
 

 

 

 

 

 

 

 

 

Copyright © 1983, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



STOCHASTICITY AND RECONNECTION IN

TWO-DIMENSIONAL MAPPING

by

J.E. Howard and S.M. Hohs

Memorandum No. UCB/ERL M83/25

15 April 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



STOCHASTICITY AND RECONNECTION IN TWO-

DIMENSIONAL MAPPINGS

J. E. Howard and S. M. Hohs

University of California, Berkeley

ABSTRACT

Reconnection is studied by means of a model mapping in which

the island centers are shifted in phase. This leads to reconnection of

KAM surfaces and necessitates a reexamination of the island overlap

criterion for the breakdown of adiabatic barriers between island chains.

An analytic reconnection threshold is derived from an averaged Hamil-

tonian and found to agree well with numerical surfaces of section.
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Reconnection plays an important role in a variety of physical problems, including

RF acceleration in particle accelerators * , motion of magnetic field lines 2 , particle

motion in two-dimensional potentials 3, wave-particle interactions 4-5, and possibly the

free-electron laser 6 . In many of these cases involving nonintegrable systems one is

concerned with the extent to which the motion is stochastic or regular. For example,

in ion or electron cyclotron resonance heating, regular phase space curves, called

Kolmogorov- Arnold-Moser (KAM) curves, can present barriers to stochastic heating.

Stochasticity of magnetic field lines can lead to rapid particle and energy loss in fusion

devices. In this Letter we show that there is an intimate relationship between stochas

ticity and reconnection, with the result that reconnection can effectively destroy an

adiabatic barrier. Reconnection thresholds are derived for a model problem and are

found to agree well with numerically computed barriers.

Many dynamical systems of current interest are particular cases of the radial twist

mapping

.v = x — Ks\n 9

9=9 + fix) (1)

where K is a constant and fix) is analytic in some domain. For example, fix) = x

gives the Taylor-Chirikov map 7 , while fix) = i/x yields the Fermi map 8 . The

general case fix) = x" has also been studied 9. Now consider a function fix) whose

inverse is multivalued, so that fix) —2irn = 0 has multiple roots, corresponding to

families of island chains. If fix;a) depends continuously on the parameter a. such



that /' = Bf/dx changes sign as a is varied, then pairs of island chains merge when

ever /' = 0 . From the tangent map

L =
1 -A"cos0

/ \-Kfcos9 (2)

it may be shown that the rotational sense of islands of any order is — sgnif) . The

merging of such counter-rotating islands is necessarily accompanied by the reconnec

tion of their separatrices, which can happen in one of two ways. Since the period-one

islands lie only at 9 —0 or it , the island centers are either aligned or shifted by ir ;

similar restrictions apply approximately to higher order islands.

When aligned counter-rotating islands merge, a vortex, similar to Hill's vortex, is

formed. When staggered islands merge, their separatrices form a chain of loops, as

depicted in Fig. 1. The latter mode of reconnection is the only possible one for

period-one islands, since TrL —2 = —Kf cosO changes sign with /' . This scenario

was first observed by Symon and Sessler *in calculating beam stacking in particle

accelerators; their mapping can in fact be put in the form (1). Mappings of this form

also occur in our studies of multifrequency ECRH 10 where they arise in calculating

resonance overlap in a four-dimensional phase space.

In general, reconnection might be defined as a topological rearrangement of level

curves in which critical points do not change their type (as opposed to bifurcations, in

which critical points may be created or destroyed, or change type.) Examination of a

number of occurrences of reconnection in two-dimensional potentials Vj = Vix,y\a)

suggests that this always involves the merging of two separatrices. Thus, a necessary

condition for reconnection is that Vx = V2. For example, it may be shown that the

Henon-Heiles potential n is a reconnection point of the more general Hall-McNamara

potential3. In the case of the radial twist map (1) a reconnection threshold may be

derived using the averaged Hamiltonian 12



H(x,9) =J [/(() - lirn] d£ - Kcos9 (3)

which yields a continuous approximation to the mapping in the vicinity of a fixed

point. Reconnection occurs when the upper and lower separatrices have the same

value of H. With no loss of generality, suppose that the upper island chain in Fig. 1.

has x-points at ±77, so that the lower separatrix passes through x-points at 9 = 0 and

277. From Eq.(3) the lower and upper separatrices are given by His = +K and

Hus =fifit) ~ lirn] dt-K (4)

Equating Hus = Hts then gives the reconnection threshold

x2(a)

Kia) =«/2 J [/(£;«) - 2wn] d(. (5)
Xj(a)

As we shall see, this simple formula often gives a useful estimate for the breakdown

of an adiabatic barrier.

The simplest mapping which exhibits reconnection is the "logistic twist map," for

which

fix)=x-ax2 (6)

where a > 0. The period-one fixed points are located at

x* = ~-(l ± VI - Swna). (7)
2a

For positive n both roots are positive real for 0 < %irna < 1, coalescing when

a* = (87T/2)-1 at x„ = 477n. The x„~ reduce to the standard mapping island centers as

a —* 0; the jc„+ islands are born at x = «>, descending and merging sequentially with

the rising xn~ as a is increased (with the exception of the n = 0~ island, which is



-4-

unperturbed). Identifying x\ = x~ and x2 = x„ and evaluating the integral in (7)

gives the reconnection threshold

Kria)- «-*™^\ (8)
12a2

Equation (8) has been verified by visual inspection of numerical surfaces of section for

the case n = 1 and AT ^ 2.5 ; above this value the stochastic layers surrounding the

islands obscure the reconnection process. Figure 2 shows typical phase plots in the

vicinity of the n = 1 islands before and after reconnection. Notice the band of KAM

curves separating the upper and lower islands in Fig. 2a, which form a ("type I") bar

rier to orbits initialized in the stochastic region near x = 0. After reconnection a

second ("type II") barrier exists, with the upper island now topologically below the pre

viously lower island. There is at present no theoretical method for predicting the

existence or destruction of KAM barriers between staggered islands.

The second mode of reconnection, vortex formation, is shown in Fig. 3 for the

period-two aligned islands. The upper and lower elliptic fixed points are located at

*m = T~(l ± VI - 47rma) (9)
2a

where m is an odd integer. As a is increased, the x-points move together nearly vert

ically, joining at the reconnection point, after which they move apart horizontally. As

a is increased further, each vortex shrinks as a unit, vanishing when a* = (47rw)_1,

an apparently previously unobserved kind of "multifurcation." While a reconnection

threshold may be obtained by deriving an averaged Hamiltonian for the period-two

islands, it is easier in this case to work directly with the period-two mapping equations.

Requiring that the x-points merge then gives

Kria) =-U/l ~47rwa. (10)
a



This result has been verified visually to more than five significant figures. We have

also observed reconnection of higher order islands up to period six, similar to those

seen by Fukuyama 4. In general, even-order islands form vortices and odd-order

islands make loops. A reconnection threshold may also be calculated for the third-

order islands, which play a significant role in barrier formation.

Extensive numerical calculations of the type I barrier have been carried out for

the n = 1 islands by fixing a and following single orbits for increasing K until a break

through was observed. The results are shown in Fig. 4 for 0.020 < a < 0.040, along

with the reconnection threshold (8). The dashed line is the bifurcation threshold

Kbif = 4(1 —87rwa)"1/2 (found by setting Tr L = -2), above which the notion of

reconnection becomes meaningless. The most striking feature of this figure is the con

vergence of the barrier data to the reconnection curve for a ^ 0.031. While one

would expect approximate agreement as the stochastic layers diminish with decreasing

K, the convergence is rapid, even in the presence of a thick stochastic layer. For

example, at a = 0.035, where Fig. 5 reveals a very thick stochastic layer near the bar

rier iK = 2.82), the agreement with Kr is better than one part in 103; at a = 0.0365

the relative difference is only 3,n0~6! The sharp minima in the barrier data at

a = 0.0235 and 0.0290 are due to reconnection of period-three islands, while the dip

near a = 0.0255 is a consequence of the period-two vortices depicted in Fig. 3. It may

be shown that the barrier data also lie near the reconnection thresholds in these

regions. The close agreement between Kb and Kr is surprising both because Kr was

calculated from an approximate Hamiltonian and because of the apparent lack of

influence of the stochastic layers. These and other questions leave considerable scope

for future work.

We would like to thank A. J. Lichtenberg and M. A. Lieberman for helpful dis

cussions. This work was supported by USDOE contract DE-ATOE-76ET53059 and

the Office of Naval Research Contract N00014-79-C-0674.
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FIGURE CAPTIONS

FIG.l. Reconnection scenario for logistic twist map (two periods are shown for

clarity).

FIG.2. Surfaces of section for logistic twist map for K = 1.5 ia) before recon

nection (a = 0.036) and ib) after reconnection (a = 0.038). Doth x and
6 are in degrees.

FIG.3. Surfaces of section for K = 4, showing vortex formation.

ia) a = 0.0260; ib) a = 0.02635.

FIG.4. Computed adiabatic barriers between n = 1 islands compared with recon

nection threshold Kria).

FIG.5. Surface of section near barrier breakdown for a = 0.035 and K = 2.5.

Note the very thick stochastic layer.
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