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Abstract

This paper presents an algebraic theory for analysis and design of

linear multivariable feedback systems. The theory is developed in an

algebraic setting sufficiently general to include, as special cases, con

tinuous and discrete time systems, both lumped and distributed. Designs

are implemented by construction of a controller with two vector inputs

and one vector output. Use of controllers of this type is shown to

generate convenient stability results, and convenient global parametriza-

tions of all I/O maps and all_ disturbance-to-output maps achievable, for

a given plant, by a stabilizing compensator. These parametrizations are

then used to show that an^ such I/O map and any_ such disturbance-to-output

map may be simultaneously realized by choice of an appropriate controller.

In the special case of lumped systems, it is shown that the design

theory can be reduced to manipulations involving polynomial matrices only.

The resulting design procedure is thus shown to be more efficient compu

tationally.

Finally, the problem of asymptotically tracking a class of input

signals is considered in the general algebraic setting. It is shown that

the classical results on asymptotic tracking can be generalized to this

setting. Additionally, sufficient conditions for robustness of asymptotic

tracking, and robustness of stability are developed.

Research sponsored by a grant from Aerospace Corporation and National
Science Foundation Grant ECS-8119763.



I. Introduction

A subject of great interest in the design of linear multi-inputmulti-

output systems has been the characterization of all designs which can be

achieved by a stabilizing controller for a given plant. Such results have

been developed for the lumped continuous and discrete time cases; first

by Youla, et al. [You. 1] and later by Pernebo [Per. 1] and others [Sae.

1] [Che. 2] [Vid. 2]. By using an algebraic formulation, Desoer, et al.

[Des. 1] generalized such results greatly - to include the distributed

continuous and discrete time cases, among others. And in a similar alge

braic structure, a particularly flexible and convenient method for stable

plants, was suggested by Zames [Zam. 1], developed by Desoer et al. [Des.

2], and used in computer-aided design by Gustafson et al. [Gus. l]. All

of these methods give their results in a parametrized form; by appropriate

selection of a particular matrix, any_ design achievable by a stabilizing

controller may be realized.

This paper presents an algebraic design procedure which generalizes

the above results in several ways:

(i) The algebraic structure is more general than that of [Des. 1],

because it enables one to design with non-square plants and controllers.

In addition, the algebraic structure characterizes the class of plants

for which an algebraic realizability condition on the controller can be

included in the parametrization of stabilizing controllers. This is

accomplished through use of the Jacobson radical [Zam. 1].

(ii) The parametrizations of [Per. 1] and [You. 1] for the lumped

continuous and discrete time cases are extended, by the use of our

algebraic methods, to a great number of additional cases (see Table I).
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In addition, the algebraic formulation allows great simplification of

the stability argument. Finally, using a transformation of the type

proposed by [Per. 1], [Vid. 1], it is shown how design in the lumped

continuous or discrete time cases can be reduced to manipulating only

polynomial matrices.

The method by which these results are achieved involves construction

of a controller with two vector-inputs and one vector-output [Per. 1],

[Ast. 1]. This resulting closed-loop system is thus so constructed as

to give a multivariable interpretation of Horowitz's two-degrees of

freedom design [Hor. 1].

Also, a set of sufficient conditions for the robust stability of

this feedback configuration is presented, much as in [Chen 1].

Additionally, the asymptotic tracking problem [Cal. 3], [Cal. 4],

is considered; we show that known results, including the internal model

principle [Won. 1], can be generalized to the abstract algebraic struc

ture used in the design parametrizations. A unification of the theory

of asymptotic tracking is thus achieved, for many interesting cases (see

Table 1).

Thus, this paper achieves a unification of design parametrization

theories for the canonical design settings of linear multivariable system

theory.

The paper is organized as follows:

Section II defines the algebraic design structure and the closed-

loop system under considerations.

Section III presents the main results: the stability theorem and

the design parametrization theorems.
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Section IV specializes the results of Section III to the lumped

case, and shows how the design theory then need only consider polynomial

matrices.

Section V discusses the robustness of stability and the asymptotic

tracking problem.

Section VI contains the conclusions.

Special notations and definitions:

a := b means a denotes b. q denotes the mxn zero matrix.
mxn

For definitions of standard algebraic terms, see [Jac. 1], particu

larly chapters 1-3, [Sig. 1] or [Mac. 1].

If H is a ring, then E(H) denotes the set of matrices having all

entries in H.

F(s) denotes the set of real rational functions in s. RD(s) denotes

the set of proper rational functions: those that remain bounded as

|s| + «. ]R Q(s) denotes the set of strictly proper rational functions:

i.e., the proper rational functions tending to zero as |s| -*• ». R.(s)

denotes the rational functions analytic in the region U c I.

Fr0j(A) denotes the set of real rational functions analytic at X=0,

IRr •> (A) denotes the set of real rational functions having the value

zero at X = 0.

II. Preliminaries

2.1. Algebrai c Theory ^

Roughly speaking, the algebraic structure developed here consists of

a) H, a ring of scalar transfer functions; b) I, a multiplicative subset

of H; c) G :s [W][I]~ , the ring of fractions over H and I; and d) J, the
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set of units in H, i.e., m € j «• m € H.

It is helpful to keep in mind a simple example, while studying the

detailed definitions below: H is the ring of scalar, exponentially stable,

proper rational functions in s; I is the subset of H whose elements

tend to a non-zero constant as |s| -»• »; 6 is then the ring of scalar,

proper rational functions; and J is the ring of proper, exp. stable

rational functions with no zeros in C+ nor at infinity.

In the general formulation, these terms are defined as follows:

H: An entire ring (integral domain): i.e., a commutative ring

with no zero divisors. Let 0 and 1 denote the additive and multiplica

tive identities, respectively.

G: The field of fractions over H [Jac. 1, Sec. 2.9]: i.e., a field

whose elements are the pairs (n,d) =: n/d, where n,d € H, and d f 0, and

are subject to the equivalence relation n-j/d-j « n2/d2 ++ n-|d2 =n2dj. (In

the example above, G is the field of rational functions).

I: A multiplicative subset of H: i.e., I c H, 0 £ I, and x,y € I *»

xy € I. Without loss of generality, let 1 € I.

G := {n/d € G : n € H, d € I}, a subring of G.

J := {m € H: m'1 € f/}, the ring of units in H.

Additionally, we consider the following structure, known as the

Jacobson radical of G [Nai. 1] [Bou. 1].

Gs := {x e G: (1+xy)"1 €G, i yeG}. It can be shown that Gg is
an ideal of G; thus x e Gs * xy e Gs, i y e G (note that in the example

above, Gs is the set of strictly proper transfer functions).

In addition, let IF be a field; typically IF * IR or IF * t. We assume

Thus, Gs is also an additive subarouo of G. Some authors [Sig. 1]
refer to Gs as a ring; others as a "rng" - a ring without unit
[Jac. 1].
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that (H, IF) and (G, IF) form vector spaces overF (i.e., multiplication

by scalars is defined on IF x H and on IF x G, and the axioms of vector

spaces are satisfied). Additional examples of the algebraic structure

above are given in Table I.

Comments: (a) Since by assumption, 1 € I, we can identify n e H, and

n/1 € G; hence we view H as a subring of G and we write nd" for n/d.

(b) By construction of G, e>/ery element of I has an inverse in G.

(c) Since both H and G are commutative rings, both (H, IF) and (G, IF)

are commutative algebras over IF [Nai. 1].

2.2. Coprime Factorizations

Definition 2.1

Let H€ gP*1. We say that NhrDjjJ, (D^Nh£) is aright-coprime fac
torization (r.c.f.) (left-coprime factorization U.c.f.), resp.) of H,

if and only if

<1>H- NhrDhr <DhlNhr "*•>•
(ii) Nhr € Hmn$ Dhr € Hnxn (DhA € H*™, Nh& € H™", resp.), and

det Dhf € I (det Dh£€i, resp.);

(111) (Nhr^hr* are r1ght'C0Prime (r.c), i.e., 3 u"r € h"*"1 and
V € «"*", such that UN. + VDh, a In;

r r nr r nr n

((iii)' (Dh£,Nh£) are left-coprime (I.e.), i.e., g U£ e Hnxm and
V, € tf~\ such that N^U, ♦ Dh£V, =I,, resp.).

Comment: Recently, Vidyasagar et al., gave a set of sufficient conditions

for the existence of coprime factorizations [Vid. 2, Thm. 2.1]; it is

easily seen that all of the examples in Table I satisfy these conditions.
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In this paper, we assume the existence of coprime factorizations through

out.

III. Design Theory

3.1. Problem Description

We consider the system S shown in Figure 1. Given a plant P, we

wish to design a controller C. We will require the following assumptions

at various points in this paper.

Assumptions on System S:

nxn1
(PI) P € G

(P2) NprDpJ. is ar.c.f. of P, with Upf,Vpr €E(H) satisfying

UN + V D * I
pr pr pr pr n

~n.x(n +n )
(CI) C€G n v ° •*is given by ^[N^jN^], with

n.xn. n.«xnw n4xnrt

n.x(nv+n0)
(C2) c e g -In. .has a £.c.f. ^[N^IN^], with

n.xn. n4xnw n,*xn

'a€H >N„*€H -N«€H

Comment: (C2) •* (CI).

Under (P2) and (CI), the system S 1s completely described by

v.
1

"i
-D

pr yi o ;0 ..i^; o u.

a Vpr Vfi' ° --" f£
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[1] \\ 0"

*2 0 V

el

e2

0 •Nnf
pr

In
ni

0

y1 0 • 0 • 0 • 0
1 '

0 ' 0 '0 'I
' . • no

0 'I '0 '-I
. no i ' n0

0 i 0 'I ' 0
. • n1 ' .

"vl"

ul

u2

do
_ J

(3.8)

Comment: In the five cases of Table I, Eqs. (3.7) and (3.8) can be

interpreted as matrix products (in the s,z,or X domain), or as convolu

tion equations in time domain ( IR+ or W).

Let u:= (vj.uj.u^dj)1, c := (y{,cJ)T, and y := (y{,y£,eJ,e^)T.
Then, we can rewrite (3.7) and (3.8) as:

DC * N^ u

y = NrC + Ku

(3.9)

(3.10)

where the definitions of D, N^, Nr and Kare obvious from (3.7) and (3.8).

Definition 3.1
n.xn. n.xn

For any D„0 € H1 \ and any N*0 € Hn °, define
CA 'f£

nixni
Dh :s DcADpr +NfANpr € H (3.11)

Definition 3.2

S is called H-stable iff H : u » y defined by (3.9) and (3.10)

satisfies H € e(H).
j

If we assume that (P2) and (CI) hold, and that det Dei, then,

from (3.9) and (3.10), we have

Hyu =W\ +K€E(G) (3.12)
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It is easy to show that if (PI), (P2) and (CI) hold, D"1 e e(G).

Comment: Definition 3.2 makes sense because a) each subsystem input may

be manipulated independently by some exogeneous input (i.e. component of

u), and b) each subsystem output is part of the output vector y. Con

sequently, in the rational function case, for example, if neither C nor

P have unstable hidden modes then all the zeros of the characteristic

polynomial of the system S are in the stable region ofthe complex plane

if and only if S is H-stable.

Definition 3.3

A controller C is said to be admissible for the plant P iff C satis

fies (C2), and the resulting system S is H-stable.

Theorem 3.1 (Admissibility of 0

Consider the system S with P satisfying (P2), and C to be specified

later. Under this assumption,
n.xn.

(i) If P satisfies (PI), and if, for some Dr0 € H7 1 and
n.xn c*

Nf? € H , det D. € J, then det D Q€ I, and hence, for any

Hvl €H1 \ the controller C := DiCN^.'N^] is admissible for P.

(ii) If C is an admissible compensator for P, then det Dh e J.

Comments: (a) In statement (i), C € E{G) is part of the conclusion.

P€ E(GS) and det Dh e J guarantee the H-stability of S and C€ E(G).
(b) In statement (ii), P is not assumed to have its elements in G$.

(c) The corollary below is a stightly weaker form of Theorem 3.1.

Corollary 3.1

Let S satisfy (P2) and (C2). Then, S is H-stable

** det Dh € J.
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Proof of Theorem 3.1

(i) First, we will show that det D . € I and consequently that
.1 n,-xn

C :• D'[N_o:Nfo3 is well-defined and satisfies (C2), for any N. e H1 v.
n xn.

By (PI) and (P2), we have P € G ° \ and PD = N with
n.xn. n.xni p p

Den1 c G \ Now, since G c G is an ideal and hence is closed
nnxn«i

under addition, it follows that N 6 6, . From (3.11), we obtain
pr s

tf'WVr - ! " Dn"Vpr

Taking determinants of both sides, we can easily obtain

det Dc£ - det Dh(det Dp,.)"1 detd-D^N^Np^ (3.14)

By assumption, (det D^) € Hc G, and det D € Hc G. We will now show

that detd-D^N-N ) is invertible in G, thus showing that (det DJ"1 € g,
p n xn. n xn. n,-xn« i n^xn.

We know that N € Gs° ^nH° \ Nf£ € H1 °, and D"1 € H1 n,
-1 nixnihence, D^ N^N € G . Now, by definition of determinant (for

A € dnmt with the ij— element of A denoted a.., the determinant of A is
•j

defined by det A := Z(sgn o) a,a/i\> a2a(2)*'#,,0ma(m) wnere a Is a Per"
mutation function on the integers 1, 2, ..., m), and by the fact that G

is a sub ring of G, there exists g€G, such that

det(I-DhlNnV *1 +9

By the definition of G$, (1+g)"1 €G, and (3.14) shows that

(det D^"1 €G (3.15)

and hence that det D^€ I. We can now show that C satisfies (C2) for
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any N£€ Hn v, since, by (3.15), Dc^ € e(G) [Jac. 1; Thm. 2.1, p. 94]
and thus Ce e(g), and since (Dj^D j)"1 (^W^.'N^]) is aa.c.f. of C.
The second conclusion follows from (3.11), and the fact that Djj e E[H).

Second, we will show that the system S, now well-defined by P and C,

is H-stable. As a result, C will be admissible for P.

We have shown that C satisfies (C2). Thus, since P satisfies (P2),

the system S is described by (3.7)-(3.10). By performing block elemen

tary row operations (in the ring H) on the matrix D in (3.9), we obtain:

det D=n-<tet(DcJtD +NfJlN ) =n-det Dh € H (where n =+ 1)

Thus, from our assumption, n-det D. =det D€ Jf implying that (det D)" € H

Now, since H is a commutative ring, D € e(H) [Jac. 1; Thm. 2.1, p. 94].

Consequently, since Nf e e{H), N£ e e(H), it is clear that (NrD-1N+K) ge(H)
So, by (3.12),

H € E(H) and S is H-stable

k-lThus, by definition, C := ^[N^.'N^] is admissible for P, for any
v\N 0 € H

(ii) We prove that det D^ € j in two steps:

First, we prove (D.N^) are Jt.c. and (Nr,D) are r.c. By (P2), (Npr»Dpr)

are r.c. and by (C2), (Dco'CN^o-NfJ) are *-c-» hence there exist

V V V V uf*€ E(H) such that:

UprNpr +VprDPr =\

°c»vrt + [\*;Nn]
tt£

'«

= I

-10.

(3.21)

(3.22)



From (3.21) and (3.22), we can check that (3.23) holds:

1 1
n1 pr

DCA.' NUNpr
• m

vaV°pr

-I
n1

Rewrite this as:

a

DV* +h\ " !„*«

1

•\
-k

1

i 0

1

" UirA ,\l
r

0 ' 0
1 Uf£Dh •Uf* ni -

«rt' Nf*
1

0 ;-"« Vir^ •V 0 ^n
1

0 • 0

(3.23)

L

(3.24)

Since by (3.23), V£, U^eEM, (D.N^) are i.e. Also, from (3.21), (3.22),

we can check that

» ^ ^

1 i ' 1

ni;

Dr0-D.Vnr
ca n pr'\ \ -D

X

DhVnrh pr ' DhUnr , ° ' !ni n pr i , n^ 0 • V ni'

-V '
Pr

0 D „
CA Nf*Npr V

pr

r 1 - r - -

i U '0 • o 0 ' -Nn,
1 pr

[»:•„
^ m -J L. J

\; °

Rewrite this as:

V D + U N =1
Vu W An +n.

o i

(3.26)

(3.27)

Since by (3.26), Vr, Ur€E(H), (Nr,D) are r.c.

Second, we prove that det D. € j by contradiction.

Assume det Dh £ J. Then, since n-det Dh =det D, D"1 £ Hnxn. Rewrit
ing (3.24) as:
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Since V£, U£ e E(H)9 and D"1 £ e(h), we conclude that D"^ £ E(H). Post-
multiplying (3.27) by D" N^, we obtain

VrN£ +UrNrD-\ =D"\

Since Vp, Hg9 Uf e e(H) and D"1^ ? E(H),

NrD"\ * E(H)

Thus, H =^D"^ +K£ E{H)9 and so S is not H-stable. But this is a
contradiction, hence det D. 6J. E

In Theorem 3.1, we have developed two relationships between the

admissibility of C and det Dh. We will now use these relationships to

give global parametrizations of a) the family of all I/O maps possible

for a given plant with some admissible controller; and b) the family of

all disturbance-to-output maps possible for a given plant with some admis

sible controller.

For a given system S satisfying (P2) and (CI), and det Dh f 0, the

I/O map H : v, * y?, and the disturbance-to-output map H . : d k y2

are given by:

Vi= V^V (3'35)

Hy2d0 "1' \A\l (3.36)

The corresponding families are defined as follows:
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Definition 3.4

~noxni
Let P e G be a given plant; hence the specification of the con

troller C determines the system S. Then,

«„ v (p) := {Hu v : c Is admissible for P} (3.37)
y2vl y2vl

Hv H (P) := (H . : C is admissible for P) (3.38)
y2ao y2ao

Theorem 3.2 (Achievable I/O Maps)

Consider a plant P satisfying (PI) and (P2). For this plant,

n.xnv
Hv v (P) =(U : M€H 1 v} (3.39)
y2vl pr

Comments: (a) (3.39) is a global parametrization of all I/O maps achiev

able by an H-stable S, with a two-input-one-output compensator C e e{G),

If we can factor Nn„ as N^-N^ where ti[sJ has a right inverse in E{H),
pr pr pr pr 9

and N^ is aleft factor of all possible N^'s, then (3.39) can be
rewritten minimally, as

Vi(p) ={Np">M: Mis H"stab1e}
Pemebo [Per. 1] has discussed this for the cases where H^yts) or

H=IRD(z).

(b) Suppose that N^"' =I, that is, Npr has aright-inverse in H. Then
Theorem 3.2 asserts that an^ M€ H° v can be achieved as the I/O map

Hw u of the system S with the given plant P and some admissible C. In
y2vl

particular, with a single-input sing'e-output plant with a 3 dB bandwidth

of a few hertz, one can achieve an I/O map with a 3 dB bandwidth in the



megahertz (MHz) range.' This is absurd because in reality, it would

require huge gains with the compensator that would cause thermal noise

to saturate the plant. (For a more realistic approach to design, see

[Gus. 1]). With due regard to this limitation, Thm. 3.2 is very useful

for it shows precisely what are the fundamental limitations on Hw
y2vT

Proof

I) Select anx Hu € H (P). Then, there exists an admissible con-
v y2v1

troller C admissible for P such that the resulting system S has H = H .
y2 1

So, since (P2) holds, by Theorem 3.1 (ii), det D. € J. Thus
-1 nixni nixnvDn € H1 1 [Jac. 1, p. 94] and, since Cis admissible, N^ e H

-1 nixnuLet M:= D^N^. Then M€ H1 \ and by (3.35), H =NpfM. Hence,
n.xnM

Hy v (P) C{N M: M€ H1 v} (3.40)

n.xn

II) Now, select any Le H1 v. Let N£ := L. From (3.2) of (P2),
n.xn n.xn.

there are U € H 1 °, V € H 1 \ such that

UN + V D =1
pr pr pr pr n.

Define acontroller C:= D^CN^^jN^] with Dc£:= Vpr and N., := Upp.
Then, Dh =I , and det Dh =1e j. Thus, since D^ € H1 1, Nf£ e H"ixno
and (PI) and (P2) hold, by Theorem 3.1 (i), C is admissible for P. And,

by (3.35),

y2 1 P P

Hence,
n.xn

Hv v(p) D{NorM •M€H1 v}
y2vl pr

.14.



The conclusion follows from (3.40) and (3.41). C

Theorem 3.3 (Achievable Disturbance-to-Output Maps)

Let Psatisfy (PI) and (P2), and let Phave a Jt.c.f. D~£N £. For
this plant,

n.xnft

Vo(P) ="WV :Y€«' °>
Proof

n.xn

I) Select anj£ Y € H . Define a system S by choosing

C:= Dc^en,xnu:Nf^ where D„0:= v - YNn0 and N~0 := Un„ +YDn0. By
iv c£ pr p& Tx, pr px. •*

(P2) and our assumption, Dc£, Nf£ e E{H). Then

Dh =WV +WV

" V°pr +UprNpr +Y<WW* (3"42)

Since D" N . is a Jl.c.f. of P, we have

Dp>p* =V°pr
or

Thus, (3.42) becomes D. = V D _ + U,N _ = I, and det D. = 1. Conse-
n pr pr pr pr n

quently, since (PI) and (P2) hold, by Theorem 3.1 (i), C is admissible

for P. Thus,

H„ a a I " N„XVo • I - Nn (U +YDn0) 6HuH (P)
y2 o P P P P y2 o

Hence,
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w
Vo(P) ° """WW :Y£" } (3>44)

II) Now, select any Hd € H d (P). Then, for the given P, there
y2 o

exists an admissible Cwhich realizes H d = H^. By (C2), this Chas

a A.c.f., say D" [N «INfJ. Now, by Thm. 3.1 (ii), det Dn € J, since C
-i nixni -i n,xn.is admissible for P. Thus, Dh' € Hn \ So, Dh'Da e H1 \ and

i ni xn«

Dh Nn € H • Also» from (3J1)»

D^O^.D^ +D"]N.0-N^ =I
n cH pr h tJc pr n.

Thus, subtracting (3.2),

(DhV<rVnJDn,. +(DhVo-UnjNn„ • 6n ¥n (3.45)n ex, pr pr n ffc pr pr n.xn.

Choose

y== <oh"V v>°;l <3-46>
or, equivalently,

YV ="iX • V (3-47)

(a) We prove that Y € E{H)

By (3.45),

°hloa *Vpr *" (DhV-Wpr

"*{0hVV^V

* - YV

Now, since (ddA»ndA) *™ *«c. there exists V ^, U^e E{H) such that
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°p*V +NPA* =Jn0
Thus,

Y= Y<WW5

So, since Dj^. D^, Upr, Vpr> Up£, Vp, €E(H). It follows that
Y €E(H).

(b) We prove that the given Hj Is of the required form I - NDr(|JDr','YDni))

From (3.47),

°hlNU =Upr +YDp*
Thus,

Hd •J - VDh"V=! - VW
"l^oSo, the given Hd 1s In the set <!-%,.( Upr+YDpj) : Ye tf >• Hence

n.xn.

Vo(P) CU"V(Upr+YV) : Y€H } (3'50)

The conclusion follows from (3.44) and (3.50). •

Now, the parametrizations given in Theorems 3.2 and 3.3, suggest a

general design scheme, which allows simultaneous realization of

Hw € ww m and HA € H A , for any such Hw and H,,.
y2 1 y2 o —

Conceptual Design Algorithm 3.1

-i -i n„xn4Data: P=N D'* D In. € Gc° \ (Nnr,DnJ r.c, with UnN + Vn Dr
pr pr px pn s pr pr pr pr pr pr



HvGHy y (PK Hd6ffyd (p) (both Hv' Hd € E(H))-
n.xn

Step 1: Find Yen1 °, such that H. = I - N (U +YD .). Let
a pr pr pJc

Da := V - YV

Nf* := upr +YV
n.xn

Step 2: Find M€ H 1 \ such that HM = Jl M. Let N 0 := M
V pr 7T*

Step 3: Choose a controller C (and thus specify a system S) by:

C:= O'clK^fJ (3.S3)

Claim 3.1: The system S, as specified by the plant P and controller C

of Algorithm 3.1, satisfies the following:

(i) C is admissible for P,

(11i)Hy2do=Hd.

Justification of Claim:

<1>Dh =DaDPr+NfAV

=WV +WV

" Vpr°pr +UprNpr +Y<W^^V*

Thus, det Dh = 1 € j. So, since (PI) and (P2) are satisfied by assump

tion, and Dc£, Nfjl € e{H)9 by Theorem 3.1 (i), Cis admissible for P.
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(ii) For the system S, defined by P and C, we have

V0 =x-VhV

=! - V W =Hd

Thus, H d = Hd as required,

(iii) Similarly,

Vl "ViX*
• NprM =Hv

Thus, H = H as required.
y2vl v

IV. Lumped Case Design Using Polynomial Subrings

4.1. Motivation

The results developed in Section III are valid for many classes of

systems, some of which are listed in Table I. However, perhaps the most

important classes are the first two given in Table I: the lumped con

tinuous time case (H^K^s)), and the lumped discrete time case (H=lMz))

In both of these cases, H is a ring whose elements are only rational

functions (in s or z, as appropriate). Ideally, however, we would like

H to contain, as a subring, the ring of polynomials in either s or z.

This is desirable for ease of computation, specifically: in solution of a

Bezout identity (i.e., finding U , V , N and D in (3.3), given

P € E(G)), and in addition.

In this section, we give a computationally efficient method, of

transforming design problems with H=R.(s) or H=KD(z) into design

in



problems with H =IR.(X) (with » £ A, 1R.(A) contains al]_ non-proper

transfer functions in A, including, of course, 1R[A], the ring of poly

nomials in A).. Conceptually, the method is this: A transformation f,

mapping s (z, respectively) into A is defined. Then, using this change

of variables, the transformation P€ E( IR, , Q(A)) of a given plant

P€ E( Kp^0(s)) (P € E( JR (z)),resp.) is found. Next, the design
methods of section III are used to generate a controller C€ E( Kr0i(X)).

Finally, C 6 E( IR (s)) (C € E( R (z)), resp.), the inverse image of the

controller C is found. Details of the transformations are given in

Sections 4.2 and 4.3.

Consider again the conceptual design algorithm of Section III. If

H=1RA(A), we can modify the algorithm to take advantage of the fact

that IR[A] cr.(a). This modified algorithm is presented below. Note

that this algorithm is valid for either the discrete time or lumped con

tinuous time case, once the transformation P€ e( 3Rr0-i (A)) has been calculated.

Conceptual Design Algorithm 4.1

i i nnxn<Data: P• N^ =D^ €R{o}f0(A) ° 1; (Npr,Dpr) €E( 1R[A]), r.c,

with w+vvs v and Upr' v€E(IRCx:i); (°PrV)€E(iR[x])'£-c';
v v«v,* • a Voc
V6H (P)andHd€Hy2d(P).

n.xn°
Step 1: Find Y€1RA(A) n °, such that Hd =In - N (U +YD £).

- o

Step 2: Find a fc.c.f. D'̂ N of Y, with N., D. € E( IR[A]). Let

Dc* := W " Ny£NpJl

% :s Dy*V +Vp*
nixnvStep 3: Find M€IRX(A) ' \ such that Hy =N M
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Step 4: Find aa.c.f. D^fl^ of 5 := D4Me e( JRa(A)), with
^•^eedRCx]). Let

Da := V>c*

Hn ••" Di*Ntt

N *= N"til ' \Z

Step 5: The required controller, and hence the system S, is specified by:

c :s Da£\r.Nf*3

Claim 4.1: The system S, as specified by the plant P and controller C

of Algorithm 4.1, satisfies the following:

(i) C is admissible for P,

(11) H^ =Hy,
(111) Hyzdo =Hd.

Justification of Claim:

<1>Dh =Dc*°pr+Nf*Npr

" BrtVpr-VWV +5**Vpr'WV

=BrtVVVVW " Vyi*VVVW

- BrtV (4-10)

Thus, det Dh =det 6.^det Dr By Step 4, 5€E( KA(X)), and by Step 1,
YeE( RA(A)). Hence, 0^} eE(RA(A)) and U'\ ee( Ka(X)) (because
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iKvKJ and ^V'V'are £#c# pa1rs) and so (det ^"1*(det w1
€]RA(A). So,

(det Dh)-] =(det D^rMdet D^)"1 €FA(A)

and hence, since (PI), (P2) are satisifed by assumption, and Dc£,NfJl

€ e( 1RA(A)), C is admissible for P, by Theorem 3.1 (i).

(ii) For the system S, defined by P and C, we have

Vi =V°n\ji

"V(DylBrt)Sirt

- Vyl-W°Hv

Thus, H u s Hu as required.
y2vl v

(iii) Similarly,

Hy2do =Ino " Npr°h Nf£

SIn0 "VVV =Hd

Thus H d - H. as required. O

Comments: (a) From Eq. (4.10), it is clear that the zeros of det Dh are

fixed by specification of Mand Y(remember that D^N^ =D£M - thus the
dynamics specified by D. are those of DmA which are not included in
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Dyr if DmJtNmJl 1s a A-c-f- of M)- Tnus the dynamics of the closed-loop
system are completely specified by the choice of M and Y.

(b) An actual engineering design problem would probably not be formulated

as a synthesis problem of the type in Algorithm 4.1, but rather as a

problem of finding the best design that satisfies certain design cri

teria. In this case, the designer would not have a prespecified Mand Y,

but rather, would choose Mand Y as part of the design process, and use

the approach of Algorithm 4.1 to find the resulting compensator C. Such

a design process can be automated by formulating the design problem as

an optimization problem [Gus. 1], [May. 1].

4.2. Application to Lumped Continuous Time Case

nnxn*
We will utilize the results of Section 4.1 for P €]R (s) ° 1 by

p»o* J

introducing the following transformation.

Definition 4.1

f : C\{-a} •+ Cis defined by f : s «- A=-J—
J s+a

f"1 : C\{0} - Cis defined by f"1 : A* s =1^

with a € Uc, where UCtis the region of instability. We assume that

»€ U, so thatlRyU) C]R(s).

Definition 4.2

n xn. nAxn,-
For a given P€lR(s) ° \ we define P€IR(A) ° n by

P(A) :« PU'V)) =P(^), VAe c (4.11)

It is crucial to note that the calculation of P given P in pole-zero

•JO.



form, is trivial. To wit, let

Ms+z^s+Zg)
P(S) S(s+Pl)(s+p2)(s+p3)

- 1-Aa kA[l+A(zra)][l+A(z2-a)]
P(A) =p(—) =[l+x(pra)3[l+A(p2-a)JLHA(p3-a:

Clearly, the inverse transformation is just as simple. It is because of

the simplicity of this sort of calculation, that this design method using

H=KA(A) is computationally efficient and in fact less expensive compu

tationally than direct calculations with H^JR^s) or H=IRD(z). Note

that if P is not given in pole-zero form, it is usually quite simple to

put it in that form.

Fact 4.1
n^xn. n xn.

(i) PeiR(s) ° n ~P €IR(A) ° n
n xn. n xn.

(ii) P€iRp(s) ° i (proper) ~P€IR{o}(A) ° 7
nAxn. n xn.

(iii) P^IRpj0(s) ° ^str. proper) ~ P€IR{oKoU) ° n

( noXni
nxn. JP€IRA(A) .where

(iv) P€JR (S) ° 1 (U-stable) ~ < A
u JA » f(U) (A-stable)

n xn.

So, given P €]R (s) ° , we can obtain P from (4.10). Then, by
p,u

the methods of Section 4.1, we can design a controller C € E( IR, J A)), with

a Jl.c.f. D^W o'Nfjj] over]R[A]. Then the following procedure can be used

to obtain a fc.c.f., overlR[s], of C(s) := C(f(s)). Note that C € e( IR (s)),

by Fact 4.1 (ii).

(i) Find L^A) € E( IR[A]),* such that L^(A) €1R[A], and
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Chr := L1(X)[Dcit(X):NTrJl{X):NfA(X)3hr has full row rank.

(11) Let 6^ := L^ (4.12)

"ft := L,!^ (4.13)

(111) Let L2(s) := d1ag[(s+<x) 1]i^1, where2 (4.15)

ri := 3pitDcii(x):Nwa(x):Nfji(x):i (4-16)

(1v) Let Ba(s) := L2(s)6a(f(s)) =̂ (sjD^tjJj) (4.17)

Nn(s) := L2(s)Nf£(f(s)) =L2(*)Nn(^) (4.18)

KlM := ^M^M) =^(sj^tjlj) (4.19)

Remark: Step (i) can always be accomplished by reduction of

^DcA(x):NTr£(x):Nf^x^ t0 row-Hermite form [Kai. 1], [Cal. 1].
Fact 4.2: ^[N^s^N^s)], as constructed in (4.12)-(4.19) is aJLc.f.
of C(s) := C(f(s)) overlR[A].

Proof

Since f '(A M = L_ f it is clear that

r. (s+a) *
(s+a) 1-P1[Da(f(s)):N7r)l(f(s)):i5n(f(s))]€E(IR[s]), fori =1, 2, .... n(

Thus,L2(s)[Da(f(s)):N7r£(f(s)):Nn(f(s))] € E( IR[S]).

Now, since (Dc£(A),[N^(A):Nn(A)]) are £.c,

rkCD^tffsJJjN^tftsJJjM^fts))] =nQ, for all s € <t\{-a}. Thus

zFor A€JR[A]mxn, 3p.[A] denotes the highest degree of any polynomial in
the i— row of A.



rk[Da(s):N^(s):Nf£(s)] =nQ, for all s € G\{-a}, since L2(s) is non-

singular for s € C\{-a}. And, for s =- a, [Dcit(-a)*N A(-a):Sf£(-a)]
s CWm., which has full row rank,

nr

Thus, rk[Da(s):N^(s):Nf£(s)] =nQ, for all s € I. Hence

D^(s)CN7rA(s):NfA(s)D is aa.c.f. of C(s) := C(f(s)) overIR[s].

4.3. Application to Discrete Time Case

nnxni
We will utilize the results of Section 4.1 for P €IR(z) ° 1 by

introducing the following transformation.

Definition 4.3

g : C\{0) •* C is defined by g : z •+ A = —

g"1 : C\{0} + t is defined by g"1 : A+ z =\-

Definition 4.4

n xn. nnxn-i
For a given P €IR(z) ° \ we define P €IR(A) ° ^

P(A) := Ptg'̂ X)) =P(l) (4.25)

Fact 4.3:

V"i _ n.^^Vni(i) P eiR(z) u " ~ P em(A)

(ii) P€Kp(z) ° ] (causal) ~ P€R{o}(A) °

(iii) P€lRp>0(z) ° n(strictly causal) «-> peIR{o},o(X)

-?fi-

n xn.

P €]R (A) ° \ where
(iv) P€]Rn(z) (D-stable) ~ < A

u ^A = g(D) (A-stable)

Comment: As in the continuous time case, we assume that » € D, so that

RD(z) CKp(z).



noXniSo, given P €]R (z) ° \ we can obtain P from (4.25). Then, by
p,u

the methods of Section 4.1, we can design a controller C€ e( JR/0\U)h

with a fc.c.f. D" [N '̂.N^] overIR[A]. And, since A=z"1, we can
di rectly implement a controller C € e( IR (z)), without taking an inverse

transformation (that C € E( IR (z)) follows directly from Fact 4.3 (ii)).

V. Robustness: Asymptotic Tracking and Stability

In this section, we consider the problem of designing, for a given

plant P, a compensator C, which is admissible for P, and is robust with

respect to the asymptotic tracking of a given family of inputs ¥ (See

Fig. 2). This problem will be formulated and solved in the algebraic

framework of section III. In developing a robustness result, we will

consider the fractional perturbation approach [Chen 1], [Vid. 1] and

develop sufficient conditions for the robustness of stability.

5.1. Robust Stability

The following robust stability theorem is similar to [Chen 1: Cor.

4.4], except that multiple perturbations (both plant and compensator)

are considered.

Theorem 5.1 (Robust Stability)

Consider the system S, of Figure 1, with P satisfying (P2), and C

admissible for P. Let D.^, N. D„„, N*n and N 0 be additively perturbed
pr pr ex, ii e

by, resp., ADpr, ANpr, ADc£, tHfV AN^ € E(H) with det(Dpr+ADpr), and

det(Da+ADa) € I. Let (tf.M) be a Banach algebra and B(0;r) denote the

open ball of radius r centered on 0. Now, let p. > 0, p > 0, p^ > 0,
dp ^np dc

Pnf >0, be such that

,DhVpdp +,0hVpnp +"Oh"1'*VPdc+%r'pnf+lVdc+pnPpnf) <1
(5.1)

-27-



U.t.c, If

ADpr€B(0;pdp) ADa € B(0;pdc)
and (5.2)

*V €^V *fl e B(0!pnf)

then, the perturbed system is H-stable.

Proof

Let D_ := Dnv, + AD . ft := Nnw. + ANn . Dr0 := Dr0 + ADr0,
pr pr pr pr pr pr ex. c£ c*

Ntt& := NttA + AN7rJ2r and Nf£ := Nf£ +ANf£ denote the perturbed numerator and
demoninator matrices of the plant and the compensator. Let the perturbed

system defined by Dpr, Npr, DcV Nf£ and N^ be denoted as S. In accor
dance with Definition 3.3, Swill be called H-stable iff H := JyT^+K
is H-stable (where Nr, Dand N£ are the perturbations of Np, Dand N£,
resulting from AD , ANpr, ADc£, ANf£ and AN^). It is thus clear that
if D€ E(H) is invertible in E{H)9 then S is H-stable. We prove that

D"1 € E(H) as follows.

First, note that D"1 € E{H)9 if [DJJ1Dh]"1 € E{H) where Dh := D^fi
+ Nf£NDr* ^nis f°^ows ^rom performing elementary row operations on D,

showing that det D* n*det Dh, where n =+ 1. and from the fact that

Djj € E{H)9 by Theorem 3.1 (ii). Thus, it is sufficient to show that
[D^r1 ZE(H). Now,

DhlBh =l +DhlDcAADpr +DhlNf^pr +Di>cADpr

+Di>f*Npr +̂ Vpr +Di>fAr

And, by (5.1) and (5.2),
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,0hlDcAr +°h*VNpr +»S>ttDpr +°i>ttNPr +tf^WV

Consequently, by (5.5) and [Die. 1, (8.3.2.1)];

It thus follows that D € E{H)9 and hence the perturbed system S

is H-stable.

Comments: (a) Clearly, this result supplies only sufficient conditions

for H-stability of S(AN ,AD ). However, there are no requirements

imposed on ANpr, ADpf, ADa, AN^, ANf£ e E(H) beyond (5.2). Thus, this
result allows for a more general class of perturbations than others

[Cru. 1], [Pos. 1], [Zam. 1], [Doy. 1]: e.g., in the lumped case, it

allows for changes in the number and the location of poles and zeros,

(b) A similar result may be obtained for the case in which a left coprime

factorization of the plant and a right coprime factorization of the com

pensator are used. This will be utilized in the discussion of robust

asymptotic tracking in Section 5.2.

5.2. Asymptotic Tracking

For the tracking problem we consider the unity-feedback configuration

S^ of Figure 2. The class of inputs Y, to be considered in the tracking

problem, is defined as follows.

Definition 5.1

The class of Y of inputs to be tracked consists of vectors i|> u
n. n.

where i|; € I\J and u € H ', with the property that for all u e H 1 that are

not a multiple of ^, the vector \\> u £ E(H).
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Definition 5.3

The closed-loop system S will be said to asymptotically track the

class ¥ iff y2 - ^ € H, V u1 6 y.

We now present three results on the tracking problem for the con

figuration S-| of Figure 2.

Theorem 5.2 (Necessary Conditions)

Let P satisfy (P2). Let C be an admissible compensator for P; thus

Chas aA.c.f. D'-N^. Suppose that S,, as specified by Pand Casympto

tically tracks the class ^. U.t.c,

(0 n1 > nQ (5.7)

(ii) the only common factors of det(NDrNcJ and \j> are units of H.

Comment: The interpretation of (ii) for the lumped case is that PC and

i|> have no zeros in common.

Proof
n.xn.

Let us define DWo € H1 1 by

Dh* := DaDpr +Nc£Npr <5'9>

It can easily be shown (similar to Theorem 3.1 (ii)), that C admissible

W€J {hence Dhl
-1 nixni

for P implies that det D. Q€ J (hence D. ' € H ). Thus, there exists

a Jl.c.f. D" Nc£ of Csuch that

D-oDnv. + N„0Nn„ = I„c£ pr cic pr n.

Consequently, H : u-j »- y2 in S^, is given by

H - N N „ (5.10)
y2ul pr

_vi_



(i) Assume that n > n.. We will show that a contradiction

results. Since nQ > n..,

rkH <min(rkNpr,rkNa) <^ <nQ

n

Thus, there exists y € H . such that [Bou. 2, Chap III, §8, Prop. 14]

(a)H y=6 (5.1D
y2ul no

(b) y is not a multiple of i|> (5.12)

(If y were amultiple of i|>, say y• <J>kY. where k is the multiplicity of ip as
a factor of y, then H, „ y s 6. and y would not be a multiple of ip).

y2ul .1
To develop the contradiction, we apply the input iij = ty y £ E(H)

(from (5.12)). The resulting output y2 is given by

y2 =Hy2Ul'Ul= Vl'^=V
Hence, y2 - u, * iJ^y £ E(W). which contradicts the assumption that S1
tracks y asymptotically. Thus n^ >. nQ.

(ii) Consider Na as defined in part (i):

det(NprNa) =ctet(NprNa).det(D-J)

Since det (Drl) € j, we can assume, without loss of generality, that

In order to develop a contradiction, assume tfrat *tet(NprNCJl) and \\>
have a common factor v e H. Let fel denote ftne muttipUcity of v as a

fact5xr-of det(N Na). Consequently, there exist J, m, m€ H, such that

n_



- kldet(NprNc£) =m-v =m-v

We will construct an input ik € ip, such that y2 - u-j £ E(H) where

y2 is the output resulting from the input u,.
n xn

Consider the matrix N NC£€H ° °. If rk(N Na) <nQ, then, as
in part (i), we can find y€H0 satisfying (5.11) and (5.12). The input

Uj := if\ f E(H) then yields y2 =0, and thus y2 - u^ t E(H).
So, suppose rk(N N ) =nQ. Then, det(NNa) f 0, and thus the

expression

I„o-det(NprNa) =Adj(NprNa).NprNc (5.15)
yields

det[Adj(NprNa)] =[det(NprNa)]Vl f0 (5-16)

Using (5.16), we will show that some element of AdJ(NDrNC£) nas v as a

factor with a multiplicity which is strictly less than k,, (the multi

plicity of v as a factor of det (NDJLo)): if not, then every term in
the summation

det[Adj(NprNa)] =Zsgn(a).nla(1)n2a(2) ... n^^j

th " nokl(where nM denotes the ij—element of Adj(N N J) would have v as
1J p n k,

a factor, implying that det[AcQ(N N^)] would have v ° as a factor,
contradicting (5.16), which indicates that v has multiplicity of only

kjtn -1) as a factor of det[Adj(N Na)].
nn thLet B€ H° one of the columns (say the i— column) of Adj(N Nc£)
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containing the element which has multiplicity of v as factor strictly

less than that of det(N N£). Let k2 be the least multiplicity of v as

a factor of any of the elements of B. Then, k, > k2 and k, - 1 >_ k2.
™ 9"w th

Define B :s v B. Then, one element of B (say the j element,
n

denoted 3.) does not have v as a factor, and additionally, B ^ H °.

We can now define the input u, by,

-1- - noUj := \|/ 'i|>B where y € H, B€ H°

= v"]B (5.18)

Clearly, u, £ E(H)9 and thus u, € y. The resulting output y2 is given by

y2 s NpA^ (from (5.10))
Thus,

pr"«/ *£ ~~~x"pr
Adj(N Na).y2 =det(N Na).v-1S

by (5.15) and (5.18). Equivalents,

, k.-l
Adj(N Na).y2 =mv ' -6, by (5.14)

- k *
= mv «B, by definition of B

where k:= k1 - 1- k2 >0; hence vk €H. Now, by (5.16), Adj(N Na)
~n xn ^

is invertible in G ; hence,

y2 =mvk.[Adj(N N^r^B

s ™k'h
n +h

where e£ € H has a one in the I— position, where I is the column
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number of B in Adj(N N J, and has zeros in all other positions.
pr ex,

Thus, y2^ U \ hence, y2 - u-j £ E{H)9 since u-j £ E{H). But this

contradicts the assumption that S, tracks the class ¥ asymptotically, con

sequently, det(NDrNc«) and ij; have no common factors which are not units

of H. •

We will now present a set of conditions which are sufficient to

guarantee that S, asymptotically tracks the class ¥. Additionally, we

will show that the same conditions are sufficient for the robust asymp

totic tracking of that class: i.e., these conditions guarantee that S^

will still asymptotically track the class ¥ under fractional per

turbations of the type considered in Section 5.1.

We will require two additional assumptions on the system S,:

(P2,) DpfcV ls a £,c'f*of p*w1th V* V € E(H)
satisfying:

Dn*VnO + NnoUno ° lr> (5-20)pi pi pi pi n * '

n.xn ,

(C21) C€ G1 ° has a r.c.f. NcrD~J,

We will say that C is right admissible for P if the resulting closed-loop

system is H-stable, and C satisfies (C21).

Theorem 5.3 (Sufficient Conditions)

Let P satisfy (P2'). Let C be right admissible for P; thus C has
1 nnxnna r.c.f. NcrDc^. If Dcr is such that Dcr =u>Dc, for some Dc € Ha °,

then the system S asymptotically tracks the class y.

Proof

a+ lie ham Aafina. T.
'hr

n xn

Let us here define Dh- € H by:
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hr pi cr p£ cr

It can easily be shown (similar to Theorem 3.1 (ii)), that C right

admissible for P implies that det Dhr € J. Thus,

-i nnxnADn^€H° °. (5.23)

The closed-loop map H. ,, : u, »• e, is given by

h. .. =D^orl0-
e-iu, cr nr pi

,-1= DcDnrDp£ *» °y assumpti on

Now, consider an imput u-j s if u€ y (note u€ H1). Under application
of this input, the resulting output y2 and the resulting error e, are

given by

*2-ul =el sHelUl-ul

=DrD'].Dn0u
c hr pi

niThus, for any u € H', y2 - u, € E{H)9 by (5.23). Since u, is an arbi

trary member of the class ¥, it follows that S, asymptotically tracks

the class Y.

Comment: This result shows that the "internal model principle" can be

generalized to an algebraic setting which includes the canonical

examples of Table I.
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Theorem 5.4 (Robust Asymptotic Tracking)

Let the assumptions of Theorem 5.3 hold. Consider arbitrary changes

in the plant, N^N ^,D £«- L such that (D -,N A) are A.c. and arbi
trary changes in the controller C, N__ «- Nr„, D_ «- Dr, such that

Ci ti c t

C := NcrDcr is right admissible for P := D IN .. U.t.c, the perturbed

system S,, specified by P and C, asymptotically tracks the class y.

Proof

Follows the same steps as the proof of Theorem 5.3.

Comment: If one allows only plant perturbations, then a necessary and

sufficient condition for the set of all perturbed systems S,, for which

H-stability is maintained, to track the class ¥ asymptotically, is that

the compensator C satisfy the internal model principle, namely D = ij/D ,

with Dc € H° °.

The following corollary provides sufficient conditions for robust

asymptotic tracking of the class Y, which are similar to the conditions

for robust stability, given in Theorem 5.1.

Corollary 5.4

Let the assumptions of Theorem 5.3 hold. Let D&, N ^, DQ and Ncr

be additively perturbed by, respectively, AD £,AN £,ADc,ANcr € e{H)9 with

det(D £+AD jl),det[i|;(Dc+ADc)] € I. Let (H.II.H) be a Banach algebra. Now,

let pdp >0, pnp >0, pdc >0, pnc >0, be such that

^DhrVPdc+flDhrVpnc+ BDhrrl<fl*Dcipdp+ BNcrBpnp+ B^dc<>dp+ ^V <]
U.t.c, if

ADp£€B(0;pdp) ADc€B(0;pdc)
and

oc



then the perturbed system S1 is H-stable, and asymptotically tracks the

class y.

VI. Conclusions

This paper has presented an algebraic design theory for linear multi-

variable feedback systems which leads to the following results:

(i) The use of an algebraic structure achieves a unification of the

canonical design settings of modern control theory, including the lumped

and distributed cases, for both continuous and discrete time systems

(see Table I).

(ii) The results presented generalize earlier results [Des. 1], using

a similar algebraic structure, to the case of non-square plants and con

trollers. Additionally, this paper gives, for the algebraic case, simpler

and more elegant derivations of the achievable I/O and disturbance-to-

output maps.

(iii) As in [Per. 1] it is shown that in the 1umped case (continuous

or discrete time), the algebraic design procedures may be reduced to

manipulations of polynomial matrices, which is more desirable than the

alternative: manipulation of matrices of rational functions.

(iv) The robustness theory shows that the achieved designs are

robust with respect to plant and controller perturbations.

(v) The theory of asymptotic tracking and robust asymptotic tracking

are generalized to the algebraic setting. This includes generalization

of the so-called "internal model principle" [Won. 1].
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TABLE I

Lumped
Continuous time

Lumped
Discrete time

Distributed
Continuous time

Distributed
Discrete time

X-Generalized
Polynomials

Multivariate
Rational Functions

G K(s) K(z) 1R(X)

G Vs) Vz) B(o0) b(p0) 1R{0}(X)

6s "W5* *P,o<2> g0<v W m{o>,o(X>

H Ky(s), «€U Kn(z), »e D A>0> V'o1 RA(A), «>£ A

I

PeiR^s)

S.t. P €lRp(s)

PeiRD(z)

S.t. p €IR (z)
*>„> *7>o>

pemA(x)

s.t. p"1 eR{o}

J

PeR^S)

s.t. |p(s)| > 0

V s e U

p6KD(z)

s.t. |p(z)| > 0

V z e D

p € A_(aQ)

s.t. |p(s)| > 0

0

p€ ^Jp0)

s.t. |p(z)| > 0

Vz € D(p0)c

p emA(x)

s.t. |p(X)| > 0

V A € A

ce
[Cal. 1-3] [Che. 1] [Cal. 1-2] [Che. 1] [Per. 1]
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Figure Captions

Figure 1. The feedback system S.

Figure 2. The feedback system S,.
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