
 

 

 

 

 

 

 

 

 

Copyright © 1983, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



JOSEPHSON JUNCTION CIRCUIT ANALYSIS

VIA INTEGRAL MANIFOLDS: PART II

by

M. Odyniec and L. 0. Chua

Memorandum No. UCB/ERL M83/12

3 March 1983



JOSEPHSON JUNCTION CIRCUIT ANALYSIS

VIA INTEGRAL MANIFOLDS: PART II

by

M. Odyniec and L. 0. Chua

Memorandum No. UCB/ERL M83/12

3 March 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



JOSEPHSON JUNCTION CIRCUIT ANALYSIS

VIA INTEGRAL MANIFOLDS: PART II

by

M. Odyniec and L. 0. Chua

Memorandum No. UCB/ERL M83/12

3 March 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



JOSEPHSON JUNCTION CIRCUIT ANALYSIS

VIA INTEGRAL MANIFOLDS: PART IV

M. Odyniec+t and L.O. Chua+++

Abstract

This paper is a sequel to an earlier paper under the same title.

Here we use a more realistic model of the Josephson-junction and present

a rigorous analysis of its nonlinear dynamics under various ranges of

model parameters. In particular, we prove that the qualitative properties

of our model and of the simplified one are similar. This rigorous proof

thereby justifies the choice of simpler Josephson-junction model, which

was chosen in the past mainly for tractability.

The peculiar constant voltage-step phenomenon widely represented in

the literature is carefully analyzed further in this paper. For the

first time, we can give a fairly complete explanation of the mechanism

leading to this exotic phenomenon. In particular, the variations in the

length of the constant voltage steps which have baffled many researchers

in the past can now be given a rational explanation. A careful analysis

of the mechanisms which give rise to chaotic dynamics in the Josephson

junction circuit is also presented.
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1. Introduction

This paper is a sequel to a recent paper on nonlinear dynamics of the

Josephson junction circuit equation [1]

C$ + Gi + sin(k(j>) = i$(t) (1)

This equation is based on a widely used Josephson junction circuit model

consisting of a linear capacitor C, a linear conductance G and a nonlinear

inductor described by i=sin(k<j>). Although this model is widely used in prac

tice and has so far provided answers which agree, at least qualitatively, with

measurements, it nevertheless contains a number of approximations which have

not been justified on either physical or theoretical grounds.

For example, in the original Josephson paper [2] the second and the third

term in equation (1) are replaced by:

1(<M) = a(v)sin(k<j>) + (ax(v) - a2(v)cos(k4>) )v (2)

Moreover, the third term in (1) (which models the supercurrent) is a periodic

rather than sinusoidal function of <{> [2,3] .

Thus we shall use the circuit model consisting of a linear capacitor C

connected in parallel with a nonlinear intrinsic two terminal device J as shown

in Fig. 1. If we use this more realistic circuit model, then equation (1)

becomes:

$ = v

Cv = is(t) - i(<J>,v) (3)

Our objective in this paper is to study the nonlinear dynamics of (3).

In particular, we will show that under rather general assumptions on the form

of i(<|>,v) and forcing function

is(t) = I+ ep(u)t)

These terms describe the normal (and quasi particle) currents and supercurrent.
2
The authors would like to thank Prof. T. Van Duzer for informative discussion

concerning the problem.

-2-



equation (3) has the same qualitative properties as its simplified version (1).

This study therefore provides a rigorous theoretical justification for using

the simplified model even though it was originally chosen mainly for mathematical

expediency and tractability.

Our approach will consist of two steps:

1. We shall show that, if the forcing term is constant, i.e., is(t) = I,
then equation (3) posesses. in the (<f>,v,t)-space an invariant surface.

Stable trajectories on this surface correspond to steady state solutions

of (3). Moreover under small-parameter assumptions, this invariant

surface is preserved under the periodic excitation i'(t) = I+ ep(cot).

2. We shall then discuss possible behaviors of trajectories on an

invariant surface (which can be shown to be topologically equivalent

to a torus). This discussion explains the peculiar step-wise a.c.

junction characteristics and the drastic difference between a.c. and

d.c. characteristics. Moreover we offer a theoretical justification

for the experimentally known phenomenon that "constant steps" on a.c.

characteristics are short for "complicated" frequency ratios. To

the best of our knowledge the theoretical justification of this phen

omenon was never offered before.

We conclude our study with discussion of possible phenomena which may occur

when the small-parameter assumptions are not satisfied. Since this part is

mostly illustrative in nature, we will choose the simplified version of

Josephson circuit, namely, the one described by equation (1).

2. Small Periodic Perturbation

A. Autonomous case: is(t) = I

In this section we shall formulate various conditions under which the

autonomous equation

} = v

v = I - 1(<M) (4)

possesses an invariant surface. In order to be specific we assume 1^0, the

case I < 0 can be dealt with in a similar way. If moreover i(-<i>,-v) = -i(<}>,v),

then the case I < 0 can be reduced to I > 0 by the transformation (j> -*- -<$>, v -»• -v.

Our approach will be based on the following results proved in [4]:
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Theorem 1 Assume that i(<J>,v) in (4) is continuous in <f> and v, monotonically
increasing in v, 2ir-periodic in <j>, and such that for any cf> there exist

(possibly equal to ±~) v!^J((,)'v) >0and J™J,((M) <03. Assume moreover that
i(<i>»v) <I for any <f> and v=0. Under the above assumptions equation (4) possesses
aunique and globally stable invariant surface SQ shown in Fig. 2, and described by:

Sq = {(<M,t):v =*(*)» <MR, t€R} (5)

where i|;(<j>) is a continuously differentiate4 positive and 2Tr-periodic function
of <J>. Moreover for initial conditions chosen on SQ, equation (4) is equivalent
to:

I = *(♦) (6)

whose solutions are of the form [1]:

4>(t) = fit + q(t) (7)

where Q, =2ir[ /^rfy] and q(t) is -—-periodic. It can be shown that y
increases with I and I-fij tends to zero when I increases [1].

Statement 2, If for some <|>q, i(<j>0,0) = Ithen (4) has a constant solution
<i>(t) = <J>q, v(t) = 0. Moreover under some additional conditions, which are
expressed in [4] in terms of the phase portrait, (4) may also possess an

invariant surface (5) with ip(<|>) continuously differentiate, positive (provided

I > 0) and 2ir-periodic function of (J). Similarly, as in Theorem 1, the equation
on the surface is of the form (6).

In terms of the "average" current-voltage characteristic the above results

say that as long as I< sup i(<|>,0), there is a steady-state zero-voltage solution

(i.e., constant current results in no voltage drop). Moreover, there exists a
5

periodic steady-state voltage v(t) =^[fit + q(t)] having an average value equal
;T
The current expression in (2) as found by Josephson satisfies these assumptions.

4 V* V*
If i(<M) is of class C then i|;(<J>) is also of class C .

5
Since the junction oscillates at extremely high frequencies (GHz range) only
the average value can be measured experimentally.
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to ft =ftT. Thus, if I<sup i(<J>,0) and the hypotheses of Statement 2 are satisfied,

then both constant and periodic steady-state solutions exist simultaneously.

Thus the current v.s. average voltage characteristic is double-valued

as shown in Fig. 3.

B. Small Periodic Excitation: i~(t) = I+ep(u)t)

Once the existence and stability of the invariant surface SQ is established,
it can be shown [1,7,8] that this surface is preserved under "small" perturba

tions of the form ep(a)t). More exactly the following

Theorem 3 [7,8] holds. For small e there exists an invariant surface S of (3)
with is(t) =I+ ep(a)t) where p(*r) is 2ir-periodic in t, which can be parametrized
as follows:

S£ = {(<fr,v,t): v=iK<fr) +h(u)t,(j),e), $€ 1R, t€R} (8)

where i|>(<J)) is as defined for surface Sn (5), and h(u)t,<j),e) is continuously
6 ?TT

differentiable ,— -periodic in t, and 2ir-periodic in (j>. Moreover it is

bounded by a constant which decreases to zero with e .

When an initial condition is chosen on S£ then (3) is equivalent to:

i =f(M) (9)

with f(t,(j>) = ty(<j>) + h(u)t,<J),e) being periodic in both t and <j>. Because of

this double periodicity, the surface S can be viewed as a torus, as shown

in Fig. 4.

The proof of the theorem is outlined in [1]. A more detailed discussion is
given in [8],

C. The Case of Small C

One can also reduce (3) to an equation on the torus in the case of an

arbitrary (not necessarily small) periodic excitation provided the parameter
C (junction capacitance) is small.

If i(4>,v) and p(cot) are r-times (continuously) differentiable then h(u)t,<J>,e)
is (r-2)-times (continuously) differentiable.

7Let us observe that if e=0then h(oit,4»,0) =0 and S£ coincide with SQ
defined by (5).
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Theorem 4 [5,7] Assume that:

a) equation ig(t) = i(<J>,v) has (for all t and <J>) a locally unique solution
v = v(<j>,t) which is bounded and continuous together with its second derivatives,

b) there exists a > 0 such that for all <|>,t

-J7 1[4>,v(<D,t)] >a

then for sufficiently small C, equation (3) possesses an invariant surface:

Sc = {(<M,t): v = v(<J>,t) + g(*,t,C), (j>€ R, t€IR } (10)

where g((J>,t,C) is bounded by a constant Dq such that Dp -»- 0 as C-> 0.
Moreover, if v((J),t), i$(t), i((|>,v) are r-times continuously differentiable,
then g(4>,t,C) is (r-2)-times continuously differentiable in <j> and t.

If i(<M) is 2fr-periodic in $ so are both v((j>,t) and g(<J>,t,C). If i (t)
is T-periodic in t, so are both v(<|>,t) and g(4>,t,C). Thus the surface Sq can
also be viewed as a torus and (3) can be reduced to

i = v((j),t) + g(<t>,t,C) (11)

Let us note that if the hypothesis of tneorems 1-4 are satisfied simultaneously
(it means, essentially, that C is small, and the forcing term i (t) is of the
form is(t) = I+ep(wt) where I is large positive and e is small) then the surfaces
S£ and Sc coincide. However, in general, these surfaces are different (and
their existence is guaranteed by different hypotheses). In particular, for

some values of I and small e, there exist surface S and periodic solutions

outside it as shown in Fig. 5(a). In the case of small C, the surface Sq and
the periodic solutions may exist simultaneously. In this case the periodic

solutions must lie on the surface as shown in Fig. 5(b). The immediate con

sequence of this property is that in the case of small C the voltage-current

characteristic shown in Fig. 3 cannot be double-valued.
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3. Equations on Torus

In this section we shall study the properties of solutions which follow

from the double periodicity of the invariant surfaces S and Sq. In order to
be able to treat simultaneously the cases of small e and small C we assume

g
is(t) = I+ep(oot) . Thus both (9) and (11) can be represented as:

4 = f(t,4>;I) (12)

where we introduce I as a parameter to stress the fact that the invariant sur

faces and the equations on them depend on I. It is known [1,9] that for any

solution of (12) there exists a limit:

y-11m *&- (13)
t-*+«>

which does not depend on any particular solution <|>(t) but only on f(t,<{>;I).

Moreover, this limit depends continuously on I, and in some intervals y is a

constant function of I. Atypical example of y(I) is shown in Fig. 610. It
can be shown [9] that y(I) is a locally constant function of I over some open
interval (IQ-A, IQ +A) for some IQ and A>0, only if y is a rational number.
However, for some IQ, y can be a rational number and yet not a constant in an
arbitrarily small neighborhood of In.

11For the Josephson-junction circuit in Fig. 1, the number (13) is equal

to the average voltage across the Josephson-junction and hence Fig. 6 can be
interpreted as the current vs. average-voltage characteristics of the device.

The stepwise form of this characteristic was observed experimentally. Moreover
constant voltage steps were observed to appear at values which are commensurate

with some fixed constant. This result is consistent with the property that
y is constant only at some rational values. Note that in the autonomous (e =0)
case the right hand side of (12) (which is now independent of t) is either

positive for all $, or there is <j>0 such that f((J>0;I) = 0. In the latter case
*0 12y = lim -jr = 0 . In the former case, <j>(t) = flt +q(t) (as given by (7))

o

^Recall that for small C, e need not necessarily be small in order to obtain
a toroidal invariant surface.

IDxuLet us note that in the case of both surfaces S and Sq, the function f(t,<J>;I)
increases with I.

With respect to the multiplicative constant [1]
12

Recall that the rotation number is the same for all solutions of (12).
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and y-lim-£—*- = fi. Hence,, in the autonomous case, y is either zero, or
t-*»

increases with I, and is newer (as a function of I) constant as shown in Fig. 3.

B. Synchronization Zones

The natural question to ask is for what rational values will y be a

locally constant function of I. The answer can be given in terms of the

so called Poincare* mapping [1,9]. Unfortunately, this mapping cannot, in

general, be expressed in analytic form.

In this section we shall give some insight into the domains of stability

of y. Our approach will be based on "the method of averaging" [6,7] and our

criteria will be expressed in terms of the right hand side of (12). Consider
13the case when surfaces S and Sq lie above the v=0 plane in the (t,<J>,v)-space •

We show in Appendix A that equations (9) and (11) can be reduced to the form:

0 = Bj +egfwt.e.e) (14)

Here flj is defined as in equation (7), and 9 is related to the original
variable $ as depicted in Fig. 7. We shall neglect the dependence of g on I.

Let us fix two relatively prime integers M and N and ask for solutions

of (14) which are synchronized to the frequency ^o>. These solutions must have the form
8(t) =TjO)t+a(t).with a(t) ^-periodic. Hence, the rotation number of 6(t)

M
is equal to ttoj. Correspondingly, the rotation number of <J)(t) = J>(9(t)) is also

Mequal to-^oj. We show in Appendix A that the essential information concerning
the synchronized solutions can be recovered from the scalar algebraic equation:

A = g(a) (15)

where A=e" (-j^o-ftj) and g(a) is 2irN-periodic and continuously differentiable
in a. More exactly, the following

Theorem 5 [6,7] holds: If (15) possesses a (constant) solution cu, such that
dp^g(a0)<0, then for small -, (14) possesses a stable solution

The surface S always lies above the v =0 plane. For Sq, this need not be the
case, but (provided that e is small enough) equation (11) will either have a
zero rotation number or will be reducible to (14). For more details, see Appendix A.
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M9(t) =|ja)t +a(t) (16)

Here a(t) is —^—-periodic and close to a0.
Remark: Since g(a) is 2irN-periodic, the existence of the abovementioned constant

solution ou implies the existence of a family of constant solution cu = aQ +
K-jj- K=1,...,N-1 as shown in Fig. 8. Hence, (14) possesses a family of solutions
where cL(t) is close to aK for K= 0,1,...N-l.
Define:

a = inf g(a), b - sup g(a). (17)
a a

Both a and b depend on M and N (for which (15) was obtained) and their difference

tends to zero if either M or N tends to infinity (Appendix A). The property that

the difference b-a is "small" for large values if M or N is crucial in the following

discussion.

The constant solution of (15) clearly exists if A 6 (a,b) . Let us investi-
M

gate this condition in terms of w, ftT, e, M and N. Suppose rr and o> are fixed,
M M Mthen Qr must satisfy ea < mOj-Qj <eb i.e., -no)- eb <Q, <-n<A)-ea. This inequality

is depicted in Figs. 9(a) and (b) where the necessary conditions for synchroni

zation are satisfied within the shaded region. If we let M and N vary, then
15

Fig. 9 contains many synchronization zones . Observe that since a-b tend to
M

zero as N-*-°°, or as M-»•<», we can expect the zones corresponding to tt with either

M or N large to be narrow. In Figs. 10(a) and (b) we show examples of (possible)
M 1 M 17 Msynchronization zones for -s-j9 "N =20' and-M =l. Let us note that Figures 9

and 10 are valid only for e "small enough" (and that "small enough" must be

smaller for small w) i.e., as long as theorem 5 holds.

Now, let us fix e=eQ (small) and 03 =ojq and let fy and M,N vary. When
increasing fy we shall pass from one synchronization zone to another in the

(ftj,u))-plane and rational rotation numbers will be obtained as shown in
Figs. 11(a) and (b). Now, knowing Qj as a function of Iand combining it with
Fig. 11(b), we obtain the stepwise charateristic of y as shown in Fig. 12,

where the longer steps for M and N correspond to small integers. Finally

note that if we fix ftj in Fig. 10(b) and let oj, e and M, N vary, we shall

14lf A=a or A=b the solution also exists but then 4- g(a) =0 and Theorem 5
does not hold. aa

1 c

More exactly we should call them "zones of possible synchronization" since if
(15) has a constant solution we still need it g(a) <0 to guarantee synchronization.

16 da
Figs. 9 to 11 show only zones where synchronization may appear. Thus we
know that steps obtained for large M and N must be small and those obtained
for small M and N may be large.
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obtain the well-known [20] relation shown in Fig. 13

^(flj+ea) <a) <-^(fij +eb).

MThis implies that the smaller the perturbation is, the closer must tjw approach
the natural frequency fir in order to obtain synchronization. Note also for

e "very small" all the steps are very narrow and the rotation number character

istics approaches that of fy as shown in Fig. 14.

4. Strange Phenomena

In this section we shall study various phenomena which can appear when the

small-parameter assumptions are not satisfied. It was observed experimentally

that for some parameter values, the Josephson-junction circuit in Fig. 1 behaves

in an erratic manner [15-17,19]. Our aim in this section is to give some

geometric insights concerning this "strange" behavior and to predict the para

meter values for which it can appear.
17

Consider the nonautonomous Josephson junction circuit equation

$ = v

Cv = I - Gv - sin(k<J>) + ep(cat) (17)

where p(x) is 27r-periodic in t and suplp(x) I =1. If e = a then there exists
T

a critical value IQ such that for I> IQ the resulting autonomous system
possesses an invariant surface as shown in Fig. 15(a), but for I< IQ it
does not [1], as shown in Fig. 15(c). The "invariant surface" in Fig. 15(b)

is not structurally stable in the sense that a small change in the value of

the parameter Ifrom IQ changes the topological behavior in a drastic way;
namely from Fig. 15(a) to Fig. 15(c). Now let I= IQ, e f 0 and let us take
intersections at time t=0, -^L, 2(~)f..f. Since p(a)t) in (17) is —-periodic
in t, the intersection at each time t„ = K(—) will be the same. Moreover,

the invariant surface S can bifurcate into three different ways as shown in

to be specific, we consider the simplest form of the Josephson junction equation.
Our discussion, however, will be couched in terms of phase portraits and therefore
remains valid for more general equations.

18
°A11 trajectories originating from points on the surface S must remain on the
surface S.
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Fig. Iff" [11,12,13]. One possibility is that the surfaces do not intersect

as shown in Figs. 16(a) and (b), (and in the (t,<f>,v)-space, in Figs. 17(a)

and (b)). When invariant surfaces do intersect each other the situation is

drastically different. Observe first that if there is one intersention, then
on

there must be infinitely many of them as shown in Fig. 18. In view of the

infinite number of intersections, we can represent in the (t,(|>,v)-space only

a small part of the intersecting surfaces in Fig. 19.

Since the right-hand side of (17) is periodic in <j>, the global phase

portrait will also be periodic in <J>. If one identifies now <J> and <J> + K(2ir),

and considers behavior of points in the domain DQ as shown in Fig. 20, one
obtains extremely complicated behaviors among intertwining trajectories. In

Fig. 20,DK, K=0,±1,±2,... denotes the domains where points from some domain
Dq will go after K (forward or backward) periods. This complicated behavior
was first described rigorously by Smale [10]. In particular Smale shows that

the portrait in Fig. 20 includes periodic solutions of any period and that

trajectories behave in a "chaotic" way in a sense which can be specified

precisely [11,12]. Such a chaotic behavior was also observed in numerical

[15,16] and analog [17] experiments. It remains to be shown that indeed in

the considered range of parameters the invariant surfaces do intersect. In

Appendix B we review the method by Melnikov [12,13,14] and use it to prove

that in the case of small G and small e the surfaces do intersect. A different

approach was applied by Belykh and Belyustina [18,19]. They considered

together with (17) two autonomous equations obtained from (17) by letting

p(wt) =1 and p(iot) =-1. Study of these (autonomous) equations allowed them

to find domains in which invariant surfaces of (17) lie. In the same way

they obtained parameters for which these surfaces intersect, thereby giving

rise to chaotic behaviors.

Both Melnikov's and Belykh-Belyustina's methods predict chaotic behaviors
21

for I close to the critical value, and for e which is "not too large."

These results are consistent with computer data reported in [15,17].

Fig. 16 shows the intersection of surface S with a constant time plane at t = k(—)
There are more bifurcation possibilities than those shown in Fig. 16. However,w
the portraits shown, are the only ones which are structurally stable, i.e., those
which persist under small perturbation.

20
Each point of intersection belongs to both invariant surfaces and so does the
trajectory originating from it. Now this trajectory tends to $ as t-*--<» and to
$+2tt as t-^+~. The sequence of points (v(K^), <|>(K^J-)K K=0,±1,±2.. .lies on
both surfaces and therefore constitutes infinitely many points of intersections.

21
i.e., corresponding to the "saddle connection" of the autonomous system
as shown in Fig. 15(b).
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Note that as shown in Sections 2, 3 and in [1] if one chooses I larger than the

critical value IQ first, and then chooses e "small enough" then the existence
of the invariant surface S is guaranteed and no chaos occurs. Note also

that for small C, as guaranteed by Theorem 4, no chaos occurs.

The chaotic behavior was observed also by Huberman et al [16] for 1=0

and e "large" as shown in Fig. 21. Because of the large periodic perturbation

it may be possible for invariant surfaces to intersect even for I far from

the critical value. However no proof of this phenomenon presently exists.

-12-



APPENDIX A

A. Equation on the torus and synchronization zones: small e case

Al. Change of variables

Consider equation (7):

$ = *(4>)+h(wt,<fr,e) (Al)

It can be shown that there exists a positive constant d such that <H<j>) > d for

all <f> [4]. Moreover, h(a)t,<|>,e) is differentiable in e, and since h(u)t,<|>,0) = 0
it can be represented as [7,8]

h((ot,<j>,e) = eh^cot^e) (A2)

Consider now (11) (i.e., equation on the Sc-surface)

I ='v(4>,t)+g((J),t,C) (A3)

where v(<J>,t) is obtained from:

I+ ep(ort) = i(<|>,v(<j>,t)) .

Since i's(t) is of the form I+ep(wt) the functions v and g can be represented ,
respectively, as follow:

v(4>,t) = Vjfo) + ev2(4),t,e)
(A4)

g(<J>st,c) = gx((j),c)+ g2(<j>,t,e,c)

Thus, (A3) can be reduced to the form (Al) with ij;(<j>) =" vAfy) +g1(4>,C) where
g1(0,C) is "small" for small C. Now if there exists <j>0 such that v^J =0

ihe case for v follows from the hypotheses of theorem 4 and the implicit function
theorem. In the case of g the property follows from the construction of the
Surface Sq.

-Al-



dv1(<J)0) „
and —T7 f (r then the rotation number of (11) is zero (provided C and e

are small enough). Since we are interested in nonzero rotation numbers we

shall assume that v,^) > 0; i.e., equation (11) is reducible (for small

e and C) to (Al) with the condition iM<j>) ^d > 0 for all <j>. Let us introduce

now the new variable:

A „„x_„? dx

2tt

0

whereQ^^r^-r1
d6Observe that -^r = ftM<j>) >0. Thus e((j>) is monotonically increasing

(and, as such, invertible) and 9(<f>+2Tr) = 9(<j>)+2tt for all <J>. Clearly,

e(*) = <i>+n(<J>) (A6)

where n(<J>) is 2ir-periodic. The same relationship holds for the inverse function

<J>(6) = 6+^(9) (A7)

where c(9) is 2ir-periodic. The 9 vs. <J> relationship is depicted in Fig. 7.

Observe also that:

Hence, (Al) can be reduced to the form

0 = Q+ eg(u>t,0,e) (A8)

where g(u)t,9,e) - e^h1(d)t,9(^),e)/i|)(9) =fth(u)t,<j>(9),e)/tK9).
It is an immediate consequence of (A7) that the rotation number of (A8)

is the same as that of (Al). Indeed, let the rotation number of (A8) be y,

then 9(t) = yt + y(t) with y(t) bounded. Now

t <J>(t) ,. d)(0(t)) 9(t) ,. d>(9)lim :i^-L = lim VA/1\ • -ir1- = lim ^^ • y
t+co t t->~ evt; t Q^m 0

and because of (A7), lim -^- =1. a
9^« e

23 aThis would be the case if -^ri(4>Q>0) t 0where i(<j>,v) is given in (3)
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A2. Synchronization zones
2tt

The function g(out,9,e) which appears in (A8) is 2ir-periodic in 9 and

periodic in t. Let us expand it into a Fourier series:

9(wt,0,e) = Ig^e^V"6 (A9)
2tt 2tt , . fl

where gm n =/ / g(T,9,0)e"J e"J dxd9. Let us fix the integers Mand N,m,n 0 0

and define

A=e^CJjw-fl] (A10)

We shall assume that A remains bounded for small e; i.e., for small e
M

the frequencies tto) and ft must remain close to each other. Define also
1N
N1a(t) = 9(t) - -nut. Under this notation (A8) takes the form:

/M N

m,n

and, when averaged in time, it reduces to

a = e[-A+g(a)] (A12)

£M,-£N(
.JlNa

where g(a) =J goM oNe"J is 2irN-periodic in a. The following

Theorem holds [6,7,8]: Assume (A12) has a constant solution ou such that 7f-g(a0) <
-6, for some positive constant 6 (independent of e). Then for 4 "sufficiently
small" (All) has a stable -~—periodic solution a(t) which is close to a^.

Clearly, the necessary condition for the existence of a constant solution

for (A12) is

inf g(a) A a < A < b = sup g(a) (A13)
a a

Moreover:

sup g(a) - inf g(a) < B., N= 2 I |g£M J

Observe that BM ., -»• 0 as M -*• «• or as N -»• °°. Indeed, if g(a) is r times con
tinuously differentiable, then nrmrg„ m-»» 0 as n -> «» or as m -*- «.

3n,m
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It follows that for M or N "large enough" the entire sum B« Nwill be small.
Thus, the zones of possible synchronization in the (aj,e)-plane will appear

as shown in Fig. Al. Note that since e must be small with respect to oj, the

zones for small a) are lower.
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APPENDIX B

B Melnikov's Method24 [12,13,14]

Bl. General Theory

Consider

x = f(x) + eg(t.x) (Bl)

where x,f,g are continuously differentiable vector-valued functions, g(t+T,x) =
g(t,x), and e is a small parameter.

Suppose that the unperturbed equation

x = f(x) (B2)

possesses two saddle points and a saddle connection rQ as shown in Fig. Bl(a).
The points xQ1, xQ2 may coincide and give rise to a homoclinic orbit as shown
in Fig. Bl(b). We shall give conditions under which the perturbed equation

(Bl) will possess a heteroclinic structure or a homoclinic structure

as shown in Figs. Bl(c) and (d) respectively. The following

Lemma Bl [11,12] holds: If e is small, then (Bl) possesses in a neighborhood of

Xq^ and Xq2 unique periodic solutions x,(t) and x2(t). Moreover each of these
solutions has a stable and an unstable manifold. d

Let XpX2 represent the abovementioned periodic solutions, and let Wu(x,)
and W (x2) denote respectively the unstable and stable manifolds in a Poincare
section as shown in Fig. B2.

Let us denote the time for which the Poincare section was taken by tQ. Let
q0(t>to) =^o^'V denote tne solution on r0x(-~,+oo), and let q"(t,tQ) denote
the solutions on w(x1)x(-»,+00} and WS(x2)x(-»,+«>), respectively

Lemma B2 [12,13] Trajectories on Wu(xx)x(-»,+«) and WS(x2)x(-«,+~) can be
expressed as follows:
24
Discussions on this subject with R.D. Rand, Y.S. Tang, and T.S. Parker are

gratefully acknowledged.
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q^(t,t0) =q0(t-tQ) +eq^(t,t0) +O(e^), t 6 [tQ,+«,)

qU(t,tQ) =q0(t-tQ) +eq"(t,t0) +0(e2), t € (-oo,t0]
(B3)

where qS'u(t,tQ) are bounded. d
CM

The functions q ' (t,tQ) are uniquely defined by orthogonal projection
If C

of ^O^O"^ =%^ on w (xi) and W (x«) as shown in Fig. B2. Define now
the separation between manifolds Wu(x,) and Ws(x«) by

where

4f[q0(0)]A[qU(t0,t0)-qS(t0,t0)]
d(t0) |f[q„(0)]|

a Ab = a.b0 - a2b- = |a|»|b|sin* (a,b)

from Lemma B.2 d(tQ) =e |f[q (Q^| L+O(e^)

where q^'s =qi'S(tQ,t0).

Introduce

AU(t,tQ) := f[q0(t-tQ)] aq^(t,tQ)

AS(t,tQ) := f[q0(t-tQ)] aq^(t,tQ)

and A(t,tQ) := Au(t,tQ) -As(t,tQ)

Using this notation, we have

d(tC} =|f(q0(0))| •" ^O'V +̂

(B4)

(B5)

(B6)

Observe that if A(t0,t0) changes its sign (when to is changed) then Wu(x,) and
W (x2) intersect each other. In particular, if rrp- A(t0,tQ) $ 0 and A(t0,t0)= 0
then the intersection is transversal . On the otner hand, if there exists

25
Intersection is said to be transversal if it persists under small perturbation.
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6>0such that |A(t0,t0)| >6for all tQ, then for small e, Wu(xx) and Wu(x2)
do not intersect each other.

Lemma B.3 [13]

+oo

If exp[± / div f[qn(x)]dT] is bounded then
0 t-t

A(t0,tQ) =/ f[q0(t-tQ)] ag[t,q0(t-tQ)] •exp{-/ div f[qQ(T)]dT}dt
-oo 0

In particular, if div f[qQ(T)] = 0
then

+<»

(B7)

A(tQ,t0) =J f[q0(x)] ag[T +t0,q0(x)]dr
—00

Proof: Consider Au(t,tQ) as defined in (B5)

cff A"(t'V =i *L%lt-to)l aq^(t,t0)

=f[q0(t-tQ)] q0(t-tQ) a qj(t,t0) +f(q0(t-tQ)] a q^(t,tQ)

Let us recall that

q0=f(q0), andq^ - f(q^) +eg(t,q^).

Since: q^ =qQ +eqj +0(e2)

we have: qQ +eqx +0(e2) =f(qQ) +f (qQ) eqj +eg(t,qQ) +0(e2)

and qx =f (qQ) q" +g(t,qQ)

Thus:

^AU(t,tQ) =f'CqoJ-ftqQjAq^ +fCqQjAf (q0)qJ +f[q0]Ag(t,q0)

=div f[q0(t-t0)]-AU(t,t0)+f[q0(t-t0)]Ag[t,q0(t-t0)].
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To prove the last equality take ffan) =: fll f12

21 '22

,f(q0) - fl
. q =

V
f2 q2

fll'fl +f12'f2

f21 'f1+f22 'f2

"• •"

A
qi

"2

+
fl

f2
A

:irqi+fi2,q2

:21#ql+f22'q2

fllflq2 +f12f2q2 " f21flql " f22f2ql + flf21ql + flf22q2 " f2f12q2

(fll +f22)(flq2*f2ql) =tr f'(q0) •(f(<?o)Aql) =d1vf*AU

In a similar way, one proves that

d .s^AS(t,tQ) =div f[q0(t-tQ)] i{t9tQ) +f[q0(t-t0)]Ag(t,q0(t-t0))

i.e., both Au and As satisfy an equation of the form

t = a(t)C + b(t)

The solution: t

/ a(x)dx . t
tQ ) £a(s)ds

5(t) =e° • ?(tn) +Jb(x)eT dx

'0

is equivalent to: i

i

£(t0) = 5(t)e

now -OO

~/a(x)dx t Ja(s)ds
0 - / b(x)eT dx

*0

/ a(x)dx
t0

(a) if e is bounded and £(t) •* 0 then
tg t •*• -°°

-«> f a(s)ds
C(tQ) =-/ b(x)eT dx

-B4-
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t^(T)dT
(b) if e is bounded and C(t)t_^+00 0 then

*0
+~ / a(s)ds

C(t0) =- / b(x)e^ dx
t

Recall that f[q0(t-tQ)] + 0and by Lemma B.2 q^u(t,tQ) is bounded.
t ~*" i°°

Hence, Au(t,tn) -*- 0 ,As(t,tn) -»• 0.
u t^--«> u t+ +»

±00

By assumption, exp[± / div f] is bounded and by properties (a) and (b) above

we have:

AU(t0,tQ) =-/f[q0(x-t0)]Ag[x,q0(x-t0)].exp{/ div f[qQ(x-t0)]ds}dx
t0 r

AS(tQ,t0) =-Jf[q0(x-tQ)] g[x,qQ(x-t0)] exp{( div f[q0(s-tQ)]ds}dx
t0

Hence,

A(t0,tQ) ^ Au(t0,tQ) -AS(tQ,t0)
+« 0

= / f[q0(T-t0)] exP{/ div f[q0(cf)]da}dx
^O t

+«> -/div f[qQ(a)]da
= /f[q0(t)]Ag[t+t0,q0(t)]e ° dt

26
B2. Example. Pendulum with Weak Damping and Forcing

Consider x = y

y = -sinx +eay+ eb sinwt (B9)

26
The system considered is equivalent to the Josephson-junction circuit described
by (4.1) with p(u>t) = bsinwt, I = 0, 6 = ea, k = 1, and C = 1.
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This equation is of the form (Bl) with:

x = 'f(x) "[sinx] •9(*'x) =[-ay+°bsinJ
f(x) a g(t,x) = -ay + by sin ait.

Hence,

+00

A(t0,tQ) = J(-a/(t) + by0(t)s1nco(t+t0))dt
—00

where y0(t-t0) denotes the solution on rQ as shown in Fig. B.3. (obtained
for e = 0). Let us choose tQ and yQ(0) so that yQ(x) is an; even function

With yQ(x) chosen as above, A(trj,tQ) takes the form:

A(tQ,tg) = -aA + bBsincotg

where
+00

A:= / yj(t)dt
-oo

+00

B:= / y0(t)coso)tdt
-00

It follows from (BIO) that

(a) If ,then A(tn,tn) f 0for tne [0,-^]
'05U0 0)

and for e small enough, W and Wu never intersect each other as shown in
Fig. B4. In particular, these manifolds do not intersect when periodic

forcing is absent (i.e., b= 0, a>0)

(BIO)

(b) If , then A(tQ,t0) changes its sign at tQ defined by aA = bBsinoitg

Note that •£- A(tn,tn) =+ajbBcoswtn =o)/(bB)2- (aA)2 t 0
dt 'Os"0

0

So for e small enough, the manifolds intersect transversally. Regions of the

(a,b) parameter plane where chaos exists are shaded in the Fig. B5.
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Footnotes:

1. These terms describe the normal (and quasiparticle) currents and supercurrent,

2. The authors would like to thank Prof. T. Van Duzer for informative discussion

concerning the problem.

3. The current expression in (2) as found by Josephson satisfies these

assumptions.

4. If i(<J>,v) is of class Cr then i|i(<fr) is also of class Cr.
5. Since the junction oscillates at extremely high frequencies (GHz range)

only the average value can be measured experimentally.

6. If i(<j>,v) and p(cat) are r-times (continuously) differentiable then h(a)t,<j>,e)

is (r-2)-times (continuously) differentiable.

7. Let us observe that if e=0 then h(a)t,ip,0) = 0 and S£ coincides with SQ
defined by (5).

9. Recall that for small C, e need not necessarily be small in order to obtain

a toroidal invariant surface.

10. Let us note that in the case of both surfaces S and S-, the functions

f(t,<j>;I) increases with I.

11. With respect to the multiplicative constant [1].

12. Recall that the rotation number is the same for all solutions of (12).

13. The surface S£ always lie above the v=0 plane. For Sp, this need not
be the case, but (provided that e is small enough) equation (11) will

either have a zero rotation number or will be reducible to (14). For

more details, see Appendix A.

14. If A=a or A=bthe solution also exists but then -g- g(ou) =0 and Theorem 5
does not hold.

15. More exactly we should call them "zones of possible synchronization" since

if (15) has a constant solution we still need -r- g(aQ) <0 to guarantee
synchronization.

16. Figs. 9 to 11 show only zones where synchronization may appear. Thus we

know that steps obtained for large M and N must be small and those obtained

for small M and N may be large.



17. To be specific, we consider the simplest form of the Josephson junction

equation. Our discussion, however, will be couched in terms of phase

portraits and therefore remains valid for more general equations.

18. All trajectories originating from points on the surface S must remain on

the surface S.

19. Fig. 16 shows the intersection of surface S with a constant time plane at
2tt

t = k(—). There are more bifurcation possibilities than those shown in

Fig. 16. However, the portraits shown are the only ones which are struc

turally stable; i.e., those which persist under small perturbation.

20. Each point of intersection belongs to both invariant surfaces and so does

the trajectory originating from it. Now this trajectory tends to $ as
2tt

t+ -« and to <j> + 2tt as t-*•+<». The sequence of points (v(k—)), k=0,±1,±2,...

lies on both surfaces and therefore constitutes infinitely many points

of intersections.

21. i.e., corresponding to the "saddle connection" of the autonomous system

as shown in Fig. 15(b).

22. The case for v follows from the hypotheses of theorem 4 and the implicit

function theorem. In the case of g the property follows from the construc

tion of the surface Sr.

23. This would be the case if jt i(<J>0,0) f 0where i(<J>,v) is given in (3).
24. Discussions on this subject with R.D. Rand, Y.S. Tang, and T.S. Parker

are gratefully acknowledged.

25. Intersection is said to be transversal if it persists under small pertur

bation.

26. The system considered is equivalent to the Josephson-junction circuit

described by (4.1) with p(wt) = bsinwt, I = 0, G = ea, k = 1, and C = 1.



Figure Captions

Fig. 1. A Josephson-junction circuit model.

Fig. 2. The surface SQ in the (t,<j>,v)-space.
Fig. 3. The average-voltage vs. d.c.-current characteristic. Note the critical

value for IQ such that 1^1^ =sup i(<J),0) the characteristic is
double-valued. *

Fig. 4. The invariant surface S can be viewed as a "cylinder" or a "torus."

Fig. 5. The surfaces S and Sp may coexist with periodic solutions, (a) In

case of small e the periodic solutions must lie outside the surface S

(b) In case of small C the periodic solutions lie on 1he surface Sp.

Fig. 6. The rotation number as a function of I is a continuous and nondecreasing

function.

Fig. 7. The old variable (j> versus the new one 0.
2tt

Fig. 8. The function g(a) is 4- -periodic. Note that we are considering only

these solutions aK for which -r- g(aK) < 0.
Fig. 9. The possible synchronization zone obtained for -n- frequency ratio.

(a) The forcing frequency w is fixed

(b) The synchronization zone in the (wjftjjej-space. Observe, that
if the forcing frequency m is "small" then the forcing amplitude e

must also be "small."

Fig. 10. Example of possible synchronization zones obtained for different

frequency ratios (a) for u) fixed in the (^T,e)-plane, (b) in the

(a),ftj,e) -space.
Fig. 11. (a) The synchronization zones from the Fig. 10(b) shown for fixed e

(b) If w=o)q is fixed then the rotation number changes with fi,. Note
that it remains constant within each synchronization zone.

Fig. 12. Graphical method of obtaining y as a function of I if the dependence

of u on ft, is known.

Fig. 13. Possible synchronization zones for ft, fixed.

Fig. 14. The rotation number versus d.c.-current in case when a.c.-current

amplitude is small.

Fig. 15. The invariant surface and the constant solutions for d.c. forcing I < I*

(a) IQ <I<I, , the constant solutions lie outside the surface I=Iq
(b) The surface connects the (unstable) solutions

(c) I< Iq, the surface ceases to exist.



Fig. 16. Poincare* sections obtained for the perturbed saddle connection. All

Portraits are structurally stable.

Fig. 17. Nonintersecting invariant manifolds in the (<J>,v,t)-space.

Fig. 18. Poincare* section for intersecting manifolds. P, is the forward

iteration of PQ, P - and P « are the backward iterations of PQ.
Fig. 19. Example of intersecting manifolds in the (<|>,v,t)-space. The inlet

shows the relevant part of Poincare* section.

Fig. 20. Erratic behavior of points lying close to manifold intersection.

Domains D^ and D« (respectively D_, and D „) are the first and second
forward (respectively backward) iteration of DQ.

Fig. 21. The values of e and oo for which the chaotic behavior was observed in

the numerical-analog experiments [16].

Fig. Al. An example of possible synchronization zones. Note that the zones

for "large" M and N are narrow, and these for small oo are low.

Fig. Bl. Examples of a heteroclinic and a homoclinic structure, (a) and (b)

show a heteroclinic and a homoclinic orbit of an autonomous system.

(c) and (d) show structures which may be obtained when a small per

turbation is applied.

Fig. B2. The stable and unstable manifolds and solutions on them taken for

the Poincare" section at t=tQ.
Fig. B3. The saddle connection rn for the pendulum with constant forcing.

a BFig. B4. APoincare section of (B9) obtained for k > a '
Fig. B5. The (a,b)-parameter plane. Wu and W5 intersect transversally iff

a and b lie within shaded regions. Note that the picture is valid

only for small e and that slope of the regions boundaries at the origin

is equal to ±B/A.
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