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ABSTRACT

Any structurally well-posed discrete-time interconnected dynamical

system S can be simulated subsystemwise on any finite interval of time of

length L. That is, the system output can be computed by a finite number

Q of simulations of the component subsystems only. In general, Q ^ L. If

the system is linear and time-invariant, then the number of partial simu

lations can be made less or equal to the generalized index of the most

strongly connected component of S plus two.
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1. INTRODUCTION

Consider ah interconnected system S - (S,, S«, ..., SM; I) of the form :

sk

•{

x^t+1) = fk(xJc(t), ^(t), t),

yk(t) - gk(xk(t), uk(t), t),

\(t) =yk(Y(t)t uQ(t), t), k = 1,2,..., N,

y (t) = a(y(t), u (t), t),
o o

\ "be Pk
where, for any k e{ 0,1,2,..., N}, \(t)e R ,^(t) e R , yk(t) e r ,

xo =|xj x^ ... xj' ,y=|y' y* ... y^f so that nQ = j r^, y(t) 6aP,
N . k-1

p = 7 P, ; t e T = {!, t+1, ..., t + L>. Thus,u (t), x (t) and y (t) denote
wi k o o o

the input, the state and the output, respectively, of the overall system S.

Note that y (t) and y(t) are quite different objects,
o

Furthermore, suppose that a computing facility is available whose central

unit can efficiently handle the "interaction" I plus any subsystem Sfc of S, but

is not capable to efficiently handle (simulate) the system S as a whole,due

to its exceedingly large order n . We are interested, then, in the following

problem (Subsystemwise Simulation Problem).

Given T, namely t and L, x = x (t) and u (.) on T, compute y (.) on (any
* o o °

right subinterval of) T by handling no more than a single subsystem at a time.

If moving any subsystem in and out the central computing unit is far the

most time-expensive operation to be executed, a first conceivable criterion to

evaluate the performance of any possible algorithm for the problem above is

just the number of such in and out moves needed to completely solve it.

In this paper we present and discuss two kinds of algorithms. The algori

thms of the first class, denoted by A, are both general and natural: they attempt

to sequentially decompose each elementary transition (time-step) of S into N

- 2 -



elementary transitions of the single subsystems. The algorithms of the se

cond class, denoted by B, are apparently more sophisticated, yet will be

proved not to be better, in general, than the ones of the first class in

asmuch as the total number of times each subsystem needs to be called in

the central computing unit (to simulate it on an interval of time of any

length) is adopted as overall performance index. However, if the intercon

nected system is both linear and time-invariant, then a class B algorithm

can be devised which, according to the afore mentioned criterion, is better

than any algorithm in class A, whenever the length L of the time interval

T minus the generalized index of the most strongly connected component of

S is greater than two.

2. CLASS A: STEP-BY-STEP DECOMPOSITION ALGORITHMS

In the present section we shall be concerned with the possibility of de

composing the computation of each elementary transition of S into the se

quential computation of the elementary transitions of the subsystems S ,

k = 1,2,...,N. In order for this to be a real possibility it is obviously

necessary that , for each t s T, an ordering (S. , S. ,..., S ) of the sub-
31 32 3N

systems exists such that, once the output at time t of the first k-1 sub

systems has been computed, all the information needed to compute the output

at time t of the k-th subsystem is available. We make this notion more spe

cific by the following definition.

Definition 1

The ordering (S , S ,..., S. ) of the subsystems of S is feasible at
.. -1 32 3N

time t e T if ?, y s R5 and y = y , y. = y. ,..., y. = y imply
-"l 31 32 32 \-l 3k-l
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g. (x , y. (y, u ,t), t) = g (x. , y. (y, u , t), t)
^k \ \ ° jk \ jk °

for all k e{l,2,...,N} and all (x. ,u )e R x R ° .
Dk °

A first step-by-step decomposition algorithm can then be quite naturally

constructed as follows. The algorithm computes first, sequentially, the

output of each subsystem at t; then, for each t e T, it updates the state

of a single subsystem at a time and computes the next value of the output.

Algo Al

Data : T ^ (t, L), x, {u (t), t e T>. ^ n p
- ° + P pl P2 N

Step 0 : Set t = t, k=l,y = y =06R =S xR x...xR .

Step 1 : Find an ordering of the subsystems of S which is feasible at

time t; rename then the subsystems of S so that the natural

ordering (S., S2, .../ S ) is feasible at time t.

Step 2 :Call Sk = (fk, gk; x^ .Set ^ =^ and yfc =g^^/ Yk(v'u0(t) #t) ft)

Step 3 : If k = N, compute y =* a(y, u (t), t), set k=l and go to step 4.

Else, set k = k+1 and go to step 2.

Step 4 : Find an ordering of the subsystems of S which is feasible at time

t+1; rename then the subsystems of S so that the natural ordering

(S<, Sn, ..., S„) is feasible at time t+1.
I Z N

Step 5 :Call Sk = (ffc, g ; x^. Set x^ = fj^^/Y k^Y' u0(t)' tJ ' fc) and

yk =gk(xk' Yk(y+' u0(t+1)' t+1)' t+1)*
Step 6 : If k = N, go to step 7. Else, set k = k+1 and go to step 5.

Step 7 : Set t = t+1, y = y and compute y = a(y,u (t),t).

Step 8 : If t = t + L, stop. Else, set k = 1 and go to step 4.
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It should be apparent that the critical steps in Algo Al are stepl and

step 4. In other words, we should like to qualify the algorithm by speci

fying the conditions under which a feasible ordering exists at any k e T.

Next, we may want to avoid the reordering of the subsystems of S at each

time instant t e T; thus, we should also like to investigate the conditions

under which step 4 can be safely dropped out from Algo Al.

In order to perform such an analysis, we need some further definitions

and some preliminary results. Most of them refer to the "structure" I of S,

namely to some fundamental properties of a time-varying digraph G (t) natu-

rally associated with S and called the system graph of S at time t.

We may construct G (t) in the following way. First, we associate each

variable Uj^ and y, k = 1,2,...,N, with as many vertices, called vertex 11

and vertex y , respectively. Next, we draw an arc from vertex vl to vertex

yk# k » 1,2,...,N; these arcs will henceforth be called subsystem arcs.

Furthermore, we draw an arc from vertex y to vertex vl if and only if a

does in fact depend upon y., i.e. if and only if $ (.,y,u ,t) is nonconstant
j jc o

for some (y,u )c R5* x R °, where, for any z. e R 3,

A

♦k(Yy'Vt} =Yk(lyi y2 — yj-l Z\ yj+l — yNl'' Vfc )?

these arcs will henceforth be called interconnecting arcs. Of course, two or

more variables known to be identical at t, because of I, can be associated

with the same vertex, which will be arbitrarily given the name of one of

them. Finally, the set of vertices and the set of arcs of Gg (t) will be denoted

V and W(t) S V x V, respectively.
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Example 1

Consider an extremely simple interconnected system S made up of two

subsystems only, i.e. S = (S., S«; I). As for the interconnection I, let

A I ,
u = \ul u'|' and suppose that

u(t) = T(t) y(t) + yju (t))
o o

(t-t)

r<t> &
-i

It is easy to check that r(.) is periodic of period 6. So G (.) must

be periodic as well and its period must be equal to 6 or to one of its in

teger divisors. In this case, it turns out that G (.) is periodic of period

3. For any ie {0,1,2}, let x = {t: |t-t| = i}, where |.|3 means modulo 3.

Then, the three possible forms of the system graph of S on x , x^ and x.

are shown in Fig, 1-a, b and c, respectively.

Definition 2

A subsystem S of S is purely dynamic at t e T if g (x ,.,t) is constant,

"k
for all x. 6 R . Accordingly, the corresponding subsystem arc of G (t) is said

to be a purely dynamic subsystem arc.

Definition 3

The reduced system graph of S at time t 6 T is the graph G (t) = (V, W (t))

obtained by removing from G„(t) = (V, W(t)) all purely dynamic subsystem

arcs.
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Definition 4

The system S is structurally well-posed at t e T if G (t) is acyclic

(i.e. does not contain any closed path).

Definition 5

The system S is structurally well-posed on x £ T if it is structurally

well-posed for all t e x.

Definition 4 and Definition 5 are essentially motivated by the main

result in |l|. In fact, it is easy to proove that if S is structurally

well-posed on any left subinterval x 6.T, then it is well-posed on t, in

the sense that the state and output motions of S on x exist, are unique

and depend causally on the input u (.) on x . Structural well-posedness

is of course only a sufficient condition for the well-posedness of S; how

ever, it is in fact the weakest condition which ensures well-posedness for

all possible specifications of S, namely for all possible specifications

of functions f , g and y , k = 1,2,...,N. In this structural sense, it

can therefore be said that such a condition is also necessary.

The following two lemmas will be used in the proof of the main result

of this section, namely Theorm 1.

Lemma 1.

If S is structurally well-posed at t e T, any ordering of the subsystems

of S such that

i) all purely dynamic subsustems precede each subsystem of S which is

not purely dynamic,

ii) the ordering of the subsystems which are not purely dynamic fits with
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the partial ordering induced on them by G (t) , is a feasible ordering
SR

at time t.

Proof. The proof is by contradiction. If such an ordering (S. , S. , ..., S. )
31 32 :N

is not feasible at time t, then in view of Definition 1, there must exist

k e{l,2,...,N }, (x. , u )€r JlcxR ° and y, y £ RT such that
\ °

a) y. = y. , y. = y. , ..«, y. = y »
3l Dl" 32 32 3k-l *

b) g. (x , y (y, u , t), t) ^ g (x , y (y, u ,t),t)
\ 3k ^k ° Dk -'k -"k

This means that: 1) S, is not purely dynamic, 2) u. (t) does depend upon
3k :k

the output of some subsystem S.., h fc k. Hence, G (t) must have an inter-
3h SR

connecting arc from vertex y. to vertex u . Furthermore, in view of (i),
Dh 3k

S cannot be purely dynamic since S is not purely dynamic and precedes
jh 3k

it. Both S. and S.. being not purely dynamic and the existence in G (t)
\ jh SR

of an arc from vertex y to vertex y , with h fc k, either contradicts the
jh 3k

assumption that S is structurally well-posed at t, if h =» k, or condition

(ii) , if h^k.

Corollary

If all the subsystems of S are purely dynamic at t e T, then S is struc

turally well-posed at t and every ordering of the subsystems is feasible

at t.

Lemma 2

If there exists a feasible ordering (S , S.,..., S. ) of the subsystems
3l j2 3N

of S at time t € T, then G (t) is acyclic.
SR
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Proof. Feasibility at time t implies that, for all k = 1,2,..., N, either
<

S. is purely dynamic or u, does not depend on y. , for any hi •k, k+l,...,N-.
Dk Dk Dh

Hence, the input of a subsystem which is not purely dynamic cannot depend upon

the output of any not purely dynamic subsystem unless it is a preceding sub

system (in the considered feasible ordering). Since, by definition, any closed

path of G (t) must alternate between interconnecting and not purely dynamic
SR

subsystem arcs, the only possible conclusion is that G (t) is acyclic.

Theorem 1

Algo Al solves the subsystemwise simulation problem if and only if S is

structurally well-posed on T.

Proof. It should be apparent, from the preceding discussion, that Algo Al

actually solves the subsystemwise simulation problem if and only if at least

one feasible ordering of the subystems of S exists, for each t e T. The

if part of the theorem is then an immediate consequence of Lemma 1. As for

the only if part, note that if S is not structurally well-posed on T, then

there exists t e T such that G (t) is not acyclic. Hence, by Lemma 2, there

does not exist any ordering of the sybsysterns which is feasible at t.

Admittedly, the determination of a feasible ordering of the subsystems

of S, at each t e T, may be a cumbersome task. When a large number of simu

lations, over a long interval of time (L large) , has to be carried out for a

given class of systems, it may in fact be rewarding to know a priori whether

or not step 4 can be safely removed from Algo Al. As a trivial example, sup

pose that the interconnected system S is not only structurally well-posed

- 9 .



but also structurally time invariant on T, i.e. that G (.) is acyclic
SR

and constant on T; then, Algo Al does obviously work even without step 4.

But the converse is not true: in order that the simplified version of Algo

Al based on a fixed ordering of the subsystems may work much less than struc

tural time-invarinace on T is required. In fact, in view of the corollary

of Lemma 1, a second such case is readilyrecognized to occur when all the

subsystems of S are purely dinamic on T, no matter of whether G _(.) is con

stant on T or not. To be more specific on the above issue we need to introduce

some futther definitions which, on the other hand, will turn out to be use

ful in next section too.

Definition 6

The ordering (S , S , ..., S ) of the subsystems of S is feasible
jl j2 3N

on t <i T if it is feasible for all t 6 x.

Algo A2

Same as Algo Al but for step 4, which is dropped out, and step 1, which

is modified as follows:

Step 1: Find an ordering of the subsystems of S which is feasible on T;

rename then the subsystems of S so that the natural ordering

(S., S2, ..., S ) is feasible on T.

Definition 7

For any xc T, the graphs gI = (V, WT) , WT = U W(t) , and G* =(V, wL
S SR *>

x A
W = U W (t) , are the cumulative system graph and the cumulative reduced
R . R

tex

system graph over x , respectively.
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Definition 8

The System S is invariantly structurally well-posed on x -=* T if the

cumulative reduced system graph over x is acyclic.

Remark 1

If the system S is at once structurally well-posed and structurally

invariant on x ^ T, that is G__(.) is acyclic and constant on x , or all
SR

the subsystems of S are purely dynamic on x , then S is invariantly struc

turally well-posed on x, but the converse is not true.

Therem 2

Algo A2 solves the subsystemwise simulation problem if and only if S

is invariantly structurally well-posed.

Proof. It is obvious that Algo A2 solves the subsystemwise simulation pro

blem if and only if there exists an ordering of the subsystems of S which is

feasible on T. In view of Lemma 1 and Lemma 2, such an ordering exists if

and only if gI is acyclic.
SR

Example 2 .

Consider again the interconnected system of Example 1. A simple thought

enables one to recognize that such a system is structurally well-posed on any

interval T of length greater than two if and only if s1 is purely dynamic on

(xQ •-> x2) fv T and S2 is purely dynamic on (x ox.) n T. The system S is in

variantly structurally well-posed on T if and only if both S. and S2 are pure

ly dynamic on T. Hence, looking at S^ and S2, separately, it is possible to de

termine which algorithm is best suited to the problem at hand.
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3. CLASS B: A "FUNCTION-SPACE" APPROACH

In Section 2, the strong relationship between structural well-posedness

and the possibility of decomposing the computation of each elementary time-

transition of S into a sequence of similar computations involving no more

than a single subsystem at a time has been demonstrated. However, once a sub

system has been moved into the central computing unit, we might well be ready

to leave it run over an interval of time even much longer than one (e.g.

L elementary time-transitions), if the prospect is that the total number of

subsystem moves needed to solve the overall problem can be significantly

reduced. To explore this possibility, let us recast the subsystemwise simula

tion problem in slightly different terms.

For any vector function v(.) defined on T and any integer X $ L, let

v(X) = |v'(t) v'(t+l)... v'Ct+A)!'. Furthermore, for any k = 1,2,...,N, de

fine the local simulation problem P. (X) as the one of computing y (X), given

x. (o) = x. and \i (X). Then, problem P. (X) may be described by a (readily

computable) function ir .such that :

Pk(X) : yk(X) =*kX <v ^U)) .

In a similar way, the interaction and output equations I can be reformulated

as follows:

Uk(X) = YkX (y(X)' V>0<*>>' k = 1.2,...,N,

y (X) = a. (y(X), u (X)) ,
,*O K. • (O

where the functions y• . , k = l,2,...rN, and a. are trivially induced by

y. and a , respectively . T/ith this notation, the original subsystemwise si-
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mulation problem has been equivalently reformulated as a composite pro

blem P (X)/ the analysis of which will be the object of the present section,
o

Following the usual pattern |2|-|4| , in order to find a way to solve P (X)

by solving (possibly many times) no more than a single subproblem at a time,

we Look at the interaction graph G(X) associated with P (X).

A little thought enables one to recognize that, in this particular case,

the interaction graph is nothing but the cumulative system graph over

x= {t, t+l,...,t +X}# with the variables \i and y substituted by u. (X) and

y (X), respectively, for all k = 1,2,...,N, and the subproblems P. (X) simply

associated with the subsystem arcs (from vertex u, (X) to vertex y.(X) ).
**k */k

Example 3

Consider once more the interconnected system of Example 1. For any t and

any X 2 2, the interaction graph G(X) associated with P (X)/ simply obtained

by superposition of the three graphs of Fig. 1, is shown in Fig. 2. As an addi

tional example, assume again S = (S., S2; I), where I is defined as in Example

1, but

ret) A

r21(t) r22(t)

r21(.) and T22(.) are arbitrarily given functions (not identically zero on

x). The interaction graph associated with P (X), is shown in Fig. 3, where the
o

identity u1 = y2 has been explicitly taken into account.

In both cases (Fig. 2 and Fig. 3), it should be apparent that simulating

S subsystemwise over T is exactly equivalent to solving P (L) by solving first,

possibly more than once but no more than one at a time, the subproblems
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P1 (L) and P2(L) and then combining (if possible) these local solutions to get

the global one. Of course, in order for the decomposition above to be really

of interest, the computational effort required by the last step should not

significantly exceed the one needed to solve the larger subproblem.

T
Now, if the interaction graph G(L), or equivalently G , is acyclic, then

w

P (L) is said to be a partially or totally sequential problem, according to

whether the ordering induced by G(L) on the set of the subproblems is a par

tial or a total ordering, respectively. Of course, solving a sequential pro

blem P (L) by solving one at a time its subproblems is trivial. If, on the

contrary, G(L) exhibits some closed paths, by a standard strongly connected

components analysis |s| , |6|, we can easily carry P (L) into a (partial or

total) sequence of composite problems associated with the strongly connected

components of G(L) . Note that each strongly connected component of G(L) iden

tifies a strongly connected component of S over T. Without any loss of genera

lity, we can therefore assume from now on that G(L) is strongly connected.

Let E be an essential set of G(L), i.e. a set of vertices the removal of

Ii **7|. By definition, associated with E, there is

T
in G„ a corresponding essential set E. Denote by z a composite vector made up

S E

of all variables u or y , r, s e{2,3,...,N}, associated with vertices of E.

If the essential set is chosen in such a way as to minimize the dimension

v of z , then E is an optimum essential set |8|- |l4|and the minimum dimension

o T
v of z is the generalized index of G_. If S consists of single-input Single-

Is S

o T
output subsystems only, then v coincides with the index of G , as usually de-

o

T 'o
fined in the literature. If G is not strongly connected, let v. denote the

generalized index of its h-th strongly connected component, h=l,2,...,q. Then

O r O

V = J, V» 'h=l
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If v° > v° , for some i, h e {l,2,...,q}, we say that the i-th component
i h

is more strongly connected than the h-th one. This leads to considering,

besides the generalized index v , an interconnectivety index, u t defined

T
as the generalized index of the most strongly connected component of G ,

s

i.e.:

o A o
U = max v. .

h h

Note that, with the adopted notation, the elements of the vector z (L) are
E

the same, up to a suitaole rearrangement, as the ones of all vectors u (L)

or y (L) associated with nodes of G(L) belonging to E.

Whenever an oriented graph is used to describe an interconnection of

causal objects, the variable associated with each vertex can be thought of as

playing two different roles: it is the signal caused by all incoming arcs

(output) and also the signal which is carried by all outgoing arcs (input);

These two roles may be separated by splitting the node and adding an arc

(identity) from the output to the input semivertex. By doing that for all ver

tices of the essential set E, we can readily see that P (L), namely the ori

ginal subsystemwise simulation problem, can be equivalently reformulated |3|

as the combination of a sequential problem Pp(L) and a feedback identity.

This feedback canonical reformulation of P (L) is shown in Fig. 4, where
o

z£(L) and z^(L) denote the input and output variables of P (L), generated

by splitting the vertices of E.

The feedforward composite problem P-,(L) being sequential can easily be sol

ved componentwise, i.e. by keeping in the central computing unit a single

subsystem of S at a time. A straightforward algorithm is as follows.
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Algo F2

Data : T *v (t, L) , x, u (L) , £ (L) .

mxL - - ..
Step 0: Set k = 1, u = 0 e R =R xR x...xR and

m.xL n*?*1, mN3cL'

p.xL p~xL P„xL

y = 0 e Rr =R xR x...xR

Step 1: Rename the subsystems of S so that the natural total ordering

{Sw S2, ..., S } fits with the partial ordering of the sub-

T
systems of S induced by the removal of E in G .

Step 2: Compute u^(L) as a function of y, u (L) and z(L). Set u=\i(L).

Step 3: Call Sfc - («fc. %, \) and set yfc -«kL<V ^)

Step 4: If k = L, compute y (L) and/or zE(L) and stop. Else,

set k » k + 1 and go to step 2.

o

A natural way to see whether the extreme simplicity of Algo F can be

exploited by carrying the solution of P (L) into the possibly repeated solu

tion of P„(L), at suitably chosen values of the "feedback data" z (L), is

provided by the so called Feedback Information Tearing Principle |4|. Compu

tationally, it amounts (see Fig. 4) to devise some mechanism to cleverly guess

the value of z (L) in such a way that, eventually, the corresponding value

of z_,(L) is equal to z_(L) . If z (L) is simply taken as next value for z (L),

a relaxation algorithm is obtained, for which some convergence condition must

in general be provided. As far as the simulation of dynamical systems is

concerned, such a technique has been first proposed in |l5| under the name

of waveform relaxation. Within the context of the present paper, it is ex

pedientto use it inorder to make the subsystemwise simulation (over multisteps

time-intervals) of an interconnected system prossible. The extremely simple

algorithm is as follows.
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Algo Bl

Data : T * (t, L), x, u (L).
""O

Step 0 : Set k = 1 and z_(L) = 0.

2
Step 1 : Compute y (L) and z_(L) by Algo F .

«/0 "•'£<

Step 2 : If z„(L) = z* (L) , stop. Else, set z_(L) = z (L) , k = k + 1
* vE ~E "*E •'E

and go to step 1-

Theorem 3

If S is structurallv well-posed, then Algo Bl stops in at most L itera

tions and the last value of y (L) is the solution of P (L).
A/O o

Proof. Denote by S the composite dynamical system underneath problem

P (L) . Of course, S_ plus a feedback identity is an equivalent representa-
E E

tion of S. If S is structurally well posed, then S_ must be purely dynamic

from z to z_. This means that, for any \ = 1,2,..., L, z_(X) is uniquely

— A

determined by x, u (X) and z_(X-l). Hence, after k iterations, the first

k values of z are permanently set to their final value; and, of course,

z (k) = z (k). Thus, after at most L iterations, the algorithm must stop.

A

But z_(L) = z (L) implies (Fig. 3) that any solution of P_(L) is a solution

of P (L) as well, so the theorem is proved,
o

Following the proof of Theorem 3, one readily realizes that Algo Bl

can be significantly improved by shortening to k the length of the simula

tion of each subsystem at the k-th iteration. This rules out the remote

(probability zero) possibility that the algorithm stops after less than L

iterations. Precisely, the modified algorithm is as follows.
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Algo B2

Data : T ^ (t, L), x, u (L).
""O

Step 0 : Set X = 1, z (L) =0.

Step 1 : If X= L, go to step 4. Else, go to step 2.

2
Step 2 : Compute z (X) by Algo F .

Step 3 : Set z_(X) = z_(X), X- X + 1 and go to step 1.

2
Step 4 : Compute y (L) by Algo F and stop.

To solve P (L), both Algo Bl (with probability 1) and Algo B2 (for sure)
o

require that each subsystem of S is moved L times in and out the central com

puting unit. Since the length of each simulation is here generally greater

than one, even neglecting the extra computational effort needed to find an

T
optimal (or at least a good) essential set of G , these algorithms cannot

prove better than Algo Al or Algo A2, in any practical situation.

There is, though, at least one interesting special case in which the

feedback information tearing principle combined with a loop algorithmic

function identification strategy |3| , |4| , when applied to the subsystemwise

simulation problem, lead to an algorithm which may compare favorably with all

the preceding ones. The case occurs when S is both linear and time-invariant.

The remainder of the present section deals with such a case only.

If all the subsystems of S and the interconnection I are linear and time-

invariant, the interconnected (but loop-free) system SE underneath Problem

P (L) is linear and time-invariant as well. This means that there exist

- 2

a matrix M e R and a vector z e R such that:

z_(L) = M z_(L) + z.
<«*E **E
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Of course, both M and z, generally depend upon x and u (L) and are

a priori unknown. However, note that causality, linearity and time-inva-

riance of S enable to conclude that M must be of the following form :

M =

H(o) 0 0 . . . 0

H(l) H(o) 0 . . . 0

H(2) H(l) H(o) ... 0

H(L) H(L-l) H(L-2). . . H(0)

where H(.) is the impulse response matrix of SE, from the input z to the out

put z . Furthermore, S is well-posed if and only if no eigenvalue of H(0) is

equal to 1 116, IV-6| . If S is structurally well-posed then S_ must be pure-
E

ly dynamic, whereby H(0) =0.

We can now solve P (L) in two steps as follows. First, we need to identi

fy M and z by a number of experiments. Each experiment consists in actually

solving P„(L) for a given value of its data. As already noticed, this can ea

sily be done subsystemwise, thanks to the loop-free structure of S . Of cour-
E

se, the experiments we need to perform amount to computing H(.) on T and z.

2
This, in turn, calls for the computation, by Algo F , of v single-input impulse

responses plus z (.) on T when z (.) =0. In summary, M and z can be identified
* E

by simulating v + 1 times on T each subsystem of S (recall that v is, by de-

Tfinition, the dimension of z ; since G is, by assumption, strongly connected,

the minimum number of times each subsystem must be moved into the central

computing unit to complete the identification process is then v°+ 1, where v°

T
is the generalized index of G ). As a second step, the congruence equation

o

z (L) = Mz (L) + z must be solved for z (L), and the corresponding value of
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yQ(L) must be computed. Again, thanks to the special structure of M, this

can be done recursively in a very simple way. In fact, let z(L) be the value

of z (L) corresponding to z_(L) » 0. Then, the congruent value z°(L) of z„(L)

can be computed by repeatedly solving, for different values of b, a set of *>

linear algebraic equation of the form Ax=b. Precisely, the recursion is as

follows :

(I-H(o)) z°(t) = z(t) _
_ t"t"1 - _ __

(I-H(o)) z°(t) = z + I H(t-t-X)z°(t+X), Vt e T - {t }.
X-o

Recall that I-H(o) is nonsingular if and only if S is well posed.

The simplest way to compute y (L) , once z (L) is known, is to make use once
vO **

2
more of Algo F . Alternatively, one might record the zero-input response and

the impulse response matrix from z to y , during the identification process,
E o

thus making the direct output computation possible.

All the preceding discussion can be summarized by stating the following

theorem, the formal proof of which is obviously omitted.

Theorem 4

If the interconnected system S is well-posed, linear and time-invariant,

then the subsystemwise simulation problem P (L) can be solved by a two phases

procedure of the following type:

Phase 1 : The strongly connected components {C., C2, ... , C } of S are de

termined, by analyzing the time-invariant system graph G .

Phase 2 : The simulation of each strongly connected component C, of S is

carried out sequentially by : a) simulating, at most v, + 1 times,

each subsystem of S belonging to C, (canonical feedback loop iden

tification) ; b) computing, by a simple recursion, the congruent
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value of the feedback variables; c) computing the output of C.

over T either directly or by one more simulation of its subsystems.

Example 4

Consider the interconnected system S introduced in the second part of

Example 3 (Fig. 3) . Let m, = p2 « 2, nu « pj= 1 and assume that :

i) S is well posed ,

ii) S, and S2 are linear and time-invariant

iii)r21(t) = i, r22(t) = |0 l| ,Vt,

(iv)o(y(t), u (t), t) = |1 0 |y0(t), Vt.
o z

Then, G_ is strongly connected (see Fig. 3) , v =1 and E = tu.J-is

an optimum essential set of Gs. The system S_ undermeath P (L) is shown in
" E E

Fig. 5. Since V =1 and an optimum essential set has been found, only two

experiments (z_(.)=0, z_(.)=6(.); 6 (L) = ll 00 . . . ol', VL £ 1) are
E E

needed to identify S_. Both H(.) and z(.) are scalar functions and H(o)j£l,
E

in view of (i) . Hence, the recursion for the congruent value z (.) of the

feedback variable is straightforward.

Remark 2

In view of Theorem 4, the maximum number of times each subsystem has

to be called in the central computing unit to run a "local" simulation) is

o o
u +2, where la is the interconnectivity index of G-, namely the generalized

index of the most strongly connected component of G .
s

Remark 3

If i) the computational effort needed to simulate a system over a given

interval of time is proportional to the square of its order, ii) all the sub-
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systems are approximatively of the same order, iii) G is strongly con-

nected and iv) v° <•< N, then the decomposition technique de

scribed in Theorem 4 may compare favorably, from a computational point of

view, with more standard techniques, even if the computer at hand is large

enough as to make the simulation of the overall system S possible, in a sin

gle shot.

Remark 4

If the subsystemwise simulation problem has to be solved many times,

for different values of x" and u (.), then a substantial saving in the com-
o

putations involved by the method of Theorem 4 may be achieved by exploiting

the fact that H(.) is not going to change; it does not need, then, to be i-

dentified more than once (see step (a) of phase 2 in Theorem 4).

4. CONCLUSIONS

The problem of simulating piece-by-piece a large-scale interconnected

discrete-time dynamical system has been considered in this paper (subsystemwise

simulation problem).

Two basic lines of attack have been considered, according as whether a

decomposition is sought at each time step or over the entire simulation in

terval. In each case, specific algorithms have been described and discussed.

In particular, their convergence to the exact solution after a finite number

of iterations has been proved.

In the paper, enphasis has been placed on the possibility of serializing
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a large problem by recasting it as a sequence of smaller subproblems. It has

to be stressed however that the proposed analysis is also suited to deal in

a quite natural way with some of the basic issues raised by the possibility

of speeding up the simulation process by parallel computing. Such a possibi

lity does in fact occur whenever the analysis leads to an ordering of the

subproblems, by the data-solution precedence relation, which is a partial or

dering in a proper sense.

In particular, in Theorem 4 the partial ordering of the strongly connected

components is uniquely determined by the system structure, but the partial or

dering of the subsystems within each strongly connected component strongly

depends on the choice of the essential set E. Hence, whenever the possibility

of using parallel computing is considered, it might be sensible to look for an

essential set which is optimum with respect to a more complex performance in^

dex, incorporating not only the amount of information carried by the feed

back identity but also some index of the degree of parallelism associated with

E.

Finally, it is worth mentioning that the same circle of ideas underlying

Theorem 4 can easily be used to construct Class A algorithms to solve, in a

finite number o£ iterations, the subsystemwise simulation problem for any

linear well-posed interconnected system S, even if it is not structurally

well-posed in the sense of Section 2.
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