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ABSTRACT

In this paper we present a heuristic algorithm for single row routing.

Our approach is based on the interval graphical representation of the

given net list. The objective function for minimization is the street

congestion. The problem is known to be intractable in the sense of NP-

completeness, thus, a polynomial-time heuristic algorithm is proposed.

It has been implemented and tested with various examples. So far, it

has always produced optimal solutions.
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1. INTRODUCTION

The single row routing problem is a yery crucial one in the layout

design of printed circuit boards. It was first introduced by So in [1]

and later generalized by other authors [2-6]. In [4] a novel formulation

was proposed, and the conditions of optimum routing were derived. In [7]

it was shown that the problem is intractable in the sense of NP-complete-

ness. Here, we propose a heuristic, polynomial routing algorithm based

on the approach introduced in [4], The algorithm has been implemented

and tested on various examples. So far, it has always produced the

optimal solutions. We have been able to prove that it indeed leads to

optimal solutions for some special cases.

2. FORMULATION OF THE PROBLEM

Given a set of n nodes placed on a row and a net list L= {N-. ,N2s...N }

which prescribes the connection pattern of nets to nodes. A net list is

to be realized with a set of m nonintersecting nets which consist of

only horizontal and vertical paths connecting the nodes according to

specification. An example showing a realization of a given net list

together with some pertinent terminology is given in Fig. 1. The space

above the row R is referred to as the upper street and the space below R

is referred to as the lower street. The number of horizontal tracks allowed

in the upper street is called the upper street capacity and the number of

horizontal tracks required in the realization in the upper street, is called

the upper street congestion. We will use the following notation:

C - upper street congestion

Cls " ^ower stree,t congestion

c • - number of horizontal tracks passing above the ith node in

the realization
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c,. - number of horizontal tracks passing below the ith node

in the realization

From these definitions it follows that:

Cls = max c11

i=l,...n

Cus= mfcui'
i=l,2,...n

An optimum realization is one which minimizes the street congestion

in both streets. Thus we can define QQ being the street congestion, i.e.,

Q0 = max{CusJC-j } and say that an optimum realization is achieved if QQ

is minimum.

It has been shown in [4] that to each realization of a given net

list L there corresponds a unique interval graphical representation.

The interval graphical representation is a set of m horizontal intervals

representing the m nets together with an assumed order. Each horizontal

line corresponds to the interval specified between the extremal node

positions of a given net. Figure 2 shows the interval graphical repre

sentation of the single-row realization in Fig. 1.

Definition 1. The cut number c. at node i is the number of nets cut by

the vertical line superimposed on the interval graphical representation

at the ith node v.. From the previous definitions it follows, that

c • = c . + c7 •
i ui li

Definition 2. A cut number of a net N_. denoted by q. is the maximum—-———^^— _^—_—^_ j j

over cut numbers of the nodes which belong to the net N-.
j

-3-



For example, in Fig. 2, we have qg =3. If in the interval graphical

representation the first net from the top has a cut number q then C-. is

at least q. If the bottom net has a cut number q, then C „ is at least
^ us

q. Thus, intuitively it is clear that those nets which have the least

cut numbers should appear as outer nets in the interval graphical repre

sentation corresponding to optimum routing.

Following [4], let us further denote by

and

qM = max qj
J

In [4] it has been shown that the street congestion QQ for the

optimum realization satisfies an inequality:

C rqMTl%>max fin' jT }
where [x] is the smallest integer not smaller than x. An optimum realiza-

qM
tion with street congestion Qosp3nl exists if and only if there exists

qM qM
such an ordering that for each v. with c. =|V-1 +k(k= 1,2,...qM- pjr-l)

the net associated with v. is covered from above and below by at least

k nets. In general there exists an optimum realization with street

qM-,congestion Qo=rW-Ll +P> if and only if p is the least nonnegative integer

for which the p-excess property holds. The p-excess property means that

qM-.
there exists an ordering such that for each v. with c. = [V-l + k

%
(k= p+1 ,...qM- Po^l) the net associated with v. is covered by at least

k-p nets from above and below [4].

The heuristic algorithm for single-row routing makes use of these

necessary and sufficient conditions for optimum realizations.
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3. FOUNDATIONS OF THE HEURISTIC ALGORITHM

In the previous section we have recalled the necessary and suffi

cient conditions for optimum single-row routing. These conditions are in

such a form that the problem of finding the optimum ordering of intervals

in the interval graphical representation remains an open question. However,

these conditions help us to understand the. problem and to develop an

intuitive approach.

First, we will make use of an observation that the nets which have

the least cut numbers should appear as outer nets in the interval graphi

cal representation. We classify nets according to their cut numbers and

introduce the concept of the zone as follows: We assign nets with

maximum cut number qM to the zone ZQ. Nets with cut number q»-i are in

zone Z.. Thus for the nets in Fig. 2 we have ^m =3, nets N«j,N-,N5,N

and Ng are in ZQ, N3,Ng and N« in Z, and N7 in Z«. In the optimum

realization nets from the zone Zn should appear as outer nets. Now,
qM

we will prove the following:

Lemma 1. Given a net list L= {N-. ,N2j. .. ,Nm} and an ordering 0-j of

the nets resulting in an optimum realization with street congestion QQ.

If in 0-| there is a net N. with cut number q-jlQg placed between nets

N.,Nk with cut numbers larger than QQ then there exists another optimal

ordering 0« such that N. preceeds both N.,N. or follows N. and N^.

Proof. Suppose that the ordering On is such that

WNk

and N. cannot be placed just before N. or after \ without affecting
1 J K

optimality. In such a case, there is a pin v. in Ni with upper cut
j j
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QQ and there is a pin v. in Nk with lower cut number QQ (see Fig. 3).

Then v. must be the terminating pin for N., and v. the originating pin
J J K

for Nj. If it were not the case, QQ could not be the street congestion

or the upper cut in v. would have to be less than QQ or the lower cut

in vk would have to be less than QQ. Between v. and w. at least one net

which covers v. from above have to terminate. It is so because the
j

upper cut number at vk cannot be larger than QQ and v. is already

covered by N.. For the same reason at least one net covering v. from

below has to originate between v. and v^. Actually, Nl must terminate

at v.+i» and N/ must originate from v. _-j. If between N. and N'. there

are Anets passing through then the upper cut in v.+-. is QQ-1 -A.

Suppose that N. is immediately after N. in the ordering 0-.. Let us

interchange N'. and N. in the O-i.' The upper cut number and lower cut

number of v. remain unchanged, and the lower cut number of v.+, is de

creased by one and the upper cut number is increased by one but does not

exceed QQ. Cut numbers of v. -j and vk are not affected by this operation.

Following the same reasoning we can show that interchange of H\ and N.

does not increase the street congestion. If after the interchange we

still have a situation that a net with cut number QQ or less is between

two nets with cut numbers larger than QQ then the process of interchanges

can be repeated.

Using Lemma 1 we can prove the following.

Lemma 2. Given a net list L= {N-. ,N2,...N } and an ordering 0-, of

the nets giving an optimum realization with street congestion QQ. There

exists an ordering 02 such that nets in 02 satisfy the following:

Tl <Tz < ... <Tz n +1 < (Nets with cut numbers >Qn) <Z n -<...<Z
qM qM-l %-%*1 ° qM"g0 X qM
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where Z. UZ. = Z. and Z. nZ. = 0, and superscipts denote the lower and

upper streets.

Proof. We can transform 0, into another ordering 02 satisfying Lemma 1.

In 02 we have

Z < (Nets with cut numbers > Q) <Z

where

d q

L M L U M UzL = u zV , zu = u zV
i=VQo+1 ^W1

The ordering within each zone Z and Z can be arbitrary, because it does

not affect the street congestion. Thus we can make the ordering to be

such which satisfies the requirements of the Lemma.

The same reasoning as in the proofs of Lemmas 1 and 2 can be used

to prove:

Lemma 3. Given a net list L= {N, ,N2,...,N } and an ordering 0, of

the nets which results in an optimum realization with street congestion

QQ, there exists an ordering 02 such that nets in 02 satisfy the follow

ing:

zh <zh < z!r <Zn <z!/ <Z^ <... Z^% %-i ... 1 0 1 2 qM

where z!fUZ^ =Z. and Z1: fl Z^ =0.
Lemma 3 is the basis of our heuristic algorithm for single-row

routing. The algorithm produces a solution which satisfies conditions

of Lemma 3. We apply heuristics to generate Z. and Z. for the given

Z. and to find ordering within each zone. It can be easily seen that

for a net list L where all the nets are 2 pin nets which cover at least
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one common point, each zone can have at most 2 nets, and for any division

of zone Z. into Z. and zj:, we always obtain an optimum solution.

4. THE BASIC ALGORITHM

The routing algorithm actually produces an ordering of intervals

representing nets, because to each net there corresponds a unique reali

zation.

In the following we will make use of the concept of internal and

residual cut numbers.

Definition 3. Given a net list L= {N-i ,N2,...N } and a division of L

into two sublists L-, and L2 such that L-.n L2 =0 amd L,U L2 =L. Let

N. € L-,. The internal cut number iq. of net N. in L with respect to L,

is defined as a cut number of N. in L-j. Thus, internal cut number has

the same meaning as cut number, except that it is calculated as if the

net list was composed only of nets which are in Li •

Definition 4. Let L-, UL2 =L, L, fit* =0 and N. €L,. The residual cut

number rq. of net N. in L with respect to L-, is defined as a cut number

of N1 in {L2UN.}.

These definitions can be extended in a natural way to internal and

residual cut numbers at a node: ic. and re.. Let us consider the net

list L={N1,N2,N3,...N } shown in Fig. 2. Let L-, ={N, ,N3,N4.N5,Ng,N },

L2= {N2,N7,Nn}. For nodes of the net N3 in the Fig. 4b we have internal

cut numbers (1,1), residual cut numbers [1,0], Thus iq~ = 1, ir~ = l.

Now, we are ready to present the basic concept of the algorithm.

First, each net is assigned to an appropriate zone. Then division of

each zone Z. into upper and lower parts z!? and Z. as well as mutual

ordering of nets in each of Z1: and Z^ is determined. The algorithm
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V

proceeds until each net is.assigned to its proper Z. (X =L,U) in a

proper place.

The algorithm starts with nets from ZQ, i.e., such nets which have

the maximum cut number qM. ZQ does not have to be divided, thus we

have only to determine the net ordering in ZQ. The ordering of nets in

Z« is performed as follows. Nets in this zone are sorted according to

descending internal cut numbers with respect to ZQ. When two overlapping

nets have the same internal cut numbers then the one which has larger

residual cut number preceeds the one which has smaller residual cut num

ber. If both internal and residual cut numbers are equal then the mutual

ordering of these nets can be arbitrary. In the algorithm we use ficti

tious track {T.} to which nets are being assigned, i is an integer from

the interve.1 [-Qq,Qq]. The ordering of tracks follows the natural order

of the indices. Only nonoverlapping nets can be assigned to the same

track. We take the first net from the sequence and place it in TQ. Then

we take consecutive nets from the ordered sequence and place them in TQ

or in some T. so that |j| is minimum. Then nets from consecutive zones
j

are placed in tracks following the same rules as for nets in ZQ. The

division of zones into upper and lower portions is a side effect of

minimizing the absolute value of track indices.

Let us consider an example of net list shown in Fig. 2. Figure 4a

shows nets from the same net list which belong to ZQ. In brackets are

shown internal cut numbers of nodes for each of nets. For the nets in

Fig. 4a we have N-, N-,, Ng and Ng with internal cut number equal 1.

They also have the same residual cut numbers, thus their mutual ordering

in the ordered sequence is an arbitrary one, let it be: N*, Nfi, Ng, N-,.

After placing them on tracks accordingly to the previously mentioned
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rules we have: N-., Ng, Ng-*-TQ, N-^T-., Ng-»-T_-. - It gives the following

partial ordering in the interval graphical representation: N-, (N-, ,N5,Ng),Ng

Nets in brackets can have an arbitrary mutual order. In the next step

nets from the zone Z, are to be placed in tracks. The nets N2,Ng, N3

are in Z,. Nets N2 and N3 have the same internal cut numbers equal 2

and residual cut numbers 0. Net Ng has internal cut number 1. Thus the

ordered sequence for nets in zone Z-j can be N2,N3,Ng. Again, we take

consecutive nets from this sequence and place them in available tracks

so that the number of tracks used above and below track T,. is as small

as possible. We can assign N2 +T2, N3-*T_2, NQ->-T2. Now., the actual

ordering is (N2»Ng), N4,(N-. ,Ng,N ),Ng,N3. Zone Z2 contains just one net

and according to the previous rules it is assigned to T_2. The final

ordering is (N2,N8),N4,(N1,N5,Ng),Ng,N3.

The final track assignment is shown in Fig. 5. All orderings which

follow from it correspond to the optimum realization in Fig. 1. More

precisely, the ordering algorithm is as follows:

Step 0: i:=0, j:=0, assign each net to an appropriate zone.

Step 1: Calculate internal and residual cut numbers for nets in Z- with
i

respect to L«, = U Zj.
1 j=0

Step 2: Sort the nets from Z. into a sequence 0. such that for N ,Nu€Z.,

Na * Nb if iqa >iqb or 1qa =iqb and 1ra >iYV If Na and Nb
have equal both internal and residual cut numbers then their

mutual ordering in 0. is an arbitrary one.

Step 3: j = 0? yes-*-follow 4, no + go to Step 5.

Step 4: Assign the first net from 0. to track TQ. Are there any nets

in 0. which are not assigned yet? Yes-»• follow 5, no-*-go to 8.
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Step 5: Take the consecutive net from 0. which does not have the track

assignment. Can this net be assigned to T , such that |x| £ j?

Yes•* follow 6, no-*-go to 7.

Step 6: Assign this net to such track that |x| =min. Are there any

nets in 0i which do not have track assignment? Yes -*• go to 5,

no -*- go to 8.

Step 7: j := j+1, go to Step 6.

Step 8: Is there any net in the net list L which is unassigned to any

track yet? Yes->-follow 9, no-*-go to 10.

Step 9: i := i+1, go to Step 1.

Step 10: Exit.

5. MODIFICATIONS OF THE BASIC ALGORITHM

Up to now we have assumed that in the realization of a single row

the nets are unidirectional, i.e., there does not exist a net which has

two horizontal segments crossing a vertical line. It turns out, however,

that when this requirement is relaxed, better results are possible in

some cases. If we obtain a realization where street congestion equals

qM-.
to [V-H then no further improvement is possible. However, when the

obtained ordering yields a realization with street congestion larger than

qM
[Vm then allowing some nets to have more than one segment in the hori

zontal graphical representation can sometimes improve the result. We

will explain this mechanism using the following examples. Let us consi

der a situation shown in the Fig. 6a. The node A is covered from below

by q»-l nets, node B is covered from above by qM nets and from below by

no more than qM-2 nets and there exists a net ND which covers A from
qM-.below and B from above such that cut number CD-i <_ [W-1* In such a case
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we can replace one horizontal interval representing net Ng with a diff

erent pattern as shown in Fig. 6b. Net NQ covers A from below and does

not cover node B from above but rather from below. Thus the node B has

upper cut number decreased by one and lower cut number increased by one

If B were the only node where the street congestion occurred and the

replacement does not introduce such new nodes then it reduces street

congestion. The type of net representation as shown in the Fig. 6b is

called an external detour. For some net lists two or more external

detours are possible. Figure 7 illustrates an example, where external

detours have been applied to two overlapping nets. In this example

^El >>CE29 ^Dl <<('D2* Sometimes application of external detour to one

net can result in decreasing of, say, upper cut number at more than one

critical node, i.e., in a node where upper cut number equals to street

congestion (see Fig. 8). However, in general, it is quite difficult to

apply external detours. The reason for this is due to the nature of

external detour: if we want to use it we have first to.find some order

ing and then check whether street congestion can be reduced by external

detour. It results in general in an exhaustive search. For a

given net list we may have a case that for two different ordering result

ing in the same street congestion, in one case external detours may

decrease the congestion while for the other may not.

At the present moment we do not have a good heuristic implementing

external detours. Here, we just want to point out that interval graphi

cal representation may sometimes lead to single row realizations with

larger street congestion than a more sophisticated representation, like

using the external detour (which is a special case of general Steiner

tree).
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6. EXPERIMENTAL RESULTS

The computer program implementing the proposed approach has been

written and tested on number of examples. It allows both multipin and

2-pin nets. Although the algorithm is heuristic, it always managed to

find optimum solutions for all examples it was tested with. Figure 9

shows examples from the computer program. The example (a) is taken

from [4] where it is shown that the optimum street congestion is 5 here.

In the example (b) the q.= 11 and since [-0-1=6 thus the solution presented

is also optimal.
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FIGURE CAPTIONS

Fig. 1. An example of a single row realization and basic terminology.

Fig. 2. The interval graphical representation for the net list realiza

tion from the Fig. 1. Numbers in brackets show cut numbers for

nodes which belong to the given net.

Fig. 3. Illustration for Lemma 1.

Fig. 4. (a) Subset of nets from Fig. 2 with internal cut numbers.

(b) Internal and residual cut numbers for the net N3 with res

pect to the shown subset of the net list from Fig. 2.

Fig. 5. Track assignment for the example of Fig. 1.

Fig. 6. Concept of external detour.

Fig. 7. External detour for two overlapping nets.

Fig. 8. External detour resulting in decrease of critical upper cut

number at 3 nodes.

Fig. 9. Examples calculated by the computer program.
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