTIONS TO LOGIC

4.1. Introduction

This chapter describes the background of the FTL project and the

architecture of the FTL simulator. The goal of the Functions to Logic (FTL)

system is to make it easy for auser to describe the behavior of adigital system

in a way that makes its natural structure and concurrency available for

simulation and synthesis. VLSI digital systems are very complex and highly

concurrent. These two problems of complexity and concurrency have been

examined in two different prototype systems, FTL1 and FTL2.

4.2. The Syntax of FTL

The input to FTL is a lisp-like language, which has a uniform syntax that

shows the tree structure of a user's input specification and makes it easy to add

extensions the language. Alternate syntaxes are possible through the use of

input pre-processors. The input to FTL is viewed as a sequence of symbolic

expressions. A symbolic expression (or s-expressicn for short) is either an

atomic symbol (such as a variable or function name, a number, or a quoted

string) or a/orm. Some examples ofatomic symbols are: 10, "Cycles used", and

elk. A form may be a control structure (such as a while or if), a language

facility (such as a data-type declaration) a primitive function, or a user defined

module, macro, or alias. An alias in FTL is a parameter-less macro (note that

the term "alias" is used differently here than it is in the chapter of this thesis

that describes data-fiow analysis). Arguments to forms may themselves be

forms. All forms may be thought of as functions, since they all return a value.

There are no separate "statements" in the sense of Pascal or 'C. A form

consists of an open parenthesis, the name of the form, the arguments to the

-25-

form, and a close parenthesis. For example:

<+*y)

returns the sum of x and y,

(<ab)

returns true if a is less than b and false otherwise.

and

(for ((x from 0)

(i from 0 to 10))

(new x (+ x i)))

returns the sum of the numbers from 1 to 10.

4.3. Object Oriented Programming

FTLl is aninterpreter for anobject-oriented programming language similar

to ICL [Ayres79] and Smalltalk [XeroxBO] Object-oriented languages help users

manage complexity by providing a hierarchal type specification mechanism.

Hierarchal type specification allows the user to create generic classes of objects

and define functions that operate on them, and then create more specialized

objects without necessarily having to create new functions to manipulate them.

For example, FTLl provides integer and floating point numbers as most

languages do. In FTLl, however, integer and floating point numbers are created

as special cases of the class number, where number is a special case of the type
of the class object (the most basic data-type in FTLl). Therefore, if a user

defines a function that works onnumbers it will also work onintegers and floats

without any special effort. For example, the functions in Figure 4.1 define

addition and multiplication for complex numbers. Note that it is possible to

define several functions of the same name, and that it is also possible to define

functions with the same names as primitive functions such as "+" and "•". The

-28-

LLl

only thing that mustbe different is the types of the arguments they take. This

ability is useful inVLSI where a user may have several modules that only differ

from eachother by such characteristics asword-length, drive, input and output

impedance, etc. and it is desirable to create generic functions that operate on

them. The class number is the parent of the class integer. Integer is the parent

type of the classes bit and byte. In FTL it is possible to have several functions

that have the same name but differ in the type of the arguments they expect.

These are called variants of the function. Whenever a function is called on an

argument, the variant ofthat function whose formal argument type most closely

matches the type of the actual argument is called. An exact match is sought,

and if one is not found then the variant that matches the closest ancestor of the

actual parameters is chosen. The implementation of FTLl is approximately 1200

(define-type complex slots ((type integer name real)
(type integer name imaginary)))

(define-function +((type complex name a) (type complex name b))

(make-complex

real (+ (a real) (b real))

imaginary (+ (a imaginary) (b imaginary))))

(define-function • ((type complex name a) (type complex name b))

(make-complex

real (-
(• (a real) (b real))
(• (a imaginary) (b imaginary)))

imaginary (+
(* (a real) (b imaginary))
(• (b real) (a imaginary)))))

Figure 4.1 - Polymorphic functions

-27-

811

lines of Franz lisp [FoderaroBl], a dialect of the lisp programming language

developed at UC Berkeley.

4.4. Introduction to FTL2

FTL2 is a language for describing concurrent systems. It provides

constructs to allow the user to explicitly specify the concurrent behavior of

their system while avoiding language features that make data-flow analysis

extremely difficult. FTL2 evaluates all arguments to a function call in parallel,

and provides a set of primitive mechanisms for describing concurrency in a

structured fashion. These structures help the user in writing correct

descriptions in the same way as normal control structures help users write

correct programs instandard high-level sequential languages.. In FTL2 there is a

matching concurrent control structure for almost every sequential one. For

example, the serial function evaluates all of its arguments in sequence and

serves the same purpose as a block in a programming language like pascal or

•C\ The parallel function is the matching concurrent version of serial. Parallel

evaluates all of its arguments (statements) in parallel. To step through the

elements of a vector sequentially, the for function can be used. To step through

them in parallel, the forall function maybe usedinstead.

FTL evaluates functions and moves data in such a way that the results from

a FTL program running on a sequential machine are the same as they would be
on the concurrent digital system that the user's program describes. The

current implementation of FTL2 is approximately 2000 lines of Franz lisp.

4.4.1. Explicit Delay Mode Many new questions arise in the design of a system

like FTL that are do not occur in normal sequential programming languages.

The most interesting ones concern the notion of time. The model of time in

normal programming languages is very simple. Statements in a program are

executed in sequence.

-2ft-

t L I

In a language that provides concurrency, things are much more complex.

FTL currently supports two models of time. The first one is called explicit delay

mode because time delays must be provided explicitly by the user program. The

model provides sequencing, so that statements inside a serial or for happen

sequentially and those inside a parallel or forall happen in parallel. However,

the current time is only advanced when the delay function is used; normally it

takes zero time to go from one statement in a serial block to the next. Thus, if

the system is set to report an error when avariable is written and then read at
the same point in time, it will complain when a variable is set and then used in

two adjacent steps ina serial, unless the user puts an explicit delay between the

two steps. Explicit delay mode is useful for modeling asynchronous systems, or

systems withmore than two phases of clocking.

4.4.2. Implicit Delay Mode The other time model is called implicit delay mode.
In implicit delay mode, sequencing and time are combined into one. The basic

idea is that time is broken down into finer and finer grains as necessary. Each

step in the outermost serial block of the program is defined to take place one

time unit (clock tick) apart. The time when statements in the inner blocks

occur is defined as follows. Suppose one of the statements in the mainblockis a

parallel. If the parallel block is. for example, the fourth statement in the main
block, then it will be evaluated at time = 4, and since it is a parallel block, the

statements inside it will also be evaluated at time = 4. Now, if one of those

statements is a serial block, thenthe statements in the block must be evaluated

in sequence - one after another - therefore they cannot all be evaluated at time

= 4; the first one will be evaluated at time = 4, the second one at time = 4.1, the

third at time = 4.2, etc. If there is a parallel block inside that serial block, anda

serial block inside that, the problem repeats, and it would be necessary to be

able to talk about time = 4.1.1. time = 4.1.2, etc. The rule is that whenever a

serial block..parallel block..serial block combination is seen, a new level isadded

•29-

te the state vector. The width of the state vector is proportional to the

mavimiim depth of parallelism in the source program.

4.4.3. The Compiler The translation and execution of FTL programs is broken

into two major phases. The compilation phase reads the input program and

produces aninternal tree representation of it. The interpreter phase then walks

over the tree, emulating a hypothetical parallel machine. The compiler or

reader portion of FTL reads in symbolic expressions from the user's input

description and creates an internal tree representation. Each node in the

expression tree contains an operator, a node name, the name of the node's

parent, a list of the names of its children, the names of functions to call when

evaluating the expression (called message handlers) and some other assorted

fields. The action taken by the reader when anexpression is first read is based

on the object type of the expression. If the expression isan atomic symbol, then

thatsymbol is either anumber, avariable name, or an alias. If it isnot an alias,

then a tree node is created to hold the symbol and normal processing continues.

If it is an alias, however, then the text for the alias is read as input, replacing the

aliasname. In FTL, the alias function is used to Forexample, if the expression:

(alias index (+ index-register offset))

is seen in the text, then if

(get-register index)

was read, the result would be the same as if the expression

(get-register (+ index-register offset))

was seen in the source.

If the expression is a form, then action taken is based on the class of the

first element of the form, the form name. If the form name is the name of a

macro, then the text for the macro is expanded with the arguments to the form

being the arguments to the macro. For example: __

-20-

i fe

If

(macrosquare(x) (• x x))

is read, and later on

(square a)

is read, then the result is the same as if

(♦aa)

was seen in the source.

If the form name is the name ofa function that only declares a variable or sets a

switch in the compiler and doesn't generate any code during simulation or

hardware during synthesis, then the handler routine for the function (linked via

the property Ust of the function) is called and is given the current tree and
input context as arguments. (In the code for the compiler, these functions are

called magic compile functions because they don't produce any code.) If the
form name is the name of a built-in facility (such as a looping function) then

that function is called a special compile function and the handler function for

that facility will be called and inmost cases will modify the input before passing

it to the next level of the compiler. If the form name is the name of a primitive

function, (such as + - * or /). then the compiler generates code to call the

primitive directly. Finally, if the compiler does not know what the form name is.
it is assumed to be the name of a user defined module, and code is generated to

call the module with the proper linking. Modules in FTL represent the modules

of a digital system and serve the same purpose as user defined functions in a

normal programming language. Because of the concurrency provided inFTL it

is possible that more than one parent module might try to use the same child
module at the same time. In FTL. if two modules try to use the same module at

the same time it is considered an error. This insures the designer that there

are no access conflicts to the module. If more than one copy of a module is

needed at the same time in a digital system being described, then a macro can

-81-

be written that generates the circuitry inside the module, and as many modules

as necessary can use that macro. An example of this technique is found in

chapter 5.

The decisions about which functions are "special" and what functions should

be called to handle them is almost completely table driven. To add a primitive

or special form to the compiler, all that is necessary is to enter the form name

into the table for either magic or special compile and write the handler function.

The handler function is passed the code tree being constructed, the name of the

node being constructed, and the input text.

4.4.4. The Interpreter After an expression has been read by FTL and the tree

that represents it has been constructed, the tree is walked by the interpreter

and the expression is evaluated. The interpreter represents a hypothetical

augmented-data-flow tree-machine, [DeutschBO], just as the pascal pvnachine

[Jensen79] represents a hypothetical stack machine. The way the machine

executes programs is by way of a top-down fiow of control, followed by a

bottom-up fiow of data (see Figure 4.1). The top-down messages are called eval

messages. An eval message asks a node to determine itsvalue and return it. The

bottom-up messages are called data messages. These messages are used by

child nodes to transmit values to their parents. Conceptually, the interpretation

of the program is done by concurrently sending these messages between nodes

of the tree. Actually, there is a central evaluation queue, andwhen a message is

sent to a node the message handler in the node that is responsible for dealing

with that type of message is called. The message handler takes whatever action

is necessary and then returns a list of nodes to be entered onto the end of the

queue. There are three basic messages anode can receive: eval, data, andfire.

An eval message asks the node to evaluate itself, which usually requires it to

evaluate its children (put them into the evaluation queue). Adata message asks

-32-

Eval

Data

Figure 4.1 - expression evaluation

a node how it would like to handle the data value that one of its children wants

to pass back to it; for example, when a statement in a serial block returns its

value to its parent, the parent will schedule the next statement in the block, or

the parent will schedule its parent if no statements are left. Finally, a fire

handler tells how a function is supposed to be executed once it has all its

arguments. The walk routine in the interpreter is responsible for taking nodes

off the evaluation queue and calling their eval and fire message handlers. If

there are no nodes left in the evaluation queue then walk calls the step-time

routine. Step-time finds the nodes in the delay-list with the smallest delay, then

-aa-

advances the clock and moves those nodes from the delay-list to the evaluation

queue. The way that the walk routine and the message handlers decide which
handler to call on a particular node is by way of the state field in the node. If

the state of the node is DORMANT, then it means that the code that sub-tree

represents is idle - it is not in the process of being executed. If a node is not
dormant, it means that the code below it is in some stage of evaluation. Tor

example if the node state is WATT-DATA, then itmeans that the eval message has
been sent to one or more children of the node and the node is waiting for the

child or children to call the node's data-handler to send it their values. If the

node state is READY, then it means that the node has all values it needs from its

children and is ready to have its fire-handler called. Since the walk routine only

distinguishes between READY and non-READY states (calling the fire-handler in
the first case and the eval-handler in the second one) most of the eval-handlers

have a case statement used to choose a code segment to execute based on the

state of the node.

4.4.5. Message Handlers The simplest set of message handlers are those used
for parallel blocks. When aparallel block is entered, the paraUel-eval-handler is
called and returns a list of its children - the forms in the block. When each one

of these functions returns, it calls the parallel-data-handler to enter its value

into the parent's list of values. Finally, when all the functions in the block have
returned, the parallel-fire-handler is called, which sets the parallel dormant,
and calls its parent's data-handler. The message handlers for serial blocks are
slightly different. When first called, the serial-eval-handler schedules the first
form inside the serial. Then, every time aform in the serial returns, the serial-
data-handler causes the next form in the serial to be scheduled for execution.

Finally, when the last form returns, the serial-fire-handler makes the value of
the last form the value of the serial, sets the node dormant, and calls its

-84r

parent's data-handler. Many special forms use the message handlers from other

forms. For example, primitive functions use the "parallel-eval-handler" to

evaluate their arguments, and the "parallel-data-handler" to gather the values of

their arguments. The difference between primitives and parallel blocks,

however, is that when primitives fire, they use the "primitive-fire-handler". The

primitive-fire-handler calls the lisp function that the primitive represents giving

it the now completely evaluated arguments as its arguments. User-defined

modules are simulated by evaluating all their arguments in parallel, then calling

the "module-fire-handler" linking in the user's module. The linking process

involves examining the "node-parent-name" field in the root node of the module.

If the value of that field is non-null then it means the module is already in use

and the error is reported to the user. If not, then the "node-parent-name" field

of the module is set to the node-name of the node that calls it, and the code of

the module is executed.

The handlers for conditionals are more complicated. The if form looks like

a function call, but it evaluates its arguments in a special way. If evaluates its

first argument (the condition) and if the condition returns true it then evaluates

its second argument. If the condition returns false it evaluates its third

argument if there is one, otherwise it just returns.

The while-eval-handler evaluates (sends an eval message to) its first

argument, the condition, and if the condition returns true it evaluates its second

argument the object of the loop. If the condition does not return true, the while

loop returns its value (the value of the while loop) to its parent. The while-data-

handler simply schedules while-loop for re-evaluation Thus, while loops are

evaluated in a style more like tail-recursion [Steele78] than straight iteration.

-35-

9 b

4.4.8. Variable Management Like most software programming languages, FTL

is "block structured" - it allows a variable to be declared inside a block and for

that definition variables to be supercede a definitions of a variable with the same

name in an outer block. This is an example of scoping. There are two different

scoping rules in common use today. The scoping rule used in most current

programming languages such as 'C or Pascal is called lexical scoping because

the instance of a variable name seen at any point in the program is the one

whose declaration is closest to the point in the text where the variable name

appears. The rule used in most lisp systems is called dynamic scoping because

the instance of a variable seen is dependent on the dynamic behavior of the

program. When avariable is referenced that is not declared inthe function that

references it, the environment of the caller of that function is examined, and

then the caller of the caller, etc. until a caller is found that has declared a

variable of that name. The advantage of dynamic scoping is that the

environment for a function or module may be completely defined by its caller.

The advantage of lexical scoping is that the source of all variables can be known

at compile time. FTL currently uses dynamic scoping because that method fits

cleanly into the machine model, but changing it to use lexical scoping would not

be difficult.

-38-

-_ »

CHAFTER5

EXAMPLES

5.1. Introduction

This chapter begins with some small FTL examples, followed by a FTL
description of alarge digital system, the RISC [PattersonBla]. microprocessor.
RISC was chosen because it has a simple, clear architecture that makes it a

good choice for formal specification. It is also a large enough example to
demonstrate the use of FTL on real systems.

5.2. Low Level Descriptions

FTL may be thought of as a multi-level simulator in the style of
ADLIB/SABLE [HillBO]. In FTL, the same system can be described at various
levels of detail depending on the type and amount of information it is desired to

get from the simulation. As an example, we can model a recognizer for asimple
pattern. The recognizer, a sample problem from [Roth79], outputs a 1 if its
input pattern is 1101 or 0011. and a 0 otherwise. In the original solution, the
recognizer was implemented as a finite-state-machine. The FTL description of
the system reads four bits from the input stream, determines whether to put
out a 1 or a 0, and then goes back for more input. In example 5.1, the repea*

form does just that.

Another example is shown in Figure 5.2. Here, the goal is to simulate a

pseudo-random number generator based on a shift-register with feed-back
through an exclusive-or function. This example demonstrates the use of a
numeric parameter combined with the while function to limit the number of

cycles of a simulation.

-37-

(module Roth()
I s erial
(declare (inports (bit x))

(exports (bit y))
(locals (bit a b c d)))

(repeat
(serial
isetq a (input x))
(setq b (input x^
(setq c (input x))
(setq d (input x))
(output y

(logior
(logand (iognot a)

b
(Iognot c)
d)

(logand a
(Iognot b)

Figure 5.1 - a simple module

V -38-

k

(module shift-seq()
(serial
[declare (locals (word xO-in-xCLout xlJn xl_out x2_in x2Lout)))
setq xO-out 1)
[setq xl-out 0}
[setq x2_out 0)
[while true

(serial
(delay 1)
(parallel
fsetq xO-in x2Lout)
(setq xl_in (1-xor x2^out xCLout))
(setq x2_Ln xL-out)
(msg x2_out xl-Dut xOLout))

(delay l)
(parallel
fsetq xO_nut xQ_in)
(setq xL-out xLin
(setq x2_out x&in))))))

Figure 5.2 - Shift-register pseudo-random number generator

In the previous texample, the time delay of the parts of the module were

specified separately tfrom its-series/parallel behavior, and temporary variables

were used to carry ^values from one iteration to the next. FTL also has the

ability to deal with the previous value of a variable. When operating in PCmode,

the value of a variable is mot updated until after the end of the cycle it is set in,

and explicit delays are replaced with an implicit delay between the forms in a

serial block, while loop, if statement, or any control structure that involves

sequencing. Using this mode, the previous example may be re-written as

example 5.3.

FTL may also be-used at amuch higher level. Since it provides true parallel

processing, it may be used to simulate communicating processes in problems

such as simulating computer networks on to test the validity of solutions to

problems involving multiple parallel communicating processes such as those

posed by Dijkstra [Dijkstra76]. FTL provides a function called lock that tests a

-89-

(module shift-seq()
(serial
[declare (locals (word xO xl x2)))
fsetqxO 1)
fsetq xl 0)
setq x2 0)

[while true
(parallel
(setq xO x2)
(setq xl (1-xor x2xO))
(setqx2 xl)
(msgx2xlx0))))).

Figure 5.3 - Shift-register example using PC mode

variable to see if a variable is 0 and sets it to 1 if it is not. This testing and

setting is performed as an atomic operation. This means that while the testing
and setting are being done no other processes are allowed to run, and thus no
other process can interfere. Lock returns as its value the old state of the lock.
An example of using FTL and the lock function for this type of simulation is given

in Figure 5.2.

5.3. The RISC Microprocessor

One aspect of the RISC project is to determine if a processor with a simple
architecture, executing one simple instruction per cycle, can run as fast or

faster than more complicated conventional machines. If the number of

instructions and addressing modes in a machine are reduced, the size of the

machine's control section can also be reduced. The silicon area that is saved
canthen be used for other purposes. In the case of RISC-1 that area is used to

hold a large number of on-chip registers. This concept of optimizing a simple
architecture to execute one instruction per cycle was developed independently

by researchers at IBM. and is used in the IBM 801 minicomputer [Radin82].

* -40-

(module tlock()
(serial
(declare (local (word 1)));;; node we'll be locking

(unlock I)

(parallel

(serial
(if (locked? (lock 1))

(serial
[dumpmsg "A locked 1")
[delay 1)
unlock 1)
dumpmsg "A unlocked 1")
[delay 1))

(serial
(dumpmsg "Acouldn't lock 1")
(delay 1))))

(serial
(if (locked? (lock 1))

(serial
'dumpmsg "B locked 1")
delay 1)
[unlock I) .
[dumpmsg "B unlocked 1")
[delay 1))

(serial
[dumpmsg "B couldn't lock 1")
[delay 1)))))))i:

Figure 5.3 - A locking problem with two communicating processes

RISC-1 has 78 registers and 31 instructions. The instructions are grouped

into four categories - LOAD, JUMP, ALU, and OTHER. The instructions in the

LOAD group are the only ones that reference memory. The rest of the

instructions manipulate data from the register file and/or immediate data

values given in the instructions. The RISC chip is composed out of five logical

blocks. The blocks are the Register file, the Shifter, the ALU, the Pc Group, and

the Control Pla 's.

-41-

25

5.3.1. The Register Rle The RISC-1 register file contains 7B registers. The

registers are broken up into two groups. The first group is a set of IB global

registers (numbered 0-17) that are accessable at any time by any routine.

Register zero is special in that it always always contains the value 0. All the rest

are general purpose registers. The second group is a set of 60 registers broken

up into six overlapping register windows. Whenever a function is called, a

special register called the Current Window Pointer (or CWP) is decremented; it

is incremented whenever a function returns. The CWP is used to select one of

the 6 register windows. Each window consists of 14 registers. The windows are

conFigured so that the lower 4 (register numbers 18-21) are shared with the

caller of the function, the middle 6 (22-27) are local to the function, and the

upper 4 are shared with any function the current function calls. Adiagram of

the scheme is shown in Figure 5.4. The use of overlapping register windows

greatly reduces the cost of procedure calls. The only time registers have to be

stored to main memory iswhen the depth of procedure calls isgreater thanthe

number of register windows. Statistics of sample programs show that this

should be a relatively infrequent event[PattersonBlb].

5.3.2. The Shifter The RISC chip contains a 32 bit barrel shifter [MeadBO]. The

barrel shifter can shift a 32 bit word by from 0 to 31 bits in either direction in

one cycle. Both arithmetic andlogical shifting are provided.

5.&3. The ALU The operations that the ALU can perform are: add, add with

carry, subtract, subtract with carry, subtract reversed (b-a rather than a-b),
subtract reversed with carry, AND, OR, and XOR. A bit is available in most

instructions to specify whether or not the result of the instruction should set

the condition codes. In the instruction set order code (the binary format ofthe

instructions), and in the FTL description of RISC, the shift operations are

grouped with the ALU instructions.

•42-

Phjrvical # Proe A ProcB Proc C

1ST

iac

lat

ut

121

ne

BtGHA B1A

««A

LOCALA
"»A

B1«A

L0WA/H1GHB E16A

R10A

LOCALB

BfiB

Rl6n

LOWg/HlGBc uoB

B10B

B91C

BC0C

UCALC

116c

L09c
BISq

BlOe

0

0

GLOBAL

»A

»A Me

J 'igure 5.4 - Overla] >ping register windows

5.3.4. The PC Group RISC uses instruction prefetch, and aninteresting branch

strategy called a delayedjump. The delayed jump method means that whenever

a jump instruction is executed, the jump is not actually taken until after the

instruction following the jump is executed. This method is used to allow

pipelining of the CPU without requiring hardware to clear out the pipeline when

a branch occurs. Using this strategy it is normally necessary to follow each

branch instruction with a no-op so that the results are the same whether the

branch is taken or not. However, it is possible to have a post-processor remove

most of these no-op's [PattersonBla]. Because of pipelining, the RISC chip

actually has three program counters; the last pc, the current pc, and the next

pc.

-43-

5.3.5. The Control FIA's Inmost computers, the control unit is the single most

complicated part of the machine [LampsonBl], and in most current
microprocessors, the control section takes up from 40-70% of the chip area
[PattersonBlb]. In RISC, however, the main controUer takes only asmall portion
of the total chip area. The controller is implemented in two PLA's and is

positioned in the upper right corner of the chip. The decoder for the
overlapping windows register file is also considered part of the control logic.

5.4. The FTLspecification of RISC

The FTL description of Rise is broken up into 7 files: opcodes.ftl, regfile.ftl,
macros.ftl, aluftl, jump.ftl. memory.ftl, other.ftl, exec.ftl, and testrisc.ftl.

5.4.1. Opcodes.ftl The file opcodes.ftl contains constant definitions for all of
the RISC opcodes, with the top two bits of each opcode set to zero. The reason
for this is that the top bits are used to decide which of the four classes of RISC

instructions (LOAD. JUMP, ALU, or OTHER) an instruction belongs to.

5.4.2. Macros and Aliases The file macro.ftl Contains some useful aliases. The

alias facility allows auser to associate aname with apiece of text, and have the
FTL compiler replace every occurrence of the name seen after that point with
the corresponding text. In the description of RISC, aliases are defined for all the
important bit-fields in an instruction, and the word "index" is made an alias for
the indexed addressing computation.

5.4.3. Regfile.fti This file defines constants for the major parameters of the
register file (i.e. the total number of registers, the size of the register windows.
the number of local registers in awindow, and between aroutine and aroutine it
calls, of registers global to all routines). The macro "logical-to-physical" takes
care of the conversion from a logical register number to the actual physical
register number (which depends on the value of the RISC's current window

-44-

pointer). Since many RISC instructions reference two registers in the same
cycle, two paths (modules) must be provided to read from the regfile. This is
done by defining a macro "get-register" that contains code to do the work of
reading a register, and then creating two modules (called "get-register-a" and
"get-register-b"), each of which uses the macro. The last definition in the file is
the module "set-register", used to set a register to a value.

5.4.4. Mu.fU Alu.ftl Contains the constant, variable, macro, and module

declarations for the RISC's ALU. The macro "alu-worker" takes an opcode, two

operands, and the carry flag as inputs, and returns the result of that ALU
operation. The module "alu" calls alu-worker and if the "set condition-codes" or
"SCC" bit in the instruction is on, sets the condition codes and is used for

conditional branches (note that all condition code bits are set in parallel).

5.4.5. Jump The file "jump.ftl" handles the execution of "jump" and "call"
instructions. Because of the register window scheme, it is necessary to

decrement the CWP on procedure calls, and increment it on returns. The
status-equal module compares the the condition specified in an instruction with
the processor's condition codes, and is used for conditional branches.

5.4.6. Memory The file "memory.ftl" serves as an interface between RISC and
main memory. It declares a small test memory (100 words) and two modules -
"get-memory" and "set-memory". Get-memory and set-memory do the sign-
extension necessary when accessing bytes and halfwords as signed quantities.

5.4.7. Other The file "other.ftl" handles the fourth class of instructions, as well
as a pseudo-instruction that allows the FTL description of RISC to print out the
contents of registers and memory locations.

-45-

C P.

5.4.B. Exec Exec.fti defines the program counter, the current window pointer,

and a one bit running/halted flag. During simulation, it examines the top two

bits of each instruction to determine its type, and then passes the instruction to

the correct functional module. Exec.fti also defines a routine that simulates the

top-level instruction fetch finite-state machine, and a reset function that sets

the PC to zero, and puts the machine into a fetch-execute loop.

5.5. Support files

The other files included in this section are simple RISC assembler, which

can be called from FTL. and a simple absolute loader. The FTL description of

RISC and the assembler and loader are included in an appendix.

-46-

CHAPTER6

CONCLUSIONS

6.1. Results

A new language and associated behavioral-level simulator has been

described. FTL allows the description of systems from a very high behavioral

level to a fairly low logic level. FTL allows users to describe the sequential and

parallel behavior of their systems in a structured fashion. These structuring

facilities lead to clearer, more useful specifications and should give designers

increased confidence that different implementations of a system will be function

in the same way. FTL has been demonstrated on several small pieces of logic,

and one large digital system, the RISC microprocessor. The profile and trace

facilities in FTL make it possible to analyze the characteristics of such

behavioral-level models so that different implementations of the same

architecture can be compared and their functional correctness can be verified.

6.2. Future Work

More facilities must be added to FTL before it can be a generally useful tool.

A dependency analysis package would be a good step in the implementation of

an FTL based synthesis system. A program to take an infix input specification

language and convert it to FTL would be a useful addition for users that are not

comfortable with lisp syntax. The data-type management of FTLl would have

been a great help in writing the RISC description and is likely to be added in the

future.

•47-

APPENDIX 1: LISP

One of the most important decisions in a large software project is the

choice of a language to implement it in. Two things were apparent from the

beginning of the FTL effort. The first was that it was possible, and even likely,

that it would be necessary to make one or more major design changes during

the implementation; the second was that, because of the experimental nature of

the project, it would be very important to be easily able to add new constructs

and features to the language. For these reasons, LISP [WinstonBl] was chosenas

the implementation language. LISP is a good language for building prototype

software systems because of its excellent debugging facilities, run time

interpreter, and human readable linked structures. LISP also has a powerful

macro facility which allows implementation decisions in a package (as to what

objects are data, vs. what objects are functions) to be hidden from users of that

package without any loss of efficiency.

LISP uses a single representation (linked lists) for both programs and data.

Thus it is possible for a lisp program to build lisp code which is then evaluated.

The FTL compiler works basically in this fashion. It takes an input program in

lisp syntax and creates data-structures that represent the structure of the

program. Finally, at run-time, the "interpreter" executes the program by

traversing this data-structure.

LISPis a easy language to learn because of its simple syntax and semantics.

Every programming language must provide a set of basic facilities, among which

are control and data-structures. In lisp, all primitive language facilities (control

structures, function definitions, variable declarations, and even arithmetic) are

provided through functions. The syntax of a function call in lisp is slightly

different than in most other programming languages. In lisp that the function

name is placed after the left parenthesis, rather than before it. Thus, the form

Al.l

to

of a function call is an open parenthesis, the function name, the arguments (if
any), and aclose parenthesis. For example, "(print x)" calls the function "print"
on the variable x. and as a result that the value of x is printed. As another
example. "(+ a b)" is a call the function "+" with the variables a and b as
arguments, returning their sum. Data structures are represented using the
same notation. The main two data-types in lisp are atoms and lists. Numbers

and variable names (such as "x" or "y") are the examples of atoms. Alist is a

dynamic (linked) data structure that is very easy to add and delete from. In
lisp, alist is represented as an open parenthesis, followed by the elements of the
list (which may be either atoms or lists), followed by a close parenthesis. For
example, "(this is alist)" is alist of four elements, and "(this is a(nested) list)"
is a list of five elements, one of which is alist. Inside of lisp, a linked list is made
up of a collection of two element cells, called cons cells for historical reasons.
Also for historical reasons, the first element of a cons cell is called its car and

the second is called its cdr. The function cons (which is a function of two
arguments) creates anew cons cell; the first element of the cell has the value of
the first argument, and the second element of the ceU having the value of the
second one. The function car . (which takes a list ceil as its argument), returns

the first element of that cell, and the function cdr returns the second element

(the rest of the list). Armed with these simple facts, the user should be able to
understand the lisp examples used in this report.

A1.2

APPENDIX 2: Detailed Implementation

FTL is implemented in the lisp programming language. Lisp was chosen

because of the ease with which the language may be modified and extended, the

large number of primitive functions that it provides, and its excellent program

development and debugging environment. An introduction to the lisp language

is given in an appendix.

Files

The source code for the ftl system resides in several different files.

Currently these files are "ftl.l". "comm.l". "structs.l". "comp.l". "runt.l". and

"handlers.1".

ftl.l loads the other files.

comm.l contains a collection ofmacros andglobal variables that are used

by the other files.

structs.1 contains structure declarations and accessor macros for the

main data structures used in the ftl system.

comp.l contains the functions that form the "compiler" of the ftl. The

compiler functions take the ftl program as input and produce the

internal tree format as output.

runt.l contains the functions for the "run time system". The run time

system manages the evaluation queue, provides variable storage

and lookup, and handles other support functions.

handlers.1 contains all message handlers. The normal procedure for adding

a new primitive function to ftl is to create any new handler

functions it needs, put them into handlers.1. and then enter the

name of the primitive andits handlers into the data-structures in

comp.l.

A2.1

FEL.1

The file ftl.l contains calls on the lisp system's "load" function, which causes
the files containing the function and variable declarations, and function calls
that make up the ftl program, to be loaded. This file is machine dependent
because the syntax of file names is different on different machines.

Comm.l

The file comm.l contains the declarations of the global variables that are

shared across all the phases of ftl. As is common practice in Lisp programming,
all global variable names begin and end with an "' character so that they can be
recognized as global by humans reading functions that reference them. The
following is a list of the global variables used inftl:

•Show-time* is a flag that, when set, causes FTL to show the time-clock any

time it changes.

♦maxtime* gives the maximum value that the argument to the delay function

can have.

♦show-clash* is a flag that causes an error message to be output when a
variable is set and then read, read and then set, or set twice in

the same instant of simulated time.

•show-root* tells the system to print out the name of the root of the tree

whenever it compiles a program.

•debug-mode* is a general flag that specifies that the compiler is in a debug
mode, and should dump internal status information.

•pc-mode* puts the compiler is in "implicit delay mode" (see earlier
chapters).

•plevel* holds what the current level of parallelism is.

A2.2

•block-stack* is a stack of the blocks outside of the current one.

•level-array* is an array (hunk) of the maximum values reached at eachlevel

of concurrency.

•wall-dock* holds the simulator's idea of time.

•delay-list* is a list of all "streams" (processes) that are blocked, waiting on

the *wall-clock*.

•final-value* holds the final-value of the last computation.

•mode-x* says that all delays are one unit long.

Comm.l also defines some very useful macros.

debug! takes a list of names and gives themthe "ftl-debug" property.

debug? takes a name and a list of expressions and if the name has the

ftl-debug property, expands into the list of expressions.

Otherwise, it expands into nothing at all.

enum that takes a variable number of arguments and gives each one its

name as its value. This is used to provide an enumeration facility

for such things as node states.

Structs.l

Structs.l contains the structure declarations and accessor macros for the

trees that are the heart of FTL, and for user declared ftl variables. Theprogram

tree is a doubly linked structure composed out of tree-nodes. In FTL2, version

1.0, the tree nodes have 15 fields.

node-op stores the constant or the name of the variable that the node

represents if the node is a leaf, otherwise, the node represents a

function, and node-op field gives the name of the function.

A2.3

(j .. c

node-name stores the symbol-name of the node. Every node has a unique
symbol-name that is of the form <function-name>-<number>.

node-parent-name

contains the symbol-name of the parent of the node and is used

as a pointer back to it.

node-oflset tells what child number of its parent node the node is.

node-status tells whether the node is dormant, ready to fire, waiting for the
values of its children, or in some other state.

node-current-caller?

tells whether the node is the current active function, and thus.

whether its environment should be searched when variables are

looked up. The exact way this works will be explained in the

section on variable management.

node-type contains the data-type of the node.

node-value contains its value. These fields are used by the data-type

management facility of FTL.

node-n-children

field specifies the number of children of this node, and at any

given point in the evaluation of a sub-tree the

node-n-chUdren-left

gives the number of children that have not propagated their

values up to the parent yet.

Qode-childrname-Ust

is a Ust of the names of the node's children.

nodVenv holds the local environment (Ust of variable-name, variable-value

pairs) for the node.

A2.4

Var

There are currently five fields in the structure that describes each variable

in a user's FTL description.

var-value holds Lhe current value of the variable.

var-type gives the data-type of the variable.

vartone-read holds the value of the clock the last time the variable was read.

var-time-set holds the value of the clock the last time the variable was set.

var-scope holds the scope of the variable.

Accessor Macros

The last section of structs.l is a coUection of macros to access nodes. These
macros hide implementation decisions in the choice of node fields. There are

four portions of the accessor macros section. The first is aset of macros that
return the name of the first, second, third, nth. and last chudren of anode. The
second set returns the node of the first, second, last. etc. children of anode.
The third section defines macros for accessing the values of the children of a
node. The final section defines macros to access the parent node of anode and

the value of the parent node.

Comp.l

There are several parts to the file "comp.l". The first is a Ust of global
variables. These variables are used to hold compile-time information that is not

local to any single routine.

Variables

•Root* is the root of the tree and holds the top-level environment.

•ftl-user-functions*.

•ftl-usermacros* *ftl-useraliases* ," and fU-use«onstants*

A2.5

hold the names of the functions, macros, aliases, and constants

that are currently defined. For now, FTL stores its function

definitions in the Usp environment, although this is likely to

change in the future. "Whenever a function is compUed, a unique

symbol name is created for each node in the tree. The name is

formed by a prefix that is the routine name, a "-" and a number;

for example, the first symbol in the routine "alu" would be "alu-

. 1".

•prefix* contains the* current prefix, and

•prefix-stack* is a stack of prefixes, so that nested module definitions can be

supported.

•symnum* is the current symbol number, and

•symnum-stack*

is a stack previous symbol numbers.

Functions

reset-global is the function to reset the entire FTL system, it calls reset-
symbols, reset-level-array, reset-user-extensions , and reset-root

as worker functions.

Push-prefix is a function that is caUed whenever compilation of a new
function is started. It's purpose is to save the current prefix and

symnum. make its argument the new value of current-prefix and

set symnum down to zero.

my-makesym is a function that returns a new symbol, suitable touse as a tree-
node, formed out of the current prefix and symnum. As a side

effect, it increments the symnum.

A2.6

nLake-priniitives

puts the appropriate eval, data, and fire handlers on the property

Usts of aU the Usp primitives caUable from FTL.

make-things takes two arguments; an association Ust (a Ust of (name.value)
pairs) and a symbol to be used as aproperty name. Make-things
examines the each element in the association Ust and gives that

car of the element (the name) the cdr of the element (the value)
as the value of the given property. The functions "make-magic-

compfies", "make-special-compiles", "make-special-evals",
"make-special-datas". and "make-special-fires", all use make-

things to give the symbols in their argument Ust the property

given by their names.

ftt-compile takes a Ust representing a fti program and compiles it into
internal tree form. It caUs

ftl-compile-prolog

to set up things for a newcompUation,

ftl-compile-node

to compUe the top-level function, and then

ftl-compile-epilogue

to do any final cleaning-up. FTL-compUe-node takes four

arguments. They are: a symbol to use as the name of the node,
the name of the parent of the node, the offset of the current node

in its parent's chUd-Ust, and the Ust to be compUed. FTL-
compUe-node looks at the node it has been passed and checks to

see if it is a "special function". If it is, then it caUs the compUer

function associated with thatname. If not, then it checks to see if

the node is the name of a previously defined user functioa andin

t

*• A2.7

'. o

that case it calls "ftl-compile-function" to take care of expanding

the definition. Finally, if no other option matches, it calls ""fti-

compUe-node-worker" to do the standard expansion "FTL-

ccmpile-node-worker creates a structure for the node, makes a

Ust of names for the node's children and enters it into the

structure, sets-up the message handler fields of the node, and

finally caUs ftl-compUe-node on each child.

Runt.1

There are four major sections in Runt.l. The first portion contains a smaU

number of utiUty routines to dump trees and print out the contents of nodes.

The second section contains routines to manage the evaluation queue. The third

section contains routines for management of variables and reporting errors.

The fourth section contains some support functions for vectors and bit

operations. Currently, the event queue is broken up into two separate parts.

The walk function manages the evaluation queue which contains nodes

scheduled for the current time point. Ttfhen that queue empties, step-time is

called. Step-time finds the nodes inthe delay-Ust with the smaUest delay, then

advances the clock by that amount and moves those nodes from the delay-Ust to

the evaluation queue.

The queue management routines currently support two different versions of

expUcit delay mode. The first, variable delay mode, aUows delays to be any

length at aU but is less time efficient than unit delay mode which assumes that

wall delays are of one time unit.

"Variable Management

Like most modern programming languages. FTL is "block structured" - it

.aUows a variable to be declared inside a block and for that definition of the

A2.8

£!3

variable to supercede a definitions of a variable with the same name in an outer

block. This idea is commonly called scoping. There are two different scoping

rules in common use today. The scoping rule used in most current

programming languages such as *C or Pascal is caUed lexical scoping because

the instance of a variable name seen at any point in the program is the one

whose declaration is closest to the point in the text where the variable name

appears. The rule used inmost Usp systems is caUed dynamic scoping because

the instance of a variable seen is dependent on the dynamic behavior of the

program. When a variable is referenced that isnot declared inthe function that

references it, the environment of the caUer of that function is examined, and

then the caUer of the caUer. etc. until a caUer is found that has declared a

variable of that name. FTL currently uses dynamic scoping but may be changed

to use lexical scoping some time in the future.

The routine lookup is responsible for looking up variables in the

environment. It searches the environment of current node for the variable

name. If it is not found there, lookup calls itself recursively on the parent of the

node, until it either finds the variable or it reaches a node whose parent is nil,

(signaling that the variable is undeclared). Lookup also checks the node to see

if the current caller flag is set before searching for the variable in it so that

formal argument names wUl not be seen when looking up actual parameter

names in a function caU, and prints out an error message if *show-clash* is t,

and it finds that the variable has been set and then read at the current time

point. The routine

node-bound-on?

returns nil if the variable is not declared, and the node the

variable is bound on if it is.

A2.9

97c

bound? calls "node-bound-on?" and returns true (t) if the variable is

bound and false (nil) if it is not.

set-value is responsible for setting user variables. It is similar in structure

to lookup, but gives error messages when ♦show-clash* is true

and a variable is set twice or read and then set at the same point

in time.

Support Functions

The final section of runt.l contains a coUection of functions for manipulating

vectors and bit strings.

Handlers.1

The file handlers.1 contains the functions that are caUedwhen messages are

sent to nodes in the program tree. These functions manipulate the state of the

nodes in tree, and return Usts of new nodes to be evaluated. As was mentioned

before, there are three types of messages a node can receive, (eval. data, and

fire) and therefore three types of message handlers. The message handlers
determine the forms that the ftl system understands, handlers.1 starts out by

including comm.i and structs.l and thendefines some useful macros.

make-stream-Ust

makes a stream-list from an atom, and make-stream-list-worker

makes a stream-Ust from a Ust. Currently, stream-Usts are just

normal lists.

set-node-status

and set-node-value set the status and value fields of a node. The

next section defines some worker macros for the handler

functions.

A2.10

fire-handler-worker

is called by aU fire handlers to do the general clean-up needed
after a node fires. It sets the status of the node back to

DORMAInT, sets node-n-chUdren-left to node-n-chUdren, and then

calls the data-handler for the node.

data-handler-worker

decrements the node-n-chudren-left field of a node and returns t

when node-n-children drops to zero.

profiled? is amacro that returns t if the name it is given is being profiled,
and traced? does the same thing if the name it is given is being

traced. The next (and largest) section of handlers.1 contains the

actual message handlers. Only the most important of these wiU

be described here.

root-data-handler,

and root-fire-handler are the data and fire handlers for the root.

Root-data-handler is used to pass values up to the root, and puts

the value being passed into the global variable •final-value*

Root-fire-handler prints out an error message, since the root

node should never be set READY. Because no one ever cans the

root (it is at the top of the program tree), there is no root-eval-

handler.

A2.ll

r_

'r

outputs from the module, and a Ust of forms that make up the body of the

module. For example,

(module adder
(declare (inputs (integer a b)))
(+ab»

defines a module caUed adder that takes two integers as input andreturns their

sum as Its result.

FUes containing FTL descriptions may be loaded using the load function,

the syntax is: (load <file-name>). Each form is the file specified by the load
function is then read into FTL with the same result as if the forms in the file

were typed in from the user's terminal.

Any user defined module may be traced with the trace function. The syntax

is "(trace <module-l> <module-2> ...)". Modules may also be monitored for
activity, by using the profile function. Entire sessions may be monitored by
using profile-ell which wiU profile aU currently defined modules. If the prof-
report function is invoked, FTL wiU print out statistics on aU profiled modules.

FTL users can define their own data-types. New data-types are defined by

using the types function

(typeT(<^e-name> <type-specifier>) (<type-name> <type-specifier>) ...)
The type-specifier is either the name of aprimitive type, or apreviously defined
user defined data-type. The primitive data-types provided in Fa are integer,

byte, bit. and float

There are three types of blocks provided inFTL The serial form takes zero

or more forms as arguments, evaluates them sequentiaUy. and then returns the

value of the last one as Its value. The parallel form takes zero or more forms as

its arguments, evaluates them in parallel, and after aU of them have finished it

A3.2

IcZ

Appendix3: Using FTL under UNIX

To use the FTL simulator under UNDC, type "ftl". FTL wiU respond with the

date andversion number of the version you are using. At thispoint the FTL sys

tem is ready for input. This level of the system is caUed "top-level". Any form

typed in at top level wiU be evaluated and the results of evaluation wiU be

printed out on your terminal.

If you type: (+ 1 1)

the system wiU respond with:

(new root = s-l)
2

The "new root" message simply says that the compiler has taken your input,

converted it into its internal tree form, and that the name of the root of that

tree is "s-l". If you wish to re-run a form, without having to re-compUe that

form. You can use the "run" function, with the name of the root of the tree as its

argument.

For example: (run s-l)

wUl re-run the code generated from "(+ 1 1)" and wiU print out the result

2.

Variables are declared by using the declare function.

The syntax of declare is:

(declare (<scope> (<type> <vars>))
For example,

(declare (local (integer a b c)))

declares three integer local variables caUed "a", "b". and "c". If a variable is

referenced orsetwithout being declared, anerror message wiU isprinted.

Functions are declared by using the module function The arguments- to

the module function are the name of the module, the inputs to the module, the

A3.1

returns a vector which contains the values of each of the forms. The "any" form

is simUar to parallel but it returns after any of its arguments returns. PlnaUy,
the block form evaluates its arguments sequentiaUy. as the serial does, but does

not advance the time clock when in *pc-mode*.

The control structures currently provided in FTL are while, for. forall. if.

cond, paraUel-cond. and which.

The while statement takes two arguments. The first is caUed the condition
and the second is caUed the object. The whUe statement first evaluates its con

dition. If the condition is true, it then evaluates the form that is the object of the
loop, and then goes back and repeats the process by re-evaluating the condition.

The for statement takes two arguments. The first is Ust of the form: (<vari-
able> [from <start-value>] [to <final-value>]). the second is astatement (form)
to evaluate as long as the elements of the for are within their limits. The forall
is exactly the same, except that aU iterations of the loop execute in parallel.

The if statement can be given either two or three arguments. The first
argument is the condition, the second is a form to evaluate if the condition
evaluates to true and the third (optional) argument is a form to evaluate if the

condition returns false.

The cond statement is like acase statement in Pascal. The cond statement
takes one or more arguments, called ooMhitwtM. Each cond-clause is aUst of
the form «conditf<m> <aoHon>;. When a cond statement is evaluated, each
clause is examined in sequence. If the condition part of the clause returns true.
the action part of that clause is evaluated and the cond is exited. The parallel-
cond is just the same, except the clauses are examined in parallel, and all
clauses whose condition evaluates to true have their action's evaluated.

Finally, the which statement is like the switch statement of 'C: The which
statement takes two or more arguments. The first argument is an expression.

A3.3

caUed the control. The remaining arguments are which-clavses. Each which-

clause is of the form (<value> <acticn>) Where the value field must be a con

stant. "When a which statement is evaluated, it first evaluates its control expres

sion. Then, it examines aU which-clauses in paraUel. If the value part of a

which-clause is equal to the value of the control expression, the action portion of

that which-clause is evaluated.

A3.4

£?-6

alu.ftl *um

: Simulate the behavior of the RISC alu. .; Add two n-bit signed operands and the carry, producing a result and Bags

; The Host significant bit

(constant niigh-bit-num * 31)
(macro sign(x) (get-bit x «high-bit-num»))

; The Condition codes

(declare
(globals ...
(bit Carry Zero Negative Overfiow)))

(<- Carry 0)
(<- Zero 0)
(<- Negative 0)
(<- Overfiow 0)

; The guts of the alu

(macro do-elu(op x y carry)
(which? op

(add
(+ x y))

(addc
(+xy carry))

(sub
(- x y))

(subc
(- x y carry))

(subi
,<- y x))
(subc:
(- y x carry))

(and
(AND x y))

(or
(OR x y))

(xor
(XOR x y))

(sll
(lsh x y))

(srl
(rsh x y))))

..*. .*>.. ../.; The alo* ^c^Ued
-•*•*- •• "%&.'•:•**•• j •****& .
•CsV.^i;--liberate aM* op a b)
•̂ ^>-i ->*«>.>s-ftte"of6re (inputs (word op a b)))

(serial
Sdeclare (locals (word output)))
<- output (do-alu op a b Carry))
if (= Sec 1)

(parallel
(<- Negative

(not (zero? (sign output))))
(<- Zero

(zero? output))
(<— Overfiow

(which? op
(add

Sep 23 11:521982 Page 1of alu.ftl

aiu.m «lu-nl

output))

; If the sign of the two operands was the same,
; but the sign of the result if different -> overflow*

(and
(= (sign a) (sign b))
(not (= (sign a) (sign output)))))

(sub

; For subtraction its exactly the reverse

(and
(not (= (sign a) (sign b)))
(= (sign a) (sign output))))))))

ILb

Sep 83 11:521962 Fuge 2of <du.fU

AV.l

CL

exec.fti execTtl

; Executive (controller) for the FTL version of the rise simulator.

; The Run/Halt Flag, and current window pointer
(declare ...

(globals (word <Running* «Pc*) (CWPTYPE «Cwp*)))

(<- ^c*0)
(<- *Cwp*5)

; Constants for the four classes of instructions

(constant OTHER (hex 00)]
(constant JUMP (hex 01)
(constant ALU (hex 02)
(constant LOAD (hex 03)

;;; THE MAIN LOOP (CONTROLER)
;;; Takes care of fetching the instruction,
;;; fetching the operands if needed
;;; doing the instruction
;;; updating the pc
;;; and going back for more!

(module exec(Inst)
(declare (inputs (word Inst)))
(serial
(declare (local (word Md)))
(which? Op-high

(OTHER (other Op-low))

(JUMP (jump Op-low Rd))

; For alu op's, if Im is set, use a register and an Immediate,
• else use two registers.

(ALU (serial
(set-register

Rd
(which? Im „, n_

(1 (alu Op-low (get-register-a Rl) Off))
(0 (alu Op-low

(get-register—a Rl)
(get-register-b R2)))))))

(LOAD (which? Load^or-rStore' » ,;S* ,' •'J>*-?X. "-V $*^S *•£,.'.? >;*•&'• •.$•i-'i* ^rf^*'
- ' •• - - • ^serj^v*'. :..%:'.; - .'. -- V.'^^i^w'X --*-^"'• N ' ^'v'^^^*V(<-.Md (pt*-inemoty pp^q^^d^x)) y

; Load instucuons "take an extra cycle

(delay 1)
(set-register Rd Md)))

(1 (serial
(<- Md (get-register-a Rd))

; Store instructions take an extra cycle

(delay 1)
(set-memory Op-low index Md))))))

; All instructions take a minimum of 1 cycle

Sep 23 11:521962 **9e J °f exec'^tl

_ *+i exec.fti
exec, ftl

(delay 1)))

; Fetch an instruction and increment the PC
(module fetch()

(declare (modifies (word Inst *Pc*j))
(serial

Sdeclare (local (word Inst)))
<- Inst (get-vectcr ^memory*-vc*))
<- '•Pc* (1+ *PC*))

Inst))

; Reset the machine, and run until it halts

(module reset-riscO
(declare .
(modifies (word <Pc* «Running*)))

(serial
(<- *Pc» 0)
f<- Running* t)
(while *Running*

(exec (fetch)))))

Sep 23 11:52 1982
Page 2 of exec.fti

jump.ftl

;;; Jump conditions

; Inum takes a list of symbols and sets each equal to their position in
; the list
; i.e. ALWAYS=0, NE=l, EQ=2, etc.

(enum ALWAYS NE LQ KCAR CAR NV V LT LE GT GE LOS HI P M)
; Cond is the kind of condition the jump or call is to be made on

; Note the use of "mcdif.es" in the description to tell the compiler we
; plan to change a variable inherited from an outer scope

(module jump(kind Cond)
(declare

(inputs
(word kind)
(condtype Cond))

(modifies
fpctype ?c *)
(cwptype *Cwp*)))

(which? kind
(jumpx

(jumpr

(callx

(callr

(ret

(if (status-equal? Cond)
(<- *Pc* index)))

(if (status—equal? Cond)
(<- <PC(+ *Pc*Y))))

(serial
^set-register Rd I'c*)
'<- ^c * index)
<- *Cwp» (subl *Cwp»))))

(serial
(set—register Rd «Pc*)
(<- «Pc* (+ <Pc* Y))
(<- «Cwp* (subl *Cwp*))))

(serial
[<- «Pc • (get-register-a Rd))
[<- *Cwp* (addl *Cwp *))))))"fc

; Compare the condition with the current values of the condition codes

(module status-equal?(Cond)
(declare
(inputs (condtype Cond)))
(which? Cond

(ALWAYS t)
(NE (not Zero))
(EQ Zero)
(NCAR (not Carry))
(CAR Carry)
(NV (not Overflow))
(V Overflow)
(LT Negative)
(LE (or Negative Zero))
(GT (not Negative))
(GE (or Zero (not Negative)))
(LOS (or Zero Carry))
(HI (and (not Carry) (not Zero)))
(P (Not Negative))

tLS

jump.ftl

Sep 23 11:52 1982 Page 1 ofjump.ftl

M-r

9Z.G

jump.ftl jump.ftl

(M Negative)))

Sep 23 11:52 1982 Pa9e 2ofjump.ftl

AW

SAG

loader.ftl loader.fU

; A simple absolute loader
• Takes in an assembled program as a list of integers
; and loads it into memory at the given starting location

(module load-risc(program start)
(declare (inputs (list program) (word start)))
(serial

(while program

(set-vector «memory* start (first program))
(<- start (+ 1 start))
(<- program (rest program))))))

Sep23l7~521~982 Page 1of loader.ftl

.... . ,—I
LLS

macros.ftl macros.ftl

; Here we define aliases for all the important components of an instruction

alias Op (get-field Inst 25 31)) ;the opcode
alias Op-high (get-field Op 4 6)) ;the opcode class (LOAD.JUMP.ALU.OTHER)
(alias Op-low (get- f.-id Op 0 3)) ;the specific instruction in the class
alias Sec (get-bit Inst 24)) ;the "set condition codes" bit
'alias Rd (get-field Inst 19 23)) ;the destination register number
(alias Rx (get-field Inst 14 18)) ;the index register number
(alias Rl Rx)
(alias Im (get-field Inst 13 13)) ;the immediate addressing flag
alias R2 (get-field Inst 0 4)) ;the second register for two register msts
'alias Off (get-fieid Inst 0 12)) ;short offsets or small (13 bits) immediates
'alias Y (get-field Inst 0 19)) ;long (20 bit) immediates or offsets
[alias Load-or-Stcre (get-bit Op 3)) ;bit that distinguishes loads from stores

• index
; an index register plus a short offset if the immediate bit is set (Rx+Off)
; otherwise, an index register plus a second register (Rx+Rl)

(alias index
(+
(get-register-a Rx)
(which? Im

(0 (get-register-b Rl))
(1 Off))))

Sep 23 11:52 1982 ^e 2°* ™*rosftl

AW

OIU

memoiy.ftl memory.Itl

; The main memory for RISC

(declare (globals (word •memory^))

(<— ''memory* (make-vector 100))

; bit-mask produces a mask with the lower N bits trned on.
; NOT is the logical negation, so high24 = !low-8.

(constant HIGH24 (NOT (bit-mask 8)))
(constant HIGH 16 (NOT (bit-mask 16)))

(macro get-memory-worker(ioc)
(get-vector ^nemory ♦ loc))

; Read words, halfwords, or bytes.

(module get-memory(op-low loc)
(declare (inputs (word op-low loc)))
(serial
(declare (locals (word Md Mdl Mdb)))
?<- Md (get-memory-worker loc))
(<- Mdl feet-field Md 0 15))
[<- Mdb (gel-field Md 0 7))
(which? op—low

(0 Mdb)
(1 (if (zero? (get-bit Mdb 7))

Mdb
(OR HIGH24 Mdb)))

(2 Mdl)
(3 (if (zero? (get-bit Mdl 15))

Mdl
(OR HIGH 16 Mdl)))

(4 Md))))

(macro set-memory-wcrker(loc value)
(set-vector *memory * loc value))

8

: Setting is a Uttle more tricky; have to read the old value,
; mergein the new one, and then write the composite value back to memory

(module set-memory(op-low loc value)
(declare (inputs (word op-low loc value)))
(serial
(declare (locals (word Md)))
(<- Md (get-memory-worker loc))
(which? op-low

(8 (set-memory-worker loc value))
(9 (set-memory-worker loc (OR (AND HIGH16 Md)
x * (get-field value 0 15))))
(10 (set-memory-worker loc (OR (AND HIGH24 Md)

(get-field value 0 7)))))))

M-1

Sep ~23 11:521982 Ha3e 1of menwry.ftl

AW

opcodes.ftl

-,;; The rise instruction set.

;The LOAD instructions

(constant
(constant
(constant
(constant
(constant
(constant
(constant
(constant

ldbu
ldbs
ldsu
ldss
ldl
stb
sts

stl

(hex 00)
(hex 01)
(hex 02)
(hex 03)
(hex 04)
(hex 08)
(hex 09]
(hex 0a)

;The JUMP instructions

(constant jumpx
(constant jumpr
(constant callx
(constant callr
[constant ret

(hex 00)
(hex 01)
(hex 02)
(hex 03)
(hex 04)]

;The ALU instructions

(constant
(constant
[constant
[constant
[constant
(constant
(constant
(constant
(constant
(constant
[constant
(constant
(constant
[constant

ldhi
and
or

xor

sub
subc
subi
subci
add
addc
sla
sra

sll
srl

(hex
(hex
(hex
(hex
[hex
(hex
(hex
(hex
(hex

00)
01
02
03
04)
05)
06
07)
08)

(hex 09
(hex 0c))
(hex 0\d
(hex 0\e
(hex Of))

The OTHER instructions

(constant wait
(constant trap
(constant gtlpc
(constant gtin
(constant reti
(constant out

Load byte unsigned
Load-byte signed
Load short unsigned
Load short signed
Load long
Store byte
Store short
Store long

Jump indexed
Conditional jump relative
Call indexed
Call relative
Return

I]

Load immediate high
And
Or
Xor
Subtract
Subtract with carry
Subtract interchanged
Subtract interchanged with carry
Add
Add with carry
Shift left arithmetic
Shift right arithmetic
Shift left logical
Shift right logical

Wait
Trap

6Z6

opcodes.ftl

(hex 05)

Get last Pc (to restart delayed jump)
Disable interrupts
Enable interupts .
Output memory location or register (simulator op)

Sep 23 11:52 1982
Page 1of opcodes .ftl

AH-*

other.ftl other.ftl

;*.; Handle unusual instructions

(module other(kind)
(declare (inputs (word kind))

(imports (v;crd *Pc*))
(mc2:f-vs (vcrd ^Running*)))

(which? kind
(out

(which? Im

; print out the copy of a rgegister

(0 (dumpmsg "R" Rl "=" (get-register-a Rl)))

; print out a memory location

(1 (serial
(declare (local (word addr)))
(<- addr index)
(dumpmsg "Memory[" addr "] = "

(get-memory-worker addr))))))
; Halt the machine

(wait (serial
(<- Running • nil)
(dumpmsg "Halt at Pc=" «Pc}))))

U8t>

Sep 23 11:52 1982 Pa9* ' °fother.ftl

AW

T86

regffle.ftl regfile.ftl

; FTL simulation of register file: allows reading and writing registers
; Using Cwp.

Currently in the actual chip, there are IB globals, [addresses 0-17],
4 overlapped with the next higher window (the previous caller) 118-2II
6 locals C22-27], and 4 shared with the next procedure to be called J.2B-31J.
"When a call is made, the Cwp is decremented and when it returns it is
incremented

; The register file itself
(declare

(globals (vector «regfile^))

; Number of registers, windows, globals, etc.
(constant m-regs * 78)
(constant *n-windows* 6)
constant «h-globals» 18)
constant %—locals * 6)
constant *h-shared* 4)
^constant *n-in-window» 10)
constant ^i—non—global* 60)

; Hake the register file

(<- *egnle» (make-vector «n-regs«5)

; Macro for converting from a logical register number to a physical one
; as a function of the current window-pointer

(macro logical-to-physical(regnum)
(cond
((< regnum «h-globals*)

regnum
(t (serial

(declare (local (word rnum)))
(<— rnum

(+ regnum
(♦ «Cwp» «n-in-window*))) ,*vm\\

(if (< rnum m-regs*) rnum (- rnum «n-non-globaJ *)))))))

; The worker macro for reading registers

(macro get-register-macro(regnum)
(get-vector *regfile* ...

(logical-to-physical regnum)))

; Bus A
(module get-register-a(regnum i

(declare (inputs (word regnum)))
(get-register-macro regnum))

; Bus B
(module get-register-b(regnum)

(declare (inputs (word regnum)))
(get-register-macro regnum))

;Bus C
(module set-register(regnum value)

(declare (inputs (word regnum value)))
(set-vector «regfile* (logical-to-physical regnum) value))

Sep 23 11:56 1982 **** i of regfile .ftl

risc.ftl riscftl

(load /devels/jtd/rise/opcodes.ftl)
(load /devels/jtd/risc/regfile.ftl)
(load /devels/jtd/risc/macros.ftl)
(load /devels/jtd/risc/alu.ftl)
(load /devels/jtd/rise/jump.ftl)
(load /devels/jtd/risc/memory.ft))
(load /devels/jtd/risc/other.ftl)
(load /devels/jtd/risc/exec.ftl)
(lisp (load Vdevels/^td/asm.l))
(load /devels/jtd/risc/loader.ftl)
(load /devels/jtd/risc/testrisc.ftl)

Sep 23 11:52 1982 Fa9e ' cf risc'ftl

A1.I1

£86

testrisc.ftl testriscftl

(declare (globals (vector program) (word Inst)))

This program puts 5 into register 1
loop Then it outputs the value in register 1.

decrements register 1,
and if ii's grtsuizr than 0, go back to loop

(<— program
(lisp

(asm '((add 0 10 15)
(out 0 1 1 0 C)
(sub 1 I 1 1 1)
(jumpx 0 10 11)
(wait 0 0 0 0 0)))))

(load-rise program 0)

; The value of the file is the value of the last thing evaluated
; in this case it's the string "test program-loaded"

"test program loaded"

Sep 23 11:52 1982 Paa^ 1** testrisc.ftl

AVsir

v a.b

tr2.ftl tr2.ftl

(setq program
(lisp
(asm '((add 1 19 0 1 10)

(out 0 1 19 0 0)
(jumpx 0 2 0 14)
(callx 0 18 0 1 5)
(wait 0 0 0 0 0)
(out 0 1 29 0 0)
(add 1 29 0 1 0)
(ret 0 28 0 0 0)
(wait 0 0 0 0 0)))))

Sep 2311:521982 P°3* 1°Jtr2.ftl

S86

trisc.ftl " triscJU.

(setq program
(lisp
(asm '((add 0 10 15)

(out 0 110 0)
(sub 11111)
(jumpx 0 10 11)
(wait 0 0 0 0 0)))))

(rise-load program 0)

Sep 23 11:521983 Bye lojtriscftl

AW

APPENDIX 5: SOURCE PROGRAM LISTING FOR FTL

To obtain copies of this Appendix, contact:

Pamela Bostelmann

Industrial Liaison Program
499A Cory Hall
University of California
Berkeley, CA 94720

tel: (415) 642-8312

REFERENCES

[Nagel75],
L.N. Nagel,
"SPICE2: AComputer Program to Simulate Semiconductor Circuits",
University ofCalifornia Electronics Research Laboratory,
Memo ERL-M520. May 1S75

[KellerB2]
K. Keller and A. R. Newton. .*«•..
"KIC2: A Low Cost Interactive Editor for Integrated Circuit Design ,
Digest of Papers
IEEE Compcon Conference, 1962

[OusterhoutBl]
J. Ousterhout,
"Caesar: An Interactive Editor for VLSI Layouts ,
VLSI Design, Vol. 2, No. 4. Fourth Quarter 1981.

[Calma],
Commercial products available from
the Calma Corporation.

[Applicon],
Commercial products available from
the Applicon corporation.

[Deutsch76]
D. N. Deutsch, G. Persky, and D. Schweikert. .._-,.
"LTX - ASystem For the Directed Automatic Design of LSI Circuits ,
Proceedings,
IEEE/ACM Design Automation Conference, 1976

[Chawla75],
B.R. Chawla. H.K. Gummel, and P. Kozak,
"MOTIS - An MOS Timing Simulator".
IEEE Transactions of Circuits and Systems,
Volume 22, No. 13, December 1975, pp 901-909.

[Case75],
G t? Case
"SALOGS -A CDC 6600 Program to Simulate Digital Logic Networks,
Vol. 1 - User's Manual".
Sandia Laboratory ReportNo. SAND 74-0441, 1975

[Barbacci77],
M. Barbacci.
•The 1SPL Language",
Carnegie MellonUniversity,
Department ofComputer Science, 1977.

KM

[Newton7B].
A.R. Newton,
"The Simulation of Large-Scale Integrated Circuits",
Memo No. UCB/ERL-M7B/52, Electronics Research Laboratory,
University of California, Berkeley, July 1978

[De Man81].
H. De Man, G. Arnout, and P. Reynaert, ™aua»
"Mixed-mode Circuit Simulation Techniques and Their Implementation in DIANA
Computer Design Aids forVLSI Circuits,
Nato Advanced Study Institutes Series,
Sijthoff &Noordhoff, 1981

[PattersonBla].
D. A. Patterson and C. H. Sequin,
"A VLSI RISC".
IEEE Computer Magazine,
September 19B2

[BreuerB2],
M. A. Breuer,
"A survey of the state-of-the-artof design automation*
Proceedings, 19B2 Design Automation Conference,
IEEE

[Duley68]
J. R. Duley and D. L. Dietmeyer,
"A Digital System Design Language (DDL)",
IEEE Transactions on Computers, Vol C, No 17, September 1968,
pp. 650-861

[Hill80],
D. D. Hill and W. M. Van Cleemput,
"SABLE: Multi-Level Simulation for Hierarchal Design",
Proceedings of the 1980 IEEE International Symposium on Circuits and Systems.
pp. 431-434,
IEEE, 1980

[Johannsen79]
D. J. Johannsen,
"Bristle Blocks: a silicon compiler",
Proceedings of the 16thDesign Automation Conference,
pp. 310-313
IEEE. 1979

[Aho77].
A.V. Aho. and J.D. UUman,
"Principles of Compiler Design",
Addison Wesley. 1977

[Ackerman79]
Yf. B. Ackerman and J. B. Dennis _
•Val - AValue Oriented Algorithmic Language: Preliminary Reference

fill

rocZ

Manual". MIT Laboratory for Computer Science TR-21B.
MIT. 1979.

[Shaw74]

"The Logical Design ofOperating Systems"
Prentice-Hall, 1974

[Brinch Hansen76].
P. Brinch Hansen, Dmm1„
••The Programming Language Concurrent Pascal
Springer Verlag, 1976

rCorv79l
WE Cory, J.R. Duley and W.M. Van Cieemput,
"AnIntroduction to the DDL-P language",
Tech. Report No. 164,
Stanford University,
March 1979

[HU180],

••Language and Environment for Multi-Level SimulaUon".
Ph.D. Thesis.
Stanford University. 1980

[HU173]
F.J. Hill and G.R. Peterson. . „
"Digital Systems: Hardware Organization and Design ,
JohnWiley and Sons, 1973

[Iverson62]
K.E. Iverson,
"A Programming Language",
JohnWiley and Sons, 1962

[Barlow79].
"The Pro's and Con's of APL"
Computer Science Department publication
Worcester Polytechnic Institute, 1979

[Foderaro82]
J. K. Foderaro and K. S. Van Dyke,
"The Slang Reference Manual"
Internal memorandum,
Computer Science Division. nan .^.^
Electrical Engineering and Computer Science Department.
U. C. Berkeley. 1982

"Automatic Generation ofPLA Based Systems".
S.K. Kang
Ph.D. Thesis,

fi.\.i

G£

Stanford University, 1981

[Kuck78].
D. J. Kuck,
"The Structure of Computers and Computations, Vol. 1
John Wiley and Sons, 1976

[DennisBO]
J.B. Dennis, "Data-Flow Supercomputers",
IEEE Computer, Vol 13, No.ll, Nov 1980, pp48-56

[Newton7B]. , t Jn.
A.R. Newton, "The Simulation Of Large Scale Integrated Circuits
University of California, Berkeley, Electronics Research Laboratory
Memorandum No. M73/52, July 1978

[SeitzBO].
Charles L. Seitz, "System Timing".
Chapter 7, lf
C. Mead and L. Conway, "Introduction to VLSI Systems ,
Addison-Wesley, 19B0

[BottorffB2]
P. S. Bottorfl,
"Computer Aids to Testing - An Overview".
In Computer DesignAids forVLSI Circuits,
see above

[AckermanB2],
W.B. Ackerman,
"Data Flow Languages"
IEEE Computer,
Volume 15, Number 2,
February 1982

[Arvind78],
Arvind. K.P. Gostelow, and W. PloufTe, u
"Andata-flow Programming Language andComputing Machine,
Department of Information and Computer Science, Technical Report TK-113.
University of California, Irvine, Feb. 1978.

[MorrisBl]
J. H. Morris,
"Real programming in functional languages",
XeroxPalo AltoResearch Center Technical Report CSL-81-11,
Xerox. July 1981

[Ayres79]
R. Ayres,
"ALanguage Translator and Sample Language ,
Ph.D. Thesis,
California Institute of Technology.
1979

Af.lL

L-

[XeroxBO]
Special Issue on Smalltalk,
BYTE magazine, July 1980

[Foderaro8l],
J. K. Foderaro and K. L. Sklower.
"The Franz lisp Manual",
University of California at Berkeley, 1981

[DeutschBO],
J. Deutsch,
"Computer Architecture",
Major Qualifying Project,
Worcester Polytechnic Institute,
May 1980

[Jensen79]
J. Jensen and N. Wirth,
"Revised Report on the Programming Lauguage Pascal",
Springer-Verlag, 1976

[Steeie7B]
G. L. Steele and G. J. Sussman,
•The art of the interpreter",
AI memo 321,
MIT. 197B

[PattersonBla].
D. A. Patterson and C. H. Sequin.
"A VLSI RISC",
EECS Department Computer Science Division Memorandum.
University of California at Berkeley. 19B1

[Roth79],
C. H. Roth,
"Fundamentals of Logic Design".
West, 1979

[Dijkstra76].
E. W. Dijkstra.
"A Discipline of Programming".
Prentice-Hall, 1976

[Radin82].
G. Radin.
"The B01 Minicomputer"
pp 31-47,
Symposium on Architectural Support for Progranmiing Languages
and Operating Systems,
ACM, 1982

[PattersonBlb].
D. A. Patterson,

l?/.r

•C I

"ARISCy approach to computer design"
pp 8-14, Digest of Papers,
IEEE COMPCON,
Spring 1982
IEEE Computer Society Press

[MeadBO].
C. Mead and L Conway,
"Introduction to VLSI systems",
Addison Wesley, 1980

[LampsonBl],
B. Lampson,
"The Dorado Personal Computer",
Xerox Palo Alto Research Technical Report,
Xerox, 1979

[WinstonBl]
P.H. Winston and B.K.P. Horn,
"LISP"
Addison-Wesiey, 19B1

	Copyright notice 1983
	ERL-83-47

