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Abstract

This paper explores the use of semi-infinite programming (SIP)

algorithms for solving complex SISO control system design problems

when the plant model contains both parametric and unstructured uncer

tainty. It is shown that to make such a design computationally tractable,

it is necessary to replace the original performance-specifying semi-

infinite inequalities by majorizations. The compatibility of these

majorizations with certain SIP algorithms is established. Furthermore,

tests for determining whether a controller structure is adequate are

proposed.
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Introduction

Over the last decade, various optimization-based computer-aided

design techniques have been introduced, see e.g., [Dl, Gl, Kl, K2, K3, M2, PI,

P4, P5, P7, Zl, Z2], in attempts to harness the computing power made

available to the control engineer by modern digital computers. Natural

generalizations of classical design requirements involving rise time,

peak overshoot, bandwidth, gain margin, phase margin, etc., lead to semi-

infinite inequalities, i.e., infinite sets of inequalities which must be

satisfied by a finite set of design parameters. A specially designed

new generation of semi-infinite optimization algorithms [Gl, 62, Ml, M2,

P4, P5, P6, P7] is proving to be very effective in solving control

system design problems.

A major goal in control system design is to ensure satisfactory sys

tem performance in the face of the inevitable uncertainty of the mathe

matical model of the plant, see e.g., [C2, D3, D4, D5, H3, H4, H5]. This

leads to the concept of worst case design. The plant model uncertainty

is caused by errors in plant identification, drift in plant characteris

tics, use of reduced order models in design, etc. The computational dif

ficulty caused by model uncertainty in a worst case design situation

depends largely on the form of uncertainty and on the performance require

ments. For example, suppose, as in [C2, D3, D4, SI], that model uncer

tainty is of the form of a "small" multiplicative or additive perturbation

of the plant transfer function. Stability robustness for the resulting

closed loop system can then be ensured by a frequency domain test, see

e.g. [C2, D3, D4, SI], which is expressible as a semi-infinite inequality

of the form g(x,w) <_ 0 for all m >_ 0, where x is a vector consisting of
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the compensator parameters that must be designed and oj denotes frequency.

Because the frequency parameter co is one-dimensional, this inequality

causes little computational difficulty. Now suppose that, as in [H3,

H4], the uncertainty is assumed to be in terms of the parameters of the

plant transfer function. Worst case stability is now ensured by satis

fying an inequality of the form h(x,a,oj) < 0 for all a e A and for all

a) _> 0, where A is the set within which the plant coefficients are assumed

to lie. Since, usually, A is multidimensional and h is not convex, this

last inequality is extremely difficult to resolve computationally. In

retrospect, one must admire early attempts (see [H4]), predating semi-

infinite optimization, to resolve such inequalities by means of Nichols

chart techniques and lots of intuition.

In this paper we restrict ourselves to the design of single-input

single output (SISO) control systems, with both "structured" (parametric)

(as in [H3, H4]) and "unstructured" (as in[C2, D3, D4, SI]) plant

uncertainty. In Section 2 we introduce the plant model and a number of

"natural" formulations of control system performance requirements in the

form of semi-infinite inequalities. In Section 3 we develop some decom

position results and introduce the concept of majorization of inequali

ties. We then present some theorems which establish conditions for the

replacement of intractable inequalities by simpler ones at the expense

of tightening the design requirements. These results are then used to

obtain majorizations for the frequency and time domain performance

inequalities presented in Section 2. In Section 4, we show that the

majorizing inequalities obtained in Section 3 involve only locally

Lipschitz continuous functions, and hence that these inequalities are
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solvable by a number of semi-infinite optimization algorithms, such as

those characterized in [P3]. In Section 5 we show that our decomposition

results lead to tests for determining whether the proposed controller

structure can possibly satisfy the design requirements. In sum, we

present a set of techniques for formulating complex SISO control system

design problems, involving plant uncertainty, in a computationally

tractable form.

Notati on

The following notation is used in this paper:

* denotes complex conjugate

(D_ denotes the open left half of the complex plane, I.

Z denotes the set of integers.

Ml denotes the Euclidean nam, on Kn.

The superscripts a, v denote maximizers and minimizers, respectively.

For instance,

x = argmax f(x)
xex

a(x) = argmin <J>(x,a)

2
R CIR denotes a "rectangle" of the form,

K = {(x,y)|xe [x,x], y e [y,y]}

with x, x, y, y €]R.

2. Design Problem Formulation

We consider the task of formulating the SISO control system design
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problem as consisting of three subtasks:

(i) The specification of the plant model and controller struc

tures;

(ii) The division of the performance requirements into two classes,

"hard" and "soft;"

(iii) The specification of the "hard" performance requirements in

the form of, possibly semi-infinite, inequality constraints and of the

"soft" performance requirements in the form of a cost function.

We shall devote a separate subsection to the tasks (i) and (iii).

Task (ii) is obviously subjective and is left to the discretion of the .

designer.

2.1. The Plant and Compensators

We shall be concerned with the design of SISO control systems 0:?

the form shown in Fig. 1, where C(x,s) and F(x,s) are the compensators

to be designed. The components of the design vector, x SIR , are the

free parameters of the compensator, which need to be determined computa

tionally.

The compensators can be specified in one of two forms: the first

is

kc
¥s+a°cn> ?. (s2+2acns+<bcn>2>

C(x,s) = ^=i (2.1a)
(s^)/ (s2+2a;ds+(b;d)2)

KF
KF(s+a°Fn) n (s2+2aFns+(bFn)2)

F(x,s) jr^-! (2.1b)
(s+a°d) n (s2+2aFds+(b1Fd)2)
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We assume that perturbation functions, &(s), are known to the

following extent:

(a) The functions I: t -*• C are locally Lipschitz continuous

(b) The functions, &(jw), are bounded both in magnitude and phase

as follows:

*Mfo) £ |A(jw)| <SM(w)| Va) e[0,») (2.6a)

AA(w) £arg £(jw) £ i^us) Vu> e[0,«) (2.6b)

where the bound functions satisfy the following assumptions:

(i) £m(')» ^m^')' %&[')• *a^ are ^oca^y Lipschitz continuous

(ii) 0 < £M(w) £ 1£ £M(w) Vu e [0,«)

(iii) £A(a>) £0, IA(w) >0 Vu€[0,«).
The set of admissible perturbations, l9 satisfying (a) and (b) will be

denoted by L. The bounds described by (2.6a,b) are illustrated in

Fig. 3.

Referring to Fig. 4, we see that it is easy to extract from (2.6a)

and (2.6b) slightly conservative corresponding bounds on (&(ju))-l) (see

Appendix 1), viz,

XM(Jw) <U(jw)-l| <AM(Jw) (2.7a)

£A(ju>) £ argU(jw)-l} £ *A(Jw).. (2.7b)

Model (2.3) allows the designer to account for a number of phenomena

such as: (i) variations in the plant due to the manufacturing process,

(ii) high frequency measurement errors, (iii) errors in fitting a

mathematical model to experimental data, and (iv) obtaining a low order
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linear model from possibly nonlinear differential equations. The "struc

tured" part, PQ(s,a), of model (2.3) is intended to represent the system

accurately at low to medium frequencies. The "unstructured" perturba

tions, 4(s), will typically become significant at medium to high fre

quencies and may be used to account for errors in model order, high

frequency measurement errors, unmodeled nonlinearities [04], etc.

For example PQ(s,a) maybe the result of fitting amodel of given order

^kp=kpR+kpC^ t0 exPen'mental data .by means of aprocess such as weighted
least squares [D2] or the instrumental variable method [P8], etc., with the

weights adjusted so as to get a better fit over low, rather than high

frequencies. Because of the computational properties of such curve fit

ting schemes, the parameters of PQ(s,a) can only be assumed to be deter

mined in the form of confidence intervals (see Fig. 2 for an example).

The multiplicative perturbations, £(s), may now be used to account for

the low frequency bias in obtaining the structured model, PQ(s,ct).

It is possible to give a probabilistic interpretation to our approach:

our design will satisfy all the design requirements with the same proba

bility as that the plant zeros and poles belong to the assumed confidnece

intervals.

In the literature (see, for example, [C2,D3,D4,S1]) we find robustness

tests which make use only of the magnitude of the perturbations, &(s).

When phase information for Jl(s) is also available, then these magnitude -

only robustness tests may be unduly conservative, see [B1,H5]. Even

if delays are present in a system so that as u> -»• «, the system phase is

unknown, useful phase information may nevertheless be estimable up to a

given frequency of interest, see [H5]. We shall show that the Nyquist

criterion may be modified to ensure not only stability/robustness for
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the closed-loop system with plant PQ(s,a), a e A, but also with respect

to stable multiplicative perturbations for which magnitude and phase

bounds of the type (2.6a,b) are known. However, other frequency and time

domain requirements cannot be dealt with unless bounds on phase are also

postulated, at least, for s = ju).

We shall see later that requirements of worst case closed loop pole

placement inside a set in C_ can only be dealt with if the bounds (2.7a),

(2.7b) can be generalized to contours in C_. This imposes further

restrictions on the type of perturbation that one can consider within

our framework of optimization-based SISO control system design.

2.2. Performance Requirements and Design Constraints

We begin by discussing a few performance requirements which are

often treated as "hard" constraints and hence are expressed as inequali

ties. These include stability robustness, pole placement, output noise

rejection and avoidance of saturation caused by output noise or the

command input signals.

BIBO stability of the closed loop system is the most important per

formance requirement. Given the level of uncertainty in the plant model

(2.3), it is quite difficult to ensure that the closed loop system will

be BIBO stable. We propose two approaches to ensuring BIBO stability.

The first, and less conservative one, is based on the modified Nyquist

criterion [P2], It applies when the bounds (2.6b) on the phase I e I

are reliable, while the second one, based on stability robustness results,

is to be used when only the amplitude constraint (2.6a) is available,

(i) BIBO Stability

Let d(s) be a polynomial of degree kn + kr (i.e. the degree of the
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loop gain denominator for £(s) = 1) whose zeros are all in t . Let n ,
P

d .n^, d^ denote the numerator and denominator polynomial of the trans

fer functions of the "nominal" plant PQ(s,a) and compensator C(x,s),

i.e.,

nn(s,a)
P(s,a,£) =(dp(s?a))£(s) (2.8a)

nr(x,s)
c(x's) • d^iy • <2-8b)

Let d(s) be a polynomial of the same degree as d dr (i.e. k +kr), and
P w P O

suppose that £(•) is a proper, BIBO stable rational function. Then,

according to the modified Nyquist stability criterion [P2], the closed

loop system in Fig. 1 is BIBO stab'e if and only if F(x,s) is BIBO

stable and the locus of

A nr(x,joj)n (;w,a)U(ja)))+dr(x,jw)d (jw,a)
T(xfjco,o,A(j«)) • -S E __ 21 B (2.9)

traced out for - <» < co < =° does not encircle the origin for all a 6 A and

and for all £ e L.

When F is specified as in (2.1b), the BIBO stability requirement on

F leads to the inequalities,

apd >.e > 0 for j • 0, 1, -2, ..., kp (2.10a)

bpd > e > 0 for i * 1, 2, ..., kf. (2.10b)

Next, the encirclement requirement can be replaced by the requirement

that the locus of T(x,ja),a,£(jto)) stay out of a parabolic region enclos

ing the origin, for all oj e (-«,«»), for all a e A and for all £ S L (see
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Fig. 5). This leads to the following quite formidable, semi-infinite

inequality:

Im(T(x,jto,a,A(ja)))-k1(Re(T(x,jw,a,£(ja3)) + k2 <_ 0

V a e A, V I e L, Va)G [0,«) (2.11)

where k,, k2 >0. The requirement we [0,~) in (2.11) can usually be

relaxed to co € (a)',u)"), with 0 < co' < u' < °°. However, even with this

simplification, (2.11) remains totally intractable unless one resorts to

the type of "majorization," which replaces (2.11) with a more conserva

tive, but simpler inequality, that we will present in the next section.

Finally, note that a judicious selection of the polynomial d(s) and the

constants k,, kg makes the test (2.11) "almost necessary;" i.e., it

reduces the conservatism of this, basically sufficient condition,

(ii) Stability Robustness

Now suppose that nothing is known about the phase of the perturbation

functions Jl(s). In that case the expression, (2.11) cannot be evaluated

and BIBO stability must be ensured by a two stage process. First we

set &(s) = 1 and require that the "structured" part of the system be BIBO

stable, i.e., from (2.11), that

Im(T(x,joj,a,l)) - ^(RedU.jw.a.l)))2 +k2 <0

V a e A, V u e [0». (2.12a)

Then, we ensure that the high frequency effects represented by the allowed

Jt(s) GL do not destroy the BIBO stability of the "structured" part of

the closed loop system, by requiring, as in [C2, D3, D4, SI], that
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|PQ(jo3,a) C(x,ju))[l+PQ(jto,a) C(xyja))]_1| <̂ —'—
AM(jw)

V a €Af V a) e [0». (2.12b)

Although (2.12a,b) are substantially simpler inequalities than (2.11),

they are still quite forbidding because of the dimensionality of A.

Fortunately, as we will see in the next section, this obstacle can be

overcome by decomposition techniques.

Finally, note that an equivalent expression to (2.12b) is

|H°(xtJfe)..a)l <„ ] Va <= A, Vu e [o>) (2.12c)
y AM(jd))

where Hu is the "structured" closed loop transfer function from u to y.

(iii) Pole Placement

Referring to [CI], we find that closed loop pole placement, specified

only to the extent that the closed loop poles be confined to a region in

the s-plane, is closely related to the task of ensuring BIBO stability.

Thus, let S be a subset of C_, which is symmetrical about the real

axis, with boundary defined by a = f(u)), where f :IR +IR is continuous,

f(-ai) = f(u)) < 0 and f(cu) / « as w + »; i.e.

S = {s€ C|s=a+ju),a-f(u}<0}. (2.13)

For example, as illustrated in Fig. 6,. S could be the hyperbolic region

1defined by a = -/k,+k2a) , with k,, k2 >0.

Definition 2.1. Let nc(x,s), n.-(x,s), dc(x,s), dp(x,s) denote the numera

tor and denominator polynomials, respectively, of the compensator blocks

C(x,s) and F(x,s). We say that a given realization of the closed loop
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feedback system in Fig. 1 (characterized by a specific a e A, I e L) is

S-stable if (i) dp(x,s) has no zeros in S , the complement of S in (D,

(ii) nc(x,s) has no zeros in Sc which cancel poles of P(s,a,£(ju>)) in Sc
and (iii) the transfer function from r to y,

H (v c n Q(*\\ $ Ffv -N P( S,(*,£( S))C( X,S ) (t> , .vHyr(x,s,a,£(s)) - F(x,s)1+p{Ss0>^jjc(Xf^ (2.14)

has no poles in Sc. n

First we shall show that pole placement, to the extent of ensuring

S-stability, is possible for the "structured" part of the system. Refer-

ing to [P2] we see that the S-stability analog of the test (2.12a) which

ensures exponential stability is

Im(T(x,f(u))+ju),a,l)) - ^(RetTU.fM+jw.a,!))2

+ k2 <0, V a e A, V a) e [0,oo) (2.15)

To ensure S-stability for the precompensator F(x,juj) specified by (2.16),

we require that

-apd<f(0) (2.16a)

and, for i = 1, 2, ..., kp,

M-a^Mb^)2-^)2) <f(IB(Vpat/tbJ/.taJ/ . (2.16b)

Ensuring S-stability in the face of unstructured stability is much more

problematical not so much because of the added computational complexity,

but because of the difficulty in obtaining bounds on &(f(u))+jco), i.e.,
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on £(s)' off the jco axis. In any event, it now becomes necessary to

restrict ourselves to perturbations I e l , the subset of S-stable

perturbations in L. Tentatively, suppose that it is valid to extend

the bounds in (2.6a,b), by means of global Lipschitz constants L,, L2
as follows:

£m(oj) - L^fU)! < |£(f(o3)+jW)|<£M(a3) +L2|f(w)| (2.17a)

£a(oj) - L2|f(a))| <arg A(f(w)+jw) <JA(w) +L2|f(w)|. (2.17b)

We denote the extended set of Lipschitz continuous functions, £, which

satisfy (2.17a) and (2.17b) (c.f. (2.6a) and (2.6b)) by L . The subset

of S-stable functions in L is denoted L ~. We now have two options in
c e ,o

dealing with the perturbations, A(s). We can add an S-stability robust

ness condition to (2.15), viz.,

H°(x,f(u))+ju),a)| < ^ v a € A, Va) e [0,«») (2.18)
yU - £M(ja))+L1|f(a))|

which is useful when (2.17b) is unreliable. Alternatively, we can

enlarge (2.15) by choosing d(s) to have no zeros in Sc and then requir

ing that

Im(T(x,f(a))+ja),a,Jl(f(a))+ja))) - ^(ReCTU^aO+jw^f^+ju))))^ k2< 0

V a € A, V a) e [0,»), V SL € / . (2.19)
e, o

Again, as we will show in the next section, (2.19) can be replaced by a

somewhat more conservative, but computationally tractable inequality.
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(iv) Noise Rejection

The need to reduce the effect of the output disturbance on the out

put can be expressed in the form

|Hyd(x,ja),a,£(jco)|2 <IdU)2, Vto €[w^cojL Va€A, UG1
(2.20a)

where H . is the transfer function from d to y and [u)d,ood] is a critical

frequency interval, or, equivalently,

|(l+P(ja),a,Z(ja))OC(xfja)))^|2 <£d(a))2

V a) e [to^wjj], V a € A, HGL. (2.20b)

(v) Saturation Avoidance

It is desirable to prevent the disturbance, d(*)» and command input,

r(*)» from saturating the plant. For this purpose we require that

|Hvd(x,ju),a,£(jo>))|2 <£s(oj)2

Va) e [w^uj], V a € A, V il e L (2.21a)

where Hd is the transfer function from d to v, i.e., equivalently,

|C(x,jo))(l+P(jaj,a,il(joj))C(x,ja)))"1|2 <£$(a))2

V a) e [o)',w"], Va€A5H€L. (2.21b)

For command input signals, the requirement is

|Hvr(x,jc*),a,£(jaj))|2 <£r(w)2

V to e [££,£>£], V e A, V&e L, (2.21c)
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where

H (x,jo),a,£(jo))) = F(x,jo))C(x,ja))[l+P(ja),a,£(ja)))C(x,ja3)]'1.
(2.21d)

(vi) Time Domain Constraints

Let (r.C-)}^--! be a given set of inputs. First, we may impose input

following requirements in the form (see Fig. 7)

jj(t) <y(t,x,a,£,ri) <J^(t), VaSA, V%€ L, Vt >0, i=1,2,... ,k
(2.22)

where the bound functions jl, 8?. are piecewise continuous and y(t,x,a,

A,r.) denotes the closed loop system zero state o.utput corresponding to

input r.{t) and d(t) =0.

Next, we may impose power constraints on the plant input (or output)

in the form

f u(t,x,a,fc,r.)2dt <V, Va€A, Vl e £, i=1, 2, ..., k.
JO i - p (2.23a)

A major source of difficulty with the constraints (2.22), (2.23a)

is the fact that there is no obvious way of evaluating a response such

as y(t,x,a,A,r.) for a given x, a, r., with i specified only as a bounded

Laplace transform. We shall deal with this difficulty to some extent in

the next section. (One way out is to impose (2.22) and (2.23a) only for

A = 1).

(vii) Cost Functions

Within our philosophy of design, a "hard" performance requirement

is expressed as an inequality constraint, while a "soft" performance

requirement is added to the cost function. Since semi-infinite optimi

zation algorithms such as [Gl] require that the cost function is
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differentiate, it is necessary to perform a simple transformation when

converting a constraint such as (2.20a) into a cost function. Thus, if

we wish to minimize the effect of disturbances on the output, subject to

some of the other constraints described in this section, we enlarge the

design vector by one component to (x ,x) and solve

minimize x (2.24a)

(x°,x)

subject to

|Hyd(x,joo,a,Jl(ju)))|2 - x° <0,

V a) € [ojJj.uJJ], Va € A, V I e L (2.24b)

and other constraints. Of course the designer may select other cost

functions which do not affect system performance, such as cost functions

to minimize manufacturing cost.

3. Decomposition and Majorization of Performance Inequalities

3.1. General Results

Referring to (2.11), (2.12a), (2.12b), (2.15), (2.18), (2.19), (2.20a),

(2.21a),(2.21d), (2.22), assuming that £(s) = 1, we find that our perfor

mance requirements lead to inequalities of the form

(J>(x,v) < 0 V v e N (3.1)

n n

where :IR x IR ->-]R is continuous in (x,v) and continuously differen-

tiable in x for each v; V <j>(x,v) is continuous in (x,v). In (3.1),

4.

If <!>(•,•) corresponds to a closed loop magnitude, it is shown in Appendix
3 that Vx4>(x,v) fails to exist at points (x,v) at which the loop gain is
-1.
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x is the design vector, of dimension n , and v = (a,03) is the variations

vector, of dimension n^. An alternative way of writing (3.19) is

max <|>(x,v) < 0 (3.1b)

In solving an optimization problem with constraints such as (3.1b),

a semi-infinite optimization algorithm (see e.g. [Gl, Ml, P4, P5, P7])

must evaluate the function

i|/(x) = max <j>(x,v) (3.2)

at least once during each iteration. Since in our case W is multidimen

sional, the evaluation of i|/(x) is, potentially, a source of extreme

difficulty. Fortunately, the structure of the design problem allows two

kinds of simplifications. The next two theorems are decomposition results

Theorem 3.1. Suppose that in (3.2),

V1 . ,
<J>(x,v) = n ^(x.a'.iu) - b(o3) (3.3a)

i=l

n

with (J)1 :IR xIR x IR + IR+, and that

1 2 V1W= A x kc x ... x A v xQ (3.3b)

where the A and G are compact intervals. Then

v1 1
t^(x) = max { n ip (x,o3>-b(o3)} (3.4a)

03^ i=l

where
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V(x,o)) = max ^(x.a1,03). (3.4b)
a €A

Proof: We can write (3.2) as

ty(x) = max(max <j)(x,a,03)) (3.5)
03^ o£A

Let a(o3) be a maximizing function for max <j>(x,a,03) and let a1 be a

maximizer for max <j> (x,a ,03). Clearly, we must have <J> (x,S,03)
a €A

= <{> (x,a ,03) and hence the desired result follows.

Theorem 3.2. Suppose that in (3.2)

V1 . .
<f>(x,v) = I (f)1(x,a1,oj)-b(o3) (3.6)

i=l

and that W is as in (3.3b). Then

v1 . .
ip(x) = max{ I max ^(x.a1 ,o3)-b(o3)}. (3.7)

03^2 i=l 1-.i
a ^ n

We now open up the possibility of replacing the very hard problem

(3.2) by a much easier one, provided we can find suitable majorizing

sets that are not too big.

Theorem 3.3. Suppose that in (3.2)

(|>(x,03,a) = $(f(x,03,a)) (3.11)

n n n

where f :IR x xIR x IR a -• (C and $ : I +IR. For any x eiR x, 03 >0, let
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A"(x,03) = {z e c|z = f(x,03,a),a e A} (3J2)

and let M(x,o3) c I be such that A"(xfw) CM(x,o3).. Then

^(x) < max max <3>(z). (3.13)
03^2 z€M(x,o>)

Proof: Clearly,

iKx) = max max $(z) (3.14)
03^2 Z^T('X,03)

Since A~(x,o)) cm(x,o)) , the desired result follows immediately. '

To conclude, we introduce the following terminology.

Defi ni ti on 3.1. Let ^, ij) :lRn x C-»-IR and b : I +1R he continuous. If

ij>(x,s) > ^(x,s) for all x eiRn and for all s£BC C, then we say that

the inequality

if(x,s) - b(s) < 0 V s € B

majorizes the inequality

iHx,s) - b(x) £0 V s e B.

3.2. Bounds on Open Loop Gain and Phase

We now make use of Theorems 3.1 and 3.2 to obtain bounds on the

open loop gain and phase, as a function of the complex variable s^t,

These bounds will be used in the following subsections to obtain majori

zations for the intractable performance inequalities introduced in

Section 2.

Consider the loop transfer function, P(s,a,Jl(s))C(x,s).

We need the following notation. For any s^I,
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A A
£M(s) = max |H(s)-l

W IGL

L(s) =min |A(s)-1
W

£€L

a A
£«(s) = max arg(£(s)-l)

v A
Ms) = min arg(£(s)-l)

The above maxima and minima are computed in Appendix 1.

Next, for any set, let

ZjJjR(s) =arg max{|(s+z)|2 zeizR}, i =1, 2, ..., k;

Ai AzMC = arg max{|(s+z)(s+z*) |

pR

Z^l p/ , 1 — I, c., •*•» "^nP

zlp(s) =arg m1n{|(s+z)r zei^D}f i = 1, 2, ..., k'
•MR zR- kpR

z?,r(s) =arg min{| (s+z)(jco+z*) |2
•MC z€IzC}' i =] ' kpC

*iz.R(s) =arg max{arg[s+z]|z€l^ }, i = 1, 2, ..., k'ARV_, -<3 .— i-.3L-.fcJ|—zRJ, . ., _, ..., ~pR

z^c(s) =arg max{arg[(s+z)(s+z*)]|z€IzC}, i =1, 2, ..., k' (3.17b)A-i

V A

zAR(s) =arg min{arg[s+z]|zeizR},i =1, 2, ..., k'

(3.15a)

(3.15b)

(3.15c)

(3.15d)

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.17a)

(3.17c)

zAC(s) =arg min{arg[(s+z)(s+z*)]|z<=IzC}, 1=1, 2, ..., k^c (3.17d)

The maximizers and minimizers of the amplitudes and angles of the
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denominator terms in (2.4) are defined analogously, and will be denoted
A-j A-} V-j V-j A-j A-j V-j V-j

y PMR* PMC PMR* pMC* PAR* PAC PAR9 PAC Referrin9 to Appendix 2, we

see that the zj^s), ^(s), zAAR(s), z|r(s) and ^(s), ^(s), ^R(s);
V-j
PAR(s; are 03-independent, while the other maximizers/minimizers are

simple, piecewise continuous functions of 03 and are given in Table A2.1

and A2.2. The extremizers for real poles and zeros are given by Theorem

A2.1 whilst for complex perturbations, the extremizers are given by

Theorem A2.2. Let

«M(s) =V'MR(s))ie{i k '̂̂ ^^ien,...,^}'

v A v-j v-j

"m "("P MR(s))i'en k' },(zMR(s)ie{l,...,k^e}'

^»»ien kpR}'̂ c(s))ien,...,kpC})T <3-18b>

aA(s) =((zAK(s))ie{l,...,kpR }'(zAC(s))ie{i,...,kpC}'

^s))ie{l,...,kpR}'(P^s))i€{1,...jkpC})T <3-18c>

aA(s) S((ZAR (s))16[lt#..>k. }.(*AC(s))16{1....,k'c}'
pR P<*

^R^W,...,^}'^^ kpC>)T. <3-i8d>
Applying Theorems 3.1 and 3.2 we obtain immediately the following result:

n

Theorem 3.4: For any x SIR x, s e (D, let
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a AMQ(x,s) =max |PQ(s,a)C(x,s)

v AMQ(x,s) =min |PQ(s,a)C(x,s)|

a A
$Q(x,s) =max arg[PQ(s,a)C(x,s)]

o£A

v A
$Q(x,s) =min arg[PQ(s,a)C(x,s)]

a A
M(x,s) = max |P(s,a,£(s))C(x,s)|

v A
M(x,s) = min |P(s,a,£(s))C(x,s)|

net.

<3>(x,s) = max arg[P(s,a,£(s))C(x,s)]

am.

v A
$(x,s) = min arg[P(s,a,£(s))C(x,s)]

Then Vsej,

M(x,s)

M(x,s)

$(x,s)

$(x,s)

|PQ(s,aM(s))C(x,s)|

|P0(s,aM(s))C(x,s)|

arg[P0(s,aA(s))C(x,s)]

arg[PQ(s,aA(s))C(x,s)]

and for s = a + J03,

-23-

(3.19a)

(3.19b)

(3.19c)

(3.19d)

(3.19e)

(3.19f)

(3.19g)

(3.19h)

(3.20a)

(3.20b)

(3.20c)

(3.20d)



M(x,s) =|P0(s,aM(s))|(IM(co)+L1|a|)|C(x,s)| (3.20e)

M(x,s) =iPQCs.^sJJK^wJ-L^aDICtx.s)! (3.20f)

$(x,s) =arg[PQ(s,aA(s))] +i^u) +L2|a| +arg[C(x,s)] (3.20g)

v v

$(x,s) =arg[PQ(s,aA(s))] +£A(oj)-L2|a| +arg[C(x,s)]. (3.20h)
n

To illustrate the use of Theorem 3.4 in an optimization-based design

scheme, consider the inequality on the loop gain:

Find an x e]R such that

|P(jo3,a,£(jo3))C(x,jo3) | > fc(a>) Va^A, JieL, ca>0 (3.21a)

or equivalently,

max |P(jo3,a,A(jo3))C(x,jo3)| > £(03) Voi>0. (3.21b)
a©V -g

By (3.20), this reduces to

|P0(jo3,aM(jo)))JlM(o3)e(x,ja))| >I (03) V 03 >0 (3.21c)

where for each 03 ^0, the vector cu^jw) and M03) are known.

3.3. Majorization of Robustness, Noise Rejection and Saturation
Avoidance Constraints

We shall now make use of the results of the preceding section to

obtain majorizations of the inequalities (2.18), (2.20a) and (2.21a);

i.e., we shall replace them with slightly tighter constraints which are

computationally more tractable.
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To simplify notation, we assume that f(o3) = 0 in (2.18). To

obtain a more general result, the reader should replace J03 by (f(o3)+jo))

in the appropriate expressions below. It is shown in Appendix 2 that

our results for optimizing functions of jo) may be used to optimize

functions of (f(co)+jai) so that there is no loss of generality in assum

ing f(o3) =0. For any x <=iRn, w e [o,«>) let

O^ju) ° max |HyU(x,joj,a)|2. (3.22)

Then (2.18) becomes

.0 ,„ ,.A _ 1O*'^ " a o <0 V03 e [0,«) (3.23)
y Ujo3r

Next, writing PQ, C in polar co-ordinates, we obtain
j<f>p (Jw,a)

Pn(jo3,a) = m„ (jo3,a)e u (3.24a)
u K0

a , %J4>c(x,jo>)
C(x,joj) =mc(x,j )e u (3.24b)

which define the magnitude and phase functions m_ , mr, (j> , <|>r. Let
Po L p0

Pq(Jw>A) denote the set of all possible plant magnitude and phase varia

tions, with respect to A, i.e.,

A 2
Pn(jwtA) = {(m,<j>) eir|m = mn (jo3,a), <j> = <b (joj,a), a € A} (3.25)

p0 p0

Next, by substituting from (3.24a,b) into the formula for H° , we obtain

0 Pg(jw,a)C(x,jo>)
Hyu(Xjja)'a) =HP0(jo3,a)C(x,jo3)
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j(<f> (jw,a)4<j> (x,jw))
mp (jw,a)mc(x,jo3)e

= j(*p (ja3,a)+(J)c(x,joj)) • (3'26)
1+m (ja3,a)mr(x,jo))e °

Hence, ^ (x,jo3) can be seen to be given by

0 , , Ac(x,JU)2
i|>wll(x,jw) = max u

(m,<j>)epQ(jo3,A) l+2mmc(x,jo3)cos(<J)+<J)c(x,jo3))+m mc(x,jo3)

(3.27)

Now, for any 03 e [0,«), let

Rp (x,joj) ={(m,cj))eiR |M0(x,jo3) <m<M0(x,jo)),$0(x,jo3< $<$0(x,jo3)}.

(3.28)

The set R (x,jo3) is a rectangular approximation to Pn(jo3,A) in IR , in the
p0 u

sense that Pn(jo3,A) c R (x,joj) and Pn(jo3,A) has points on each of theu pQ u

four sides of R_ (x,joj) (see Fig. 12).
p0

Now, let

2 2-0 A m mr(x,jo3)
C#1I(x,jo3) = max °

vu 2 ?J (m,<f>)Q? (J03) l+2mmc(x,jo3)cos((J)+(j)c(x,jo3))+m mc(x,jo3)

(3.29)

Since the maximization in (3.29) is over a larger set than in (3.27), we

must have

^yU(x»Jw) <̂ u(x,ju) Vx€]Rx) Voj€ [0,~). (3.30)

Consequently, any x which satisfies
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»I1,|(X»J") 'a ] 21° Vw€E[0,«>) (3.31)yu yj^)2

must satisfy (3.23), i.e., (3.31) majorizes (3.23).

Clearly, the set of design vectors x which satisfies (3.16) is

smaller than the one that satisfies (3.8). This conservatism can be

reduced by replacing R (x,jo3) by a smaller convex polyhedron containing
p0

Pq(Jw,A). The great advantage of (3.31) over (3.23) is that (3.31) is

quite easy to evaluate while (3.23) is extremely difficult. The reason

for this has to do with the fact that Rn (x,jo3) is a rectangle in R ,
p0

while A is a "rectangle" in a higher dimensional space. Clearly, the

maximizers (m(x,jo3),<|>(x,jo3)) for (3.29) are either in the interior of'

Rn (x,jo3) or on its boundary. If they are in the interior, then they
p0

must be unconstrained maximizers and the gradient of the maximand in

(3.29) must vanish at these points. Now it is shown in Appendix 3
+ ++

that the gradient of the maximand cannot vanish in, the interior of

RD (x,jo3) and hence (m,<f>) must be*on the boundary of R (x,joi). Since
H0 2 p0

Rn (x,jo3) is a rectangle in IR , its boundary consists of four, line segments
P0

It is shown in Appendix 3 that the maximization over these four seg

ments reduces to at most nine function evaluations. Since the dimension

of the boundary of A is greater than one, no comparable simplification

can be obtained for the evaluation of i|r (x,jo3).

Next we turn to the noise reduction and saturation constraints

(2.20a) and (2.21a). Letting

If m mr = 1, cos(<j> +<f>r) = - 1, the gradient fails to exist and the
p0 L p0

maximand is infinite.

Unless the maximand is a constant in which case any point in R (x,jw)
... Pf)
is a maximizer. u

TTTDetails of computing 3PQ(jo3,A), the boundary of PQ(jo3,A), are given
in Appendix 4.

-27-



, % J>n(jw)
A(jw) =m£(jo3)e * (3.32)

with I € L arbitrary, we obtain

j(<l>p (Juj,a)+(f)£(joj))
P(jw,a,Jl(jo3)) =mn (jo3,a)m0(jo3)e °

P0 *

, 4% J<t>n(jaj,a,£(jo3))
= m (jo3,a,A(jo)))e p (3.33)

with mp &mpQ mr ^ £^ +<frr Let

L'(joj) ={(m,<j>) e ]R2|m =|A(ju>)|, * =argU(jw)),*e L} (3.34)

A 2^yd(x,jo3) =max|H d(x,joi,a,Jl(jo3))p (3.34a)

Then, expanding (3.34a), we get

j(<L Ojw,a)+<|>-(jw)
P0 *

ik.j(x,jo3) = max{|l+mn (jo3,a)m0(jo3)mr(x,jo3)e

+ *r(x,j«)

j(<j>'+<f>"+C|)r(x,J03) « ,
ja3)e C I2}"1

(nT.fJsnjw) (3.34b)

max {|l+m'm"mr(x,joj)e I }
(m',4>,)eP0(jco,A) L

Let

a A AM(x,jo3) = MQ(x,jo3)jlM(o3) (3.35a)

A. A A -
$(x,jo3) = $0(x,jo>) + JlA(o3) (3.35b)

with similar notation for minimizers. Define
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A 2 V A V ARp(x,J03) = {(m,(j)) SIR |M(X,J03) <. m£ M(X,J03),$(X,J03)_<(|> £ $(X,J03)}.

(3.35c)

Then it is easy to see that if m = m'm" and <J> = <j>' + <j>", with

(m1,^) e PQ(jo3,A) (m"f<fr") e L"(jw) then (m,<j>) £R (x,jo3), i.e., the

approximating rectangle R (x,joj) contains the set of actual plant

van ati ons»

A 2
P(Jw9A,L) = {(m,<J>) €flr|m = m'm", <j> = <j>' + <fr"t

(m',<i>») € PQ(jo3,A), (nr\<|>") e L'(jo3)}. (3.36)

Furthermore, there are points (m,<|>) e P(jo3,A,L) which lie on each of the

four sides of R (x,jo3). Consequently, the noise suppression constraint

(2.20a), which can be written as

4>yd(x,jo>) - £d(jo3)2 <0 V03 e [0,») (3.37a)

can be majorized by the constraint

iLd(x,jo3)-ild(jo>)2 <0 V03 € [0,~) (3.37b)

where

- a J(WG(Xijw)> 2 i
^vH(x,jo3) = max {|l+mmr(x,jo3)e | } . (3.37c)
y (m,(j>)^p(x,jo3) L

As we shall show in Appendix 3, the evaluation of ^vd(x,jw) is

again quite simple. Finally, let

A 2<J>d(x,jo3) =max |H d(x,a,jo3,il(jo3))| (3.38)
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Since Hyd = - CH ., and C does not depend on (a,£), we must have

<J>vd(x,jo3) =mc(x,jo3)2i|;yd(x,jo3) (3.39)

and hence, if we define

A 2-<J>vd(x,jo>) =mc(x,jo3) ^ .(x,joj) (3.40)

we see that the saturation constraint (2.21a) can be majorized by

*vd(x,jw) - £s(jo3)2 <0 V03 e [OH . (2.41)

with ty d computable with the same ease as ipV Similarly we may majorize

(2.21c).

3.4. Majorization of S-Stability Constraints

We now obtain a majorization for the most complex of the constants

described in Section 2.2, namely (2.11) and (2.19). Without loss of

generality, it suffices to consider (2.11) only: the corresponding

results for (2.19) are obtained by replacing J03 by (f(o))+jo)), as appro

priate. Referring to (2.9), let m,, nu, <j>n, fa be defined by

J<fh(x,jo3,a,>l(jo3))
m-|(x,jo3,a,&(jo3))e

Anc(x;jo3)n (jo3,a)£(jo3)
nasi (3-42a)

J<J>2(x,jo3,a)
m2(x,jo3,a)e

A dr(x,jo3)dn(jo3,a)
- d(j£)— (3-42b)
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Then (2.9) can be written (with the arguments suppressed) as

J<J>«I 3fa
T = m^e + m2e . (3.42c)

Making use of the decomposition results in Section 3.1 we can

A V V A

obtain continuous bound functions M.(x,jo3), M.(x,jo3), *.(x,jo3), <f>.(x,jo3),

i = 1, 2 such that

V A

M^xju) <m1(xfjw,a,A(ju)) <Mj(x,ju>)

V a € A, V I € L, i = 1, 2, (3.43a)

V A

^.(X,J03) <*1(xfjU,Of£(j(i))) <^(x.jw)

V a e A, V I e L, i = 1, 2. (3.43b)

In terms of the polar notation (3.42a,b), (2.11) becomes (with the

arguments x, J03, a, I suppressed),

2

max {(m-j sin <j>,+m2 sin ^) - k, (m, cos 4>i+mo cos <M + k2* —°
&eLs

Vo3€[0,oo). (3.44)

Clearly, (3.44) is majorized by

max{(m, sin <j>,+m2 sin (taJ-Mm, cos fa+m? cos fa)

,v A V A
+kglM^x.ju) <m1 <M1(x,ja)),«1(xjti)) <<j>i <$1(x,jo3),

1 = 1,2} < 0 V 03 e [0>). (3.45)

We note that (3.45) differs from (3.44) in that the max in (3.45) is
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only over four variables while the one in (3.44) is much more complex.

Now, the constraint set in (3.45) is a hype rectangle, R4, in IR4. Clearly,

the maximizing quadruplet (m^^.mg,^) is either in the interior or on

one of its three dimensional faces. We shall show in Appendix 5 that
A A A A

(m-j.^jmg,^) is, in fact, on some two dimensional face of one of these

three dimensional faces. To be precise, we shall prove the following

result.

Theorem 3.4: Let £:R +IR1 be defined by

A 2£(m.|,(|).|,m2,<i>2) = (m1 sin <j>.|+m2 sin ^J-k^m^ cos <j>-|+m2 cos <f>2) +k2

(3.46a)

and let M.., M., *., i. eft be arbitrary. Then

maxU(m1,^,ni2»^2)l^ !mj 1^., ^ <^ <i., i =1, 2}

=max[ max {^ ,^ ,M2»*2^?i - *i £Vi =1' 2>»
(<J>i><i>2)

max {^(M^^,^,^!^. <<j>. <$., i =1, 2}
(<J>1»<f>2)

max {C(Mi,c|)1 ,M2,4>2)|fi <<j>. <i., i =1, 2}
(<J>-|»<t>2)

max UtM^.Mg.^)!^ 1.^ <^ t 1=1,2}]. (3.46b)

Thus we see from Theorem 3.4 that for every (x,03), the inequality (3.45)

can be checked by carrying out four 2-dimensional maximizations. We

shall show in Appendix 5 that these two 2-dimensional maximizations can

be reduced to a small number of one dimensional maximizations, and
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evaluations of derivative zeros, as for the cases considered in the

preceding section.

3.5. Majorization of Time Domain Constraints

We now turn to the most difficult constraints to majorize: those

in the time domain, viz those given by (2.22), i.e., constraints of the

form

St(t) £ y(t,x,a,£,r) <£t(t) Vae A, VJl e /., Vt >0 (3.47)

where r(t) is an input to be followed. Referring to Theorem 3.3, and

the majorizations in Sections 3.2 - 3.4, we see that we relied heavily

on the fact that we dealt with constraint functions <J>(x,jo3,a,A(jo3)) which

were of the form <fr(x,jw,a,£(ju>))-= *(f(x,jw,a1A(jw))) with
"x "a 2f :JR xiR xiR ux l+ t (or + BT) so that the problem max <Kx,jo>,a,£(jo)))

was easily reducible to a maximization problem over a rectangle in IR .

Now there appears to be no obvious way of expressing the response

y(t,x,a,£,r) in the form <3>(f(t,x,a,(jo3),r) with f eiR2 and hence there

seems to be no way of easily majorizing (3.47) in the time domain directly

(furthermore, we are not given any bounds on &(t)). Thus, one may well

have to resort to simulation utilizing randomly generated a e A to get

an estimate of max y (t,x,a,r) (min y (t,x,a,r)) for the response of the

structured part and ignore the contribution of the unstructured pertur

bation £(t).

Alternatively, one may try to verify (3.47) by frequency response

methods. First, we observe that it does not seem possible to replace

(3.47) with an equivalent inequality in the frequency domain involving

bounds on magnitude and phase [H4, K4]. The reason for this is that
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functions which are close in the L^ sense in the time domain may have

Laplace transforms which are not at all close in the L sense in the
00

frequency domain, and vice versa. Of course, Parseval's identity can

only be used for L2 constraints and hence is of no use with the L^

constraint (3.47).

Since a simple substitution of bounds in the frequency domain for

bounds in the time domain fails, one must turn to Fourier series as a

measure of last resort, since, as we shall see, it leads to rather con

servative majorizations. For this purpose, we replace the original

input r(t) by a periodic input rD(t), with period T, such that

r(t) for 0 < t < T/2

rAt) = < (3.48)
P 0 for T/2 < t < T

where T/2 is sufficiently large to allow the system transients to die

out. At the same time, we replace the requirement of t e [0,°°) in (3.47)
00

by the requirement of t e [0,T/2]. Assuming that r(t) = I r.e
' —00

with 03Q = 2ir/T, the corresponding periodic output is

jk03Qt

Jko3Qt
y(t,x,a,£,r) = I H (x,jko3Q,a,£(jko30))rke

and hence, truncating the sum at N, (3.47) becomes replaced by

N Jko3Qt
St^) 1 I Hyr(x»Jkw0»a,Jl(jko30))rie u <&t(t)

VaGA,H6i,Vte [0,T/2]. (3.48)

Clearly, each term of the form
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jko30t -Jko3Qt
[rke u H (x,jko30,a,&(jko30)) +r_Re Hyr(x,-jko3Q,a,Jl(-jko30))],

(3.49)

in the sum (3.48), can be majorized (minorized) independently by the

techniques used in the preceding sections, to yield an upper (lower)

bound b. (t,x) (b. (t,x)). Hence (3.48) is obviously satisfied if

N .
I b.(t,k) < £.(t) V t e [0 J/2] (3.50a)

k=0 K z

N

MO 1 I bk(tfx) V t e [0,T/2]. (3.50b)
~z k=0 "K

The main drawback to this procedure is that the same a must be used

for al]_ k in (3.49), while in (3.50a,b) a different a may well have been

used for each k. Consequently, the requirement (3.50a,b) may be much

too stringent for practical purposes.

4. Properties of the Majorizing Functions

In the preceding section we have shown that a good number of compu

tationally intractable constraints can be replaced by somewhat tighter

ones which are quite easy to evaluate. Before leaving this subject, we

must show that the majorizing constraint functions which we created are

compatible with current semi-infinite optimization algorithms. Referring

to [P3], we see that we only need to prove that they are locally Lipschitz

continuous. Examining (3.16), (3.17), (3.22b), (3.26), (3.30) and (3.35)

we see that our majorizing functions are of the form

A '
ip(x,03) = max dx,o),m,<j)). (4.1)

(m,<j>)GR(x,03)

-35-



n

Definition 4.1. a) We say that c:]Rxx]Rx]Rx]R+]Ris locally

Lipschitz continuous if for every bounded setBC]RxxjRx]Rx]R there

exists L e (o,») such that for all (x,',03' ,m' ,$•), (x'W.m",*") in B,

|c(x,,03,,m,,<j>')-c(x",03,,,m",(|),,)| <L{llx,-x"il+|aj,-o3"| +|m,-m"|+|<(),-(j),,|}
(4.2a)

n .-,2
b) We say that the set valued function R:IR x ir + 2r is locally

Lipschitz continuous if for every bounded set B cjr x x ir there exists

L e (o,~) such that for all (x'.w'j, (x'W) in B, given that

(m',<j>') e R(x',o3l) there exist (mu,f*) e R(x,,,o311) such that

|m'-m"| + IcJ)'-^"! < Uflx'-x'i+lw'-w"!} (4.2b)
n

Theorem 4.1: Suppose that c and R in (4.1) are both locally Lipschitz

continuous. Then i|/ is locally Lipschitz continuous.

Proof: To simplify notation, let :: = (x,w) and let v = (m,<j>), with

llzllg = llxll + |o3|, M1 = |m| + \$\, Let Bz be a bounded set in IR x x jr.

Then, by the continuity of R(0> there exists a bounded set B' such that

R(z) c B' for all z € B . Hence there exists a Lipschitz constant

Le (o,~) such that for all z', z" e Bz and v' e R(z') there exists a

v" e R(Z") such that

Ilv'-v"!^ <Uz'-z"! (4.3a)

and, for the same v1, v",

U(z',v') -c(z\v")| < L{ll2'-z,llle + llv'-v'M^} (4.3b)

Now suppose that with z' G Bz> i^(z') = c(z',v'), with v1 GRiz'). By
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Lipschitz continuity, for any z" e B , there exists a v" e R(z") such

that

Bv,-v,,01 < Lilz'-z'Mlg (4.4a)

Hence

l|>(z*) = c(z',v') <c(z",v") + LDz'-z"! + Lllv'-v"^

<c(z\v") + L(l+L)0z,-z"De

<^(z") +L(l+L)ilz'-z"lle. (4.4b)

Hence, since z' and z" are interchangeable (using v",v') in (4.4a,b), we

see that i|;(«) is locally Lipschitz continuous. n

The use of the above theorem in application to the majorizing func

tions in the preceeding section is facilitated by the following.

Proposition 4.2. Suppose that R(z) = co{v.(z), i = l,2,...,k}, with
n 2 n

v^ :1R xx]r -*-ir locally Lipschitz (and co denoting the convex hull).

Then R(z) is locally Lipschitz.
n

Proof: Let B be a bounded set in IR x x]R. Then there exists Le (0,~)

such that

llv.U'J-v.U")!! <Llz,-z"Be Vz'.z" € B, 1= 1, 2, ..., k. (4.5)

Let v' e R(z'). Then there exist u! > 0, i = 1, 2, ..., k such that
k n "

= 1 and

i=l 1

k

V = I ujv.(z'). (4.6a)
i=l n n

Let z" €• B and
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A k
v» = p u!v (z") € R(z») (4.6b)

i=l

Then

k

•v'-VI = II I y!(v.(z')-v.(z"))ll
i=l 1 n n

k

< i u;.iiv,(z»)-v.(z'')ii
i=l 1 1 1

<Lilz'-z"!^. (4.7)

This completes our proof. n

We show in Appendix 6 that the extremizers M(«,*) and Mq(',«)
V V

(M (•,•) and Mq(-,»)) are locally Lipschitz continuous for all
nx A(x,03) e]R Axir+ such that J03 is not a pole of Pg(s,ctM(s))C(x,s) (Pq(s,

aM(s))C(x,s)). Further, we show that the extremizers of phase, $(•»•)>
a v v nx
^q('9#)j $(•»*) and $q(*,*)» are locally Lipschitz continuous on IR xir+,

In the next result we establish local Lipschitz continuity of functions

of the form of (4.1) when the maximization is over R_(x,oj) or R (x,03).
P P0

n

Theorem 4.3: Let £:IRxxiRxiRxiR +ir be locally Lipschitz continuous

and let

i|/D(x,a>) = max c(x,03,m,(j>) (4.8)
p ' (m,(j>)€Rp(x,03)

A
<l> (x,03) = max c(x,03,m,<j>) (4.9)

p0 (m,<j>)€Rn (x,03)
p0

where Rn(-,-) is defined by (3.35c) and R (•,.) is defined by (3.28).
° nxThen ip (•»•) and ty (•»••) are locally Lipschitz continuous on IR x ir+.
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Proof: There are three cases to consider:

(i) Let (x-j,03.j) be such that Mfx^w^) <°°. Then there exists aneighbor

hood, N-j, of (x^^) such that M(x, ,03,) <«> for all (x,03) 6N,. It

follows from Lemma A6.5 that the vertices of K (•»•) are locally Lip-

schitz continuous at (x1,031). From Proposition 4.2, we conclude that

Rp(',-) is locally Lipschitz continuous at (x-,,03,). Hence, by Theorem

4.1, ij> (•»•) is locally Lipschitz continuous at (x, ,03,).
V A

(ii) Let (x2,o32) be such that M(x2,oj2) <M(x2,o32) =°°. Then there

exists a neighborhood, N2, of (x2,oi2) and a b e (0,«) such that
V A

M(x,o3) <b <M(x,o3) for all (x,o3) e N2« For (x,03) € N2, let

Kp(x,03) =[M(x,o3),b] x [$(x,o)),$(x,o>)]

Kp(x,03) =[b,M(x,03)] X[$(X,03),$(X,03)]

R"(X,03) = [A ] , h X[$(X,0)),$(X,03)].
p M(x,o3) D

Now Rp(-»*) is non-empty on N2 and its vertices are locally Lipschitz
continuous on N2 so it follows from: Proposition 4.2 that Rb(-,-) is
locally Lipschitz continuous on N0. Since 7—-— < r- for all (x,03) e NOJ

•j M(X,03)
it follows from Lemma A6.5 that t—!— is locally Lipschitz continuous on

N2. Hence, Rp('»*) is non-empty and locally Lipschitz continuous on N2.

Since Rp(x,o3) =Rp(x,o3) u r (x,u) for all (x,03) e N2, it follows that

^n(x,o3) = max{ max dx,03,m,<|>), max (x,03,-, d>)}
r k P

(m,(}))eRp(x,03) (p,<J>)^Rp(x,03)

for all (x,03) e N2. By Theorem 4.1, it follows that ^D(-»-) is the
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maximum of two locally Lipschitz continuous functions at (x2,032). Hence,
^p(-,-) is locally Lipschitz continuous at (x2,o32).
(iii) Let (x3,033) be such that M(x3,o)3) =M(x3,o33) =°°. Then there
exists a neighborhood, N3, of (x3,033) and be (0,«>) such that b <M(x,oi)
for all (x,oj) e n3. For (x,03) e N3, let

R"(X,03) =[aT— ,v7—] X[$(X,03),$(X,03)].
p M(x,oj) M(x,oj)

^p('»*) is locally Lipschitz continuous and non-empty on N3 and

Mx,o3) = max ^(x,03,1,4))
P (P,(f))^p(x,o3) y

so that ^p('»') is locally Lipschitz continuous at (x3,oj3).
Now ftQ(x,03) =k^i , ^(Xttt) . &Xj»L 9a(XiM) ma _-

AM(o3) u *MW u A
V V -

and $Q(x,o3) =*(xfw) +£A(o3) where AM(-)» £M(')» AA(0 and JA(.) are locally
Lipschitz continuous and £Mtw) >1>^(03) >0 and £A(W) >0>lAu) for
all 03 >0. Hence by taking IM(cu) =^(03) =1 and i^u) =jA(w) =0 for
all o) > 0, the desired result follows for to (•,•). n

Po
Finally we note that if ?(•,•,-,•) corresponds to a closed loop

magnitude, then c(-,•,*,-) fails to be locally Lipschitz continuous at
n

those (x,oj) SIR A x]R+ at which P(-joj,a,Jl(joi))C(x,jo3) = - 1 for some ae A.

This requires that we consider piecewise locally Lipschitz continuous

functions.

5. Tests for Infeasibility of the Compensator

In general, given a set of inequalities f'(x) < 0, j = 1, 2, ..., m,

there is no simple way of telling whether this set admits a solution or
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not. In the case of the inequalities presented in Section 2, it is

possible to construct sufficient conditions for a single inequality not

to have a solution. When this is the case, the controller structure

must be augmented. Of course, even if the inequalities admit a solution

one at a time, there is no guarantee that there is a set of compensator

coefficients which satisfies them all. Nevertheless, the tests we are

about to present are helpful in eliminating grossly under-structured

controllers.

We shall consider two typical constraints (3.21a) and (2.20a). Let
nx

X C]R denote the set of allowed designs. Inequality (3.21a) fails to

have a solution x e X if and only if for some 03 >_ 0,

max min |P(jo3,a,£(jo3))C(x,jo3)| < l(u) (5.1)
xex aSl "9

Similarly, inequality (2.20a) fails to have a solution x € x if for some

03 > 0,

min max |H .(x,jo3,a,£(jo3))|2 >L(o3)2 (5.2)
xGX a£A ya a

The ease with which one can determine whether (5.1) or (5.2) hold

depends very much on the specification of the set X. Suppose that C(x,s)

is as in (2.1a), viz

VH^<s2+2acns+<bcn>2>
C(x,s)= £

(s+a°cd^/s2+2a!ds+(b;d)2)
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with the components of x being the a"V, a* b1 ,b1 .and the set X
en cd cd

defined by the constraints aj,n e [a* ,a£ L i =0, 1, ..., k';
bcn e ftJn.6^], i =1, 2, ..., k'; ajd e [ajd,ajd3, 1=0, 1, 2,...,kc;
bcd G[bcd'bcd]> i =1'2 kc

First, (5.1) can be rewritten as

max |C(x,jo))|[min P(jo3,a,£(jo3))|] < JL(cd). (5.3a)
x€X a^V "g

Making use of (3.20b) we conclude that (3.21a) fails to have a solution

if and only if for some 03 >. 0

max |C(x,jo3)| <Ag(o3)/|P0(jo3,aM(jo3))|£M(oj). (5.3b)
X^A

Referring to Section 3.2, we see that a maximizing x(oi) for (5.3b) can

be computed quite easily by the techniques presented in Appendix 2 for

the structured plant, P0(jo3,a), ae A so that (5.3b) is easily verified

(see Fig. 14).
J<j>r(x,jo>)

Next we turn to (5.2). Writing C(x,jo3) =mc(x,jo3)e L ,
j<f> (jw9a,£(jo)))

P(jo3,a,£(jo3)) = m (jo),a,Jl(jo3))e H we obtain that

|Hyd(x,jo3,a,>l(jo3))|

_ 1
~ 2 21+2m (jo3,a)mc(x,jo3)cos[<j) (joj,a)+<|)c(x,jo3)]+m (jo),a) mc(x,joj)

(5.4)

Proceeding for the compensator C(x,jo3) as we have done for the struc

tured part of the plant PQ(jo3,a) (see Sec. 3.3), we can easily compute

a majorizing rectangle Rc(jo3) C]R such that (mc(x,jo3),(J>c(x,jo3)) € Rp(jo3)
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for all x e X. Hence, a sufficient condition for (5.3b) to hold is that

for some 03 >_ 0,

min max *-=- < 5L (co).
(mc,<j>c)eRc(ja)) (m ,<|> )^R (x.jco) l+2m mc cos(<j> +<j>c)+mpmc "9

(5.5)

We show in Appendix 7 that (5.5) is fairly easy to verify by making use

of the fact that the denominator in (5.5) is a quadratic form. °

6. Conclusion

Early attempts, such as those described in [Kl, PI, P4, Zl, Z2], to

solve complex SISO design problems with uncertain plant, have yielded

very limited results because the available computing tools were inade

quate. The recent development of a new, very powerful tool in the form

of semi-infinite programming (SIP) algorithms, has prompted us to

reexamine the problem of designing SISO control system with uncertain

plant.

In this paper, we have shown that a naive approach to SISO control

system design via semi-infinite optimization leads to overwhelming com

putational difficulties when the plant model contains both structured and

unstructured uncertainty. Fortunately, the structure of the design pro

blem that we considered enabled us to replace the original "naive" specifi

cations with slightly tighter ones which are locally Lipschitz continuous

and simple to evaluate. Although at present there is no specific SIP

algorithm which accepts our majorizing constraints, the theory in [P3]

shows that such an algorithm can be constructed by a straightforward

modification of the one in [Gl]. The construction of this algorithm

will be undertaken in the near future.
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Appendix 1: Computation of Bounds on U(s)-l), £€[.

Putting A(s) = mJl(s)e * ,we have,

|Jl(s)-l|2 =m2(s) -2m£(s)cos <fr£(s) +1 (Al.l)

„ , x «i fmp(s)sin <J> (s) *\argtt(s)-!} -±tar±tan ^(s) CQS \^j (A1.2)

where k 61 is chosen to account for angles outside the range [-tt/2,

tt/2]. Differentiating with respect to m-, $. and suppressing the s-

dependence,

9 /mo" COS <j>„
V{|jMp} » 2[ * * ] (A1.3)

m£ sin ^

, / - sin <j> \
V{argU-l)} =—i— ( 2 £ \ (A1.4)

|£-1 p I mSm cos <$>„ I

2
It follows that the only stationary points of |£-1| are (1,(2mr)) and

(0,(2n+l)ir/2), n e j9 whilst arg(£-l) has stationary points, (0,mr),

n e 1. By considering the respective Hessian matrices, we deduce that

(l,(2mr)) is a local minimum and (0,(2n+1 )tt/2) is a local maximum of
2

|il-l| Vn^l. Similarly, for arg(£-l), (0,mr), n £ 2 is a local max.

We construct an approximating set, R(o i\Uw) which contains

U(jo3)-l | 9£L} by computing

a A 2 1/?
^M(jw) = max . {m„-2mrt cos $ +1} ' (A1.5)

M m eYi a 1 * * *

V^A'^
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A A
&fl(ja3) = max - arg{(m0 cos <}>0-l)+jm0 sin <\>0} (A1.6)

V V

and similar definitions for the minimizers &M(jw), £A(jo3). Since the

stationary points of |£(jo3)-l| + argU(jo3)-l) are known, the above

optimization merely requires that we check if a stationary point is the

extremizer and if not, search the boundary of Um(o3),JL(o>)] * [&A(o3),
&AU)] which is a simple one dimensional problem solved by checking

stationary points of the reduced gradient and the endpoints of the

intervals. Then, defining

R(jt-1)(*°) ={(m»(J>) lm e [^(JwJ^fJw)].* e [*A(Ja>),$A(ju)]}
(A1.7)

we clearly have,

U( joi)-l 11 e L) C{R(jM }(jo3) |o) >0}. (A1.8)

Finally, note if the following condition holds,

to en^ a {u >0|IM(o>) >1, IA(u>) >ir and .JA(u) <- tt} (A1.9)
A Vthen R(£_-n(Jw) must be a circle and so J&A(jco) and&A(jo>) as defined by

(A1.6) are infinite. Hence, without loss of generality, we define

*A(Jw) = -n V03 en^ (Al.lOa)

*A(Jw) =- ir V03 e ft£. (Al.lla)
n
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Appendix 2: Extremizers of Open Loop Gain and Phase

Now

MQ(x,s,a) = |PQ(s,a)C(x,s)| (A2.1)

$0(x,s,a) = arg{PQ(s,a)C(x,s)} (A2.2)

From Theorem 3.1, it follows that,

k* k1
pR . pC • .*

and from Theorem 3.2 that,

L n max Is+zil n max I(s+Zp)(s+Zp )|
p i=l J«=,1 K i=l .Uri L U

max Mn(x,s,a) =C(x,s) -tt- ^-^ % ^—^
a^ u V . V . .*

n min |s+pD| n min |(s+pr)(s+pr )|
i=1 J«1 i=l n1«i LPReIpR PC£IPC (A2>3)

k*
PR

max <S>ft(x,s,a) =arg C(x,s) + I arg(s+zj)
a£A u i=l i_Ti K

zRGlzR

^pC . .* ^pR
+ I max arg (s+zl)(s+zl ) - I min arg(s+pl)

i=l i* Ti u u i=l nieTi K
zCGIzC pRGIpR

kpC . .*
- I min arg{(s+pj)(s+p!. )} (A2.4)

PcEIPc

with similar expressions for the minimizers. Observe that evaluation of

the right hand sides of (A2.3) and (A2.4) requires that for each see,

we solve a one-dimensional problem for real poles and zeros and a two-

dimensional problem for complex poles and zeros.

By considering real and complex perturbations separately, we develop
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two propositions which yield the solutions of the one and two dimen-
A v

sional optimization problems required for computing MQ(x,s), MQ(x,s),
A v

$Q(x,s) and $Q(x,s) defined in Theorem 3.4.

Real Perturbations

Clearly,

K = argmax log K (A2.5a)

and

K = argmin log K (A2.5b)

VtVV

by monotorn*city.

For real pole or zero perturbations, it will suffice to consider

max or min Ijoj+z1] (A2.6a)

max or min arg(jo3+z1). (A2.6b)
z1e[z1,z1]

The geometric interpretations of (A2.6a) and (A2.6b) are shown in Fig. 9.

Now

Ijoj+z1*! =^(z1)2

= 42+|zV

which is monotone in |z1J. Hence,
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Ai/ • \ A t . i•zM(jw) = argmax |jo3+z | V oj >_ 0

= argmax \z^\ V03 >0 (A2.7)
z^.z1}

v -J A *zM(Jw) = argmin |jco+z11 . V03 >0.
zV,;1]

l =iif Oet',:1] Voj>0

argmin ^ \zy\ else
zW.E1} "

For phase, we have argfjuH-z1) =tan"1 (4~) * so that
z1

z«(jo3) = argmax (arg(jo3+z1)} V 03 >0

1&.V1

(A2.8)

.1 =10 if 0 e [z'.z1] V 03 > 0 (A2.9)

z1 else

Vt A *
Za(jo)) = argmin {arg(jo3+z1)} V 03 > 0

= z1 V 03 >0. (A2.10)

As the only difference between the case of poles and zeros is a negative

sign, we have that the same results with analogous notation hold for poles

but with max and min reversed. We summarize the results for real pertur-

bations in the following result:

Theorem A2.1. If [z1,^], [p1,?1] CR1, then V03 >0,
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Ai /,zi(jo3) = argmax Iz1
"M

z'e{z\V}

r

Z^(j03)
1 =1if 0G[z',z']

argmin i 1

zW.z1}

pj(jw) =
if O^pV]

i i
argmin |p

pW.p1}

vi r iPM(Jo3) =f argmin |p |
'M

PV.P1!

.i =ia1#. x i 0 if OeCz'.z1]
za(joj) =/ .
M A z1 else

zA(J«) =z1

PA(J03) =P1

v1# |0 if 0 e[PV]
PA(jw) =( ,
M ^ p1 else.

Introduce the notation,

a a , .
otM(jo3) = argmax Mn(x,jo3,a)

a€A uW

A A

= (K »zM(ju)),pM(ju))
W
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(A2.11a)

(A2.11b)

(A2.11c)

(A2.11d)

(A2.11e)

(A2.11f)

(A2.11g)

(A2.11h)

n

(A2.12a)



aM(jo3) = argmin MQ(x,jo3,a)

=(Kp,zM(ja3),PM(jo3)) (A2.12b)

aA(jo3) = argmax $0(x,joj,a)

= (zA(jo3),pA(jo3)) (A2.12c)

v AaA(joj) =argmin $0(x,jo3,a)

= (zA(joj),pA(jo3)). (A2.12d)

From Theorem A2.1, it follows that for real pole-zero variations, the

extremizers of magnitude and phase are 03-ir variant. For the special case

of real variations in the left half plane, £_, we have

aM(jw) =(R ,aA(jo3)) Vo3>0 (A2.13a)

<*M(ja)) =<!<p><*A(ja))) Vw- °- (A2.13b)

Complex Perturbations

Consider a conjugate pair of complex zeros,

z = 3 + jy,z* for 3 € [§,3], y e [y.y] (A2.14)

and let

A 9 ' 9
Mc(jo),3,y) = 1og|jo3+zr + log|jo>+z*r

=log{(32+Y2-o32)2+4o3232} (A2.15)
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<J>c(jo),3,y) = arg(jo3+z) + arg(jo3+z*)

=tan"1 (-^4"). (A2.16)
3+y -w

Further,

3Mr /io^d2. 2 2x
^(ju>,3,Y) = 2T 29^ I 9 (A2'17a)
33 (32+Y-w )2+4o3Z32

mr a rQ2. 2 2
4y(3 *y -03

(32+Y2-o32)2+4o3t3
g^Jco.e.Y) =/n2ffi ^ ^2 (A2.17b)

so that

3M

•^(ja3,3,Y) =0 iff 3=0 (A2.18a)

9MC ? ? 9
3~(ja3,3,Y) =0 iff y =0 or 0/ = 3 +Y (A2.18b)

&JC-.B.Y) = -Mf+("V)1 (A2.19a)
93 (32+Y2-o)2)2+4o3232

3T<J«.*.y> =777^1fc^ (A2-19b)
(3 +Y -03 ) +4o3 3

Hence,

9(j)

3g^(Ja3,3,Y) =0 iff 03 =0 or 032 =y2 - 32 (A2.20a)

3(j>

C(Jw,3,y) =0 iff oj or 3 or y =0 (A2.20b)
3Y

By using (A2.18a,b) and (A2.20a,b), we determine if an extremizer is on the
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boundary or interior to the confidence interval.

Consider the magnitude function, Mc(o3,3,y) (see Fig. 9b). Now,

Mc(Joj,3,y) =log{34+232(oj2+Y2) +y4-2y2uj2+034} (A2.21)

and so for extremization with respect to 3 ^ [3s3] it suffices to con

sider, {|3| +2|3|2(o32+y2)}, which is monotone in |3|. Letting

A a
3M(jo3) = argmax Mc(jo3,3,y) (A2.22a)

3e[3,3]

YM(Jw) = argmax Mc(jo3,3,y) (A2.22b)

v A
3M(joi) = argmin Mc(joj,3,y) (A2.22c)

3^[3,3]

v A
YM(Jw) = argmin Mc(jo3,3,y) (A2.22d)

•y^[y»y]

it is clear that,

A

3M(jo3) = argmax |3|
3^(3,3}

v fo if 0€ [3,3]
6m(Joj) =<
M |jnin{|3|,|3|}, else.

4 2 2 2
To extremize with respect to y, consider y + 2y (3 -03 ) which represents

»

2 2 2
a pair of parabolas in y 9 one corresponding to (3 -w ) > 0, the other to

2 2(3 -03 ) <_ 0, as shown in Fig. 10.

(i) For (32-o32) >0, {y4+2y2(32-032)} is monotone in y2 >0 so
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A

YM(Jw) = argmax |y|
Y^XiY)

V

YM(Jw) = argmin |y|
Y^C^y)

2 2
(ii) For (3 -or) < 0, we refer to the appropriate parabola in Fig. 10

and consider separately the cases

(a) 0 < y <Y

(b) y < 0 < y

(c) Y < Y £ 0

2 "2 1 2 ~2
(a) In this case, we have 0 <_ y < Y and so -Ay +y ) is the mid-

2 "2
point of [y ,y ].

4 2 2 2 2 2 2
The parabola, y + 2y (3 -co ), is symmetric about y = - (3 -to )

at which point it achieves its minimum and so to determine the maximizers,

2 "2
it suffices to consider if the midpoint of [y »y ] is to the left or

right of - (3 -032). So,

i(Y2+Y2) <- (32-o32) -* ym(«) =Y V(o2 >32 +J^+Y2)

^(Y2+Y2) >- (32-co2) -YM(o3) - Y V032 <32 +̂ Y2+Y2)

2 2 2
For minimizers, note that from (A2.17b) we have that 03 =3 + y »

Y e [y»y]» is a local minimum of Mq(jo3,3»y). Hence,

Y <03 - 3 =* YM( J^) =Y Vo3>y+3

2 ? 2 "2 v 222Y <o> - 3 <Y ^Y^jw) =Y for 03 = 3 +Y

9 9 9 v 9 9 9yL >^ - 3 =* YM( jto) =Y VuT < 3 +Y
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(b) Now consider the interval [O.maxfy2,^2}] which has midpoint
1 2-22 max{-y ,y }. To determine the maximizers and minimizers we proceed as

in case (a).

jmax(Y2,Y2} <- (32-oj2) =* ym(Jo>) =0

V032 >32 +]niax{Y2,Y2}

imax(Y2,Y2> >- (32-oj2) => ym(jw) = argmax |y|
Y^YjY)

V032 <32 +^max(Y2,Y2}
2-222 vmax{Y ,Y } <oj - 3 ^Y^jw) = argmax |y|

Y^Y.y)

Vto2 >32 +̂ max(Y2,Y2}

min{Y ,y2} <032 - 32 <max{Y2,Y2> •* YM(Jto) =y for o32 =32 +Y2,

V e [y>y]

2-222 vmin{Y ,y >>03 - 3 ^Y^Jw) = argmin |y|
Y^{y»Y>

V(o2 <32 +|inin{Y2,Y2}

(c) Since Mc(jo3,3,y) is an even function of y» we obtain the results

for y < Y 1 0 by substituting y for y and y for y in the results obtained

in (a).

To determine the extremizers of phase, the discussion will be

simplified by making two observations. Firstly, we observe that tan" (•)
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is a monotone function on any interval,

Ik = [(2k-l)TT/2,(2k+l)7r/2], ke 1 (A2.23)

and assuming we may account for transitions between intervals, we need

only consider extremizers of ( 2 g a). Secondly, observe
3 +y -03

(J>c(jo3,3+,y) ><I>c(J03,3_,y) V 3+ >0 >3_, V 03 >0.

Hence, we may divide any interval B = [3,3] into B+ = [max{0,§},3] and
A

B = [3»min 0,3}] and so to maximize <t>r(jo3,3»y) over B, it suffices to

consider B+ whilst for minimization we consider only B_.
9Pj \

Graphs of (-^—22^ as functi°ns °f 3 and y are given in Fig. 11 and
3 +Y -03

it is seen that the extremizers are frequency dependent. Suppose, ini-
3<J>C

tially, that ggil(jo3,3,Y) f 0 and the extremizing 3 e [3,3] is sought.

This can be obtained from the graphs in Fig. 11 by considering the

possible orderings, {0<3<3,3<0<3,3<3£0}, and the location of the interval

[3j3] on the graphs to decide whether 3 or 3 is the extremizer.

Referring to (A2.20a,b), we have those values of 03 > 0, 3 £ [3.3]

and y G[y»y] at which stationary points of <j>c(jo3,3,y) may occur and so we

need ammend the previous procedure to account for the possibility of

local maxima and minima. The results are summarized by the Tables A2.2.

2 2? 2 2 9
Observe that as y •*- 03 - 3 or 3 -»• 03 - y , the tangent function,

2ft/ \
—=—^—2* i00 so that the inverse tangent function, <j>c(jo3,3»y) moves
3 +Y -03 ,
from the interval IQ to I+,. Hence we may use the monotonicity of tan (•)

over the I. and simply determine when the tangent, 2 2 9 9 9oes out"
3 +Y -03

side of the range of IQ. We summarize the results for complex perturba

tions in the following theorem.
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Theorem A2.2. If z =3 +jy , 3 e [31,31], y1 ^ [^.y1]. then
3jJ,(jo3), 3jJ,(jo3), yJ,(joj) and y^tiu) are given by Table A2.1 whilst
3A(jo3), 3A(joi), ya(J03) and ya(Jo>) are given by Table A2.2, V03 >0.

For p =3 + jy 9 a complex pole occurring in conjugate pairs, the

extremizers of magnitude and phase are obtained from those for z1 by

reversing the role of the maximizers and minizers. *

For a pair of complex zeros, z =3 + jy» z* with 3,Y 1 0, 3M(jo3),
V A V

3M(jo3), YM(Jo))» YM(Jo3) are illustrated in Fig. 8.

Remark

The results of Theorems A2.1 and A2.2 may be used to determine the

solutions to

and

max (or min) |Pn(a+jo3,a)
aS\ u

max (or min) arg Pn(a+jo3,ct)
aS4 u

for a f 0. If z1 is a real zero varying in [z1,^] then,

max Iq+joj+z1 | = max |jo>+z^| (A2.24)
'W z1"z^.z1] zW.r]

max argfa+ju+z1) = max arg(j(u+zM (A2.25)

and similarly for the respective minimizers, where

z^ =z1 +a. (A2.26)

Since the extremization problems on the right hand sides of (A2.24) and
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(A2.25) are evaluated along the jo3-axis, our previous theorems apply

aence interval, \_Z ~

perturbations, say

with the new confidence interval, [z ,zj. Analogously, for complex

z1 = 31 + Jy1 ' (A2.27)

with

31 €[&1,i1], y1 e[Yf,Y1].

we put,

3^ =31 +a (A2.28)

and consider the new constraints,

(bJ.y1) e CgJ.Sin xCy1.?].
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Condition for

Applicability

(a) (eV-^LO

(b) (B1)2-«2<0

0 <y <Y1

Y < Y < 0

(c) (31)2-u32<0

I1 <0 <y1

Table A2.1

Maximizers and Minimizers of Magnitude for Complex Perturbations

BM(Ju>) a argmax |$ |
bW.b1}

bJ(Jw) =
if

argmin (31
bW.B1)

frequency, u>

3 > <*> > 0

»< V)2+JRy1)^1)2]

»> '(bV+JKyV+Cy1)2

« <V^+^Uy1)2.^1)2}

«»>> V^^Uy1)2.^1)2)

o [31.?]

YM(jw)

argmax |y |

yW.y1}

argmax \y \

Y^y.Y1)

argmin |y

yW.Y1)

argmax |y |

yW.y1)

frequency, w

3 > u > 0

u>< /(31)2+min{(Y1)2,(Y1)2}

«- ^bV+Cy1)2

u)> /(B1)2*mx {(Y^.tY1)2)

«</(B1)2+JiirtnCtY1)2,^1)2}

«» '(bW)2

>/(31)Z+^iax{(Y1)2,(Y1)2

yJ<J«)

argmin |y

Y^Y.y1)

argmin |y |

Y^Y.Y1)

argmax |y |

yW.y1)

argmin |y I

Y^Cy.Y1}

argmax Iy1!
Y ^y.y)



TableA2.2

MaximizersandMinimizersofPhaseforComplexPerturbations

3>0Y>_0

frequency,033A(jo3)3A(jo3)frequency,03YA(J03)YA(Jo))

22-2
0£or<Y-33.303>_0YY

2-222-
Y-3*:<y<Y-33.V-*2)1/2g

2-222
Y-33<w<y-3(Y2-2)1/23

2222
Y-g<w<Y33

2222
Y<03<3+Y33

2»Q2.2 03>_3+Yg3

3>0Y<0

frequency,033A(jo3)3A(jo3)frequency,03YA(J03)YA(J03)

0<oj2<y2-32g303>0YY

2*222-
Y-3*<oj<y-g3(Y2-2)1/23

•

2
--222

Y§3<<iT<Y-3(y^2)1'2g

2222
Y-g<oT<Y3g

2222
Y<o)<§+Y3g

222
«>g+Y3g
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Appendix 3: Extremizers of Closed Loop Gain and Phase

1 2
Suppose we wish to extremize a C function, g :1R +IR over the rec

tangle, R= {(m,<j>) ms[m,m],<t>e[<£,<£]}, and the stationary points of

g(«,») are known. Along each of the line segments constituting the

boundary of R, 8R, g is a function of a single variable. Optimization

over 3R then reduces to comparing the values of the comers of the rec

tangles with those of any stationary points of the reduced gradient

evaluated along each line segment. Hence, optimization over R merely

requires comparing the extremum over 8R with the values of any stationary

points in R .

For the special case when g is either the magnitude or phase of one

of the closed loop transfer functions, Hab, (a =y or v, b =r, u or d)

we show that there are no non-trivial stationary points. Observe,

firstly, that the compensators C(x,s) and F(x,s) play no role in optimiza

tion over A x L and so it will suffice to consider just the transfer

functions, H (x,jo3,a,Jl(ju3)) and Hd(x,jo3,a,x\(jo3)). Put

D/. «/• xv A J<J>p(J03,a,Ji(J03))
P(jo3,a,il(jo3)) =mp(jo3,a,£(jo3))e Y (A3.1)

and since

Hyu(x,jo3,a,£(jo3)) =P(jo3,a,A(jo3))C(x,ja3)[l+P(jo3,a,A(jo3))C(x,jo3)]"1
(A3.2)

HydU.J03,a,£(jo3)) =[l+P(jo3,a,*.(jo3))r1 (A3.3)

it follows that (suppresing the arguments on the right hand sides for
brevity)

+
We consider the stationary points of constant functions as trivial.
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j(<l>p+<f>c)
(m„mr+e )mDmr

H (x,jo3,a,Jl(jo3))- = ^ %-± (A3.4)
y l+^mpmc cos((|) +<j>c)+m^mc

-3(fa+fa)
l+mDmre

Hd(x,jo3,a,Jl(jo3)) = ^ k"? (A3,5)
y l+2m„mc cos((()p+<f)c)+mpmc

f
and that (again suppressing the arguments),

J PC mpmp

-1 sin(<j)p+(j)r)*yu< V*P> - tan ^^yeo^^)] (A3.7)

Myd(mp,(j)p) =[l+2mpmc cos((|)p+(J)c)+mpm2]"1/2 (A3.8)

n ' mpmr sin((|)p+<J)r)*yd(mp,*p) =tan \J£ cos(^)]- (A3.9)

Let IR =IR |#,. (2n+l) -4 )* n e ^* The following proposition estab-

lishes that M (•,•) and <f>yu(->-) have no stationary points on IR .

Proposition A3.1: (i) VMyU, V<j>yU exist everywhere on IR and fail to

exist at (mp,<j>p) =(J- ,(2n+l)ir)-<j>c)f ne 1.
(ii) Vm f o except at jo3-axis zeros.of C(x,jo3) for which VM = 0.

(iii) V4i t 0.

We assume, for simplicity, that mpmc + cos (<|>p+<j>c) >. 0 for all
("ip»<J>p) e Kp(x,jo3) so that (J) , <j> . € [-tt/2,tt/2]. If this condition is
not satisfied, additional conditions will need to be imposed to deter
mine the correct quadrant for the angles.
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mm,

Proof.. (1) Now M (m.A) =—«-« E_Q ^^ is a quotient of
(nipm^2mpmccos((j)p+(l)c)+l)1/2

C functions V(mp,<(>p) e]R2 so the partials,

aMyu, . , _ mpm2 cos(<frp+<frc)+mc
dmP v v (m^+2mpmc cos(<j>p+<j>c)+l)J/^

Mvu(m f# j a mPmC s1n(V*C}
3(,>P P' P (m2m2+2mpmc cosUp+(J>c)+1)3/2

exist and are continuous on IR . It follows that

3M 3M TVMyu(mp,*p) =(^mp,*p),^mp,*p))T

~2
exists on IR . However,

lim VMwil(mD,(2k+l)Tr) =( o)
mp-l/me ^ P

whilst,

lim VM (1.* ) =(Z)
2k+l H-d>r} yu p * '(i>p->{(2k+l)TT-<J)c

by application of L'Hopital's Rule, so that the gradient fails to exist

at (l/mc,(2k+l)iH>c), n e z. Similar analysis establishes the result

for V<Dyu.

(ii) From the expressions for the partials, it is clear that if mc =0

then Mwil = 0 and so VM = 0. Now suppose VM„, = 0 and mr > 0. From3M yu yu HK yu C
r-^- =0, we require that cos(c|>D+<J>r) =- —1- so the condition on the
oiiip r U mpHIp

other partial becomes,

3Myu .mm,22 nl/2 _n-jj-- mpmc(mpmc-1) =0
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Hence the only solution requires mpmc = 1, cos(<|>p+<j>c) = - 1. But then
"2(mp><l>p) £R so we conclude VM f 0 except if mc =0.

(iii) Now

/-mc sin(<j)p+<t)c)
V(|> (mp,(|)p) = 22 , . mmr cos(<|>D+<J>r)+l

J mpmc+2mpmp cos((j>p+{|)p;+l 1 P C XTP rC

and so for this gradient to vanish,

sin (4>p+4>c) =0

and

cos(<j>p+(|>c) = - l/mpmc.

""2This again implies (mp,<j>p) £IR . n

Because of its similarity to Proposition A3.1, the proof of the next

result is omitted.

Proposition A3.2: (i) VM ., V(f> , exist everywhere on IR2 and fail to

exist at (mp,<}>p) = (~- ,(2n+l)ir-(J)c), n6Z.

(ii) VM . f 0 except at jo3-axis zeros of C(x,jo3) for which VM , = 0.

(iii) V<j> . f 0 except at joj-axis zeros of C(x,jo3) for which V<j) . =0. a

Because of the possibility of jo3-axis poles of PQ(jo3,a), we need to

consider the case of mp infinite so that the rectangle, R, over which we

extremize may be unbounded. In particular, let

A
Ro, = {(m.^JImeCm.oo],^,^]}

where m >^0. The following results indicate that we may reduce certain

optimization problems over R to ones over bounded rectangles.
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Proposition A3.3: There exists a finite m > 0 such that

sup M (mp,<|) )= max{l, max M (mp,<j>p)}
(VV^^ (mp,<j>p)€R yu P P

where R = [m,m] x [$,$].

Proof: By Proposition A3.1, we have that VM f0for all (mp,<f>p) er£.
It then follows that,

sup Mvu(nu,<U -max{ max .Mvu(m.«), sup VV^'
(V*P)GR~y V€$.<f>] yu " mpe[m,~]

syP M (mp,5), "»x M («,<j>)}.
mpe[m,«>] yu P ♦p^.«] yU

Since M (»,•) =1, max - M («,((>) = l.
y ^♦•ri yu

Now sup Myu(mp»*) =max^Myu(m'*)»Myu(00»$)>Myu(m(j,»$)>mpeu,„

where m, is given by

if m < "!/,. ± \ < «>A I mccos($+(f>c) - - mccos($+<j>c)

m else

■♦■

i.e., m is a stationary point of M (•>$) if this is finite and

m, = m, else.
$

Hence,

sup M (mp,4>) = max{M (m,<J>),l,M (m ,<j>)}.
mpe[m,«>] y y y i

Similarly, we may show
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mp

where

sup Myu(mp»*) ="iax{Myu(m,^),l,Myu(m-,^)}

-—= if m< ^-z <°°
mQCos(<j)+(()c) " mccos(<j)+(J)c)

m. =<
<J> m else.

Now, define m = max{m,nu,m-} and the result follows. *
I <j>

The proof of the following result is analogous to that of Proposi

tion A3.3 and is deleted.

Proposition A3.4: There exists a finite m > 0 such that

sup Md(mpf<frp) = max M ,(m ,(j> )
(mp^pKo y P (mp,(l)p)€R yd P P

where R = [m,m] x [([>,$]. a

As a consequence of Propositions A3.1-4, it follows that maximizing

Mab (for a =y or VJ D= u, r or d) over any rectangle in IR reduces to

maximizing over a bounded rectangle. Moreover, Propositions A3.1-2

imply that maximizing these functions over a bounded rectangle, R,

requires checking whether (l/mc,(2n+l)Tr-<j>c) e R for any n e l in which

case this point is the solution and if not, maximizing over 8R. Since

3R consists of line-segments, this maximization is a one-dimensional

problem for which any stationary points are known.

We now show that this optimization may be further simplified because

it suffices to check only two of the four line segments constituting

the boundary. Consider the examples of extremizing Mu(mp»<j>p) or

<i>yu(mp><t>p) over Rp(x,jo3) (defined by (3.28)).
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Let

fa = v argmax A _ cos(<j>p+(J)r)} (A3.10a)
*pe{<|)p(o3,aA( J03) )+^a(oj) ,4)p(o3,aA( J03) )+£A(w)} r u

<f>2 = v argmin A , _ {cos(<j>p+<t>c)}. (A3.10b)
<{>pe{<l>p(o3,aA(jo3))+>}A(o3),(j)p(o),aA(joj))+£A(o3)}

It follows from (A3.6) that

"VV^ - "VV^ Vmp >0 (A3.11)

and if

V 1 A — 12mc(o3)cos <j> >- [mp (o3,aM(jo3))>}M(o3)]" - [mp (^.c^Cjco))^m(oj)]"'
0 ° (A3.12)

then

aM(Jw)HM(w)L<l>) -Myu^mP 'Myu(mp (o3,aM(jo3))£M(o»)),(|)) >Myu(mPrt(o3,^(jo3))IM(o>),<j>) V<j) €IR.
(A3.13)

Hence to extremize M over Rp(x,jo3) only two sides of the rectangle need
jr u r

to be considered. For 6 it may be deduced from (A3.7) that
yu

*yu(mp (o3,aM(jo3))£M(oj),(J)) ><J>yu(mp (o3,aM(jo3)HM(o3),cj>) (A3.14)

and if

sin[<f>p (o3,aA(jo3))+(|)p (o3,aA(jo3))+AA(o))-IA(o3)]
m>_ ^ ^-^ -

sin[<|)p (o3,aA(jo3))+IA(o3)+(f)c(o3)]-sin[(|>p (o3,aA(jo3))+>}A(o3)+(J>c(o3)]
(A3.15)

then

<J>yu(m,(j>p (o),aA(jo3))+£A(o3)) ><J> (m,<f>p (o3,aA(jo3))+>}A(o3) Vm>0
0 ° (A3.16)

and so two sides of the rectangle may be deleted in extremizing <j> .
Jr u

It may further be shown that
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Myd(mp,(j>2) >Myd(mp,(j)1) Vmp >0 (A3.17)

and that if

V A - 9mp (o3,aM(jo)))>}M(o3) +mp (o3,aM(jo>)HM(o>) <jjj-^jy cos <j> (A3.18)
U U \f

then,

Myd(mp (o3,aM(jo3)HM(o>),<j>) >Myd(mp (o3,aM(jo3)HM(o3),<j>) V(J> €IR
0 ° (A3.19)

For phase,

*yd(mp (oj,aM(jo3))IM(o3),(j)) ><J> d(mp U,aM(jo))HM(o3),())) V<|> SIR
0 ° (A3.20)

whilst

sin[<|>p (o3,aA(jo3))+<j)p (o3,aA(jo3))+£A(o3)-£A(o3)]
m> ^—-9 0 : _

sin[(j)p (o3,aA(joj))+JA(oj)+(j)c(o))]-sin[<J)p (o3,aA(jo3))+fcA(o3)+<j>c(o3)]
0 ° (A3.21a)

implies

4>yd(m,<J)p (o3,aA(jo3)+EA(o))) ><J) d(m,<j)p (o3,aA(jo3)+£A(o3)) Vm>0.
0 ° (A3.21b)

From the results for H and H ., results reducing the number of

computations for extremizing any of the closed loop transfer functions

follow easily. a
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Appendix 4: Computation of the Boundary of PQ(jo3,A)

Let .. /. x
J4>p (J03,a)

nPn(jw,a) = nip (jo3,a)e u (A4.1)
u K0

<J>A(jo>) = X(|)(jo3,aA(jo3)) + (!-X)(j)(jo3,aA(jo3)), X€ [0,1] (A4.2)

Then the boundary, 3PQ(jo3,A) (see Fig. 12) may be computed by solving

for each X e [0,1],

P, : max (or min) mD (jo3,a) 3 fa (jo3,a) = <j>>(jo)') (A4.3)
A aGA a<5A K0 *0

Assuming that first order optimality conditions hold at an extremum for

P^, and all poles and zeros of PQ(jo),a) are real, then a solution to P^

must satisfy for some £ e]R,

, , & if Coj e [z\z1]

1 f&> if ©u^Cp^p1] VieKoR (A4.5)
p1 or p1

where

K
.-1/OM I? +,«-!/ o3_\ _I tan"1^) - I tan-'(^r) =<Mju) (A4.6)

i=l z1 i=l p1 A

From (A4.4-5), it may be seen that determination of boundary points for

X g (0,1) is computationally non-trivial.
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Appendix 5: Decomposition of Modified Nyquist Criterion

Proof of Theorem 3.4: Let

Rj °{(n^.^JI^ £mi <Mr$. <<J>. 1^.}, i=1,2.
(i) We begin by showing the maximization of £ over R, x R2 has no

solutions in (R,xR2)°.

Suppose

=0 i = 1,2.

Then,

J!^ 2k cos ^[ii^cos (J>1+m2cos <J>2] - sin tj^, i =1,2 (A5.2)

3e•g^-=-2kmisin ^[m^cos (J>1+m2cos <j>2] - mi cos <j>i9 i =1,2 (A5.3)

so that

m.j cos $i +m2 cos 4>2 =9t"tan fy * =1»2

m^ cos $i + m2 cos <J>2 =^ cot <j>. i = 1,2

requiring that

tan2 <J>1 =- 1 i =1,2

which contradicts (A5.1). It follows that

fmT'ffrV0 i=1*2- (A5.4)

Hence any solution of the max problem must be on 3(R-,xR ).
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(ii) 3(R,xR?) is the boundary obtained by setting one of m. = m. or m.

or <\>. = ^ or $.., i = 1, 2 in turn. A stationary point of the reduced

gradient on {3(R,xR9)} must have three of the four partials |£- ,|§- ,

1=1,2 (evaluated on the appropriate constant contour of the fourth

variable) simultaneously zero. From (A5.4), we see that there are no

stationary points of the reduced gradient so that no solution lies in

{d(R^Rz)}°.
(iii) It then suffices to consider stationary points on the two-dimen

sional surfaces of SOjR-jxRg)}. This boundary is obtained by setting in

turn two of the four variables m.,<b., i = 1,2 equal to their values at

the endpoints of their confidence intervals. Hence we must consider

zeros of the partials with respect to the pairs,

(a) (nu,^.) i= 1,2 (b) (m1,m2) (c) ((jy^) (d) (ny^) (e) (mg,^)

(a) From (A5.4) it follows that we may discount this case.

(b) From (A5.2), it follows that the Hessian with respect to m-j, m2 is

A
3m. m.

. n Jji,j=l,2
= 2k

2
cos <J>, cos<J>,cos<j>2

cos<f>.]COS(j>2 cos <j>2
> 0. (A5.5)

Hence £, is convex in (m, ,m2) and so a maximizer must be on the boundary

of [m, ,ni] x [nUjfiL].

(c) From (A5.3) it follows that

r^-l =0 implies tan fa =tan fa>
Vi=l ,2

or, equivalently,

<J>1 - fa - mr, n (A5.6)
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Along the contour defined by (A5.6),

9 2^(m^^^mgj^+mr) = k(m.|+m2) cos ^ -(m1+m2)sin(J>1 -c (A5.7)

which has stationary points (with respect to fa) satisfying

-2cos ^ =0 or sin ^ =̂ fitf
i.e.

*} =(2n+l)ir/2 or ^ =sln-^^jj^) (A5.8)

(d) From (A5.2,3) we have that anecessary condition for [|jjj- , ||-
= 0 is *

^ = (|>2 + (2n+l)Tr/2, n e 1. (A5.9)

Along the contour defined by (A5.9),

9 9£(m, ,<j)9+(2n+1)TT/2,m9,<j>9) = k(m, nu) cos ^-(m^+mJsin fa - c
1 * L ' c * \ * 2 (A5J0)

and from (A5.10), it follows that for any n e 1

(^C(m1,(j)2+(2n+l)TT/2,m2,<i)2),g|-^(m1,({)2+(2n+1)7r/2,m2,(j)2))T =0

iff (nu+m,,) = "' 0 ,
1 L 4rcosSj>2

which is clearly impossible. Hence £ has no stationary points with

respect to (m,9fa)*

(e) By symmetry, we may draw the same conclusion as in (d).

Hence, we have shown that the only stationary points which may be

local maxima of £ on 3{3(R1xR2)} are those given by (A5.8). This
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establishes the result. a

Computationally, it is necessary to check any feasible stationary

point given by (A5.8) and to compare the values of £ evaluated at these

stationary points with the maximizers on the boundary, dil^ .fa'i x lfa,(^2^
We characterize the maximizers of £(m,,«,m2,-) on this boundary by the

following result:

Proposition A5.1: max . £(m, ,<j>, 9m9,fa)
(<J>r<!>2) e Hlfa^l x [^2,<j>2]} ' ' c

1 2= max C(m-, ,v ,m«,v )
vQI ' L

where

V= {(cj>i j^) »(^-j »<j>2^ »^i *$?) '(^i*^^

is the set of vertices of [<j> j>,] x [<j>«,<f>9]

Proof. From (A5.3), we have that

-r|-= 0 requires that

m, cos fa + m2 cos $2 =" 2k cot ^i* i = ^»2 (A5.ll)

Differentiating (A5.11) with respect to 4>., we obtain that a further

necessary condition for ~~ = 0 is

- m. sin A. = jr- cosec <J>. i = 1,2 (A5.12)

substituting from (A5.11,12), we obtain

1 2C(m-j ^i^j^) =4k^ cosec <|>,-1) - m2 sin ^ -c
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However,

2 2~2r o sin <j>,+3cos <j>,
2=2k~( 71 )>0 V^eiR (A5.12)

3<j>1 sin 4>i

so that any stationary point is a local minimum. The result now

follows. *

The above proposition implies that the maximization over

((j>1,<j>2) e [<f>i,<t>,] x [(ta,^] required by Theorem 3.4 requires merely that
we compare the values of £ at any feasible stationary point of those

defined by (A5.8) with the four vertices, V.
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Appendix 6: Local Lipschitz Continuity of Extremizers of Open Loop
Gain an d Phase

A v a

We establish some properties of Mq(-,-)» MQ(-,-)» M'9^ and
V

$o(#»*) defined by (3.19) of Section 3.2. From Theorem 3.1 of Section
A V

3.1 we have that MQ(x,jo3) (MQ(x,jo3)) is the product of |C(x,jo3)| and

the individual maximum (minimum) magnitudes due to the individual pole

and zero variations. Similarly, for phases, we have from Theorem 3.2

of Section 3.1 a decomposition into a sum of [arg C(x,joi)] and the indi

vidual extremizers of phase corresponding to the individual pole and

zero variations. We begin by developing some results for the individual

pole and zero variations for the real and complex case. We abbreviate

local Lipschitz continuity to &.L.C.

Proposition A6.1: Suppose z1 e [z^z1], p1 <= [p1,?1], and that

A A, . .;
M^(jo)) = max |joi+z |

M^jio).- max iWl ,
P pV,Pf]

V v

with similar definitions for the minima, M.(jai) and M1-(jo3). Then,
a v i z pA v
M .(jo)) and M .(jo)) are C functions of 03 e (0,») and M .(joi) and M .(J03)

z z . p p
are continuously differentiable for (03,p1) f 0.

Proof: Now |jai+z11 =^(z1)2]172
so
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r
03 C^+tz1)2]"172 (oj.z1') + 0

§j Ijoj+z1! =̂ 1 03 j* 0, z1 =0
0 03 = 0

.1 .Hence, |joh-zn [ is C in 03 >_ 0 for any fixed z1. By Proposition A2.1,

^(joi) and zjjj(

M̂ jw) = |j03+Z^(J03)|

A-j V-j
zM(joi) and zM(jo3) are constant so

A l,.

z

v
1/.MAita) = |jo)+z'(jo))|

z

are C functions of 03 > 0.

For poles, p1, the above applies for all (01,p1) + 0 since then the

magnitude function is the non-zero reciprocal of that for zeros. «

.1 J , . 1 fll ^ r„l Sin 1 ^ r 1 "1Proposition A6.2: (a) Suppose z' = 3 + JY , 3 € [3 ,3 ], Y € [y ,y ]

Then,

,i i\ 4 1/. ./«i. . i\w . ./«i . i
> >^

Mi(jo3) = max Mc(jo3,31,Y1)
2 (31,Y1)e[31,3i]x[Y19Y1]

Mr(jo3,31,Y1) = |(J0)+(31+JY1))(J03+(31-JY1)Ic

v A • i i
M1(jo3) = min Mc(jo),3 ,Y )
Z ^y'W^MA?']

are &.L.C. for 03 > 0.

A oi . • i «l ^ r„i «in i^r i "1(b) If p' = 3 + jy » 3 ^[3 ,3 ], Y gCy »Y ] the corresponding func-
A V

tions, M .(J03) and M .(J03) are &.L.C. V 03 > 0 excepting any jo)-axis poles
P P
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,1 -.1 ,1 1Proof: (a) For (oj,3 ,y ) t 0, Mc(jo3,3 ,y ) is continuously differentiable

in 03, since

3M .1x2 ,„i\2. 2-

Mc(o3,3 ,Y )

- 203 3' = 0.

Now,

M1(jw) =Mc(o3,3^(Jo)),yJ1(Jo3))

An!/_• l/_.and referring to Table A2.1, we see that 3'(Ja>) is constant and Ym(Jo3)

is piecewise constant. Hence it suffices to consider those 03 >^ 0 at

which Ym(Jo3) changes value:

(1) 031 =v'(^(jo3))Z+i((Y1)2+(Yi)2) with y1' >0or y1 <0

From Table A2.1,

A*

fMr(jo3,3i(jo3) argmax ly1])
'M

M ^joi) =
2 Mr(jo3,3M(jo3) argmin ly1!) 03 > 03

'W

Y^y1,?}

y'^y'.y1}

03 £ 03..

_-!

since M ^(jw) is Jl.L.C. on (0,03-,] and on [03,,«) and since

_• Ai\,Mc(jo31,3,J|(jo)1), argmax ly1!) =Mc(jo31,3[I|(jo31), argmin ly1!)
Y^y.y1} yW,?'}

it follows that M .(•) is locally Lipschitz continuous on (0,»).

(ii) 032 =/(Si(jui))?4{(Y1)Z+CY1)2) with y1 <0 <y\'W

From Table A2.1,
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03e

[o33,o34]
(for

(3M
(jo3))

-03
<0)

where

o33=/(31,(jo3))2+min{(Yi)2,(Y1)2}

o)4=/(3j,(jo3))2+max{(yi)2,(;i)2}

v
i

v
i

since
3M(jo3)

is
a

constant
for

all
03

e
[0,»)

and
YmUoj)

is
constant

for

03
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'M

39W
4-

v
.

V
"I

-i

M
c(jo),3M

(joj),
argmax

|y
|)

Y
^y,?*}

03
*>_

03-

V
V

-j
As

M
.(jo>)

=
2o)3M

(joj)
for

03e
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V
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v-j

M
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argmin

|y
|)

=
2o33M(jo3k)

k
=

3,4
Y

£{y»Y
}
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V

1

Z

it follows that M ^(joj) is A.L.C. on (o33,oj4) and at 03. ,k= 3,4.

(b) Since M.(J03) =Mc(jo3,31,(jo3),y1|(jo3))

t 0 if 3jJ,(joj) f 0,

M AM = 1/M AM*
P z

it follows that M1(jo3) is A.L.C., provided 3^03) ? 0. If 3,J,(jo3) =0,

a . 1
M^03) =—r| 2 2
P (Y (J03)) -o)

M

A-j V
which is £.L.C. for 03 f ym(joj). Similarly, we may show that M^(03) is

V-j V-j P
£.L.C. except when 03 = YM(jo3) and 3M(jo3) =0. *

Proposition A6.3: Suppose z1 e [z^z1], p1 e [p1,^1]. Then the

functions

A . A , -j .
4> ^\M = max arg(jo3+z )

z ^Lz ,z ]

<j> n.(jo3) = -max {-arg(jo3+p1)}
P pW.p1']

V V

and <j> i(jo3), 4> .(J03) are continuously differentiable for 03 e (0,») where
v z v p
(j) •(jco) and <j> .(J03) are the similarly defined minima,

z P

Proof: Since arg(jo)+z1) =tan"1 -4- ,
z1

JLarg(jttf21) =^-Z-!-I.
03 +(z ;
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V V-j
Since <f> ..(J03) = arg(jo3+zA(jo3))

A A-J
<j> .(M = arg(jo3+zA(jo)))

with z^(jo3) and zl(jo3) constant (Proposition A2.1), it follows that they
1 A V

are C . Similarly the result holds for <f> • (J03) and <j> .(joi). °
P P

Proposition A6.4: (a) Suppose z1 is a complex zero as in Proposition

A6.2, and that

♦ctJeo.B1^1) =arg{[(31)2+(Y1)2-032]+j(23103)}

$i(jo3) = max (J)c(jo3,31,Y1)
2 (31*,Y1)e[3i,31]x[Yi,Y1]

<J> ^(jo)) = min *c(Jo3,31 .y1).
2 (61,Y1)^g1.51] Cy1.y1]

A V

Then <j> .(•)» <t> A-) are &.L.C. on (0,<=°).
z 1 z

(b) If p is a complex pole as in Proposition A6.2, then the functions

A A -j -j
4> i(Jo3) = max {-<frc(jw,3 ,Y )}
P (bV)^1^1] [y\V]

V A •

*^M = min {-4>c(jo3,3 ,y )>
P (3i,Yi)e[31,3i]x[yi,yi]

are &.L.C. on (0,°°).

Proof: (a) Since £ ♦c(j<*,Bi.Y1) =& tan"1 .z^\2 2.
(6')'+(y')'-03

<J>C(- ^jY1) is £.L.C. for any 01 >0, V31, Y1 GIR such that
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o)2 t (31)2 +(y1)2. From Theorem 3.4,

<J> ){M =<J>c(Jo3,3^(jo3),y^(joj))

V V-j v-j
* 1(J03) = ^C(J03),3^(JO)),Y^(J03))

and from Table A2.2, if 31.Y1 > 0 then

B1

i\2 ...2x1/28J(J«) ={ ((y1-)2-*2)
o <u2 <(y1)2 - (e1)2

a2 =(y1)2 - (e1)2, b1 eEe1,!1']

<*2>(y1)2-<b1)2
v»

Yl(j») =Y1

while

,1/.3;(jo3) =

Vi*Yj(Jco) =Y1

03 > 0

0 <oj2 <(y1)2 - 3131

(yV-B1? <032

oj > 0.

A V

Since the functions <J> ..(joi) and <j> ^(M are uniquely defined at

<o ={(y1)2 - (i1)}172! {(y1)2 - (V')2}1/2 and {(YVV'eV'2, they are
a.L.C. at these to provided that to f (B^(jto))2 +(y!(Jio))2 or
u2 * (6j(j<o))2 +(yJ(j«))2. For to € ({(y1)2-,*1)2}1'2. {(y1)2-(bW/2).

$ .(jto) =tan" <•>" ? v?
z1 [(y1)2-**2]"2

which is &.L.C. for 03 f (y ) . Now consider
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o)2= (3^(jo3))2+ (yJ(jco))2. SJ(Jco) r<0.

We have that

^

* f(jw) =

Also

tan
-1

23^(J03).03
1o2<(6j(joJ))2+(Yj(jto))Ai

+ w/2

-1
+ ir + tan

(B^(j<o))2+(Yj(joJ))2-to2

2B;(jto)

Ai An*for<a'* (»1{M)£ +{v\[fa)y
and the sign is that of

BJ[(jio)

(8a(J<*))Z(yJ(J«*))2-»Z

w2>(eJ(j\o))2+(YJ[(jto))2

and the sign is that taken for

o>2= (Bj(jto))2+(Yi(jto))2.

lim

03
Ai^(^(Jco))2*^^))2 Z1

"Im8>)>2<<*)>2 V*"
and so * .(J03) is Jt.L.C. at 03 =/(3^(Joj))2+(y^(jo3))2. If 3^(jo)) =0,

A Z
then <J) .(J03) is a constant and hence is £.L.C. The arguments for

z

I 1-(jo3) are similar. Hence for 31 >. 0, y1 >_ 0, <J> ^(«), <j> ^(-) are &.L.C.
z . . " " z z

for 03 > 0. For 3 £0, y £0, JLL.C. is established by analogous argu

ments. Since from Appendix 2 we know that the above two cases establish

the result for all possible orderings of 31, 31' y\ Y1 with respect to
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the origin, (a) is proven,

(b) Since

A V

<j> AM = - * AM
P "z

and

v / • \ A /. X<f> -j(j03) = - (j) .(J03)
P z

the result for p1 follows from (a). n

Lemma A6.5: (a) The functions M(-,-) and M0(-,-) (M(-,-) and MQ(-,-))

are a.L.C. continuous for.all (x,oj) eiR xxir+ such that joi is not a

pole of P0(s,SM(s))C(x,s) (PQ(s,aM(s))C(x,s)).
(b) The functions $(.,.). <J>Q(-,-)» $(•,*) and L(-,-) are locally
Lipschitz continuous on IR x]R+.

Proof: (a) From Theorem 3.4, we have that

M(x,joj) = |P0(jo),aM(jo3))£M(o3)C(x,jo))|

=IPQ(Jo),aM( jco)|•|C(x,J03) I•J>M(o3).

Now |C(x,jo))| is the quotient of the magnitudes of two polynomials,

each evaluated along the joi-axis. As each of these magnitudes is &.L.C.,

the quotient is Jl.L.C. except when the denominator vanishes, viz, at

jo3-axis poles of C(x,-). From (A2.3), we have that |PQ(joj,aM(joj))| is

the product of the maximum magnitudes of the zeros and the recrprocals

of the minimum magnitudes of the poles. It follows from Propositions

A6.1 and A6.2 that |Pq(jo3,oim(jo3))| is locally Lipschitz continuous except

at joi-axis poles of PQ(- ,aM(-))- Hence, the product,
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MQ(x,jo3) = |P0(jo3,aM(joj)) |C(x,jo3)|

is JLL.C. except at jo3-axis poles of P0(-,aM(-))C(x,-). As £M(-) is by
A

definition locally Lipschitz, we have that M(x,jo3) is &.L.C., except for

pairs (x,03) corresponding to joj-axis poles of P0(s,ctM(s))C(x,s).
V V

Similar arguments hold for M(«,') and MQ(•,•)•

(b) From Theorem 3.4,

A A

$(x,jo3) = arg P0(jo3,aA(jo3))C(x,jo)) + I A(o3)

=arg PQ(jo3,aA(jo3)) +arg C(x,joj) + l^u)

From A2.4, it follows that arg PQ(jo3,cu(jo3)) is the sum of the maximizing

phases of the zeros and minimizing phases of the poles. By Propositions

A6.3 and A6.4, these phases are locally Lipschitz. By definition,

£»(•) is locally Lipschitz and since arg C(x,jw) is the phase of a

rational function, it follows that $(•»•) and $q(*»') are &.L.C..
V V

Similarly we establish the desired result for <£>(•,•) and $q(-,0. q

For determining stability in Section 3.4 we must construct the

sets,

nr(x,jo3)
Rl^x,J'a)) =( d(jo3) }xRn (ja)) xRJl(ja))

p

dc(x,jo3)

where

\ (x,jo3) = {(m,(J))|m e [|np(x,zM(jo3))|,|np(x,zM(jo))|],

V A

(J> e [arg np(x,zA(joj)),arg np(x,zA(jo3))]}
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Kd (x,joj) = {(m,c())|m e [|dp(x,pM(joj))|,|dp(x,pM(jo3))|],

V A

(J> e [arg dp(x,pA(joj)), arg dp(x,pA(jo3))]}

K£(jo3) ={(m^,^) U^joj) e [^(aO.A^uOL^fjw) e [^(03) JA(o3)],

mA'), <J>«(*) locally Lipschitz continuous}

In view of Lemma A6.5, the next result is immediate:

n jp
Proposition A6.6: Let R. :1R x xir -• 2r be defined as above for i = 1,2.

Then the R., i = 1,2 are locally Lipschitz continuous. n
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Appendix 7: Solution of min max |HlfH(x,Jto,a,&(Ju))
(mc,<f>c)€Rc(ja3) (mp,(j>p)eRp(x,jaj) ~ya

Suppose

|Hyd(x,jo3,a,£(jo3) \ f 0 Vo3>0, a€A, Jl^L, xGX
and

Rp(jo3) ={(mp,cJ)p)|Mc(jo3) <mp(jo3> <M(jo3:),<j>(jo3) <cj>p(jo3) <$(jco)}
(A7.1)

then

min max |Hvd(x,jo3,a,Jl(jo3)) |
(mc,(J)c)GRc(ja3) (mp,<j>p)qRp(jo3) yu

min {[ min (m2nip+2mDmr cos^p+cfu^+l}"1
(mc,<(>c)^c(ja)) (mp,(()p)GRp(jo3) Ku KL K L {A72)

Let

<j)p(mc,(j)c) = argmin cos((f>p+<j>c) (A7.3)
4>pG[^p»^p]

A 2 2mp(mc,c|>c) = argmin {mcmp+2mcmp cos(<j>p+<J>c)} (A7.4)
mpe[mp,mp]

A
S(mc,4>c) = cos(<j>c+(f)p(mc,(J)c)) (A7.5)

A 2 2*!>(mc,<J>c) = mcmp(mc,<J)c) + 2mrjnp(mc,<j>cK(mc,(j)c) + l. (A7.6)

Now- £(nu,<|>c) e [-1,1], mp >^ 0 so that ip(mc,<|>c) represents a family of

curves as shown in Fig 13. It follows from Fig. 13, that
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f

If (mc,c|)C) <0

£(mc,cj>c)
(a) - mc if 3mcG[mc,mc]

C(mc,«j>c)
m €[mp,mp]

C(mc,(|>c)
if mP%< f Viiic€[l£]

mp(mc,(J)c) =(
(b) mr

m,

(c) mp
€(mc»<J>r)

if 0?P> n^ Vmce[mcA]

If C(mc,<()c) > 0;

Jd) mp

If (*p(*c)+*c) € (+tt/2,+3tt/2)

^(mc,<J>c)
^a' In 1f ' ^"fc*^ e [mpmc>mpmc]

- y (b) mp

(c) nip

(d) mp
v^

if mpmc <- ^(mc,(j)c)

if mpmc >- ?(mc,(j>c)

If UpUc)+4>c) e [-7T/2,7r/2], [+37r/2,+2ir]

For <j>p e [-7t,tt], (J>c € [-tt,tt],

<i>p(<J>c) = argmin^ min{|Tr-<j>c-<j)p|, |-tt-^ -<j> |}

Hence,

argmin_ [min{ |Tr-<|)r-<|> | ,|Tr+<j>r+cJ>D|}]
*pe[*P^p3
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r

*(>V*c>-<

If (*p(*c)+*c) e (+tt/2,+3tt/2)

(a) - £ (mc,<f)c) +1 if - ?(mc,<t>c)e[mpmc,mpmc]
2-2(b) mcmp+2mcmpS(mc,<f>c) +1 if fnpmc <- £(mc,<j>c)

2 2(c) mcmp +2mcmp£;(mc,(f>c) +1 if mpmc >- £(mc,<j>c)

If ($p(<J>c)+<J>c) € [-TT/2.TT/2] or [+3tt/2,+2tt]

.2_2(d) mcmp + 2mcmp^(mc,(|>c) + 1

so that
^

min max |H d(x,jw,a,a(ja>))
(mc,(J)c)^c(jo)) (mp,<|>p)ERp(x,jo3) y

min

(mc,<{>c)^Rc(o3)
ip(mc,<j)c)

(A7.9)

(A7.10)

where the minimization on the right hand side is easily computed from

(A7.9).
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FIGURE CAPTIONS

Fig. 1. Control system to be designed.

Fig. 2. Regions of allowed pole-zero variation for the plant,

S+Z

P°(s,a) =& 7^7^*7 w1th z«e c? ' ?](s+pc)(s+pc)

PC e [- 1 ,1] x [1. ,i]
Fig. 3a. Plant magnitude uncertainty with respect to multiplicative

perturbations.

Fig. 3b. Plant phase uncertainty with respect to multiplicative

perturbations.

Fig. 4. Region of allowed perturbations, U(jo3)|£ e u} and approximating

bounds, RJl-1(jo3), for U(jo3)-l), I e L.

Fig. 5. Parabolic exclusion region for modified Nyquist criterion.

Fig. 6. Typical region for S-stability, a = - k.+kpoj

Fig. 7. Envelope of acceptable time response.
a ... a . 0

Fig. 8a. 3M(jo3), YM(Jo3) for (D_ perturbations.
V V Q

Fig. 8b. 3M(jo3), YM(jo>) for (C_ perturbations.

Fig. 9a. Real perturbations.

Fig. 9b. Complex perturbations occurring in conjugate pairs.

4 2 2 2
Fig. 10. Parabolas corresponding to y + 2y (3 -oj ).

Fig. 11. Graphs of (^ 2).
3 +Y -03

Fig. 12. Construction of rectangular approximation to PQ(jo3,A).

Fig. 13. Parabolas representing ty{m 9$ ).

Fig. 14. Feasibility test for inequality (3.21a).
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