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ABSTRACT

The problem of minimizing a non-differentiable function x*-^ f(x)

(subject, possibly, to non-differentiable constraints) is considered.

Conventional algorithms are employed for minimizing a differentiable

approximation f£ of f (subject to differentiable approximations

of <f). The parameter e is adaptively reduced in such a way as to

ensure convergence to points satisfying necessary conditions of

optimality for the original problem.
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1- INTRODUCTION

The development of a calculus for locally Lipschitz continuous functions [1] has been

accompanied by a variety of algorithms [2-7] for non-differentiable optim

ization. If f : H •*• JR is locally Lipschitz continuous, it possesses at .each xinIR

a generalised gradient 3f (x) which is a convex compact subset of ln. A

suitable candidate for a search direction s(x) for the problem of minimizing

f(x) on ]Rn might appear to be -g(x) where g(x) Aargmin{||g || g € 3f(x)}

since this yields <s (x), g> 5- || g(x) ||2 for all g € 3f(x). Clearly

II gte) || > O if O i 3f(x). However, such a search direction lacks the con

tinuity properties necessary for convergence and can lead to jamming.

Existing algorithms therefore employ a bundle of generalised gradients

constructed by exploring an e-neighbourhood of x. When f is semi-smooth C8]

a suitable approximation to this bundle can be obtained by using a special

line exploration technique* These bundles have the necessary continuity;

algorithms utilising these bundles must, of course, <t»?ii^a a procedure for

reducing e to zero in order to ensure that any accumulation point x* generated

by the algorithm, satisfies the necessary condition of optimal!ty 0 € 3f(x*).

When f is not semi-smooth the computational cost involved in calculating

the bundle of generalised gradients is considerable. This paper therefore

presents an alternative approach which, it is hoped, will be of use in such

situations. A non-differentiable function f is approximated by a differ

entiable function f which converges to f as e tends to zero. Conventional

algorithms, such as steepest descent or conjugate gradient, can then be

employed for minimizing f ... A procedure for reducing e-to zero completes

the algorithm. A similar approach can be employed for constrained

optimization.

n
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Our approach/ for unconstrained optimization, is easily illustrated for

the simple case when n = 1. Then, for all e > 0, f is defined by:

x +e

f£(x) A (l/2e) / f(x')dx'. (1.1)
x-e

It is clear that f£ is continuously differentiable, its gradient being:

Vf£(x) « Cf (x + e) - f (x - e)]/2e (1.2)

which is, of course, an approximation to Vf (x) when f is differentiable.

To construct an algorithm we require two sequences {e } and {y } such that

e± \ 0 and Yi ^ 0 as i + «. At iteration i the algorithm utilises a

standard minimization algorithm (using x±-1 as its initial point) to compute

an x± satisfying || Vf£ (x±) || £y±. Such an x± can be determined in afinite
number of iterations. Hence Vf£ (x^ -»• 0 and e.+Oasi*", We prove

that any accumulation point {x*} of {x^ satisfies 0 e 3f(x*). We also show

how the approach may be employed for constrained optimization.

The paper is organized as follows. In Section 2 the approximating function

f£ is defined and some elementary properties established. In Sections 3 and

4 the algorithms are stated and convergence (in the above sense) proven.

Computational considerations are discussed in Section 5.

2. THE APPROXIMATING FUNCTION

Let f : 3R +1 be locally Lipschitz continuous. Let P 'denote the unconstrained

optimization problem min {'f(x>|x £ ]Rn }. For all e > 0, x e 3Rn let N (x)

denote the set {x' € 3Rn .t _ XH« — £}- For a11 £ >° the approximating

function f : m11 + 1R is defined by
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f (x) A a(e) / f (x')dx'
N£(x)

(2.1)

where the 'normalising1 constant a(e) is the reciprocal of the volume of

N£(0), i.e.

a(e) »= I / dxl =l/(2e)n.
|n (O) J

Our first result concerns the differentiability of f

(2.2)

Proposition 1 For all e > o, f is continuously differentiable. When n

is greater than unity, the gradient Vf of f is given by:

CV^tx)]1 a a(e) / ffx'Jdx' - / fCx'Jdx1

lie {l, ..., n} where

D^(x) A {y € Hn
e+

y - x s; y • x + e}

{x + s1 - e;|sj| s e, j* i}

and where

D* (x) A {y €*n || x- y|! = e; y1 * x1 - e}

{x + s1 - -€;|sj| s £, j^ i}.

(2.3)

(2.4)

(2.5)

The proof of this result is elementary and is, therefore, omitted. D (x),

D (x) are parallel faces of the e-cube centered at x. They are

perpendicular-to the 1th standard basis vector.



We explore next the relationship between Vf and 3f. We need to ensure that

the algorithm does not jjft» up at a non-optimal point for P.

We require the following definitions.. For all e > 0 let 3 f(x) denote the
e

•smeared1 generalised gradient of f at x, i.e. 3" f(x) is defined as the convex

hull of the set {3f(x')|x' e N (x)}. Also for all x, h e 3Rn , df (x? h) denotes
^ £

the directional derivative of f at x in the direction h.

Proposition 2 For all e > 0, x e 3Rn

Vf.(x) € 3, f(x).
£ 2£

Proof For all h in ]Rn , •II h II a 1

<3f£ (x? h) - <Vf£ (x), h>

Uma(c) / f(*-*+*h)-f(*+s) ^
X\0 Nff(0) A

£

lia a(£) / <g(s, X), h > ds
X\0 N£ (0)

where, by Lebourg's mean value theorem [9], g(s, X) e 3f (x + s + aXh) for

some a e Co, 1]. Hence g(s, X) € 32£f(x) for all s € N (0), all X€ [0, £]
so that

Vf£(x) .€ 32£f(x).

Corollary Suppose 0 i 3f(x). Then there exists an £ > 0 such that

7f£l(x) j o for all £' e (0, £].

Proof Since 0 4 3f(x) there exists an £ > 0 such that 0^3 ,f(x)
AC

for all £' € (0, 2e]. Since Vf ,(x) € 3 ,f(x) it follows that Vf ,(x) ^ 0.

a

Since the algorithm reduces £ to zero it follows that any non-desirable point

x (0 4 3f(x)) will eventually be detected.
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3. UNCONSTRAINED OPTIMIZATION

If, for each x and £, f (x) and Vf' (x) can be exactly computed, then a

suitable algorithm for solving the unconstrained optimization problem P is:

Algorithm 1 (for unconstrained minimization)

Data: xQ € ]R ; sequences {£.}, {y.} satisfying £.V 0, y.\ 0 as e+ «.

Step 0: Set i = 0.

Step 1: Compute x. such that

Vf£ (x^H iYl.

Step 2: Set i = i + 1. Go to Step 1. Q

Any convergent algorithm (i.e. one producing limit points satisfying Vf (x) = 0)

may be employed in Step 1. The convergence properties of Algorithm 1 are

established in

Theorem 1

Any limit point x of an infinite sequence {x,} generated by Algorithm 1

is desirable, i.e. x satisfies Oe 3f(x). Q

The proof of this theorem requires the following two ancilliary results.
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Proposition 4

The map (£, x) *-» 3 f(x) is upper semi-continuous at any (0, x).

Proof Let 6 > 0 be given. Because 3f is upper semi-continuous, there

exists an £ > 0 such that 3f(x1) c N-C3f(x)] A {y

g € 3f(x)} for all x* c N2-(x). Novo

S-ftx1)* co{3f(x")|xw-s N-(x»)}

y - gjj^ £ <5 for some

for all x« € N^(x). Thus 3£f(x») c NjCSf(x)J for all x« € N-(x) all

£ € CO, £]. q

The following result holds because 3f (x) is compact.

Proposition 5

If 0 e N5C3f(x)3 for all 6 >0 then 0 e 3f(x). Q

Proof of Theorem 1

Suppose xL -kx aBi*«,ieX. Let g± A Vf£ (x±), i-0, 1, 2

From Proposition 3, g± e 32£ f(x±) for all i. From the upper semi-continuity

of (£, x) !-*• 3£f(x) at (0, x), forall6>0 there exists an integer i* such that

g± eN5C(3f(x))] for all i 2: i^, iek. From Step 1of the algorithm,

gt +0 as i -*• «. Hence for all 5>0, 0"e N^CSf(x)J. By Proposition 5,0 e.3f (x)
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4• CONSTRAINED OPTIMIZATION

Consider the constrained optimization problem:

P : min{f (x) |i|;(x) <_ 0> (4#1)-

where f : B ♦! is locally Lipschitz continuous and ^ : Bn -* B is

defined by:

Wx) A max{gj (x) |j€ m} (4,2)

where g^ :Bn -». h is locally Lipschitz continuous, j= l,...,m, and

m denotes the set {l,...,m}. it is easily shown that \\) is locally

Lipschitz continuous. A well known necessary condition of optimality for

P is
c

ifKx) £0, 0 6 co{3f(x), 3i[iCx)}. (4.3)

An alternative method of expressing this is to employ an "optimality

function'' 0 : Bn •+• B defined by

8(x) A - ||h(x)||2 (4.4)
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where h : B -*• B is defined by

h(x) A Nr[A(x)], (4.5)

A(x) A co{3f(x), 3i|;(x)}, (4.6)

and where Nr[A] denotes that point in set A. which is closest (in the

Euclidean sense) to the origin. It is clear that 6(x) £ 0 for all

x in B and in zero if and only if the origin lies in A(x), thus

satisfying the second condition in (4.3).

Let f and ty : B. •* B denote the smoothed versions of f and i|»

respectively, defined as in (2.1). It follows that f and ti> are
£ £

continuously differentiable and that:

Vf£(x)c 32£f(x), Vi|;£(x) c 3^00 (4.7)

for all x in B and all positive £. As for the unconstrained case we

replace the hard problem (P ) by an infinite sequence {p } of easy
c c

(smooth) problems which are approximately solved. The sequence {£.} is

such that S^'o as i-*• « and-for each £,• P£ is defined by
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Pc :min{f£(x) |ip£(x) £ o} . (4.8)

c

A necessary condition of optimality for P is :
c

*e(x) <0,0£ co{Vf£(x), ttfi (x)}. (4.9)

For all x in B , all positive £ let A (x) denote co{Vf (x), Vty (x)} and

let h (x) denote Nr[A (x)]. Then 6 : Bn -*• B defined by:
w C* w

6£(x) A-|| h£(x)||2 (4.10)

is non-positive and is zero if and only if the origin lies in A (x) .

Hence the necessary condition of optimality for P may be expressed as
_ c

1|>£(X) a 0, 8£(x) = 0. (4.11)

E *•Problem P will be said to be approximately solved if ty (x) £ y and

8 (x) >^ -y where y is a small positive number. A conventional algorithm
£ ^

for solving P will compute such an x in a finite number of iterations.

Our algorithm for solving P' can now be stated.

Algorithm 2 (for constrained minimization)

Data: xe B , sequences {£.} and (yi)

satisfying £. \ 0, yv ^ 0 as i •*» 08.

Step 0: Set i = 0,
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Step 1: Compute x. such that

vv ±V W ^'V

Step 2: Set i = i + 1. Go to Step 1. Q

The convergence properties of this algorithm are given by

Theorem 2

Any limit point x of an infinite sequence {x.} generated by Algorithm

2 satisfies i|/(x) £0, 8(x) = 0.

Proof

« K *
Suppose xL —+ x where K is an appropriate subsequence of {o, 1, 2,...}.

It follows that h (x ) lies in A (x,) and, therefore, in
ei x ei i

co^32£ f(xi)' 32£ ^(xi^ for a11 *•• From the upper semi-continuity
i i

of (£, x) h*> co{3£f(x), 3£ipCx)} at (0, i) it follows that for all

6>0there exists ainteger i^ such that h£ (x±) * N-IXx)] for all
i > U, i€ K. Since 8 (x.) + 0 it follows that h (Xj) + 0 as i -*. »

and, hence, that 0€ A(x) i.e. 8(x) = 0. It is easily established that

t|Kx) <0. p

•TTC^Ti-TyMrir.1 •*;
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5. IMPLEMENTABLE ALGORITHMS

Algorithm 1 and 2 are very simple. However, they suffer from the

severe disadvantage of requiring the evaluation of multidimensional

integrals to obtain f (x) and Vf (x). Any practical algorithm can

only compute approximations to these quantities. To implement Step 1

of Algorithm 1, for example, we need therefore a subalgorithm which solves

P_ : min{f.(x) |x € mn} using estimates of f.(x) and Vf (x).
fee. £ £

Two kinds of algorithms, deterministic and stochastic, are available.

In the deterministic algorithms the multidimensional integrals are

approximated by summations over a finite grid. In the stochastic

algorithms Monte-Carlo techniques are employed to estimate the

integrals•

We consider initially the deterministic algorithms which approximate

the integrals f (x) and Vf (x) by weighted summations over a finite

number of points. For any positive integer j let T(j) denote the

number of points used in the numerical approximation, and let f. (x)

and Vf (x) denote the corresponding approximations to f (x) and

Vf (x) (£ is fixed in the subproblem of Step 1). The function X is

monotonia increasing (j > j2 s"> t(Jj) > (W* and T*^ "*" °° as
n Bn

j -»*«).. Let A.(x) : B •*• 2 denote the corresponding algorithm

map.
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The following algorithm model [12] is appropriate.

Algorithm Model

Data: Integer j S 0, 6Q > 0, a e (0, 1)

Step 0: Set i =• 0, j • j , 6 » <S .

Step 1: Compute aye A. (x.).

Step 2: (a) If f (y) - f (x^ > -<5, set

j « j + 1, 6 » ct6 and go to Step 1«

(b) If f^y) - fj(xi) £ -<5, set

xi+1 • y, set i • i + 1 and go to Step 1.

A corresponding convergence theorem gives conditions on f. and A. which ensure

that limit points of sequences generated by the model satisfy necessary con

ditions of optimality. Let A A {x € Bn |Vf (x) = o}.

Theorem 3 [121

Suppose that

(i) There exists a set M c bq satisfying M nA ^0 such that for every
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x e M, x i A , there exists an y > O, 6 > O and an integer N > O satisfying

f (x°) - f ,(x') S -<S

for all x' € N (x), all x" € A (x»), all j s> N.

(ii) There exists a sequence {0 } c b , possibly depending on M,
s s=0

such that

and

I 8s <* '
s=0

f£(x) -f^x)! £ Bg ,

for all x e M, all j £ s.

Let {x.} be an infinite sequence generated by the Algorithm Model such that

{xi> c M.

Then:

If {x.} is finite (because the algorithm jams up between Steps 1 and 2 reducing

£ infinitely often) then its last point lies in A . If {x.} is infinite, then

any accumulation point lies in A . 0

Condition (i) is a common condition, f, replacing f , for a "convergent

algorithm,, [tl]; condition (ii) imposes a uniform convergence property on the



- 14 "

numerical approximation f..

The simplest deterministic algorithm is a simple modification of the

steepest descent algorithm.

Algorithm 3 (for unconstrained optimization)

Data: Integer jQ £ O, 6Q > 0, a e (O, 1), 6 e (O, 1),

Xmin 6 (0' 13-

Step 1: Set i = O, j «• 0, 6 » 6 .

Step 1: Set X > 1.

Step 2:(a)Iffj(xi -XVfj(xi)) -f̂(x±) >-X|| Vf (x±) ||2 /2,

set X « 6X.

If X s 5X , repeat Step 2(a) •
min

If X < 6X. . , set y *» x. and proceed,
min i *

(b)If f^ - XVfj(xi)) - fj(xi) <; - X|| Vfj(xi)||2/2,

set y • x - XVf (x ).

Step 3(a) If f^(y) - f (x^ >-£, set j - j + 1,

set <5 m a<5 and go to Step 1. •
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(b) If f^y) - fj(xi) s -6, set xi+1 » y,

set i =* i + 1, and go to Step 1. g

It can be seen that Algorithm 2 has the same form as the Algorithm Model,

A^(xi) in the latter corresponding to Steps 2(a) and (2b) in the former.

Algorithm. 2 is a finite dimensional analog of the Algorithm presented in

[12].

We now make the following assumptions:

Al The sequence {x } generated by the algorithm is bounded.

A2 The integration formulae and the truncation function T are such that

for any compact subset Q of Bn and any 6 >0 there exists a positive

integer..J and a K € (O, «) such that

!| f£ (x) -f (x) j! SK/2j

|Vf£(x) -Vf^x)!! £6

for all x € Q and all j a J.

Because Vf£ is continuous (and,, hence, uniformly continuous in Q) A2 is

satisfied by standard integration formulae for a suitably chosen truncation

function T.

Theorem 3

Suppose that {xi> is a bounded sequence generated by Algorithm 2. If

{xi> is finite then its last element lies in A .If {x } is infinite then
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any accumulation point lies in A .

The proof of Theorem 3 is omitted since it is essentially the same as that

given in Theorem 3.48 in [12].

Hence Algorithm 3 may be used in Step 1 of Algorithm 1 since it will

compute (using x^_^ as its initial point) an x. satisfying || Vf (x )|| £ y

in a finite number of iterations.

Whereas the deterministic algorithms estimate Vf (x) to obtain a search
£

direction s and then estimate f (x + Xs) to obtain a step length, stochastic

algorithms generally estimate only Vf (x) using Monte-Carlo techniques (to

obtain a search direction) and use a pre-determined step length. Thus

a standard stochastic approximation algorithm is defined by:

*i+l-Xi-Xi Vf£(Xi>

for 1 « 0, 1, 2, ..., where Vf\ (x.) is defined by:
£ i

Vf£(xi) A Cf(5j +eSj) - £C5 - Ee )]/2£

and £ is apoint chosen from auniform distribution on D^(0) A{x || x)^ si,
x3 a o}, e is the j standard basis vector j= l,...,n,and the sequence

{X^} of step lengths satisfies X. >0, EX. »•, ZX^ <«, (The estimate

Vfgfc^) can alternatively be defined as the average of N estimates, N any

positive integer). The almost sure convergence of the algorithm is established

in ClO]. However, there remains the difficulty of satisfying the condition
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Vf> <xiHI <. y* since Vf (x.) is not computed. The stochastic
ei • X £i i

approximation algorithm will indeed compute a sequence {if } such that

Vf (y.) -^ 0 almost surely for some subsequence J of {o, 1, 2,...}
i J

but computes at each iteration Vf (y ) which does not converge to
ei 3

zero since the variance of the the estimate remains finite for fixed

&L. Hence the test || Vf£ (x±) || £ y is not implementable. We cannot

therefore, at this stage, propose a suitable stochastic approximation algorithm,

further research being required. One possibility is to increase the

accuracy of the estimate Vf (y ) monotonically as j increases. Implement-
ei D

able algorithms for the constrained optimization problem can be similarly

constructed.

6. CONCLUSION

The algorithms presented in this paper are conceptually very simple.

They approximately minimize a smooth approximation f of f (subject

possibly to smooth approximations of the constraints), reducing £

and the accuracy of the solution in such a way as to ensure con

vergence. Evaluation of £ and Vf requires multi-dimensional

integration. Implementable algorithms replace f and Vf by suitable

numerical approximations.
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