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ABSTRACT

The theory outlined in this paper is based on the idea that what is

commonly called commonsense knowledge may be viewed as a col

lection of dispositions, that is, propositions with implied fuzzy

quantifers. Typical examples of dispositions are: Icy roads are slip

pery, Tall men are not very agile, Overeating causes obesity, Bob

loves women, What is rare is expensive, etc. It is understood that,

upon restoration of fuzzy quantifiers, a disposition is converted

into a proposition with explicit fuzzy quantifiers, e.g., Tall men are

not very agile -* Most tall men are not very agile.

Since traditional logical systems provide no methods for

representing the meaning of propositions containing fuzzy

quantifiers, such systems are unsuitable for dealing with common-

sense knowledge. It is suggested in this paper that an appropriate

computational framework for dealing with commonsense

knowledge is provided by fuzzy logic, which, as its name implies, is

the logic underlying fuzzy (or approximate) reasoning. Such a

framework, with an emphasis on the representation of dispositions,

is outlined and illustrated with examples.

1. Introduction

It is widely agreed at this juncture that one of the important problem-areas

in AI relates to the representation of commonsense knowledge. In general, such

knowledge may be regarded as a collection of propositions exemplified by: Snow

is white. Icy roads are slippery, Most Frenchmen are not very tall, Virginia is

very intelligent, If a car which is offered for sale is cheap and old then it
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probably is not in good shape, Heavy smoking causes lung cancer, etc.

Representation of propositions of this type plays a particularly important role in

the design of expert systems [3].

The conventional knowledge representation techniques based on the use of

predicate calculus and related methods are not well-suited for the representa

tion of commonsense knowledge because the predicates in propositions which

represent commonsense knowledge do not, in general, have crisp denotations.

For example, the proposition Most Frenchmen are not very tall cannot be

represented as a well-formed formula in predicate calculus because the sets

which constitute the denotations of the predicate tall and the quantifier most in

their respective universes of discourse are fuzzy rather than crisp.

More generally, the inapplicability of predicate calculus and related logical

systems to the representation of commonsense knowledge reflects the fact that

such systems make no provision for dealing with uncertainty. Thus, in predicate

logic, for example, a proposition is either true or false and no gradations of

truth or membership are allowed. By contrast, in the case of commonsense

knowledge, a typical proposition contains a multiplicity of sources of uncer

tainty. For example, in the case of the proposition If a car which is offered for
sale is cheap and much more than ten years old then it probably is not in good

shape, there are five sources of uncertainty: (i) the temporal uncertainty associ

ated with the fuzzy predicate much more than ten years old', (ii) the uncertainty

associated with the fuzzy predicate cheap-, (iii) the uncertainty associated with

the fuzzy predicate not in good shape; (iv) the probabilistic uncertainty associ

ated with the event The car is not in good shape; and (v) the uncertainty associ

ated with the fuzzy characterization of the probability of the event in question

as probable.

The approach to the representation of commonsense knowledge which is

described in this paper is based on the idea that propositions which characterize

commonsense knowledge are, for the most part, dispositions, that is, proposi

tions with implied fuzzy quantifiers. In this sense, the proposition Tall men are

not very agile is a disposition which upon restoration is converted into the pro

position Most tall men are not very agile. In this proposition, most is an explicit

fuzzy quantifier which provides an approximate characterization of the propor

tion of men who are not very agile among men who are tall [63].

To deal with dispositions in a systematic fashion, we shall employ fuzzy

logic —which is the logic underlying approximate or fuzzy reasoning [5, 19, 26,
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55, 58]. Basically, fuzzy logic has two principal components. The first com

ponent is, in effect, a translation system for representing the meaning of propo

sitions and other types of semantic entities. We shall employ the suggestive

term test-score semantics to refer to this translation system because it involves

an aggregation of the test scores of elastic constraints which are induced by the

semantic entity whose meaning is represented.

The second component is an inferential system for arriving at an answer to

a question which relates to the information which is resident in a knowledge

base. In the present paper, the focus of our attention will be the problem of

meaning representation in the context of commonsense knowledge, and our dis

cussion of the inferential component will be limited in scope.*

2. Meaning Representation in Test-Score Semantics -

Test score semantics is concerned with representation of the meaning of

various types of semantic entities, e.g., propositions, predicates, commands,

questions, modifiers, etc. However, knowledge, whether commonsense or not,

may be viewed as a collection of propositions. For this reason, we shall restrict

our discussion of test-score semantics to the representation of the meaning of

propositions. **

In test-score semantics, as in PRUF [57], a proposition is regarded as a col

lection of elastic, or, equivalently, fuzzy constraints. For example, the proposi

tion Pat is tall represents an elastic constraint on the height of Pat. Similarly,

the proposition Charlotte is blonde represents an elastic constraint on the color

of Charlotte's hair. And, the proposition Most tall men are not very agile

represents an elastic constraint on the proportion of men who are not very agile

among tall men.

In more concrete terms, representing the meaning of a proposition, p,

through the use of test-score semantics involves the following steps.

1. Identification of the variables Xlt . . . ,Xn whose values are con

strained by the proposition. Usually, these variables are implicit

rather than explicit in p.

* A more detailed discussion of the inferential component of fuzzy logic may be found in [5,
56, 59]. Recent literature, [26], contains a number of papers dealing with fuzzy logic and its
applications. Descriptions of implemented fuzzy-logic-based inferential systems may be
found in [2], [33] and [36].

•• A more detailed exposition of test-score semantics may be found in [61].
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2. Identification of the constraints Cx, . . . ,Cm which are induced by

3. Characterization of each constraint, Q , by describing a testing

procedure which associates with Q a test score Tt representing

the degree to which Q is satisfied. Usually 7* is expressed as a

number in the interval [0,1]. More generally, however, a test score

may be a probability/possibility distribution over the unit inter

val.

4. Aggregation of the partial test scores rx, . . . ,Tm into a smaller

number of test scores rx, . . . ,rt , which are represented as an

overall vector test score r = (?lt ...,?*). In most cases k = i, so

that the overall test scores is a scalar. We shall assume that this

is the case unless an explicit statement to the contrary is made.

It is important to note that, in test-score semantics, the meaning of p is

represented not by the overall test score r but by the procedure which leads to

it. Viewed in this perspective, test-score semantics may be regarded as a gen

eralization of truth-conditional, possible-world and model-theorstic semantics

[8, 9, 28, 32]. However, by providing a computational framework lor dealing with
uncertainty —which the conventional semantical systems disregard —test-score

semantics achieves a much higher level of expressive power and thus provides a

basis for representing the meaning of a much wider variety of propositions in a

natural language.

In test-score semantics, the testing of the constraints induced by p is per

formed on a collection of fuzzy relations which constitute an explanatory data

base, or ED for short. A basic assumption which is made about the explanatory

database is that it is comprised of relations whose meaning is known to the

addressee of the meaning-representation process. In an indirect way, then, the

testing and aggregation procedures in test-score semantics may be viewed as a

description of a process by which the meaning of p is composed from the mean

ings of the constituent relations in the explanatory database. It is this explana

tory role of the relations in ED that motivates its description as an explanatory

database.
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As will be seen in the sequel, in describing the testing procedures we need

not concern ourselves with the actual entries in the constituent relations. Thus,

in general, the description of a test involves only the frames* of the constituent

relations, that is, their names, their variables (or attributes) and the domain of

each variable. When this is the case, the explanatory database will be referred

to as the explanatory database frame, or EDF for short.

As a simple illustration, consider the proposition

p = Debbie is a few years older than Dana . (2.1)

In this case, a suitable explanatory database frame may be represented as

EDF 4POPULATION [Name; Age] + FEW [Number ;u],

which signifies that the explanatory database frame consists of two relations:

(a) a nonfuzzy relation POPULATION [Name; Age], which lists names of individu

als and their age; and (b) a fuzzy relation FEW [Number; a ], which associates

with each value of Number the degree, u, to which Number is compatible with

the intended meaning of few. In general, the domain of each variable in the EDF

is implicitly determined by p, and is not spelled-out explicitly unless it is neces

sary to do so to define the testing procedure.

As another example, consider the disposition**

p 4 Snow is white,

which is frequently used in the literature to explain the basic ideas underlying

truth-conditional semantics.***

To construct an EDF for this disposition, we first note that what is generally

meant by Snow is white is Usually snow is white, in which usually may be inter

preted as a fuzzy quantifier. Consequently, on the assumption that the

* In the literature of database management systems, some authors employ the term schema
in the same sense as we employ frame. More commonly, however, the term schema is used
in a narrower sense [11], to describe the frame of a relation together with the dependencies
between the variables.
♦♦ As was stated earlier, a disposition is a proposition with implied fuzzy quantifiers. (Note
that this definition, too, is a disposition.) For example, the proposition Small cars are un
safe is a disposition, since it may be viewed as an abbreviation of the proposition Host small
cars are vnsafe, in which most is a fuzzy quantifier. In general, a disposition may be re
stored in more than one way.
••♦ In truth-conditional semantics, the truth condition for the proposition Snow is white is
described as snow is white, which means, in plain terms, that the proposition Snow is white
is true if and only if snow is white.



-6-

proposition

p* = Usually snow is white (2.2)

is a restoration of p, a natural choice for the EDF would be

EDF 4 WHITE[Sample; a] + USUALLY[Proportion; a]. (2.3)

In this EDF, the relation WHITE is a listing of samples of snow together with the

degree, u, to which each sample is white, while the relation USUALLY defines the

degree to which a numerical value of Proportion is compatible with the intended

meaning of usually.

In proposition (2.1), the constrained variable is the difference in the ages of

Debbie and Dana. Thus,

X 4 Age (Debbie) - Age (Dana). (2.4)

The elastic constraint which is induced by p is determined by the fuzzy rela

tion FEW. More specifically, let Ux denote the possibility distribution of X, ie.,

the fuzzy set of possible values of X. Then, the constraint on X may be

expressed as the possibility assignment equation

11* = FEW, (2.5)

which assigns the fuzzy relation FEW to the possibility distribution of X. This

equation implies that

nx(u) 4 Poss \X =u ] = aFEW(u) , (2.6)

where Poss \X = u\ is the possibility that X may take u as its value; uFEV(u) is
the grade of membership of it in the fuzzy relation FEW; and the function Ux

(from the domain of X to the unit interval) is the possibility distribution func

tion associated with X.

For the example under consideration, what we have done so far may be

summarized by stating that the proposition

p 4 Debbie is a few years older than Dana

may be expressed in a canonical form, namely,

Xis FEW, (2.7)

which places in evidence the implicit variable X which is constrained by p. The
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canonical proposition implies and is implied by the possibility assignment equa

tion (2.5), which defines via (2.6) the possibility distribution of X and thus

characterizes the elastic constraint on X which is induced by p.

The foregoing analysis may be viewed as an instantiation of the basic idea

underlying PRUF, namely, that any proposition, p, in a natural language may be

expressed in the canonical form

cf(p)&XisF. (2.8)

where X = (Xi Xn) is an n-ary focal variable whose constituent variables

X\, . . . ,Xn range over the universes U\, . . . , Un , respectively; F is an n-ary

fuzzy relation in the product space U = Ux x • • • x Un and cf(p) is an abbrevia

tion for canonical form of p. The canonical form, in turn, may be expressed

more concretely as the possibility assignment equation

II* = F, (2.9)

which signifies that the possibility distribution of X is given by F. Thus, we may

say that p translates into the possibility assignment equation (2.9), i.e.

p-*Ux = F (2.10)

in the sense that (2.9) exhibits the implicit variable which is constrained by p

and defines the elastic constraint which is induced by p.

When we employ test-score semantics, the meaning of a proposition, p, is

represented as a test which associates with each ED (i.e., an instantiation of

EDF) an overall test score t which may be viewed as the compatibility of p with

ED. This compatibility may be interpreted in two equivalent ways: (a) as the

truth of p given ED, and (b) as the possibility of ED given p. The latter interpre

tation shows that the representation of the meaning of p as a test is equivalent

to representing the meaning of p by a possibility assignment equation.*

The connection between the two points of view will become clearer in Sec

tion 4, where we shall discuss several examples of propositions representing

commonsense knowledge. As a preliminary, we shall present in the following

section a brief exposition of some of the basic techniques which will be needed in

* As is pointed out in [81], the translation of p into a possibility assignment equation is an in
stance of a focused translation. By contrast, representation of the meaning of p by a test on
EDF is an instance of an -unfocused translation. The two are equivalent in principle but differ
in detail.
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Section 4 to test the constituent relations in the explanatory database and
aggregate the partial test scores.

3. Testing and Translation Rules

A typical relation in EDFmay be expressed as R[Xi;...;Xn ;u], where Ris the

name of the relation; the Xi,i = 1 n , are the names of the variables (or,

equivalently, the attributes of R), with C/{ and v* representing, respectively, the

domain of A* and its generic value; and u is the grade of membership of a gen

eric n-tuple u = (uit . . . ,un) in R.

In the case of nonfuzzy relations, a basic operation on R which is a generali

zation of the familiar operation of looking up the value of a function for a given

value of its argument, is the so-called mapping operation [11]. The counterpart

of this operation for fuzzy relations is the operation of transduction [61].

Transduction may be viewed as a combination of two operations: (a) parbhc-

ularizaiion*, which constrains the values of a subset of variables of R; and pro

jection, which reads the induced constraints on another subset of variables of R.

The subsets in question may be viewed as the input and output variables,

respectively.

To define particularization, it is helpful to view a fuzzy relation as an elastic

constraint on n-tuples in Ui x • • • x Un , with the a -value for each row in R

representing the degree (or the test score) with which the constraint is

satisfied.

For concreteness, assume that the input variables are Xi,XzaiidXa , and

that the constraints on these variables are expressed as canonical propositions.

For example

Xxis F

and

(Xz.Xa)is G,

where F and G are fuzzy subsets of Ut, and £/2x Ua , respectively. Equivalently,

the constraints in question may be expressed as

Q Q1

* In the case of nonfuzzy relations, particularization is usually referred to as selection [11],
or restriction.
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KXl = F

and

where Hx and H***-) are ^e respects possibility distributions of X\ and

XZ,X%. To place in evidence the input constraints, the particularized relation is

written as

R* iR[Xiis F; (Xz,X^is G] (3.1)

or, equivalently, as

R* 4*[Hrt =F; U{xz.X3) =G] . (3.2)

As a concrete illustration, assume that R is a relation whose frame is

expressed as

RICH [Name; Age; Height; Weight; Sex; a] , (3.3)

in which Age, Height, Weight and Sex are attributes of Name, and u is the degree

to which Name is rich. In this case, the input constraints might be:

Age is YOUNG

(Height, Weight) is BIG

Sex is MALE

and, correspondingly, the particularized relation reads

R* 4 RICH[Age is YOUNG; (Height, Weight)is BIG; Sex is MALE] . (3.4)

To concretize the meaning of a particularized relation it is necessary to

perform a row test on each row of R. Specifically, with reference to (3.1), let

rt = (uu, . . . ,unt*lM) be the t** row of R, where ult, . . . .u^,^ are the values

of Xi, . . . tXn,ix , respectively. Furthermore, let fiF and uG be the respective

membership functions of F and G. Then, for rt , the test scores for the con

straints on Xi and (Xg.-Xa) may be expressed as

ru=uF(ult)

T3 = /*c(u«.u3«) .-
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To aggregate the test scores with ut , we employ the min operator A * ,

which leads to the overall test score for rt :

rt =ruATg<A/it . (3.5)

Then, the particularized relation (3.1) is obtained by replacing each m in

rt , t = 1,2,..., by Tj . An example illustrating these steps in the computation of

a particularized relation may be found in [61].

As was stated earlier, when a fuzzy relation R is particularized by constrain

ing a set of input variables, we may focus our attention on a subset of variables

of R which are designated as output variables and ask the question: What are the

induced constraints on the output variables? As in the case of nonfuzzy rela

tions, the answer is yielded by projecting the particularized relation on the

cartesian product of the domains of output variables. Thus, for example, if the

input variables are Ag, Xq and Xs , and the output variables are X\ and X4 , then

the induced constraints on Xx and XA are determined by the projection, G, of the

particularized relation R* [(Xz,X& Xs) is F] on UY x Uz . The relation which

represents the projection in question is expressed as in [27]*.

Gk xx*x2R [(** X2, Xs) is F] , (3.6)

with the understanding that X\ x X% in (3.6) should be interpreted as Ux x U2 .

In more transparent terms, (3.6) may be restated as the transduction:

If (Xz, X3, X6) is F, then (Xx, Xz)is G , (3.7)

where Gis given by (3.6). Equivalently, (3.7) may be interpreted as the instruc

tion:

Read (Xlt X2) giuen that (X2,XS,XS) is F . (3.8)

For example, the transduction represented by the expression

RICH [Age is YOUNG; (Height, Weight) is BIG; Sex is MALE]

Name x a

* Here and elsewhere in the paper the aggregation operation min ( A) is used as a default
choice when no alternative (e.g., arithmetic mean, geometric mean, etc.) is specified.
• If R is a fuzzy relation, its projection on U\ X C/g is obtained by deleting from R all
columns other than X\ and Xz , and forming the union of the resulting tuples.
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may be interpreted as the fuzzy set of names of rich men who are young and big.

It may also be interpreted in an imperative sense as the instruction: Read the

name and grade of membership in the fuzzy set of rich men of all those who are

young and big.

Remark. When the constraint set which is associated with an input variable, say

X\, is a singleton, say \a\, we write simply

X = a

instead of X is a. For example,

RICH [Age = 25; Weight = 136; Sex = Male]

Name xa

represents the fuzzy set of rich men whose age and weight are equal to 25 and

136, respectively.

Composition of Elastic Constraints

In testing the constituent relations in EDF, it is helpful to have a collection

of standardized translation rules for computing the test score of a combination

of elastic constraints Clt . . . , C* from the knowledge of the test scores of each

constraint considered in isolation. For the most part, such rules are default

rules in the sense that they are intended to be used in the absence of alternative

rules supplied by the user.

For purposes of commonsense knowledge representation, the principal

rules of this type are the following.*

3.1. Rules pertaining to modification

If the test score for an elastic constraint C in a specified context is r, then

in the same context the test score for

(a) not Cis 1—t (negation) (3.9)

(6) very C is t2 (concentration) (3.10)

• A more detailed discussion of such rules in the context of PRUF may be found in [57].

888
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(c) more or less C is r2 (diffusion) . (3.11)

3.2. Rules pertaining to composition

If the test scores for elastic constraints Cx and Cz in a specified context are

Tj and t2, respectively, then in the same context the test score for

(a) Cx and C2is i^ATg (conjunction),where A4min. (3.12)

(b) Cxor C2is tx\/r2 (disfunction),where v47r<,Qi. (3.13)

(c) If Ci then C2is 1A(1-Tj +Tg) (implication) . (3.14)

3.3. Rules pertaining to quantification

The rules in question apply to propositions of the general form

Q A's are B 's , where Q is a fuzzy quantifier, e.g., most, many, several, few, etc,

and A and B are fuzzy sets, e.g., tall men, intelligent rr.en, etc. As was stated

earlier, when the fuzzy quantifiers in a proposition are implied rather than expli

cit, their suppression may be placed in evidence by referring to the proposition

as a disposition. In this sense, the proposition Ouereating causes obesity is a

disposition which results from the suppression of the fuz::y quantifer Most in the

proposition Most of those who overeat are obese.

To make the concept of a fuzzy quantifer meaningful, it is necessary to

define a way of counting the number of elements in a fuzzy set or, equivalently,

to determine its cardinality.

There are several ways in which this can be done [61]. For our purposes, it

will suffice to employ the concept of a sigma-count, which is defined as follows.

Let F be a fuzzy subset of U = ju1( . . . tun\

expressed symbolically as

F = ul/ul+...+ fin/un =2^/1*4 (3.15)

or, more simply, as

F = m**i+-+ f^Un , (3.16)

in which the term u^/v^, i = 1, . . . ,n, signifies that u^ is the grade of member

ship of Ui in F, and the plus sign represents the union.*
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The sigma-count of -Pis defined as the arithmetic sum of the U\ , i.e.,

ZCount(F) 42iAii, i = 1 n . (3.17)

with the understanding that the sum may be rounded, if need be, to the nearest

integer. Furthermore, one may stipulate that the terms whose grade of
membership falls below a specified threshold be excluded from the summation.

The purpose of such an exclusion is to avoid a situation in which a large number
of terms with low grades of membership become count-equivalent to a small

number of terms with high membership.

The relative sigma-count, denoted by HCount(F/ G), may be interpreted as

the proportion of elements of F which are in G. More explicitly,

HCount(Fr\G) , .

where Ff\G , the intersection of Fand G, is defined by

FnG^XiiuBM AAtG(wt))/iti , i = 1 n . (3.19)

Thus, in terms of the membership functions of F and G, the relative sigma-count

of F in G is given by

ZCount (F/ G) = fr^fo) • (3-2°)

The concept of a relative sigma-count provides a basis for interpreting the

meaning of propositions of the form Q A's are B's , e.g.. Most young men are
healthy. More specifically, if the focal variable (ie., the constrained variable) in
the proposition in question is taken to be the proportion of B's in A's, then the

corresponding translation rule may be expressed as

Q A's are B 's •* S Count (B/ A) is Q (3.21)

or, equivalently, as

QA's are B's -*Ilx = Q (3.22)

where

• In most cases, the context is sufficient to resolve the question of whether a plus sign
should be interpreted as the union or the arithmetic sum.
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_ £i^K)AMg(ii<)
*~ *W"i) ' (3*23)

As will be seen in the following section, the quantification rule (3.21)

together with the other rules described in this section provide a basic concep

tual framework for the representation of commonsense knowledge. We shall

illustrate the representation process through the medium of several examples

in which the meaning of a disposition is represented as a test on a collection of

fuzzy relations in an explanatory database.

4. Representation of Dispositions

To clarify the difference between the conventional approaches to meaning
representation and that described in the present paper, shall consider as our

first example the disposition

d 4 Snow is white , (4.1)

which, as was stated earlier, is frequently employed as an illustration in intro

ductory expositions of truth-conditional semantics (see footnote on p. 5).

The first step in the representation process involves a restoration of the

suppressed quantifiers in d. We shall assume that the intended meaning of d is

conveyed by the proposition

p 4 Usually snow is white , (4.2)

and, as an EDFfor (4.2), we shall use (2.3), i.e.

EDF 4 WHITE [Sample; a] + USUALLY [Proportion; u] . (4.3)

Let Si, . . . , Sm denote samples of snow and let rit i = 1, . . . ,m , denote

the degree to which the color of 5t matches white. Thus, rt may be interpreted

as the test score for the constraint on the color of Si which is induced by
WHITE.

Using this notation, the steps in the testing procedure may be described as

follows:

1. Find the proportion of samples whose color is white:

^ _2Count (WHITE) lA A.p- £ (4.4)

_T!-K..+Tm

771
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2. Compute the degree to which p satisfies the constraint induced by USU

ALLY:

T=p, USUALLLY[Proportion =p] (4.5)

In (4.5), r represents the overall test score and the right-hand member

signifies that the relation USUALLY is particularized by setting Proportion equal

to p and projecting the resulting relation on u . The meaning of d, then, is

represented by the test procedure which leads to the value of t.

Equivalently, the meaning of d may be represented as a possibility assign

ment equation. Specifically, let X denote the focal variable (i.e., the constrained

variable) in p. Then we can write

d -> Y[x = USUALLY (4.6)

where

X &—ZCount (WHITE) .
*" m

Example 2.

To illustrate the use of translation rules relating to modification, we shall

consider the disposition

d 4 Frenchmen are not very tall . (4.7)

After restoration, the intended meaning of d is assumed to be represented by

the proposition

p &Most Frenchmen are not very tall . (4.8)

To represent the meaning of p, we shall employ an EDF whose constituent

relations are:

(4.9)

EDF 4 POPULATION [Name; Height] +

TALL [Height; u ] +

MOST [Proportion; u ] .

The relation POPULATION is a tabulation of Height as a function of Name for a

representative group of Frenchmen. In TALL, u is the degree to which a value of

Height fits the description tall; and in MOST, u is the degree to which a
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numerical value of Proportion fits the intended meaning of most.

The test procedure which represents the meaning of p involves the following

steps:

1. Let Namei be the name of iih individual in POPULATION. For each

Nameit i = 1 m , find the height of Namei :

Height (Namei) &ffgightPOPULATION[Name =A/dmei] .

2. For each Namei, compute the test score for the constraint induced by

TALL:

Ti = pTALL[Height = Height(Namei)] .

3. Using the translation rules (3.9) and (3.10), compute the test score for the

constraint induced by NOT. VERY TALL:

t'< = 1-Ti2 .

4. Find the relative sigma-count of Frenchmen who are not very tall:

p kZCount(NOT.VERYTALL/POPULATION)

m

5. Compute the test score for the constraint induced by MOST:

r = pMOST[Proportion = p] . (4.10)

The test score given by (4.10) represents the overall test score for d, and

the test procedure which yields r represents the meaning of d.

Example 3.

Consider the disposition

d &Overeating causes obesity (4.11)

which after restoration is assumed to read*

p &Most of those who overeat are obese . (4.12)

* It should be understood that (4.12) is just one of many possible interpretations of (4.11),
with no implication that it constitutes a prescriptive interpretation of causality. See [48] for
a thorough discussion of relevant issues.
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To represent the meaning of p, we shall employ an EDF whose constituent

relations are:

(4.13)

EDF 4 POPULATION [Name; Ouereat; Obese] +

MOST [Proportion; a ] .

The relation POPULATION is a list of names of individuals, with the variables

Overeat and Obese representing, respectively, the degrees to which Name

overeats and is obese. In MOST, u is the degree to which a numerical value of

Proportion fits the intended meaning of MOST.

The test procedure which represents the meaning of d involves the following

steps.

1. Let Namei be the name of ith individual in POPULATION. For each

Namei, i = 1, . . . ,m , find the degrees to which Namei overeats and is

obese:

a* 4 u0vEREAT(Namei) 4 quot** POPULATION[Name = Namei] (4.14)

and

ft ^a0BESE(Namei) ^o^sePOPULATION[Name = Name^ . (4.15)

2. Compute the relative sigma-count of OBESE in OVEREAT:

p4SCount (OBESE/ OVEREAT) =^^ . (4.16)
Li&i

3. Compute the test score for the constraint induced by MOST:

r = pMOST[Proportion = p] (4.17)

This test score represents the compatibility of d with the explanatory data

base.

Example 4.

Consider the disposition

d &Heavy smoking causes lung cancer . (4.18)

Although it has the same form as (4.11), we shall interpret it differently.

Specifically, the restored proposition will be assumed to be expressed as
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p 4 The incidence of cases of lung cancer among heavy smokers (4.19)

is much higher than among those who are not heavy smokers .

The EDF for this proposition is assumed to have the following constituents:

(4.20)

EDF 4 POPULATION [Name; Heavy.Smoker; Lung. Cancer] +

MUCH. HIGHER [Proportion l;Proporbvon 2; a ] .

In POPULATION, Heavy. Smoker represents the degree to which Name is a heavy

smoker, and the variable Lung. Cancer is 1 or 0 depending on whether or not

Name has lung cancer. In MUCH.HIGHER, u is the degree to which Proportion 1

is much higher than Proportion 2.

The steps in the test procedure may be summarized as follows:

1. For each Namei, i = 1 m, determine the degree to which Namv.i is a

heavy smoker:

«i kH9auy.SmokerPOPULATION[Name = Namei] . (4.21)

Then, the degree to which Namei is not a heavy smoker is

A = 1-0* . (4.22)

2. For each Namei, determine if Namei has lung cancer:

K &Lung.OtncerP0PULATI0N[Name = Namei] . (4.23)

3. Compute the relative sigma-counts of those who have lung cancer among

(a) heavy smokers; and (b) not heavy smokers:

Pi =2Caunt (LUNG. CANCER/HEAVY. SMOKER)

_ SjXj Aoj

p2 =ZCount (LUNG. CANCER/ NOT. HEAVY. SMOKER)

_S<AiA(l-oi)
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4. Test the constraint induced by MUCH.KIGHER:

r =fJdUCHHIGHER^oportion 1 =pt; Proportion?. =p2] (4.24)

Example 5.

Consider the disposition

d &Small families are friendly (4.25)

which we shall interpret as the proposition

p4/n most small families almost all of the members (4.26)

are friendly with one another.

It should be noted that the quantifier most in p is a second order fuzzy quantifier

in the sense that it represents a fuzzy count of fuzzy sets (i.e., small families).

The EDF for p is assumed to be expressed by

(4.27)

EDF 4 POPULATION [Name; Family.Identifier] +

SMALL [Number; u] +

FRIENDLY[Name 1; Name 2;u] +

MOST [Proportion; u ] +

ALMOST.ALL [Proportion; u ] .

The relation POPULATION is assumed to be partitioned (by rows) into disjoint

families F\, . . . , F* . In FRIENDLY, u is the degree to which Name 1 is friendly

toward Name 2, with Name 1 * Name 2.

The test procedure may be described as follows:

1. For each family, Fi , find the count of its members:

Ci 4 Count (POPULATION[FamUy.Identifier = Ft] . (4.28)

2. For each family, test the constraint on Q induced by SMALL:

di &fi,SMALL[Number = Q] . (4.29)

3. For each family, compute the relative sigma-count of its members who are

friendly with one another:

ft = /r>21 r> SJ.*(pERIENDLY[Name 1=Namej;Name2 =Namek]) (4.30)
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where Namej and Namek range over the members of Fi and Namei #

Name; . The normalizing factor Q2 - Q represents the total number of
links between pairs of distinct individuals in Fi.

4. For each family, test the constraint on ft which is induced by ALMOST.ALL

7i = pALMOST.ALL[Proportion = ft] . (4.31)

5. For each family, aggregate the test scores a* and y+ by using the min

operator (A):

6ikcLi/\yi . (4.32)

6. Compute the relative sigma-count of small families in which almost all

members are friendly with one another:

P- £<*i+...+**) • (4-33)

7. Test the constraint onp induced by MOST.

t = ,JiOST[Proportion = p] . (4.35)

The value of t given by (4.35) represents the compatibility of d with the

explanatory database.

The foregoing examples are intended to illustrate the basic idea underlying

our approach to the representation of commonsense knowledge, namely, the

conversion of a disposition into a proposition, and the construction of a test pro

cedure which acts on the constituent relations in an explanatory database and

yields its compatibility with the restored proposition.

5. Inference from Dispositions *

A basic issue which will be addressed only briefly in the present paper is the

following. Assuming that we have represented a collection of dispositions in the

manner described above, how can an answer to a query be determined from the

representations in question? In what follows, we shall consider a few problems of

this type which are of relevance to the computation of certainty factors in

expert systems [3, 15, 45, 49, 51].

* Inference from dispositions may he viewed as an alternative approach to default reasoning
and non-manotonic logic [27, 29, 30, 40].
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Conjunction of consequents

Consider two dispositions dx and d2 which upon restoration become proposi

tions of the general form

di -*PikQiA's are B's (5.1)

d2-*p2&Q2A's are C's . (5.2)

Now assume thatpj andp2 appear as premises in the inference schema *

QY A's are B's (5.3)

Q2 A's are C's

? Q A's are (B and C)'s ,

in which ? Q is a fuzzy quantifier which is to be determined. We shall refer to this

schema as the conjunction of consequents.

As stated in the following assertion, the fuzzy quantifier Q is bounded by two

fuzzy numbers. More specifically, on interpreting <?i and Q2 as fuzzy numbers,

we can assert that

0Q>(Ql®Q2e±)< Q^Qi®Q2 , (5.4)

in which the operators O,® ,©, and ©, and the inequality r£ are the extensions of

A ,V ,+ ,— and ^ , respectively, to fuzzy numbers [14].

Proof. We shall consider the upper bound first. To this end, it will suffice to

show that

VCount (B n C/A) <z ZCount (B/A) A ZCount (C/A) , (5.5)

since, in view of (3.21), the fuzzy quantifiers Q, Qi and Q2 may be regarded as

fuzzy characterizations of the corresponding sigma-counts.

For convenience, let a* , ft and 6i, i = 1, . . . ,n, denote, respectively, the

grades of membership of fa in A, B and C. Then, on using (3.18) - (3.20), we

may write

ZOmrd(BnC/A) = zount(A) <5"6)
* This schema has a bearing on the rule of combination of evidence for conjunctive hy
potheses in MYCIN [46].
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^.hAWAhAd,,]
HCount

Now

Si(«i A ft) A (otj A 6i) <; E,(at A ft)

St(a< A ft) A (a* A di) * Si(at A «5<)

and hence

Si(oti A ft) A (oj A 6i) <. St(ai A ft) A^A «5<) . (5.7)

Consequently,

HCount(B OC/i4) <: s^^( . fcomn*C4 f|5)A EOmn*(A n O]

ssECbun*(£/j4) ASCbu7ii(C/i4) .

which is what we set out to establish.

To deduce the lower bound, we note that for any real numbers a, b, we have

a A 6 = a + 6 - a V 6 . (5.8)

Consequently,

E5=3^<a*A*>A^AW)s

HCount(A) Nai Aft) +S<(0ti Aff<) "Si((a< Aft) V(a< A6i))) '
and since

a* 2* (oti A ft) V (at A <5i}

it follows that

ZCount(B HC/A) ^ j*Qnmt(A)^iai A&*Si** A** "2i0t<)
or, equivalently,

HCount(B C\C/A)^,ZCount(B/A) + (C/A) -1 , (5.9)

from which (5.4) follows by an application of the extension principle and the

observation that the left-hand member of (5.5) must be non-negative [63].
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In conclusion, the simple proof given above establishes the validity of the

following inference schema, which, for convenience, will be referred to as the

consequent conjunction syllogism:

QxA's are B's (5.10)

Q2 A's are C 's

Q A's are (B and C)'s ,

where

0Q(Q1®Q2ei)^ Q^ Qi®Q2 .

As an illustration, from

Pi 4 Most Frenchmen are not tall (5.11)

p2 4 Most Frenchmen are not short

we can infer that

Q Frenchmen are not tall and not short

where

0 © (2 most © 1) ^ Q^ most . (5.12)

In the above example, the variable of interest is the proportion of French

men who are not tall and not short. In a more general setting, the variable of

interest may be a specified function of the variables constrained by the

knowledge base. The following variation on (5.11) is intended to give an idea of

how the value of the variable of interest may be inferred by an application of the

extension principle [56].

Example 6.

Infer from the propositions

p j 4 Most Frenchmen are not tall (5.13)

p2 4 Most Frenchmen are not short

the answer to the question

g 4 What is the average height of a Frenchman'* (5.14)
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Because of the simplicity of px and p2 , the constraints induced by the

premises may be found directly. Specifically, lethh...,hn denote the heights

of Frenchman1, .... Frenchmann , respectively. Then, the test scores associ

ated with the constraints in question may be expressed as

Ti =Pant iiasA ^x^tall fa)) (5.15)

and

T2 = aANT JiOsA zf^iaSHORT(h'i)) » (&• 16)

where ANT is an abbreviation for antonym, i.e.,

PantuostM = V<most(1-u>) , ue[o,l] , (5.17)

and JUxall and uSH0RT are the membership functions of TALL and SHORT, respec

tively. Correspondingly, the overall test score may be expressed as

t = Tj A r2 .

Now, the average height of a Frenchman and hence the answer to the ques

tion is given by

ans(q) =-i-E^ . (5.18)

Consequently, the possibility distribution of ansfq) is given by the solution of the

nonlinear program

fams^h) = max^ ^(t) (5.19)

subject to the constraint

h=̂ Zihi . (5.20)

Alternatively, a simpler but less informative answer may be formulated by

forming the intersection of the possibility distributions of ansfq) which are

induced separately by px and p2. More specifically, let Rma(q)\Pl . Hms(?)lpa .

IlafwCgjIjjj/spg be the possibility distributions of ans(q) which are induced by px ,
p2 , and the conjunction of pl andp2, respectively. Then, by using the minimax

inequality [54], it can readily be shown that
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^ans{q)\pl n ^ms(g)!p2 3 ^ma{q)\Pl Apz . (5.21)

and hence we can invoke the entailment principle [58] to validate the intersec

tion in question as the possibility distribution of ans(q). For the example under

consideration, the desired possibility distribution is readily found to be given by

Poss\ans(q) = h] = u^rMOST(^TALL(h)) APantmostOashortW) • (5.22)

Chaining of dispositions

As in (5.1) and (5.2), consider two dispositions dl and d2 which upon res

toration become propositions of the general form

dx -*P\&QiA's are B's

d2-*p2&Q2B's are C's .

An ordered pair, (p1# p2), of propositions of this form will be said to form a chain.

More generally, an n-ary chain may be represented as an ordered n-tuple

(QxAi's are Bx's , Q2A2's are B2s ^4'sore Sn's) , (5.23)

in which Bx = A2, B2 = A3 Bn-X = An .

Now assume thatpi andp2 appear as premises in the inference schema

Qi A's are B's (majorpremise) (5.24)

Q2 B 's are C's (minor premise )

?Q A's are C's (conclusion)

in which ? Q is a fuzzy quantifier which is to be determined.

A basic rule of inference which is established in [63] and which has a direct

bearing - as we shall see presently - on the determination of Q, is the

intersection/product syllogism

Qx A's are B's (5.25)

Q2 (A and B) 's are C 's

(Qi ® Qz) A 's are (B and C) 's ,

in which Qi ® Q2 is a fuzzy number which is the fuzzy product of the fuzzy
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numbers Qx and Q2. For example, as a special case of (5.25), we may write

Most students are single (5.26)

A little more than a half of single students are male

(Most ® A little more than a half) of students are single and male .

Since the intersection of B and C is contained in C, the following corollary

of (5.25) is its immediate consequence

Qx A's are B's (5.27)

Q2 (A and B)'s are C's

^(Qi®Q2) A's are C's ,

where the fuzzy number ^ (Qi ® Q2) should be read as at least (Qx ® Q2), with the

understanding that ^ (9i® Qz) represents the composition of the binary non

fuzzy relation ^ with the unary fuzzy relation (Q\ ® Q2). In particular, if the

fuzzy quantifiers Qx and Q2 are monotone nondecreasing (e.g., when

Q\ = Qz&most), then as is stated in [63],

^ (Qi ® Qz) = Qi ® Qz . (5.28)

and (5.27) becomes

QiA's are B's > (5.29)

Q2 (A and B)'s are C's

(Qi®Qz)A's are C's .

There is an important special case in which the premises in (5.29) form a

chain. Specifically, if B C A, then

A C\B = B

and (5.29) reduces to what will be referred to as the product chain rule, namely,

Qx A's are B's (5.30)

Q2B's are C's

(Qi®Qz)A's are C's .



-27-

In this case, the chain (Qi A's are B's , Q2B's are C's) will be said to be pro-

duct transitive. *

As an illustration of (5.30), we can assert that

Most students are undergraduates

Most undergraduates are vouna

Most2 students are young ,

where Most2 represents the product of the fuzzy number Most with itself.

Chaining under reversibility

An important chaining rule which is approximate in nature relates to the

case where the major premise in the inference chain

Qx A 's are B 's (5.31)

Q2 B's are C's

Q A's are C's

is reversible in the sense that

Qx A's are B's %QX B's are A's , (5.32)

where «j denotes approximate semantic equivalence [57]. For example,

Most American cars are big £ Most big cars are American . (5.33)

Under the assumption of reversibility, the following syllogism holds in an

approximate sense

QiA's are B's (5.34)

Q2B's are C's

H0®(Qi® QzQ 1)) A'* are C's .

We shall refer to this syllogism as the R-rule.

• More generally, ann-ary chain (@i Ax's are Bx's , . . . , Qn An's are Bn's) will
be said to be product transitive if from the premises which constitute the chain it may be in
ferred that^ (Qi ® • • • ® Qn) Ai 's are Bn's.



Q7 1

-28

To demonstrate the approximate validity of this rule we shall first establish
the following lemma.

Lemma.

and

then

Proof.

We have

// ZCount(A) = ZCount(B) (5.35)

ZQ)unt(B/A)^q1 (5.36)

HOount(C/B)>q2 (5.37)

2Count(C/A) ^ (0 V (9l + g2 - 1) . (5.38)

/„ v VCount(A n B)ZCount(B/A)= v i i /
HCount(A)

and

HCount(C/B) =
HCount(B O C)

ZCount(B)

VCount(B O C)
2Count(A)

in virtue of (5.35).

For simplicity, we shall denote uA(ut) , uB(ui) and Hci^i) . i = 1, . . . ,nf by
Oi , ft , and ji, respectively. Then,

tCount(AC\B) EiOiAft
*Count(A) = fro, **» <5"39>

HCount(BC\C) S.ftAy, ^
EOmn*(,4) " ~~ST^ **2 (5"40)

and hence
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Sjfa A ft+ftA7i)
•>gj + g2 , (5.41)

Ejfrj A ft+ftA7i -op _ , ,
=7—- feg1 + g2-l . (5.42;
Li ai

ZCount(Cf\A) Ei at A 7i
ECbuni(>4) Ei at

(5.43)

it follows from (5.42) and (5.43) that, to establish (5.38), it will suffice to show

that

Si(ai A 7i) 3* Eifo A ft + ft A 7i - ai) . (5.44)

or, equivalently,

Ei ((tti - a* Aft) +(ft - ft A7<)] ^£i(ai - Oi A7i) , (5.45)

which is a consequence of the equality

SiOti = Sift . (5.46)

which in turn follows from (5.35).

Now, to establish (5.45) it is sufficient to show that, for each i, i = 1, . . . ,n,

we have

(^ - a4 A ft) + (ft - ft A7i) s (ai - a* A7i) , (5.48)

in which the summands as well as the right-hand member are non-negative. To

this end, we shall verify that (5.48) holds for all possible values of ait ft and 7i.

Case 1.

Consider all values of a^, ftand7i which satisfy the inequality ai^Ji. In

this case, the right-hand member of (5.48) is zero and thus the inequality is

verified.
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Case2.

a* > 7i. In this case, we shall consider four subcases,

(i) a* ^ ft , ft ^ 7i, which contradicts 0+ > 7i.

(ii) ^ > ft , ft ^ 7i, which verifies the inequality,

(iii) oti ^ ft , ft > 7i, which verifies the inequality,

(iv) oti > ft , ft > 7if whichverifies the inequality.

This concludes the proof of the lemma.

Now, if condition (5.35), i.e.,

EiOi = Eift ,

were not needed to prove the lemma, we could invoke the extension principle
[56] to extend the inequality

2Count(C/A) ^ „. , / ^ „v
ECounW ° (gi*g2~1} •

which holds for real numbers, to

Q^0®(Ql®Q2ei) , (5.49)

which holds for the fuzzy quantifiers in (5.31). As it is, the assumption of rever
sibility, i.e.,

HCount(A f\B)
ZCount(A) to Ql

EGount(B (^ A)
ECount (B)

implies the equality

is Q

ECbunt(A) = ZCount(B)

only in an approximate sense. Consequently, as was stated earlier, the R-rule

(5.34) also holds only in an approximate sense. The question of how this sense
could be defined more precisely presents a nontrivial problem which will not be

addressed in this paper.
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Concluding Remark

The point of departure in this paper is the idea that commonsense

knowledge may be regarded as a collection of dispositions. Based on this idea,

the representation of commonsense knowledge may be reduced, in most cases,

to the representation of fuzzily-quantified propositions through the use of test-

score semantics. Then, the rules of inference of fuzzy logic may be employed to

deduce answers to questions which relate to the information resident in a

knowledge base.

The computational framework for dealing with commonsense knowledge

which is provided by fuzzy logic is of relevance to the management of uncer

tainty in expert systems. The advantage of employing fuzzy logic in this

application-area is that it provides a systematic framework for syllogistic rea

soning and thus puts on a firmer basis the derivation of combining functions for

uncertain evidence. The consequent conjunction syllogism which we established

in Section 5 is, in effect, an example of such a combining function. What it

demonstrates, however, is that, in general, combining functions cannot be

expected to yield real-valued probabilities or certainty factors, as they do in

MYCIN, PROSPECTOR and other expert systems. Thus, in general, the value

returned by a combining function should be a fuzzy number or an n-tuple of

such numbers.
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