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ABSTRACT

Management of uncertainty is an intrinsically important issue in

the design of expert systems because much of the information in

the knowledge base of a typical expert system is imprecise,

incomplete or not totally reliable.

In the existing expert systems, uncertainty is dealt with

through a combination of predicate logic and probability-based

methods. A serious shortcoming of these methods is that they are

not capable of coming to grips with the pervasive fuzziness of infor

mation in the knowledge base, and, as a result, are mostly ad hoc

in nature. An alternative approach to the management of uncer

tainty which is suggested in this paper is based on the use of fuzzy

logic, which is the logic underlying approximate or, equivalently,

fuzzy reasoning. A feature of fuzzy logic which is of particular

importance to the management of uncertainty in expert systems is

that it provides a systematic framework for dealing with fuzzy

quantifiers, e.g., most, many, few, not very many, almost all,

infrequently, about 0.8, etc. In this way, fuzzy logic subsumes

both predicate logic and probability theory, and makes it possible

to deal with different types of uncertainty within a single concep

tual framework.

In fuzzy logic, the deduction of a conclusion from a set of

premises is reduced, in general, to the solution of a nonlinear pro

gram through the application of projection and extension princi

ples. This approach to deduction leads to various basic syllogisms
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which may be used as rules of combination of evidence in expert

systems. Among syllogisms of this type which are discussed in this

paper are the intersection/product syllogism, the generalized

modus ponens, the consequent conjunction syllogism, and the

major-premise reversibility rule.

Keywords: Expert systems, knowledge representation, fuzzy

logic, fuzzy sets.

1. Introduction

An expert system, as its name implies, is an information system which pro

vides the user with a facility for posing and obtaining answers to questions relat

ing to the information stored in its knowledge base. Typically, such systems

possess a nontrivial inferential capability and, in particular, have the capability

to infer from premises which are imprecise, incomplete or not totally reliable.

Since the knowledge base of an expert system is a repository of human

knowledge, and since much of human knowledge is imprecise in nature, it is usu

ally the case that the knowledge base of an expert system is a collection of rules

and facts which, for the most part, are neither totally certain nor totally con

sistent. Now, as a general principle, the uncertainty of information in the

knowledge base of any question-answering system induces some uncertainty in

the validity of its conclusions. Hence, to serve a useful purpose, the answer to a

question must be associated —explicitly or, at least, implicitly —with an assess

ment of its reliability. For this reason, a basic issue in the design of expert sys

tems is how to equip them with a computational capability to analyze the

transmission of uncertainty from the premises to the conclusion and associate

the conclusion with what is commonly called a certainty factor.

In the existing expert systems, the computation of certainty factors is car

ried out through a combination of methods which are based on or, at least, not

far removed from, two-valued logic and probability theory. However, it is widely

recognized at this juncture that such methods have serious shortcomings and,

for the most part, are hard to rationalize. In particular, what is open to question

is the universally made assumption that if each premise is associated with a

numerical certainty factor then the certainty factor of the conclusion is a

number which may be expressed as a function of the certainty factors of the

premises. As will be seen in the sequel, this assumption is, in general, invalid. It

regains its validity, however, if the certainty factors are represented as fuzzy
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rather than crisp numbers.

More generally, a point of view which is articulated in the present paper is

that the conventional approaches to the management of uncertainty in expert

systems are intrinsically inadequate because they fail to come to grips with the

fact that much of the uncertainty in such systems is possibilistic rather than

probabilistic in nature. As an alternative, it is suggested that a fuzzy-logic-

based computational framework be employed to deal with both possibilistic and

probabilistic uncertainty within a single conceptual system. In this system,

test-score semantics — which is the meaning-representational component of

fuzzy logic — forms the basis for the representation of knowledge, while the

inferential component of fuzzy logic is employed to deduce answers to questions

and, when necessary, associate each answer with a probability which is

represented as a fuzzy quantifier.

The employment of fuzzy logic as a framework for the management of

uncertainty in expert systems makes it possible to consider a number of issues

which cannot be dealt with effectively or correctly by conventional techniques.

The more important of these issues are the following.

1. The fuzziness of antecedents and/or consequents in rules of the form

(a) If X is A then Y is B

(b) If XisA then 7 is £ with CF = a ,

where the antecedent, X is A, and the consequent, X is B, are fuzzy propo

sitions, and a is a numerical value of the certainty factor, CF. For example,

If X is small then Yis large with CF = 0.8 ,

in which the antecedent "Xis small" and the consequent "Yis large" are

fuzzy propositions because the denotations of the predicates small and

large are fuzzy subsets SMALL and LARGE of the real line.

2. Partial match between the antecedent of a rule and a fact supplied by the

user.

Since the number of rules in an expert system is usually relatively small

(i.e., of the order of two hundred), there are likely to be many cases in

which a fact such as "X is 4*" may not match exactly the antecedent of any

rule of the form "If X is A then Y is B with CF = a". The conventional rule-

based systems usually avoid this issue or treat it in an ad hoc manner

because partial matching does not lend itself to analysis within the confines
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of two-valued logic. By contrast, the gradation of truth and membership in

fuzzy logic provides a natural way of dealing with partial matching through

the use of the compositional rule of inference and interpolation.

3. The presence of fuzzy quantifiers in the antecedent and/or the consequent

of a rule.

In many cases, the antecedent and/or the consequent of a rule contain

implicit or explicit fuzzy quantifiers such as most, many, few, many more,

usually, much of, etc. As an illustration, consider the disposition l

d &Students are young ,

which may be interpreted as the proposition

p &Most students are young ,

which in turn may be expressed as a rule, or, equivalently, as the condi

tional proposition

r klf x is a student then it is likely that x is young ,

in which the fuzzy probability likely has the same denotation, expressed as

a fuzzy subset of the unit interval, as the fuzzy quantifier most.

In the following two sections, we shall consider first the problems which

arise when the antecedent and consequent components of a rule are fuzzy pro

positions, but no certainty factors are involved. In Section 4, then, we shall con

sider the more general case of rules in which the certainty factor is represented

as a fuzzy quantifier.

Our exposition of the role of fuzzy logic in the management of uncertainty

in expert systems is not intended to be definitive and/or complete. Rather, its

much more limited objective is to suggest that fuzzy logic provides a natural

conceptual framework for the analysis and design of expert systems, and point

to some of the basic problem-areas which are in need of exploration.

1 As defined in [68], a disposition is a proposition with implicit fuzzy quantifiers. Many of the
rules in a typical expert system, are, in effect, dispositions.
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2. The Effect of Fuzziness in Facts and Rules

Typically, the knowledge base of an expert system consists of (a) a collec

tion of propositions which represent the facts: and (b) a collection of conditional

propositions which constitute the rules. For example, the facts may be: 2

(a) Carol is a graduate student.

(b) Berkeley's population is over 100,000.

(c) San Francisco is a foggy city.

(d) John fins duodenal ulcer (CF = 0.3).

In these examples, (a) is a nonfuzzy proposition since the class of graduate stu

dents is a crisp set; (b) is a fuzzy proposition because of an implicit understand

ing that over 100,000 means over 100,000 but not much over 100,000, (c) is a

fuzzy proposition because foggy city is a fuzzy predicate; and (d) is a fuzzy pro

position because the predicate has a duodenal ulcer is a fuzzy predicate in the

sense that having a duodenal ulcer is a matter of degree. Furthermore,

although the certainty factor is stated to be equal to 0.3, it should be inter

preted as a fuzzy number which is approximately equal to 0.3.

A typical rule in MYCIN [61] is exemplified by

Rule 047

If: 1) The site of the culture is blood, and

2) The identity of the organism is not known with certainty, and

3) The stain of the organism is gramneg, and

4) The morphology of the organism is rod, and

5) The patient has been seriously burned

then: There is weakly suggestive evidence that the identity of the organism

is pseudomonas.

Another typical rule in MYCIN reads:

2 In these and the following examples, the italicized constituents are fuzzy predicates. A
proposition is denned to he fuzzy if it contains fuzzy predicates.
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If: 1) The route of the administration of the penicillin is oral, and

2) There is a gastrointestinal factor which may interfere with the absorp

tion of the penicillin

then: There is suggestive evidence (0.6) that the route of administration of

the penicillin is not adequate.

Typical rules in PROSPECTOR [20] are exemplified by:

a) If: Abundant quartz sulfide veinlets with no apparent altera

tion halos

b) then: (LS, LN) alteration favorable for the potassic stage.

a) If: Volcanic rocks in the region are contemporaneous with the

intrusive system (coeval volcanic rocks)

b) then: (LS, LN) the level of erosion is favorable for a prophyry

copper deposit.

In these rules, LS and LN are real numbers representing likelihood ratios.

Informally, if the ratio LS which is associated with a hypothesis H and evidence

E is greater than unity, then the odds on H are increased by the presence of E.

On the other hand, if LN is greater than unity, then the odds on H are increased

by the absence of E. In consequence of the definitions of LS and LN, they can

not be simultaneously greater than unity.

The point we wish to make through these examples is that most of the facts

and rules in expert systems contain fuzzy predicates and thus are fuzzy proposi

tions. This is particularly true of the heuristic rules which are encoded as pro

duction rules in what are, in effect, fuzzy algorithms [72], [57], [74]. An example

of such heuristic rules in the case of a rule-based system for playing poker is

provided by the following excerpt [61], [66]:

"If your hand is excellent then bet low if the opponent tends to be a

conservative player and has just bet low. Bet high if the opponent is

not conservative, is not easily bluffed, and has just made a sizable bet.

Call if the pot is extremely large, and the opponent has just made a siz

able bet.
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In the existing expert systems, the fuzziness of the knowledge base is

ignored because neither predicate logic nor probability-based methods provide

a systematic basis for dealing with it. As a consequence, fuzzy facts and rules

are generally manipulated as if they were nonfuzzy, leading to conclusions whose

, validity is open to question.

As a simple illustration of this point, consider the fact

John has duodenal ulcer (CF = 0.3) .

Since has duodenal ulcer is a fuzzy predicate, so that John may have it to a

degree, the meaning of the certainty factor becomes ambiguous. More

specifically, does CF = 0.3 mean that (a) John has duodenal ulcer to the degree

0.3; or (b) that the probability of the fuzzy event "John has duodenal ulcer" is

0.3? Note that in order to make the latter interpretation meaningful, it is neces

sary to be able to define the probability of a fuzzy event. This can be done in

fuzzy logic [71], [30] but not in classical probability theory.

As another illustration, consider a rule of the general form:

// Xis A then Yis B with probability p ,

where X and Y are variables, A and B are fuzzy predicates and p is fuzzy proba

bility expressed as a fuzzy number, e.g., about 0.8, or as a linguistic probability,

e.g., very likely. For example,

// Hans has a new red Porsche then it is likely that his wife is young,

in which case X 4 make of Hans' car; A 4 fuzzy set of new red Porsches; Y 4

age of Hans' wife; B 4 fuzzy subset YOUNG of the Age scale; and p 4 LIKELY,
which is a fuzzy subset of the unit interval.

Expressed as a conditional probability, the rule in question may be written

as

Pr \Yis B \Xis A]is p . (2.1)

In the existing expert systems, such a rule would be treated as an ordinary con

ditional probability, from which it would follow that

Pr \Yisnot B \ Xis A] is 1-/? . (2.2)

However, as shown in [88], this conclusion is, in general, incorrect if A is a fuzzy

set. The correct conclusion is weaker than (2.2), namely,
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Pr \Yisnot B | A"is A] + Pr [Yis B | Xis A] ^ 1 , (2.3)

with the understanding that the probabilities in question may be fuzzy numbers.

In short, an assumption which is treated as a truism in expert systems is

that

P(H | E) - 1-P(-H \E) , (2.4)

where P (H \ E) is the conditional probability of a hypothesis H given an evi

dence E, and ->H is the negation of H. Our discussion shows that, in general,

this assumption is not valid when E is a fuzzy proposition, as is frequently the

case in most knowledge bases.

As was alluded to earlier, perhaps the most serious deficiency of the exist

ing expert systems relates to the ways in which (a) the traditional rules of infer

ence are applied to fuzzy rules; and (b) the computation of certainty factors is

carried out when two or more rules are combined through conjunction, disjunc

tion or chaining. In the case of chaining, in particular, the standard inference

rule —modus ponens —loses much of its validity and must be replaced by the

more general compositional rule of inference [75]. Furthermore, as shown in

[88], the transitivity of implication, which forms the basis for both forward and

backward chaining [7] in most expert systems, is a brittle property which must

be applied with great caution. We shall discuss these issues in greater detail in

the following sections.

3. Inference in Fuzzy Logic

Fuzzy logic provides a natural framework for the management of uncer

tainty in expert systems because —in contrast to traditional logical systems —

its main purpose is to provide a systematic basis for representing and inferring

from imprecise rather than precise knowledge. In effect, in fuzzy logic every

thing is allowed to be —but need not be —a matter of degree.

The greater expressive power of fuzzy logic derives from the fact that it

contains as special cases the traditional two-valued as well as multi-valued log

ics. The main features of fuzzy logic which are of relevance to the management

of uncertainty in expert systems are the following.

(a) In two-valued logical systems a proposition, p, is either true or false. In

multi-valued logical systems, a proposition may be true, false, or have an

intermediate truth-value which may be an element of a finite or infinite
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truth-value set T. In fuzzy logic, the truth-values are allowed to range over

the fuzzy subsets of T. For example, if T is the unit interval, then a truth-

value in fuzzy logic, e.g., very true, may be interpreted as a fuzzy subset of

the unit interval which defines the possibility distribution associated with

the truth-value in question. In this sense, a fuzzy truth-value may be viewed

as an imprecise characterization of an intermediate truth-value.

(b) The predicates in two-valued logic are constrained to be crisp in the sense

that the denotation of a predicate must be a nonfuzzy subset of the

universe of discourse. In fuzzy logic, the predicates may be crisp, e.g., mor

tal, even, father of, etc. or, more generally, fuzzy, e.g., ill, tired, large, tall,

much heavier, friend of, etc.

(c) Two-valued as well as multi-valued logics allow only two quantifiers: all and

some. By contrast, fuzzy logic allows, in addition, the use of fuzzy

quantifiers exemplified by most, many, several, few, much of, frequently,

occasionally, about ten, etc. Such quantifiers may be interpreted as fuzzy

numbers which provide an imprecise characterization of the cardinality of

one or more fuzzy or nonfuzzy sets. In this perspective, a fuzzy quantifier

may be viewed as a second order fuzzy predicate. Based on this view, fuzzy

quantifiers may be used to represent the meaning of propositions contain

ing fuzzy probabilities and thereby make it possible to manipulate probabil

ities within fuzzy logic.

(d) Fuzzy logic provides a method for representing the meaning of both non

fuzzy and fuzzy predicate-modifiers (or, simply, modifiers) exemplified by

not, very, more or less, extremely, slightly, much, a little, etc. This, in

turn, leads to a system for computing with linguistic variables [48], [77],

that is, variables whose values are words or sentences in a natural or syn

thetic language. For example, Age is a linguistic variable when its values

are assumed to be: young, old, very young, not very old, etc., with each

value interpreted as a possibility distribution over the real line.

(e) In two-valued logical systems, a proposition, p, may be qualified, principally

by associating with p a truth-value, true or false; a modal operator such as

possible or necessary, and an intensional operator such as know, believe,

etc. In fuzzy logic, the three principal modes of qualification are: (a) truth

qualification, expressed as p is r, in which t is a fuzzy truth-value; probabil

ity qualification, expressed as p is X, in which \ is a fuzzy probability; and

possibility qualification, expressed as p is it, in which n is a fuzzy
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possibility, e.g., quite possible, almost impossible, etc. Furthermore, know

ing and believing are assumed to be binary, second-order, fuzzy predicates.

Types of propositions

Since the inference processes in the existing expert systems are based on

two-valued logic and/or probability theory, the principal tools for inference are

the modus ponens and/or its probabilistic analog - the Bayes rule and its varia

tions. As was alluded to earlier, the validity of these inference processes is open

to question since most of the information in the knowledge base of a typical

expert system consists of a collection of fuzzy rather than nonfuzzy proposi

tions.

To deal with such propositions, fuzzy logic draws, first, on test-score seman

tics [86] to represent their meaning; and. second, on a combination of the

entailment and extension principles [83] to deduce the answer to a given ques

tion. In this way, the problem of inference from fuzzy propositions is reduced, in

general, to the solution of a nonlinear program.

The basic ideas which underlie the deduction processes in fuzzy logic may

be summarized as follows.

Assume that the knowledge base, KB, consists of a collection of proposi

tions \px pif\, some or all of which may be fuzzy in nature.

The propositions in a typical knowledge base may be divided into four prin

cipal categories.

(1) An unconditional, unqualified proposition.

Example: Carol has a young daughter.

Canonical form: 3 X is F, where A" is a variable and F is a fuzzy predicate

(i.e., a fuzzy subset of the domain of X).

(2) An unconditional, qualified proposition.

Example 1: It is very likely that Carol has a young daughter, or,

equivalently. Carol has a young daughter is very likely, which exhibits more

directly the proposition Carol has a young daughter and the qualifying fuzzy

probability very likely.

Example 2: Carol is very vivacious most of the time. In this case, the

qualifier most of the time plays the role of a fuzzy quantifier.

3 Canonical forms are discussed in greater detail at a later point in this section.
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Canonical form 1: X is F is X, where X is a variable, F is a fuzzy predicate

and X is a fuzzy probability.

Canonical form 2: Q U's are F's, where Q is a fuzzy quantifier and F is a

fuzzy subset of the universe of discourse, U.

(3) A conditional, unqualified proposition.

Example: If X is a man then Xis mortal.

Canonical form: If Xis F then Yis G, where X and Y are variables and F

and G are fuzzy predicates.

(4) A conditional, qualified proposition.

Example 1: If a car is old then it probably is not very reliable or, more pre

cisely, If Xis an old car then (Xis not very reliable is probable).

Example 2: If Xis a young man then (Yis a young woman is likely), where

Y denotes the girlfriend of X and likely is the qualifying fuzzy probability.

Example 3: Most Swedes are blond. This proposition may be expressed in

the equivalent form If Xis a Swede then (Xis blond is likely) in which the
fuzzy probability likely is equal, as a fuzzy number, to the fuzzy quantifier

most.

Canonical form 1: If Xis F then Yis Gis X, where X and Y are variables, F

and G are fuzzy predicates and X is a fuzzy probability.

Canonical form 2: Q F's are G's, where Q is a fuzzy quantifier, and F and G

are fuzzy predicates.

Most of the rules in the knowledge base of a typical expert system are of

Types 3 and 4. In particular, many of the rules of Type 4 are dispositions, that

is, propositions with implicit fuzzy quantifiers, e.g., Snow is white, Small cars

are unsafe, Young men like young women, etc. Dispositions play an especially

important role in the representation of — and inference from — commonsense

knowledge [89].

Canonical forms

As a preliminary to applying the rules of inference of fuzzy logic to proposi

tions in KB, it is necessary to represent their meaning in a canonical form which

places in evidence the constraints which aFe induced by each proposition. In

fuzzy logic, this is accomplished through the use of test-score semantics [80],

[88].

More specifically, the basic idea underlying test-score semantics is that a

proposition, p, in a natural language may be viewed as a collection of focal
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variables X\, . . . ,Xn taking values in U\, . . . , Un, respectively, which are con

strained by a system of elastic (or fuzzy) constraints F\, . . . ,Fn. In general,

the variables X\, . . . ,Xn and the associated constraints F\, . . . ,Fn are implicit

rather than explicit in p.

In more concrete terms, any unconditional proposition, p, may be

represented in a canonical form, cf (p),

p •+cf(p)&Xis F , (3.1)

in which X&(X\ Xn) is an n-ary focal variable whose components are
X\ Xn; and F is a fuzzy relation in U{X • • xUn which represents an elastic

constraint on X. Informally, what this means is that a proposition, p, may be

viewed as a system of elastic constraints, and that the representation of the

meaning of p is the process by which the implicit constraints in p are made

explicit by expressing p in a form which places in evidence the constrained vari

able X and the elastic (or fuzzy) constraint F which is induced by p.

Let 11^- denote the possibility distribution of X, that is, the fuzzy set of pos

sible values which X can take in U 4 Uxx • • • x Un [84]. Then, as shown in [86],

the canonical proposition X is F may be interpreted as the possibility assign

ment equation

Hr = F (3.2)

or, more explicitly, as

-nx(u) 4 Poss IX = u J (3.3)

where u &(ult . . . .Un) is a generic point in U = Uxx - - • xUn; nx-'U *• [0,1] is

the possibility distribution Junction associated with 11^-; fip : U -* [0,1] is the

membership function of the fuzzy relation F\ and Poss\X = u] should be read as

"the possibility that X may take u as its value." In this way, p may be

translated into its canonical form (3.1) or, equivalently, its possibility assign

ment equation

p -* Ux = F (3.4)

in which II^ ^) ~ F is the possibility distribution induced by p.
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If p is a conditional proposition, e.g., // Roberta works near Washington

then Roberta lives near Washington, the canonical form of p may be expressed

as

cf(p) 4// Xis F then Yis G , (3.5)

where the focal variables X and 7 take values in U and V, respectively; F and G

are fuzzy subsets of U and V; and Xis F and Yis G are the canonical forms of

the antecedent and consequent components of p. Correspondingly, the possibil

ity assignment equation associated withp becomes [83]

p - %,*, is H , (3.6)

in which T\y\X) denotes the conditional possibility distribution of Y given X and

H is defined in terms of F and G by 4

Hh(u,v) = 1 a (1 -HfM + uG(v)) , (3.7)

where u and v are generic values of X and Y, respectively; Uh'-UxV -* [0,1] is

the membership function of H; jip:U -* [0,1] and uq\V -» [0,1] are the member

ship functions of J7* and G; and a is the min operator. Thus, expressed in terms

of the possibility distributuion functions, (3.7) implies that

nwx)(v»v) &Poss\Y= v \ X=u\ (3.8)

= 1 A (1 -Mffa) + Mc(v)) .

In general, the translation of p into its canonical form requires the con

struction of (a) an explanatory database', (b) a test procedure which tests and

scores the constratins induced byp; and (c) an aggregation function which com

bines the partial test scores into a single (or, more generally, a vector) test

score t which represents the compatibility of p with the explanatory database

[86]. In the case of expert systems, however, the propositions in KB are usually

simple enough to be amenable to translation by inspection. For example:

(a) Carol has dark hair -* Xis F,

where

4 Equation (3.7) expresses a particular definitionof the conditional possibility distribution
which is consistent with the definition of implication inLukasiewicz's LjuapM logic. Amore
detailed discussion of various forms of Yl^y\x) m&7 oe found in[5], [18] ana [43].
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X 4 Color (Hair (Carol))

F4DARK

and DARK is a fuzzy subset of the set of colors of human hair.

(b) John lives about two miles from Henry ~* Xis F,

where

X 4 Distance (Location (Residence (John))),

Location (Residence (Henry))

F 4 ABOUT 2

(c) Henry is much younger than George -» (Xi,Xz) is F ,

where

Xi 4 Age (Henry)

X2 4 Age (George)

F4 much.younger

and the fuzzy relation MUCH.YOUNGER is a fuzzy subset of [0,120] x [0, 120].

(d) If Tong is blond then he is not Chinese -»If Xis Fthen Yis G,

where

X 4 Color (Hair (Tong))

X 4 Nationality (Tong)

F 4 BLOND

G 4 CHINESE

(e) John has three sons -» Xis F,

where

X 4 Count (Sons (John))

F43

and Count (Sons (John)) is the count of the number of elements in the set Sons

(John).

(f) John has three young sons -» (XitXz) is F ,

where

Xx 4 Count (Sons (John))
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X* 4 Age (Oldest.Son (John))

F4(F!.F2)

F24 3

F2 4 YOUNG

and YOUNG is a fuzzy subset of the interval [0, 120].

A basic point which these simple examples are intended to illustrate is that

either by inspection or, more generally, through the application of test-score

semantics, a constituent proposition, p, in KB may be expressed in a canonical

form which places in evidence the variables constrained byp and the elastic or,

equivalently, fuzzy constraints to which they are subjected.

By interpreting the canonical form of p as the possibility assignment equa

tion, we are led to the possibility distribution, IP(#X A^)» which is induced by

p. In this way, each constituent proposition in KB is converted into a possibility

distribution which constrains the variables in KB. Then, through conjunction,

we can construct the global possibility distribution, 11^ xn)> which is induced

by the totality of propositions in KB. As we shall see in the sequel, this is the

point of departure for deduction in fuzzy logic.

Deduction

Assuming, as we have done already, that the knowledge base, KB, consists

of a finite collection of propositions \plt . . . ,pjv), let Tf*yc x^) or« simply, IP,
denote the possibility distribution induced by Pj, j = 1, . . . ,N. 5 Then, under
the assumption that the p* are non-interactive [84], the possibility distribution

function of the global possibility distribution may be expressed as 6

*(*, xn) = **(*! ay A •• • a ^V, *;) (3.9)

where a 4min, and

rr(^ ^)(^i un)&Poss{X1 =u1 Xn = iinj , u< e C/< , (3.10)

5 Note that there is no loss of generality in assuming that the constituent propositions in
KB have the same set of focal variables since the set \X\ Xn] may he taken to be
the union of the focal variables associated with each proposition.
6 In the present paper, it will suffice for our purposes to use the standard connectives
A 4 min(conjunction) and V 5 max (disjunction). Amore general treatment ofconnec
tives in fuzzy logic may be found in [18] and [32].



-16-

i = 1, . . . ,n.

Now suppose that we are interested in the possible values of a subset,

{Ail, • • • >Xikl, of the KB variables \Xlt . . . ,Xn]. In other words, we are
interested in determining the marginal possibility distribution IW v' j from

the knowledge of the global possibility distribution Tip ^). As we shall see

presently, the desired possibility distribution is given by the projection of

Tl(xt x^ on UnX •• x Uit, which is written for simplicity as [80]

xil x • •• x Xik T\xx xj 4 Proj on Uux >- x Uik of ^ ^j. (3.11)

For convenience, let X(9) denote the subvariable of the variable

X 4 (Xx, . . . ,Xn) which is the focus of our interest, i.e„

X{s) - (Xn Xn,) ,

where the index sequence s 4(il, . . . ,ik) is a subsequence of the sequence
(1, . . . ,n). Using the same notational device, any k-tuple of the form

(Aa, . . . »Ak) may be expressed more compactly as A(a).

Let n*(s) be the projection of the global possibility distribution 11* on

C/(B) 4 Uu x • • • x Uik. Then, by definition [83],

**(.)(u(«))4ffupW(fl)tt*<ti) , (3.12)

where s' 4 (jl, . . . ,jm) is the index subsequence which is complementary to s.
(Kg., if n = 5 ands 4(2.3,5) thens' = (1,4).)

Now the entailment principle [83] of fuzzy logic asserts that from any fuzzy

proposition p we can infer a fuzzy proposition g if the possibility distribution

induced by p is contained in that induced by g. This may be represented in the

schematic form

p-*Y?x"F (3.13)

i
g «- IF* = G D F ,

where the reverse arrow «- signifies that g is a re translation of the possibility

assignment equation II** = G if the latter is a translation of g. For simplicity,

we shall say that IP* may be inferred from IP* if II** D FP*. that is,
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rflx(u) ^ *px(u) for all u e U . (3.14)

From the definition of nx,9)(u(8)) as expressed by (3.12), it follows at once

that

**wfr*(.)) ^ **(u) font e C/ . (3.15)

and hence that II*.. may be inferred from II*. As a consequence, II*.. as

defined by (3.12) represents the desired possibility distribution of the variable of

interest, namely, X(s) 4(A"tl Ai*). Since X(a) is given by the projection of
II* on C/(s), we shall refer to the inference rule which yields II*.. as the P-rule,

with P standing for projection.

As a simple illustration, assume that the knowledge base contains three

propositions Pi.P2andpg which induce, respectively, the possibility distribu

tions rP(*_*„) >TP{x) , and H3^.;^). Suppose that the variables of interest are X%
and X4. Then, the possibility distribution function of Xz and X4 is given by

*VC*xa)(u*ua) =supu^ ^\xzjc^z,u^) a i^iXiiM A7rVg.;g(u2ii4)J3.16)

which reduces to

^{Xzjx^z^z) =suPu3 \nlvczjC£(v>2V3) A na{xi.x4)('U3V>4)} (3.17)

if II1* is a normal possibility distribution, i.e.,

syPu^Xj/iui) =1 • (3-18)

The right-hand member of (3.17) constitutes the composition of II1^,*^ and

IP(*3t*4) with respect to X$ [75].

In summary, given a knowledge base, KB, the possibility distribution, II*. .,

of a specified subvariable, X(a), may be obtained by projecting the global possi

bility distribution II* on C/(,). The resulting possibility distribution, II*.., may be

expressed as the composition with respect to X^) of those constituent possibil

ity distributions which contain variables which are linked directly or transitively

to the variables in X(a). 7 For this reason, the P-rule may be described, more

7 Xi and Xm, are linked directly if they appear in the same possibility distribution. Xi and
Xm, are linked transitively if there exists a chain of variables Xc , . . . , XCr, such that
(A{,A^ ) (XCr,Xm) are linked directly.
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suggestiveiy, as the compositional rule of inference [75], [83]. Expressed as a

sequence of operations, the application of this rule to KB may be represented as

the chain:

lPi PnI translations, jll1 Ilyj conjunction^ (3.19)

l^i A " • A JtyJ projeqUpn^ in*(#)) retran^laUpn^ g .

where the inferent proposition g is a retranslation of II* ., which is the marginal

possibility distribution of the subvariable of (X\ Xn), X[a), which is the tar
get of the inference process.

Among the traditional rules of inference —which may be viewed as special

cases of the compositional rule of inference — is the modus ponens. To establish

this fact, we shall first derive from the compositional rule of inference a more

general version of the modus ponens which in fuzzy logic is referred to as the

generalized modus ponens [83], [35].

Consider a pair of propositions (plt pz\ of the form

Pi 4// Xis F then Yis G (3.20)

p24A'is F* ,

in which F, F*andG are fuzzy sets (or, equivalently, fuzzy predicates).

Applying (3.4), (3.6) and (3.7), the translations of p\ and pg may be

expressed as

Pi-n(y,*) = /f (3.21)

P2->II* = /* , (3.22)

where fix(u,v) is given by (3.7).

By applying the compositional rule of inference to (3.21) and (3.22), the

possibility distribution of Y is found to be given by

T1Y=H°F* , (3.23)

where the right-hand member of (3.23) represents the composition of H and F*

with respect to X. More concretely,

fiY(v) =supu |u#(u.v) a Mf*(^)J (3.24)

=supu^iF»(u) a (1 -PfM +A4C(v))j .
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This conclusion may be stated in the form of the syllogism

If Xis Fthen Yis G (3.25)

Xis F*

Yis HaF*

where H ° F* is defined by (3.24). This syllogism expresses the generalized

modus ponens.

The generalized modus ponens differs from its classical version in two

respects. First, F* is not required to be identical with F, as it is in the classical

case. And second, the predicates F, G and F* are not required to be crisp. It

can readily be verified that when F = F* and the predicates are crisp, H ° F*

reduces to Gand (3.25) becomes B

// Xis Fthen Yis G (3.26)

X^ F

Yis G

TIiePE-Rule

The compositional rule of inference makes it possible to deduce from KB

the possibility distribution of a specified subvariable, X^, of the KB variable

X &(XX Xn). More generally, however, the target of the inference process

is not X(a) but a specified function of X^, say / (X^s)). This may be viewed as a
general formulation of the problem of finding an answer to a question which

relates to the information resident in KB.

In fuzzy logic, the compositional rule of inference plays an essential role in

the formulation and solution of this problem by making it possible to decompose

the problem into two subproblems: (l) determination of the possibility distribu

tion of X{a)\ and (2) determination of the possibility distribution of f(X^a)) from
the knowledge of that of X(8y

More specifically, assume that a question relates to the possibility

8 Depending on the way inwhich Ilm*) is defined in terms of Up and JJLq, (3.26) may or
may hold when F = F* but F and G are not crisp. A more detailed discussion of this issue
may be found in [22] and [43].
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distribution of a function f(X(a)) whose argument is a subvariabie of the KB
variable X 4 (Xlt . . . ,Xn), and that through the use of the compositional rule of

inference we have determined the possibility distribution of X(a) . Then, by the

extension principle [83], the determination of the possibility distribution of

..* / C^(s)) is reduced to the solution of the following nonlinear program:

nf(v) =supu^irx^Ufr))) (3.27)

subject to

f(u{a))=v , (3.28)

where v is a generic value of /, and

nf(v) 4 Poss \f =v J (3.29)

Deduction in fuzzy logic is based, in the main, on the solution of the non

linear program expressed by (3.27). Summarizing what we have said so far,

assume that we are interested in determining the value of an unknown variable

q which may be expressed as a function of a set of variables X(a) which are con

strained by a collection of propositions in a knowledge base KB. If X(a) is a

proper subset of the variables X &(Xx Xn) which are constrained by KB —

as would usually be the case — then we first find the possibility distribution of

-^(s) °y projecting the global possibility distribution II* on U^ay Then, we apply

the extension principle —as in (3.27) —to reduce the determination of the possi

bility distribution of q to the solution of a constrained maximization problem in

which the function in question is treated as a constraint and the objective func

tion is the possibility distribution function of X(8). For convenience, we shall

refer to this deduction process as the PE-rule, with P and E standing for projec

tion and extension, respectively.

A simple illustration of the PE-rule is provided by the following problem.

Suppose that the knowledge base contains the following propositions

Pi 4 John lives about two miles from Henry

p2 4 Henry lives about three miles from Ed

q 4 How far away is John from Ed?

The KB variables in this case are the coordinates of the residences of John,

Henry and Ed, i.e, (Xj.Yj), (Xjf,Yjj) and (XE,Yg). Upon translation of px andp2,
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the possibility distribution functions which constrain these variables are found

to be expressed by

n\Xj, Yj ,Xjf, Yjj) - uabout. z ((Xj-Xh)* + (Yj-Yh)z)

iP(Xh* Yn,Xs, Ye) - uabow.s - vJ\*«XH-XE? + (YH-YEY)

1-
*] • (3-

(3.30)

3D

where Uabow.z and Uabout.s are the membership functions of the fuzzy sets

ABOUT. 2 and ABOUT. 3, respectively.

The function which characterizes the question g in this case is

f(XjYjXEYE) = •1((Xj-XsY + tfj-YE)*) (3.32)

and hence the nonlinear program to which the solution of the problem reduces

may be expressed as

flf(d) =SUPXj.YjXH.YHXB.YB Uabovt.z(((Xj - XHf + (Yj- YH)*)Z) A (3.33)

Iabovt.zWh -Xe)2 + (YH - YE)2)2)

subject to

d=[(Xj -XEf +(Yj - YEf))z .

where d denotes the distance of John from Ed.

This problem can readily be solved by employing the level-set technique in

fuzzy mathematical programming [14], [46]. The solution yields d as a fuzzy

interval (or, equivalently, a fuzzy number) which may be represented as

ABOUT. 3 0 ABOUT. 2 *s d -£ ABOUT. 3® ABOUT. 2 , (3.34)

where® and 6 denote fuzzy addition and fuzzy subtraction, respectively [18].

A few observations concerning the solution are in order. First, the answer is

similar in form to what it would be if the distances inp2 andp2 were specified as

2 miles and 3 miles instead of about 2 miles and about 3 miles, i.e.,

3-2 *sd^ 3+2 (3.35)



-22-

However, whereas in the case of (3.34) we start with fuzzy distances, expressed

as fuzzy numbers, and arrive at a fuzzy answer, likewise expressed as a fuzzy

number, in the case of (3.35) we start with real numbers and end up with an

interval-valued answer. Obviously this is so because the information in the

knowledge base is incomplete in relation to the posed question. What is impor

tant to recognize is that this is a pervasive phenomenon in the case of expert

systems, and is the reason —as was alluded to earlier —why the certainty factor

of a conclusion should in general be an interval-valued or fuzzy number, rather

than a real number, as it is usually assumed to be.

Second, if in the statement of the problem the distances were specified pre

cisely, the upper and lower bounds in (3.35) would be given by the solutions of

the following nonlinear programs

dm« =^r^W^ -*e)Z +(ft - Ye?)T . (3.36)

dm* =WXjYjXbYsXsy£[(Xj - XEf +(Yj - YE?Y , (3.37)

subject to

[(Xj - X„f +(Yj - Yaff= 3 (3.38)

fc - xtf +(ra - rty)T* 3•
What is of interest to observe is that the roles of the constraints and objective

functions in (3.36) and (3.37) are interchanged in relation to those in (3.33). In

effect, the more general formulation expressed by (3.33) subsumes (3.36) and

(3.37) and is dual to them.

Interpolation

As was pointed out earlier, an important problem which arises in the opera

tion of any rule-based system is the following. Suppose that the user supplies a

fact which in its canonical form may be expressed as X is F*t where F is a fuzzy

or nonfuzzy predicate. Furthermore, suppose that there is no conditional rule

in KB whose antecedent matches F exactly. The question which arises is: Which

rules should be executed and how should their results be combined?
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The approach suggested by fuzzy logic involves the use of an interpolation

technique which is based on the P-rule and is in the spirit of the generalized

modus ponens [75].

Specifically, suppose that upon translation a group of propositions in KB

may be expressed as a fuzzy relation of the form

R x, Xz • Xn Xn+l

*n R\z • R\n Zi
• • • • •

Bmi BmZ • Rmn zm

(3.39)

in which the entries are fuzzy sets; the input variables are Xx, . . . ,A^, with

domains Ult . . . , Un; and the output variable is A^+i, with domain C/n+1. The

problem is: Given an input n-tuple (R*i, . . . ./?*n). m which R*j, j = 1, . . . ,n,
is a fuzzy subset of Uj, what is the value of A^+1 expressed as a fuzzy subset of

Cn+1?

A fuzzy relation which is represented by a tableau of the form (3.39) may be

defined in different ways. The definition which will be used here is that given in

[78], which is in the spirit of the standard definition of a relation as a collection

of tuples. Specifically,

R = Rn x • • • x Rln x Zx + • • + Rml x • • • x R^ x Zm , (3.40)

where x and + denote the cartesian product and union, respectively.

Based on this interpretation of R, the desired value of A^+l may be obtained

as follows.

First, we compute for each pair (Rij,R'j) the degree of consistency of the
input R*j with the Rq element of R, i = 1 m, j = 1, . . . ,n. The degree of
consistency, yq, is defined as

7tf ksup (Ry n R*j) (3.41)

=sup^(Mj^(W;) a/V^Uj)) ,
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in which Uj^ and nR* are the membership functions of Rq and R*j, respec

tively, and Uj is a generic element of Uj.

Next, we compute the overall degree of consistency, ji, of the input n-tuple

(R*i R*n) with the ith row of R, i = 1, . . . , n, by employing A (min) as

the aggregation operator. Thus

7i = 7u A 7iz A • A 7*» • (3.42)

As expressed by (3.42), 7t may be interpreted as a conservative measure of

agreement between the input n-tuple (R*i, . . . ,R*n) and the ith row n-tuple

(Rii, . • . .Rin) • Then, employing 7t as a weighting coefficient, the desired

expression for A^+1 may be written as a "linear" combination

Jt« = 7i A Zx +...+7m A Zm (3.43)

in which + denotes the union, and 7i a %t is a fuzzy set defined by

Ihi a Zi^+i) = 7« A Mzt("i+i) .* = 1 « • (3-44)

It should be observed that if no row of R has a high degree of consistency

with the input n-tuple, the value of the output variable X^+\ will be a subnormal

fuzzy set, that is, its maximal grade of membership will be smaller than unity.

Furthermore, the lower the degree of consistency, the higher the degree of sub-

normality. Thus, to achieve a high degree of normality of the output, it is neces

sary that at least one of the rows of R have a high degree of consistency with the

input n-tuple.

4. Inference from Quantified Propositions

In the preceding section, we have restricted our discussion of inference in

fuzzy logic to unqualified propositions. In the case of qualified propositions, the

problem of inference becomes considerably more complex, and our discussion

of it will touch upon only a few of the many issues which arise when some of the

propositions in the knowledge base are associated with certainty factors. 9

For simplicity, we shall restrict our attention to quantified propositions

whose canonical form may be expressed as

g LQ A's are B's , (4.1)

9 Some of the definitions and examples in this section are drawn from [86] and [88].
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e.g., Most small cars are unsafe, where A and B are fuzzy predicates and Q is

a fuzzy quantifier such as most, many, not very many, approximately 0.8, much

more than a half, etc. For convenience, A and B will be referred to as the

antecedent and consequent of g. This is motivated by the observation that g

may be interpreted as the conditional probability assignment

Prob \B\A\is Q , (4.2)

in which Prob \B\A\ denotes the conditional probability of the fuzzy event

\Xis B\ given the fuzzy event \X is A\ [71]. In both (4.1) and (4.2), Q plays the

role of a fuzzy number which is a fuzzy subset of the unit interval.

Cardinality of fuzzy sets

To make the concept of a fuzzy quantifier meaningful, it is necessary to

define a way of counting the number of elements in a fuzzy set or, equivalently,

to determine its cardinality.

There are several ways in which this can be done [88]. For our purposes, it

will suffice to employ the concept of a sigma-count, which is defined as follows.

Let Fbea fuzzy subset of U = |u1( . . . , u^ J

expressed symbolically as

F = ux/ux+...+ Vm/Un = ZitM/Ui (4.3)

or, more simply, as

F = /iiU1+...+ Ainiin , (4,4)

in which the term/^/iit, i = 1, . . . , n, signifies that //* is the grade of member

ship of it* in F, and the plus sign represents the union. l0

The sigma-count of Fis defined as the arithmetic sum of the ^ , i.e.,

ZCount(F) 42i/4i. i = 1 n , (4.5)

with the understanding that the sum may be rounded, if need be, to the nearest

integer. Furthermore, one may stipulate that the terms whose grade of

membership falls below a specified threshold be excluded from the summation.

10 In most cases, the context is sufficient to resolve the question of whether a plus sign
should be interpreted as the union or the arithmetic sum.
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The purpose of such an exclusion is to avoid a situation in which a large number

of terms with low grades of membership become count-equivalent to a small

number of terms with high membership.

The relative sigma-count, denoted by ZCount(F/ G), may be interpreted as

the proportion of elements of F which are in G. More explicitly.

N ZCount(FnG) , v

where F f\G , the intersection of Fand G, is defined by

FC\G = Zi(uB(ui) a UG(ui))/Ui ,i = l n . (4.7)

Thus, in terms of the membership functions of F and G, the relative sigma-count

of Fin Gis given by

^^-SSgjJ^. (4-8)
The concept of a relative sigma-count provides a basis for interpreting the

meaning of propositions of the form Q A's are B's , e.g., Most young men are

healthy. More specifically, if the focal variable in the proposition in question is

taken to be the proportion of B's in A's, then the corresponding translation rule

may be expressed as

Q A's are B's -^ZCount (B/ A) is Q (4.8)

or, equivalently, as

Q A's are B's->Tlx = Q (4.9)

where

x s^M ' (4*10)

The intersection/product syllogism

In fuzzy logic, a basic rule of inference for quantified propositions is the

intersection/product syllogism which may be expressed as the schema [88]

QxA's are B's (4.11)

Qz (A and B) 's are C 's
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(Qi ® Qz) A's are (B and C) 's ,

in which A, B and C are fuzzy predicates and Qx ® £2 is a fuzzy number which is

the fuzzy product of the fuzzy numbers Qx and Qz [18]. For example, as a spe

cial case of (4.11), we may write

Most students are single (4*12)

A little more than a half of single students are male

(Most & A little more than a half) of students are single and male .

Since the intersection of B and C is contained in C, the following corollary

of (4.11) is its immediate consequence

Qx A's are B's (4.13)

Qz (A and B)'s are C's

^ (Qi ® Qz) A's are C's ,

where the fuzzy number2- (£1 ® Qz) should be read as at least (Qx® Qz), with the

understanding that St (<?i® £2) represents the composition of the binary non

fuzzy relation 5s with the unary fuzzy relation (Qx®Qz)- In particular, if the

fuzzy quantifiers Qx and Qz are monotone increasing (e.g., when Qx = Qz 4mosr),
then as is stated in [88],

*(Qi®Qz) = Qx®Qz . (4.14)

and (4.13) becomes

QiA's are B's (4.15)

Qz (A and .g)'s are C's

(Qi®Qz)A's are C's .

The consequent conjunction syllogism

Another basic syllogism in fuzzy logic is the consequent conjunction syllo

gism [B8] which may be expressed as the schema

QxA's are B's (4.16)

QzA's are C's
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Q A's are (B and C)'s ,

where

0® (Qx © Qz0 1) ss Q £ Qx ® Qz .

in which the operators ©t ®, © and ©, and the inequality ^ are the extensions of

At V. +• - and :£, respectively, to fuzzy numbers [18].

The consequent conjunction syllogism plays the same role in fuzzy logic as

the rule of combination of evidence for conjunctive hypotheses does in MYCIN

[60] and PROSPECTOR [20]. However, the latter rules are ad hoc in nature

whereas the consequent conjunction syllogism is not. Furthermore, the conse

quent conjunctive syllogism shows that the certainty-factor values used in the

case of conjunctive hypotheses in MYCIN and PROSPECTOR correspond to the

upper bound in (4.16).

As a simple illustration of the consequent conjunction syllogism, assume

that

Pi 4 Most Frenchmen are not tall (4.17)

Pz 4 Most Frenchmen are not short

In this case, by the application of (4.16), we can infer that

Q Frenchmen are not tall and not short

where

0 © (2 most © 1) sS Q <> most . (4.18)

In the above example, the variable of interest is the conjunction of the con

sequents not tall and not short. In a more general setting, the variable of

interest may be a specified function of the variables constrained by the

knowledge base. The following variation on (4.16) is intended to give an idea of

how the value of the variable of interest may be inferred by an application of the

PE-rule.

Infer from the propositions

Px&Mast Frenchmen are not tall (4.19)

Pz^Most Frenchmen are not short
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the answer to the question

g 4 What is the average height of a Frenchman? (4.20)

Assume that px and pz refer to a population of Frenchmen,

{Frenchmanx Frenchman^ J with respective heights Xx, . . . ,Xn which

play the role of KB variables. On denoting the membership functions of the

fuzzy predicates tall and short by utall and Ushort* and that of the fuzzy

quantifier most by Umost* the possibility distributions induced bypi anapz may

be expressed as

frVj A^)(^i hn) =hanthost

tt2^! Ajfal. • • • . f*n) =PANTUOST

T^iPTALLfc)
n

Zr^i^SHORTi^i)
n

(4.21)

(4.22)

where hlt . . . ,hn are generic values of Xx A^, and ant is an abbreviation

for antonym [80], i.e.,

V>ANTUOsAu)k.uUOST(l-u) ,u e [0,1] . (4.23)

Now the variable of interest is the average height, Y, which, as a function of

the KB variablesXx, . . . ,Xn may be expressed as

Y=Uxx+...+ Xn) . (4.24)
71

Consequently, by applying the PE-rule (3.27), the determination of the possibil

ity distribution of Y is reduced to the solution of the nonlinear program

uY(h) =suphl ^ (uANTMOST(nJZiUTALL(fh)) A (4.25)

PANTMOST(J^tMSffGOTCk) ))

subject to

h =ijyk. ,
71

where h is the generic value of Y.

Alternatively, a simpler but less informative answer may be formulated by

forming the intersection of the possibility distributions of Y which are induced



-30-

separately bypx andpg. More specifically, let Tly\Pl, Hy\pz . n*^ Aj>2 De tne Pos"
sibility distributions of Y which are induced by px, p2 , and the conjunction of px

and pz% respectively. Then, by using the minimax inequality [73], it can readily

be shown that

nriJ,1 n XIy\j>z 3 nrtl AP2 . (4.26)

and hence we can invoke the entailment principle [83] to validate the intersec

tion in question as the possibility distribution of Y. For the example under con

sideration, the desired possibility distribution is readily found to be given by

Pass (Y = h \ = uantuost(j^tall Q1)) A ^ANTUOStOJ'SHQRT(M) • (4.27)

Chaining of propositions

An ordered pair, (px, pz), of quantified propositions of the form

Pi 4 Qx A's are B 's (4.28)

Pz 4 Qz B 's are C's .

are said to form a chain. More generally, an n-ary chain may be represented as

an ordered n-tuple

(QxAx's are Bx's , Q2A2's are B2's Q„, An's are Bn's) , (4.29)

in which Bx = A2t B2 = As , . .. , Bn-X = An .

Now assume that px andp2 appear as premises in the inference schema

Qx A's are B's (majorpremise) (4.30)

Q2 B 's are C's (minor premise )

?Q A's are C's (conclusion)

in which ?Q is a fuzzy quantifier which is to be determined. This schema

corresponds to the combining rules in MYCIN and PROSPECTOR in which uncer

tain evidence is combined with an uncertain rule.

When Qx - Qz- all, the transitivity of fuzzy set containment or,

equivalently, the rule of property inheritance in AI, implies that Q = all, i.e.,

all A's are B's (4.31)
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all B's are C's

all A's are C's

However, as shown in [88], property inheritance is a brittle property in the

sense that even when Qx and Qz are arbitrarily close to all, there is nothing that

can be said about Q, which means that, as a fuzzy number, Q = [ 0,1]. Thus, to

be able to constrain Q it is necessary to make restrictive assumptions about

Qx, Q2, A and B.

As an illustration, assume that B c A and hence that A (~) B = B. In this

case, the intersection/product syllogism (4.11) yields

Qx A's are B's (4.32)

Qz B's are C's

^ (Qi ® Qz) A's are C's

which implies that Q = 2t (Qx ®Qz). If. in addition, it is assumed that Qx and Qz

are monotone increasing, so that ^(Qx®Qz) = £i®#2. we obtain the product

chain rule [69],

QxA'sareB's (4.33)

QzB's are C's

(Q\®Qz) A's are C's .

In this case, the chain (Qx A's are B's , Q2 B's are C's) will be said to be pro

duct transitive. ll

As an illustration of (4.32), we can assert that

most students are undergraduates

most undergraduates are young

most2 students are young ,

where most2 represents the product of the fuzzy number most with itself.

11 More generally, an n-ary chain (Qx Ax's are Bx's , . . . , Qn An 's are Bn's)
•will be said to be product transitive if from the premises which constitute the chain it may
be inferredthat ^(Qx®' • ' ® On) Ax's are Bn's.
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Chaining under reversibility

An important chaining rule which is approximate in nature relates to the

case where the major premise in the inference chain

Qx A's are B's (4.34)

QzB's are C's

Q A's are C's

is reversible in the sense that

Qx A's are B's «-» Qx B's are A's , (4.35)

where ♦-» denotes approximate semantic equivalence [80]. For example,

Most American cars are big *-* Most big cars are American . (4.36)

Under the assumption of reversibility, it is shown in [89] that the following

syllogism holds in an approximate sense

Qx A's are B's (4.37)

Qz B 's are C 's

fe(0®(QX © Q2B 1)) A's are C's .

We shall refer to this syllogism as the MPR-rule, with MPR standing for major
premise reversibility. The transitivity of fuzzy set containment which is implied

by the MPR-rule will be referred to as the BR-transitiuity, with B and R standing

for Bezdek and Ruspini, respectively, who have employed this type of transitivity

of fuzzy relations in their work on fuzzy clustering [10], [55].

Concluding remark

In the foregoing analysis, we have considered some of the representative

problems which arise in the management of uncertainty in expert systems. Our

analysis is intended to suggest that fuzzy logic provides a natural conceptual

framework for knowledge representation and inference from knowledge bases

which are imprecise, incomplete, or not totally reliable. Generally, the use of

fuzzy logic reduces the problem of inference to that of solving a nonlinear pro

gram and leads to conclusions whose uncertainty is a cumulation of the uncer

tainties in the premises from which the conclusions are derived. As a
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consequence, the conclusions as well as the certainty factor (or their

equivalents) are fuzzy sets which are characterized by their possibility distribu

tions.

In our analysis, we have considered some — but by no means all — of the

_K inference rules in fuzzy logic which are needed for the combination of evidence

in expert systems. In particular, we have not considered the antecedent con

junction syllogism, which is needed when the antecedents of fuzzy rules are

combined conjunctively. In devising such syllogisms, it may be necessary to

employ the theory of dispositions [89] to make use of the ultrafuzzy information

about the antecedent and consequent predicates. Otherwise, little can be said,

in general, about the value of the certainty factor of the conclusion.
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