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Abstract

This paper presents an algebraic theory for analysis and design of
linear multivariable feedback systems. The theory is developed in an
algebraic setting sufficiently general to.include, as special cases, con-
tinuous and discrete time systems, both lumped and distributed. Designs
are implemented by construction of a controlier with two vector inputs
and one vector output. Use of controllers of this type is shown to
generate convenient stability results, and convenient global parametriza-
tions of all 1/0 maps and all disturbance-to-output maps achievable, for
a given plant, by a stabilizing compensator. These parametrizations are
then used to show that any such I/0 map and any such disturbance-to-output
map may be simultaneously realized by choice of an appropriate controller.

In the special case of lumped systems, it is shown that the design
theory can be reduced to manipulations involving polynomial matrices only.
The resulting design procedure is thus shown to be more efficient compu-
tationally.

Finally, the problem of asymptotically tracking a class of input
signals is considered in the general algebraic setting. It is shown that
the classical results on asymptotic tracking can be generalized to this
setting. Additionally, sufficient conditions for robustness of asymptotic

tracking, and robustness of stability are deve1opéd.

Research sponsored by a grant from Aerospace Corporation and National
Science Foundation Grant ECS-8119763.



I. Introduction

A subject of great interest in the design of linear multi-input multi-
output systems has been the characterization of all designs which can be
achieved by a stabilizing controller for a given plant. Such results have
been developed for the lumped continuous and discrete time cases; first
by Youla, et al. [You. 1] and later by Pernebo [Per. 1] and others [Sae.
1] [Che. 2] [vid. 2]. By using an algebraic formulation, Desoer, et al.
[Des. 1] generalized such results greatly - to include the distributed
continuous and discrete time cases, among others. And in a similar alge-
braic structure, a particularly flexible and convenient method for stable
plants, was suggested by Zames [Zam. 1], developed by Desoer et al. [Des.
2], and used in computer-aided design by Gustafson et al. [Gus. 1]. Al
of these methods give their results in a parametrized form; by appropriate
selection of a particular matrix, any design achievable by a stabilizing
controiler may be realized.

This paper presents an algebraic design procedure which generalizes
the above results in several ways:

(i) The algebraic structure is more general than that of [Des. 1],
because it enables one to design with non-square plants and controllers.
In addition, the algebraic structure characterizes the class of plants
for which an algebraic realizability condition on the controller can be
included in the parametrization of stabilizing controllers. This is
accomplished through use of the Jacobson radical [Zam. 1].

(ii) The parametrizations of [Per. 1] and [You. 1] for the lumped
continuous and discrete time cases are extended, by the use of our

algebraic methods, to a great number of additional cases (see Table I).



In addition, the algebraic formulation allows great simplification of
the stability argument. Finally, using a transformation of the type
proposed by [Per. 1], [Vid. 1], it is shown how design in the lumped
continuous or discrete time cases can be reduced to manipulating only
polynomial matrices.

The method by which these results are achieved involves construction
of a controlier with two vectof—inputs and one vector-output [Per. 1],
[ABst. 1]. This resulting closed-loop system is thus so constructed as
to give a multivariable interpretation of Horowitz's two-degrees of
freedom design [Hor. 1].

Also, a set of sufficient conditions for the robust stability of
this feedback configuration is presented, much as in [Chen 1].

Additionally, the asymptotic tracking problem [Cal. 3], [Cal. 4],
is considered; we show that known results, including the internal model
principle [Won. 1], can be generalized to the abstract algebraic struc-
ture used in the design parametrizations. A unification of the theory
of asymptotic tracking is thus achieved, for many interesting cases (see
Table 1).

Thus, this paper achieves a unification of design parametrization
theories for the canonical design settings of linear multivariable system
theory.

The paper is organized as follows:

Section 11 defines the algebraic design structure and the closed-
loop system under considerations.

Section IIl presents the main results: the stability theorem and

the design parametrization theorems.



Section IV specializes the results of Section III to the lumped
case, and shows how the design theory then need only consider polynomial
matrices.

Section V discusses thé robustness of stability and the asymptotic
tracking problem.

Section VI contains the conclusions.

Special notations and definitions:

a := b means a denotes b. 6 . denotes the mxn zero matrix.

For definitions of standard algebraic terms, see [Jac. 1], particu-
larly chapters 1-3, [Sig. 1] or [Mac. 1].

If H is a ring, then E(H) denotes the set of matrices having all
entries in H.

R(s) denotes the set of real rational functions in s. IRp(s) denotes
the set of proper rational functions: those that remain bounded as

|s| + =. lRp’o(s) denotes the set of strictly proper rational functions:

i.e., the proper rational functions tending to zero as |s| + =. IRU(s)
denotes the rational functions analytic in the region U C (.

R{o}(A) denotes the set of real rational functions analytic at A = 0.
R{o}.ou) denotes the set of real rational functions having the value

zero at A = 0.

II. Preliminaries

-

2.1. Algebraic Theory

Roughly speaking, the algebraic structure developed here consists of
a) H, a ring of scalar transfer functions; b) I, a multiplicative subset

of H; c) G := [H][I]'], the ring of fractions over H and I; and d) J, the



set of units in H, i.e., mME J = m'1

€ H.

It is helpful to keep in mind a simple example, while studying the
detailed definitions below: H is the ring of scalar, exponentially stable,
proper rational functions in s; T is the subset of H whose elements
tend to a non-zero constant as |s| + =; G is then the ring of scalar,
proper rational functions; and J is the ring of proper, exp. stable
rational functions with no zeros in €, nor at infinity.

In the general formulation, these terms are defined as follows:

H: An entire ring (integral domain): i.e., a commutative ring
with no zero divisors. Let 0 and 1 denote the additive and multiplica-
tive identities, respectively.

G: The fieldof fractions over H [Jac. 1, Sec. 2.9]: i.e., a field
whose elements are the pairs (n,d) =: n/d, where n,d € H, and d # 0, and
are subject to the equivalence relation n]/d] = “2/d2 \and n.lcl2 = n?_d]. (In
the example above, G is the field of rational functions).

I: A multiplicative subset of H: i.e., ICH, 0€ I, and x,y €E I =

Xy e I. Without loss of generality, let 1 € I.
G:={n/d€EG:n€EH, d €T}, a subring of G.

J: {mGH:m']

€ H}, the ring of units in H.
Additionally, we consider the following structure, known as the
Jacobson radical of G [Nai. 1] [Bou. 1].

Gs = {XEG: (]+xy)-] €G, Yy €G}. It can be shown that G$ is

an ideal

of G; thus x € G, =xy €6, Vy€EG (note that in the example
above, G is the set of strictly proper transfer functions).

In addition, letIF be a field; typicallyIF =R orIFF = €. We assume

TThus, Gg is also an additive subaroup of G. Some authors [S1g 1]

refer to° Gg as a ring; others as a "rng" - a ring without unit
[Jdac. 1].



that (H, F) and (G, IF) form vector spaces over FF (i.e., multiplication
by scalars is defined onIF x H and onIF x G, and the axioms of vector
spaces are satisfied). Additional examples of the algebraic structure

above are given in Table I.

Comments: (a) Since by assumption, 1 € I, we can identify n € H, and
n/1 € G; hence we view H as a subring of G and we write nd"I for n/d.
(b) By construction of G, every element of I has an inverse in G.

(c) Since both H and G are commutative rings, both (H, IF) and (G, IF)

are commutative algebras over IF [Nai. 1].

2.2. Coprime Factorizations

Definition 2.1

Xn -1 (n-1 . .
Let H € 6™, We say that N rOhy (thth) is a right-coprime fac-

torization (r.c.f.) (left-coprime factorization (2.c.f.), resp.) of H,

if and only if
(1) H = Nhrn;l (D';}LNM, resp. );
.o mxn Xn XN
(i) N € H", D, € H" (D, € Hmxm Ny, € H™" " resp.), and
det Dhr €1 (det Dyg €15 resp.);
(114) (N, D, ) are right-coprime (r.c.), i.e., J U € H " and
v, € H"™"  such that UN .+ VD= s

he © "r'hr  'n’
((§41)" (D, ,sN, ) are left-coprime (1.c.), i.e., J U, € H™™ and

Xm _
v, € H™M such that NpoUp + DpgVy = I resp.).

Comment: Recently, Vidyasagar et al., gave a set of sufficient conditions
for the existence of coprime factorizations [Vid. 2, Thm. 2.1]; it is

easily seen that all of the examples in Table I satisfy these conditions.



In this paper, we assume the existence of coprime factorizations through-

out.

II1. Design Theory

3.1. Problem Description

We consider the system S shown in Figure 1.

wish to design a controller C.

at various points in this paper.

Assumptions on System S:

n
(P1) P € Gs° 1

xn.

Given a plant P, we

,V_.. € E(H) satisfying

l["nzﬁNm] » With

= I .
(P2) Nperr is a r.c.f. of P, with Upr pr
UpMor * VorDor = Ini
~"ix("v+"o) -1
(1) ceoe is given by Dcz[an:Nle’ with
n.xn. n.xn n.xn
™ i%v i“o
Do &~ w N  €H 7 Nep €M
n;x(n +n ) -
(C2) CEG has a f.c.f. D,
n.xn. n.xn n.xn
i iy i
Do EH s Npg €H 7 75 N €H

Comment: (C2) = (C1).

Under (P2) and (C1), the system S is completely described by

-

We will require the following assumptions

(3.1)

(3.2)

(3.3)

(3.4)

(3.7)
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S | 6'-N- - + 6 TI- -.-0- - I - (3'8)
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e I '0 010 'I Y0 d
LZ- ny | R (PR e

Comment: In the five cases of Table I, Eqs. (3.7) and (3.8) can be
interpreted as matrix products (in the s,z,or A domain), or as convolu-

tion equations in time domain ( R, or N).

T T T
Let u := (V]9u{9u2’dg)To g := (Y¥sgg)T’ and y := (Y¥’y2se{se;)T-

~ Then, we can rewrite (3.7) and (3.8) as:
DE = N, u (3.9)
y= Nrg + Ku (3.]0)

where the definitions of D, Nz' N, and K are obvious from (3.7) and (3.8).

Definition 3.1

n,xn, n;xn,
For any Dcn. EH » and any Nfz €EH » define
n,xn,
Dy, := Dcszr + NfR.Npr EH (3.11)

Definition 3.2

S is called H-stable iff Hyu : upr y defined by (3.9) and (3.10)

satisfies "yu € E(H).
If we assume that (P2) and (C1) hold, and that det D € I, then,
from (3.9) and (3.10), we have
- -1
Hoy = N.D

y N, +KE E(G) (3.12)



1

It is easy to show that if (P1), (P2) and (C1) hold, D* € ¢(G).

Comment: Definition 3.2 makes sense because a) each subsystem input may
be manipulated independently by some exogeneous input (i.e. component of
u), and b) each subsystem output is part of the output vector y. Con-
sequently, in the rational function case, for example, if neither C nor
P have unstable hidden modes then all the zeros of the characteristic
polynomial of the system S are in the stable regionof the complex plane

if and only if S is H-stable.

Definition 3.3
A controller C is said to be admissible for the plant P iff C satis-

fies (C2), and the resulting system S is H-stable.

Theorem 3.1 (Admissibility of C)

Consider the system S with P satisfying (P2), and C to be specified
later. Under this assumption,

n.xn.
(1) If P satisfies (P1), and if, for some D_, € H 17 and
n.xn
10
Nfz € Hn n » det Dh € J, then det Dcz € 1, and hence, for any
N

o EH i vV, the controller C := D;l[Nwzstzl is admissible for P.

(ii) If C is an admissible compensator for P, then det D, € J.
Comments: (a) In statement (i), C € E(G) is part of the conclusion.
Pe E(Gs) and det D,, € J guarantee the H-stability of S and C € E(G).
(b) In statement (ii), P is not assumed to have its elements in G.

(c) The corollary below is a sTightly weaker form of Theorem 3.1.

Corollary 3.1

Let S satisfy (P2) and (C2). Then, S is H-stable
- det Dh € J.



Proof of Theorem 3.1

(i) First, we will show that det Dcz € 1 and consequently that

- n;xn
C:= Dc;,[NnJLENfR.] fs well-defined an: ::tisfies (C2), for any N € H ' Y
By (P1) and (P2), we have PE€G° ', and PD__ = N__ with
ngxn;  noxng § prpr
Dpr €H CG . Now, since Gs C G is an ideal and hence is closed
n_xn
under addition, it follows that N € G.° T From (3.11), we obtain
p-'p =1 - 02NN
h “cipr h "fepr
Taking determinants of both sides, we can easily obtain
- -1 -1
det D, = det D, (det opr) det(I-D Nlepr) : (3.14)

By assumption, (det Dh)"] € H CG, and det Dpr €EHCG. We will now show
N r) is invertible in G, thus showing that (det D
P n_xn n_xn, n.xn -1

o' i (I i“o
We know that Npr € Gs NnH . Nﬂ' €EH , and Dh

-1 %05
hence, Dh Nszpr € Gs .

A€ d"xm. with the 'ijicL element of A denoted aij’ the determinant of A is

defined by det A := I(sgn o) 316(1)* 220(2)** ** *“mo(m) where o is a per-
o

-1

) e G.
ﬁ%xn.
en' 1,

that det(l-D;‘N

Now, by definition of determinant (for

mutation functionon the integers 1, 2, ..., m), and by the fact that GS

is a subring of G, there exists g € Gg» such that
det(I-D;]Nszpr) =1+g

By the definition of G, (1+g)"1 € 6, and (3.14) shows that

-1
(det Dcﬂ,) €G (3.15)

and hence that det Dcz € I. We can now show that C satisfies (C2) for



n.xn
any N, €H ' Y, since, by (3.15), D;l € £(6) [Jac. 1; Thm. 2.1, p. 94]

and thus C € g(G), and since (D;]Dcz)"] (D;‘][N ]) is a f.c.f. of C.

wEENfl
The second conclusion follows from (3.11), and the fact that D};] € E(H).
Second, we will show that the system S, now well-defined by P and C,
is H-stable. As a result, C will be admissible for P.
We have shown that C satisfies (C2). Thus, since P satisfies (P2),
the system S is described by (3.7)-(3.10). By performing block elemen-

tary row operations (in the ring H) on the matrix D in (3.9), we obtain:
dun=ndaww%;www)=m«t%eu (where n = + 1)

Thus, from our assumption, n-det D, =det D€ J, implying that (det D)'] € H.
! € £(#) [Jac. 1; Thm. 2.1, p. 94].
Consequently, since Nr € E(H), N2 € E(H), it is clear that (NrD'1N+K)€E(H).
So, by (3.12),

Now, since H is a commutative ring, D~

Hyu € E(H) and S is H-stable

Thus, by definition, C := D;l[anszz] is admissible for P, for any
ngxn, :

(ii) We prove that det D, € J in two steps:

First, we prove (D,Nz) are 2.c. and (Nr,D) are r.c. By (P2), (Npr’Dpr)

are r.c. and by (C2), (Dcz’[anfoz]) are %2.c., hence there exist

Ur,V s V

P pr ce? U‘l‘ll’ Ufl € E(H) such that:

U vD I (3.21)

pripr * Vor%er = In

D.,V

+ [N_,:Ng,] 9’.‘& = 1 (3.22)
cL cl ni. f2 :



From (3.21) and (3.22), we can check that (3.23) holds:

) UpgBp \Upg|
I | I [ o 0 1 ool o o[
"i: pr c&’h “pr , "c2 ) .'Ini : 0 Ufznh 'Ufz Ini \ 0
.............. + - - '- - - I- - o '> - - o o ojle = Sle ©« o -
! [} 1
- |- t
Dcz' Nfl"pr In ' 0 Nwz' Nfz + 0 Nfﬁ vcy,Dh In-'vcz 0 In
L ] i 1 . L | ' Jl= = = = 1'- - L | 0
R o 0
- (3.23)

Rewrite this as:

0y + Nl = T 4, (3.24)

Since by (3.23), Vz, ﬁz € £(H), (D,N,) are 2.c. Also, from (3.21), (3.22),

we can check that

~ l -
Ip,1 O
I - r ] - r ' ' 1-.'-l.-..

- ! ' . | | )
Dcz thpr | In1 I"l : Dpr thpr ,Dhupr , 0 ,In 0 Npr In.il 0
.............. ¢ | 0 e o0 e o= e ol oo «a = = - - -

! ) i r
- I b !
Vor !0 | [Deg ! Negpy Vor ' U :o o o | Ny 0 11
J ¢ ~ - J]|= == - -
I 0
nil
(3.26)
Rewrite this as:
VrD + UrNr =1 (3.27)

+n,
nO n'l

Since by (3.26), V,., Dr € E(H), (N.,D) are r.c.

Second, we prove that:det Dh € J by contradiction.

Assume det D, & J. Then, since n-det D, = det D, D! & W™, Rewrit-
ing (3.24) as:




Vy* DNy
Since Vz, ﬁz € E(H), and p! & E(H), we conclude that D']N2 € E(H). Post-

multiplying (3.27) by D"'N,, we obtain

RS - -1
Since V., Ny, UL € E(H) and D N, & E(H),
-1
ND N, E E(H)

Thus, Hyu = NrD']N2 + K € E(H), and so S is not H-stable. But this is a

contradiction, hence det D, € J. O

In Theorem 3.1, we have developed two relationships between the
admissibility of C and det Dh‘ We will now use these relationships to
give global parametrizations of a) the family of all I/0 maps possible
for a given plant with some admissible controller; and b) the family of
all disturbance-to-output maps possible for a given plant with some admis-
sible controiler.

For a given system S satisfying (P2) and (C1), and det Dy # 0, the

1/0 map H PV Yo and the disturbance-to-output map H d ° d° L2

Y2\ ¥2%
are given by:
- -1
Hy2V1 NprDh an (3.35)
- -1
Hyzdo R (3.36)

The corresponding families are defined as follows:

-12-



Definition 3.4

_n_xn.
let PEG? Tbea given plant; hence the specification of the con-
troller C determines the system S. Then,

v (P) := {Hy : C is admissible for P} (3.37)
1

H
Y2 2"

d (P) := {l-l.y 4 ° C is admissible for P} (3.38)
(V)

H
Y2 20

Theorem 3.2 (Achievable 1/0 Maps)

Consider a plant P satisfying (P1) and (P2). For this plant,

nyxn,

Hyzv](P) = {NprM t MEH } (3.39)

Comments: (a) (3.39) is a global parametrization of all I/0 maps achiev-

able by an H-stable S, with a two-input-one-output compensator C € g(G).

If we can factor Npr as Né‘:)Néi) where Ngi) has a right inverse in E(H),
Nf,::) is a left factor of all possible Nég)'s, then (3.39) can be

rewritten minimally, as

and

= iNWn . Moe we
Hyzv](P) {Npr M: Mis H-stable}

Pernebo [Per. 1] has discussed this for the cases where H = IRU(s) or

H= lRD(z).

(b) Suppose that Nf)':) = I, that is, Np,. has a right-inverse in H. Then
Theorem 3.2 asserts that any M € Hnoxnv can be achieved as the I/0 map
HyZV1 of the system S with the given plant P and some admissible C. In
particular, with a single-input sing e-output plant with a 3 dB bandwidth

of a few hertz, one can achieve an 1/0 map with a 3 dB bandwidth in the



megahertz (MHz) range! This is absurd because in reality, it would

require huge gains with the compensator that would cause thermal noise
to saturate the plant. (For a more realistic approach to design, see
[Gus. 1]). With due regard to this limitation, Thm. 3.2 is very useful

for it shows precisely what are the fundamental limitations on H‘y v
21

Proof
I) Select any H, € H'y v (P). Then, there exists an admissible con-
21

troller C admissible for P such that the resulting system S has HyZV] = Hv’

So, since (P2) holds, by Theorem 3.1 (ii), det D, € J. Thus

-1 nyxn, h nyxn,

D, €H [Jac. 1, p. 94] and, since C is admissible, N_, € H .
el njxny _

Let M := Dh N - Then MEH , and by (3.35), Hyzv] = Npr"‘ Hence,

M0y (3.40)
C : € .
gyzv](P) wM:men )

n.xn
II) Now, select any L € H TV Let N, :=L. From (3.2) of (P2),
n.xn n.xn,

there are Upr €N’ °, Vpr €EH ', such that

UpeMor * VorDpr = 1ni

. = ) . .= .=
Define a controller C := Dcz[an:NﬂL] with Dcz’ v r and N, := U

P nik. Pr
T, N, € H'iMo
and (P1) and (P2) hold, by Theorem 3.1 (i), C is admissible for P. And,

by (3.35),

Then, Dh = Ini. and det Dh =1 €J. Thus, since Dcz eEH’

Hyzv] s NprDh N = NprL (3.47)
Hence,

H  (P) D {N_M P )

Y2\ ) Mok -



The conclusion follows from (3.40) and (3.41). O

Theorem 3.3 (Achievable Disturbance-to-Qutput Maps)

Let P satisfy (P1) and (P2), and let P have a %.c.f. D;lez' For

this plant,

(P) = {1 yeyilo
H = {I-N_(U +YD_) : YE
Ya9, {Npr{UprtY0p,) oo

n.xn
I) Select any Y € H 770 Define a system S by choosing

-1
C:=D0_,[¢ Neod e .=
cL ngxn f2° where Dcl" Vpr - Ysz and Nfz = Upr + YDpz‘ By
(P2) and our assumption, Dcz, Ngp € E(H). Then
D, = (Vpr,-Ysz)Dpr + (Upr+YDp£)Npr
= vperr + Uperr + Y(Dpler'szopr) (3.42)
. -1
Since Dpszz is a L.c.f. of P, we have
-1 - -1
DpeMpe = Nprlpr
or
NoePor = DpeNpy

Thus, (3.42) becomes Dh = Vperr + Uperr = I, and det D, = 1. Conse-
quently, since (P1) and (P2) hold, by Theorem 3.1 (i), C is admissible
for P. Thus, b

= -1 =

«15=-



nixno
o) : € .
Hyzdo(P) {1- Npr(Upr pe Y : YEH } (3.44)

I1) Now, select any Hy € ﬂy d (P). Then, for the given P, there
20
exists an admissible C which real1zes Hy d = Hy. By (C2), this C has

at.c.f., say Dcz[an anl Now, by Thm 3 1 (ii), det DR i;], since C
is admissible for P. Thus, Dh'l €EH A . So, DhIDcz €EH i , and
] n;xn

Dy f‘Leu ©  Also, from (3.11),

1 -1
cL Dpr * Dh Nfﬁ pr In.i

Dp D

Thus, subtracting (3.2),
1

(Dh ce” pr)D (Dh 1 Upr)Npr nixni (3.45)
Choose : :
Y := (Dh Nfz' Upr)Dpz (3.46)

or, equivalently,

- n-)
YDp Dh Nfz Upr (3.47)

(a) We prove that Y € E(H)

By (3.45),

o;'D,, - Vo = - (o', )Npropl
=< (Dﬂlez U )Dpz pL
- - W,

Now, since (Dpz’sz) are 2.c. there exists sz, € E(H) such that

Uy



DoVor * Mol = I

0
Thus,
L Y(Dpz petNoe pz)
= (D2 N S - (0 'o_,-v_)u
h fz h “c2 “pr’ pL
. -1 -1 .
So, since Dh Nfz’ h Dcz’ Upr’ v o Upz, Vp € E(H), it follows that
Y € E(H).
(b) We prove that the given Hyq is of the required form I - Npr(upr+YDp£)‘
From (3.47),
0o, = U+ YD
h "fe = “pr pL
Thus,
= -1 =
Hg=1- NprDh Ne, = 1 - Npr'(Upr+YDp2)

n_.xn
So, the given Hq is in the set {1 N (U +YD ) Yeu! 0}. Hence

nxn
Hyd(P)C{IN (U ):veu 04 (3.50)

2% pr Pr P
The conclusion follows from (3.44) and (3.50). o
Now, the parametrizations given in Theorems 3.2 and 3.3, suggest a

general design scheme, which allows simultaneous realization of

H, € Hyzv] and Hy € ﬂyzdo‘ for any such H_ and H,.

Conceptual Design Algorithm 3.1
] _ -1 -1 noXNy
Data: P Nperr Dpsz2 € Gg : (Npr’Dpr) r.c., with Uperr + vperr

) 2.C.3




{

nixn°
Step 1: Find YEH

, such that Hd =1-N_(U_+YD Let

pr: pr pz)°

Dc£ = vpr - Ysz

N

£ ° Upr + YDpz

n.xn
Step 2: Find M€H ' VY, such that H,

NprM' Let Nog =M

Step 3: Choose a controller C (and thus specify a system S) by:
C = DIIIN ,iN,]
M~ At § 2 ') (3.53)

Claim 3.1: The system S, as specified by the plant P and controller C
of Algorithm 3.1, satisfies the following:
(i) € is admissible for P,

(i) Hyzv] = H,
(iii) I-Iy2d° = Hd'

Justification of Claim:

(1) Dh = Dcznpr + Nsz

pr

(Vpr'Ysz)Dpr + (U

pr+YDp2)Npr

(1]

VorDpr * UpeNpp * V(DN oNopDo )

I
Ny

Thus, det Dh =1€J. So, since (P1) and (P2) are satisfied by assump-

tion, and Degs Ngp € E(H), by Theorem 3.1 (i), C is admissible for P.

18-



(ii) For the system S, defined by P and C, we have

-1

I - N, (U YD) = Hy

Thus, Hyzdo = Hd as required.

(iii) Similarly,

- -1
I'|,yzv] NprDh an
= NprM = Hv
Thus, Hyzv] = Hv as required.

IV. Lumped Case Design Using Polynomial Subrings

4.1. Motivation

The results developed in Section III are valid for many classes of
systems, some of which are 1isted in Table 1. However, perhaps the most
important classes are the first two given in Table I: the lumped con-
tinuous time case (H= Ru(s)), and the lumped discrete time case (H= IRD(z)).
In both of these cases, H is a ring whose elements are only rational
functions (in s or z, as appropriate). Ideally, however, we would 1like
H to contain, as a subring, the ring of polynomials in either s or z.

This is desirable for ease of computation, specifically: in solution of a

Bezout identity (i.e., finding U por V

b p and Dpr in (3.3), given

pr* Np
P € E(G)), and in addition.

In this section, we give a computationally efficient method, of

transforming design problems with H = lRU(s) or H = IRD(z) into design

1"



problems with H = lRA(A) (with = € A, lRA(A) contains all non-proper

transfer functions in A, including, of course, R[A], the ring of poly-
nomials in 1).. Conceptually, the method is this: A transformation f,
mapping s (z, respectively) into A is defined. Then, using this change

of variables, the transformation P € E( R (A)) of a given plant

0},0
P € E( lRp’o(s)) (P € E( Rp’o(z)),resp.) i: 1}’ound. Next, the design
methods of section III are used to generate a controller C € E( IR{O}(A)).
Finally, ¢ € g lRp(s)) (€ € E( Rp(z)), resp.), the inverse image of the
controller C is found. Details of the transformations are given in
Sections 4.2 and 4.3.

Consider again the conceptual design algorithm of Section III. If
H= IRA(A), we can modify the algorithm to take advantage of the fact
that R[A] CIRA(A). This modified algorithm is presented below. Note
that this algorithm is valid for either the discrete time or lumped con-
tinuous time case, once the transformation P € E( R{o}.oo‘)) has been calculated.

Conceptual Design Algorithm 4.1
-1

n_xn
(x) © 1, (N_,D ) €E( R[], r.c.,

Data: P =N D7l = D;}sz €R(; . or+Dor

with uprupr + vpr or = Ini, and upr, vpr € E( R[2]); (ng,Npg)EE( R[2]), 2.c.;
H, € Hyzv](P) and Hy € Hyzdo(P).

Step 1: Find Y EIRA(A)nixn", such that H; = I"o - Npr(upr-t-YDpz).

e -1 i
Step 2: Find a t.c.f. Dley.Q, of Y, with Nyz’ Dyn. € E( R[A]). Let

D, :=D,,V

cL ° ynpr'N N

yi pL

Nfl = Dyzupr * Nyzopz

n.xn
Step 3: Find M ER, (1) 77V, such that H, = N



aq4:FmdaLaﬁﬁgﬁzwﬁ:=%£medmdnhwnh'
D oo Ny € E( R[7A]). Let

Deg = DpgDeg
Neg == DpoNey
an = an

Step 5: The required controller, and hence the system S, is specified by:

S P
C 2= DeoN giNg, ]

Claim 4.1: The system S, as specified by the plant P and controller C
of Algorithm 4.1, satisfies the following:
(i) C is admissible for P,
(ii) Hyzv] = Hv’
(iii) Hyzdo = Hy-

Justification of Claim:

(1) Dh N Dcszr * Nszpr
DnE(D Lpr- yz pz)D nz( yz pr yl pz)N
-wz yz(vpr pr Uperr) Q(NPE pr DpﬁNpr)
= anoyz (4.10)

Thus, det Dh = det l.)1r °det D.y By Step 4, me E( IRA(A)), and by Step 1,
Y € E(R\(\)). Hence, D7) € E(R(\)) and D)} € E( R,(2)) (because

«2]-



(D 2,N“£) and (D e yz) are £.c. pairs) and so (det D 2) , (det Dyg)']
eIRA(A). So,

(det oh)“ = (det D_ )'1 (det D )" €R,(2)

and hence, since (P1), (P2) are satisifed by assumption, and Dcz’Nfz
€ E( R,(1)), C is admissible for P, by Theorem 3.1 (i).
(ii) For the system S, defined by P and C, we have

-1

Hyzv] = NprDh an
o151
(yzmz)N
=N D lDp M=N M=

proye’ys" ~ Upr

Thus, Hy2v1 = Hv as required.
(iii) Similarly,

-1
Hy2d° Ino NprDh Nfl

a=1
n pr( DyR.DnR.)D (D 2 pr NyR.DpSL)

n
—

Ino = N (U Y0 ,) = Hy

Thus Hyzdo = Hd as required. ]

Comments: (a) From Eq. (4.10), it is clear that the zeros of det Dh are
: s pe . --'I- _

fixed by specification of M and Y (remember that D oNog = DyRM - thus the

dynamics specified by an are those of sz waich are not included in
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9y2’ if D;lel is a g.c.f. of M). Thus the dynamics of the closed-1loop
system are completely specified by the choice of M and Y.

(b) An actual engineering design problem would probably not be formulated
as a synthesis problem of the type in Algorithm 4.1, but rather as a
problem of finding the best design that satisfies certain design cri-
teria. In this case, the designer would not have a prespecified M and Y,
but rather, would choose M and Y as part of the design process, and use
the approach of Algorithm 4.1 to find the resulting compensator C. Such
a design process can be automated by formulating the design problem as

an optimization problem [Gus. 1], [May. 1].

4.2. Application to Lumped Continuous Time Case

n_xn,
We will utilize the results of Section 4.1 for P ElRp,o(s) 07 by

introducing the following transformation.

Definition 4.1
f: €@ {-a} > Cis definedby f: s )\ =

2
S+o

£ £ {0} > € is defined by £ : A w5 = 120

with a € UC, where U C € is the region of instability. We assume that

o € U, so that IRU(s) CRp(s).

Definition 4.2

n_xn.
o

- ; noXn;
For a given P €R(s) , we define P €R(A) by

POV = B(FT() = B2, yaec | (4.11)

It is crucial to note that the calculation of P given P in pole-zero

2 B



form, is trivial. To wit, let

k(s+z])(s+22)
Bls) = (5%, 1(5+p,) (5+p5)

-~

Then

- kA[1+A(Z,-a)J[1+A(Z,-a) ]
= p(lzhay _ ] 2
p(A) = p(==3) =

L1+A(py-a) ILT+A(py-a) JLT1+A(p3-0) ]

Clearly, the inverse transformation is just as simple. It is because of
the simplicity of this sort of calculation, that this design method using

H= lRA(A) is computationally efficient and in fact less expensive compu-

tationally than direct calculations with H = IRU(s) or H = IRD(z). Note
that if P is not given in pole-zero form, it is usually quite simple to
put it in that form.

Fact 4.1

- n xn n xn.
(i) PER(s) © 1 «=peR() ® !

e n xn, n,Xn;
(ii) P Rp(s) (proper) «= P EIR{O}(A)

o n xn, n xn;
(iii) P elRp’o(s) (str. proper) =P EIR{O}’O(A)

n

noXn;
- nyX P G]RA(A) » where
(iv) P GRU(S)

i (U-stable) o=
A= f(U) (A-stable)

- n_xn.
So, given P GIRp o(s) O 7, we can obtain P from (4.10). Then, by
the methods of Section 4.1, we can design a controller C € E( lR{o}(A)),with
af.c.f. DE}[anstz] over R[A]. Then the following procedure can be used
to obtain a 2.c.f., over R[s], of C(s) := C(f(s)). Note that C € E( R (s)),
by Fact 4.1 (ii).

(i) Find L](x) € g lR[A]): such that L;‘(x) €R[2], and
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' chr = L](A)[Dcﬁ()\)ENM(A)ENm(A)]hr has full row rank.

(11) Let D, := LD , (4.12)
Nep 2= LiNg, | (4.13)

Npg 1= LNy (4.14)

(1i1) Let L (s) := diag[(s+a)ri]gi1. where? (4.15)
ry 1= 304 [0 (AIN (31N (A)] (4.16)

(1v) Let By(s) := Dpls)B,(£(s)) = L(s)D () (4.17)
Neg(s) 1= Lp(sdg,(F(s)) = Do)y () (4.18)

Npg(s) 2= To(o),(F(s)) = Ly 4 () (4.19)

Remark: Step (i) can always be accomplished by reduction of
[DCQ(A);NnL(A)ENﬂ(A)] to row-Hermite form [Kai. 1], [Cal. 1].

Fact 4.2: le[ﬁu(s)iﬁm(s)], as constructed in (4.12)-(4.19) is a 2.c.f.
of C(s) := C(f(s)) over R[7A].

Proof

Since f"(xri) S it is c]Aear that

r 9

. (s%a) '
(s+a) 1~D,~[BC,L(f(S))ENTm(f(S))Eﬁi,-,;(f(S))] € e( R[s]), fori =1, 2, ..., No-
ThUS.EZ(S)[-DC,L(f(S));ﬁm(f(s))fﬂﬂ(f(-‘-))] € g( R(s]).

Now, since (Dcz(x),[Nﬂ(A)stz(A)]) are %.c.,
mwdwunmuuunjnu3n1=%,mrulsembw.TMa

ZFor A e R[x]™", 30, [A] denotes the highest degree of any polynomial in
the it—h~ row of A.



rk[ﬁcl(s)zﬂm(s)sﬁﬂ(s)] = Nys for all s € ¢\ {-a}, since L2(s) is non-
singular for s € €\ {-a}. And, for s = - a, [Bcz('a);an(°°‘)foz("")]
= chr’ which has full row rank.

Thus, rk[ﬁcz(s)fﬁﬂz(s)gﬁfz(s)] = ny, for all s €. Hence

HSN(s):ie ()] s a t.c.f. of E(s) := C(f(s)) over R[s].

Dcz

4.3. Application to Discrete Time Case

n_xn,
We will utilize the results of Section 4.1 for P €R(z) © ' by

introducing the following transformation.

Definition 4.3

N|—

g : €\{0} » ¢ is defined by g : z+ ) =
-1, . -1, 1
g : @ {0} + ¢ is definedby g~ : A+z=75

Definition 4.4

- n,xn, n xn,
For a given P € R(z) , we define P €R(2) °

P(A) 2= B(g™ (1) = B(J) - (4.25)
Fact 4.3:
. n_xn n_xn,
(i) PeERr(z) © | e~ PER(}) ° !

. n xn; n xn,

(ii) p GIRp(z) (causal) - P GR{O}(A)
o n xn, nxn,
(iii) P EIRp’o(z) (strictly causal) «= P GR{O}’O(A)
n_xn,
P EIRA(A) 01, where

iv) P ER D-stable) «=
(iv) p(z) (D-stable) A=g(D) (A-stable)

Comment: As in the coutinuous time case, we assume that « € D, so that

RD(z) Cl'Rp(z).



n_xn

So, given P €R o(2) 0™ we can obtain P from (4.25). Then, by

P
the methods of Section 4.1, we can design a controller C € E(IR{O}(A)),
with a 2.c.f. D;] [anstR.] over R[A]. And, since A = z']. we can
directly implement a controller C € E( Rp(z)), without taking an inverse

transformation (that C € E( IRp(z)) follows directly from Fact 4.3 (ii)).

V. Robustness: Asymptotic Tracking and Stability

In this section, we consider the problem of designing, for a given
plant P, a compensator C, which is admissible for P, and is robust with
respect to the asymptotic tracking of a given family of inputs ¥ (See
Fig. 2). This problem will be formulated and solved in the algebraic
framework of section III. In developing a robustness result, we will
consider the fractional perturbation approach [Chen 1], [Vid. 1] and

develop sufficient conditions for the robustness of stability.

5.1. Robust Stability

The following robust stability theorem is similar to [Chen 1: Cor.
4.4], except that multiple perturbations (both plant and compensator)

are considered.

Theorem 5.1 (Robust Stability)

Consider the system S, of Figure 1, with P satisfying (P2), and C

admissible for P. Let Dpr’ N . Dcz’ Nfg and an be additively perturbed

P
by, resp., ADpr’ ANpr’ AD.,, &N, AN, € E(H) with det(Dpr-"'ADpr)’ and

det(Dcz-fADcz) € 1. Let (#,0-1) be a Banach algebra and B(0;r) denote the

open ball of radius r centered on 0. Now, let pdp >0, pnp >0 > 0,

’ pdC
Pnf > 0, be such that

-1 -1
iD_'D 'pdp+IDh

-1
h Deg p + lth W(ED

+ﬂNpru°nf+°dp°dc+pnp°nf) <1

Nflﬂon prupdc

(5.1)
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u.t.c., if

ADpr € B(O;pdp) AD., €B(0;p4,)
and (5.2)

ANpr € B(O;pnp) MNg, € B(O;pnf)

then, the perturbed system is H-stable.

Proof
Let D

D .+ AD .ﬁrmn + AN + AD

pr = Yp pr* 'p pr ¥ BNpps Doy := Dy .
ﬁm = Nmt + AN"L and ﬁm := Nﬂz. + ANfE denote the perturbed numerator and

cL?

‘demoninator matrices of the plant and the compensator. Let the perturbed

system defined by ﬁp ~c2’ ﬁfz and ﬁﬂ be denoted as S. In accor-

r’ pr’
dance with Definition 3.3, S will be called H-stable iff ﬁyu := ﬁrﬁqﬁlH(

is H-stable (where N, D and N, are the perturbations of N, D and N,

resulting from AD AN, ADcz’ ANm and ANM). It is thus clear that

pr’ “pr
if D € E(H) is invertible in E(H), then § is H-stable. We prove that

57! € E(H) as follows.
First, note that B™' € E(H), 1f [07'D, 1 € E(H) where B := D .0
+ ﬁﬂlﬁpr' This follows from performing elementary row operations on D,

showing that det D = n-det Bh’ where n = + 1, and from the fact that

D, € E(H), by Theorem 3.1 (i1). Thus, it is sufficient to show that
=15 4-1

[Dh Dh] € E(H). Now,

1 -1 -1 -1
Dy Oy = I+D, DcR,ADpr *+ Dy, NfJLANpr * Dy, ADc!?,Dpr
(5.5)
-1 -1 -1
+ Dp ANE N+ D TAD 0D+ Df TaNg aN

And, by (5.1)°and (5.2),
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-1 -1 -1 -1 -1
Iy Degdlpy * Oh NegdNy . + D, ADegDpp + D AN Np . + D AD_4AD,
-1
+ Dh ANﬂLANer <1

Consequently, by (5.5) and [Die. 1, (8.3.2.1)];
[0;'5,17" € &(H)

-1

It thus follows that D' € E(H), and hence the perturbed system 13

is H-stable.

Comments: (a) Clearly, this result supplies only sufficient conditions
for H-stability of S(ANpr'ADpr)' However, there are no requirements
imposed on ANpr’ ADpr’ ADcz’ ANﬂz, ANfl € E(H) beyond (5.2). Thus, this
result allows for a more general class of perturbations than others

[Cru. 1], [Pos. 1], [Zam. 1], [Doy. 1]: e.g., in the lumped case, it
allows for changes in the number and the location of poles and zeros.

(b) A similar result may be obtained for the case in which a left coprime
factorization of the plant and a right coprime factorization of the com-
pensator are used. This will be utilized in the discussion of robust |

asymptotic tracking in Section 5.2.

5.2. Asymptotic Tracking

For the tracking problem we consider the unity-feedback configuration
S] of Figure 2. The class of inputs ¥, to be considefed in the tracking

problem, is defined as follows.

Definition 5.1

The class of ¥ of inputs to be tracked cons1sts of vectors w u
where y € 1\J and u € H ‘. with the property that for all u EH N that are
not a multiple of ¢, the vector ¢~ LY & E(H).
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Definition 5.3

The closed-loop system S will be said to asymptotically track the

We now present three results on the tracking problem for the con-
figuration S.l of Figure 2.

Theorem 5.2 (Necessary Conditions)

Let P satisfy (P2). Let C be an admissible compensator for P; thus

C has a %.c.f. D;lNcn’ Suppose that S,, as specified by P and C asympto-

tically tracks the class ¥. U.t.c.,

(i) n; > n (5.7)

0

(ii) the only common factors of det(N z) and y are units of H.

prNc
Comment: The interpretation of (ii) for the lumped case is that PC and

¥ have no zeros in common.

Proof
Let us define th €EH by
th = Dczopr + chNpr (5.9)

It can easily be shown (similar to Theorem 3.1 (ii)), that C admissible

n.xn.
for P implies that det th € J (hence Dgl €H' 7). Thus, there exists
~_‘l~
a 2.c.f. Dcchz of C such that
Dcszr * Ncler = In.

1

Consequently, H

YU, PULT Y, in S], is given by

Hyzu] = Nprch (5.10)



(i) Assume that Ny > M- We will show that a contradiction

results. Since "o > "i’

rk Hy < min(rk Npr,rk ch) <ng<n

2% 0

n
Thus, there exists vy € H O such that [Bou. 2, Chap III, §8, Prop. 14]

(a) Hy , v =8 (5.11)

271 Mo
(b) y is not a multiple of v (5.12)

(If v were a multiple of ¢, say vy = wk?, where k is the multiplicity ofy as
a factor of vy, then H.y " §= 0, and ? would not be a multiple of ¢).
21

To develop the contradiction, we apply the input u, = w'ly & E(H)
(from (5.12)). The resulting output y, is given by

yz = Hyzu].
Hence, yp - Uy = w']y & E(H), which contradicts the assumption that S]
tracks y asymptotically. Thus n; 2n,.

(ii) Consider ﬁcz as defined in part (i):
det(Npr cz) = det(ﬂpr cz) det(Dhg)

Since det,,.(rD;‘l’) € J, we can assume, without loss of generality, that

pr cz) detmpr c!.)
In order to develop a contradiction, assume that de-t.(Npr cl} and ¢

det(N

have a com:m factor v E H. LlLet k} denote the muttipﬁcity of vas a

factor-of det(N ). Consequently, there exist- ¢, m, m € H, such that

pr Nes

- // ‘/

—~ -
~

-



L
V=mv

-~ = 1
det(Nprch) m

We will construct an input u, € y, such that y, - u, & E(H) where

Yo is the output resulting from the input Uy
n_xn
~ oo
Consider the matrix NprNch,GH . If rk(Npr et

in part (i), we can find y € H fo satisfying (5.11) and (5.12). The input

) < No? then, as

= ¢‘1Y & E(H) then yields Yo = 0, and thus yz -y g E(H).

So, suppose rk(N_N_) =n_. Then, det(N_ N _ ) # 0, and thus the

pr cL (] pr cL
expression
In°~det(Npr cz) = Adj(Npr cz) N (5.15)
yields
. - o
det[AdJ(Npr Cl)] [det(Npr Cﬂ.)] #0 (5.16)

Using (5.16), we will show that some element of Adj(N ) has v as a

pr cz
factor with a multiplicity which is strictly less than k,, (the multi-

plicity of v as a factor of det (N if not, then every term in

prch)):
the summation

det[Adj(Np,. Cl)] Z sQn(o).n]o(T)DZG(Z) tec nﬂoo(no)

"okl
)) would have v as
n_k

o'l

th .
(where ny denotes the ij— element of AdJ(Npr cs

a factor, implying that det[AdJ(Nprﬁcz)] would have v as a factor,

contradicting (5.16), which indicates that v has multiplicity of only

ky(n,-1) as a factor of det[AdJ(Npr )

Let B € H o one of the columns (say the 2 column) of Adj(N )

pr cz
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containing the element which has multiplicity of v as factor strictly

less than that of det(Nprﬁcz). Let k, be the least multiplicity of v as

a factor of any of the elements of 8. Then, k] > k2 and k] -1 3_k2.

Define B := v-kzg. Then, one element of 8 (say the jth element,

denoted Bj) does not have v as a factor, and additionally, B € Hn°.
We can now define the input U by,

-1~ ~ n
Uy =y YB where wGH,BEHo

=v B (5.18)
Clearly, Uy & E(H), and thus Uy € ¥. The resulting output Yo is given by

Yp = Nprﬁczul (from (5.10))

Thus,
. ~ _ 5y -]
AdJ(Nprch)-y2 = det(Nprch) v B

by (5.15) and (5.18). Equivalently,
~ ky=1

. Y - 1
AdJ(Nprch)-y2 = myv B, by (5.14)
= k-3, by definition of 8
where k:=k, - 1 - k, > 0; hence v € H. Now, by (5.16), Adj(N_N_)
1 n §n prck
is invertible in ¢ ° 9; hence,
y, = mvE.[Adi(N_ N )1 -8
2 prc
_ ~.k
=mv.e,
o th
where e, € H © has a one in the 2— position, where £ is the column

L
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~

number of B in Adj(Nprch)’ and has zeros in all other positions.
n
Thus, y, € H °; hence, y, - u; € E(H), since u; € E(H). But this
contradicts the assumption that Sl tracks the class ¥ asymptotically, con-

sequently, det(Np ) and ¢ have no common factors which are not units

rNCR,
of H. . 0

We will now present a set of conditions which are sufficient to
guarantee that S] asymptotically tracks the class ¥. Additionally, we
will show that the same conditions are sufficient for the robust asymp-
totic tracking of that class: i.e., these conditions guarantee that S]
will still asymptotically track the class ¥ under fractional per-

turbations of the type considered in Section 5.1.

We will require two additional assumptions on the system S]:

' el . .
(P2') Dpszg is a 2.c.f. of P, with sz, Up2 € E(H)
satisfying:
D,V +N_U I (5.20)

pLPL " PL L ny

t nixno -1
(c2*) ce€6 has a r.c.f. Nchcr

We will say that C is right admissible for P if the resulting closed-loop

system is H-stable, and C satisfies (C2').

Theorem 5.3 (Sufficient Conditions)

Let P satisfy (P2'). Let C be right admissible for P; thus C has
1 . ] n xn,
If Dcr is such that Dcr = ch, for some Dc €EH ,

ar.c.f. Nchcr’

then the system S asymptotically tracks the class vy.

Proof

XN,
LﬁustdﬁMe%rEH by:
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Dhr = Dpzocr + szNcr

It can easily be shown (similar to Theorem 3.1 (ii)), that C right
adnissible for P implies that det D, . € J. Thus,
"ox"o_

=1
DhreH

(5.23)
The closed-loop map Hé u, S U™y is given by
M

-1
ey B Dchhern

X
)

DcD;lez ¥, by assumption

n,
Now, consider an imput U =¥ ]u €y (note u €H '). Under application
of this input, the resulting output Yo and the resulting error e, are

given by

Yom 7 8 7 Repu

-1 -1
Dtherzwow u

-1
Dtherzu

n,
Thus, for any u€ H ', ¥p = Uy €E(H), by (5.23). Since uy is an arbi-
trary member of the class ¥, it follows that S1 asymptotically tracks

the class V.

Comment: This result shows that the "internal model principle" can be
generalized to an algebraic setting which includes the canonical

examples of Table I.
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Theorem 5.4 (Robust Asymptotic Tracking)

Let the assumptions of Theorem 5.3 hold. Consider arbitrary changes

in the plant, N <-Np2,0p2 « D_, such that (Bpﬁ’ﬁpl) are 2.c. and arbi-

pL pL

trary changes in the controller C, Ncr «N cr? Dc - Bc’ such that

PN A s 5 .o 5%

C:= Nchcr is right admissible for P : Dpsz2 U.t.c., the perturbed

system §], specified by P and ¢, asymptotically tracks the class v¥.

Proof

Follows the same steps as the proof of Theorem 5.3.

Comment: If one allows only plant perturbations, then a necessary and

sufficient condition for the set of all perturbed systems §], for which
H-stability is maintained, to track the class ¥ asymptotically, is that
the compensator C satisfy the internal model principle, namely D ch’
with D_ € Hn°xn°

The following corollary provides sufficient conditions for robust
asymptotic tracking of the class ¥, which are similar to the conditions

for robust stability, given in Theorem 5.1.

Corollary 5.4

Let the assumptions of Theorem 5.3 hold. Let ng. N 2 Dc and Ncr

P
be additively perturbed by, respectively, ADpz’Asz'ADc'ANcr € E(H), with
det(Dp2+ADp2),det[w(Dc+ADc)] € 1. Let (H,l.0) be a Banach algebra. Now,

let pdp >0, p._ >0, Pac > o, Pnc > 0, be such that

np
1
|¢Dh Dplupdc+ﬂohr plﬂp 4-UD (ﬂwD ﬂpdp RNcrﬂpnp uwnodcpdp*'pncpnp) <1
u.t.c., if
ADpz € B(O;pdp) aD, € B(O;pdc)
and
ANpg € B(O;pnp) ANcr € B(O;pnc)

T~



then the perturbed system §1 is H-stable, and asymptotically tracks the

class v.

VI. Conclusions

This paper has presented an algebraic design theory for linear multi-
variable feedback systems which leads to the following results:

(i) The use of an algebraic structure achieves a unification of the
canonical design settings of modern control theory, including the lumped
and distributed cases, for both continuous and discrete time systems
(see Table I).

(ii) The results presented generalize earlier results [Des. 1], using
a similar algebraic structure, to the case of non-square plants and con-
trollers. Additionally, this paper gives, for the algebraic case, simpler
and more elegant derivations of the achievable I/0 and disturbance-to-
output maps.

(iii) As in [Per. 1] it is shown that in the lumped case (continuous
or discrete time), the algebraic design procedures may be reduced to
manipulations of polynomial matrices, which is more desirable than the
alternative: manipulation of matrices of rational functions.

(iv) The robustness theory shows that the achieved designs are
robust with respect to plant and controller perturbations.‘

(v) The theory of asymptotic tracking and robust asymptotic tracking
are generalized to the algebraic setting. This includes generalization

of the so-called "internal model principle" [Won. 1].
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TABLE 1

L umped Lumped Distributed Distributed A-Generalized Multivariate
Continuous time Discrete time Continuous time Discrete time Polynomials Rational Functions
G R(s) R(z) R(})
6 R)(5) R, (2) B(o,) b(o,) Rigy (V)
G, IRp’o(s) lRp,o(Z) By(9,) by(0,) IR{O},O(X)
H Ry(s), = €U Ry(z), =€Dd|  A_(o,) 2. (p,) Ry(1), = & A
]
(73]
& P ER,(s) p €ER.(z) ~ P ER,(}))
' . v D K(o,) & (o) A
s.t. p'] GlRP(s) s.t. p'] elRp(z) s.t. p'l €R(4}
P ER(s) p ERy(2) peA (o) pEL (o) P ER,(1)
J |s.t. Ip(s)] >0 |s.t. |p(2)] >0 | s.t. |p(s)| >0 | s.t. |p(z)| > O]s.t. |p(A)]| >0
c
vs€eEVy YzZ€ED VsecC, , VzGD(po) VAEA
Reference [cal. 1-3] [Che. 1] [cal. 1-2] [Che. 1] [Per. 1]
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Figure Captions
Figure 1. The feedback system S.

Figure 2. The feedback system 51~
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